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CHAPTER 1
INTRODUCTION

1.1 Background and rationale

Quiet stance, one of the most common tasks used in the daily activities, has
been the subject of motor control and biomechanical research for such a long time.
It has been modelled as a single inverted pendulum (SIP) as they thought the
regulation of body equilibrium was controlled by the ankle musculature (Winter,
1995). However, recent studies have demonstrated that the brain coordinates joints
along the body axis to achieve a steady position. The notion was then changed to
multi-joint coordination (Hsu et al., 2007) which meant that the knee joint also

involved in the control of quiet stance.

Body alignment is thought to have an influence on the control of quiet
stance (Shumway-Cook, 2007). Hence, the alignment of the knee joint should affect
the stance stability. Knee misalignment was found to be an independent risk factor
for progressive knee osteoarthritis (Tanamas et al., 2009) and may lead to the
destruction of other knee joint structures (Loudon, Goist, and Loudon, 1998). Knee
hyperextension was characterized by the misalisnment between the femur and the
tibia in the sagittal plane in which the knee range of motion was greater than normal
anatomical position. It was found that knee hyperextension correlated with anterior
knee joint laxity and anterior cruciate ligament injury (Friden et al., 2001; Loudon et
al., 1998; Shultz, Nguyen, and Levine, 2009). Knee hyperextension was found to be
more common in females than males and female athletes who had knee joint laxity
were more likely to have sustained knee-related injury (Medina McKeon and Hertel,
2009; Shultz, Nguyen, and Schutz, 2008).

Researchers have proposed that proprioception in individuals with joint
hypermobility or laxity may be perturbed (Simmonds and Keer, 2007; Stillman, Tully,
and McMeeken, 2002). The study by Shultz and colleagues had shown that
hamstrings reflex, which helped prevent excessive anterior tibial translation, was
delayed (Shultz, Carcia, and Perrin, 2004). Researchers hypothesized that individuals

with knee hyperextension might have poor knee joint proprioception due to lax



licament (Simmonds and Keer, 2007, Stillman et al., 2002). However, proprioceptive
studies in knee joint laxity yield inconclusive results which might be caused by
different testing positions; weight bearing versus non-weight bearing position (Loudon,
2000; Stillman et al., 2002).

Nowadays, there is only one study on postural control in knee
hyperextension has been published (Siqueira et al,, 2011). To understand the
mechanism of knee joint neuromuscular control, an EMG study combine with the
results from electrogoniometer and an assessment of knee joint position sense may
explain how individuals with knee hyperextension control position of the knee joint.
The role of muscle activation in both pathological and normal populations is of
interest for understanding central nervous system function. Muscle activation
patterns of knee hyperextension may provide insight into physiological changes

compared to healthy controls.

1.2 Purposes of the study

The aims of this study were to compare level and pattern of muscle activity
between normal knee alignment and hyperextended knee participants during quiet
stance. Moreover, the role of knee joint in the control of stance stability and knee

joint position sense were also investigated.

1.3 Parameters of the study
1.3.1 Independent variable

Knee hyperextension angle

1.3.2 Dependent variables

1. Level of muscle activity
2. Lower extremity muscle activation pattern
3. Knee joint angle in each standing condition

4. Knee joint position sense



1.4 Scope of the study

The scope of this study was to evaluate and compare: (1) the knee joint
postural response, (2) level and patterns of lower extremity muscle activation and (3)
knee joint position sense between participants who had normal knee alignment with
those who had knee hyperextension greater than 10 degrees beyond anatomical
position. The participants were healthy females aged between 18 and 30 years old.

All of them did not participate in any sport activity more than 3 times a week.

1.5 Objectives of the study

1. To study the role of knee joint in postural adjustment when the postural
control was disturbed.

2. To study and compare pattern of muscle activity around knee joint
between individuals with knee hyperextension and normal knee alignment
during quiet stance.

3. To compare knee joint position sense of individuals with knee
hyperextension and those who had normal knee alignment in weight

bearing position.

1.6 Research questions

1. How did knee joint involved in postural adjustment during somatosensory
and visual disturbance?

2. Did individuals with knee hyperextension demonstrate different
neuromuscular control compare to normal knee alignment individuals in
terms of level and pattern of muscle activity?

3. Did individuals with knee hyperextension demonstrate poorer knee joint

position sense compare to normal knee alignment individuals?

1.7 Hypotheses of the study

1. Individuals with knee hyperextension would demonstrate different knee
joint postural adjustment compare to normal knee alignment group.
2. Individuals with knee hyperextension would demonstrate different knee

muscle activity pattern compare to those with normal knee alignment.



3. Individuals with knee hyperextension would show different muscle activity
around the knee joint when postural control was more challenged
compare to normal knee alignment individuals.

4. Individuals with knee hyperextension would demonstrate different capacity
in detecting knee joint position sense compare to normal knee alignment

individuals.

1.8 Brief methodology

Participants were recruited if they had sagittal knee angle more than zero
degrees in flexion or hyperextended more than 10 degrees. The surface
electromyography and electrogoniometer were used to extract the neuromuscular
activity, muscle activity and knee joint angle, of the participants. All of them were
asked to stand under four conditions randomly; (1) Firm surface with eyes open, (2)
Firm surface with eyes closed, (3) Foam surface with eyes open, and (4) Foam surface
with eyes closed. Afterward, the knee joint position sense was tested in weight

bearing position.

1.9 Advantages of the study

1. The results might provide an understanding of how muscles around knee
joint contribute to control stance stability.

2. The results might provide the information of how knee joint involved in
postural control during quiet stance.

3. Treatment plan or specific intervention program might be made precisely

to improve knee joint stability in people with knee hyperextension.



CHAPTER 2
REVIEW LITERATURE

Human stance control can be achieved through the complex interaction
between nervous system and musculoskeletal system. Brain receives sensory
information mainly from visual, vestibular and somatosensory systems to perceive
and adjust body position in space. During quiet stance, it was suggested that both
center of mass (CoM) and its velocity should be of concerned when determining
stance stability (Shumway-Cook, 2007).

Quiet stance is described by small amount of spontaneous postural sway
(Shumway-Cook, 2007). There are three main factors that contribute to the control
of quiet stance; (1) body alignment, (2) postural tone, and (3) muscle tone. Body
aligcnment could affect how our body reacts to the gravitational force. The postural
tone refers to muscle activity that is generated by the postural muscles during
upright position, while the muscle tone refers to muscle activity that increase due to
the muscle is being elongated (Shumway-Cook, 2007). Since this study tends to
determine how healthy individuals with knee hyperextension control their knee
position during quiet stance, thus, all attention is put on the body alignment. Other
two sensory systems are controlled and assumed to be normal in this study.
Normally, line of gravity passes through mastoid process, a point just in front of
shoulder joint, the hip joint, a point just in front of the center of knee joint, and a
point just in front of the ankle joint in standing position. This position allows us to
maintain in equilibrium and requires only small amount of muscular effort
(Shumway-Cook, 2007).

Once the alignment of the joint is deformed or aligned in different positions,
postural control changed, for example, individuals who have osteoarthritis with
increasing knee abduction angle tend to shift their weight in mediolateral direction
more than normal knee alignment (Knoop et al,, 2011). However, this may not
directly reflect the influence of knee joint position on postural control since articular
surface is also destructed in the degenerative process. Unlike knee hyperextension,

this condition can generally be found in society and without certain consequences



perceived by that individual. Some evidences point out that individuals with joint
hypermobility are likely to develop degenerative joint disease. The structures within
and around hyperextend knee joint may still be in a perfect condition or may be
elongated without destruction of proprioceptors (Stillman, 2002). Even though the
mechanism and long term consequences from knee hyperextension injury have been
reported (Loudon et al.,, 1998), none of those studies report the neuromuscular
control of this condition. Further, the structures and functions of knee joint will be

discussed.

2.1 The anatomy of knee joint

The knee joint consists of two separate joints; tibiofemoral joint and
patellofemoral joint. The roles of knee joint are mainly to allow stability,
accommodate for different terrains, transmit and absorb forces caused during
activities of daily life. The maximal stability of the knee joint is gained at full knee

extension (Masouros, Bull, and Amis, 2010).

The knee joint can be defined as modified hinge joint since its movements
occur mostly in sagittal plane couple with small movement in horizontal and frontal
plane (Masouros et al., 2010). The tibiofemoral joint can move through 160 degrees
of flexion, combine with other two planes of movements; small angle of rotation in
horizontal plane and gliding in mediolateral plane. The tibiofemoral joint, the
biggest joint in the body, is made up between a ball-like femoral condyles put on
top of meniscal sockets over the tibial plateaus. Generally, the lateral and medial
femoral condyle appearances are different from each other. The medial femoral
condyle has larger surface and more curvature than the lateral one. Its articular
surface extends anteroposteriorly. The lateral femoral condyle is smaller in size and
contributes to the vagus and anteroposterior alignment of the knee. The tibial
plateaus are concave medially and circular, convex laterally. Taking all the shapes
of femoral condyles and tibial plateaus into account, the tibiofemoral joint can move
through three axes, having the medial side of the joint move over the lateral one
(Goldblatt and Richmond, 2003; Lovejoy, 2007).

Considering the geometry of the knee joint, it is unstable as it moves through

a wide range of motion, requiring tension from soft tissues, muscles, and tendons



around the knee joint to improve joint stability. Stability of knee joint composes of
(1) static stability, (2) active stability, and (3) passive stability. The static stability is
caused by the geometry and articular surface of knee joint. The active stability is
caused by muscle contraction. Finally, the passive stability is caused by ligaments

and tendons across the joint (Masouros et al., 2010).

As the line of gravity passes just in front of the center of knee joint. With
knee at full extension, weight support and stability are at the maximum. If the knee
is in flexion, line of gravity would fall behind the knee joint causes the quadriceps
muscle to increase muscle work to maintain body upright against gravitational force.
On the other hand, if the knee is hyperextended, the knee would become stable
due to passive tension from joint capsule and ligaments around it (Masouros et al.,
2010).

The main knee joint ligaments that restrain joint displacement consist of; (1)
anterior cruciate ligament (ACL); (2) posterior cruciate ligament (PCL); (3) medial
collateral ligament (MCL); (4) lateral collateral ligament (LCL); (5) meniscus-meniscal
ligament construct; (6) patellar retinacula and medial patellofemoral ligament
(Masouros et al., 2010).

Anterior cruciate ligament is the primary restraint to anterior tibial translation,
aid in preventing knee hyperextension. The posterior cruciate ligament is the primary
restraint to posterior tibial translation. Taken together, both ACL and PCL control the
anterior-posterior rolling and sliding of the tibiofemoral joint during flexion and
extension. The medial collateral ligament is the primary restraint to valgus
angulation and tibia internal rotation. The lateral collateral ligament acts mainly to
restrain varus angulation. The meniscus-meniscal ligament complex is mainly
restrained to tibial external rotation. Finally, the patellar retinacula and the medial
patellofemoral ligament act as the primary passive restraint to lateral patellar

displacement and assist in controlling patellar motion (Masouros et al., 2010).



2.2 Knee hyperextension

Knee hyperextension is a common entity found in clinics that may lead to
destruction of knee joint structures and is more likely to develop degenerative joint
disease (Loudon et al.,, 1998; Tanamas et al., 2009). Individuals with knee
hyperextension may have impaired proprioception of the knee joint during end range
of flexion to extension (Loudon et al., 1998). However, this cannot be concluded
since the findings are still controversial (Loudon, 2000; Stillman et al., 2002).

Stillman and co-workers compared ipsilateral, non-weight bearing joint re-position
ability between young adults who had more mobile knee (average knee extension
was -10.3° + 3.7°) and less mobile knee (average knee extension was -1.0° + 3.2°).
The results found that individuals with more mobile knee did not demonstrate
impaired knee joint position. Besides, they demonstrated more accuracy in matching

knee joint angle than less mobile knee individuals (Stillman et al., 2002).

Recently, Siqueira and colleagues found that knee hyperextension had
influence upon postural control as shown by higher CoP velocity during quiet stance
(Siqueira et al,, 2011). The higher CoP velocity reflected poorer motor control ability.
Nevertheless, Kawahara and colleagues found no significant difference in other gait
parameters including joint angle, joint moment, and ground reaction force during
over ground walking in participants with knee hyperextension. On the other hand,
the presence of ACL deficiency did alter gait parameters (Kawahara et al., 2012).
According to these two studies, individuals with knee hyperextension might have a
poorer control, however they were able to walk normally. This also suggested that
knee hyperextension was postural condition highly dependent on postural control

that can be accommodated by individuals (Siqueira et al., 2011).

The researchers found the common knee structures that were usually injured
in individuals with knee hyperextension. Mostly, the structures on posterolateral
corner of knee joint usually affected as well as ligament within the knee joint
(Fornalski et al., 2008; Loudon et al., 1998; Tanamas et al., 2009). A study in fresh-
frozen cadaveric knees had suggested that the more knee hyperextension increase,
the more soft tissue failure within and at posterolateral corner of the knee joint
found (Fornalski et al.,, 2008). Researchers tested the cadaveric knee on the custom
jig that could produce anterior-posterior tibiofemoral joint displacement. They found

the ACL, LCL, tendon of popliteus muscle and soft tissue at the posterolateral corner



of the knee were the most involving structures that injured in isolated knee
hyperextension injury. Loudon and colleagues suggested that the lateral head of
gastrocnemius muscle, as one of the arcuate complex, was also stressed in knee

hyperextension (Loudon et al., 1998).

Lisaments within knee joint are not only mechanical structures that restrain
excessive movement of the adjoining bones, but also yield neurological functions
aiding in joint stability (Ageberg, 2002; Solomonow, 2006). Researchers reported that
all 4 types of mechanoreceptors (Pacinian-like, Ruffini-like, Golgi tendon-like organ,
and free nerve ending) can be found in ligaments of major joints of the body
(Solomonow, 2006). The injured ligament can cause many consequences on human
neuromuscular control, such as changes in the natural inhibition of muscle, muscular
atrophy, deficient kinesthetic perception and gait deviations (Ageberg, 2002; Di Fabio
et al., 1992; Solomonow, 2006). The ACL, as a primary restraint to anterior tibial
translation of the knee also displays a neurological function. The hamstrings reflex
response elicited after the ACL is stretched beyond its usual length aiding in
preventing excessive anterior tibial translation. The injured ACL not only loses it
mechanical properties (increase anterior knee joint laxity), but also loses its

neurological properties known as the ligamento-muscular reflex (Solomonow, 2006).

The example of ligament laxity that influenced postural response had shown
by Di Fabio and colleagues. They tested the individuals with ACL insufficiency on the
anterior translation platform during bilateral and single stance. They found an
additional hamstring response to posterior sway which suggested that motor
preprogramming was modulated to compensate for ligament laxity (Di Fabio et al,,
1992).

The study by Shultz and colleagues showed that female athletes who have
anterior knee joint laxity might be less sensitive to joint displacement (Shultz et al.,
2004). The participants were disturbed anteriorly during single leg stance with knee
joint at 30 degrees flexion. They found that biceps femoris muscle in anterior knee
laxity group demonstrated an increase in reflex response time (16 ms delay) as well
as increase activation amplitude of the electromyographic recording (Shultz et al,,
2004). The mechanoreceptors within the ACL might be disturbed in knee
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hyperextension. These mechanoreceptors are part of proprioceptive system that aid
in postural control. It might be suspected that proprioceptive response might also
be disturbed.

Another study by Shultz and colleagues investigated the relationship
between lower limb alisnment and anterior knee joint laxity, they found that greater
knee hyperextension, greater foot pronation, lower anterior pelvic tilt and lower
tibiofemoral angle were associated with anterior knee joint laxity in female. For
male, lower anterior pelvic tilt, greater hip anteversion were associated with anterior
knee joint laxity. The strongest predictors for anterior knee joint laxity were greater
knee hyperextension and foot pronation for both male and female (Shultz et al.,
2009). As the results reported, position of knee joint, hip joint and ankle joint are
correlated. Individuals who have knee misalignment may also influence overall

lower limb alisnment.

The findings of knee hyperextension indicated the risk to develop
osteoarthritic change of knee joint, inconclusive joint position detection capability,
altered muscular responses to external perturbation in anterior and posterior
directions, changed of motor preprogramming, and relationship with other lower limb
joint alignment. Finally, these physiological changes might have influences upon

postural control.

2.3 Knee joint and postural control

Researchers suggest that human stance can be viewed as a single inverted
pendulum (Winter, 1995). This model predominates the roles of muscles and
passive stiffness around ankle joint in controlling quiet stance. The double inverted
pendulum predominates the roles of hip and ankle joint during stance. However,
with an advanced technology, it has proved that single inverted pendulum is an
oversimplified model to explain human stance control (Gunther et al., 2009; Gunther
et al,, 2011; Hsu et al., 2007).

Sequeira and colleagues had conducted the study to investigate whether

knee hyperextension affect human stance stability. Their results showed that when
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postural control was more challenged, most of participants tend to bend their knees.
Also, the researchers had measured CoP velocity and the differences were found
between normal knee alignment and knee hyperextension group. During standing on
firm surface with eyes open, the knee hyperextension group showed higher CoP
velocity in the antero-posterior direction. In the most challenging condition, standing
on foam surface with eyes closed, the knee hyperextension group showed the
lowest CoP velocity. The mean velocity has been linked to the amount of regulatory
activity associated with the level of stability. According to this assumption, Sequeira
and colleagues concluded that knee hyperextension affects human stance stability
(Siqueira et al., 2011). The results of Sequeira and colleagues may be explained by
concept of postural control of quiet stance that body alignment affects postural

control.

The study of Nyland and colleagues demonstrated that the frontal plane
knee alignment (increase knee abduction or adduction angle more than 5 degrees)
affects postural control of the individuals during single leg stance with 20 degrees of
knee flexion. Mean anteroposterior CoP pressure location was more directed to the
rarefoot than neutral knee alignment group. They explained that the more rarefoot
location of CoP pressure used by the more frontal knee angle individuals aid in
modulation of midtarsal joint inversion-eversion on more mobile foot lever to

maintain postural equilibrium (Nyland et al., 2002).

From Sequeira’s study, even with the same biomechanical response (increase
knee flexion angle) between the normal knee alignment and the knee
hyperextension groups, neuromuscular control over the knee is not known. If we
can understand how neuromuscular control over the knee is different between two
groups, then it may be concluded that neuromuscular and postural control are

affected by knee alignment.

As previously stated, anterior knee joint laxity is correlated with knee
hyperextension. Joint mechanoreceptors of knee hyperextension might be disturbed
as well. Assessing knee proprioception might allow researchers to gather more
conclusive information about proprioceptive and postural control in knee

hyperextension individuals.
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2.4 Proprioception

Proprioception is the capability of the individuals to perceive body positions
and movements in space, and is based on sensory signals provided to the brain via
muscle spindle, joint mechanoreceptors, and cutaneous receptors without the use of
vision (Gilman, 2002; Goble, 2010; Kiran et al., 2010; Proske and Gandevia, 2009;
Stillman, 2002). Proprioception composes of two different sensations which are the
joint position sense and the movement sense (kinesthesia) (Gilman, 2002; Proske and
Gandevia, 2009).

Stillman wrote an article about ‘sense’ and ‘perception’ to identify their
difference. Sense literally means recognizing a single specific type of stimulus.
Perception, on the other hand, is the potential of the brain to clarify the origin of a
stimulus. He quoted that proprioception was an example of perception (Stillman,
2002).

Human brain receives and processes sensory inputs from peripheral
receptors. The processed information allows human to detect the position of joints
and allows individuals to perceive how the joints are moving. The peripheral
receptors that provide proprioceptive information are primarily from muscle spindles
accompany with joint mechanoreceptors and cutaneous receptors (Gilman, 2002;
Proske and Gandevia, 2009; Stillman, 2002). Recently, some researchers suggest that
motor commands (the signal outflows from the brain that are targeting at the
muscle) may contribute in detecting joint position sense (Gandevia et al., 2006;
Walsh et al., 2009).

2.4.1 Muscle spindle and proprioception

Muscle spindles are small encapsulated, fusiform shape sensory receptors
found within the fleshy part of the muscle. Theirs main function is to signal changes
of length of muscle which they are located (Pearson and Gordon, 2000). Each
muscle spindle is composed of three parts; (1) intrafusal muscle fiber, (2) large-
diameter myelinated sensory ending which originated from the central region of the
intrafusal fibers, and (3) small-diameter myelinated motor ending that innervated the

polar region of the intrafusal fibers (Pearson and Gordon, 2000).
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Because muscle spindles are arranged in parallel with the extrafusal fibers,
the length of intrafusal fibers change as the length of extrafusal fibers change. When
muscle spindles are stretched, their firing rate increase, and vice versa. The changes
of firing rate are useful for the CNS to interpret the position of the body (Pearson and
Gordon, 2000).

The extrafusal fibers receive innervation from alpha motor neurons, while the
intrafusal fibers receive innervation from ¢gamma motor neurons. Motor command
that derives from motor cortex has influences on alpha motor neurons and causes
the extrafusal fibers to contract. If the extrafusal fibers contract, the intrafusal fibers
will become slack and their firing rate decrease. To prevent the loss of muscle
signals to the CNS, gamma motor neurons become activated, consequently, the
polar regions of the intrafusal fibers contract and stretch the central region which
leads to an increase firing rate. This phenomenon is called alpha-gamma motor
neuron co-activation or fusimotor co-activation. Thus, the gamma motor neuron is
important for adjusting the sensitivity of the muscle spindle (Pearson and Gordon,
2000).

Many evidences have revealed the role of muscle spindles in detecting joint
position and movement sense (Kito et al., 2006; Proske, 2006; Walsh et al., 2009).
The first experimental study by Goodwin and colleagues had shown that muscle
spindle signals provided proprioceptive information to the CNS (Goodwin, McCloskey,
and Matthews, 1972). The effect of vibration altered muscle spindle firing rate and
caused the brain to perceive movement in the opposite direction to the muscle
whose tendon was vibrated (Walsh et al., 2009). The physiological effect of vibration
caused muscle spindle to fire at the higher rate, so the brain interprets as that
muscle is lengthened (Proske, 2006).

There are many factors affecting muscle spindles in detecting joint position
sense or movement sense (Proske, 2006; Proske, Wise, and Gregory, 2000; Weiler and
Awiszus, 2000). Since muscle spindle mainly responses to muscle length change and
rate of length change, thus any factors that would alter the length of muscle or rate
of muscle length change would therefore alter muscle spindle activity. The term

“hysteresis” refers to a state in which muscle spindle activity is higher during the
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muscle is elongated than it is shortened while the limb is being moved through a

cycle of movement (Weiler and Awiszus, 2000).

Another property of muscle spindles that might affect the interpretation of
proprioception is called muscle thixotropy, a passive property of muscle which is
dependent on the previous contraction history and length changes (Proske, 2006). As
a muscle contracts, stable cross-bridges are formed between actin and myosin, after
muscle relaxes these stable cross-bridges are still remained for some period of time
in unperturbed or passively moved muscle. If the antagonistic muscle is actively
contract, these bridges are then detached and give rise of the neuromuscular burst
at the point of detachment. As a result of muscle thixotropy, it alters resting
discharge rate of the muscle spindle and causes an inaccuracy of joint position

perception (Proske, 2006).

2.4.2 Joint mechanoreceptors and proprioception

Joint mechanoreceptors are pervaded within structures of the knee. There
are four different types of receptors that respond to different stimuli and present
with different functions; (1) Pacinian-like, (2) Ruffini-like, (3) Golgi tendon-like organ
(GTO), and (4) free nerve ending (Newton, 1982). These four receptors are presented
in different structures and are function distinctly. These joint mechanoreceptors can
be classified into rapid and slow adaptive receptors. The slow adaptive receptors are
mainly function for joint position sense, this is why individuals can sense the position
of their joint even though they have been motionless for some period of time. The
fast adaptive receptors are function for movement sense (Newton, 1982; Stillman,

2002). The details of mechanoreceptors are presented in Table 2.1.
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Table 2.1 Summary of joint mechanoreceptor characteristics (from Newton, 1982)

Physiologic
Type Location Appearance Sensory unit
function
Type | = Stratum fibrosum of | = Laminated - Myelinated = Active at rest
capsule; ligaments Ruffini-like parent and 2 - | and during
= Higher density in corpuscle 6 corpuscles movement
proximal joints =300 ym wide - Low threshold
- 300 - 800 pm for activation
long - Slowly adapting
Type |l = Junction of synovial | =Laminated - Myelinated = Active at
joint and fibrosum of | pacinian-like, parent axon onset and
capsule; intra- cornically and 1-5 termination of
articular and extra- shaped corpuscles movement
articular fat pads corpuscle - Low threshold
- Higher density in =150 - 250 ym for activation
distal joint long = Rapidly
- 20 - 40 ym adapting
wide
Type |l - Collateral ligaments | = GTO-like - Myelinated - Active at end
but not found in corpuscle parent axon of joint range
lisaments of cervical | =800 um long and 1 - High threshold
region - 100 pm wide corpuscle for activation
= Slowly
adapting
Type IV - Ligaments, capsules, | =Free nerve = Thinly - Active only to
and articular fat pads | endings or myelinated extreme
- Absent in synovial lattice type parent axon mechanical

tissue

ending

and terminal

ending

and chemical
irritation
- High threshold
for activation
= Slowly
adapting
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However, the study of Clark and colleagues had demonstrated that
anesthetizing joint mechanoreceptors only had minimal effect on the ability to
perceive knee joint movement and joint matching capacity. According to their
results, they concluded that knee joint mechanoreceptors were less important for
knee joint position sense during static condition (Clark et al., 1979). Some evidences
from people who underwent a total knee replacement surgery did not lose knee

proprioception may also confirm this idea (Ishii et al., 1997).

2.4.3 Cutaneous receptors and proprioception

The evidences that support the role of cutaneous receptors in providing
proprioceptive input to the central nervous system have begun in human hand,
especially finger joints. Later, the studies of cutaneous input at other joints yielded
the same results. The researchers concluded that cutaneous receptors also
contribute to proprioception (Clark et al.,, 1979; Collins et al., 2005; Edin, 2001).

According to the study of Clark and co-workers, they tried to determine the
importance of cutaneous inputs on the ability to detect knee joint position in young
healthy adults. They anesthetized cutaneous receptors within 15-centimeter band
around the knee being tested. Participants were asked to respond whether two legs
were matched the same position or not, if not, then the participants had to tell the
researcher to re-correct the position of the tested knee to match the other. Their
results did not find a significant different on the ability to correct knee joint position
even though the cutaneous receptors were almost completely anesthetized. They
concluded that cutaneous receptors were not important and had only minor effect

on knee joint position sense (Clark et al., 1979).

However, the effect of anesthetizing skin within only 15-centimeter band over
knee joint might not be sufficient to eliminate all the cutaneous inputs from skin
over anterior aspect of thigh. Edin underwent microneurographic recording from the
lateral cutaneous nerve of thigh when skin was stimulated by using von Frey hair
(Edin, 2001). The results demonstrated a large skin area that was innervated by
lateral cutaneous nerve of thigh, from 5 - 10 centimeters below inguinal ligament

down to below and lateral to the knee joint (Edin, 2001). Thus, participants might
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use cutaneous inputs from those cutaneous receptors that were not anesthetized to

interpret the position of knee joint.

It was the study of Collins and co-workers which demonstrated that
cutaneous receptors did involve in the perception of limb movement but not joint
position sense other than interphalangeal joint, including the knee joint (Collins et
al., 2005). Simulated skin stretch to the proximal and distal interphalangeal joint,
elbow joint and knee joint can induced the perception of joint movement in many
participants. At the knee joint, 3 out of 10 participants whose skin over the anterior
aspect of thigh was stretched felt that their knee became flexed (Collins et al., 2005).

2.5. Neural pathway of proprioception

The proprioceptive information from muscle spindles, joint
mechanoreceptors, and cutaneous receptors reach the brain through the posterior
column-dorsal leminiscal pathway (Gilman, 2002). The afferent fibers mediating joint
position sense and movement sense course through peripheral nerves into the
medial aspect of the dorsal root and then enter the dorsal horn of spinal cord.

Many of these fibers form synaptic connection with second order neurons in the
dorsal horn, and these second order neurons ascend through the ipsilateral
dorsolateral funiculus of the spinal cord. The secondary neurons then form the
connections with lateral cervical nucleus, which is located in the two upper cervical
segments of the spinal cord. Postsynaptic neurons from the lateral cervical nucleus
project across the midline of the spinal cord, ascend to enter the medulla, and join
the medial lemniscus. Currently, it appears that the dorsolateral funiculus is the
principal ascending pathway for proprioception. Some afferents mediating joint
position sense and movement sense project directly to the ipsilateral dorsal columns
and ascend the spinal cord, terminating in the dorsal column nuclei. Fibers
ascending the dorsal column develop a topographical arrangement. Afferent fibers
join the lateral aspect of the dorsal columns in succession, caudal to rostral, at each
spinal cord segment. This causes a laminated pattern, with fibers from the more
caudal segments positioned medially and fibers from the rostral segments positioned

more laterally (Gilman, 2002).
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In the upper spinal cord, fibers from sacral, lumbar, and lower thoracic spinal
segments form the gracile (medial) fascicle and those from the upper thoracic and
cervical segments form the cuneate (lateral) fascicle. Thus, the proprioception from
head, neck, upper limbs, and upper trunk ascend through the cuneate fascicle, and
the proprioception from lower trunk and lower limbs ascend through the gracile
fascicle. Mechanosensory information from face and scalp is transmitted to the

principal trigeminal nucleus (Gilman, 2002).

The axons from cuneate and gracile nuclei then pass through brain stem and
cross to contralateral brain at medial lemniscus of medulla to the ventral posterior
lateral nucleus of thalamus. As the medial lemniscus fibers cross midline, the body
map reversed; the sacral segments are located most laterally and the cervical
segments located most medially. The sensory signals then project to cerebral

hemisphere for proprioceptive perception (Gilman, 2002).

2.6. Sensorimotor areas which are active during movement illusion

In particular, the primary somatosensory area (S1) is the main cortical area
that serves for perception and interpretation of sensory information. Recently, study
by Naito and colleagues had shown that not only the S1 but also the primary motor
cortex (M1) of human respond to movement sense (Naito, Roland, and Ehrsson,
2002; Naito et al., 2005). By vibrating the tendon of left or right extensor carpi ulnaris
muscle, participants felt that their vibrated wrist immediately flexed and the
contralateral M1 and S1 was activated. Moreover, the right supplementary motor
area, right premotor cortex, right area 8, and right S1 were activated no matter the
right or left extensor carpi ulnaris tendon was vibrated (Naito et al., 2002). In the
other case, the two hands were in contact with each other while the tendon was
vibrated. All participants perceived as both hands were moved to the opposite
direction of the vibrated wrist, researchers called this as transfer of illusion (Naito et
al., 2002).

2.7 The roles of proprioception

As the above mention about proprioceptors and neural pathways, many
receptors take part in signaling neural information to the central nervous system.

These signals synapse many level within the central nervous system and are
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integrated to create the perception of appropriate position of the limbs and trunk
and execution of accurate motions. Moreover, the proprioceptive information also
plays an important role in cognitive programming and motor learning (Jerosch and
Prymka, 1996). Roles of proprioception can be classified into two categories; (1) role
in postural control and (2) functional joint stability (Jerosch and Prymka, 1996;
Riemann and Lephart, 2002).

2.7.1 Proprioception and postural control

The accuracy of proprioceptive input is important for individuals to have a
good postural control. The sensory information concerning both internal and
external cues helps individuals to adapt motor performance to match with the task
and environment. The roles of proprioception in motor control can be classified into
2 categories. The first category involves the role of proprioception with the external
environment. The example of this situation is when individuals use the
proprioceptive information to adjust body from perturbation during walking on
uneven surface. Individuals can adjust their ankle position while they are walking on
uneven surface before visual information and provide the fastest response and more
accurate than the visual information did (Riemann and Lephart, 2002). Considering
the neural pathway of the proprioceptive system, neural input from proprioceptors
travel along the spinal cord and synapse many levels within the nervous system.
These inputs can be processed and modulated to suit with the environment
(Shumway-Cook, 2007).

The second role of proprioception is to plan and modify motor outputs to
achieve a smooth and coordinated movement (Riemann and Lephart, 2002).
Proprioceptive signals project to areas of the cerebral hemisphere, these areas
include primary somatosensory area (area 2 and 3a), primary motor cortex, premotor
cortex, supplementary motor cortex, cingulate motor area and cerebellum (Naito et
al,, 2002; Naito et al., 2005). The supplementary motor area is responsible for the
initiation and controlling internally generated movements, while the premotor area is
responsible for controlling the movements that are activated by external stimuli.
The cerebellum is known as a movement comparator which receives and compares
signals from primary motor cortex as well as proprioceptors from the moving joint

(Shumway-Cook, 2007). These cortical motor areas work together to plan and initiate
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movements and can be adjusted to achieve a smooth and coordinate movement

with helps of the cerebellum.

2.7.2 Proprioception and functional joint stability

How can human achieve stability throughout all movements? As earlier
mentioned about knee joint stability, all three types of stability are gained by the
mechanical properties of muscle, ligament, tendon and joint capsule. The joint and
muscle stiffness together with viscoelastic property of ligament allow individuals to
safely and accurately move their joints through range of movement. The
attachments of the ligaments guide the movement of the adjoining bones (Riemann
and Lephart, 2002; Solomonow, 2006).

Both muscle and ligament also have neural properties that accomplishing
each other in stabilizing joint from an unexpected perturbation via the ligamento-
muscular reflex (Riemann and Lephart, 2002; Solomonow, 2006). The neural signals
from the stretched ligaments trigger muscular responses relative to functions of that
lisament, such as the stretched ACL can activate hamstrings response reflex to

prevent further anterior tibial translation (Jerosch and Prymka, 1996).

2.8 Proprioceptive assessment

Literally, proprioception can be assessed differentially between joint position
sense and movement sense. Clinicians or researchers can assess joint position sense
through passive or active limb re-positioning. However, it cannot be assessed the
integrity of the system. Considering testing procedure, proprioceptive system is being
assessed from the periphery receptors to the central processing center. Stillman
(2002) proposed that passive limb re-positioning may not provide the proprioceptive
characteristics in motor control, even though the passive limb re-positioning involves
proprioceptive pathway from the periphery to the cerebral cortex. The active limb
re-positioning provides more information, however, it provides only limited evidence
of proprioceptive system’s motor control function. The superiority of the active test
is that it receives corollary discharge of the upper motor neurons that project to a
specific proprioceptive region of the brain (Stillman, 2002). The limb re-positioning
can be tested on ipsilateral or contralateral limb (Boerboom et al., 2008; Friden et
al., 2001; Goble, 2010).
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On the other hand, specialized equipment is needed to assess the
movement sense. The term called “threshold to detect passive motion” reported
as degree change from the starting position to the response angle of the participants.
This method is totally passive movement (Boerboom et al., 2008). The detail of
proprioceptive evaluation will be further discussed, joint position sense is more

concerned in this review.

2.8.1 Test for joint position sense

The principle of the test is to ask participants to match the position of the
joint being tested with the reference position previously established (Stillman, 2002).
As mentioned above, reference position establishment can be done actively or
passively which are called active limb re-position and passive limb re-position test
respectively (Goble, 2010; Stillman, 2002). There is some disagreement among
researchers whether which position should be used to assess knee joint position
sense since the knee joint is mainly function during weight bearing position. The
following texts provide the information that could affect knee joint position sense

assessment.

(1) Reference position establishment can be done actively or passively. For
the active limb re-position, the participant actively moves the limb to the test angle
and holds that position for a few seconds before returning the limb to the starting
position. Then the participant will be asked to move the limb to match with
previous limb position. The procedure of passive limb re-position test is almost
identical with that of active test, except that the reference position is established by
clinician or researcher (Goble, 2010; Stillman, 2002). With active limb reposition,
participants are more efficiently re-position of the knee joint than the passive limb
re-position due to more proprioceptive information from efferent copy of motor
commands. The efferent copy will be sent to the cerebellum and used as
comparative information for the brain to compare the joint position being tested with

the reference position.

(2) The second factor affecting joint position test is the limb that is used to
establish reference position. Clinicians may use the contralateral limb or uninjured

limb to establish reference position but some may use ipsilateral limb (Goble, 2010;
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Stillman, 2002; Stillman and McMeeken, 2001). When the test is performed on
ipsilateral limb, the judgment is depended on their memory. If the test is performed
on contralateral limb, then participant will need more interhemispheric connection

in addition to memory (Goble, 2010). Goble and colleagues had compared the result
from joint position testing between ipsilateral and contralateral elbow joint re-
position expressed as relative and absolute error. Their results showed greater

relative and absolute error for contralateral elbow joint re-position (Goble, 2010).

(3) Assessing knee joint position sense can be done either in weight bearing or
non-weight bearing positions (Stillman and McMeeken, 2001). However, controversy
still remained whether weight bearing or non-weight bearing position is more
appropriate, since weight bearing position is more functional and more related to
activities of everyday life (Stillman and McMeeken, 2001). All proprioceptive inputs
from cutaneous, joint mechanoreceptors, and muscle spindles which aid in joint
angle detection are projected to the CNS, including the proprioceptive inputs from
other joints. Thus, weight bearing position may not be able to specifically identify

proprioceptive sources within and around knee joint (Stillman and McMeeken, 2001).

On the other hand, the non-weight bearing position provides less
proprioceptive inputs from adjacent joints, but this position can be more specifically
tested the knee joint proprioception. Knee joints are less compressed during non-
weight bearing position, thereby, the joint mechanoreceptors in connective tissues
are less activated. Thus, non-weight bearing knee joint position sense assessment
may be more reliable, but less accurate than weight bearing assessment (Stillman
and McMeeken, 2001).

(4) Testing knee joint position sense at different angles yield different results.
Ghiasi and Akbari had compared contralateral passive limb re-position ability of
healthy participants between weight bearing (standing) and non-weight bearing
(prone lying) at three different angles (45°, 60°,90°). The results showed significant
lower absolute error for weight bearing position compared to non-weight bearing
position at 60° and 90° (Ghiasi and Akbari, 2007). Besides from the position used to
joint position sense, the capacity to detect joint position also depends on the angle
of knee joint.
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(5) The age of participants also has an influence on the ability to detect knee
joint angle. Studies found that postural control declines with age. Age-related
changes in older adults may alter proprioceptive function. Peripherally, the
degeneration of proprioceptors within muscles, lisaments, and articular surface may
lead to less proprioceptive inputs. The muscle spindle changes involved in ageing
process are 1) increase capsular thickness, 2) decreased spindle diameter, 3)
decreased sensitivity, 4) a fewer total number of intrafusal fiber, and 5) axonal
swelling. The cutaneous receptors and joint mechanoreceptors are also decrease in
number (Goble, 2010). Centrally, inadequate proprioceptive information processing
has been suggested to be the main factor of proprioceptive depletion. The working
memory capacity also declines with age. Since the joint position testing require the
participants to remember the joint position. It is likely that their working memories
are also important factor affecting joint position test (Goble, 2010; Goble, Mousigian,
and Brown, 2012). Comparing between the high and low working memory older
adults, indicated by the length of the backward digit span test more or less than 5
digits respectively, the high working memory group showed lower angle matching
error than the other (Goble et al., 2012). According to the above mentioned,
researchers demonstrated that the older adults showed greater magnitude of joint
matching error than younger participants. The study of Ribeiro and Oliveira
compared joint position sense between healthy young adults and older adults, their
results indicated more joint matching error in the older adult group (Ribeiro and
Oliveira, 2010).

(6) Comparing between sedentary individuals and athletes, the proprioceptive
ability of athletes were superior to that found in sedentary individuals. Besides,
exercise can also attenuate physically declination in elderly (Ribeiro and Oliveira,
2010). Exercise induces many changes within central and peripheral level. At
peripheral level exercise induces morphological adaptations in the muscle spindle.
There are adaptations on a micro level, the intrafusal muscle fibers could show
some metabolic changes, and on a more macro level, the latency of the stretch
reflex response decrease and the amplitude of stretch reflex response increase
(Hutton and Atwater, 1992). At central level, exercise can modify proprioception
through the modulation of the muscle spindle gain and the induction of plastic

modifications in the central nervous system.
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(7) Applying cryotherapy over the knee joint has a deteriorative effect on
knee joint position sense. Uchio and colleagues investigated the effects of
cryotherapy on knee joint position sense. Their study pointed out some interesting
results. Joint position sense inaccuracy increase 1.7 degrees after 15 minutes of knee
joint cooling (Uchio et al., 2003). The systematic review by Costello and Donnelly
(2010) found that 3 studies from 7 studies have reported an increase in joint position
matching error after application of cryotherapy. Schmid and co-workers found that
muscle activity decrease after the application of the ice bag for 20 minutes. This
reduced muscle activity may explain the decrease ability to replicate knee joint
angle. The decreased muscle activity might lower the muscle spindle sensitivity,
thus reduced muscular feedback to the brain (Schmid, Moffat, and Gutierrez, 2010).

(8) Authors have suggested that fatigue has adversely influences upon ability
to detect joint position (Ju, Wang, and Cheng, 2010; Miura et al., 2004). A study
conducted by Miura and colleagues compared the effects of local and general
fatiguing protocol on knee joint position sense. They found that local fatigues did
not alter knee joint position sense. On the other hand, general fatigue did alter knee
joint position sense (Miura et al., 2004). However, Ju and colleagues had
demonstrated that fatiguing muscle around the knee joint reduced and delayed
muscle activation of quadriceps and hamstring muscles when they were de-stabilized
(Ju et al., 2010).

(9) The presence of pain does affect joint position detection of individuals
(Baker et al.,, 2002). Baker compared knee joint position sense in patellofemoral pain
individuals and found that the presence of pain deteriorated knee joint position

sense compare to normal participants.

(10) In an attempt to prove that motor commands have influences upon joint
position detection, Gandevia and colleagues had carried out a study in 2006 to find
out the answer. Six participants had undergone anesthesia of their right arm with
pressure cuff to abolish all sensory signals from cutaneous and muscle receptors.
After 40 minutes of ischemic paralysis of the forearm and hand, the EMG of extensor
carpi radialis and flexor carpi radialis were completely abolished. After complete

anesthesia and paralyzed below the elbow, participants were asked to exert the
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force at 30% of maximum voluntary contraction toward wrist flexion or extension.
All participants perceived that their wrist joint position was altered during they were
attempting to move their wrist. The perceived wrist position was on the same
direction of an attempted action. Gandevia and colleagues concluded that motor

commands influence the perception of joint position (Gandevia et al., 2006).

2.8.2 The tools used to evaluate knee joint position sense

Many researchers had evaluated knee joint position sense with different
measuring tools, for example filming the picture or video, electrogoniometer, and
isokinetic machine (Smith et al., 2012). Despite different tools being used to evaluate
knee joint position sense, the methods used for recording knee joint angle were
quite familiar. Among these tools, filming the picture or video and the use of
electrogoniometer can be done in both weight bearing and non-weight bearing
position, while the isokinetic machine can be done only in sitting position. As
mentioned earlier, different testing position have influence upon the test result.
Hence, the researchers need to choose a tool that is appropriate with the test

position.

2.8.3 Test for movement sense

The kinesthetic sense or the movement sense is acceptably tested by the
process called “threshold to detect passive motion” (TTDPM) (Boerboom et al,,
2008; Friden et al., 2001). To test kinesthetic sense, specific designed equipment was
used to obtain accurate information. The participants were positioned in side lying
position while the knee was passively moved through flexion or extension.
Participants have to respond as soon as they perceive movement at the joint being
tested. The angular velocity between 0.5 to 2.5 degrees/second was used and
believed to maximally stimulate joint mechanoreceptors while minimally stimulate

muscle spindle (Friden et al., 2001).
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2.9 Conceptual framework
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Figure 2.1 The conceptual framework shows the consequences of knee

hyperextension



CHAPTER 3
MATERIALS AND METHODS

This study was an experimental study aimed to study the postural control via
neuromuscular control and ability to detect knee joint position between normal
knee and knee hyperextension participants. The criteria for selecting participants,

materials used and data collection were reported in the following sections.

3.1. Participants

Healthy female participants who were eligible for the study protocol were
recruited. All of them were the undergraduate and post-graduate students from the
universities in Thailand. All participants were informed about testing procedure prior

to the study, the criteria for participant recruitment were as the following.

3.1.1 Inclusion criteria

1. Female participants aged between 18 and 30 years old.
2. Body mass index less than or equal to 23.5 kg/mz.

3. Normal knee alignment group demonstrated bilateral knee angle

during standing more than zero degree.

4. Knee hyperextension group demonstrated bilateral sagittal knee angle

during standing 10 degrees beyond anatomical position.
5. No history of knee joint injury or surgery during the past 12 months.

6. No other injury related to any joints of lower extremities during the
past 12 months.

7. No systematic diseases that may disturb muscular functions and

proprioceptive system.

8. No regularly participating in any sport or creational activity more than

three times a week.
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3.1.2 Exclusion criteria

1. BMI exceeded 23.5 kg‘/m2

2. Any existing pain in lower back or lower extremities.

3. Injuries of lower back or lower limb during the past 12 months.
4. Demonstrated or complained signs of vertigo.

5. Visual problems except that could be corrected with eye glasses or

contact lens.
6. Demonstrated or complained signs of sensory disturbance.

7. Participants who had been taking any medication with sedative effect
or known medications that would affect postural control ability within 24

hours prior to testing.
8. Participants who consumed alcohol within 24 hours prior to testing.

9. Unable to stand either on foam surface or eyes closed condition

without assistance for at least 30 seconds.

3.2 Screening test

Participants who met all inclusion criteria and free from exclusion criteria
were then screened to eliminate any possibility to have knee ligament injury or other
factors that could confound research results. If participants met only one positive
results of the screening test they would not be able to participate in this study. The
participants were informed the testing procedures prior to establish each screening

test. The screening tests were as follow:

3.2.1 Lachman’s test

The Lachman’s test was used to test the integrity of the ACL. First, knee joint
was held in 30° of knee flexion. The upper hand of examiner placed on the lateral
aspect of thigh above knee joint, the other hand placed on the medial surface of the
tibia bone with thumb near joint line. Participants were asked to relax, and then
researcher gently lifted the lower leg upward as trying to separate the joint in the

anterior direction.
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3.2.2 Reverse Lachman’s test

The Reverse Lachman’s test was used to test the integrity of the PCL. To
test, knee joint was held in 30° of knee flexion. The upper hand of examiner placed
on the lateral aspect of thigh above knee joint, the other hand placed on the medial
surface of the tibia bone with thumb near joint line. Asking the participants to relax,
then researcher gently pushed the lower leg downward as trying to separate the joint
in the posterior direction.

3.2.3 Valgus stress test

The valgus stress test was used to test the integrity of the medial collateral
lisament. With knee joint in full extension, researcher placed one hand at the lateral
surface of the knee joint with the other hand at the distal tibia. Then, the abduction

force was applied attempting to move the knee into abduction.

3.2.4 Varus stress test

The varus stress test was used to test the integrity of the lateral collateral
licament. With the knee joint in full extension, researcher placed one hand at the
medial surface of the knee joint with the other hand at the distal tibia. Then, the

adduction force was applied attempting to move the knee into adduction.

3.2.5 Leg length discrepancy

The leg length was measured using a measuring tape from the anterior
superior iliac spine (ASIS) to the medial malleolus, the difference between left and
right leg was then determined. If the difference exceeded 2 centimeters, that

participant could not participate in this study.

3.3 The study variables
3.3.1 The primary variable: knee hyperextension angle

Knee hyperextension angle was measured in standing position. This angle is
formed between femur and tibia in sagittal plane. To measure the knee

hyperextension angle, participants were asked to stand quietly and look straight
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ahead while the researcher was performing the measurement. First, the following
anatomical landmarks were localized and marked with a marker pen: (1) greater
trochanter of femur, (2) lateral epicondyle of femur, and (3) the most prominent part
of the lateral malleolus. The standard goniometer was used to measure this angle.
Using the lateral epicondyle of femur as a fulcrum, the stationary arm was fixed in a
line connecting between the greater trochanter and the fulcrum, and the movable
arm was then adjusted to the line connecting between the lateral malleolus and the
fulcrum. This sagittal knee angle data was used to discriminate participants into

normal knee alignment or knee hyperextension group.

3.3.2 Associative factors

The following measurements was taken to determine the dominant limb and
identify the associative factors that could potentially affect neuromuscular activity of
the lower limb which include lower limb alignment and muscle strength of the non-
dominant limb. The lower limb characteristics were concerned since it may affect

postural control ability of each individual.

3.3.2.1 Dominant lower limb

The dominant lower limb was determined as the lower limb that was
used to perform at least 2 out of 3 of the following tasks: kicking a ball, picking up a
small object from floor with their toes, and tracing shape on the floor. These three
tasks were chosen because they had been proved to be moderate to high reliable in

determining dominant lower limb (Schneiders et al., 2010).

3.3.2.2 Femoral anteversion angle

Participants were positioned in prone lying with the knee flexed to 90
degrees, the examiner passively rotated hip joint until greater trochanter was
palpated to be at the most lateral position. The femoral anteversion was then
measured between the imaginary line in vertical plane and the shaft of the tibia with

a standard goniometer.
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3.3.2.3 Anterior pelvic tilt angle

The anterior pelvic tilt was measured while participants were in
standing position. The angle was formed between an imaginary line in horizontal
plane and a line from anterior superior iliac spine to posterior superior iliac spine.

This angle was measured with an inclinometer.

3.3.2.4 Tibiofemoral angle

With participants in supine lying position, tibiofemoral angle was
measured with standard goniometer. This angle was formed between two imaginary
lines. The first line began at midway between anterior superior iliac spine and
greater trochanter to the center of knee joint, the other line was drawn from the

center of knee joint to the center of ankle joint.

3.3.2.5 Navicular drop

Navicular drop was the difference of navicular height during non-
weight bearing and weight bearing position, which was measured with a straight edge
ruler in standing position. The navicular height was first measured during participants

were sitting and later while they were in a standing position.

3.3.2.6 Muscle strength

The muscle strength of knee extensor, knee flexor, ankle dorsiflexor
and ankle plantar flexor muscles were measured with hand held dynamometer
(Lafayette® Manual Muscle Test System) within 15 degrees of passive knee extension.
Each muscle was tested under isometric contraction which lasted for 5 seconds,
repeated 3 times with 60 seconds rest between each contraction. The 60 seconds
rest interval was enough for strength recovery in young adults (Parcell et al., 2002).
The muscle strength might be one predictor among the predictors of how individual
controlled their knee position. The starting positions used in the study may not be
the recommended position in the standard manual muscle test, however, the

researcher attempted to control the length of the hip muscles.
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Knee extensor and ankle dorsiflexor strength were measured in supine
lying position. After the knee joint was set to the desired position, the hand held
dynamometer was placed over anterior aspect of the ankle joint and participants
were asked to maximally extend their knees to measure knee extensor strength.
Afterward, the hand held dynamometer was placed over the dorsal aspect of the

foot to measure the ankle dorsiflexor strength in the same manner.

Knee flexor and ankle plantar flexor strength were measured in prone
lying position. After the knee joint was set to the desired position, the hand held
dynamometer was placed over posterior aspect of the ankle joint and asked
participants to bend their knees against the hand held dynamometer to measure
knee flexor strength. The ankle plantar flexor was then measured by asking
participants to maximally push their balls of foot against the hand held

dynamometer.

The position of hip and knee joints may influence upon the length of
quadriceps and hamstrings muscle. Hence, the supine and prone lying positions

were chosen to control the hip and knee joints position.

3.4 Instrumentation

Muscle activities were recorded with surface EMG system (TeleMyo 2400T G2,
Noraxon, Scotsdale, AZ), with unit specification as follow: input impedance of 100
mega ohm, common mode rejection ratio 100 dB, baseline noise less than 1 pV RMS,
signal gain of 500. All channels had sampling frequency set to 1000 Hz. The signal
displayed via 16 bit resolution A/D convertor. Self-adhesive Ag-AgCl disc surface
electrodes (Ambu® Blue Sensor P Model, ref: P-00-S/50) with the diameter of 1

centimeter were used to collect EMG signal.

The electrogoniometer (SG 150, Biometrics Ltd. Blackwood, Gwent, UK) was
used to record and report the knee joint angle throughout the testing session. The
accuracy of + 2 degrees over the range of 90 degrees was reported in the manual
guideline and the repeatability was better than + 1 degree. The electrogoniometer

used in the study was light-weight and easy operated.
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The cushions used in the study were T-foam™ cushion with medium density
(AlimedInc., High Street, Dedham, Massachusetts, United State). Ten sheets of 1
centimeter thick T-foam™ were packed in a pliable fabric case to be able to perturb
balance. The strips painted with a permanent marker pen were on top of the pliable

fabric case to indicate the feet position for the participants.

During postural adjustment data collection, the digital video camera (Cannon
s90, Japan) with recording frame rate of 30 frames per second was also used to
capture all events that might help the researcher to identify the strategies used by
the participants.

Hand held dynamometer (The I_afayette® Manual Muscle Test System,
Sagamore Parkway North, USA) was used to measure muscle strength. This device
can measure muscle strength range between 0 and 136.1 kg. Testing duration can be
adjusted from 1 to 10 seconds with 1 second increments. The accuracy of this

dynamometer ranges between + 1% over full scale.

3.5 Electrodes placement for EMG recording

Seven muscles were chosen to study lower limb muscle activation pattern;
(1) tibialis anterior, (2) medial gastrocnemius, (3) vastus lateralis, (4) rectus femoris, (5)
vastus medialis, (6) medial hamstrings, and (7) lateral hamstrings. Before applying the
electrodes, the skin was rubbed with alcohol for skin preparation. The ground
electrode was placed over tibial tubercle. Two recording electrodes were placed
with center-to-center 2 centimeters apart over musculotendinous junction. The
orientation of electrode was aligned with the muscle fiber arrangement to maximize
signal recording (Figure 3.1). All electrode placements were confirmed with manual

muscle testing and checked for crosstalk.

3.6 Electrogoniometer placement

To collect the knee joint angle, zero setting was performed before the
application of the electrogoniometer to the participants. This allowed researcher to
compare the actual knee joint position among participants. The sampling frequency

was set to 1,000 Hz along with the frequency of the electromyography since the
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electrogoniometer and the surface EMG system were needed to be synchronized.
The electrogoniometer was placed over the lateral aspect of the non-dominant knee
joint. The fixed end-block was placed over the imaginary line between the greater
trochanter and the lateral condyle of the femur. The telescopic block was placed
over the imaginary line between the head of fibula and the most prominent part of
the lateral malleolus. The two-sided adhesive tape was used to secure the
electrogoniometer in place. The positive values represented knee flexion while the

negative values represented knee extension.

Figure 3.1 Electrode placement; (left) anterior aspect, (right) posterior aspect.

3.7 Testing procedures
3.7.1 Postural adjustment and muscle activation pattern

Lower limb muscle activities and postural adjustment were recorded with

electromyography, electrogoniometer and video camera under 4 test conditions;
= Condition 1: Firm surface with eyes open (Firm-EO)
- Condition 2: Firm surface with eyes closed (Firm-EC)
- Condition 3: Foam surface with eyes open (Foam-EO)

- Condition 4: Foam surface with eyes closed (Foam-EC)
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The first condition served as a reference condition. Another three conditions
then were randomly selected during data collection to avoid effect of training with 2
minutes rest between each condition. For both eyes open conditions, participants
were asked to look straight ahead at a fixed point on the wall two meters away to
stabilize their gaze and head movements. During all tests, participants stood with
feet on marked points with the distance ranged between 20 and 26 centimeters to

ensure the same foot placement among testing conditions (Figure 3.2).

Figure 3.2 EMG and knee joint angle data recording during standing on firm

(left) and foam (right) surfaces.

To collect the data on foam surface conditions, participants were asked to
stand next to the foam and the data collection was then started for a few seconds
before the researcher asked them to step on the foam. This procedure allowed the
researcher to observe pattern of muscle activity during changing supporting surface
from stable to unstable surface. The software markers were used to indicate the
time point when participants’ feet were on the foam or when they were told to
close their eyes. Each condition was recorded for 30 seconds and repeated twice.
During data collection, video camera was also used to capture all events. The
position of the camera was set perpendicularly at the same level of participant’s
knee joint with the distance of 2 meters. The muscle activity and knee joint angle

were recorded synchronously.
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3.7.2 Knee joint position sense testing

For the knee joint position sense testing, the researcher chose the ipsilateral,
active limb reposition matching task in weight bearing position. The reference angle
was set to 15 degrees from the knee extension angle measured during the screening
session of each participant. The participants were asked to stand on their non-
dominant legs while their hands touched on the backrest of a chair and slowly bent
their knees to the reference angle. After the knee reference angle was reached, the
participants held that position for 4 seconds. Verbal command was used to
encourage participants to remember the position of their knee joint and without
mentioned another joint position. Once the participants returned to the starting
position, they were allowed to rest for at least 10 seconds before starting the next
test. All testing were performed with the eyes closed. Three successive trials were

needed to accomplish the testing session.

3.8 Outcome measurements

The outcome measurements of this study included lower limb muscle
activities and muscle activation patterns during quiet stance from 4 conditions using
surface electromyography. The muscle activities of (1) tibialis anterior, (2) medial
gastrocnemius, (3) vastus lateralis, (4) rectus femoris, (5) vastus medialis, (6) medial
hamstrings, and (7) lateral hamstrings were of interest. In addition, postural
adjustment determined as knee joint angle in sagittal plane was also reported using
the data from the NoraxonTeleMyo 2400T G2 software and video files from the
recording camera. The average knee joint angles during 30 seconds of recorded data

were reported, showing average trend toward flexion or extension.

The ability to match knee joint position in standing position or joint position
sense were reported as (1) absolute error, (2) relative error, and (3) variable error.
The absolute error represented the signless arithmetic difference between reference
angle and re-position angle. The relative error represented the arithmetic difference
between reference angle and re-position angle. The negative value indicated an
underestimate response and positive value indicated an overestimate value of the
re-position angle. The variable error represented joint position sense reliability, this
value was calculated from the standard deviation from the mean of each set of

three relative errors (Stillman and McMeeken, 2001).
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3.9 Data processing

The raw EMG signals from seven muscles were filtered between 20 and 500
Hz, full-wave rectified, and smoothed with a time constant of 50 ms. The data were
then stored in the personal computer for offline analysis. For this study, the
maximum voluntary contraction (MVC) was not used to normalize the muscle activity
because the EMG amplitude obtained from the MVC would be too high to compare
with small EMG amplitude during quiet stance. The EMG amplitude data from two
trials of each muscle and each condition were averaged and then normalized with
the mean amplitude of reference condition. Then the results were reported as
percentage increase or decrease from the Firm Eyes-open condition. The pattern of
muscle activity of each condition was displayed and reported as a column graph to
compare muscle activity pattern between the normal and knee hyperextension
groups. This report might provide just an over-view of muscle activity whether there

was a difference control strategy between the two groups.

3.10 Statistical analysis

The statistical analysis was performed with SPSS version 17.0 for Windows.
The Shapiro-Wilk test was used to test normality of all variables. A normal
distribution of the data was found, the independent sample t-test was then used to
compare participant’s characteristics and the errors from knee joint position sense
testing. The two way mixed analysis of variance (two-way mixed ANOVA) was used
to determine whether there was any difference between groups for muscle activity
and knee joint postural adjustment. Significant level of 0.05 was considered to be a

real difference between groups.

3.11 Ethical consideration

The study protocol was approved by the Ethnic Review Committee for
Research Involving Human Research Subjects, Health Science Group, Chulalongkorn
University with the certificate of approval number 113/2012 (see APPENDIX A - B). All
participants who agreed to participate in this study gave the informed consent form
prior to the data collection. The study results were presented in terms of qualitative
descriptions and quantitative values. All participants’ information was kept

confidentially.



CHAPTER 4
RESULTS

4.1 Participant’s characteristics

Thirty-six female participants were recruited in this study (18 normal knee

participants and 18 hyperextended knee participants). Statistical analysis revealed no
significant differences between the two groups in all variables. Most of the

participants were right leg dominance, only one participant from the knee

hyperextension groups was left leg dominant. The participant’s characteristics data

were reported in Table 4.1.

Table 4.1 Participant’s characteristics

Normal
Characteristics Hyperextended p value
(n=18) (n=18)
Age (year) 21.56 + 2.57 22.00 + 2.97 0.634
Weight (kg) 50.16 + 4.61 50.67 + 4.85 0.750
Height (cm) 162.94 + 0.06 161.50 + 0.05 0.418
Body mass index (BMI) (kg/mz) 18.87 + 1.24 19.44 + 1.85 0.293
Non-dominant limb
Right 0 1 -
Left 18 17

Note: Data were reported in mean * standard deviation



39

4.2 Knee joint angle and postural adjustment
4.2.1 Comparison of the knee joint angle between groups

The data of knee joint angle in each standing condition demonstrated similar
kinematics responses when the postural control system was more challenged. The
participants in both groups tended to flex their knees. However, the knee
hyperextension group had their knees further extended in the Firm-EC condition.
The average knee joint angles of 30 seconds data recording were reported in Table
4.2.

Table 4.2 Knee joint angle (degree) in each standing condition of normal and

hyperextended knee groups

Conditions Normal Hyperextended
Firm-EO 2.20 + 2.20 -14.80 + 2.93
Firm-EC 252 + 255 -15.29 + 3.86
Foam-EO 259 + 245 -14.55 + 3.69
Foam-EC 3.19 + 270 -13.83 +3.84

**The minus values represent the position of the knee in extension position.

**The positive values represent the position of the knee in flexion position.
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4.2.2 Comparison of the knee joint angle within group

Within-group analysis showed that knee flexion angle tended to increase with
sensory disturbance in both groups except for the Firm-EC condition in
hyperextended knee group. Knee angle did not significantly vary in the normal knee
group, whereas the hyperextended knee group showed significantly lower knee
angles in the Foam-EC condition than in the Firm-EC condition (p = 0.003) as shown
in Table 4.3.

Table 4.3 Within-group comparison of the knee joint angles during four standing

conditions of the hyperextended knee group

Conditions p value

Firm-EO 1.000

Firm-EC Foam-EO 0.065
Foam-EC 0.003**

** Significant difference at the level of p < 0.05



41

4.3 Muscle activity of the lower limb
4.3.1 Level of muscle activity

Seven lower limb muscles were chosen for EMG recording as they affected
movement of the knee joint. Two-way mixed ANOVA revealed that all muscle
activities were changed. However, there was no significantly difference in muscle
activities between groups in all standing conditions except for the medial hamstrings
muscle in the Firm-EC condition. During the Firm-EC condition, the hyperextended

knee had greater medial hamstring activity than the normal knee group (p < 0.05).

The two-way mixed ANOVA revealed that there was no group x condition
effect and group main effect for all muscle activity. There was condition main effect
for tibialis anterior muscle (F, 102 = 26.678, p < 0.01), medial gastrocnemius muscle
(Fs, 102 = 15.652, p < 0.01), vastus medialis oblique muscle (F(s g3 = 15.133, p < 0.01),
rectus femoris muscle (Fg, 99) = 17.902, p < 0.01), vastus lateralis muscle (Fg g7) =
21.211, p < 0.01), medial hamstrings muscle (F( 102 = 24.196, p < 0.01), and lateral
hamstrings muscle (Fg, 99) = 15.503, p < 0.01). Post hoc analysis was then performed

to find out which conditions caused these muscle activity differences.

Post hoc analysis showed that the following muscle activities were
significantly different between the Firm-EO and Foam-EO conditions; tibialis anterior
(p < 0.01), medial gastrocnemius (p < 0.05), vastus medialis oblique (p < 0.05), rectus
femoris (p < 0.01), vastus lateralis (p < 0.01), and lateral hamstrings (p < 0.05).

Comparing between the Firm-EO and Foam-EC conditions, post hoc analysis
revealed the difference of the following muscle activity; tibialis anterior (p < 0.01),
medial gastrocnemius (p < 0.05), vastus medialis oblique (p < 0.01), rectus femoris (p
< 0.01), vastus lateralis (p < 0.01), medial hamstrings (p < 0.01), and lateral
hamstrings (p < 0.01).

Comparing the muscle activity between the Firm-EC and the Foam-EO
conditions, post hoc showed that the muscle activity of the tibialis anterior (p <
0.01), rectus femoris (p = 0.01), and vastus lateralis (p < 0.05) were significantly

different between standing conditions.
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During the Firm-EC and the Foam-EC conditions, post hoc analysis showed
that the following muscle activities were significantly different; tibialis anterior (p <
0.01), medial gastrocnemius (p < 0.01), vastus medialis oblique (p < 0.01), rectus
femoris (p < 0.01), vastus lateralis (p < 0.01), medial hamstrings (p < 0.01), and lateral
hamstrings (p < 0.01).

Lastly, post hoc analysis showed that the following muscle activities were
significantly different between the Foam-EO and the Foam-EC conditions; tibialis

anterior (p < 0.01) and medial hamstrings (p < 0.01).
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Figure 4.1 Percentage of muscle activity of normal knee participants during quiet

stance in four conditions.

The Firm-EO condition served as a reference condition, thus all data were set
to 100%. For another three conditions, the data reported an increase or decrease

muscle activity due to change in postural perturbation.
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Figure 4.2 Percentage of muscle activity of hyperextended knee participants during

quiet stance in four conditions.

The Firm-EO condition served as a reference condition, thus all data were set
to 100%. For another three conditions, the data reported an increase or decrease

muscle activity due to change in postural perturbation.



4.3.2 Comparison of muscle activities within group
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Table 4.5 — 4.6 presented the data comparing mean + SD of percentage of

muscle activities within normal and hyperextended knee groups, respectively.

Table 4.5 Within-group comparison of mean = SD of percentage of muscle activity of

the normal knee group in each standing condition

Muscles

Percentage of muscle activity (% Firm Eyes-open)

Firm Eyes-closed

Foam Eyes-open

Foam Eyes-closed

Tibialis anterior

104.09 + 26.78'

34827 + 344.79"

476.97 + 432.10°

Medial gastrocnemius

102.07 + 21.41"

178.79 + 104.64"

254.19 + 153.98

Vastus medialis oblique

116.38 + 53.01

258.51 + 250.55

297.49 + 224.02

Rectus femoris

129.37 + 93.20'

323.32 + 376.23

391.94 + 340.19°

Vastus lateralis

132.80 + 81.63'

340.51 + 314.60"

434.09 + 324.16°

Medial hamstrings

114.42 + 36.26'

229.76 + 177.63

404.17 + 315.19°

Lateral hamstrings

130.56 + 88.89

216.30 + 171.81"

261.85 + 165.45

¥ Significant difference between the Firm-EO and Foam-EO conditions the level of p < 0.05

§ Significant difference between the Firm-EO and Foam-EC conditions at the level of p < 0.05

|| Significant difference between the Firm-EC and Foam-EC conditions at the level of p < 0.05

9 Significant difference between the Foam-EO and Foam-EC conditions at the level of p < 0.05
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Table 4.6 Within-group comparison of mean + SD of percentage of muscle activity of

the hyperextended knee group in each standing condition

Muscles

Percentage of muscle activity (% Firm Eyes-open)

Firm Eyes-closed

Foam Eyes-open

Foam Eyes-closed

Tibialis anterior

112,32 + 47.35

315.22 + 285.16

545.07 + 419.18°

Medial gastrocnemius

146.89 +121.03

23529 + 273.80"

32531 + 34513

Vastus medialis oblique

111.82 + 4123/

260.53 + 21351

437.07 + 479.43°

Rectus femoris

109.64 + 48.08"

297.68 + 237.10"

402.50 + 394.00°

Vastus lateralis

112.03 + 80.24"

250.75 + 223.80

373.57 + 284.53

Medial hamstrings

192.14 + 156.18"

199.88 + 134.11"

626.82 + 549.60°

Lateral hamstrings

145.50 + 120.06'

200.06 + 86.43

363.75 + 323.75

1 Significant difference between the Firm-EO and Firm-EC conditions at the level of p < 0.05

¥ Significant difference between the Firm-EO and Foam-EO conditions the level of p < 0.05

§Significant difference between the Firm-EO and Foam-EC conditions at the level of p < 0.05

||Significant difference between the Firm-EC and Foam-EC conditions at the level of p < 0.05

9 Significant difference between the Foam-EO and Foam-EC conditions at the level of p < 0.05
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4.3.3 Pattern of lower limb muscle activity

The following figures illustrasted the patterns of muscle activity of two groups
of the participants.
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Figure 4.3 (a,b) The patterns of lower limb muscle activity of the normal (4.3a) and

the hyperextened knee group (4.3b) in the Firm-EC condition.

The medial hamstrings muscle and medial gastrocnemius muscle of the
hyperextended knee group were activated with higher percentage than the normal
knee group, while the activity of quadricep muscles of the normal knee group were

activated more than the hyperextended knee group, though no significant difference

was found.
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Figure 4.4 (a,b) The patterns of lower limb muscle activity of the normal (4.4a) and

the hyperextened knee group (4.4b) in the Foam-EO condition.

The muscle activaties of both groups were activated with the same pattern.
The tibialis anterior muscle was activated with the highest percentage compared to
the activity of the same muscle from the Firm Eyes-open condition. The quadriceps

muscles group were on the second rank.
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Figure 4.5 (a,b) The patterns of lower limb muscle activity of the normal (4.5a) and

the hyperextened knee group (4.5b) in the Foam-EC condition.

The pattern of lower limb muscle activation of the normal knee group was
similar to those pattern in the Foam Eyes-open condition of their own group but with
higher percentage of activation. For the hyperextended knee group, the activation
pattern changed. The medial hamstrings muscle activity was activated with the
highest amplitude among the seven muscle studied, followed by the tibialis anterior

muscle.
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4.4 The knee joint position sense testing

Considering the relative error, participants were likely to over-estimate the
reference position as the results were presented with positive values. The
independent sample t-test revealed significant difference for the variable error
between groups (p = 0.017). The results of all outcomes for the active limb

reposition test were reported in table 4.5.

Table 4.7 Comparison of Joint position sense errors

Types of error Normal Hyperextension p value
Absolute error 290 + 1.84 3.93 + 2.86 0.210
Relative error 201 + 2.67 1.26 + 4.75 0.564
Variable error 3.04 + 0.51 4.95 + 0.68 0.017%**

** Significant difference at the level of p < 0.05



CHAPTER 5
DISCUSSION

This study aimed to explore the effect of body alisnment, specifically the
knee hyperextension, on the postural control of quiet stance. The role of the knee
joint in maintaining the stance stability and the different capability between female
with and without knee hyperextension were studied. The ability to detect knee joint

position sense was also investigated.

Participants in this study were recruited from the universities in Thailand. The
participants’ characteristics were similar between groups. These results ensured us
that the factors related to postural control ability were similar in both groups.
Besides, the decision had been made that the age of the participants should not
exceed thirtieth in order to avoid the potential of having degenerative changes of the
knee structures. In this chapter, the results were discussed; (1) the knee joint
involved in the postural control, (2) the neuromuscular control about the knee joint,
and (3) the ability to detect knee joint position sense. Furthermore, the relationship
between the knee joint position sense and the ability to control stance stability was

also discussed.

5.1 Knee joint and postural adjustment

Our results indicated that the postural adjustment did present at the knee
joint as it had been reported in other studies (Fransson et al., 2007; Gage et al., 2004,
Gunther et al., 2009; Hsu et al,, 2007). The earlier studies of quiet stance mostly
relied on the inverted pendulum model (Horak, Nashner, and Diener, 1990; Winter,
1995). The researchers believed that the control about the ankle joint and its
passive musculoskeletal component were essential and sufficient for the control of
quiet stance (Winter, 1995). In accordance with those studies, the video that was
recorded during the data collection showed that the pattern of postural response
resembled the shape of an inverted pendulum, and movement strategy prominently
observed at the ankle joint. However, two postural strategies about the knee joint

were observed, flexing or extending the knee joint.
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The authors hypothesized that the participants in the hyperextended knee
group would demonstrate different postural adjustment of the knee joint from the
normal knee group. However, the postural responses observed in the
hyperextended knee group were similar to those of the normal knee group. Some of
the participants had their knees flexed as the postural challenge was increased while
the other participants had their knees further extended. Seven participants from the
normal and ten participants from the hyperextended knee groups further extended
their knees in the Firm-EC condition. During the Foam-EC condition, only three
normal knee participants and five knee hyperextension participants had their knees
extended compared to the knee joint angle in the Firm-EO condition (see APPENDIX |
and APPENDIX J). The results demonstrated that the postural responses varied
among participants, even within the same group. Isableu and Vuillerme also
reported that the relationship between kinesthetic relationships and postural control
of 140 participants varied from one participant to another (Isableu and Vuillerme,
2006).

The postural control system allows individual to choose degrees of freedom
that appropriate to the sway direction. It also depends on the environmental
constraint and the task being performed (Shumway-Cook, 2007). Thus, for the knee
joint, there are two movement directions to be chosen from, flexion or extension,
which might depend on ones’ experience and their choice of stability (Horak, Diener,
and Nashner, 1989).

The adopted knee flexion strategy lowered the body CoM and increased the
stance stability. Pereira and colleagues demonstrated a better stability when slightly
knee flexion was permitted while measuring stability on the Biodex Stability System
(Pereira et al,, 2008). An increasing number of the participants who had their knees
flexed in the Foam-EC condition supported this idea and might reflect a more
advantage strategy when coping with postural challenge. Despite increased knee
flexion angle was found, it was not known whether the CoM could be lowered as
suggested in the literature because the changes in knee flexion were small.
Moreover, the knee joint angle of the knee hyperextension group remained
hyperextended. It was suggested that the movements of the knee joint drastically
cooperated with the mechanical dynamics of quiet stance (Gunther et al., 2009) and

might keep the control system to track the body CoM more consistently (Gage et al,,
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2004). The control system might be benefited from this slightly knee flexion as the
selection of movement directions could be chosen more promptly to counteract

with the sway. Even though the knee flexion strategy might allow a better stability,
an alternative knee extension response might provide another choice of stability to

the control system.

The reason that individuals chose knee extension response during sensory
perturbation might be explained by the speculation of close packing mechanism (Di
Giulio et al., 2013) which put the knee in the most stable position. Moreover, Burke
and colleagues as well as Nade and colleagues showed that the proprioceptive
afferent output from capsular, ligamentous, and muscular mechanoreceptors
increased exponentially as these structures were lengthened especially when the
joint was moved near the end of physiological range (Burke, Gandevia, and Macefield,
1988; Nade, Newbold, and Straface, 1987). An increased proprioceptive input might
be helpful for the CNS to track the body motions easier. The study by Lackner
indicated that the perceptual representation of the shape of the body was highly
modifiable (Lackner, 1988). Thus, participants who had their knees further extended
might sought for an increase proprioceptive input as to create a new exact reference
body position and to keep the internal representation updated. An alternative
hypothesis would be that the sensory perturbations were not strong enough to

cause the postural strategy to change.

The authors found a significant difference between the knee joint angle in the
Firm-EC and the Foam-EC conditions for the hyperextended knee group (p = 0.003).
This result might indirectly suggest that individuals with knee hyperextension more
likely relied on the visual inputs more than normal knee participants. Once the
vision was eliminated in the Firm-EC condition, the sensory reweighing mainly toward
the somatosensory system was likely to occur (Creath et al., 2002) since the
capability of the vestibular system would not contribute much to the control
process of quiet stance during standing on the firm surface. The number of the
participants who chose knee extension responses was most evidenced in the Firm-EC
condition for both groups. The somatosensory input provided the most useful and
reliable information and was the primary contribution of the control of quiet stance
(Riemann and Lephart, 2002). Hence, an increase of the knee extension response as

to raise the sensory input might be the choice of stability which the control system
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chose. Hsu and colleagues reported that the joint configuration variance increased
when the vision was eliminated. The joint configuration variations might increase the
sensory inputs, adding more information to the control system (Hsu et al., 2007;
Krishnamoorthy, Yang, and Scholz, 2005). The more information the control system
had, the easier to track the body CoM.

However, during the Foam-EC condition, when the somatosensory
information was unreliable and the visual information were absent, the torque about
the ankle joint was unable to effectively correct the position of the body. The
vestibular system became the only reliable source of sensory information left.
Accurate sensory information from the vestibular system allowed the participants to
perceive the verticality and head movement, hence the participants could detect
and estimate the body sway direction (Shumway-Cook, 2007). In this situation, the
normal knee group gained advantaged over the hyperextended knee group since the
capability in detecting the knee joint position sense was better. The hyperextended
knee group might have less accurate sensory information and needed more muscular

control over the knee joint.

The knee joint postural responses were clearly elicited when participants
stood on the foam surface than the firm surface. Fransson and colleagues reported
that when standing on the foam surface, the multi-segment movement pattern was
more obviously evidenced than when standing on the firm surface. They also found
that movements of the knee joint were significantly higher than those of the hip joint
(Fransson et al., 2007). The results of the current study indicated that the mean
change of knee joint angle was trended toward flexion response which was in
accordance with the study of Siqueira and colleagues (Siqueira et al., 2011). Even
though the current study was mainly concerned about the knee joint postural
response, the postural response of other joints were not known and were needed to
be taken into account to fully understood the whole biomechanical aspect of quiet
stance. The study by Gunther and colleagues found coupling movements of the
ankle and knee joints, also their torques (Gunther et al., 2009), suggesting that
controlling the quiet stance by adjusting the movement of the lower limb was
essential. Once the alignment of the knee joint changed, the coupling movement as

well as the torque coupling might be interrupted, leading to poor stance stability.
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The knee joint postural adjustment observed when the sensory information
was limited in the normal and hyperextended knee groups were comparable.
However, the neuromuscular control revealed the difference in the medial
hamstrings muscle as discussed below. Note that the patterns of knee joint postural
responses were different from the well-known ankle and hip strategies. Hence, the

patterns of knee muscle activation were different as well.

5.2 The neuromuscular control of the knee joint

In this study the authors used the muscle activity from the Firm-EO condition
as a reference value to normalize the muscle activity from other standing conditions.
In this case, we could not compare the pattern of muscle activity in normal standing
condition between groups. All results only suggested the ability to recruit or de-
recruit motor units when the postural demand was challenged. Our results revealed
that healthy females with knee hyperextension were able to modulate muscle
activities according to the postural demand similar to the normal knee participants
when the visual information was presented. On the other hand, when the
somatosensory and visual information were perturbed, the hyperextended knee

participants elicited different muscle activation patterns.

5.2.1 Medial hamstrings muscle and the movement control of knee joint

Seven muscles around the knee joint were chosen as they had influence on
the movements of the knee joint. All muscle activities were found increased when
the level of postural challenge was increased in both normal and hyperextended
knee groups. Only the medial hamstrings muscle activities were found significant
difference between the two groups in the Firm-EC condition. An increasing medial
hamstrings muscle activity might reflect an increased postural demand and joint
protective mechanism. As the knee joint was further extended, the ligament or joint
proprioceptors firing rate was increased (Nade et al., 1987) and might activate the
hamstrings muscle response (Solomonow, 2006). The capsular-hamstrings reflex
response was the synergistic activity that aimed to prevent excessive anterior tibial
translation, hence prevented joint capsule and ligament damaged (Solomonow,
2006). Previously, Greenwood and co-workers compared the muscle activity of the
hypermobility syndrome individuals during bipedal and single leg stance, with or

without vision. They found that the semitendinosus muscle activity, as well as the
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erector spinae muscle activity, were significantly higher than normal participants in all
standing conditions. Greenwood and colleagues suggested that an increases
semitendinosus muscle activity was to compensate for joint instability (Greenwood et
al.,, 2011). However, the participants in this study were not diagnosed as having a
benign joint hypermobility syndrome. As a consequence, the muscles other than the

knee joint might not be affected.

Flaxman and co-worker identified the semitendinosus muscle to be a
moment actuator of the knee joint. The moment actuator means a muscle with
relatively high specificity and an asymmetrical activation pattern about its reported
moment arm orientation. Furthermore, the specific function of the semitendinosus
muscle was found when the leg was attempted to move in the posterior direction
with the foot restricted (Flaxman, Speirs, and Benoit, 2012). Considering the medial
hamstrings as @ moment actuator of the knee joint and its specific direction of
function, its role would be to internally rotate the tibia or preventing it from
excessive external rotation and anterior displacement. It was possible that an
increased medial hamstrings muscle activity during the Firm-EC condition would be
to respond to the screw-home mechanism, the tibia was externally rotated while the
femur internally rotated, in order to prevent excessive external rotation and increase
the knee joint stability (Masouros et al., 2010). In the other conditions, the knee
joints were moved into a more flex position, hence the tibia was not as externally
rotated as it was in the Firm-EC condition and the medial hamstrings muscle did not
necessarily be activated that much. However, the 3-dimensional study is needed to
prove that the external rotation movement of the tibia is correlated with an

increased medial hamstrings activity.

Di Fabio and colleagues found that the medial hamstrings muscle activation
was selectively activated during backward body sway in lax knee caused by the ACL
injury. Their results suggested that the motor command could be modified and
restructured by the presence of altered joint mechanoreceptors (Di Fabio et al,,
1992). As the hyperextended knee participants were less capable of perceiving the
exact knee joint position, the knee joint might not be as stable as when the vision
was presented. Selective recruitment of the medial hamstrings muscle into play

might be a consequence of knee hyperextension that caused the motor command
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to change. This might provide an additional joint stabilization strategy preventing

knee joint injury.

5.2.2 Patterns of muscle activation

Muscle co-activations of the limbs and trunk which are identified during the
control of quiet stance are called muscle synergy. A set or sets of muscle synergies
can be activated in response to the specific directional postural perturbation, muscle
activation pattern can then be defined as a consequence (Ting and McKay, 2007).
For example, during forward body sway, the ankle strategy usually evokes muscle
contraction on the posterior aspect of the trunk, while the backward body sway
evokes muscle contraction on the anterior aspect of the body (Creath et al., 2005;
Runge et al.,, 1999). However, the postural sway direction that is caused by the
absent of vision or an inaccurate somatosensation can hardly be predicted since the
movement direction of the body CoM quite varies. Furthermore, the diversity of
contracting muscles and timing of muscle contraction cause an equivalent
displacement of the body CoM. Thus, the pattern of muscle activation may vary
according to the CoM trajectories and may vary among people (Ting, 2007).
However, Horak and colleagues suggests that the complex pattern of muscle activity
remains unchanged but rather increases in magnitude of response when the stability
is perturbed in healthy participants (Horak et al., 1989). This notion is well suited
with the normal knee participants in the current study but not with the
hyperextended knee group. Considering the results of the normal knee group, the
muscle activation patterns were quite the same among conditions, only increased in

the level of muscle activity.

The current study demonstrated that the presence of knee hyperextension
caused the muscle activation pattern to differ from those of the normal knee group.
As the results from the study of Di Fabio and co-workers, the motor command could
be re-constructed and led to the modification of the muscle activation pattern (Di
Fabio et al.,, 1992). The muscle activation of the hyperextended knee group changed
with the present or absent of the vision. During the Firm-EC condition, vision caused
no significant difference on the muscle activity level of the normal knee group, while
there were some effects on the medial hamstring muscle of the hyperextended knee
group. On the other hand, when vision was eliminated in the Foam-EC condition,

the level of muscle activity was obviously affected. These results suggested that the
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normal knee participants relied on the sensory information that arose from the

somatosensory system more than the visual system and vice versa.

The alignment of the knee hyperextension was not only shifted in posterior
direction but concurrently occurred in the lateral direction as seen with the lower
tibiofemoral angle (see APPENDIX G). The lateral head of gastrocnemius muscle was
reported to be more stressful in the hyperextended knee (Fornalski et al., 2008;
Loudon et al.,, 1998; Tanamas et al.,, 2009). MaclLeod reported that the lateral head
of the gastrocnemius muscle and semitendinosus muscles were activated with high
percentage of MVIC when the participants were trying to move their legs in backward
movement direction with their feet were restricted with the ski boot attached to the
floor. These two muscles may be synergistic in internal rotation the tibia and
unlocking it (MacLeod et al., 2013). However, due to the limitation of the
instrument, the authors could not collect the muscle activity from the lateral
gastrocnemius muscle. The role of the lateral gastrocnemius is required to further
investigated.

5.3 Knee joint position sense was less reliable in hyperextended knees

The memory-based, ipsilateral active joint re-position matching task was used
to examine the ability to detect the knee joint position in weight bearing position.
While the variable error was found significantly different between groups, the
absolute error and relative error were not. The variable error, represented the
reliability of the individual in replicating the test angle (Stillman et al., 2002),
reflected that the individuals with knee hyperextension were less reliable when
performing joint position matching task. These results indicated that the capability in
detecting knee joint position of individuals with knee hyperextension was at least

comparable to but less reliable than those of the normal knee participants.

The earlier studies that aimed to compare the joint position sense in knee
hyperextension yielded conflict results (Loudon, 2000; Stillman et al., 2002). Loudon
reported that the women who habitually stood with their knees hyperextended,
more than 5 degrees, had a poorer ability in detecting knee joint position sense at 10
degrees of knee flexion (Loudon, 2000). On the other hand, Stillman and colleagues

found greater proprioceptive accuracy and reliability in the participants who
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exhibited knee extension more than 6 degrees beyond straight. However, the
position used to test the knee joint position sense could potentially affect the study
results (Stillman and McMeeken, 2001). Neither study tested knee joint position in
standing position. Loudon tested the joint position sense in supine position with
30% of body weight transmitted through the lower limbs, while Stillman tested in
sitting position. The difference of the test position might respond for the
inconclusive results. Besides, the test positions used were not relevant to the

control of the knee joint during quiet stance.

Our recent study was based on the notion that individuals with knee
hyperextension would have a deficient proprioception of the knee joint due to the
elongated ligaments and soft tissues of the knee (Loudon et al., 1998). For this
reason, the authors chose the test angle at 15 degrees from standing knee angle of
each participants that was measured during the screening session, assuming an equal
tension of the ligaments in the tested knee. However, the finding did not fully
support the idea. The peripheral receptors were range-specific activated, this was
known as “place code”. Furthermore, the changes of frequency of the firing rate
were coded as changes of joint position (Burgess et al., 1982). The actual length of
the lax ligament might be changed according to the stretched position of the knee
joint and caused the change of the place code as well as the frequency of the firing
rate to differ from its original length. The altered place and frequency code in the
hyperextended knee might be responsible for the difference of the variable error

between the two groups.

The explanation above would be well fitted to the main idea of the study if
the muscle spindle could not function properly. Stillman and colleagues proposed
that there was no proprioceptive deficiency in the hyperextended knee or the
deficient proprioception from the ligament was compensated by another
proprioceptive source like muscle spindles (Stillman et al., 2002). Moreover, the joint
or lisament proprioceptors were reported to have a small effect on joint position
perception (Burgess et al., 1982; Clark et al,, 1979). On the other hand, muscle
spindle was known and accepted for its contribution in proprioceptive function
(Burgess et al., 1982; Proske, 2006). The proof that revealed an outstanding role of
the muscle spindle was done by vibrating the relevant muscle tendon. Vibration

applied to the tendon of a muscle created movement illusion in the direction
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opposite to function of that vibrated muscle (Walsh et al., 2009). The changes of the
muscle spindle activity might generate more meaningful proprioceptive signal which

was more useful for the CNS to process and interpret the knee joint position.

Generally, the stretched or contracting muscle caused the firing rate of the
muscle spindle to increase. The changing of muscle spindle firing rate was perceived
by the CNS as the changing of the joint position (Burgess et al., 1982). During active
muscle contraction, the alpha-gamma motor neuron co-activation took place and
hence increased the proprioceptive information. Additionally, an active muscle
contraction generated the “efferent copy” as a feedback signal to the CNS, making
more proprioceptive information available for the comparison (Proske, 2006). Some
studies demonstrated a benefit from an increasing spindle discharge (Allen, Ansems,
and Proske, 2008; Ghiasi and Akbari, 2007; Stillman and McMeeken, 2001). Allen and
colleagues found that adding weight (10% or 25% of MVC) to the pre-conditioned
muscles could reduce the error from position matching task (Allen et al.,, 2008). The
studies that tested the knee joint positions sense in weight bearing position reported
smaller absolute error than non-weight bearing position (Ghiasi and Akbari, 2007;
Stillman and McMeeken, 2001).

Another reason that we did not found the difference of the absolute and
relative errors might be because we tested joint position sense on the non-dominant
limb which most of the participants were left side. Some studies pointed out that
the non-dominant lower limb were likely to be more specific for stability tasks
(Clifford and Holder-Powell, 2010; Schneiders et al., 2010). The brain imaging study
also revealed that the right hemisphere was dominant for processing and detecting
limb movements (Naito et al., 2005). These data emphasized the idea of
lateralization which meant that one might prefer to use one limb over the other
when performing a motor task. The superior ability of the right cerebral hemisphere
to process the proprioceptive information might reduce the error from the assumed-
damage proprioceptors in the hyperextended knee joint. As we tested the joint
position sense on the non-dominant leg, it might be under the influence of this
lateralization and caused non-significant difference of the absolute and relative errors

between groups.



62

To study the proprioceptive capability of the individuals with knee
hyperextension, we might need to consider both the peripheral and central
components of the proprioceptive system. The ability of the CNS to process and
differentiate the signals from various proprioceptive sources may be higher in the
right hemisphere. However, the methodology of the current study could not answer

this question.

5.4 The contribution of proprioception to knee joint postural adjustment

The sensory reweighting as the main process used by the CNS in order to
maintain a steady quiet stance position when task requirements and environmental
constraints change required sensory input from various sources (Isableu and
Vuillerme, 2006). The proprioceptive inputs, as the main contribution in postural
control, are used and interpreted by the CNS to coordinate movements of the body
and are useful for movement sequences (Cordo et al., 1994). How each individual
processes and responses to the proprioceptive information can be different among
one another (Isableu and Vuillerme, 2006). According to the results, ability to detect
knee joint position in individuals with knee hyperextension was comparable to the
normal participants. This might serve the hyperextended knee participants in
adjusting their knee joint postures not differ from the normal knee participants.
However, the present of the hyperextended knee position resulting in lower

reliability in detection of the knee joint position.

Considering the knee joint position sense as proprioceptive cues for adjusting
the movements of the body, the lower knee joint reliability might partly explained
the poorer postural control during quiet stance reported by Siqueira (Siqueira et al.,
2011). Moreover, the sequence of movement at other joints might also have been
changed according to the lower reliability of the knee joint position sense.
Nonetheless, the movements at other joints were not known and needed to be

further investigated.

5.5 Conclusion

The postural control, in term of knee joint postural adjustment of individuals

with knee hyperextension was similar to normal participants. Both groups
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demonstrated knee flexion response with sensory disturbance except the
participants in the knee hyperextension group during the Firm-EC condition. The
knee flexion responses found in the study might be a strategy chosen by the CNS in
order to lower the body CoM hence increased the stance stability, or the control
system prepared to counteract with the sway. Moreover, the slightly knee flexion
position increased degree of freedom which allowed more flexibility to respond to
the sway. On the other hand, the knee extension responses might help the
individuals to gain more somatosensory input and update the CNS with the exact
position of the knee joint. Though the knee flexion responses were observed, the
patterns of muscle activity were difference between two groups when the visual
information was eliminated. Furthermore, the joint position sense acuity of knee
hyperextension group was less reliable than the normal knee group. The cause of

the difference was unknown.

5.6 Clinical implication

The individuals with knee hyperextension should be informed about their
knee posture and the adverse consequences of the hyperextended position. Even
though the range of motion cannot be restored, they should be encouraged to
aware and to keep a proper position of their knee joints. In spite of less reliable in
detecting the knee joint position sense, these individuals were capable of detecting
the knee joint position. Hence, proprioceptive training along with muscle control
training should be cooperated into physical therapy program in order to regain knee
joint position sense acuity and to prevent the individuals with knee hyperextension

from knee injuries.
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30 days afier the completion of the research/project. For thesis, abstract is required and report within 30
days after the completion of the research/project.

Annual progress report is needed for a two- year (or more) research/project and submit the progress report
before the expire date of certificate. After the completion of the research/project processes as No. 6.
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APPENDIX D
DATA RECORDING SHEET
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YN e
Dominance leg left-right
Leg length cm
Lachman’s test +ve / -ve
Reverse Lachman’s test +ve / -ve
Valgus stress test +ve / -ve
Varus stress test +ve / -ve
Femoral anteversion Degree
Anterior pelvic tilt Degree
Knee hyperextension Degree
Quadriceps angle Degree
Tibiofemoral angle Degree
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NANTITATIVINNNY
N13M3IT319NY g ERENT)
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Navicular drop mm
Knee extensor strength ke
Knee flexor strength kg
Ankle dorsiflexor strength kg

Ankle plantar flexor /

g

strength
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APPENDIX E
PARTICIPANTS’ INFORMATION SHEET
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APPENDIX F
INFORMED CONSENT FORM
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APPENDIX G
LOWER LIMB ALIGNMENT

The following lower limb alignment data were recorded according to the
association found in anterior knee joint laxity individuals. These data served as
associative factors that might help the researchers to understand the different

muscle activity examined in this study.

According to the idea that body alignment contributes to postural control,
the different alignment at each joint may affect the muscle activity in one way or
another. The lower limb alignments that were measured in this study included
anterior pelvic tilt angle, femoral anteversion, tibiofemoral angle, quadriceps angle,
and narvicular drop. Only the tibiofemoral angle was found to be different between

the two groups. The lower limb alignment data were reported in Table Al.

Table A.1 Lower limb alignments

Groups
Muscle groups Normal Hyperextension p value
(Mean + SD) (Mean + SD)
Anterior pelvic tilt (degree) 12.22 + 5.08 12.78 + 3.59 0.707
Femoral anteversion (degree) 10.41 + 3.89 7.65 + 4.36 0.060
Tibiofemoral angle (degree) 11.44 + 2.89 8.89 + 3.66 0.026**
Quadriceps angle (degree) 27.44 + 4.41 2522 + 572 0.201
Navicular drop (mm) 422 +3.25 556 + 4.15 0.201

** Significant difference at p value < 0.05
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APPENDIX H
LOWER LIMB MUSCLE STRENGTH

Muscle strength is a component contributing the postural control. Four
groups of muscles were tested with hand held dynamometer for their strength.
These muscles groups included knee extensor muscles, knee flexor muscles, ankle
dorsiflexor muscle, and ankle plantar flexor muscles. An independent sample t-test
revealed significant difference of knee extensor strength between the two groups.

The mean and standard deviation of muscle strength were reported in Table A2.

Table A.2 Lower limb muscle strength

Groups
Muscle groups Normal Hyperextension p value
(Mean * SD) (Mean % SD)
Knee extensors (kg) 14.81 + 3.08 18.36 + 2.66 0.001%**
Knee flexors (kg) 20.30 + 3.25 21.62 + 3.29 0.242
Ankle dorsiflexors (kg) 13.90 + 3.51 15.99 + 2.68 0.052
Ankle plantar flexors (kg) 2391 + 2.85 25.65 + 3.55 0.129

** Significant difference at p value < 0.05



APPENDIX |

RAW DATA OF KNEE JOINT ANGLE OF NORMAL PARTICIPANTS

Table A.3 The mean angle (degree) of the knee joint across 2 trials during data

collection of normal knee participants

89

Conditions/
Participants Firm - EO Firm - EC Foam - EO Foam - EC
1 3.26 2.71 0.46 0.49
2 1.03 1.25 2.65 1.47
3 4.32 6.30 471 6.11
4 2.65 3.74 3.50 4.11
5 -0.08 -0.78 -0.47 -0.02
6 0.68 1.08 1.46 5.24
7 5.66 6.92 6.17 6.92
8 3.38 3.74 4.69 a.79
9 -1.41 -0.67 0.36 0.49
10 3.42 2.86 1.99 2.36
11 2.82 2.62 2.62 2.97
12 -0.89 -0.72 0.11 0.08
13 3.13 3.06 2.92 3.94
14 0.90 -0.42 -0.16 1.35
15 6.97 7.28 8.69 9.41
16 0.34 0.15 0.30 -0.23
17 1.12 2.58 2.39 3.69
18 2.28 3.66 4.22 4.28




APPENDIX J

RAW DATA OF KNEE JOINT ANGLE OF HYPEREXTENDED KNEE PARTICIPANTS

Table A.4 The mean angle (degree) of the knee joint across 2 trials during data

collection of hyperextended knee participants

90

Conditions/
Participants Firm - EO Firm - EC Foam - EO Foam - EC
1 -19.40 -19.10 -17.40 -16.70
2 -11.05 -10.20 -8.72 -9.32
3 -10.65 -9.96 -9.40 -9.42
a4 -12.75 -13.00 -9.47 -7.85
5 -14.20 -14.30 -14.90 -13.50
6 -17.50 -17.15 -17.40 -17.35
7 -13.55 -14.25 -14.95 -8.75
8 -13.75 -14.75 -13.55 -12.40
9 -15.50 -19.80 -16.90 -16.20
10 -20.30 -18.15 -16.50 -16.10
11 -16.30 -16.40 -16.30 -16.25
12 -15.75 -22.40 -21.50 -20.65
13 -14.60 -15.40 -13.40 -13.25
14 -13.50 -12.75 -12.65 -12.50
15 -19.90 -20.70 -20.60 -20.35
16 -12.75 -8.96 -10.40 -10.75
17 -13.35 -16.60 -15.95 -15.90
18 -11.55 -11.35 -12.00 -11.75
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