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CHAPTER I

INTRODUCTION

Wireless communications is the rapidly growth segment of the communication indus-

tries. It has captured the attention of media and the imagination of the public, and become

one of the necessary elements in the daily life. Since the establishment of cellular systems

that experienced drastically growth over the last decade, they are now serving around two

billion users worldwide. Indeed, cellular phones have become an important tool for both

business and resident sectors in most developed countries, and are rapidly replacing wired

systems in many developing countries. In addition, wireless local area networks (LANs)

have been aggressively replacing wired networks in many homes, businesses, and campuses.

From the past to the present, many new applications, including wireless sensor networks,

automated highways and factories, smart home and appliances, and remote telemedicine,

are emerging from research ideas to concrete systems. Further, the rapid growth of wireless

system in conjunction with the rapid expansion of laptop and palmtop computers indicates

a bright future for wireless networks, both as stand-alone system and as part of the larger

networking infrastructure.

1.1 Wireless Communication Systems

There are two most common wireless communication systems involving in our everyday

life: cellular telephone systems and wireless LANs. Therefore, it is of importance to introduce

such systems.

1.1.1 Cellular Telephone Systems

Cellular telephone systems are popular and lucrative worldwide. Indeed, the wireless

revolution is ignited by such systems. Cellular systems provide two-way voice and data

communication with regional, national, or international coverage. Nowadays, these systems

have evolved to support lightweight handheld mobile terminals operating inside and outside
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buildings at both pedestrian and vehicle speeds, in opposition to the old system where the

terminals were installed inside vehicles with antennas mounted on the vehicle roof.

The basic principle of cellular systems is frequency reuse, which exploits the fact

that signal power falls off with distance to reuse the same frequency spectrum at spatially-

separated locations. In fact, the coverage area of the cellular systems is divided into

non-overlapping cells where some set of channels is assigned to each cell. This same

channel set is used in another cell at some distance away. Operation within a cell is

controlled by a centralized base station. The interference caused by users in different cells

operating on the same channel set is called intercell interference. The spatial separation

of cells that reuse the same channel set, i.e. the reuse distance, should be as small as

possible so that frequencies are used as often as possible, thereby maximizing spectral

efficiency. However, as the reuse distance decreases, intercell interference increases, due to

the smaller propagation distance between interfering cells. Since intercell interference must

remain below a given threshold for acceptable system performance, reuse distance cannot

be reduced below some minimum value. In practice, it is quite difficult to determine this

minimum value since both the transmitting and interfering signals experience random power

variations due to the characteristics of wireless signal propagation. In order to determine

the best reuse distance and base station placement, an accurate characterization of signal

propagation within the cells is needed.

All base stations in a given geographical area are connected via a high-speed com-

munications link to a mobile telephone switching office (MTSO), as shown in Fig.1.1. The

MTSO serves as a central controller for the network, allocating channels within each cell,
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coordinating handoff between cells when a mobile traverses a cell boundary, and routing

calls to and from mobile users. A new user located in a given cell requests a channel by

sending a call request to the cell's base station over a separate control channel. The request

is relayed to the MTSO, which accepts the call request if a channel is available in that cell.

If no channels are available, then the call request is rejected. A call handoff is initiated

when the base station or the mobile in a given cell detects that the received signal power for

that call is approaching a given minimum threshold. In this case, the base station informs

the MTSO that the mobile requires a handoff, and the MTSO then queries surrounding base

stations to determine if one of these stations can detect that mobile's signal. If so, then the

MTSO coordinates a handoff between the original base station and the new base station. If

no channels are available in the cell with the new base station, then the handoff fails and

the call is terminated. A call will also be dropped if the signal strength between a mobile

and its base station drops below the minimum threshold needed for communication due to

random signal variations.

Efficient cellular system designs are interference-limited, i.e. the interference dominates

the noise floor since otherwise more users could be added to the system. As a result, any

technique to reduce interference in cellular systems leads directly to an increase in system

capacity and performance. Some methods for interference reduction in use today or proposed

for the future systems include cell sectorization, directional and smart antennas, multiuser

detection, and dynamic resource allocation.

The first generation of cellular systems used analog communications, since they

were primarily designed in the 1960's, before digital communications became prevalent.

Second generation systems moved from analog to digital due to its many advantages. The

components are cheaper, faster, smaller, and require less power. Digital systems also have

higher capacity than analog systems since they can use more spectrally-efficient digital

modulation and more efficient techniques to share the cellular spectrum. Due to their lower

cost and higher efficiency, service providers used aggressive pricing tactics to encourage

user migration from analog to digital systems, and today analog systems are primarily used

in areas with no digital services. However, digital systems do not always work as well

as the analog ones. Users can experience poor voice quality, frequent call dropping, and

spotty coverage in certain areas. The third generation cellular systems are able to provide



4

higher transmission rates than the second generation cellular systems. It still uses the digital

modulation technique similar to the second generation one. In addition, it can provide

different data rates depending on mobility and location. However, it is not compatible with

the second generation systems, so service providers must invest in a new infrastructure before

they can provide the third generation cellular system services. Until now, it still debates in

many countries about the third generation standard as well as the worth of deploying such

systems in comparison to upgrading the second generation systems to cope the demand for

high data transmission services.

1.1.2 Wireless LANs

Wireless LANs provide high-speed data within a small region, e.g. a campus or small

building, as users move from place to place. Typically, wireless devices that access these

LANs are stationary or moving at pedestrian speeds. All wireless LANs standards in the U.S.

operate in unlicensed frequency bands. The primary unlicensed bands are the industrial,

scientific, and medical (ISM) bands at 900 MHz, 2.4 GHz, and 5.8 GHz, and the unlicensed

national information infrastructure (U-NII) band at 5 GHz. In the ISM bands, unlicensed

users are secondary users so must cope with interference from primary users when such

users are active; meanwhile, there are no primary users in the U-NII band. A federal

communications commission (FCC) license is not required to operate in these two bands.

However, this advantage comes at the the price of additional interference caused by other

unlicensed systems operating in these bands for the same reason. The interference problem

can be minimized by setting a limit on the power per unit bandwidth for unlicensed systems.

Wireless LANs can have either a star architecture, with wireless access points or hubs placed

throughout the coverage region, or a peer-to-peer architecture, where the wireless terminals

self-configure into a network.

The first generation wireless LANs were first proposed and designed in the early

1990's, which were based on proprietary and incompatible protocols. Most operated within

the 26 MHz spectrum of the 900 MHz ISM bands using direct sequence spread spectrum,

with data rates on the order of 1-2 Mbps. Unfortunately, the lack of standardization for

these products led to high development costs, low-volume production, and small markets

for each individual product.
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The second generation wireless LANs were further developed for improving a low

data-rate in the first generation one. As such, the well-known IEEE 802.11b standard

was proposed. It can support the data rates of around 1.6 Mbps (raw data rates of 11

Mbps), operating with 80 MHz of spectrum in the 2.4 GHz ISM bands by exploiting the

direct sequence spread spectrum technology. The growth rate of 802.11b wireless LANs

has explosively increased resulting from a relatively high volume of productions produced

by many companies and the adoption of this technology in the computer industry, i.e. the

integration of 802.11b wireless LANs cards in many laptop computers.

Two additional standards in the 802.11 family were developed to provide higher data

rates than 802.11b: IEEE 802.11a and IEEE 802.11g. The 802.11a standard is based on

multicarrier modulation, and can support 20-70 Mbps data rates. It operates with 300 MHz

of spectrum in the 5 GHz U-NII band. In addition, it can accommodate a large number of

users at higher data rates due to the larger bandwidth used in this standard, in comparison

to the 802.11b standard. The other standard, 802.11g, also uses multicarrier modulation and

can be used in either the 2.4 GHz and 5 GHz bands with speeds of up to 54 Mbps. Many

wireless LANs cards and access points support all three standards to avoid incompatibility.

There are many technical issues to be addressed for wireless communication systems,

including how to improve the system capacity with a high data rate and how to remove

interference signals, e.g. spatial and temporal interference signals, from such systems. In the

next section, a prominent system, namely a multiple-input multiple-output (MIMO) system,

that can overcome such difficulties will be described.

1.2 Multiple Antennas and Space-Time Communications

In this section, the wireless communication systems with multiple antennas at the

transmitter and receiver are presented. These systems are commonly known as MIMO

communication systems. An exploitation of the multiple antennas at both transmitter and

receiver can provide the performance advantages in terms of increasing data rates through

multiplexing gain and improving error probability performance through diversity gain. In

MIMO communication systems, the transmit and receive antennas can both be used for

diversity gain. Multiplexing gain can be obtained by exploiting the structure of the channel

gain matrix to create independent signalling paths that can be used to send independent
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data. Historically, the initial excitement about MIMO was started by the pioneering work of

Winters [1], Foscini [2], Gans [3], and Telatar [4,5] predicting remarkable spectral efficiencies

for wireless communication systems with multiple transmit and receive antennas. These

spectral efficiency gains often require accurate knowledge of the channel at the receiver,

and sometimes at the transmitter as well. Therefore, the issue about channel estimation is

of crucially interest accordingly, especially for the systems employing coherent receivers or

the systems employing transmit filters for compensating channel variations. In addition to

spectral efficiency gains, intersymbol interference (ISI) and interference from other users can

be reduced by using smart antenna techniques. The cost of the performance enhancements

obtained through MIMO techniques comes at the expense of deploying multiple antennas,

the extra space and power of these extra antennas, and the added complexity required for

multi-dimensional signal processing. More details will be discussed as follows.

1.2.1 MIMO Wireless Fading Channels

Wireless fading channels of point-to-point MIMO communication systems with Lt-

transmit and Lr-receive antennas can be classified into two categories: narrowband MIMO

fading channels and frequency-selective MIMO fading channels. Narrowband MIMO fading

channels are also called flat (or frequency-nonselective) MIMO fading channels. For the

narrowband MIMO fading channels, there exists only a direct path connecting the Lt-transmit

antennas onto Lr-receive antennas [6]. Therefore, there are LtLr channel links in such

channel models. In addition, since there is no multiple paths in this kind of channels, the

channels do not suffer from ISI. For the other channels, frequency-selective MIMO fading

channels, there exists multiple paths in each pair of transmit and receive antennas. These

channels could suffer from ISI when the bandwidth of such channels is larger relative to

the channel's multipath delay spread. There are two approaches to dealing with ISI in

MIMO channels [6]. First, a channel equalizer can be used to mitigate the effects of ISI.

However, the equalizer is much more complex in MIMO channels since the channel must

be equalized over both space and time. Second, multicarrier modulation or orthogonal

frequency division multiplexing (OFDM) can be employed as an alternative to equalization

in frequency-selective fading channels. Frequency-selective MIMO fading channels exhibit

diversity across space, time, and frequency, so ideally all three dimensions should be fully
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exploited in the signalling scheme.

Different assumptions can be assumed about the knowledge of the channels at the

transmitter and receiver. For a static channel, the channel state information (CSI) at the

receiver is typically assumed known, since the channel gains can be obtained easily by

sending a training sequence for channel estimation. If a feedback path is available, then

CSI at the receiver can be sent back to the transmitter to provide CSI at the transmitter.

When the channel is not known at either the transmitter or receiver, then some distribution

on the channel gain must be assumed. The most common model for this distribution

is a zero-mean spatially white (ZMSW) model, where the channel gain is assumed to

be identically independently distributed (i.i.d) zero-mean unit-variance, complex circularly

symmetric Gaussian random variable. In general, different assumptions about CSI and

about the distribution of the channel gain lead to different channel capacities and different

approaches to space-time signalling.

1.2.2 Performance Advantages of MIMO Communication Systems

Different strategies for exploiting the multiple antennas at the transmitter and receiver

lead to different performance advantages of the MIMO communication systems. Here, a

summary of such advantages is presented.

1.2.2.1 MIMO Multiplexing Gain

When both the transmitter and receiver have multiple antennas, there is a mechanism

for performance gain called multiplexing gain. The multiplexing gain of a MIMO system

stems from the fact that a MIMO channel can be decomposed into a number R of parallel

independent channels. By multiplexing independent data onto these independent channels,

an R-fold increase in data rates can be achieved in comparison to a system with just one

antenna at the transmitter and receiver. This increased data rate is called the multiplexing

gain.

In order to obtain independent channels from the MIMO system, the MIMO channel

with Lr ×Lt channel gains needs to be assumed known to both the transmitter and receiver.

Let H be an Lr × Lt channel gain matrix and RH be a rank of H of the MIMO system.

The process for obtaining the independent channels are summarized as follows. First, the
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singular value decomposition (SVD) is performed for H, to arrive at

H = UΣVH , (1.1)

where the Lr × Lr matrix U and the Lt × Lt matrix V are unitary matrices, and Σ is

an Lr × Lt diagonal matrix of singular values {σi} of H. Since RH is the rank of H, it

cannot exceed the number of columns or rows of H, RH ≤ min (Lt, Lr). If H is full rank,

which is sometimes referred to as a rich scattering environment, then RH = min (Lt, Lr).

Other environments may lead to a low rank H: a channel with high correlation among

the gains in H may have rank 1. Second, the parallel decomposition of the channel is

obtained by defining a transformation on the channel input and output through transmit

precoding and receiver shaping, respectively. Specifically, in transmit precoding, the input

to the transmitter antennas is generated through a linear transformation by pre-multiplying

the original input vector with V. Receiver shaping performs a similar operation at the

receiver by pre-multiplying the channel output vector with UH . As a result, the transmit

precoding and receiver shaping transform the MIMO channel into RH parallel single-input

single-output (SISO) channels. Note that multiplication by a unitary matrix does not change

the distribution of the noise. Finally, by sending independent data across each of the parallel

channels, the MIMO channel can support RH times the data rate of a system with just one

transmit and receive antenna, leading to a multiplexing gain of RH . Note, however, that the

performance on each of the channels will depend on its gain σi.

1.2.2.2 MIMO Diversity Gain

Alternatively, the multiple antennas at the transmitter and receiver can be used to

obtain diversity gain instead of capacity gain. In this setting, the same symbol, weighted by a

complex scale factor, is sent over each transmit antenna, so that the input covariance matrix

has unit rank. By pursuing this strategy, the error probability performance will be improved,

since more channels are used for sending the same symbol, proportionally to a number of

the transmit and receive antennas used. This improved error probability performance is

called the diversity gain. This strategy corresponds to the transmit precoding and receiver

shaping described in section 1.2.2.1 being just column vectors: V = v and U = u.

This strategy provides diversity gain by coherently combining of the multiple signal paths.

Channel knowledge at the receiver is typically assumed since this is required for coherent
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combining. The diversity gain then depends on the availability of the knowledge of channels

at the transmitter. When the channel matrix H is known, the received signal-to-noise ratio

(SNR) is optimized by choosing u and v as the principal left and right singular vectors of

the channel matrix H, respectively. When the channel is not known, at the transmitter, the

transmit antenna weights are all equal. In addition, the lack of transmitter CSI will result in

a lower SNR and capacity than with optimal transmit weighting. This strategy has obviously

reduces capacity relative to optimizing the transmit precoding and receiver shaping matrices

at an additional benefit of the reduced demodulation complexity.

1.2.2.3 Multiplexing/Diversity Tradeoffs

From the previous sections, there are two mechanisms for utilizing multiple antennas to

improve wireless system performance. One option is to obtain capacity gain by decomposing

the MIMO channel into parallel channels and multiplexing different data streams onto these

channels. This capacity gain is referred to as a multiplexing gain. However, the SNR

associated with each of these channels depends on the singular values of the channel matrix.

Alternatively, the strategy for exploiting the multiple antennas to achieve a diversity gain can

be done by coherently combining the channel gains. It is not necessary to use the antennas

purely for multiplexing or diversity. Some of the space-time dimensions can be used for

diversity gain, and the remaining dimensions used for multiplexing gain.

The multiplexing/diversity tradeoff or, more generally, the tradeoff between data rates,

probability of error, and complexity for MIMO systems has been studied in the literature, from

both a theoretical perspective and in terms of practice space-time code designs [7--9]. These

works have primarily focused on block fading channels with receiver CSI only since when

both transmitter and receiver know the channels, the tradeoff is relatively straightforward:

antenna subsets can first be grouped for diversity gain and then the multiplexing gain

corresponds to the new channels with reduced dimension due to the grouping. For the block

fading model with receiver CSI only, as the block length grows asymptotically large, full

diversity gain and full multiplexing gain (in terms of capacity with outage) can be obtained

simultaneously with reasonable complexity by encoding diagonally across antennas [10, 11].

For finite block lengths, it is not possible to achieve full diversity and full multiplexing gains

simultaneously, in which case there is a tradeoff between these gains. It is well-known
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that, in the MIMO system with Lt-transmit and Lr-receive antennas, if all transmit and

receive antennas are used for diversity, the error probability will be proportional to SNRLtLr .

Moreover, some of these antennas can be used to increase data rates at the expense of

diversity gain. It is also possible to adapt the diversity and multiplexing gains relative to

channel conditions. Specifically, in poor channel states, more antennas can be used for

diversity gain; whereas, in good states, more antennas can be used for multiplexing gain.

1.2.2.4 Smart Antennas

From the previous sections, the multiple antennas at the transmitter and/or receiver can

provide diversity gain as well as increased data rates through multiplexing gain. Alternatively,

sectorization or phased array techniques can be used to provide directional antenna gain at

the transmit or receive antenna array. This directionality can increase the signalling range,

reduce delay-spread (or, equivalently, ISI) and flat-fading, and suppress interference between

users. In particular, interference typically arrives at the receivers from different directions.

Thus, directional antennas can exploit these differences to null or attenuate interference

arriving from given directions, thereby increasing system capacity. The reflected multipath

components of the transmitted signal also arrive at the receiver from different directions, and

can also be attenuated, thereby reducing ISI and flat-fading. The benefits of directionality that

can be obtained with multiple antennas must be weighted against their potential diversity or

multiplexing benefits, giving rise to multiplexing/diversity/directionality tradeoffs. Whether

it is best to use the multiple antennas to increase data rates through multiplexing, increase

robustness to fading through diversity, or reduce ISI and interference through directionality

is a complex tradeoff decision that depends on the overall system design.

The most common directive antennas are sectorized or phased (directional) antenna

arrays, and the radiation patterns for these antennas along with an omnidirectional antenna

radiation pattern are shown in Fig.1.2.

Directional antennas (or smart antennas) typically use antenna arrays coupled with

phased array techniques to provide directional gain, which can be tightly controlled with

sufficiently many antenna elements. Phased array techniques work by adapting the phase of

each antenna element in the array, which changes the angular locations of the antenna beams

(angles with large gain) and nulls (angles with small gain), via the use of weight vector, as
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Figure 1.2 Antenna radiation patterns for omnidirectional, sectorized, and directive antennas.

shown in Fig.1.3 In Fig.1.3, w = [w0, . . . , wM−1]
T denotes the weight vector and M denotes

a number of array antenna's elements. For the array antenna with M elements, M − 1 nulls

can be formed to significantly reduce the received power of M − 1 separate interferers.

If there are MI < M − 1 interferers, then the MI interferers can be cancelled out using

MI +1 antennas in a phased array, and the remaining M −MI −1 antennas can be used for

diversity gain. Note that directional antennas must know the angular location of the designed

and interfering signals to provide high or low gains in the appropriate directions. Tracking

of user locations can be a significant impediment in highly mobile systems, which is why

cellular base stations use sectorization instead of directional antennas. The complexity of

array antenna processing along with the required real estate of an array antenna make the

use of smart antennas in small, lightweight, low-power handheld devices unlikely in the near

future. However, base stations and access points already use the array antenna in many

cases.

From Fig.1.3, the smart antennas basically consists of three major parts: an array

antenna, an array processor, and a demodulator. The most important part for the smart

antennas is the array processor, in which the adaptive algorithm module plays a major role

in controlling the weight vector w. The adaptive algorithms for adjusting the weight vector

can be divided into two approaches: a non-blind approach, in which the training signal

is used to provide a prior knowledge of the location of the desired signal, and a blind

approach, in which no training signal is employed. For the non-blind adaptive algorithm

approach, many methods had been proposed, e.g. the minimum mean square error (MMSE),
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Figure 1.3 The smart antenna system.

the maximum signal-to-noise ratio (Max SNR), the linear constraint minimum variance

distortionless response (LCMV) methods [12]. For the blind approach, the well-known

constant modulus algorithm (CMA) is the most popular method. More details about the

basic operation of the smart antennas can be found in [12]. The performance advantage

of the blind approach is the enhanced bandwidth efficiency since no training signal is

transmitted. However, this benefit comes at the expense of an additional complexity as well

as the performance loss, in some cases.

1.2.3 Space-Time Modulation and Coding

Beside the MIMO communication systems, space-time modulation and coding are of

interest and importance because they can provide an effective signalling and codes that can

achieve a full diversity gain. Since the signal design extends over both space (via the multiple

antennas) and time (via multiple symbol times), it is typically referred to as a space-time

code. Most space-time codes are designed for quasi-static channels where the channel is

constant over a block of certain symbol times, and the channel is assumed unknown at the
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transmitter.

Optimal decoding of the received signal requires maximum likelihood (ML) demodu-

lation. If the symbols modulated onto each of the Lt-transmit antennas are chosen from an

alphabet of size |Υ|, then because of the cross-coupling between transmitted symbols at the
receiver antennas, ML demodulation requires an exhaustive search over all |Υ|Lt possible

input vector of Lt symbols.

It has been shown in [13] that the pairwise error probability decreases as SNRL∆Lr ,

where ∆ denotes the Lt × Lr difference matrix between any two code words and L∆ is

the rank of ∆. The maximum achievable diversity gain through coherent combining of

Lt-transmit and Lr-receive antennas is LtLr. Thus, to obtain this maximum diversity gain,

the space-time code must be designed such that ∆ has full rank equal to Lt. This design

criterion is referred to as the rank criterion. Another design criterion is the determinant

criterion. It has been shown that a high coding gain [13] can be achieved by maximizing

the minimum of the determinant of ∆ over all input matrix pairs. By applying such criteria

in designing the space-time code, hence, there are two major space-time codes: space-time

trellis code and space-time block code. More details about how to design and analyze these

space-time codes can be found in [13, 14].

As previously mentioned, it can be seen that the MIMO communication systems

provide a significant performance enhancement to the wireless communications, including

the increased rates through multiplexing gain, the enhanced error probability through diversity

gain, and the cancellation of ISI and interference through smart antennas. At the first step,

the MIMO communication systems were developed for the flat fading channels, whereby

no ISI occurs. In practice, most channels are frequency selective, therefore, such systems

could suffer from ISI. Furthermore, this ISI severely affects the performances of the MIMO

communication systems. Hence, an equalizer in time domain is needed to mitigate such

problem. However, the design of equalizer for the MIMO communication systems is quite

complicated due to the nature of a multi-dimensional signal processing inherent in these

systems. Alternatively, the multicarrier modulation technique is quite promising for mitigating

such problem due to its good performance and simplicity for implementation. This technique

can be directly applied to the MIMO communication systems, known as the MIMO-OFDM

communication systems. In the next text, the multicarrier modulation is presented.
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1.3 Multicarrier Modulation

The basic idea of multicarrier modulation is to divide the transmitted bitstream into

many different substreams and send these over many different subchannels. Typically, the

subchannels are orthogonal under ideal propagation conditions. The data rate on each of

the subchannels is much less than the total data rate, and the corresponding subchannel

bandwidth is much less than the total system bandwidth. The number of substreams is

chosen to insure that each subchannel has a bandwidth less than the coherence bandwidth

of the channel, so the subchannels experience relatively flat fading. Thus, the ISI on each

subchannel is small. The subchannels in multicarrier modulation need not be contiguous, so a

large continuous block of spectrum is not needed for high rate multicarrier communications.

Moreover, multicarrier modulation is efficiently implemented digitally. In this discrete

implementation, i.e. an OFDM system, the ISI can be completely eliminated through the use

of a cyclic prefix.

Multicarrier modulation is currently used in many wireless systems. However, it is

not a new technique; it was first used for military high frequency (HF) radios in the late

1950's and early 1960's. Starting around 1990, multicarrier modulation has been adopted in

many diverse wired and wireless applications, including digital audio and video broadcasting

in Europe, digital subscriber lines (DSL) using discrete multitone, and the most recent

generation of wireless LANs. Multicarrier modulation is also a candidate for the air interface

in next generation cellular systems. Multicarrier techniques are common in high data rate

wireless systems with moderate to large delay spread, as they have significant advantages

over time-domain equalization. In particular, the number of taps required for an equalizer

with good performance in a high data rate system is typically large. Thus, these equalizers

are highly complex. Moreover, it is difficult to maintain accurate weights for a large

number of equalizer taps in a rapidly varying channel. For these reasons, most emerging

high rate wireless systems use either multicarrier modulation or spread spectrum instead of

equalization to compensate for ISI.
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1.3.1 Data Transmission using Multiple Carriers

The simplest form of multicarrier modulation divides the data stream into multiple

substreams to be transmitted over different orthogonal subchannels centered at different

subcarrier frequencies. The number of substreams is chosen to make the symbol time on

each substream much greater than the delay spread of the channel or, equivalently, to make

the substream bandwidth less than the channel coherence bandwidth.

Consider a linearly-modulated system with data rate R and passband bandwidth B.

The coherence bandwidth for the channel is assumed to be Bc < B, so the signal experiences

frequency-selective fading. The basic premise of multicarrier modulation is to break this

wideband system into N linearly-modulated subsystems in parallel, each with subchannel

bandwidth BN = B/N and data rate RN ≈ R/N . For N sufficiently large, the subchannel

bandwidth BN = B/N ¿ Bc, which insures relatively flat fading on each subchannel.

This can also be seen in the time domain: the system time TN of the modulated signal

in each subchannel is proportional to the subchannel bandwidth 1/BN . So BN ¿ Bc

implies that TN ≈ 1/BN À 1/Bc ≈ Tm, where Tm denotes the delay spread of the channel.

Thus, if N is sufficiently large, the symbol time is much bigger than the delay spread, so

each subchannel experiences little ISI degradation. Typically, the bit stream is divided into

N substreams via a serial-to-parallel converter. The nth substream is linearly-modulated

(typically via quadrature amplitude modulation (QAM) or phase shift keying modulation

(PSK)) relative to the subcarrier frequency fn and occupies passband bandwidth BN .

The subchannels can be divided to be non-overlapping subchannels. However, this

strategy is spectrally inefficient, and near-ideal low pass filters is required to maintain the

orthogonality of the subcarriers at the receivers. Moreover, it requires N independent mod-

ulators and demodulators, which entails significant expense, size, and power consumption.

On the other hand, the subchannels can be divided to be overlapping subchannels, which

make use of the spectrum more efficiently. It can be shown that the minimum frequency

separation required for subcarriers to remain orthogonal over the symbol interval [0, TN ] is

1/TN [6]. Typically, a set of sinusoidal function in conjunction with an appropriate base-

band pulse shape is chosen to form a set of (approximately) orthonormal basis functions.

Given this orthonormal basis set, even if the subchannels overlap, the modulated signals
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Figure 1.4 The frequency-domain multicarrier with overlapping subcarriers.

transmitted in each subchannel can be separated out in the receiver. In Fig.1.4, an illustration

of the frequency-domain multicarrier with overlapping subcarriers is depicted. Note that

f0, . . . , fN−1 denote subcarriers of subchannels, respectively.

1.3.2 Discrete Implementation of Multicarrier

Although multicarrier modulation was invented in the 1950's, its requirement for

separate modulators and demodulators on each subchannel was far too complex for most

system implementations at the time. However, the development of simple and cheap

implementations of the discrete Fourier transform (DFT) and the inverse DFT (IDFT) twenty

years later, combined with the realization that multicarrier modulation can be implemented

with these algorithms, ignited its widespread use.

Let x[n], 0 ≤ n ≤ N − 1 be a discrete time input sequence. When the input data

stream x[n] is sent through a linear time-invariant discrete-time channel h[n], the output

y[n] is the discrete-time convolution of the input and the channel impulse response, given

as,

y[n] = h[n] ∗ x[n] =
∑

k

h[k]x[n − k]. (1.2)

The N-point circular convolution of x[n] and h[n] is defined as

y[n] = h[n] ¯ x[n] =
∑

k

h[k]x[n − k]N , (1.3)

where [n− k]N denotes [n− k] modulo N . In other words, x[n− k]N is a periodic version
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of x[n− k] with period N . It is easily verified that y[n] in (1.3) is also periodic with period

N . From the definition of the DFT, circular convolution in time leads to multiplication in

frequency [6],

DFT{y[n] = h[n] ¯ x[n]} = H[i]X[i], ≤ i ≤ N − 1, (1.4)

where ¯ denotes a circular convolution. Hence, if H[i] is known, the data sequence X[i]

can be recovered by taking the IDFT of Y [i]/H[i], which in turn, the original input sequence

x[n] is recovered. Unfortunately, the channel output is not a circular convolution but a

linear convolution. However, the linear convolution between the channel input and channel

impulse response can be turned into a circular convolution by adding a special prefix to the

input called a cyclic prefix.

1.3.2.1 Cyclic Prefix

Consider a channel input sequence x[n] = x[0], . . . , x[N − 1] of length N and a

discrete-time channel with finite impulse response (FIR) h[n] = h[0], . . . , h[L] of length

L+1 = Tm/Ts, where Tm denotes the the channel delay spread and Ts denotes the sampling

time associated with the discrete time sequence. The cyclic prefix for x[n] is defined as

a {x[N − L], . . . , x[N − 1]}: it consists of the last L values of the x[n] sequence. For

each input sequence of length N , these last L samples are appended to the beginning of the

sequence. This yields a new sequence x̃[n], −L ≤ n ≤ N − 1, of length N + L, where

x̃[−L], . . . , x̃[N − 1] = x[N − L], . . . , x[N − 1], x[0], . . . , x[N − 1]. Note that with this

definition, x̃[n] = x[n]N for −L ≤ n ≤ N − 1, which implies that x̃[n − k] = x[n − k]N

for −L ≤ n− k ≤ N − 1. At the receiver, the first L samples will be discarded in order to

remove the redundancy resulted from the cyclic prefix.

1.3.2.2 Orthogonal Frequency Division Multiplexing

The OFDM implementation of multicarrier modulation, including a transmitter and

receiver, is shown in Fig.1.5 and 1.6, respectively. The input data stream is modulated by a

QAM modulator, resulting in a complex symbol stream X[0], . . . , X[N − 1]. This symbol

stream is passed through a serial-to-parallel convertor, whose output is a set of N parallel

QAM symbols X[0], . . . , X[N − 1] corresponding to the symbols transmitted over each of

the subcarriers. Thus, the N symbol output from the serial-to-parallel convertor are the
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Figure 1.5 A transmitter of the OFDM system with IFFT/FFT implementation.

discrete frequency components of the OFDM modulator output s(t). In order to generate

s(t), these frequency components are converted into time samples by performing an inverse

DFT on these N symbols, which is efficiently implemented using the inverse fast Fourier

transform (IFFT) algorithm. The IFFT yields the OFDM symbol consisting of the sequence

x[n] = x[0], . . . , x[N − 1] of length N , where

x[n] =
1√
N

N−1∑

i=0

X[i]ej2πni/N , 0 ≤ n ≤ N − 1, (1.5)

where j =
√
−1. This sequence corresponds to samples of the multicarrier signal. The

cyclic prefix is then added to the OFDM symbol, and the resulting time samples are ordered

by the parallel-to-serial convertor and passed through a digital-to-analog (D/A) convertor,

resulting in the baseband OFDM signal x̃(t), which is then upconverted to frequency fc.

The transmitted signal is filtered by the channel impulse response h(t) and corrupted by

the additive noise, so that the received signal is y(t) = x̃(t)∗h(t)+n(t). This signal is down

converted to baseband and filtered to remove the high frequency components. The analog-to-

digital (A/D) convertor samples the resulting signal to obtain y[n] = x̃[n]∗h[n]+n[n], −L ≤
n ≤ N − 1. The prefix of y[n] consisting of the first L samples is then removed. This

results in N time samples whose DFT in the absence of noise is Y [i] = H[i]X[i]. These

time samples are serial-to-parallel converted and passed through a fast Fourier transform

(FFT). This results in scaled versions of the original symbols H[i]X[i], where H[i] = H[fi]

is the flat-fading channel gain associated with the ith subchannel. The FFT output is
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Figure 1.6 A receiver of the OFDM system with IFFT/FFT implementation.

parallel-to-serial converted and passed through a QAM demodulator to recover the original

data, e.g. X[i] = Y [i]/H[i].

1.4 Channel Estimation

For the wireless communication systems employing a coherent receiver, an accurate

CSI is crucially needed. Thus, the issue of channel estimation is of most interest since the

capacity of such systems as well as the error probability performance depends on this CSI

estimate. An alternative way to cross over the channel estimation problem is to employ

the differential modulation technique. However, this benefit of not explicitly performing the

channel estimation comes at the expense of the 3-dB loss in a received SNR. In this section,

an overview of channel estimation is presented. More specific details and approaches for

channel estimation will be described in Chapter 3 and 4.

For the SISO communication systems, there are two ways to perform the channel

estimation: blind channel estimation and non-blind channel estimation. Blind channel

estimation doest not need any training (or pilot) signals for using as a prior information for

channel estimation. Specifically, it actually exploits a special structure of the transmitted and

received signals or the characteristics of channels, such as signal and noise subspaces of the

received signal, a constant modulus property of the transmitted signal, and a cyclo-stationary

property of the channels [15], for estimating the channels. The explicit benefit of the

blind channel estimation is its enhanced bandwidth efficiency, since there is no bandwidth
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efficiency loss caused by a transmission of training signals. However, the computational

complexity of the blind channel estimation is a prohibitive cost. Moreover, when the

dimensions of signal processing increases, e.g. as in the MIMO systems, the computational

complexity of such channel estimation increases and cannot be affordable. On the other hand,

non-blind channel estimation can be achieved by the use of the training signal. Despite the

bandwidth efficiency loss, the non-blind channel estimation has several advantages. First, its

computational complexity is not that high, in comparison to that of blind channel estimation,

and can be affordable even for the MIMO systems. Second, its performance in terms of a

mean square error (MSE) is excellent, mostly better than the that of blind channel estimation.

Hence, the non-blind channel estimation is of particular interest. There are two approaches

for designing the training signal: pilot-symbol assisted modulation (PSAM) approach [16]

and pilot-embedding approach [17].

In the PSAM approach, the training signal is time-multiplexing onto the transmit data

stream. At the receiver, this training signal is extracted from the received signal, and then is

used for channel estimation. The interpolation technique can be adopted for improving an

accuracy of the channel estimate. In summary, an extra time-slot is needed for sending this

training signal, resulting in the bandwidth efficiency loss. In addition, this loss is proportional

to the amount of the training signal used.

Alternatively, in the pilot-embedding approach, sequences of the training and data are

added up together to form the transmit data stream. At the receiver, such soft estimation

algorithms, e.g. Viterbi's algorithm, are used for recovering such training signal, and then,

estimating the channels. The benefit of the pilot-embedding approach is the enhanced

bandwidth efficiency, however, at the price of an increased computational complexity for

channel estimation. Moreover, since these sequences are added up together, for a given

power constraint, some power needs to be dedicated to the training. Hence, the power, i.e.

the remaining power, dedicated to the data is then being reduced, resulting in an increasing

error probability in the system.

There are many approaches for channel estimation, including a least square (LS)

approach, an ML approach, and a linear minimum MSE (LMMSE) approach [18]. For the

communication systems corrupted by the additive white Gaussian noise, the LS and ML

channel estimation approaches behave similarly, and so does their performances [18]. For the
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LMMSE channel estimation, a prior information about the channel correlation is exploited;

as a result, its performance is the best [18]. However, this performance enhancement comes

at the expense of the increased computational complexity of the estimation process. In

addition, the approaches proposed for SISO systems can be well applied to the MIMO

systems.

1.5 Multiuser Systems

In multiuser systems, the system resource must be divided among multiple users. It

is well-know that signals of bandwidth B and time duration T occupy a signal space of

dimension 2BT . In order to support multiple users, the signal space of dimension 2BT of a

multiuser system must be allocated to the different users. Allocation of signalling dimensions

to specific user is called multiple access. Multiple access methods perform differently in

different multiuser channels, and these methods will be applied to the two basic multiuser

channels: downlink and uplink channels.

A multiuser channel refers to any channel that must be shared among multiple users.

There are two different types of multiuser channels: the downlink and uplink channels. A

downlink channel, also called a broadcast channel or forward channel, has one transmitter

sending to many receivers. Since the signals transmitted to all users originate from the

downlink transmitter, the transmitted signal is the sum of signals transmitted to all K users.

Thus, the total signalling dimensions and power of the transmitted signal must be divided

among the different users. Another important characteristic of the downlink is that both

signal and interference are distorted by the same channel. An uplink channel, also called

a multiple access channel or reverse channel, has many transmitters sending signals to one

receiver, where each signal must be within the total system bandwidth B. In addition, the

signals of different users in the uplink travel through different channels, the received powers

associated with the different users will be different if their channel gains are different.

1.5.1 Multiple Access

Efficient allocation of signalling dimensions between users is a key design aspect of

both uplink and downlink channels, since bandwidth is usually scarce. When dedicated

channels are allocated to users, it is often called multiple access. Multiple access techniques
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divide up the total signalling dimensions into channels and then assign these channels to

different users. The most common methods to divide up the signal space are along the time,

frequency, and code axes. The different user channels are then created by an orthogonal

or non- orthogonal division along these axes: frequency-division multiple access (FDMA)

and time-division multiple access (TDMA) are orthogonal channelization methods whereas

code-division multiple access (CDMA) can be orthogonal or non- orthogonal, depending on

the code design.

1.5.1.1 Frequency-Division Multiple Access

In FDMA, the system signalling dimensions are divided along the frequency axis into

nonoverlapping channels, and each user is assigned a different frequency channel. FDMA

is the most common multiple access option for analog communication systems, where

transmission is continuous. Multiple access in OFDM systems, called orthogonal frequency-

division multiple access (OFDMA), implements FDMA by assigning different subcarriers to

different users.

1.5.1.2 Time-Division Multiple Access

In TDMA, the system dimensions are divided along the time axis into nonoverlapping

channels, and each user is assigned a different cyclically-repeating time slot. These

TDMA channels occupy the entire system bandwidth, which is typically wideband, so some

form of ISI mitigation is required. A major difficulty of TDMA is the requirement for

synchronization among different users in the uplink channels. To maintain orthogonal time

slots in the received signals, the different uplink transmitters must synchronize such that

after transmission through their respective channels, the received signals are orthogonal in

time. Multipath can also destroy time-division orthogonality in both downlinks and uplinks

if the multipath delays are a significant fraction of a time slot. TDMA is used in many

digital cellular phone standards.

1.5.1.3 Code-Division Multiple Access

In CDMA, the information signals of different users are modulated by orthogonal or

non-orthogonal spreading codes. The resulting spread signals simultaneously occupy the
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same time and bandwidth. The receiver uses the spreading code structure to separate out

the different users. CDMA is used for multiple access in IS-95 digital cellular standards,

with orthogonal spreading codes on the downlink and a combination of orthogonal and

non-orthogonal codes on the uplink. It is also used in the wideband CDMA (W-CDMA) and

CDMA 2000 digital cellular standards.

1.6 Motivations and Objectives of Dissertation

In the future wireless communications, high data rate transmission services are highly

demanded. As mentioned earlier, one of the promising communication schemes making such

demand a reality is the MIMO communication system. In addition, several gains including

multiplexing, diversity, and directionality gains inherent in the MIMO communication

systems can significantly improve the system performances, e.g. the system capacity, the

error probability, and the robustness to the interference. These performance advantages are

the motivations for this dissertation. In this dissertation, the MIMO communication systems

are considered. This dissertation studies the MIMO communication systems in two aspects:

smart antenna system (or spatial interference cancellation scheme) and channel estimation.

It is well-known that the multiple access interference (MAI) can severely affect the

performance of a CDMA system. Typically, the received signal consists of both the desired

and the interference signals coming from different directions of arrival (DOA). Hence, the

smart antenna system, i.e. a spatial filter, can be used to mitigate such interference by

rejecting it as well as maintaining the desired signal in the desired direction. The advantages

by employing such a system are the capacity improvement, the signal link enhancement,

and the enhanced error probability. These performance advantages motivate the studies in

the first part of this dissertation.

For the wireless communication systems employing coherent receivers, an accurate

channel estimate is crucially needed. Furthermore, such channel estimate is also needed

for channel equalization as well. In addition, since the channel equalizer is employed for

the smart antenna systems for compensating the effect of fading channels, the channel

estimation is crucially demanded. These demands motivate the studies in the second part of

this dissertation.

The objectives of this dissertation are as follows.
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1. To study smart antennas systems for interference canceling receivers in direct sequence

(DS)-CDMA systems.

2. To investigate the effects of in-beam interference, Near-Far effect scenarios, and power

arrangement on the performance of the existing smart antenna systems for interference

canceling receivers in DS-CDMA systems.

3. To develop a novel smart antenna system that can resolve such aforementioned issues.

4. To study channel estimation techniques for MIMO wireless communication systems.

5. To study pilot transmission designs for channel estimation in MIMO wireless commu-

nication systems.

6. To develop a novel pilot-embedding technique that can better acquire the channel state

information in fast fading channels for MIMO wireless communication systems.

7. To develop simplified ML and LMMSE channel estimators for MIMO wireless com-

munication systems.

8. To determine an optimum power allocation for the proposed channel estimation

scheme.

9. To investigate the performance of the proposed channel estimation scheme in ST

coded MIMO systems.

10. To study channel estimation techniques for MIMO-OFDM wireless communication

systems.

11. To generalize the proposed pilot-embedding technique in MIMO wireless communica-

tion systems to MIMO-OFDM wireless communication systems.

12. To develop novel channel estimators for MIMO-OFDM wireless communication sys-

tems.

13. To develop a novel channel estimator that can adaptively work with the changing

environment as well as overcome an inherent problem of the proposed channel

estimators, i.e. the model mismatch error, caused by the non-integer multipath delay

profiles of fading channels.
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14. To determine the optimal criteria for choosing an optimum number of significant taps

for the proposed channel estimator.

15. To investigate the performance of the proposed channel estimation scheme in SF

coded MIMO-OFDM systems.

1.7 Scope of Dissertation

In the first part of this dissertation, the smart antenna system, namely an interference-

rejected blind array processing (IRBAP), is proposed for interference canceling receivers

in DS-CDMA systems. The proposed IRBAP only exploits the spreading codes of users

as the information for its weight adjustment procedures. This proposed scheme is robust

to the closely-separated-DOA in-beam interference signals, especially in the near-far effect

situation. Theoretical analysis, including convergence analysis and error probability analysis,

for IRBAP is conducted. Performance evaluation via computer simulations is also performed.

In the second part of this dissertation, channel estimation for the MIMO wireless

communication systems is investigated. Firstly, the channel estimation for the MIMO

communication systems with flat fading channels is considered. The novel pilot-embedding

technique, called a data-bearing approach for pilot-embedding for joint channel estimation

and data detection, is proposed by exploiting the null-space property and the orthogonality

property of the data-bearer and pilot matrices. The unconstrained ML and LMMSE channel

estimators are proposed. The ML data detection is also studied. MSE of channel estimation,

Cramer-Rao lower bound (CRLB), and Chernoff's bound of bit error rate (BER) for space-

time (ST) codes are analyzed for examining the performance of the proposed scheme.

The optimum power allocation scheme for data and pilot parts is also investigated. Three

data-bearer and pilot structures, including time-multiplexing (TM)-based, ST-block code

(STBC)-based, and code-multiplexing (CM)-based, are proposed. Computer simulations are

conducted for evaluating the performance of the proposed scheme.

Secondly, the channel estimation for the MIMO-OFDM communication systems with

frequency-selective fading channels is considered. Since the multipath delay profile of

such channels is arbitrary in such system, an effective channel estimator is needed. The

generalization of a data-bearing approach for pilot-embedding to such system is proposed.
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The pilot-embedded data-bearing (PEDB) LS channel estimation and ML data detection

are considered. Then, an LS FFT-based channel estimator is proposed to improve the

performance of the PEDB-LS channel estimator. The effect of model mismatch error inherent

in the proposed LS FFT-based channel estimator when considering non-integer multipath

delay profiles, and the performance analysis for such estimators are investigated, Under the

framework of pilot embedding, an adaptive LS FFT-based channel estimator is proposed to

improve the performance of that of LS FFT-based channel estimator. The optimum number

of taps for this estimator is determined. Computer simulations are conducted for examining

the performance of the proposed channel estimators. In addition, the data-bearing approach

for pilot embedding can be directly applied to the SISO communication system as well.

1.8 Outline

In chapter 2, the smart antenna system, i.e. IRBAP, is proposed for interference

canceling receivers in DS-CDMA systems with flat-fading channels. In addition, the

basic background for the interference canceling receivers and the basic blind beamforming

is reviewed. Theoretical analysis, including convergence analysis and error probability

analysis, for IRBAP is conducted. Performance evaluation via computer simulations is also

performed. The results are summarized and discussed in the end of this chapter.

In chapter 3, a data-bearing approach for pilot-embedding frameworks for joint channel

estimation and data detection in space-time coded MIMO systems with flat fading channels

is proposed. The unconstrained ML and LMMSE channel estimators, and the ML data

detection, are also proposed. MSE of channel estimation, CRLB, and Chernoff's bound of

BER for ST codes are analyzed. The optimum power allocation scheme for data and pilot

parts is also investigated. Three data-bearer and pilot structures, including TM-based, STBC-

based, and CM-based, are proposed. Computer simulations are conducted for evaluating the

performance of the proposed scheme. The results are summarized and discussed in the end

of this chapter.

In chapter 4, the generalization of the data-bearing approach for pilot-embedding to

the space-frequency coded MIMO-OFDM systems with frequency-selective fading channels

is proposed. The PEDB-LS, LS FFT-based, and adaptive LS FFT-based channel estimators

are proposed. In addition, the PEDB-ML data detection is also considered. The performance
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analysis for such channel estimators is conducted. Computer simulations are performed for

examining the performance of the proposed channel estimators. The results are summarized

and discussed in the end of this chapter.

In chapter 5, the dissertation is concluded, and the contributions of this dissertation as

well as the future works are also mentioned.

1.9 Notation

For ease of later use, let (·)T stands for the transpose of a matrix, (·)∗ stands for
the complex conjugate, (·)H stands for the complex-conjugate transpose of a matrix, tr{·}
stands for the trace of a square matrix, (·)−1 stands for a square matrix inversion, I stands for

an identity matrix, and 0 stands for an all-zero-element matrix. In addition, bold character

stands for a column vector, e.g. x, and bold capital character stands a matrix, e.g. X. List

of all abbreviations are also illustrated in Appendix A.



CHAPTER II

AN INTERFERENCE-REJECTED BLIND ARRAY

PROCESSING FOR INTERFERENCE CANCELING

RECEIVERS IN CDMA SYSTEMS

This chapter presents the smart antenna system (or the spatial interference cancellation

scheme) for DS-CDMA systems using a blind array processing, i.e. a blind beamforming. The

basic background for the blind beamforming schemes in DS-CDMA systems are reviewed.

Then the proposed smart antenna system, i.e. IRBAP, is presented. Furthermore, the

performance analysis for IRBAP including convergence analysis, bit error rate analysis, and

complexity comparison is also provided. For illustrating the performance of IRBAP, the

simulation results in comparison with the analytical results are shown. In addition, the

discussion and concluding remark are given in the end of this chapter.

2.1 Introduction

Many interference cancellation techniques have recently been proposed for wireless

communications [19--26], where the smart antenna system or the beamforming is one of

the most attractive and effective techniques. This technique plays a role of spatial filtering,

where the received signal can be seen as a combination of users' plane waves impinging on

an array antenna from different directions; as a result, the desired signal can be captured as

well as the interference signals can be rejected by the selectivity and nulling capabilities of

an array antenna [27].

The most important component of the smart antenna system is the adaptive algorithm

used for adjusting the weight vectors. Different algorithms can be categorized as non-blind

adaptive algorithms, where the receiver uses a pilot signal sent by the transmitter for its

weight adjustment, and blind adaptive algorithms, where the receiver adjusts its weight

vectors without using the pilot signal. The advantage of non-blind adaptive algorithm is low
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computational complexity; however, this benefit comes at the price of channel bandwidth

efficiency [12]. Consequently, the blind algorithm is more attractive than the non-blind

adaptive algorithm for the benefit of no need of pilot signals, and hence, the bandwidth

efficiency will be enhanced. Of particular interest in this chapter is to design the effective

blind adaptive beamforming with an achievable low complexity.

One main class of blind adaptive algorithms in the literatures [24, 28--31] exploits

the constant modulus property of the received signals. The idea is to capture the strongest

constant modulus signal first and then subtract this captured signal from the overall received

signals. Then in the next stage it will continue to capture the remaining signals and operate

successively until the weakest signal is captured. This idea can be applied for multiuser

detection purpose as well [32]. In a DS-CDMA system, several blind adaptive algorithms

have been proposed, such as the Decision-Directed (DD) method, the CMA method, and the

Despread-Respread (DR) method along with the LS technique [12, 33, 34]. These algorithms

work well in the situation where power control is perfect and DOAs are well separated.

However, in the near-far effect situations with closely separated DOAs, these algorithms

fail to capture the desired signal because they do not have any interference cancellation

processes for canceling the MAI. In addition, the blind adaptive beamforming exploiting

2-D RAKE receivers was proposed in [35--37]. Despite its capabilities of constructively

combining the energy of desired signals coming from different DOAs and time delays while

canceling the interference signals coming from the other DOAs, this scheme also suffers

from the closely-separated-DOAs interference signals, relative to the desired signal's DOAs,

under the near-far effect situations because of insufficiency of antenna array's degree of

freedom. However, it works well in the well-separated-DOAs situation.

The interference canceling receivers using a blind array processing in the DS-CDMA

system have been proposed in [19, 38], where the former proposed the optimum weight

vector selection and the latter applied this receiver in the multipath environment. The

iterative approach has been proposed in [19, 21], where the latter proposed to combine

the parallel interference cancellation in order to cancel in-beam interference signals. One

disadvantage of this iterative approach is that the user orders must be arranged from the

strongest user to the weakest one. Consequently, this approach can not be suitably realized

in the practical situations where the channels keep changing and the power control can not be
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performed perfectly. However, it works reasonably well in a situation where the DOAs are

well separated and the receiver's stages have been arranged from the strongest user down to

the weakest one. Nevertheless, it does not work well in near-far effect situations. The reason

lies in its optimization approach that does not consider the effect of the interfering users'

DOA situations in the system. Therefore, in order to solve such issues, the development of a

new optimization approach that takes into account both the closely- and well-separated-DOA

situations is needed.

A goal of this chapter is to develop a blind beamforming scheme for interference

canceling receivers in the DS-CDMA systems [22] which can resolve the near-far effect

situation in both the closely- and well-separated-DOA situations without using pilot signals,

and relax the user-power arrangement constraint. This chapter is organized as follows. In

section 2.2, a signal model of the system is described. In section 2.3, interference canceling

receivers are presented. In section 2.4, a basic blind beamforming for interference canceling

receivers in CDMA systems is reviewed. In section 2.5, a blind beamforming for interference

canceling receivers, i.e. IRBAP, is proposed; and an analysis of an LCMV optimum weight

vector, convergence analysis, probability of error analysis, and complexity comparison and

suboptimum approach are carried out. In section 2.6, the simulation results under several

situations are shown, and the concluding remark is given in section 2.7.

2.2 Signal Model

Let consider a K-user DS-CDMA system where each user transmits data over a

passband channel and the channel bandwidth is large enough in order to ignore the

intersymbol interference. At the receiver, an M-element array antenna is used to receive

the transmitted signals. The array antenna is assumed to operate in a frequency-nonselective

slow-varying fading channel where the received signals at each element are identical except

for phases. This channel model is valid when multipath reflectors are in the far field,

relative to the receiver array antenna, [39, 40]. The model of the received signals is as

follows [19, 25]:

x(t) =
∑

i

K∑

k=1

akhkekbk,isk(t − τk − iT ) + n(t), (2.1)



31

where x(t) = [x1(t), x2(t), . . . , xM(t)]T is the received signal vector at the M-element array

antenna, ak = [a1k, a2k, . . . , aMk]
T is the steering vector for user k, e2

k is the received energy

of the kth user at each antenna element, bk,i ∈ {−1, +1} is the ith symbol transmitted by

user k, and hk is the complex channel coefficient of the kth user. And τk is the relative delay

of the kth user to the array reference, T is the symbol duration, and n(t) is the additive white

Gaussian noise (AWGN) vector with zero-mean and variance σ2 at the antenna elements.

The real-valued normalized signature waveforms {sk(t)},

sk(t) =
P−1∑

n=0

sk,nu(t − nTc), (2.2)

where u(t) is the chip pulse waveform, P is the processing gain, and Tc = T
P
is the chip

rate, are assumed to be linearly independent and with low cross-correlations.

In this chapter, the synchronous DS-CDMA case in which τk = 0 is considered. Then

sampling the received signals at the chip rate, the M × P received signal matrix can be

expressed as follows:

X =
K∑

k=1

akhkekbks
T
k + N. (2.3)

For the sake of convenience, the time parameter t is omitted.

2.3 The Interference Canceling Receivers

A concept of interference canceling receivers [32] is employed to detect the user's

symbol as shown in Fig.2.1. The interference canceling receivers operate successively and

iteratively from the first stage, which captures the strongest signal, through the Kth stage,

which captures the weakest signal. After capturing the desired signal at the jth stage, the

captured signal is then subtracted from the overall received signals Xj−1 coming from the

(j − 1)th stage. The resulting signals of this subtraction are sent to the next stages, i.e.

the (j + 1)th stage and so on, consequently. The advantage of the interference canceling

receivers compared with the joint multi-user detection, e.g. an MMSE receiver and a

decorrelating receiver, is its simple structure that can be easily implemented [32]. In each

stage of the interference canceling receivers, the blind beamforming or IRBAP is employed

as the receiver described as follows.
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Figure 2.1 Block diagram of the successive interference canceling receivers

2.4 The Basic Blind Beamforming for Interference Canceling Receivers

in DS-CDMA Systems

First of all, the basic blind beamforming without a channel equalizer for interference

canceling receivers in DS-CDMA systems is reviewed. For this simple scenario, the channel

is assumed static for a certain period of time, hence, the AWGN is only one source of

noises and distortion in the systems. For the sake of exposition, at the first step of the

state-of-the-art research, the channel gain is assumed to be unity, i.e. hk = 1, k = 1, . . . , K.

The jth stage of the basic blind beamforming without a channel equalizer for interference

canceling receivers in DS-CDMA systems is illustrated in Fig.2.2.

Referring to [19], the decision variable yj of the jth stage, after down-converting,

sampling, and matched-filtering processes, can be expressed as follows,
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yj = (wH
j aj)ejbj +

K∑

k=j+1

(wH
j ak)ekbkρ

s
jk + wH

j Njsj

︸ ︷︷ ︸
ij

, (2.4)

where wj denotes a weight vector of the blind beamforming of the jth stage, ρs
jk =

∫ T

0
sj(t)sk(t)dt = sT

j sk denotes the cross-correlation between the signature waveforms j

and k, Nj =
(
N1 −

∑j−1
l=1 iluls

T
l

)
denotes the M × P noise matrix of the jth stage with

ul being a weight vector of the signal canceller of the lth stage, and ij denotes the MAI plus

noises at the output of the jth stage detector. The jth stage input received signal matrix can

be expressed as follows,

Xj =
K∑

k=j+1

akekbksk + Nj. (2.5)

For the signal canceller, the optimization approach for optimally determining the

weight vector uj is based on a minimization approach. Specifically, the objective of such a

minimization approach is to minimize a squared-norm of the output received signal matrix

Xj+1 described as,

min
uj

tr
{
E

[
Xj+1X

H
j+1

]}
= min

uj

tr
{

E
[(

Xj − yjujs
T
j

) (
Xj − yjujs

T
j

)H
]}

. (2.6)
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After some algebraic manipulations, the closed form solution to (2.6) can be expressed

as,

uj =
Rs

′

j
wj

wH
j Rs

′

j
wj

, (2.7)

where Rs
′

j
= E

[
Xjsjs

T
j XH

j

]
.

For the blind beamforming, there are two optimization approaches for optimally

determining the weight vector wj summarized as follows.

2.4.1 Minimization Approach

From Fig.2.2, the error vector ej , that is a performance measure obtained by taking the

difference between the spatially-matched received signal vector rj and the reference signal

vector yjsj , can be expressed as,

eH
j = wH

j Xj − (wH
j Xjsj)s

T
j = wH

j Xj(I − sjs
T
j ). (2.8)

This optimization approach is based on the MMSE criterion of the error vector ej

expressed as follows,

min
wj

E
[
eH

j ej

]
subject to E

[
|yj|2

]
= 1, (2.9)

where E
[
eH

j ej

]
= wH

j (Rj − Rs
′

j
)wj with Rj = E

[
XjX

H
j

]
, and E [|yj|2] = wH

j Rs
′

j
wj .

It is well known that a solution to (2.9) is the generalized eigenvector that corresponds

to the smallest eigenvalue λmin of the matrix pencil (Rj,Rs
′

j
) described as follows,

Rjwj = λminRs
′

j
wj. (2.10)

2.4.2 Maximization Approach

An alternative way to obtain another optimum weight vector wj is to employ the

maximization approach, in which the output power of the decision variable yj is maximized

subject to a unit norm constraint for the weight vectorwj . Mathematically, this maximization

objective function can be described as follows,

max
wj

E
[
|yj|2

]
= wH

j Rs
′

j
wj subject to wH

j wj = 1. (2.11)



35

Similarly, it is well known that the solution to (2.11) is the generalized eigenvector

that corresponds to the largest eigenvalue λmax of the matrix Rs
′

j
described as follows,

Rs
′

j
wj = λmaxwj. (2.12)

Since the environment keeps changing, e.g. the slow varying fading channels, an

adaptive approach is more preferable. The stochastic gradient-based algorithms such as the

least mean square (LMS) and the recursive least square (RLS) approaches can be employed

for this adaptive approach. The normalized LMS algorithm for the weight vector uj in (2.7)

can be described as follows,

uj(n + 1) = uj(n) + µ1y
∗
j (n)

Xj+1(n)

‖Xj+1(n)‖sj, (2.13)

where µ1 denotes a step size and n denotes the iteration index.

The LMS algorithm in conjunction with a quadratic constraint for the weight vector

wj in (2.10) can be described as follows,

wj(n + 1) = wj(n) + µ2y
∗
j (n)

(
Xj(n)XH

j (n)
)−1

Xj(n)sj, (2.14)

where µ2 denotes a step size. Similarly, the LMS algorithm in conjunction with a quadratic

constraint for the weight vector wj in (2.12) can be described as follows,

wj(n + 1) = wj(n) + µ3y
∗
j (n)Xj(n)sj, (2.15)

where µ3 denotes a step size.

2.5 The Interference-Rejected Blind Array Processing for Interference

Canceling Receivers in DS-CDMA Systems

The first stage IRBAP is shown in Fig.2.3, and its operation is described as follows. The

IRBAP consists of three main parts: a blind array processing which is controlled by a weight

vector w1, a signal canceler which is controlled by a weight vector u1, and a (K − 1)-block

interference rejection part. After spatially filtering the overall received signal matrixX by the

weight vector wH
1 , the spatially filtered signal rH

1 is then matched by the spreading sequence

s1 of the first user in order to capture the first user's signal. This matched-filter output y1 is

then respread again by the first user's spreading sequence s1 in order to form the reference
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Figure 2.3 An Interference-Rejected Blind Array Processing for interference canceling receivers

signal used to compare with the spatially filtered signal rH
1 for constructing an error signal

eH
1 . This error signal is used for the optimization process for finding the optimal weight

vector w1 of a blind array processing. In addition, the first user's respread signal is also

multiplied by the signal canceller's weight vector u1 and then subtracted from the overall

received signal matrix X in order to eliminate an influence of the first user's captured signal

in this overall received signal matrix, before this overall received signal matrix is being sent

to the second stage. A concept of parallel interference cancellation for the (K − 1)-block

interference rejection part is employed as shown in Fig.2.3. The basic idea is that if the

signature sequences of all users are assumed known to the system and the first user's signal

at the first stage is being captured, other users' signal could be regarded as the interference

signals, and hence, it has to be cancelled out from this stage. The (K−1)-block interference

rejection part consists of (K − 1) blocks of the matched filter and the re-spreading block

used to capture the interference signals and imitate these interference signals, respectively,

by using the interfering users' signature sequence, e.g. s2, s3, . . . , sK . Then these estimated

interference signals are subtracted from the spatially filtered signal rH
1 resulting in rejecting

the influence of MAI out of the error signal eH
1 . Consequently, the weight vector adjustment

process will operate without the effect of MAI. The jth stage operates in a similar way as

the first stage except the input received signals, which is denoted by Xj−1. The zeroforcing
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(ZF) equalizer [15] is employed, i.e. 1
h1
, in order to compensate the channel effect, and a

hard-limited detector is also employed as a detector. In addition, the channel coefficients are

assumed perfectly known to the receiver. In practical applications, these channel coefficients

will be estimated by using either the pilot (or training) based channel estimation approach

or the blind channel estimation approach [41, 42]. The problem of channel estimation will

be carried out in the next chapters. Throughout this chapter, the following assumptions are

assumed.

• The synchronous DS-CDMA system is considered where each user transmits only at

one direct path.

• The data symbols and the AWGN are mutually uncorrelated.

• The cross-correlation between each signature sequence is a small real-valued constant

and the processing gain is much greater than this cross-correlation.

• The data symbol bi is mutually uncorrelated and E[|bi|2] = 1.

Similar to Fig.2.3, at the jth stage, the matched-filter output yj and the input received

signal matrix Xj , for the (j + 1)th stage, can be described as follows,

yj =
1

P

∫ T

0

wH
j Xj−1sj(t)dt, (2.16)

Xj = Xj−1 − ujyjs
T
j , (2.17)

where P is the processing gain or spreading factor. The error signal vector eH
j in Fig.2.3

can be described as follows,

eH
j = wH

j Xj−1[(I −
1

C

∑

i6=j

sis
T
i ) − 1

P
sjs

T
j ], (2.18)

where C is the real-valued parameter for adjusting the impact of the (K − 1)-block

interference rejection part. This is equivalent to the orthogonal projection of the weighted

data vector onto the orthogonal subspace spanned by the temporal signatures of the desired

and interference signals.

The problem to find the optimum weight vector of the blind array processing is a

minimization problem since it is capable of placing null points toward the interfering users'

DOA [19] as formulated below,

min
wj

E[eH
j ej] subject to E[|yj|2] = 1. (2.19)
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Substituting (2.18) into (2.19), the optimization problem can be rewritten as follows,

min
wj

E[eH
j ej] = wH

j (RI −
1

P
Rsj

)wj subject to
1

P 2
wH

j Rsj
wj = 1, (2.20)

where RI = E[Xj−1(I − 1
C

∑
i6=j sis

T
i )XH

j−1] is the covariance matrix of the interference-

rejected received signal matrix and Rsj
= E[Xj−1sjs

T
j XH

j−1] is the covariance matrix of the

matched received signal matrix.

The solution of this minimization problem is the well-known generalized eigenvector

corresponding to the smallest eigenvalue of the matrix pencil (RI ,
Rsj

P
), i.e. [19]

RIwj =
λmin

P
Rsj

wj. (2.21)

Note that RI contains the interference cancellation term, i.e. (I − 1
C

∑
i6=j sis

T
i ),

which is a major different between the proposed scheme and the existing work [19]. This

interference cancellation term plays an important role in resisting the impact of the MAI in

the near-far effect situation especially in the closely-separated-DOA situation. One can see

that the constrained optimization in (2.20) is equivalent to the maximization problem that

maximize the signal-to-interference-plus-noise (SINR) ratio given by [43, 44],

SINR =
wH

j Rsj
wj

P 2(wH
j (RI − 1

P
Rsj

)wj)
, (2.22)

by maintaining a distortionless array response to the desired signal, i.e. 1
P 2w

H
j Rsj

wj = 1.

In addition, the robust adaptive beamforming approaches for this maximization problem,

in which the signal mismatch problem and steering vector errors are taken into account,

have recently been investigated in [44--48]. In this chapter, the application of the blind

adaptive beamforming to the DS-CDMA systems in the presence of the near-far effect and

the in-beam interference signals is investigated. Since the environment keep changing due

to the fading channel resulting in impossibly determining the exact RI and Rsj
within a

short period of time, the adaptive approach is prominently attractive to find the solution of

(2.20). The LMS based adaptive algorithm with the quadratic constraint is given by [19, 48],

wj(n + 1) = wj(n) + µ[Xj−1(n)(I − 1

C

∑

i6=j

sis
T
i )XH

j−1(n)]−1Xj−1(n)sjy
∗
j (n).(2.23)

where µ denotes the blind array processing's step size.

In a similar way to the blind array processing for interference canceling receivers [19],

the optimum weight vector of the jth signal canceller is determined by optimizing the
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following unconstrained minimization problem

arg min
uj

tr
{
E[XjX

H
j ]

}
, (2.24)

with tr{·} being the trace of a matrix. The normalized LMS based adaptive algorithm is

employed for the signal canceller in order to prevent a noise amplification when the input

received signal matrix Xj is large as follows,

uj(n + 1) = uj(n) + µu
Xj(n)

‖Xj(n)‖sjy
∗
j (n), (2.25)

where µu denotes the signal canceller's step size.

2.5.1 The Linear Constrained Minimum Variance Optimum Weight Vector

In this section, the LCMV optimum weight vector of the blind array processing and

the corresponding optimum weight vector of signal canceller are derived for using as a

benchmark in the convergence analysis and the simulation results.

Let define some parameters first: let ρa
i,j =

aH
i aj

‖ai‖‖aj‖ be the correlation between the ith

and jth user's array response vectors, and n
′

j =
∫ T

0
wH

j Nsj(t)dt be the matched AWGN at

the jth stage.

Let consider the matched filter output of the first stage given as

y1 =
1

P

∫ T

0

wH
1 Xs1(t)dt

= wH
1 a1h1e1b1 + i1, (2.26)

where i1 = 1
P

∑K
k=2 wH

1 akhkekbkρ
s
k,1 +

n
′

1

P
is the multiple access interference and noise term.

Canceling user 1 from the received signal matrix X in Fig.2.3, the input signal matrix

for the second stage can be expressed as follows,

X1 = X − u1y1s
T
1

= (a1 − u1w
H
1 a1)h1e1b1s

T
1︸ ︷︷ ︸

B1

+N +
K∑

k=2

akhkekbks
T
k − u1i1s

T
1 . (2.27)

The matched filter output of the jth stage, j = 2, . . . , K, can be generally formulated

as follows,

yj = wH
j ajhjejbj + ij +

1

P
(

j−1∑

i=1

wH
j Bisj − wH

j uj−1Yj−1ρ
s
j−1,j), (2.28)
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where

ij =
1

P

K∑

k=j+1

wH
j akhkekbkρ

s
j,k +

n
′

j

P
− 1

P

j−1∑

i=1

iiw
H
j uiρ

s
j,i (2.29)

and the third term on the right hand side of (2.28) is the accumulated error caused by the

signal cancellation operation and it is equal to zero if j = 1.

Let define the third term on the right hand side of (2.28) as Yj where

Y1 = 0, Y2 =
1

P
wH

2 B1s2, and Yj =
1

P
(

j−1∑

i=1

wH
j Bisj − wH

j uj−1Yj−1ρ
s
j−1,j), (2.30)

and

Bj = (aj − ujw
H
j aj)hjejbjs

T
j . (2.31)

From (2.28), the problem of interest can be formulated as finding the LCMV optimum

weight vector of the blind array processingwLCMV
j that solve the following linear-constrained

minimization problem [49],

min
wj

E
[
‖wH

j ajhjejbj‖2
]

subject to wH
j aj = ‖aj‖. (2.32)

Intuitively, the objective of (2.32) is to minimize the variance of the desired signal

while keeping the maximum array response to the direction of the desired signal's DOA. The

solution of (2.32) is a well-known LCMV optimum solution given as

wLCMV
j =

aj

‖aj‖
. (2.33)

Substituting (2.33) into (2.30), the corresponding optimum wight vector of the signal

canceller u
LCMVopt

j can be obtained by minimizing the MSE of the accumulated error Yj ,

which is the dominant residue resulting from the signal cancellation operation in (2.28), as

follows,

min
uj

E
[
‖Yj‖2

]
≡ min

uj

E
[
‖Bj‖2

]
= min

uj

E
[
‖(aj − uj‖aj‖)hjejbjs

T
j ‖2

]
. (2.34)

Obviously, the optimum solution for (2.34) that yields (2.34) to achieve its minimum

value, which is zero, is given as

u
LCMVopt

j =
aj

‖aj‖
. (2.35)

Note that (2.33) and (2.35) are also the optimum wight vectors of wj and uj in [19],

respectively. Substituting (2.33) and (2.35) into (2.28) and (2.29), thus yielding

yLCMV
j =

aH
j aj

‖aj‖
hjejbj + ij = ‖aj‖hjejbj︸ ︷︷ ︸

Signal

+ ij︸︷︷︸
Interference and noise

, (2.36)
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ij =
1

P

K∑

k=j+1

‖ak‖hkekbkρ
s
j,kρ

a
j,k +

n
′

j

P
− 1

P

j−1∑

i=1

iiρ
s
j,iρ

a
j,i. (2.37)

Note that the LCMV optimum matched filter output yLCMV
j consists of the desired

signal and the MAI which depends on the cross-correlation of the array response as well as

the cross-correlation of the signature sequences of the interfering users. Furthermore, it can

be shown in the next section that (2.33) is also the solution to (2.20).

2.5.2 Convergence Analysis

In this chapter, the uniform linear array (ULA) is employed for the analysis and

experiments. The array response vector of a half-wavelength M-element ULA arranged

along the y-axis is formulated as follows,

aj = [1 e−jαj e−2jαj . . . e−(M−1)jαj ]T , (2.38)

where αj =
2πd sin φj

ν
= ω sin φj is the phase difference between each antenna element with

φj being the DOA of the jth user, d the inter-element spacing between each antenna element

which is equal to a half-wavelength of the carrier frequency, and ν the wavelength of the

carrier frequency. In this section, the convergence analysis of the weight vector of the

blind array processing wj in two different scenarios: the closely- and well-separated-DOA

situations in the near-far effect environment is conducted. In addition, the result can apply

directly to the balance power case, where all users' signals have the same power.

First of all, the underlying structure of the error signal (2.18) as well as the constraint

of the optimization problem (2.20) have to be explored. Substituting (2.17), by using uj in

(2.35), into (2.18) and using the assumption (iii), in which it can approximate ρs
i,j

P
≈ 0, i 6= j

without loss of generality, the optimization problem in (2.20) can be approximately expressed

as follows,

min
wj

E[eH
j ej] ≈ min

wj

{σ2wH
j [E[NNH ] +

K − 3

P
E[N(

∑

i6=j

sis
T
i )NH ] + E[Nsjs

T
j NH ]]wj}.

(2.39)

From the fact that E[NNH ] = P I, E[Nsjs
T
j NH ] = P I, E[N(

∑
i6=j sis

T
i )NH ] =

(K − 1)P I, and E[‖sj‖2] = P, j = 1, 2, . . . , K , thus yielding

min
wj

E[eH
j ej] ≈ min

wj

{σ2cwH
j wj}, (2.40)
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where c = 2P + (K − 3)(K − 1).

Using the assumption (ii) and the approximate ρs
i,j

P
≈ 0, i 6= j, the constraint of (2.20)

can be approximately described as follows,

E[|yj|2] ≈ |hj|2e2
jw

H
j aja

H
j wj +

σ2

P
wH

j wj = 1. (2.41)

Using (2.39) and (2.41), the Lagrangian function is formulated as follows [49],

J(wj, λ) = σ2cwH
j wj + Re{λ∗(|hj|2e2

jw
H
j aja

H
j wj +

σ2

P
wH

j wj − 1)}. (2.42)

The optimization problem (2.20) is equivalently equal to minimize the Lagrangian

function (2.42). From (2.42), differentiating the Lagrangian function with respect to w∗
j and

equate ∂J(wj ,λ)

∂w∗

j
to zero, the Lagrange multiplier λ∗ can be expressed as follows,

λ∗ =
−σ2cwH

j wj

|hj|2e2
jw

H
j aja

H
j wj + σ2

P
wH

j wj

. (2.43)

Substituting (2.43) into (2.42), the Lagrangian function can be expressed as a function

of wj as follows,

J(wj) =
σ2c‖wj‖2

|hj|2e2
j‖aH

j wj‖2 + σ2

P
‖wj‖2

. (2.44)

Without loss of generality, let declare the weight vector wj as a normalized complex-

valued vector. Consequently, the minimization problem to (2.44) is equivalent to the

maximization problem described as follows,

max
wj

‖aH
j wj‖2. (2.45)

The solution to (2.45) is readily obtained from the Cauchy-Schwarz inequality given

by

(< aj,wj >)2 ≤ ‖aj‖2‖wj‖2 (2.46)

with equality if and only if wj is a multiple of aj . Therefore, the solution of (2.45) is given

by

wclose
j =

aj

‖aj‖
. (2.47)

It is worth noticing that ‖aH
j wj‖2 is the radiation pattern of the half-wavelength

M-element ULA [27] described as follows,

‖aH
j wj‖2 =

sin2(M α
2
)

M2 sin2(α
2
)
, (2.48)
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Figure 2.4: The illustration of the closely- and well-separated-DOA situations when two users'
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in which the principle maximum occurs at α = 0. Hence, (2.47) yields the maximum array

response to the desired signal's DOA.

It is worth noticing that this solution is the same as the LCMV optimum solution in

(2.33). In the case of the well-separated-DOA situation as illustrated in Fig.2.4, where the

difference between the strongest interference signal's DOA and the desired signal's DOA is

larger than a half of the half-width of the M-element ULA, it is worth to exploit the nulling

capability of the array antenna to nullify this strongest interference signal. The benefit for

exploiting the nulling capability is revealed from the improvement of the average BER of the

IRBAP. Firstly, let consider the error signal of the IRBAP eH
j when the interference rejection

part is not employed, which directly results in subsuming the minimization method of the

existing work [19]. This error signal can be approximately expressed as follows,

eH
j ≈

K∑

k=1,k 6=j

hkekbkw
H
j aks

T
k +

1

P
wH

j N(I − sjs
T
j ). (2.49)

By using the assumption (ii) and (iv), the optimization problem (2.20) can be refor-

mulated as follows,

min
wj

E[eH
j ej] ≈ min

wj

{P
K∑

k=1,k 6=j

|hk|2e2
kw

H
j aka

H
k wj + σ2(P − 1)wH

j wj}. (2.50)
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The constraint is similar to (2.41). Similarly, the Lagrangian function can be formulated

by using (2.50) and (2.41) as follows,

J(wj, λ) = P
K∑

k=1,k 6=j

|hk|2e2
kw

H
j aka

H
k wj + σ2(P − 1)wH

j wj

+Re{λ∗(|hj|2e2
jw

H
j aja

H
j wj +

σ2

P
wH

j wj − 1)}. (2.51)

In this situation, an assumption that there exists the strongest interference signal, let

say the sth signal, in the overall received signal Xj−1 of the jth stage is imposed; and this

interference signal dominates the influence of all interference signals. The solution that

minimizes the Lagrangian function (2.51) can be found as follows.

From (2.51), similarly, differentiating the Lagrangian function with respect to w∗
j and

equate ∂J(wj ,λ)

∂w∗

j
to zero, the Lagrange multiplier λ∗ can be expressed as follows,

λ∗ =
−(P

∑K
k=1,k 6=j |hk|2e2

kw
H
j aka

H
k wj + σ2(P − 1)wH

j wj)

|hj|2e2
jw

H
j aja

H
j wj + σ2

P
wH

j wj

. (2.52)

Substituting (2.52) into (2.51), the Lagrangian function can be expressed as a function

of wj as follows,

J(wj) =
P

∑K
k=1,k 6=j |hk|2e2

k‖aH
k wj‖2 + σ2(P − 1)‖wj‖2

|hj|2e2
j‖aH

j wj‖2 + σ2

P
‖wj‖2

. (2.53)

By the assumption that there exists the sth strongest interference signal, (2.53) can be

approximated as follows,

J(wj) ≈
P |hs|2e2

s‖aH
s wj‖2 + σ2(P − 1)‖wj‖2

|hj|2e2
j‖aH

j wj‖2 + σ2

P
‖wj‖2

. (2.54)

Similarly, let declare the weight vector wj in a similar form as (2.47). It is obvious

that ‖aH
s wj‖2 and ‖aH

j wj‖2 are the radiation patterns; as a result, the solution of (2.54) is

related to the principle maximum and nulls of the array antenna. Intuitively, the solution

of (2.54) is to direct the nearest null toward the strongest interference signal's DOA, i.e.

minimize ‖aH
s wj‖2 with respect to wj , meanwhile maintaining the desired signal's DOA

close to the principle maximum, i.e. maximize ‖aH
j wj‖2 with respect to wj , as much as

possible.

The solution of (2.54) is the phase-shifted version of (2.47) by the amount of phase

shift described as follows [27],

∆φj
st = min

n
{−(φj − arcsin(sin φj

s ±
2nπ

M
))}, n = 1, 2, . . . ,M − 1, (2.55)



45

where φj denotes the desired signal's DOA and φj
s denotes the strongest interference signal's

DOA at the jth stage. In the in-beam interference situation, where the desired signal's DOA

and the strongest interference signal's DOA are within the main beam of the M-element

ULA, the phase shift in (2.55) is given by

∆φj
st = −(φj − arcsin(sin φj

s ±
2π

M
)), (2.56)

where the first null is exploited. Accordingly, by using (2.56), the solution of (2.54) can be

described as follows,

wwell
j = [1 e−jθj e−2jθj . . . e−(M−1)jθj ]T /

√
M, (2.57)

where θj = ω sin(φj + ∆φj
st) = ω(sin(φj

s) ± 2π
M

).

It is worth mentioning that this solution does not provide the benefit to the IRBAP in

the case of the closely-separated-DOA situation as illustrated in Fig.2.4, where the difference

between the desired signal's and the strongest interference signal's DOAs is smaller than

a half of the half-width of the M-element ULA. The reason is that the IRBAP places the

first null toward the strongest interference signal's DOA which is closely located near the

desired signal's DOA; as a result, the desired signal is also affected by this null leading to

the significant decrease in SINR, and hence, the average BER significantly increases. At

this point, the real-valued parameter C corresponding to each particular situation can be

determined as follows,

C =

{
∞, |φj − φj

s| > HP
2

(for the well-separated-DOA situation)
P, Otherwise (for the closely-separated-DOA situation)

(2.58)

It is worth mentioning that the operation modes of IRBAP can be categorized based

on three different situations as follows. Firstly, in the closely-separated-DOA situation (see

also Fig.2.4) where the differences between the signal's DOA of all users are smaller than
HP
2
, the interference rejection part is employed, i.e. C = P ; as a result, the asymptotic

solution of the weight vector of the blind array processing wclose
j is the LCMV beamforming's

optimum weight vector in (2.33). Secondly, in the well-separated-DOA situation (see also

Fig.2.4) where the differences between the signal's DOA of all users are larger than HP
2
, the

interference rejection part is not employed , i.e. C = ∞; as a result, the asymptotic solution

of the weight vector of the blind array processing wwell
j is the same as the the solution of

the minimization method in [19], in which the nulling capability of the ULA is exploited.
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Finally, in the mixed-separated-DOA situation where some of the signal's DOAs are closely

separated and the others are well separated, the IRBAP employs the interference rejection

operation, by using the signature sequences of the interfering users as the key parameters

for constructing the interference rejection part, for a group of signals which are closely

distributed relatively to the desired signal's DOA, meanwhile, for those signals which their

DOAs are well distributed relatively to the desired signal's DOA, the interference rejection

operation is not employed. Hence, the IRBAP is able to exploit the nulling capability

for nulling the well-separated-DOA interference signals while maintaining its main beam

direct toward the desired signal's DOA without being annoyed by the closely-separated-DOA

interference signals; as a result, the IRBAP is more robust to the in-beam interference signals

than the existing approaches in [19]. Furthermore, the average BER is significantly improved,

especially in the nonordering-user-power arrangement, as will be shown in Section 2.6.

2.5.3 Bit Error Rate Analysis

In this section, the BER of the IRBAP is analyzed for using as a benchmark in the

simulation section (Section 2.6). First, the SINR of the decision variable of the jth stage

zj is explored, and then the Gaussian approximation is used to evaluate the BER of the

IRBAP by assuming the channel gain is fixed for a certain period of time. In addition,

φj, j = 1, 2, . . . , K are assumed perfectly known for the sake of exposition.

From a relationship that (2.57) is a generalized form of (2.47) with a phase shift, a

generalized form of the weight vector of the signal canceller uj can also be determined

by substituting (2.57) into (2.30), and thus, the minimization problem in (2.34) can be

reformulated as follows,

min
uj

E
[
‖Yj‖2

]
= min

uj

E
[
‖(aj − ujw

Hwell

j aj)hjejbjs
T
j ‖2

]
. (2.59)

It is straightforward that the optimum solution for (2.59) that yields (2.59) to achieve

its minimum value, which is zero, is given as

uwell
j =

aj

w
Hwell

j aj

, (2.60)

where w
Hwell

j aj = g(φj, φ
j
s)e

−j ω
2
(sin φj−sin φj

s∓ 2π
M

) and g(φj, φ
j
s) =

sin(ωM
2

(sin φj−sin φj
s∓ 2π

M
))√

M sin(ω
2
(sin φj−sin φj

s∓ 2π
M

))
.
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Substituting the generalized weight vectors wwell
j and uwell

j in (2.57) and (2.60),

respectively, into (2.28), the decision variable of the jth stage can be expressed as follows,

zj =
yj

hj

= g(φj, φ
j
s)ejbje

−j ω
2
(sin φj−sin φj

s∓ 2π
M

) + ij, (2.61)

where

ij =
1

P

K∑

k=j+1

{hk

hj

ekbkρ
s
j,kg(φk, φ

j
s)e

j(ω
2
(sin φj

s−sin φk± 2π
M

))} +
n

′

j

Phj

− 1

Phj

j−1∑

i=1

{
iiρ

s
j,ig(φi, φ

j
s)

g(φi, φi
s)

ej(ω
2
(sin φj

s−sin φi
s)}. (2.62)

Firstly, the signal power from the first term on the right hand side of (2.61) by given

ej is computed as follows,

Signal power = E[‖g(φj, φ
j
s)ejbje

−j ω
2
(sin φj−sin φj

s∓ 2π
M

)‖2]

= g2(φj, φ
j
s)e

2
j . (2.63)

Secondly, the interference and noise power ςj from the second term on the right hand

side of (2.61) are computed by given {ej}, j = 1, 2, . . . , K as follows,

ςj =
1

P 2

K∑

k=j+1

∣∣∣∣
hk

hj

∣∣∣∣
2

e2
kg

2(φk, φ
j
s)Var[ρs

j,k] +
1

P 2|hj|2
j−1∑

i=1

ςig
2(φi, φ

j
s)

g2(φi, φi
s)

Var[ρs
j,i]

+
1

P 2|hj|2
E[‖wH

j Nsj‖2]. (2.64)

If the spreading factor P >> 1, then the signature cross-correlation ρs
j,k has a zero

mean and variance 1
P
[32]. In addition, 1

P 2 E[‖wH
j Nsj‖2] = σ2. Hence, the closed form

expression for (2.64) can be expressed as follows:

ςj =
1

P 3

K∑

k=j+1

∣∣∣∣
hk

hj

∣∣∣∣
2

e2
kg

2(φk, φ
j
s) +

1

P 3|hj|2
j−1∑

i=1

ςig
2(φi, φ

j
s)

g2(φi, φi
s)

+
σ2

|hj|2
. (2.65)

Using (2.63) and (2.65), the SINR of the decision variable zj is given by

SINR =
g2(φj, φ

j
s)e

2
j

ςj
(2.66)

The hard-limited detector is employed as a detector described as follows,

b̂j = sign(Re{zj}), (2.67)
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where sign(·) stands for the sign operator, and Re{·} stands for the real operator.
In the AWGN channel, the probability of error of the matched filter output can be

computed by using the Gaussian approximation as follows [50],

P j
e = Q(

√
g2(φj, φ

j
s)e2

j

ςj
), (2.68)

where Q(·) is the Q-function defined as Q(z) =
∫ ∞

z
1√
2π

e
−y2

2 dy.

Note that (sin φj − sin φj
s), j = 1, 2, . . . , K in g2(φj, φ

j
s) plays a major role in the

probability of error of the IRBAP. The probability of error expression for the weight vector

in (2.47) is obtained when (sin φj − sin φj
s) = ±2π

M
, j = 1, 2, . . . , K , corresponding to the

closely-separated-DOA situation.

2.5.4 Complexity Comparison and Suboptimum Approach

It is worth noticing that the IRBAP imposes more complexity in term of a hardware

requirement, which is linear with the number of users in the system, than the original adaptive

blind array processing [19]. The extra hardware requirement depends on the signal's DOA

situations described as follows. In the closely-separated-DOA situation, at the first stage

as shown in Fig.2.3 at the (K − 1)-block interference rejection part, the IRBAP requires

(K − 1) more blocks of the matched filter and the re-spreading block than the original

one. Similarly, at the second stage, the IRBAP only requires the (K − 2) extra blocks of

the matched filter and the re-spreading block since the first signal is captured can cancelled

from the overall received signal at the first stage, and hence, the third stage only requires the

(K −3) extra blocks of the matched filter and the re-spreading block and so on. At the final

stage, the IRBAP does not use the interference rejection part anymore. Consequently, in

the K-user DS-CDMA system, the IRBAP has K
2
(K + 1) more blocks of the matched filter

and the re-spreading block than the original one. This increasing complexity results in the

significant improvement in the probability of error especially for the closely-separated-DOA

situation.

However, in the well-separated-DOA situation, the IRBAP can be reduced to the original

scheme because the (K − 1)-block interference rejection part is not needed in this situation

by setting C = ∞. In the mixed-separated-DOA situation, the IRBAP only requires the extra

matched filter and the re-spreading blocks for constructing the interference rejection part
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correspondingly equal to a number of users whose DOAs are closely distributed relatively to

the desired signal's DOA. Hence, in this situation, the extra hardware requirement for IRBAP

is always less than K
2
(K + 1) blocks. In terms of the convergence rate of the adaptive

algorithm (see (2.23)), the IRBAP yields a faster convergence rate than the original scheme in

the nonordering-user-power closely-separated-DOA situation because it operates adaptively

without the influence of the MAI. By observing from the simulation results, in average, the

IRBAP needs about 100 iterations at SNR = 3 dB to converge in both nonordering-user-

power well-separated-DOA and nonordering-user-power closely-separated-DOA situations

in the AWGN channel. In comparison with the original scheme, the original scheme

needs about 100 iterations to converge in the nonordering-user-power well-separated-DOA

situation; however, in the nonordering-user-power closely-separated-DOA situation, it cannot

form the main beam toward the desired signal's DOA resulting in failing to capture the desired

signal. As a result, the convergence rate of the original scheme cannot be determined in the

nonordering-user-power closely-separated-DOA situation. Obviously, the IRBAP provides

the added benefits in terms of convergence rate and stability to the wireless communication

system although these benefits come at the price of the linearly increasing complexity.

Furthermore, the IRBAP provides robustness to the fading channel environment and the

Near-Far effect scenario because of the user-power-arrangement independent property as

shown in the simulation results (in section 2.6).

The suboptimum approach that can reduce the extra hardware requirement for the

IRBAP can be described as follows. If the instantaneous power of all users' signal is

assumed known and the jth signal at the jth stage is being captured, the signature sequences

of the interfering users whose DOAs are closely distributed relatively to the jth signal's

DOA and their signal strength are stronger than the jth signal can only be used to construct

the interference rejection part. According to this suboptimum approach, the extra hardware

requirement for the IRBAP is always less than or equal to K
2
(K + 1) blocks of the matched

filter and the re-spreading block in all DOA situations.

2.6 Simulation Results

In this section, the BER performance of IRBAP in DS-CDMA systems is studied. In

the simulations, the number of users in the system is K = 5 users, the spreading code is
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the Gold Code with length N = 31, the M = 6 element ULA with inter-element spacing

d = λ
2
is employed, and the signal powers are not equal in order to realize the Near-Far

effect scenario. From [27] and the aforementioned parameters, it can be shown that the

nulls occur at α = n60◦, n = 1, 2, . . . , 5 and the half-width is equal to HP ≈ 19◦.

The channel models are the AWGN channel and the slow-varying Rayleigh fading

channel, and the synchronous CDMA system is employed. The modulation scheme is BPSK

with a carrier frequency fc = 900MHz, and the step size of the blind array processing

and the signal canceller are 0.03 and 0.08, respectively. In the slow-varying Rayleigh

fading channel, Jakes' model [51] with Doppler's shift 20 Hz is employed, and each user

undergoes the spatially independent fading channel with unit variance. In addition, the user

data are generated randomly with equi-probability bk,i ∈ {−1, +1}. The performance of the
proposed scheme is compared with the minimization and maximization methods in [19], and

the blind RLS based space-time adaptive 2-D RAKE receivers in [37]. For fair comparison,

the received signals are sampled at the chip rate for all schemes. In addition, the number

of non-overlapped sliding windows is set to be 31 per bit, and the forgetting factors to be 1

for the scheme as in [37].

For the sake of convenience, let declare the notations used in the simulation results as

follows:

• No BF Gaussian is the single-element conventional receiver case in the AWGN channel;

• No BF Gaussian+Rayleigh is the single-element conventional receiver case in the

AWGN and slow-varying Rayleigh fading channels;

• Theoretical Gaussian is the theoretical bit error probability of the IRBAP in (2.68) in

the AWGN channel;

• Min. Gaussian is the minimization algorithm [19] in the AWGN channel;

• Min. Gaussian+Rayleigh is the minimization algorithm [19] in the AWGN and slow-

varying Rayleigh fading channels;

• Max. Gaussian is the maximization algorithm [19] in the AWGN channel;

• Max. Gaussian+Rayleigh is the maximization algorithm [19] in the AWGN and slow-

varying Rayleigh fading channels;
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• Blind RLS Gaussian is the blind RLS based space-time adaptive 2-D RAKE receivers

[37] in the AWGN channel;

• Blind RLS Gaussian+Rayleigh is the blind RLS based space-time adaptive 2-D RAKE

receivers [37] in the AWGN and slow-varying Rayleigh fading channels;

• Proposed Gaussian is the IRBAP with zero-weight initialization in the AWGN channel;

• Proposed Gaussian+Rayleigh is the IRBAP with zero-weight initialization in the AWGN

and slow-varying Rayleigh fading channels;

Two cases are examined, where each of which has three different DOA situations. In

the first case, the receiver stages are arranged from capturing the strongest user down to the

weakest user, and in the second case, they are not. Three different DOA situations including

the closely-separated-DOA situation, the well-separated-DOA situation, and the mixed-

separated-DOA situation are studied. The performance measures used in the experiments are

the average BER of all users versus the Signal-to-Noise ratio (SNR), and the beam pattern

of the 6-element ULA.

2.6.1 The Ordering User-Power Arrangement

Table 2.1: Directions of arrival and amplitudes of all users for ordering user-power arrangement in
the closely- and well-separated-DOA situations.

User 1 2 3 4 5

Directions of Arrival φ1 φ1 + 4φ φ1 + 24φ φ1 + 34φ φ1 + 44φ

Amplitude 10 5 1.5 1 1

The initial parameters of the first experiment are shown in table 2.1, where φ1 is the uniformly

distributed random variable within the interval 0 ≤ φ1 + k4φ ≤ π, k = 1, 2, . . . , 4, where

|φj − φi| < 9.5◦, i, j ∈ {1, 2, . . . , 5}. First, the closely-separated DOA scenario is studied,

where 4φ = 2◦, C = P , and the phase shifts for calculating the theoretical average BER

are equal to zero for all stages. The graph of average BER versus SNRs averaging over 100

independent runs, 10000 iterations, and K = 5 users is shown in Fig.2.5. It is clear that

the proposed IRBAP yields a better performance than the existing work in [19] and [37].

For instance, in the AWGN channel, compared with the IRBAP, the minimization method of

the existing work needs about 1 dB more SNR for a 10−3 BER, whereas the maximization
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method of the existing work needs about 7 dB more SNR. Furthermore, the IRBAP yields

BER close to that of the theoretical BER. In the AWGN and slow-varying Rayleigh fading

channels, at BER=10−3, the minimization and maximization methods of the existing work

need about 0.8 dB and 4 dB, respectively, more SNR than the IRBAP. In addition, the

blind RLS based approach performs poorly because it does not employ any interference

cancellation, and it does not have enough degree of freedom to cancel the severe in-beam

interference signals.

Secondly, the situation that all users' DOAs are well separated is studied. The initial

parameters are the same as shown in table 2.1 except that4φ = 30◦, C = ∞, and the phase

shifts for calculating the theoretical average BER are calculated according to (2.57). The

graph of average BER versus SNRs averaging over 100 independent runs, 10000 iterations,

and K = 5 users is shown in Fig.2.6. Notice that the IRBAP and the minimization method of

the existing work provide the same BER performance, which is close to that of the theoretical

BER in the AWGN channel. The maximization method of the existing work needs about

6 dB, in the AWGN channel, and 2 dB, in the AWGN and slow-varying Rayleigh fading

channels, respectively, more SNR than the IRBAP at BER=10−3. It is worth noticing that the

blind RLS based approach performs the best where its BER coincides with the theoretical

bound in the AWGN channel; meanwhile, in the AWGN and slow-varying Rayleigh fading

channels, it performs worse than the IRBAP in low SNR regimes but comparable to the

IRBAP in high SNR regimes.

Finally, the situation that the first three users' DOAs are closely separated and the two

remaining users' DOAs are well separated is studied. The initial parameters are shown in

table 2.2.

Table 2.2: Directions of arrival and amplitudes of all users for ordering user-power arrangement in
the mixed-separated-DOA situation.

User 1 2 3 4 5

Directions of Arrival φ1 φ1 + 41φ φ1 + 241φ φ1 + 342φ φ1 + 442φ

Amplitude 10 5 1.5 1 1

In this experiment, 41φ = 2◦, where |φj − φi| < 9.5◦, i, j ∈ {1, 2, 3} and 42φ = 60◦,

where |φj − φi| > 9.5◦, i, j ∈ {4, 5}. In addition, the value of C 's for the first three stages
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are set to be equal to P and the phase shifts are equal to zeros; meanwhile, the value of

C 's for the remaining two stages are set to be equal to infinity and the phase shifts are

calculated according to (2.57). The graph of average BER versus SNRs averaging over 100

independent runs, 10000 iterations, and K = 5 users is shown in Fig.2.7. Notice that, in

the AWGN channel at BER = 10−3, the minimization method of the existing work needs

to use the SNR more than the IRBAP about 0.6 dB, whereas the maximization method of

the existing work needs 6 dB more SNR than IRBAP. Furthermore, the IRBAP provides the

BER closely to that of the theoretical BER. In the AWGN and slow-varying Rayleigh fading

channels, at BER=10−3, the minimization and maximization methods of the existing work

need about 2 dB and 4 dB, respectively, more SNR than the IRBAP. In addition, the blind

RLS based approach still suffers from the severe in-beam interference signals resulting in a

poor BER.

From the above experimental results, it is worth noticing that the probability of error

of the proposed scheme is close to that of the theoretical probability of error. On the

other hand, the maximization method in the existing work [19] has a poor probability of

error performance in all situations whereas the minimization method has the best result in

the well-separated-DOA situation. These phenomena also support the derivations in section

2.5.2.

2.6.2 The Non-ordering User-Power Arrangement

In these experiments, the situation that the strongest user is not located at the first stage

is investigated, which results in the severe condition where the average BER will increase

inevitably.

Table 2.3: Directions of arrival and amplitudes of all users for non-ordering user-power arrangement
in the closely- and well-separated-DOA situations.

User 1 2 3 4 5

Directions of Arrival φ1 φ1 + 41φ φ1 + 241φ φ1 + 342φ φ1 + 442φ

Amplitude 1 10 1.5 1 5

The initial parameters of the first experiment are shown in table 2.3, where φ1 is the uniformly

distributed random variable within the interval 0 ≤ φ1 + k4φ ≤ π, k = 1, 2, . . . , 4, where

|φj − φi| < 9.5◦, i, j ∈ {1, 2, . . . , 5}. First the closely-separated DOA scenario is studied,
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where 4φ = 2◦, C = P , and the phase shifts for calculating the theoretical average BER

are equal to zero for all stages. The graph of average BER versus SNRs averaging over 100

independent runs, 10000 iterations, and K = 5 users is shown in Fig.2.8. It is clear that the

proposed IRBAP yields a much better performance than the existing work in [19] and [37].

For instance, in the AWGN channel, compared with the IRBAP, the minimization method of

the existing work needs about 11 dB more SNR for a 10−3 BER, whereas the maximization

method of the existing work needs about 7 dB more SNR than IRBAP. Furthermore, the

IRBAP yields BER close to that of the theoretical BER. In the AWGN and slow-varying

Rayleigh fading channels, at BER=10−3, the maximization method of the existing work needs

about 3 dB more SNR than the IRBAP, whereas the minimization method of the existing

work diverges at BER=10−2.

Secondly, the situation that all users' DOAs are well separated is studied. The initial

parameters are the same as shown in table 2.1 except that4φ = 30◦, C = ∞, and the phase

shifts for calculating the theoretical average BER are calculated according to (2.57). The

graph of average BER versus SNRs averaging over 100 independent runs, 10000 iterations,

and K = 5 users is shown in Fig.2.9. Notice that the IRBAP and the minimization method of

the existing work provide the same BER performance, which is close to that of the theoretical

BER. The maximization method of the existing work needs about 6 dB more SNR than the

IRBAP, at BER=10−3, in the AWGN channel; meanwhile, in the AWGN and slow-varying

Rayleigh fading channels, it has a poor BER, e.g. BER=4 × 10−2 at SNR = 20, resulting

from the fact that this method is not capable of nulling the interference signals [19].

Finally, the situation that the first three users' DOAs are closely separated and the two

remaining users' DOAs are well separated is studied. The initial parameters are shown in

table 2.4.

Table 2.4: Directions of arrival and amplitudes of all users for non-ordering user-power arrangement
in the mixed-separated-DOA situation.

User 1 2 3 4 5

Directions of Arrival φ1 φ1 + 41φ φ1 + 241φ φ1 + 342φ φ1 + 442φ

Amplitude 1 10 1.5 1 5

In this experiment, 41φ = 2◦, where |φj −φi| < 9.5◦, i, j ∈ {1, 2, 3} and42φ = 60◦,

where |φj − φi| > 9.5◦, i, j ∈ {4, 5}, is set. In addition, the value of C 's for the first three
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stages are set to be equal to P and the phase shifts are equal to zeros; meanwhile, the value

of C 's for the remaining two stages are set to be equal to infinity and the phase shifts are

calculated according to (2.57). The graph of average BER versus SNRs averaging over 100

independent runs, 10000 iterations, and K = 5 users is shown in Fig.2.10. Notice that, in

the AWGN channel at BER = 10−3, the minimization method of the existing work needs to

use the SNR more than the IRBAP about 10 dB, whereas the maximization method of the

existing work needs about 6 dB more SNR than IRBAP. Furthermore, the IRBAP provides

the BER closely to that of the theoretical BER. In the AWGN and slow-varying Rayleigh

fading channels, at BER=10−3, the maximization method of the existing work needs about

3 dB more SNR than the IRBAP, whereas the minimization method of the existing work

diverges at BER=10−2.

Likewise, the blind RLS based approach performs the best in the well-separated-DOAs

situation; however, it suffers from the severe in-beam interference signals in the closely-

and mixed-separated-DOAs situations.

In the above results, it is worth noticing that the average probabilities of error of

all users are greater than the results in the ordering user-power situation, especially in the

AWGN and slow-varying Rayleigh fading channels. However, the proposed scheme still

has lower average probabilities of error in both the AWGN channel and the AWGN and

slow-varying Rayleigh fading channels. It is also worth noticing that, in high SNR regions,

the theoretical BER and the BER of the IRBAP are more different than low SNR regions

because the Gaussian approximation does well in the low SNR regions whereas it yields a

poor approximation in the high SNR regions; and since the adaptive algorithms for adjusting

weight vectors of the blind array processing and the signal canceller are employed, the

detection and signal cancellation errors are inevitably occurred, especially in the transient

state of the adaptation processes, resulting in higher probability of error than the theoretical

result.

In Fig.2.11, the average BER versus the number of users in the nonordering-user-power

mixed-separated-DOA situation, in the AWGN and slow-varying Rayleigh fading channels,

at SNR = 8 dB is plotted. In addition, the number of users in the system are varying from

4 to 20 users; all users' DOA are uniformly distributed around the 6-element ULA within

[0, π]; and the user's signal amplitude is randomly assigned in the range of [1,10]. At
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BER=2.2× 10−3, it is worth noticing that the IRBAP can accommodate about 3 and 5 more

users than the minimization method of the existing work and the single-element conventional

receiver, respectively. Furthermore, when the number of users increases, the average BER

of the IRBAP and the minimization method of the existing work gradually increase, whereas

the average BER of the single-element conventional receiver rapidly increases. Obviously,

the IRBAP always yields a better performance than the minimization method of the existing

work and the single-element conventional receiver.

In Fig.2.12, the beam patterns of the first stage in the ordering-user-power closely-

separated-DOA situation at SNR = 8 dB and the DOAs of 5 users are 30◦, 32◦, 34◦, 36◦, and 38◦,

respectively, in the AWGN and slow-varying Rayleigh fading channels are shown. The signal

amplitude of 5 users are shown in table 2.1. Notice that the IRBAP and the blind RLS based

approach always direct its main beam toward the first user's DOA, whereas the minimization

method of the existing work places a null toward the other users' DOA while maintaining

the main beam as close to the desired signal's DOA as possible. Since the user arrangement

is in the descending order, the minimization of the existing work is still able to preserve

most of the desired signal's strength by slightly placing the null closely to its desired signal's

DOA resulting in a slightly decrease in SINR, and hence, a slightly increase in the average

BER as shown in Fig.2.5.

In Fig.2.13, the beam patterns of the first stage in the nonordering-user-power closely-

separated-DOA situation at SNR = 8 dB and the DOAs of 5 users are 30◦, 32◦, 34◦, 36◦, and 38◦,

respectively, in the AWGN and slow-varying Rayleigh fading channels are shown. The signal

amplitude of 5 users are shown in table 2.3. Notice that the IRBAP always directs its main

beam toward the first user's DOA, whereas the minimization method of the existing work and

the blind RLS based approach place a null toward the other users' DOA without maintaining

the main beam as close to the desired signal's DOA as possible. This phenomenon is due

to the nonordering-user-power arrangement resulting in a significant decrease in SINR, and

hence, a significant increase in the average BER as shown in Fig.2.8.

It is worth noticing that the results in Fig.2.12 and Fig.2.13 strongly support the

derivations in Section 2.5.2.
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2.7 Concluding Remark

In this chapter, the IRBAP which improves the performances of the wireless commu-

nication system in terms of the probability of error and the stability was proposed. Although

the IRBAP required more complexity, which is linear with the number of users in the

system, than the original scheme, the IRBAP did provide significant benefits, especially in

the closely-separated-DOA situation. From the simulation results, the SNR improvement

of the IRBAP over the original scheme, e.g. the minimization method, was significant in

both the nonordering-user-power closely-separated-DOA and the nonordering-user-power

mixed-separated-DOA situations. For instance, in the AWGN channel, the SNR difference

was about 0.6 dB in the ordering-user-power mixed-separated-DOA situation, and 10 dB

in the nonordering-user-power mixed-separated-DOA situation, at BER=10−3. Furthermore,

the probability of error curves of the IRBAP were quit close to that of the theoretical BER.

In the AWGN and slow-varying Rayleigh fading channels, the SNR difference was about

2 dB in the ordering-user-power mixed-separated-DOA situation, at BER=10−3; however,

in the nonordering-user-power mixed-separated-DOA situation, the minimization method of

the existing work diverged at BER=10−2 whereas the IRBAP still yielded a good BER. It is

worth noticing that the IRBAP crucially needs the channel state information for ZF channel

equalization. At the first step, such information is assumed to be known to the receivers

in this study. In the next chapters, the problem of channel estimation for MIMO wireless

communication systems will be carried out, and the proposed channel estimation scheme

can be well applied to IRBAP.
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Figure 2.5: The graph of average BER versus SNRs averaging over 100 independent runs, 10000

iterations, and 5 users in the ordering-user-power closely-separated-DOA situation.
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Figure 2.6: The graph of average BER versus SNRs averaging over 100 independent runs, 10000

iterations, and 5 users in the ordering-user-power well-separated-DOA situation.
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Figure 2.7: The graph of average BER versus SNRs averaging over 100 independent runs, 10000

iterations, and 5 users in the ordering-user-power mixed-separated-DOA situation.
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Figure 2.8: The graph of average BER versus SNRs averaging over 100 independent runs, 10000

iterations, and 5 users in the nonordering-user-power closely-separated-DOA situation.
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Figure 2.9: The graph of average BER versus SNRs averaging over 100 independent runs, 10000

iterations, and 5 users in the nonordering-user-power well-separated-DOA situation.
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Figure 2.13: The graph of a beampattern of the first user at SNR = 8 dB and DOA = 30◦ in the
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CHAPTER III

A DATA-BEARING APPROACH FOR PILOT-EMBEDDING

FRAMEWORKS IN SPACE-TIME CODED MIMO SYSTEMS

In the previous chapter, the smart antenna system, i.e. IRBAP, for DS-CDMA systems

has been presented. It was obvious that the channel state information is of crucial importance

for IRBAP regarding channel equalization. In this chapter, a channel estimation for space-

time coded MIMO communications systems with flat fading channels is examined. The

basic background concerning the state-of-the-art channel estimation techniques is reviewed.

Then, channel and system models to be considered are presented. Further, a data-bearing

approach for pilot-embedding frameworks, including required properties, channel estimation

process, possible data bearer and pilot matrices, and data detection process, is proposed.

Performance analysis as well as an optimum power allocation for the proposed scheme is

also studied. Simulation results in comparison with analytical results, and concluding remark

are given in the end of this chapter. In addition, the proposed channel estimation scheme

can be well applied to IRBAP.

3.1 Introduction

MIMO communication systems provide prominent benefits to wireless communications

due to the high capacity and reliability they can offer [2, 5]. Recently, the ST codes have

been proposed in [13, 14, 52] for MIMO communications, in which the BER of the systems

is significantly improved without increasing transmission power by exploiting transmit

diversity [13].

A major challenge in wireless ST communications employing a coherent detector is

the CSI acquisition [13, 14]. Typically, the CSI is acquired or estimated by using a pilot

or training signal, a known signal transmitted from the transmitter to the receiver. This

technique has been widely applied because of its feasibility for implementation with low

computational complexity [16]. Two main pilot-aided channel estimation techniques have

been proposed in both SISO and MIMO systems: the PSAM technique and the pilot-
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embedding technique. In the SISO system, the PSAM technique has been intensively studied

in [16] for frequency-nonselective fading channels, and was recently extended to MIMO

systems [53--58]. In this technique, firstly, a pilot signal is time-multiplexed into a transmit

data stream, and then, at the receiver side, this pilot signal is extracted from the received

signal to acquire the channel state information. Furthermore, an interpolation technique by

averaging channel estimates over a certain time period is employed in order to improve the

accuracy of the channel estimates. The disadvantage of this technique is the sparse pilot

arrangement that results in poor tracking of channel variations. In addition, the denser the

pilot signals, the poorer the bandwidth efficiency.

The pilot-embedding, also referred as pilot-superimposed technique, has been proposed

for the SISO systems [17] and for the MIMO systems [59--61], where a sequence of pilot

signals is added directly to the data stream. Some soft-decoding methods, such as Viterbi's

algorithm [17, 60], are employed for channel estimation and data detection. This technique

yields better bandwidth efficiency, since it does not sacrifice any separate time slots

for transmitting the pilot signal. The disadvantages of this technique lie in the higher

computational complexity of the decoder and the longer delay in channel estimation process.

The purpose of this chapter is to design a novel pilot-embedding approach for ST

coded MIMO systems with affordable computational cost and better fast-fading channel

acquisition. The basic idea is to simplify channel estimation and data detection processes

by taking advantages of the null-space and orthogonality properties of the data-bearer and

pilot matrices. The data-bearer matrix is used for projecting the ST data matrix onto the

orthogonal subspace of the pilot matrix. By the virtue of the null-space and orthogonality

properties, in the proposed data-bearing approach for pilot-embedding, a block of data matrix

is added into a block of pilot matrix, that are mutually orthogonal to each other. The benefit

that is able to be expected from this approach is better channel estimation performance,

since the estimator can take into account the channel variation in the transmitted data block.

In addition, a low computational complexity channel estimator is also expected.

Now, the MIMO channel and system models are ready to be described. The MIMO

communication system with Lt transmit antennas and Lr receive antennas is considered, as

shown in Fig.3.1. In general, for a given block index t, a ST symbol matrix U(t) is an

Lt × M codeword matrix transmitted across the transmit antennas in M time slots. The
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Figure 3.1 A ST MIMO communication system with Lt-transmitter and Lr-receiver.

received symbol matrix Y(t) at the receiver front-end can be expressed as follows [60],

Y(t) = H(t)U(t) + N(t), (3.1)

where H(t) is the Lr ×Lt channel coefficient matrix and the Lr ×M additive noise matrix

N(t) is complex white Gaussian distributed with zero mean and variance σ2

2
I(LrM×LrM) per

real dimension. The elements of H(t) are assumed to be independent complex Gaussian

random variables with zero mean and variance 0.5 per real dimension. Or equivalently,

an independent Rayleigh fading channel is assumed. In this chapter, a quasi-static flat

Rayleigh fading channel, where H(t) remains constant over each symbol block but it

changes block-by-block independently, is first examined. Then, the proposed scheme will

be further examined in a nonquasi-static flat Rayleigh fading channel, where H(t) is not

constant over each symbol block. The problems now are to estimate the channel coefficient

matrix H(t) and the ST symbol matrix U(t) by using the pilot or training signal embedded

in U(t).

The rest of this chapter is organized as follows. The proposed data-bearing approach

for pilot-embedding frameworks is presented in Section 3.2, including general properties

needed, channel estimation process, possible data bearer and pilot matrices, and data detection

process. Performance analysis for the proposed scheme is carried out in Section 3.3, in

terms of channel estimation and data detection. In Section 3.4, the issue of optimum block

power allocation for data and pilot parts is addressed. The simulation results are given in



66

Section 3.5, and the chapter is concluded in Section 3.6.

3.2 The Proposed Data-Bearing Approach for Pilot-Embedding

In this section, the proposed data-bearing approach for pilot-embedding, including

the pilot and data extraction procedures, channel estimation, possible data bearer and pilot

matrices, and data detection, is presented. The motivation of pursuing pilot-embedding by

distributing the pilot signal onto the ST data is to capture the variation of the channel at

every instant for achieving a better channel estimate. Without loss of generality, we describe

our data matrix Z(t) ∈ C
Lt×M as follows,

Z(t) = D(t)A, (3.2)

where D(t) ∈ C
Lt×N is the ST data matrix, and A ∈ R

N×M is the data-bearer matrix with

N being the number of data time slots. In this implementation, the ST data matrix D(t) is

assumed to maintain the energy constraint E[‖D(t)‖2] = Lt with ‖ · ‖ being the Frobenius
norm. The proposed pilot-embedded ST symbol matrix U(t) can be expressed as follows,

U(t) = Z(t) + P = D(t)A + P, (3.3)

where P ∈ R
Lt×M is the pilot matrix. Unlike the pilot-embedding technique previously

proposed in [60] where the pilot-embedded ST symbol matrix U(t) is expressed as U(t) =

D(t) + P, the major difference of our proposed scheme in (3.3) is the exploitation of the

data-bearer matrix A, which plays the major role along with the pilot matrix P in the

channel estimation and data detection processes.

By the data-bearing approach for pilot-embedding, the data bearer matrix A and the

pilot matrix P are required to satisfy the following properties:

APT = 0 ∈ R
N×Lt , (3.4)

PAT = 0 ∈ R
Lt×N , (3.5)

AAT = βI ∈ R
N×N , (3.6)

PPT = αI ∈ R
Lt×Lt , (3.7)

where β is a real-valued data-power factor for controlling the value of data-part power, α is

a real-valued pilot-power factor for controlling the value of pilot-part power, 0 stands for an
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Figure 3.2 The proposed pilot-embedded ST symbol block structure.

all-zero-element matrix, and I stands for an identity matrix. The key concept of the pilot-

embedding approach is the exploitation of the null-space properties [62], i.e. the properties

(3.4) and (3.5), and the orthogonality properties [62], i.e. the properties (3.6) and (3.7),

about the data-bearer matrix A and the pilot matrix P. Obviously, in (3.3), the data-bearer

matrix A plays a major role in projecting the ST data matrix D(t) onto the orthogonal

subspace of the pilot matrix P. From (3.6) and (3.7), it implies that Rank(A) = N and

Rank(P) = Lt with Rank(·) being the rank of a matrix. In order to satisfy the null-space
properties in (3.4) and (3.5), the minimum number of the column in A and P must be equal

to the sum of the rank of A and P [63]. Consequently, the number of time slots M of the

pilot-embedded ST symbol matrix U(t) must satisfy the following inequality

Rank(A) + Rank(P) ≤ M. (3.8)

It is worth noticing that N < M because the excessive time slot, i.e. M − N , will be used

for providing a room to embed pilot signals.

The proposed pilot-embedded ST symbol block structure is demonstrated in Fig.3.2.

The proposed pilot-embedded ST symbol block U(t) consists of two main parts: data

sequences {Z(t)}i and pilot sequences {P}i, where i stands for a row index, i = 1, . . . , Lt.

Substituting (3.3) into (3.1), the received symbol matrix Y(t) in (3.1) can be rewritten as

follows,

Y(t) = H(t)(D(t)A + P) + N(t). (3.9)

There are at least three possible structures of data-bearer and pilot matrices, in which
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the elements of these matrices are real numbers, that satisfy the properties (3.4)-(3.7) as

follows.

3.2.0.1 Time-Multiplexing Based Matrices

The structures of these matrices are given as

A =
√

β
[
0(N×Lt); I(N×N)

]
,

P =
√

α
[
I(Lt×Lt);0(Lt×N)

]
, M = N + Lt. (3.10)

In this structure, the Lt × Lt identity matrix I is used as a pilot or training symbol. In

addition, PSAM belongs to this category [16], because it employs the time-multiplexing

structure for pilot and data allocation, and has been used in many literatures [54]- [57].

Therefore, the existing PSAM technique is subsumed in the proposed general idea in (3.3).

3.2.0.2 ST-Block-Code Based Matrices

The structures of these matrices are given as

A =
√

β
[
0(N×τ); I(N×N)

]
,

P =
√

α
[
STBC(Lt×τ);0(Lt×N)

]
, M = N + τ, (3.11)

where τ is the number of time slots used for transmitting one ST block code. In addition,

τ ≥ Lt depending on the structure of the chosen ST block code. In this structure, the

major difference from the TM-based structure is that it employs the normalized known ST

block code [14] as the pilot symbol instead of using the identity matrix. It also inherits the

time-multiplexing structure in pilot and data allocation. This kind of data bearer and pilot

matrices have been used in [53], for instance.

3.2.0.3 Code-Multiplexing Based Matrices

The structures of these matrices are given as

A =
√

βWH[1 : N ](N×M),

P =
√

αWH[N + 1 : M ](Lt×M), M = N + Lt, (3.12)

where WH[x : y] denotes a sub-matrix created by splitting the M × M normalized Walsh-

Hadamard matrix [64] starting from xth-row to yth-row. Unlike the time-multiplexing
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structure employed for pilot and data allocation in the TM-based and the STBC-based

structures, in this structure, the code-multiplexing structure is employed instead. Because

of the even distribution inherited from the code-multiplexing structure over the transmitted

ST symbol block, the superior channel estimation performance over the other two structures

could, therefore, be expected. The disadvantage of this structure is the limitation of

dimensionality of Walsh-Hadamard matrix, which has a dimension proportionally to 2n, n ∈
I. In addition, this structure provides an instructive example of the proposed general idea in

(3.3) for pilot-embedding.

It is worth mentioning that the proposed data-bearing approach for pilot-embedding

frameworks subsumes the general idea of the existing pilot-based techniques, i.e. PSAM

and pilot-embedding techniques. In addition, the designed criteria in (3.6) and (3.7), and

the above three examples satisfy the optimal designed criteria in [57], i.e. the optimal

training data and the optimal training interval length, respectively. In what follows, the

problems of channel estimation and ST data detection in conjunction with the aforementioned

data-bearing approach are further considered.

3.2.1 Channel Estimation

The channel estimation of the proposed data-bearing approach for pilot-embedding

frameworks can be achieved by first simply post-multiplying the received symbol matrix

Y(t) in (3.9) by the transpose of the pilot matrix PT for extracting the pilot part. Using

(3.4) and (3.7), and dividing the result by α, thus yielding

Y(t)PT

α
= H(t) +

N(t)PT

α
. (3.13)

Denoting y(t),n(t), and h(t) as the vectorized version of Y(t)PT

α
,N(t)PT

α
, and H(t)

respectively, i.e. the equation (3.13) can be rewritten as follows,

y(t) = h(t) + n(t). (3.14)

For the pilot-projected noise vector n(t), using the following relationship [65]

vec(ABC) = (CT ⊗ A)vec(B), (3.15)

where ⊗ is the Kronecker product, we have

n(t) =
1

α
(I ⊗ N(t))vec(PT ) (3.16)
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where the size of I ⊗ N(t) is LtLr × LtM . In the above, the Kronecker product of the

matrices A and B is defined as

A ⊗ B =




a1,1B a1,cB

. . .
ar,1B ar,cB



 , (3.17)

where c and r stand for the numbers of column vectors and row vectors of the matrix A,

respectively. From the white Gaussian-distributed assumption of N(t), the mean vector and

the covariance matrix of the pilot-projected noise vector n(t) are determined as follows,

µn(t) =
1

α
E[(I ⊗ N(t))vec(PT )] = 0(LtLr×1), (3.18)

Vn(t) = 1
α2 E[((I ⊗ N(t))vec(PT ))((I ⊗ N(t))vec(PT ))H ] = σ2

2α2Diag (Bi) ,

Bi =
∑M

j=1 |Pi,j|2I(Lr×Lr), i ∈ {1, . . . , Lt}, per real dimension, (3.19)

where Pi,j is the ith-row jth-column element of the pilot matrix P, Diag(·) stands for the
diagonal matrix created by concatenating submatrices Bi, i ∈ 1, . . . , Lt, into the diagonal

elements.

From (3.7), it implies that
∑M

j=1 |Pi,j|2 = α, ∀i. Hence, we can rewrite (3.19) as

follows,

Vn(t) =
σ2

2α
I(LtLr×LtLr), per real dimension. (3.20)

Obviously, the pilot-projected noise vector n(t) is a complex white Gaussian vector,

hence, the log-likelihood function ln(p(y(t)|h(t))) is given by [18]

ln(p(y(t)|h(t))) = ln

(
1

πLdet(Vn(t))

)
− (y(t) − h(t))HV−1

n(t)(y(t) − h(t)), (3.21)

where L = LrLt.

3.2.1.1 Unconstrained Maximum-Likelihood Channel Estimator

It is straightforward to show that the maximum-likelihood estimator [18] maximizing

the log-likelihood function ln(p(y(t)|h(t))) is as follows,

ĥ(t) = max
h(t)

{ln(p(y(t)|h(t)))} = y(t) or Ĥ(t) =
Y(t)PT

α
, (3.22)

meaning that the unconstrained ML estimator is the pilot-projected received vector y(t)

itself.
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3.2.1.2 Linear Minimum Mean-Squared Error Channel Estimator

The performance of the unconstrained ML channel estimator in (3.22) is further

improved by employing the L-tap LMMSE channel interpolation. The L-tap LMMSE

channel estimator can be expressed as follows,

hLMMSE
j,i (t) = wH

j,iĥ
L
j,i(t), (3.23)

where hLMMSE
j,i (t) denotes the jth-row ith-column element of the LMMSE-estimated channel

matrix, wj,i = [wj,i(0) · · ·wj,i(L − 1)]T denotes the L-tap finite impulse response (FIR)

linear filter's weight vector, and ĥL
j,i(t) = [ĥj,i(t) · · · ĥj,i(t−L + 1)]T denotes the L-element

input vector constructed from the jth-row ith-column element of the ML-estimated channel

matrix in (3.22) taking values in the time interval [t − L + 1, t]. The optimization criterion,

assuming the channels are WSS, for the L-tap LMMSE channel estimator is given by

J(wj,i) = arg min
wj,i

E
[
‖hj,i(t) − wH

j,iĥ
L
j,i(t)‖2

]
, (3.24)

where hj,i(t) denotes the jth-row ith-column element of the true channel matrix H(t) in

(3.1).

The optimum LMMSE weight vector w
opt
j,i is given by

w
opt
j,i = R−1

ĥL
j,i(t)

p
ĥL

j,i(t)
, (3.25)

where R
ĥL

j,i(t)
= E[ĥL

j,i(t)ĥ
HL

j,i (t)] and p
ĥL

j,i(t)
= E[h∗

j,i(t)ĥ
L
j,i(t)]. According to (3.14),

(3.20), (3.22), and the uncorrelatedness of the channel and noise coefficients, the L-tap

LMMSE channel estimator can be further rewritten as

hLMMSE
j,i (t) =

[
(RhL

j,i(t)
+

σ2

α
IL×L)−1phL

j,i(t)

]H

ĥL
j,i(t), (3.26)

whereRhL
j,i(t)

= E[hL
j,i(t)h

HL

j,i (t)] and p
ĥL

j,i(t)
= E[h∗

j,i(t)h
L
j,i(t)] = phL

j,i(t)
. The performance

analysis for the unconstrained ML channel estimator will be considered in section 3.3.1.1. In

addition, the performance analysis for the LMMSE channel estimator can be found in [57].

3.2.2 Data Detection

The data detection procedure is further performed. Firstly, the data part in the received

symbol matrix Y(t) is extracted by post-multiplying the received symbol matrix Y(t) by
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the transpose of the data-bearer matrix AT . Using (3.5) and (3.6), we have

Y(t)AT

β
= H(t)D(t) +

N(t)AT

β
. (3.27)

Defining n
′

(t) as the vector version of N(t)AT

β
. From (3.6), it implies that

∑M
j=1 |Ai,j|2 =

β, ∀i. Then similar to (3.18) and (3.19), the mean vector and the covariance matrix of the

data-bearer-projected noise vector n
′

(t) are determined as follows,

µ
n
′ (t) = 0(LrN×1), (3.28)

V
n
′ (t) =

σ2

2β
I(LrN×LrN) per real dimension. (3.29)

The ML receiver is employed for decoding the transmitted ST data matrix D(t) by

using the estimated channel coefficient matrix Ĥ(t) obtained in either (3.22) or (3.26) as

the channel state information. Due to the i.i.d. white Gaussian distribution of n
′

(t), the ML

receiver computes the decision metric and decides the codeword that minimizes this decision

metric as in [13],

{d̂i
t} = min

{di
t}

{
N∑

t=1

Lr∑

j=1

|yj
t −

Lt∑

i=1

ĥj,id
i
t|2

}
, ∀di

t, i ∈ {1, . . . , Lt}, t ∈ {1, . . . , N}, (3.30)

where yj
t denotes the jth-row tth-column element of the data-bearer-projected received

symbol matrix Y(t)AT

β
, ĥj,i denotes the jth-row ith-column element of the estimated channel

coefficient matrix Ĥ(t), and d̂i
t denotes the ith-row tth-column element of the estimated ST

data matrix D̂(t).

The performance analysis for the ST data detection is discussed in section 3.3.1.2.

Note that the null-space and orthogonality properties of the data-bearer matrix A and the

pilot matrix P play the major role in the pilot and the data extraction for channel estimation

and data detection, respectively. In addition, the ranks of the data-bearer matrix A and the

pilot matrix P also determine the minimum number of time slots, obtained in (3.8), of the

pilot-embedded ST symbol matrix U(t).

3.3 The Performance Analysis for The Proposed Scheme

In this section, the performances of the data-bearing approach for pilot-embedding

frameworks are analyzed, including both the unconstrained ML channel estimation and data
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detection performance, under two different scenarios, i.e. quasi-static and nonquasi-static

flat Rayleigh fading channels. This analysis will be used as the theoretical benchmarks for

later comparisons in Section 3.5.

3.3.1 Quasi-static Flat Rayleigh Fading Channels

3.3.1.1 Channel Estimation Performance Analysis

The channel estimation error is first analyzed, and then it will be compared to the

Cramer-Rao lower bound (CRLB), which is a lower bound of the conditional variance of the

channel estimation error.

3.3.1.1.1) Channel Estimation Error: A channel estimation error vector can be evaluated

as follows,

h̃(t) = h(t) − ĥ(t). (3.31)

Substituting (3.22) into (3.31), the variance matrix of the channel estimation error is

given by

Var
[
h̃(t)

]
= E

[
(h(t) − h(t) − n(t))(h(t) − h(t) − n(t))H

]
= Vn(t). (3.32)

The mean-squared error (MSE) of the channel estimation is given by

MSE = tr
{
Var

[
h̃(t)

]}
=

σ2LtLr

α
, (3.33)

where tr{·} stands for the trace operator of a matrix.
It is worth noticing that the MSE of the channel estimation is inversely proportional

to the pilot-power factor α; as a result, more power allocated to the pilot part resulting in

lower MSE of the channel estimation.

3.3.1.1.2) Unbiasedness and Cramer-Rao Lower Bound: Since the proposed estimator

achieves the CRLB because it is the maximum-likelihood estimator in the presence of the

AWGN [18], it can be shown that the estimator is unbiased. Using (3.18), the unbiasedness

of the proposed pilot-embedded channel estimator is evaluated by

E[ĥ(t)] = E [h(t) + n(t)] = µh(t). (3.34)

The CRLB for an unbiased estimator is defined as [18]

Cov
[
ĥ(t) − h(t)|h(t)

]
=

[
−E

[
∂2 ln(p(y(t)|h(t)))

∂h2(t)

]]−1

= Vn(t). (3.35)
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The trace of the CRLB matrix in (3.35) is given by

tr
{
Cov

[
ĥ(t) − h(t)|h(t)

]}
=

σ2LtLr

α
. (3.36)

Therefore, one can see that the channel estimator achieves the desired properties of a good

estimator that is unbiased, and achieves the CRLB.

3.3.1.2 Data Detection Performance Analysis

The probability of error of the proposed scheme in data detection is further an-

alyzed. A Chernoff's upper bound of the probability of transmitting a codeword d ,

(d1
1d

2
1 · · · dLt

1 · · · d1
Nd2

N · · · dLt

N )T and deciding in favor of a different codeword e , (e1
1e

2
1 · · ·

eLt

1 · · · e1
Ne2

N · · · eLt

N )T at the maximum-likelihood receiver is given by [50]

P
(
d → e|ĥj,i, j = 1, . . . , Lr, i = 1, . . . , Lt

)
≤ exp

(−m2 (d, e)

4N0

)
, (3.37)

where m2 (d, e) =
∑Lr

j=1

∑N
t=1 |

∑Lt

i=1 ĥj,i(d
i
t − ei

t)|2 and N0 = σ2

N

(
N
β

+ Lt

α

)
is the noise

variance of the noise term in the decision metric (3.30), when the estimated channel coefficient

matrix Ĥ(t) expressed in (3.22) and the data-bearer-projected received symbol matrix Y(t)AT

β

obtained in (3.27) are substituted. More specifically, since the pilot-projected noise vector

n(t) and the data-bearer-projected noise vector n′(t) are i.i.d Gaussian distributed with zero

mean and variance matrices were shown in (3.20) and (3.29), respectively, the noise variance

N0 is the combination of the total variances of these noise vectors divided by the number

of receive antennas Lr and the data time slots N , given by N0 = σ2

LrN

(
NLr

β
+ LtLr

α

)
.

From (3.37) and the derivations in [13], the Chernoff's upper bound of the probability

of error can be rewritten as follows,

P
(
d → e|ĥj,i, j = 1, . . . , Lr, i = 1, . . . , Lt

)
≤

Lr∏

j=1

exp

{
− 1

4N0

Lt∑

i=1

λi|Qj,i|2
}

, (3.38)

where λi is the eigenvalue of the code-error matrix C(d, e) defined as Cp,q = xH
q xp

where xp = (dP
1 − eP

1 , . . . , dP
N − eP

N)T , Qj,i ∈ (Qj,1, . . . , Qj,Lt
) = ΩT

j VH , where Ωj =

(ĥj,1, . . . , ĥj,Lt
)T and V is the eigenmatrix whose rows correspond to the eigenvectors of

C(d, e). Since V is unitary, then, Qj,i are independent complex Gaussian random variables

with zero mean and variance is given by

σ2
Q = E

[
hj,ih

∗
j,i

]
+ E [Nj,i(t)Nj,i(t)

∗]

= 0.5 +
σ2

2α
per real dimension, (3.39)
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where Nj,i(t) is the jth-row ith-column element of the pilot-projected noise matrix N1(t)

in (3.13). Thus, |Qj,i| are independent Rayleigh distributions with pdf

p(|Qj,i|) =
2|Qj,i|

σ2
Q

exp

(
−|Qj,i|2

σ2
Q

)
(3.40)

for |Qj,i| ≥ 0.

The Chernoff's upper bound of the average probability of error can be computed by

averaging (3.38) with respect to independent Rayleigh distributions of |Qj,i| to arrive at

P (d → e)
Ĥ(t) ≤

Lt∏

i=1




1

1 +
σ2

Q
λi

4
N (N

β
+

Lt
α )σ2





Lr

≤
(

Lt∏

i=1

λi

)−Lr


 σ2
Q

4
N

(
N
β

+ Lt

α

)
σ2




−LtLr

, (3.41)

assuming that full rank ST codes are employed, which can be relaxed in general.

In comparison to the case that the channel coefficient matrix H(t) is exactly available

to the maximum-likelihood receiver, the average probability of error is given in [13] as,

P (d → e)H(t) ≤
(

Lt∏

i=1

λi

)−Lr (
Ps

4σ2

)−LtLr

, (3.42)

where Ps is the normalized power allocated to the data part when the channel coefficients

are known.

Notice that the noise variance N0 is affected by the variances of the channel estimation

error, i.e. σ2

α
, and the data-bearer-projected noise, i.e. σ2

β
; therefore, it completely reveals

the underlined effects of pilot- and data-power factors in the probability of error. Hence, this

probability of error can be reasonably used as a cost function for optimum power allocation

purpose.

Defining the probability of error upper bound (PEUB) mismatch factor between the

estimated channel coefficient case and the ideal channel coefficient case as follows,

η = ln

(
P (d → e)

Ĥ(t)

P (d → e)H(t)

)

= LtLr ln




Ps

(
N
β

+ Lt

α

)

N(1 + σ2

α
)



 . (3.43)
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This PEUB mismatch factor is used for performance measure in order to optimally

allocate the powers to the data and pilot parts. In other words, this factor is minimized

when the power is allocated optimally. The advantage of using this PEUB mismatch factor

as a cost function for optimum power allocation inherits directly from its expression that

takes both the channel estimation error and the effect of the data-bearer-projected noise

into account. In addition, the use of the PEUB mismatch factor as a cost function for

the optimum power allocation is better than using the channel estimation error as the cost

function merely, because, under the constant power constraint, despite the fact that assigning

a larger power to the pilot part yields better channel coefficient estimates, i.e. a lower

channel estimation error; the remaining smaller amount of power given to the data part

yields a poorer probability of error in decoding. Hence, this power tradeoff is essential for

the overall performances of the pilot-embedded MIMO system, e.g. channel estimation error

and the probability of detection error.

3.3.2 Nonquasi-static Flat Rayleigh Fading Channels

When the channel changes rapidly, the assumption of quasi-static fading channels is

no longer held anymore. Appropriate channel estimation approaches have to be designed

and analyzed for combatting such channel situations. In what follows, the performance of

the proposed scheme for nonquasi-static flat Rayleigh fading channels is investigated. For

the sake of exposition, a half-block fading channel model, in which the channel coefficient

matrix H(t) symmetrically changes once within one ST symbol block, i.e. there exists

H1(t) and H2(t) in the tth-block ST symbol matrix, is studied. With P = [P1;P2] and

A = [A1;A2], the received symbol matrix in (3.9) can be rewritten as follows,

Y(t) = [H1(t)(D(t)A1 + P1);H2(t)(D(t)A2 + P2)] + N(t), (3.44)

where H1(t), A1 and P1 denote the first part of the channel coefficient, the data bearer, and

the pilot matrices, respectively; H2(t), A2 and P2 denote the second part of the channel

coefficient, the data bearer, and the pilot matrices, respectively. In addition, the readers are

reminded about the properties of matrices A and P in (3.4)-(3.7). First, the ML channel

estimation in (3.22) is computed. From the received symbol matrix in (3.44), it is post

multiplied by PT , divided the result by α, and rearranged the terms, the channel estimate
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can be expressed as follows

Ĥ(t) =
1

α
[H1(t)D(t)A1P

T
1 +H2(t)D(t)A2P

T
2 ] +

1

α
[H1(t)P1P

T
1 +H2(t)P2P

T
2 ] +N1(t),

(3.45)

where N1(t) = N(t)PT

α
. Next, the data extraction is computed by post multiplying (3.44) by

AT , dividing the result by β, and rearranging the terms to arrive at

Y1(t) =
1

β
[H1(t)D(t)A1A

T
1 +H2(t)D(t)A2A

T
2 ]+

1

β
[H1(t)P1A

T
1 +H2(t)P2A

T
2 ]+N2(t),

(3.46)

where N2(t) = N(t)AT

β

As an illustrating example, the case where Lt = 2, Lr = 2, τ = 2, N = 2, and M =

N + Lt = 4 is investigated.

• TM- & STBC-Based Matrices:

According to (3.10) and (3.11), respectively, the data-bearer and pilot matrices can be

designed as follows,

ATM =
√

β




0 0

0 0
︸ ︷︷ ︸

AT1

1 0

0 1
︸ ︷︷ ︸

AT2




, PTM =

√
α




1 0

0 1
︸ ︷︷ ︸

PT1

0 0

0 0
︸ ︷︷ ︸

PT2





and

ASTBC =
√

β




0 0

0 0
︸ ︷︷ ︸

AS1

1 0

0 1
︸ ︷︷ ︸

AS2




, PSTBC =

√
α





1√
2

− 1√
2

1√
2

1√
2︸ ︷︷ ︸

PS1

0 0

0 0
︸ ︷︷ ︸

PS2




. (3.47)

From the matrix design in (3.47), it can be shown that

AT1P
T
T1

= AT2P
T
T2

= PT2P
T
T2

= AT1A
T
T1

= 0(2×2),

PT1P
T
T1

= αI(2×2), and AT2A
T
T2

= βI(2×2). (3.48)

Similarly, for the STBC-based matrices, the derivation in (3.48) is also applied, except

the notation. Substituting (3.48) into (3.45) and (3.46), thus yielding, respectively,

ĤTM&STBC(t) = H1(t) + N1(t). (3.49)

Y1TM&STBC
(t) = H2(t)D(t) + N2(t). (3.50)
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• CM Matrices:

According to (3.12), the data-bearer and pilot matrices can be designed as follows,

ACM =
√

β





1
2

1
2

1
2

−1
2︸ ︷︷ ︸

AC1

1
2

1
2

1
2

−1
2︸ ︷︷ ︸

AC2




, PCM =

√
α





1
2

1
2

1
2

−1
2︸ ︷︷ ︸

PC1

−1
2

−1
2

−1
2

1
2︸ ︷︷ ︸

PC2




(3.51)

In a similar way to (3.48), it can be shown that

PC1P
T
C1

= PC2P
T
C2

= α
2
I(2×2), AC1A

T
C1

= AC2A
T
C2

= β
2
I(2×2),

AC1P
T
C1

=
√

βα
2

I(2×2), and AC2P
T
C2

= −
√

βα
2

I(2×2). (3.52)

Substituting (3.52) into (3.45) and (3.46), thus yielding, respectively,

ĤCM(t) =
1

2
[H1(t) + H2(t)] +

1

2

√
β

α
[H1(t) − H2(t)]D(t) + N1(t). (3.53)

Y1CM
(t) =

1

2
[H1(t) + H2(t)]D(t) +

1

2

√
α

β
[H1(t) − H2(t)] + N2(t). (3.54)

3.3.2.1 Channel Estimation Performance Analysis

In the following analysis, the channel estimation error for the TM-, STBC-, CM-based

matrices are analyzed and compared to one another.

3.3.2.1.1) TM- & STBC-Based Matrices: According to (3.49) and (3.50), the channel

estimate in (3.49) is used to decode the ST data matrix D(t) in (3.50). Therefore, the

channel estimation error can be expressed by, in the matrix form,

H̃TM&STBC(t) = H2(t) − ĤTM&STBC(t). (3.55)

Without loss of generality, H2(t) can be modelled as a linear combination of H1(t)

and the increment channel matrix ∆H(t), i.e. H2(t) = H1(t) + ∆H(t), then substituting

this linear channel model into (3.49) and (3.55) yielding

H̃TM&STBC(t) = ∆H(t) − N1(t). (3.56)

From the uncorrelated assumption between the channels and noise, the MSETM&STBC

of the channel estimation in (3.56) can be expressed as follows,

MSETM&STBC = MSEquasi + E[‖∆H(t)‖2], (3.57)
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where MSEquasi = σ2LtLr

α
in (3.33).

3.3.2.1.2) CM-Based Matrices: According to (3.53) and (3.54), similarly, the channel

estimate in (3.53) is used to decode the data matrix D(t) in (3.54). Therefore, the channel

estimation error can be expressed by, in the matrix form,

H̃CM(t) =
1

2
[H1(t) + H2(t)] − ĤCM(t). (3.58)

For the orthogonal ST block code [14] which is normalized to have E[‖D(t)‖2] = Lt,

H2(t) = H1(t) + ∆H(t) is first substituted into (3.53) and (3.58), and by using the

uncorrelatedness assumption between the channels and noise, the MSE of the channel

estimation can be expressed as follows,

MSECM = MSEquasi +
ξ2

4
E[‖∆H(t)‖2], (3.59)

where ξ =
√

β
α
.

Notice that, in high SNR regimes where MSEquasi = 0, if the equal power allocation,

i.e. ξ = 1, is employed, the MSECM in (3.59) is four times less than the MSETM&STBC

in (3.57). In comparison, the ratio between MSECM and MSETM&STBC can be shown as

follows,

10 log

(
MSECM

MSETM&STBC

)
= 10 log

(
1

4

)
= −6.02 dB, (3.60)

which indicates that the MSE of the channel estimation of CM-based matrices is 6.02-dB

superior to that of TM- and STBC-based matrices, in the half-block fading channel model.

3.3.2.2 Data Detection Performance Analysis

In the following analysis, the closed form expression, in a matrix form for the sake

of convenience, for the pair-wise probability of transmitting a codeword D and deciding

in favor of a different codeword E at the maximum-likelihood receiver is provided. By

using the linear channel model described in the channel estimation performance analysis,

the pair-wise probability of error, given Ĥ(t) and ∆H(t), is given by [50]

P (D → E|Ĥ(t), ∆H(t)) = P (‖Y1(t) − Ĥ(t)E‖2 < ‖Y1(t) − Ĥ(t)D‖2|Ĥ(t), ∆H(t)).

(3.61)
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3.3.2.2.1) TM- & STBC-Based Matrices: By the virtue of the AWGN assumption,

substituting (3.49) and (3.50) into (3.61) to arrive at, after some algebraic manipulation,

P (D → E|ĤTM&STBC(t), ∆H(t)) = Q

(
‖ĤTM&STBC(t)(D−E)+∆H(t)D‖2−‖∆H(t)D‖2

√
2
N

(N
β

+
Lt
α

)σ2‖ĤTM&STBC(t)(D−E)‖

)
,

(3.62)

where Q(·) is the Q-function defines as Q(x) =
∫ ∞

x
1√
2π

e−
y2

2 dy.

It can be shown that a Chernoff's upper bound for (3.62) can be computed using the

inequality Q(x) ≤ e−x2/2, given by

P (D → E|ĤTM&STBC(t), ∆H(t))

≤ exp

(
− (‖ĤTM&STBC(t)(D−E)+∆H(t)D‖2−‖∆H(t)D‖2)2

4
N

(N
β

+
Lt
α

)σ2‖ĤTM&STBC(t)(D−E)‖2

)
. (3.63)

By given the statistics of ĤTM&STBC(t) and ∆H(t), the averaged pair-wise error

probability can be computed as follows,

P (D → E)

=
∫ ∞
−∞

∫ ∞
−∞ P (D → E|ĤTM&STBC(t), ∆H(t))px,y(ĤTM&STBC(t), ∆H(t))dxdy,(3.64)

where px,y(ĤTM&STBC(t), ∆H(t)) is a joint pdf. of ĤTM&STBC(t) and ∆H(t).

3.3.2.2.2) CM-Based Matrices: Similarly, by the virtue of the AWGN assumption,

substituting (3.53) and (3.54) into (3.61) to arrive at, after some algebraic manipulation,

P (D → E|ĤCM(t), ∆H(t)) = Q

(
‖ĤCMeff

(t)(D−E)+
∆H(t)

2
(ξDE− I

ξ
)‖2−‖∆H(t)

2
(ξDD− I

ξ
)‖2

√
2
N

(N
β

+
Lt
α

)σ2‖ĤCMeff
(t)(D−E)+

∆H(t)
2

(ξDE−DD
ξ

)‖

)
,

(3.65)

where ĤCMeff
(t) = ĤTM(t) + ∆H(t)

2
= (H1(t) + ∆H(t)

2
) + N1(t).

If the equal power allocation is employed, then (3.65) can be rewritten as

P (D → E|ĤCM(t), ∆H(t)) = Q

(
‖ĤCMeff

(t)(D−E)+
∆H(t)

2
(DE−I)‖2−‖∆H(t)

2
(DD−I)‖2

√
2
N

(N
β

+
Lt
α

)σ2‖ĤCM (t)(D−E)‖

)
.

(3.66)

It is straightforward to compute the Chernoff's upper bound and the averaged pair-wise error

probability for (3.66) in a similar way as (3.63) and (3.64), respectively. Even though the

comparison between (3.62) and (3.66) is difficult to get the closed form expression, we still

provide the numerical performance comparison in section 3.5. It is worth mentioning that

this analysis is valid for the fading channel model that changes in the multiple order of N ,

where N ∈ 2n, n ∈ I.
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3.4 Optimum Block Power Allocation

In this section, the block power allocation problem is addressed in order to optimally

allocate the power to the data and the pilot parts for quasi-static flat Rayleigh fading channels.

It is clear that the performances of the pilot-embedded MIMO system essentially depend

on the power percentages of the data and that of the pilot. In addition, the constant block

power, where the power of the pilot-embedded ST symbol matrix U(t) is constant, is a case

to be considered. The normalized block power allocated to the pilot-embedded ST symbol

matrix U(t), which is normalized by the transmit antenna numbers Lt, can be expressed as

follows,

Ps =
E [‖U(t)‖2]

Lt

=
E [‖D(t)A‖2]

Lt

+
E [‖P‖2]

Lt

= P
′

s + Pp = β + α, (3.67)

where the normalized block power allocated to the data part P ′

s = β, since E [‖D(t)A‖2] =

E[tr(D(t)AATD(t)T )] = E
[
βtr(D(t)D(t)T )

]
= βLt; and Pp = α is the normalized block

power allocated to the pilot part.

The objective is to minimize the PEUB mismatch factor η in (3.43) with respect to

the pilot-power factor α subject to the constraints of constant block power and acceptable

MSE of the channel estimation which is a threshold that indicates the acceptable channel

estimation accuracy for a reliable channel estimate. Substituting β = Ps −α into (3.43), the

problem formulation is given by

min
α

ln

(
(N − Lt)α + PsLt

(α + σ2)(Ps − α)

)
, (3.68)

where MSE ≤ T with T being the acceptable threshold of the MSE in channel estimation.

Differentiating (3.68) and equating the result to zero, the optimum solution for the pilot-power

factor α∗ can be expressed as follows,

α∗ =

{
Ps−σ2

2
; N = Lt

PsLt−
√

PsN(PsLt+σ2(Lt−N))

(Lt−N)
; N 6= Lt,

(3.69)

where the MSE of the channel estimation obtained in (3.33) must satisfy the following

inequality

MSE =
σ2LtLr

α
≤ T. (3.70)
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It is worth noticing that, in the case that N 6= Lt, the optimum solution for the

pilot-power factor α∗ in (3.69) exists if and only if signal-to-noise ratio SNR ≥ (N − Lt),

where SNR = PsLt

σ2 . Since the case that N = Lt = 4 is considered in the simulations, the

case that N = Lt will be examined for the sake of exposition. Substituting (3.69) into

(3.70), the feasible range of SNR, when the inequality in (3.70) is satisfied, and the optimum

pilot-power factor α∗
min, when MSE = T , can be expressed as follows,

SNR ≥ Lt +
2L2

t Lr

T
, (3.71)

α∗
min =

LtLrPs

T + 2LtLr

. (3.72)

Accordingly, the range of the optimum pilot-power factor α∗ obtained in (3.69), when

the SNR satisfies the inequality in (3.71), i.e. Lt +
2L2

t Lr

T
≤ SNR < ∞, is given by

LtLrPs

T + 2LtLr

≤ α∗ <
Ps

2
. (3.73)

However, there is a case when the SNR does not satisfy the inequality in (3.71), i.e.

SNR < Lt +
2L2

t Lr

T
, as a result, the MSE of the channel estimation is not reliable, i.e. MSE >

T, and the probability of detection error is inevitably increased. This scenario is equivalent

to the low-SNR scenario, where wireless communication is not reliable. According to the

range of the optimum pilot-power factor α∗ obtained in (3.73), the minimum value of α∗,

e.g. α∗ = LtLrPs

T+2LtLr
, is used in this scenario because the PEUB mismatch factor in (3.68) is

a monotonically increasing function of α, for α within this range.

In summary, the optimum pilot-power factor α∗ for the case that N = Lt under

different SNR scenarios can be summarized as follows,

α∗ =

{
LtLrPs

T+2LtLr
; SNR < Lt +

2L2
t Lr

T
Ps−σ2

2
; Otherwise.

(3.74)

In addition, the acceptable threshold T for the MSE of the channel estimation is

quite small and is determined by practice, e.g. the simulation results in Section 3.5. It is

worth noticing that, under the high-SNR scenario where σ2 → 0 and, hence, the Chernoff's

upper bound in (3.41) is tight, the pilot-power factor α approaches Ps/2, which is an equal

power allocation also reported in [57] for the case that N = Lt although where the channel

estimator used is the LMMSE estimator. The reason of this convergence lies in the fact

that, in high SNR regimes, both the ML and LMMSE channel estimators yield the same
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effective SNR. Since the proposed scheme and [57] effectively maximize the effective SNR

in order to achieve the minimum upper bound on error probability and the maximum lower

bound on channel capacity, respectively, the convergence of the optimum power allocation

is resulted. However, in low SNR regimes, the power allocation in both the proposed scheme

and [57] are suboptimal, because the bound used in both schemes are loose and the channel

estimation error is large. Nevertheless, both schemes perform fairly well in this severely

unreliable scenario as shown in Section 3.5.

One may argue that a more straightforward approach to address this power allocation

problem is to directly minimize the upper bound of the average probability of error in

(3.41) with respect to the parameter α, since the final goal is to achieve a probability of

error as small as possible. The motivation why the PEUB mismatch factor η is chosen as

the objective function is to measure the performance loss of the proposed scheme when

compared with a benchmark in (3.42). However, a later examination at this concern reveals

that minimizing the PEUB mismatch factor η is equivalent to minimizing the Chernoff's

upper bound of the average probability of error in (3.41), since other items in (3.41) such

as λi's and σ2 are not affected by α, and the same solution will thus be obtained.

3.5 Simulation Results

In this section, the performance of the proposed scheme is demonstrated. Without

loss of generality, an orthogonal ST block code introduced in [14, 66] is examined, given as

D(t) =





s1(t) −s∗2(t)
s∗3(t)√

2

s∗3(t)√
2

s2(t) s∗1(t)
s∗3(t)√

2
− s∗3(t)√

2
s3√
2

s3√
2

(−s1(t)−s∗1(t)+s2(t)−s∗2(t))

2

(s2(t)+s∗2(t)+s1(t)−s∗1(t))

2
s3√
2

− s3√
2

(−s2(t)−s∗2(t)+s1(t)−s∗1(t))

2
− (s1(t)+s∗1(t)+s2(t)−s∗2(t))

2




, (3.75)

where si(t), i ∈ {1, . . . , 3} are the ST symbols corresponding to the chosen modulation

constellation, e.g. 4-PSK, 8-PSK. Three data bearer and pilot structures proposed in section

3.2 are investigated for two situations: the quasi-static and nonquasi-static flat Rayleigh

fading channels. Under the nonquasi-static scenario, the performances of the pilot-embedded

MIMO systems for nonquasi-static flat Rayleigh fading channel with different Doppler's shifts,

representing different mobility speed of the mobile unit, are investigated. The BER and

MSE of the channel estimate are used as performance measures, in comparison with the
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MIMO systems employing the ideal channel coefficients for the ML receiver (see (3.30)). In

the simulations, for the ideal channel coefficient case, the channel matrix H(t) is assumed

known and thus the pilot matrix P is not employed, in the other words, the ST symbol

matrix U(t) in (3.3) is now expressed as U(t) = D(t)A. In addition, the performances of

the pilot-embedded MIMO systems when employ the optimum power allocation scheme in

(3.74), and the alternative scheme proposed in [57], are compared. In order to provide the

fairness when comparing different schemes, the same transmit rate and the total transmit

energy are employed by different schemes in our simulations.

For all of three data bearer and pilot structures, the setting parameters of the experiments

are: the noise elements in N(t) in (3.1) are assumed to be independent complex Gaussian

random variables with zero mean and variance σ2

2
per real dimension; the normalized ST

symbol block power Ps is 1 Watt/ST symbol block; the number of time slots M is 8 time

slots/ST symbol block; the number of transmit antennas Lt is 4; and the data time slots

N = M − Lt is 4 time slots/ST symbol block. In addition, 4-PSK modulation is employed

in these experiments, the acceptable threshold of the MSE of the channel estimation T is set

as 0.5, and the number of LMMSE channel estimator's taps is 3.

3.5.1 The Quasi-Static Flat Rayleigh Fading Channel

In this situation, the channel coefficients ofH(t) in (3.1) are taken from the normalized

time-varying channel which is modelled as Jakes' model [51], where fd ∗ T = 0.08 (fast

fading) with fd being the Doppler's shift and T being the symbol period.

In Fig.3.3, the normalized power allocated to data and pilot parts of these two optimum

power allocation strategies is illustrated. It is worth noticing that these two power allocation

strategies converge to 0.5 Watt in high SNR regimes as explained in section 3.4.

In Fig.3.4, we plot MSEs of the channel estimation of the pilot-embedded MIMO

system with applying the optimum and the alternative optimum power allocation strategies,

when 1 and 2-received antennas are employed. Notice that the MSEs of the optimum

power allocation scheme is slightly higher than that of the alternative optimum power

allocation scheme in low SNR regimes. In addition, the MSEs of the channels estimation of

the 2-received antenna scenario are larger than that of the 1-received antenna scenario as

explained by referring to (3.33), and three types of data-bearer and pilot matrices yield the
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same MSE which coincides with the trace of the CRLB in (3.36). Notice that, the LMMSE

channel estimator outperforms the ML channel estimator, where the MSE of the channel

estimation is much lower in the LMMSE channel estimator. In fact, the LMMSE channel

estimator is a Bayesian estimator in which the prior knowledge on the statistics of channels

is exploited; therefore, its performance is much better than the ML channel estimator, which

is a deterministic estimator, and that of CRLB. Furthermore, the LMMSE channel estimator

tradeoffs the bias for variance, hence, the overall MSE is reduced [61]. The CRLB for

Bayesian estimators including the LMMSE channel estimator can be found in [58, 61].

In Fig.3.5, we plot BERs of the pilot-embedded MIMO system with applying the

optimum power allocation strategy, in comparison with the ideal-channel MIMO system,

when 1 and 2-received antennas are employed. In the ideal channel case, the channel

coefficients are assumed known, thus it serves as a performance bound. Notice that, at BER

= 10−4, the SNR differences between the ideal-channel and the ML channel estimator are

about 2.3 dB for both the 1 and 2-received antenna schemes, whereas the LMMSE channel

estimation achieves the ideal-channel error probability for the 1-received antenna scheme,

and the SNR difference between the ideal-channel and the LMMSE channel estimator are

about 0.5 dB for the 2-received antenna scheme. In addition, the SNR differences between

the ML and LMMSE channel estimators are about 1.8 dB. It is worth noticing that the

LMMSE channel estimator performs better than the ML channel estimator because of the

higher accurate channel estimate, as shown in Fig.3.4.

In Fig.3.6, the BERs are plotted in comparison between the proposed and alternative

optimum power allocation strategies [57], both compared with the ideal-channel MIMO

system, when 1 and 2-received antennas are employed. For the sake of clarity, the CM-

based matrices are used as the representative of all three structures that behave similarly in

the experimental results. Obviously, say at BER = 10−4, both optimum power allocation

strategies are quite close resulting from the very small difference in the power allocated to

the data and pilot parts in both strategies, as shown in Fig.3.3.

3.5.2 The Nonquasi-Static Flat Rayleigh Fading Channel

In this situation, the situation where the channel coefficient matrix H(t) is not kept

constant over a ST symbol block is considered. An example where the channel coefficient
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matrix symmetrically changes twice within one ST symbol block as described in section

3.3.2 is examined. Two cases, where 1 and 2-received antennas are employed for the

pilot-embedded optimum-power-allocated MIMO system, are examined in order to illustrate

the effect of the time variance in the ST symbol block versus the number of received

antennas.

3.5.2.1 1-Received Antenna Scheme

In Fig.3.7, the graph of MSEs of the channel estimation of the pilot-embedded MIMO

system when fd ∗ T are 0.0021 (slow fading), 0.0165, 0.0412, and 0.0741 (fast fading)

is shown. Notice that the CM-based matrices provides the lower MSE than the TM- and

STBC-based matrices. When Doppler's shifts are fairly large, in high SNR regimes, the SNR

difference between the CM- and the TM- or STBC-based matrices ML channel estimators

are approximately 6.02 dB, as remarked in the figure. This result strongly supports the

derivation in section 3.3.2.1 as well.

In Fig.3.8, the graph of BERs of the pilot-embedded MIMO system when fd ∗ T are

0.0021 (slow fading), 0.0165, 0.0412, and 0.0741 (fast fading) is shown. Notice that, when

Doppler's shifts are small, e.g. fd ∗ T = 0.0021, the probability of error detection of three

kinds of data bearer and pilot structures are quite the same; however, when Doppler's shifts

are getting larger, the CM-based structure is much better than the TM- and STBC-based

structures, where the error floors of the CM-based structure are much lower than the TM-

and STBC-based structures. It is worth mentioning that, in high SNR regimes, the SNR

difference between the CM-based matrices and the TM- or STBC-based matrices ML channel

estimators are approximately 6.02 dB, as remarked in the figure. This result supports the

derivation in section 3.3.2.2 as well. Since the nonquasi-static flat Rayleigh fading channel

is the severe situation, there exists error floors that increase significantly as the Doppler's

shift increases.

3.5.2.2 2-Received Antenna Scheme

In Fig.3.9, the graph of MSEs of the channel estimation of the pilot-embedded MIMO

system when fd ∗ T are 0.0021 (slow fading), 0.0412, 0.0741, and 0.1235 (fast fading) is

shown. Similarly to the 1-received antenna scheme, the CM-based matrices provides the
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much lower MSE than the TM- and STBC-based matrices. In addition, the 6.02-dB SNR

difference is also observed when Doppler's shifts are fairly large, in high SNR regimes.

In Fig.3.10, the graph of BERs of the pilot-embedded MIMO system when fd ∗ T

are 0.0021 (slow fading), 0.0412, 0.0741, and 0.1235 (fast fading) is shown. Similarly to

the 1-received antenna scheme, the CM-based structure is much better than the TM- and

STBC-based structures, and, in high SNR regimes, the SNR difference between the CM-

and the TM- or STBC-based matrices ML channel estimators are approximately 6.02 dB, as

remarked in the figure.

It is worth mentioning that the CM-based structure yields better BER performances

than that of the TM- and STBC-based structures, especially under the high Doppler's shift

scenarios. The reason why the CM-based structure performs better than the TM-based

and STBC-based structures is that it takes both of the channel coefficient matrices H1(t)

and H2(t) into account (see (3.53)), whereas the other two structures exploit either some

parts of H1(t) or H2(t) based on their structures (see (3.49)). In this situation, there also

exists the inevitable error floors that increase significantly as the Doppler's shift increases.

These error floors result from the channel mismatch introduced as the bias in the channel

estimate, thus result in a poor detection performance especially under the high Doppler's

shift scenarios. Furthermore, the LMMSE channel estimator performs better than the ML

channel estimator in low SNR regimes, in which the AWGN is the major factor that causes

the detection error; however, in high SNR regimes, the channel mismatch plays a major role

in causing the detection error resulting in the comparable error floors for the LMMSE and

ML channel estimators. Interestingly, increasing the number of receive antennas yields an

additional benefit to the ML receiver in term of the robustness to the Doppler's shift, where

the 2-received antenna scenario is less sensitive to the Doppler's shift than the 1-received

antenna scenario.

3.6 Concluding Remark

In this chapter, the data-bearing approach for pilot-embedding frameworks was pro-

posed for joint data detection and channel estimation in ST coded MIMO systems. The main

contributions of this chapter are as follows.

• The advantages of the data-bearing approach are that it is the generalized form for
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pilot-embedded channel estimation and data detection in ST coded MIMO systems,

in which the classical channel estimation method, e.g. PSAM, is subsumed; the

low computational complexity and the efficient ML and LMMSE channel estimators

are achieved; and it is capable of better acquiring the channel state information in

fast-fading channels.

• For the quasi-static flat Rayleigh fading channels, the error probability and the channel

estimation performance of three data-bearer and pilot structures, i.e. the TM-, STBC-,

and CM-based data-bearer and pilot matrices, are quite similar, where the optimum-

power-allocated schemes based on the minimum upper bound on error probability

and the maximum lower bound on channel capacity optimizations yield the close

results. This result claims that the proposed scheme is one of the implementable

scheme that achieves the maximum lower bound on channel capacity derived in [57],

in high SNR regimes. In addition, the SNR differences between the optimum-power-

allocated schemes and the ideal-channel schemes are about 2.3 dB when employing

the unconstrained ML channel estimator and 0.5 dB for the LMMSE channel estimator.

• For the case of nonquasi-static flat Rayleigh fading channels, the CM-based structure

provide superior detection and channel estimation performances over the TM- and

STBC-based structures. For instance, the 6.02 dB SNR difference is observed, as well

as the error floors of the former are much smaller than that of the other two, under

fairly high Doppler's shift scenarios, in high SNR regimes.

In addition, a data-bearing approach for pilot-embedding can be well applied to IRBAP.
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CHAPTER IV

ADAPTIVE CHANNEL ESTIMATION USING

PILOT-EMBEDDED DATA-BEARING APPROACH FOR

SPACE-FREQUENCY CODED MIMO-OFDM SYSTEMS

In chapter III, the data-bearing approach for pilot-embedding frameworks was devel-

oped for acquiring the CSI of the frequency-nonselective (or flat) fading channels in ST

coded MIMO systems. Since only a direct line-of-sight-path signal exists in such channels,

a number of channel coefficients to be estimated is essentially equal to a multiplication

of Lt-transmit and Lr-receive antennas, i.e. LtLr. However, in practical applications,

the frequency-selective (or multipath) fading channel models are more realistic and more

general than the flat fading channel models. Furthermore, the multipath fading channels

are challenger than that of the flat fading channels in terms of the complication of an

underlying problem, where a large number of channel coefficients are to be estimated, and

the corresponding computational complexity. It is well known that the OFDM technique is

one of the multicarrier modulation technique that is effectively able to combat the multipath

fading channels. Recently, the OFDM technique has been introduced to MIMO systems,

namely the MIMO-OFDM systems. One critical issue for such systems employing coherent

receivers is channel estimation. Since the multipath delay profile of channels are arbitrary

in the MIMO-OFDM systems, an effective channel estimator is needed to estimate these

channels. In this chapter, the basic background about channel estimation techniques for

MIMO-OFDM systems is reviewed. Further, a generalization of the pilot-embedded data-

bearing approach for joint channel estimation and data detection, in which PEDB-LS channel

estimation and PEDB-ML data detection are employed, is first developed. Then an LS

FFT-based channel estimator by employing the concept of FFT-based channel estimation to

improve the PEDB-LS channel estimation via choosing certain significant taps in constructing

a channel frequency response is proposed. The effects of model mismatch error inherent

in the proposed LS FFT-based channel estimator when considering non-integer multipath
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delay profiles, and its performance analysis are investigated. Under the framework of

pilot embedding, an adaptive LS FFT-based channel estimator, that employs the optimum

number of taps such that an average total energy of the channels dissipating in each tap is

completely captured in order to compensate the model mismatch error as well as minimize

the corresponding noise effect to improve the performance of the LS FFT-based channel

estimator, is further proposed. Simulation results reveal that the adaptive LS FFT-based

channel estimator is superior to the LS FFT-based and PEDB-LS channel estimators under

quasi-static channels or low Doppler's shift regimes.

4.1 Introduction

High speed data transmission services have been highly demanded in future wireless

communications [67]. One promising transmission scheme to satisfy this growing demand

is the use of the OFDM technique [68], in which frequency-selective fading channels are

transformed into a set of parallel flat fading subchannels. Hence, such communication

techniques, e.g. channel estimation and equalization, designed for flat fading channels can

be directly applied to frequency-selective fading channels through the OFDM communication

scheme. In addition, since the OFDM communication scheme is a block transmission scheme,

its symbol duration is longer. When the symbol duration is longer than the delay spread

of channels, ISI is therefore eliminated. Nowadays, the OFDM communication scheme has

been employed in various high speed wireless transmission standards such as broadband

wireless LANs (IEEE 802.11a) [69], digital audio broadcasting (DAB) [70], and digital

video broadcasting (DVB-T) [71]. Recently, MIMO-OFDM systems have been proposed

for increasing communication capacity as well as reliability of the wireless communication

systems by exploiting both the spatial and frequency diversities [68, 72]. Further the

space-frequency (SF) coding for MIMO-OFDM systems have been developed for achieving

such diversities in order to enhance the reception performance for high data-rate wireless

communications. However, those aforementioned schemes normally need to assume an

accurate CSI for coherently decoding the transmitted data, e.g. the ML decoder. Therefore,

channel estimation is of critical interest for MIMO-OFDM systems.

Typically a pilot or training signal, a known signal transmitted from the transmitter

to the receiver, is highly desirable to obtain an accurate channel estimation. In [73], the
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optimal criteria of designing the training sequence in MIMO-OFDM systems were proposed.

There are two main types of pilot-aided channel estimation techniques for MIMO systems:

the PSAM technique [56, 57], and the pilot-embedding technique [59, 60]. Recently, the

pilot-embedded data-bearing approach for joint channel estimation and data detection has

been proposed by exploiting the null-space property and the orthogonality property of the

data bearer and pilot matrices [74].

Various channel estimation schemes have been recently proposed for MIMO-OFDM

systems [73, 75--78]. In [75], the LMMSE channel estimator was proposed, in which SVD

decomposition is used to simplify the ordinary LMMSE channel estimator. Despite the highly

accurate channel estimate of this scheme, it requires intensive computational complexity

and the knowledge of the underlying channel correlation. In [76], the FFT-based channel

estimation using a certain number of significant taps for estimating the channel impulse

response in a temporal domain was proposed. Despite the efficient computational complexity

of this scheme, it could suffer from an error floor caused by a non-integer multipath delay

spread, relative to the system sampling period, in the wireless channels, known as a model

mismatch error. The enhancement and simplification of [76] were proposed in [77, 78],

respectively.

The model mismatch error or, in the other word, the leakage effect was first mentioned

in SISO-OFDM systems employing the FFT-based channel estimation [79--81]. Without the

knowledge of channel correlation information, there are two ways to reduce the leakage

effect: 1) by changing the exponential basis functions to the polynomial basis functions in

the FFT-based channel estimation [82--84] for SISO systems and [85] for MIMO systems,

and 2) by employing a proper number of taps to construct a channel frequency response in

the FFT-based channel estimation [76]. In the former approach, the thorough investigation of

the polynomial-based channel estimation for the MIMO systems has been conducted in [85].

Although this approach provides better performance than the FFT-based approach [81] under

the non-integer multipath delay profiles, its performance is worse under the integer multipath

delay profiles. Furthermore, this approach impose higher computational complexity than

that of the FFT-based approach, and a general rule of designing the optimum window

length as well as the optimum order of the polynomial is not fully discovered. Given the

efficient implementation and reliability constraints, the FFT-based approach is still attractive.
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However, the optimal guideline about how to choose the number of taps remains unsolved.

The challenge now is to find the optimal criteria for obtaining the optimum number of

taps given that the knowledge of channel correlation information or Doppler's shift are

unavailable.

The goal of this chapter is to develop an efficient channel estimation scheme when

employing pilot-embedding idea in MIMO-OFDM systems. The main contributions of this

chapter are as follows.

• A generalization of the pilot-embedded data-bearing approach for joint channel esti-

mation and data detection for MIMO-OFDM systems, in which the PEDB-LS channel

estimation and PEDB-ML data detection are employed, respectively, is developed.

Furthermore, the LS FFT-based channel estimation is proposed to improve the per-

formance of the PEDB-LS channel estimate by employing the FFT-based approach

concept.

• The model mismatch error of the LS FFT-based channel estimator is investigated, and

this problem is solved by proposing an adaptive LS FFT-based channel estimation

approach that employs the optimum number of taps such that the average total energy

of the channels dissipating in each tap is completely captured in order to compensate

the model mismatch error as well as minimize the corresponding noise effect.

The organization of this chapter is as follows. In section 4.2, the wireless channel

and system models used in this chapter are introduced. In section 4.3, the generalization of

the pilot-embedded data-bearing approach for joint channel estimation and data detection,

including the PEDB-LS channel estimation and PEDB-ML data detection, is proposed.

Under this pilot-embedding framework, in section 4.4, the LS FFT-based channel estimator

is proposed, and the performance analysis for the PEDB-LS and LS FFT-based channel

estimation approaches is also investigated. In section 4.5, the adaptive LS FFT-based

channel estimation for improving the performance of the LS FFT-based channel estimation

is proposed. In section 4.6, the performance of the proposed schemes are examined via

simulations, and the conclusion is given in section 4.7.
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4.2 Wireless Channel and System Models

In this section, the wireless channel and system models used in this chapter are now

described. A K−tone SF-coded OFDM system with Lr receive and Lt transmit antennas is

considered.

4.2.1 Wireless Channel Model

The complex baseband impulse response of the wireless channel between the ath (a =

1, . . . , Lr) receive antenna and the bth (b = 1, . . . , Lt) transmit antenna can be described

by [86]

hab(t, τ) =
∑

l γl(t)δ(τ − Dl), (4.1)

where Dl is the delay of the lth path and γl(t) represents the corresponding complex

amplitude. γl(t)'s are modelled as wide-sense stationary (WSS), narrowband complex

Gaussian processes, which are independent for different paths, and E[|γl(t)|2] = σ2
l with

σ2
l being the average power of the lth path. Throughout this chapter, all the signals

transmitted from different transmit antennas and received at different receive antennas are

assumed undergone independent fading, and the channel average power is normalized to

have
∑

l σ
2
l = 1. For OFDM systems with tolerable leakage, the normalized frequency

response of the OFDM systems at the kth (k = 0, . . . , K − 1) subcarrier between the ath

receiver and the bth transmitter can be described by [76]

Hab(m,n, k) =
∑L−1

l=0 hab(m,n, l)F kτl

K , (4.2)

where hab(m,n, l) , hab(m,nTf , τlTs), FK = exp(−j2π/K), Ts = 1/(K∆)f , with ∆f

being the tone spacing, is the sample interval of the system, Tf is the OFDM block length,

and m denotes the index of a group of N-OFDM blocks described next. L is the number

of nonzero paths, which represents the order of frequency diversity of the channel, and the

integer τl, l = 0, . . . , L − 1 is the lth path's delay sampled at rate Ts, e.g. Dl = τlTs.

Furthermore, the average power of hab(m,n, l) and the value of L(≤ K) depend on the

delay profile and the dispersion of the wireless channels. For simplicity, the time index n is

omitted in all notations in the next text.
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4.2.2 System Model

At the transmitter side, the data stream is split into Lt substreams, and, in each

substream, a group of data is chosen to match the corresponding baseband M-phase-shift

keyed (MPSK) constellation symbol. These MPSK-data symbols are then coded by the SF

block code, e.g. [72], and grouped to construct the Lt × KN SF-coded data matrix S(m),

where N denotes the number of OFDM blocks (each OFDM block has K tones) to be

regarded as one SF-coded data block, and m denotes the N-OFDM-block index. Before

modulating this SF-coded data block by the OFDM modulator, the SF-coded data matrix

S(m) is embedded by the pilot signal using the pilot-embedded data-bearing approach

proposed later, so that the SF-coded symbol matrix with size Lt × KM , where M denotes

the number of OFDM blocks included in one SF-coded symbol block, is defined. Notice that

M > N since redundancy is introduced after embedding the pilot signal for acquiring the

CSI. Each pilot-embedded OFDM block is then modulated and simultaneously transmitted

across Lt transmit antennas. In order to eliminate ISI, a cyclic prefix in which the length

of cyclic extension must be no smaller than τL−1 is employed. In this chapter, two types

of fading channels: quasi-static and nonquasi-static frequency-selective Rayleigh fading

channels are considered. The former is the scenario that the channel remains constant over

the SF-coded symbol block but changes in a block-by-block way, whereas in the latter the

channel changes within the SF-coded symbol block. At the receiver side, the received signal

is sampled at rate ts and demodulated by the OFDM demodulator. By assuming tolerable

power leakage and perfect time/frequency synchronization, the received signal of the mth

SF-coded symbol block can be described by

Y(m) = H(m)U(m) + N(m), (4.3)

where Y(m) is a Lr ×KM matrix; H(m) is the Lr ×KLt channel matrix in which the ath

row of H(m) is [Ha1(m), . . . ,HaLt
(m)] where Hab(m) = [Hab(m, 0), . . . , Hab(m,K−1)];

N(m) is the Lr×KM AWGN matrix with zero mean and variance σ2

2
I(LrKM×LrKM) per real

dimension; and U(m) is the KLt × KM equivalent SF-coded symbol matrix. Throughout

this chapter, the channels and noise, and channels from different paths are assumed mutually

uncorrelated.
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4.3 Pilot-Embedded Data-Bearing Approach

In this section, the main ideas of the pilot-embedded data-bearing approach for joint

channel estimation and data detection is first presented. The basic LS channel estimation

and the ML data detection are then briefly introduced.

4.3.1 Pilot-Embedded Data-Bearing Approach

In the pilot-embedded data-bearing approach for joint channel estimation and data

detection, the equivalent SF-coded symbol matrix U(m) can be described as follows,

U(m) = D(m)A + P, (4.4)

where D(m) denotes the KLt ×KN equivalent SF-coded data matrix constructed from the

matrix S(m) using theK×K matrix-diagonalized operator diag{·}, where the ((b−1)K+1)th

row to the (bK)th row of D(m) are [diag{[S(m)]b,1:K}, . . . , diag{[S(m)]b,(N−1)K+1:NK}]
with x : y denotes the column/row index interval ranging x to y; A is the KN × KM

data bearer matrix; and P is the KLt × KM pilot matrix. Notice that the K diagonal

elements of a (b, c)th submatrix, c = 1, . . . ,M , represented in U(m) by the ((b−1)K +1)th

row to the (bK)th row and the ((c − 1)K + 1)th column to the (cK)th column are the

cth transmitted SF-coded OFDM block at the bth transmitter in the mth SF-coded symbol

block-group. In addition, the energy constraint E[‖D(m)‖2] = KLt is maintained for the

equivalent SF-coded data matrix. Substituting (4.4) into (4.3), we have the received signal

matrix as

Y(m) = H(m)(D(m)A + P) + N(m). (4.5)

Now, by the pilot-embedded data-bearing approach, the data bearer matrix A and the

pilot matrix P are required to satisfy the following properties:

APT = 0(KN×KLt), PPT = αI(KLt×KLt), (4.6)

PAT = 0(KLt×KN), and AAT = βI(KN×KN), (4.7)

where β is the real-valued data-power factor, α is the real-valued pilot-power factor. The

similar property PPT = αI in (4.6) is also suggested in [73] that they are the optimal

criteria for the optimal training design for MIMO-OFDM systems. There are several possible
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structures of data-bearing and pilot matrices, in which the elements of these matrices are

real numbers, that satisfy the properties (4.6) and (4.7). There is particularly of interest in

the case of the CM-based matrices, since it provides the superior performance among the

three structures studied in chapter III, see also [74].

The CM-Based matrices are now described. The structures of these matrices are given

as

A =
√

βWH[1 : N ](N×M) ⊗ I(K×K),M = N + Lt,

P =
√

αWH[N + 1 : M ](Lt×M) ⊗ I(K×K), (4.8)

where WH[x : y] denotes a sub-matrix created by splitting the M × M normalized Walse-

Hadamard matrix [64] starting from xth-row to yth-row and⊗ denotes the Kronecker product.

The disadvantage of this structure is the limitation of dimensionality of Walse-Hadamard

matrix, which has a dimension proportionally to 2n, n ∈ I. This structure provides an

instructive example of the proposed general idea in (4.4) for pilot-embedding.

Notice that, in (4.8), the proposed scheme is a block-training scheme in which Lt

OFDM blocks are used for estimating the CSI. As suggested in [75, 76], when using only

one OFDM block for training in the MIMO-OFDM systems, the LS channel estimator for

Hab(m) exists only if K ≥ LtL. In general, in the case that K < LtL and L ≤ K , the use

of Lt OFDM blocks for training can guarantee the existence of the LS channel estimation

and other better channel estimators, such as the LMMSE channel estimator [75].

4.3.2 Pilot-Embedded Data-Bearing Least Square Channel Estimation

The pilot part is first extracted from the received signal matrix Y(m). By using the

null-space and orthogonality properties in (4.6), respectively, the extraction of the pilot part

can be accomplished by simply post multiplying Y(m) in (4.5) by PT , and then dividing

by α, to arrive at

Y(m)PT

α
= H(m) + N(m)PT

α
. (4.9)

Let Y1(m) = Y(m)PT

α
and N1(m) = N(m)PT

α
, we have

Y1(m) = H(m) + N1(m). (4.10)
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The PEDB-LS channel estimator can be obtained by minimizing the following mean-

squared-error objective function,

ĤLS(m) = min
H(m)

E
[
‖Y1(m) − H(m)‖2

]
. (4.11)

It is straightforward to show that

ĤLS(m) = Y1(m) = Y(m)PT

α
. (4.12)

The PEDB-LS channel estimate in (4.12) completely captures the whole channel

frequency response contaminated by AWGN. Later it can be shown that it does not benefit

by using all the PEDB-LS channel estimate taps in decoding the SF-coded transmitted signal

since some taps are dominated by noise, where the noise power is significantly larger

than the channel energy contained. More specifically, if the significant taps for estimating

the channel frequency response are properly chosen, and the rest less significant taps are

therefore discarded, the accuracy of the channel estimate could be enhanced because the

noise effects contained in these less significant taps are completely avoided. The problem of

how to choose the optimum number of taps will be thoroughly investigated in section 4.5.

4.3.3 Pilot-Embedded Data-Bearing Maximum Likelihood Data Detection

The procedure of PEDB-ML data detection is now explored. First, the data part is

extracted from the received signal matrix Y(m). Using the null-space and orthogonality

properties in (4.7), respectively, the extraction of the data part can be accomplished by

simply post multiplying Y(m) in (4.5) by AT , and then dividing by β,

Y(m)AT

β
= H(m)D(m) + N(m)AT

β
. (4.13)

Let Y2(m) = Y(m)AT

β
and N2(m) = N(m)AT

β
, it can be shown that

Y2(m) = H(m)D(m) + N2(m). (4.14)

From the orthogonality of A in (4.7), we note that
∑KM

j′=1 |Ai′,j′|2 = β, ∀i′. Therefore, the

data-bearer-projected noise N2(m) is AWGN with zero-mean and variance σ2

2β
I(KLrN×KLrN)

per real dimension. Due to the i.i.d white Gaussian distribution of N2(m), the PEDB-ML

receiver jointly decides the codewords for the dth OFDM block in the mth SF-coded data
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block by solving the following minimization problem,

D̂i,j(m) = minDi,j
‖Y2s,j

(m) − Ĥs,i(m)Di,j(m)‖2,

i = 1 : KLt, j = (d − 1)K + 1 : dK, s = 1 : Lr, and d = 1, . . . , N, (4.15)

where Ĥ(m) is the estimated channel matrix, e.g. Ĥ(m) = ĤLS(m). The codeword

transmitted from the bth transmitter is represented by D̂ib,j(m), with ib = (b−1)K +1 : bK.

Later in simulations, by using the specific property of the SF block code based on Alamouti's

structure, a simplified decoding approach can be applied to implement the above PEDB-ML

receiver.

4.4 The Least Square FFT-Based Channel Estimation and Performance

Analysis

As mentioned earlier, the PEDB-LS channel estimate contains the channel frequency

response that is contaminated by AWGN. By properly choosing the significant taps and

discarding the rest less significant taps, these corresponding significant taps can be used to

reconstruct the whole channel frequency response in which the excessive noise contained

in the less significant taps are completely cancelled. Hence, the enhanced channel estimate

can be expected. In this section, the performance of the PEDB-LS channel estimator in

(4.12) is improved by employing the basic concepts of the FFT-based approach proposed

in [76]. First, following the description in section 4.3, the LS FFT-based channel estimator is

proposed, and an inherent problem is pointed out. Then the channel estimation performances

of the PEDB-LS and LS FFT-based channel estimators are analyzed.

4.4.1 Least Square FFT-Based Channel Estimation Approach

As suggested in [76], the FFT-based channel estimation approach first calculates the

temporal LS channel estimate by using L significant taps. The resulting temporal LS channel

estimate is then FFT transformed to obtain the K-subcarrier channel frequency response.

The simplified approach was suggested in [76] by choosing P significant taps, in the sense

that P 's largest
∑Lt

b=1 |ĤLSab
(m, k)|2, among k = 0, . . . , K −1, is selected, instead of using

L significant taps.
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Now the LS FFT-based channel estimator is ready to be proposed in details. From

(4.12), it can be shown that ĤLSab
(m) = ([ĤLS(m)]a,(b−1)K+1:bK)T . From the channel

model in (4.2), ĤLSab
(m) can be expressed as

ĤLSab
(m) = Fhab(m) + N1ab

(m), (4.16)

where F is the K × L matrix whose element [F]xy is defined by exp[(−j2π/K)(x −
1)τy], x = 1, . . . , K, y = 0, . . . , L − 1; hab(m) = [hab(m, 0), . . . , hab(m,L − 1)]T ; and

N1ab
(m) = ([N1(m)]a,(b−1)K+1:bK)T . Notice that the LS channel estimate in (4.16) indeed

represents the K-tap LS FFT-based channel estimate for ath receive and bth transmit

antennas.

Transforming the PEDB-LS channel estimate in (4.16) to the temporal PEDB-LS

channel estimate by using the K × K IFFT matrix G, whose element [G]xy is defined by
1
K

exp(j2π/K)(x − 1)(y − 1), x, y = 1, . . . , K , it can be shown that

ĥLSab
(m) = GĤLSab

(m) = GFhab(m) + GN1ab
(m). (4.17)

From the fact that

[GF]xy = f(x−1−τy)

K
exp(jξ(x − 1 − τy)), x = 1, . . . , K, y = 0, . . . , L − 1, (4.18)

where f(q) = sin(πq)
sin(πq/K)

is the leakage function and ξ = (K−1)π
K

. Note that if q is equal to an

integer number, then f(q) = 0; if q is equal to zero, then f(0) = K. The illustration of the

magnitude of f(q) is shown in Fig.4.1. Substituting (4.18) into (4.17) results in

GFhab(m) = 1
K

[
∑L−1

l=0 hab(m, l)f(−τl)e
jξ(−τl), . . . ,

∑L−1
l=0 hab(m, l)f(K − 1 − τl)e

jξ(K−1−τl)]T . (4.19)

Let NG
1ab

(m) = GN1ab
(m), then substituting NG

1ab
(m) and (4.19) into (4.17), and let

ĥLSab
(m) = [g(1), . . . , g(K)]T , (4.20)

it can be shown that

g(x) =
1

K

L−1∑

l=0

hab(m, l)f(x − 1 − τl)e
jξ(x−1−τl) + NG

1ab
(m,x) (4.21)

with NG
1ab

(m,x) being the xth element of NG
1ab

(m).
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Figure 4.1 The graph of the magnitude of the leakage function f(q).

Obviously, from (4.21), if τl is an integer number, then the lth element of the L largest

elements of ĥLSab
(m) is equal to hab(m, l)+NG

1ab
(m, l), and the rest elements, which are not

a member of the L largest elements, are equal to NG
1ab

(m, e), e 6= l, e ∈ {0, . . . , K −1}\Ξ1

with Ξ1 being the set of the L largest elements. As a result, by choosing L largest taps and

replacing the (K − L) remaining taps by zero is sufficient and optimal, resulting in the LS

FFT-based estimate of the temporal channel impulse response ĥFFTab
(m), since the channel

impulse response hab(m) is completely captured, and the excessive noise in the (K − L)

remaining taps is also completely removed. However, in reality, the lth multipath delay τl is

often a non-integer number, hence, the L-multipath channel impulse response dissipates to

all K taps of ĥLSab
(m) and thus results in the model mismatch error, which increases the

channel estimation error, primarily caused by the AWGN NG
1ab

(m). This additional channel

estimation error causes the severe error floor in the MSE of the channel estimation, and the

detection error probability. Once the L or P largest taps are chosen and the rest taps are

replaced by zero, the LS FFT-based estimated channel frequency response is determined by

ĤFFTa,b
(m) = KGHĥFFTab

(m). (4.22)

It is worth mentioning that, for this problem, there is no assumption about the
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knowledge of channel correlation information or Doppler's shift, so that ĥFFTab
(m) can be

simply used for constructing the whole channel frequency response in (4.22). In addition,

if the additional information about channel correlation or Doppler's shift are available, the

robust channel estimator proposed in [81] can be used to enhance the performance of the

LS FFT-based channel estimation.

4.4.2 Channel Estimation Error Performance Analysis

The performance of the PEDB-LS and LS FFT-based channel estimators is now

analyzed by using the MSE of channel estimation as the performance measure.

4.4.2.1 Pilot-Embedded Data-Bearing Least Square Channel Estimator

For arbitrary multipath delay profiles, the temporal channel impulse response between

the ath receiver and bth transmitter can be described by, as in (4.19),

hG
ab(m) = GFhab(m). (4.23)

The channel estimation error can be readily described by

h̃LSab
(m) = hG

ab(m) − ĥLSab
= −NG

1ab
(m), (4.24)

by referring to ĥLSab
(m) in (4.17), and hG

ab(m) in (4.23). Using (4.24), the MSE of the

channel estimation is expressed as

MSELS(a, b) = E[‖h̃LSab
(m)‖2] = E[‖ − NG

1ab
(m)‖2] =

σ2

α
, (4.25)

by using E[|NG
1ab

(m,x)|2] = σ2

Kα
, x = 1, . . . , K , as referring to section III.B. It is worth

noticing that (4.25) is also the MSE of the K-tap FFT-based channel estimation.

For a Lr-receiver Lt-transmitter MIMO systems, the overall MSELS in (4.25) can be

expressed as follows,

MSET
LS =

Lt∑

a=1

Lr∑

b=1

MSELS(a, b) =
σ2LtLr

α
. (4.26)

4.4.2.2 Least Square FFT-Based Channel Estimator

As mentioned earlier, the LS FFT-based channel estimator first simply chooses the L

largest taps, and then replaces the (K − L) remaining taps by zero. This operation can be
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equivalently described by using the K × K tap-selection matrix T given by

T = diag{1, 1, . . . , 0, 1, . . . , 0}, (4.27)

where 0's and 1's represent non-selected and selected taps, respectively. There are (K −L)

0's and L 1's elements in the diagonal elements of T. By using the tap-selection matrix

T, the temporal LS FFT-based-estimate of the channel impulse response between the ath

receiver and bth transmitter can be described by

ĥFFTab
(m) = TGĤLSab

(m) = TGFhab(m) + TGN1ab
(m), (4.28)

by plugging in ĤLSab
(m) in (4.16).

Similarly to (4.24), the channel estimation error can be described by, using hG
ab(m) in

(4.23) and ĥFFTab
(m) in (4.28),

h̃FFTab
(m) = hG

ab(m) − ĥFFTab
(m) = (GF − TGF)hab(m) − TGN1ab

(m). (4.29)

Now defining Ξ2 ∈ {0, . . . , K − 1}\Ξ1 to be a set of the non-selected (K − L) less

significant taps, and w2 ∈ Ξ2 and w1 ∈ Ξ1 are row indices indicating the 0's and 1's elements

of T, respectively. It can be shown that

[GF − TGF]w2,1:L = 1
K

[f(w2 − 1)ejξ(w2−1), . . . , f(w2 − 1 − τL−1)e
jξ(w2−1−τL−1)],

(4.30)

by using (4.18) and τ0 = 0. Therefore, by substituting (4.30) into (4.29), each part of the

channel estimation error can be expressed as follows,

[(GF − TGF)hab(m)]w1∈Ξ1 = [TGN1ab
(m)]w2∈Ξ2 = 0,

[(GF − TGF)hab(m)]w2∈Ξ2 = 1
K

∑L−1
l=0 hab(m, l)f(w2 − 1 − τl)e

jξ(w2−1−τl), and

[TGN1ab
(m)]w1∈Ξ1 = [NG

1ab
(m)]w1∈Ξ1 . (4.31)

From (4.31), it is readily shown that the channel estimation error of the LS FFT-

based channel estimator are due to two error sources: the model mismatch error, i.e.

[(GF − TGF)hab(m)]w2∈Ξ2 , and the corresponding noise effect, i.e. [TGN1ab
(m)]w1∈Ξ1 .

By substituting (4.31) into (4.29), we have the MSE of the LS FFT-based channel estimator

as

MSEFFT (a, b) = E[‖h̃FFTab
(m)‖2] = 1

K2

∑
w2∈Ξ2

∑L−1
l=0 E[|hab(m, l)f(w2 − 1 − τl)|2]

+Lσ2

Kα
, (4.32)
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where the second equality is obtained by using the assumption that the channel and noise, and

channels from different paths are mutually uncorrelated. For a Lr-receiver Lt-transmitter

MIMO systems, the overall MSEFFT in (4.32) can be expressed as follows,

MSET
FFT = 1

K2

∑Lr

a=1

∑Lt

b=1

∑
w2∈Ξ2

∑L−1
l=0 E[|hab(m, l)f(w2 − 1 − τl)|2] + Lσ2LtLr

Kα
.

(4.33)

Defining the first term as χ, it can be shown that

χ =

Lr∑

a=1

Lt∑

b=1

∑

w2∈Ξ2

L−1∑

l=0

E[|hab(m, l)f(w2 − 1 − τl)|2]
4
= χ1 − χ2,

=

Lr∑

a=1

Lt∑

b=1

K∑

j=1

L−1∑

l=0

E[|hab(m, l)f(j − 1 − τl)|2] −
Lr∑

a=1

Lt∑

b=1

∑

w1∈Ξ1

L−1∑

l=0

E[|hab(m, l)f(w1 − 1 − τl)|2].

(4.34)

Thus (4.33) can be rewritten as

MSET
FFT =

χ

K2
+

Lσ2LtLr

Kα
. (4.35)

From the fact that

1

K2
χ1 + η1 =

Lr∑

a=1

Lt∑

b=1

K∑

j=1

E[‖[ĥLSab
(m)]j‖2] − η2,

where η1 = Lσ2LtLr

Kα
and η2 = (K−L)σ2LtLr

Kα
; and that

1

K2
χ2 + η1 =

Lr∑

a=1

Lt∑

b=1

∑

w1∈Ξ1

E[‖[ĥLSab
(m)]w1‖2];

it can be shown that

χ

K2
=

Lr∑

a=1

Lt∑

b=1

K∑

j=1

E[‖[ĥLSab
(m)]j‖2] − η2 −

Lr∑

a=1

Lt∑

b=1

∑

w1∈Ξ1

E[‖[ĥLSab
(m)]w1‖2]. (4.36)

First, let consider the case of the multipath delay profiles with integer delays. In this

case, the model mismatch error χ is equal to zero, as explained in section 4.4.1. Hence, the

minimum MSE of the LS FFT-based channel estimation is given by

MSET
FFTmin

=
Lσ2LtLr

Kα
. (4.37)

It is worth noticing that, since L ≤ K , (4.37) is always less than or equal to (4.26), meaning

that the channel estimation performance of the LS FFT-based channel estimator is superior



108

to that of the PEDB-LS channel estimator when the multipath delay profiles are with integer

delays.

Using χ = 0 for the case of the multipath delay profiles with integer delays, it can be

shown that
Lr∑

a=1

Lt∑

b=1

∑

w1∈Ξ1

E[‖[ĥLSab
(m)]w1‖2] =

Lr∑

a=1

Lt∑

b=1

K∑

j=1

E[‖[ĥLSab
(m)]j‖2] − (K − L)σ2LtLr

Kα
.

(4.38)

Therefore, (4.38) can be used as the optimal criterion in choosing the set Ξ1 which indicates

the indices of the L significant taps, in order to achieve the a minimum MSE. This observation

in (4.38) indicates that in order to achieve the minimum MSE of the LS FFT-based channel

estimator, the L largest taps must be capable of capturing the average total energy of

channels in the presence of AWGN.

Further, let consider the case of the multipath delay profiles with non-integer delays.

In this case, a non-zero model mismatch error χ exists, as shown in (4.35), due to the

leakage phenomenon. It is important to study the joint effects of the tap length L and the

noise level σ2 on the MSE measure. In (4.35), it can be seen that MSET
FFT includes two

terms: the error due to the model mismatch and the error due to the noise effect. From the

definition of the model mismatch error χ, it is straightforward to see that, as increasing the

number of selected taps L, the model mismatch error χ decreases, so does the first term

in (4.35); however, the resulting noise effect contained in these selected taps is inevitably

increased, as shown by the second term in (4.35). On the other hand, as decreasing L, the

model mismatch error is therefore increased, whereas the resulting noise effect is decreased.

This tradeoff between the model mismatch error and noise effect is very crucial to the

MIMO system performances, e.g. the channel estimation error and the detection probability.

In what follows, an improvement of the LS FFT-based channel estimator is proposed to

overcome such problems.

4.5 The Proposed Adaptive Least Square FFT-Based Channel Estimator

In this section, an adaptive LS FFT-based channel estimation approach in which the

number of taps used in channel estimation can be adjustable in order to minimize the model

mismatch error and the corresponding noise effect is proposed. The model mismatch error
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in the LS FFT-based channel estimation stems from the fact that a fixed number of L (or

P ) largest taps is used in the channel estimation process for all signal-to-noise ratio (SNR)

values. It has been suggested in [76] that, in low SNR regimes, the channel estimation error

is mainly caused by the AWGN, hence, a small number of taps is recommended in order to

reduce the noise effect; as a result, a smaller overall channel estimation error is possible.

In high SNR regimes, the channel estimation error is mainly caused by the model mismatch

error, hence, a large number of taps is suggested in order to compensate this model mismatch

error. Based on this basic idea, the adaptive LS FFT-based channel estimation approach, in

which the number of taps P is chosen to achieve the intuitive goal that the average total

energy of the channels dissipating in each tap is completely captured in order to compensate

the model mismatch error, is proposed. Specifically, the proposal is that the number of

taps Popt used to capture the CSI in ĥLSab
(m) in (4.20) is obtained by solving the following

optimization problem:

Popt = min(P ) s.t.
Lr∑

a=1

Lt∑

b=1

E



 max
Ξp,|Ξp|=P

∑

i∈Ξp

‖[ĥLSab
(m)]i‖2



 ≥

Lr∑

a=1

Lt∑

b=1

K∑

j=1

E[‖[ĥLSab
(m)]j‖2] − (K − P )LtLrσ

2

Kα
. (4.39)

It is clear that, for a given P , the solution of achieving maxΞp,|Ξp|=P

∑
i∈Ξp

‖[ĥLSab
(m)]i‖2

is to choose Ξp as the indices of the P largest taps.

Now let intuitively explain why (4.39) in details. If a perfect situation is assumed, then

the most desired criteria used to determine the number of taps P is the MSE in equation

(4.35), such that the optimization solution is expressed as

Popt = min
P

{MSET
FFT (P )}. (4.40)

First, instead of minimizing MSET
FFT (P ) directly, it is worth taking advantage of specific

observations revealed in the two terms of (4.35). In (4.36), it can be seen that choosing

L = K yields a zero model mismatch error χ. To illustrate the effects of P (i.e. P = L

in equation (4.36) and (4.35) ) and σ2 on the overall MSE measure, considering a specific

scenario as in section 4.6, in Fig.4.2, the corresponding χ/K2 term and the noise error term
Lσ2LtLr

Kα
are plotted as a function of P under several SNR levels. From this figure, it is worth
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Figure 4.2: Theoretical examples of the model mismatch error, the noise effect, and the overall

MSE of the LS FFT-based estimator as a function of the number of taps P . Here the perfect situation

is assumed.

noticing that χ/K2 converges to zero as P increases, meaning that more taps can be used

to compensate the model mismatch error. Also, it is seen that the resulting Popt increases as

SNR increases. In addition it is noted that Popt can be approximately determined by locating

the intersection point of the curve of the model mismatch error and the curve of the noise

error. Therefore, based on the above observation, the problem described in (4.40) can be

formulated as

Popt = min(P ) s.t. { χ

K2
≤ Pσ2LtLr

Kα
}. (4.41)

By substituting (4.36), the problem in (4.41) can be equivalently described as

Popt = min(P ) s.t.
Lr∑

a=1

Lt∑

b=1

∑

i∈Ξp

E
[
‖[ĥLSab

(m)]i‖2
]

+
Pσ2LtLr

Kα
≥

(
Lr∑

a=1

Lt∑

b=1

K∑

j=1

E[‖[ĥLSab
(m)]j‖2] − (K − P )LtLrσ

2

Kα

)
. (4.42)

However, in practice, since Ξp is an unknown set, it is not feasible to compute the
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term
Lr∑

a=1

Lt∑

b=1

∑

i∈Ξp

E
[
‖[ĥLSab

(m)]i‖2
]

directly. In stead, for each transmission, depending on the real observations, for different

P , the term max{Ξp,|Ξp|=P}
∑

i∈Ξp
‖[ĥLSab

(m)]i‖2 can be instantaneously computed. Then

empirical expectation is calculated. Overall, the following term is to be computed

Lr∑

a=1

Lt∑

b=1

E



 max
Wp,|Wp|=P

∑

i∈Wp

‖[ĥLSab
(m)]i‖2



 .

Since
Lr∑

a=1

Lt∑

b=1

E



 max
Ξp,|Ξp|=P

∑

i∈Ξp

‖[ĥLSab
(m)]i‖2



 ≥
Lr∑

a=1

Lt∑

b=1

∑

i∈Ξp

E
[
‖[ĥLSab

(m)]i‖2
]
, (4.43)

where Ξp is a set of the P largest taps. In low SNR regimes, the l.h.s of (4.43) is much larger

than that of r.h.s because of the large noise variance. In high SNR regimes, the l.h.s of (4.43)

is much closer to that of the r.h.s because of the small noise variance. Intuitively it can be

seen that the l.h.s consists of both the r.h.s and the noise effect. It is worth noticing that the

left hand is based on order statistics. In this case, since the components in ĥLSab
(m) follow

non-identical distributions, due to the complex nature of order statistics, it is infeasible to

find the theoretical close-form expression of the l.h.s of (4.43) in term of the r.h.s of (4.43).

Due to the inequality in (4.43), one most interesting question is how close the difference

between the l.h.s and the r.h.s of (4.43) to the noise error Lσ2LtLr

Kα
is. Numerical examples

are plotted in Fig.4.3 to demonstrate the relationship between the l.h.s of (4.42) and the l.h.s

of (4.43). From Fig.4.3, it can be seen that the curves of the l.h.s of (4.42) and (4.43) are

close together when the number of taps are small until the intersection point between these

two curves and the r.h.s of (4.42) for both SNR = 2 and 20 dB. This phenomenon indicates

that by replacing the l.h.s of (4.42) by the l.h.s of (4.43) for determining the minimum

number of taps that yield the equality to the constraint of (4.42), the resulting number of

taps are mostly the same as solving (4.42) directly. It is worth noticing that in the regimes

beyond the intersection point, these two curves are different; however, this phenomenon

does not affect the minimum number of taps since their relationship in these regimes have

never been exploited.

Based on the above observations, the l.h.s of (4.42) is proposed to be replaced by

the l.h.s of (4.43), and thus the inequality constraint in (4.42) is replaced by the inequality
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calculations.

constraint in (4.39). Therefore, the proposed scheme for determining Popt can be shown

in (4.39). In this sense, one could regard the proposed scheme in (4.39) as a sub-optimal

approach in determining Popt. However, as illustrated in Fig.4.4, in most cases the Popt

determined by solving the problem in (4.39) is almost identical to the optimum solution

obtained by using an exhaustive search for the minimum MSET
FFT in (4.35). While the later

case is not practical and thus serves as a theoretical ideal solution. Further, studying the

problem described in (4.39), it can be seen that in low SNR regimes, due to the large noise

variance, a small number of taps is enough to make the constraint of (4.39) existed. In high

SNR regimes, a large number of taps is needed, as expected, in order to make the constraint

of (4.39) existed. These results is consistent with the intuitions. The equality will be held

for (4.43) if and only if σ2 = 0 or P = K.

It is worth emphasizing that the solution of (4.39) is the optimum number of taps

for the LS FFT-based channel estimator in the sense that the average total energy of the

channels dissipating in each tap is completely captured by using the Popt significant taps; as

a result, the minimum model mismatch error as well as the minimum corresponding noise
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two different power delay profiles: typical urban and two-ray power delay profiles with delay spread

of 5 µs.

effect are achieved.

To illustrate different patterns about the optimum number of taps obtained from (4.39)

under different delay profiles with delay spread of 5 µs, both the two-ray delay profile,

where the delays τl's take integer values, and the typical urban (TU) six-ray delay profile,

where non-integer τl's are observed, are investigated. In addition, the setting parameters of

this experiment are described is section 4.6. As in Fig.4.4, it can be seen that the optimum

number of taps, the solution of (4.39), for the two-ray delay profile are constantly equal to 2

for all SNR values, whereas, for that of the TU six-ray profile, the optimum number of taps

increase as the SNR value increases. The phenomenon supports the derivations in section

4.4.1 and above discussions as well.
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4.6 Simulation Results

To illustrate the performance of the proposed scheme, simulations are conducted under

two different scenarios: quasi-static and nonquasi-static frequency-selective Rayleigh fading

channels. The simulated SF block code is obtained from Alamouti's structure [?], as proposed

in [72], whose elements are taken from a BPSK constellation for two transmit antennas and

two receive antennas. The COST207 typical urban (TU) six-ray normalized power delay

profile [87] with delay spread of 5 µs is studied. The entire channel bandwidth, 1 MHz , is

divided into K = 128 subcarriers in which four subcarriers on each end are served as guard

tones, and the rest (120 tones) are used to transmit data. To make the tone orthogonal to

each other, the symbol duration is 128 µs, and additional 20 µs guard interval is used as

the cyclic prefix length in order to protect the ISI due to the multipath delay spread. This

results in a total block length Tf = 148 µs and a subchannel symbol rate rb = 6.756 KBd.

In addition, the equal block-power allocation, i.e. β = α = 0.5 W, is employed,

the normalized SF-coded symbol block-power is 1 W, the number of transmit antennas

Lt is 2, N = 2, and M = N + Lt = 4. To illustrate the performance of the proposed

adaptive LS FFT-based channel estimation versus the PEDB-LS and LS FFT-based channel

estimations, the CM-based structure in (4.8), which is the best structure for nonquasi-static

fading channels, is selected as the representative of three structures studied in [74].

4.6.1 The Quasi-Static Fading Channel

In this scenario, the channel impulse response hab(m, l)'s in (4.2) are from the

normalized time-varying channel which is modelled as Jake's model [51], when fd∗Tf = 0.08

(fast fading) with fd being the Doppler's shift.

In Fig.4.5, the MSEs of the PEDB-LS, 10-tap LS FFT-based, adaptive LS FFT-based,

and LMMSE channel estimators [75], when 2 receive antennas are employed, are shown.

Notice that the PEDB-LS channel estimator has a higher MSE in low SNR regimes than that

of the 10-tap LS FFT-based and the adaptive LS FFT-based channel estimators. This is due

to the severe noise effect corrupting in all K channel estimate taps; whereas the latter two

employ small number of taps resulting in the lower noise effect. In high SNR regimes, the

PEDB-LS and adaptive LS FFT-based channel estimators performs better than the 10-tap
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LS FFT-based channel estimator in which the error floor caused by the model mismatch

error occurs, whereas the former two do not suffer from this severe error floor since they

employ more taps and thus result in a lower model mismatch error. It is worth noticing

that the LMMSE channel estimator serves as the channel estimation performance bound at

the price of the intensive computational complexity and the additional information about

channel correlation.

In Fig.4.6, the BERs of the SF-coded MIMO-OFDM system employing the PEDB-LS,

10-tap LS FFT-based, adaptive LS FFT-based, and LMMSE channel estimators, when 2

receive antennas are employed, are shown. Notice that the 10-tap LS FFT-based and

adaptive LS FFT-based channel estimator performances are quite close in low SNR regimes,

whereas the PEDB-LS channel estimator performs worse, in which the 2-dB SNR difference

compared to the former two channel estimators, at BER of 10−3, is observed. In high SNR

regimes, the 10-tap LS FFT-based channel estimator suffers from the error floor, say at

BER of 2 × 10−4, whereas the adaptive LS FFT-based and the PEDB-LS channel estimators

do not. At BER of 10−4, the SNR differences between the ideal-channel scheme, where

the true channel impulse response is employed, and the adaptive LS FFT-based and PEDB-

LS channel estimators are 2.2 dB and 3.6 dB, respectively, whereas the LMMSE channel

estimator provides the error probability coincide with the ideal-channel scheme.

4.6.2 The Nonquasi-Static Fading Channel

For the sake of exposition, a 4-block fading model is investigated in which the channel

impulse response hab(m, l) symmetrically changes four times within one SF-coded symbol

block, i.e. there exists H1(m) to H4(m) in the mth-block SF-coded symbol matrix.

In Fig.4.7, the BERs of the SF-coded MIMO-OFDM system employing the PEDB-LS,

10-tap LS FFT-based, adaptive LS FFT-based, and LMMSE channel estimators, when 2

receive antennas are employed, and fd ∗Tf are 0.04 and 0.064, are shown. Notice that when

the Doppler's shift is small (fd ∗ Tf = 0.04) in high SNR regimes, the PEDB-LS, adaptive

LS FFT-based, and LMMSE channel estimators are superior to the 10-tap LS FFT-based

channel estimator. In low SNR regimes, the 10-tap LS FFT-based, adaptive LS FFT-based,

and LMMSE channel estimators outperform the PEDB-LS channel estimator resulting from

the severe noise effect. When Doppler's shift is high (fd ∗Tf = 0.064) in high SNR regimes,
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all channel estimators yields quite close results. This phenomenon stems from the fact that

the channel mismatch error dominates all factors causing the detection error.

In Fig.4.8, the optimum number of taps of the adaptive LS FFT-based channel estimator,

when 2 receive antennas are employed, in both the quasi-static and nonquasi-static fading

channels is shown. Notice that, in nonquasi-static fading channels at the particular SNR

value, the number of taps is higher than the quasi-static fading channels resulting from the

fact that the average energy in each PEDB-LS channel estimate tap of the former case is less

than the latter because of the Doppler's shift effect, i.e. the higher channel fluctuation in

the SF-coded symbol block; as a result, in order to make the constraint of (4.39) exists, the

higher number of taps is required. This phenomenon is also observed when the Doppler's

shift increases resulting in the higher number of taps for the higher Doppler's shift case.

In this scenario, there exists the inevitable error floors in the error probability, that

increases significantly as the Doppler's shift increses, resulting from the channel mismatch

error introduced as the bias in the channel estimate.

4.7 Concluding Remark

In this chapter, the adaptive LS FFT-based channel estimator for improving the

channel estimation and detection performances of the LS FFT-based and PEDB-LS channel

estimators, and the pilot-embedded data-bearing approach for joint channel estimation and

data detection were proposed. Simulations were conducted to examine the performance

of the proposed schemes. For quasi-static TU-profile fading channels, the adaptive LS

FFT-based channel estimator shows superior performance to that of the 10-tap LS FFT-

based and PEDB-LS channel estimators. For instance, at BER of 10−4, the SNR differences

are as 2.2 dB and 3.6 dB, respectively, for the adaptive LS FFT-based and the PEDB-LS

channel estimators compared with the ideal-channel scheme, whereas the 10-tap LS FFT-

based channel estimator suffers from the severe error floor caused by the model mismatch

error. For the nonquasi-static TU-profile fading channels, under low Doppler's shift regimes,

the adaptive LS FFT-based channel estimator outperforms the 10-tap LS FFT-based and

PEDB-LS channel estimators in high SNR regimes; however, in the low SNR regimes,

the performance of the PEDB-LS approach is the worst and the other two estimators are

comparable. Furthermore, under high Doppler's shift regimes, the channel mismatch error
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dominates all factors causing the detection error and thus result in comparable error floors for

all channel estimators. In addition, the LMMSE channel estimator serves as a performance

bound.
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CHAPTER V

CONCLUSIONS

In this dissertation, the MIMO wireless communication systems have been investigated

in two aspects: the smart antenna system and channel estimation. In chapter 2, it was obvious

that the smart antenna system, i.e. IRBAP, has significantly improved the performances of

the interference canceling receivers in the DS-CDMA systems in terms of the probability of

error and the stability of the system. Although the IRBAP requires more complexity, which

is linear with the number of users in the system, than the original scheme, the IRBAP does

provide significant benefits, especially in the closely-separated-DOA situation. From the

simulation results, the SNR improvement of the IRBAP over the original scheme, e.g. the

minimization method, is significant in both the nonordering-user-power closely-separated-

DOA and the nonordering-user-power mixed-separated-DOA situations. For instance, in

the AWGN channel, the SNR difference is about 0.6 dB in the ordering-user-power mixed-

separated-DOA situation, and 10 dB in the nonordering-user-power mixed-separated-DOA

situation, at BER=10−3. Furthermore, the probability of error curves of the IRBAP are quit

close to that of the theoretical BER. In the AWGN and slow-varying Rayleigh fading channels,

the SNR difference is about 2 dB in the ordering-user-power mixed-separated-DOA situation,

at BER=10−3; however, in the nonordering-user-power mixed-separated-DOA situation, the

minimization method of the existing work diverges at BER=10−2 whereas the IRBAP still

yields the good BER.

In chapter 3, the data-bearing approach for pilot-embedding frameworks was proposed

for joint data detection and channel estimation in ST coded MIMO systems. The main

contributions of this chapter are as follows.

• The advantages of the data-bearing approach are that it is the generalized form for

pilot-embedded channel estimation and data detection in ST coded MIMO systems,

in which the classical channel estimation method, e.g. PSAM, is subsumed; the

low computational complexity and the efficient ML and LMMSE channel estimators
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are achieved; and it is capable of better acquiring the channel state information in

fast-fading channels.

• For the quasi-static flat Rayleigh fading channels, the error probability and the channel

estimation performance of three data-bearer and pilot structures, i.e. the TM-, STBC-,

and CM-based data-bearer and pilot matrices, are quite similar, where the optimum-

power-allocated schemes based on the minimum upper bound on error probability

and the maximum lower bound on channel capacity optimizations yield the close

results. This result claims that the proposed scheme is one of the implementable

scheme that achieves the maximum lower bound on channel capacity derived in [57],

in high SNR regimes. In addition, the SNR differences between the optimum-power-

allocated schemes and the ideal-channel schemes are about 2.3 dB when employing

the unconstrained ML channel estimator and 0.5 dB for the LMMSE channel estimator.

• For the case of nonquasi-static flat Rayleigh fading channels, the CM-based structure

provide superior detection and channel estimation performances over the TM- and

STBC-based structures. For instance, the 6.02 dB SNR difference is observed, as well

as the error floors of the former are much smaller than that of the other two, under

fairly high Doppler's shift scenarios, in high SNR regimes.

In addition, the proposed pilot-embedding scheme can be well applied to the general MIMO

systems and IRBAP.

In chapter 4, different kinds of channel estimator have been proposed for the SF

coded MIMO-OFDM systems. The main contributions of this chapter can be summarized

as follows.

• The generalization of the pilot-embedded data-bearing approach for joint channel

estimation and data detection for MIMO-OFDM systems, in which PEDB-LS channel

estimation and PEDB-ML data detection are employed, respectively, was developed.

The LS FFT-based channel estimation was further proposed by employing the FFT-

based approach concept to improve the performance of the PEDB-LS channel estimation

via choosing certain significant taps in constructing a channel frequency response.

• The performance of the LS FFT-based channel estimation was analyzed. Then the

relationship between the MSE and the number of chosen taps was revealed, which in
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turn, the optimal criterion for choosing the optimum number of taps was explored.

• The model mismatch error of the LS FFT-based channel estimator was investigated,

and the adaptive LS FFT-based channel estimation approach was proposed to solve

such problem by employing the optimum number of taps, such that the average total

energy of the channels dissipating in each tap is completely captured in order to

compensate the model mismatch error as well as minimize the corresponding noise

effect, to construct the channel frequency response.

Simulations were conducted to examine the performance of the proposed schemes.

For quasi-static TU-profile fading channels, the adaptive LS FFT-based channel estimator

shows superior performance to that of the 10-tap LS FFT-based and PEDB-LS channel

estimators. For instance, at BER of 10−4, the SNR differences are as 2.2 dB and 3.6 dB,

respectively, for the adaptive LS FFT-based and the PEDB-LS channel estimators compared

with the ideal-channel scheme, whereas the 10-tap LS FFT-based channel estimator suffers

from the severe error floor caused by the model mismatch error. For the nonquasi-static

TU-profile fading channels, under low Doppler's shift regimes, the adaptive LS FFT-based

channel estimator outperforms the 10-tap LS FFT-based and PEDB-LS channel estimators

in high SNR regimes; however, in the low SNR regimes, the performance of the PEDB-LS

approach is the worst and the other two estimators are comparable. Furthermore, under

high Doppler's shift regimes, the channel mismatch error dominates all factors causing the

detection error and thus result in comparable error floors for all channel estimators. In

addition, the LMMSE channel estimator serves as a performance bound. In addition, the

proposed estimators can be applied to the general MIMO-OFDM systems as well.

Overall, this dissertation achieved its two objectives, which were the novel smart

antenna system for DS-CDMA systems and the novel channel estimation approaches for the

ST coded MIMO systems and the SF coded MIMO-OFDM systems. Firstly, it was obvious

that the proposed smart antenna system, i.e. IRBAP, could be well applied to DS-CDMA

systems without requiring the descending order of power for each receiver's stage for IRBAP.

It was also robust to the near-far effect situations in such systems, and it was superior to

the existing work [19] in term of the probability of detection error.

Secondly, it was clear that the proposed data bearing approach for pilot-embedding

yielded significant performance improvement, including the enhanced probability of detection
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error in nonquasi-static fading channels, to the ST coded MIMO systems. The optimum

power allocation for the pilot and the data parts for the ML channel estimator was also

revealed, based on minimizing the Chernoff's upper bound on error probability. This result

claimed that this novel channel estimation approach could be applied to the real-world ST

coded MIMO communications, where the channels were changing rapidly, with the enhanced

probability of detection error in comparison with the traditional approach, i.e. PSAM

approach.

For the SF coded MIMO-OFDM systems, the data bearing approach for pilot-embedding

could be directly applied with some modifications. It was obvious that the proposed adaptive

LS FFT-based channel estimator employing the optimum number of significant taps could

jointly optimize the model mismatch error, caused by the non-integer multipath delay

profiles for the real-world multipath fading channels, and noise effect, caused by the additive

noise, inherent in the MSE of the LS FFT-based channel estimation. As a result, the

enhanced probability of detection error as well as the enhanced MSE could be achieved.

Hence, this channel estimator could be well applied to the real-world SF coded MIMO-OFDM

communications with the enhanced performances in comparison with the proposed PEDB-LS

and LS FFT-based channel estimators. Considering the demand of high data-rate transmission

services for future wireless communications, the SF coded MIMO-OFDM systems are very

promising communication systems making such demand a reality. Hence, the proposed

channel estimation scheme as well as the generalized pilot-embedded data-bearing approach

is of more crucial importance in comparison with the proposed channel estimation scheme

for the ST coded MIMO systems.

5.1 Future Works

In the future work, the extension of the IRBAP to the multipath fading channels by

employing a tap delay line concept [37] is of interest. Since, here, the IRBAP regards

the multipath signals as ISI, the null capability of the array antennas has been used to

cancel this interference. On the other hand, the multipath signals can be exploited to

improve the received SNR as well as the error probability performance of the system by

coherently combining these multipath signals together. This idea resembles the concept of

a RAKE receiver initially proposed for the conventional CDMA systems. This extension is
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straightforward, hence, it is not investigated in this dissertation. Assuming the knowledge

of time delays of the multipath fading channels at the receiver, it would be interesting in

exploiting the concept of the RAKE receiver to improve the performance of IRBAP.

For the data-bearing approach for pilot-embedding, an another optimum power alloca-

tion scheme based on a different criterion, e.g. the lower bound on channel capacity, is being

considered for the future work. In fact, such criterion was not considered in this dissertation

because this dissertation considered fixed data-rate ST coded MIMO communications. It

would be of interest in comparing the performance of such systems employing different

power allocation strategies. Additionally, one limitation of the data-bearing approach for

pilot-embedding employing the CM-based structure is the dimension of the Walsh-Hadamard

matrix that must be proportional to 2n, n ∈ I. It would be interesting if this dimensionality

constraint can be relaxed by using the other matrices, e.g. Gold-code-based matrix, at the

expense of the loss of some degree of orthogonality.

Since this dissertation assumed independent fading channels, the assumption of inde-

pendent antenna is therefore imposed. In some cases, there exists some correlation between

each antenna resulting in degradation in performances of MIMO wireless communication

systems. It would be interesting to investigate the proposed channel estimation scheme in

this severe scenario.

Recently, the generalized MIMO systems (i.e. the distributed antenna array), called

"Cooperative Communications," are of widespread interest. This communications scheme

can take the benefit of the MIMO system, i.e. the diversity gain, by the help of all active

users in the wireless networks, e.g. the cellular phone networks. However, many issues have

been waiting for being explored, including a protocol design, an effective channel estimation,

synchronization, a generalized space-time code design, and scheduling and routing problems.

All of these issues are of crucially interest for the future works as well.
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Appendix A

List of Abbreviations

A/D analog to digital

AWGN additive white Gaussian noise

BER bit error rate

bps bit per second

CDMA code-division multiple access

CM code multiplexing

CMA constant modulus algorithm

CRLB Cramer-Rao lower bound

CSI channel state information

D/A digital to analog

DAB digital audio broadcasting

DC down converting

DD decision-directed

DFT discrete Fourier transform

DOA directions of arrival

DR despread-respread

DS-CDMA direct sequence code division multiple access

DSL digital subscriber lines

DVB-T digital video broadcasting

FCC federal communications commission

FDMA frequency-division multiple access

FIR finite impulse response

FFT fast Fourier transform

HF high frequency
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HP half-width

IDFT inverse discrete Fourier transform

IFFT inverse fast Fourier transform

i.i.d. independent and identically distributed

IRBAP interference-rejected blind array processing

ISI intersymbol interference

ISM industrial, scientific, and medical

LANs local area networks

LCMV linear constraint minimum variance distortionless response

LMMSE linear minimum mean square error

LMS least mean square

LS least squares

MAI multiple access interference

Max SNR maximum signal-to-noise ratio

MIMO multiple-input multiple-output

ML maximum likelihood

MMSE minimum mean square error

MPSK M-phased-shift-keyed

MSE mean square error

MTSO mobile telephone switching office

OFDM orthogonal frequency division multiplexing

OFDMA orthogonal frequency-division multiple access

PEDB pilot-embedded data-bearing

PSAM pilot-symbol assisted modulation

PSK phase shift keying modulation

QAM quadrature amplitude modulation

RLS recursive least square

SF space-frequency

SISO single-input single-output

SNR signal-to-noise ratio

SP Sampling
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ST space-time

STBC space-time block code

SVD singular value decomposition

TDMA time-division multiple access

TM time multiplexing

TU typical urban

ULA uniform linear array

U-NII unlicensed national information infrastructure

W-CDMA wideband code-division multiple access

ZF zero-forcing

ZMSW zero-mean spatially white
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