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CHAPTER 1
INTRODUCTION

1.1. Background and Rationale

Electron beams are often used in treating superficial lesions. The irregular
nature of individual tumors frequently requires field shapes other than the standard
square, rectangular, or circular shapes provided by various applicators. However,
almost all of manufacturers have just provided standard fields of cutout such as
6x6, 10x10, 15x15, 20x20, 25x25 cm2 but the doctors may require smaller fields than
standard one. So, the cutout need to be constructed from lead alloy shielding
materials and can be inserted into standard electron cones or placed directly on the

patient (Figure 1.1).

Figure 1. 1. Field size of 1x1, 2x2, 3x3, dx4, 10x10 cmzcutout

For small fields, it is generally observed that the cutout changes the
characteristics of the electron beam, as compared to the unblocked beam. The
relative output factor, which is the ratio of the maximum dose along the central axis
for the field size in question to that for the reference field size, varies with the field
size (Figure 1.2-a). The percent depth dose is changed in the small field, this makes

the dyay also shift (Figure 1.2-b). The field size dependence of the depth dose and



output factor for any electron beam is negligible until the field dimensions are

smaller than the practical range of the electrons in tissue.
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Figure 1. 2. (a) Output factror and (b) Percent depth dose in

small field electron beams.

Measurements for the small fields used in clinical practice is the practical
difficulties and take long time for set up. Small fields do not exhibit a flat beam
profile near the central axis and, therefore, dose measurements with a detector of
finite lateral dimensions always show too low average dose compared with the dose

at the central axis as shown in Figure 1.3.
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Figure 1. 3. Beam profile of field 1x1 cm’

electron beams for 6 MeV.

The treatment planning is very important in radiotherapy to calculate dose
inside the patient’s body. However, output factors for clinical electron beams
depend on many parameters. This makes analytical calculation of output factors
difficult, especially for small fields. There are several algorithms such as Generalize
Gaussian  Pencil Beam, Pencil Beam Redefinition Algorithm, Collapse Cone
Convolution available for the treatment planning systems to determine the dose
distribution and prediction of the electron beam output factors. However, almost of
researchers show that the dose calculation accuracy in small field of these

algorithms are usually more than 29%.

The construction of small cutouts are necessary for treatment. However, these
small fields change the characteristic electron beam due to lake of electronic
equilibrium. The accuracy of treatment planning system is very useful. The patient

will get the benefit in the dose accuracy, while the physicist has less time for



measurement in all cases. A commercial Monte Carlo based dose calculation
algorithm has become available for electron beam treatment planning in the Varian
Eclipse treatment planning system. Therefore, this research designs to verify electron

Monte Carlo algorithm by comparison of calculations with measurements performed

at our institution.

1.2. Research Objectives

The goals of this research work are:

1. To verify dosimetric accuracy of electron Monte Carlo algorithm in Eclipse

treatment planning for small field electron beams.
2. To find the minimum size of cutout that electron Monte Carlo algorithm can

accurately predict for electron beams.



CHAPTER 2
LITERATURE REVIEWS

2.1. Theories

Electron beams are often used in treating superficial lesions (e.g. skin, lip, chest
wall, head and neck cancers) and boosting to nodes, cold spot and blocked areas at
the junction of two photon fields with a characteristically sharp drop-off in dose
beyond the lesions. Although many of these sites can be treated with superficial x-
ray, brachytherapy or tangential photon beams, the electron beam irradiation offers
distinct advantages in terms of dose uniformity in the target volume and in

minimizing dose to deeper tissues [1].

2.1.1. Energy Parameters of the Electron beam

In an accelerator, the electron beam reaches a specific final energy at the end
of its travel through accelerating system. The beam has the maximum energy and
the narrowest beam energy spread before passing the exit window. Figure 2.1 shows
the electron energies at various points i.e., the accelerator’s window surface, the

phantom surface and depth in the phantom.

In general, the energy spectrum is characterized by maximum energy E,,, most
probable energy E;, mean energy E, and energy spread TI'. Additional subscripts are
added to these parameters such as the accelerator’s window surface (a), the

phantom surface (0) and the depth in the phantom (2).

As illustrated in Figure 2.1, the energy spectrums of an electron beam before
passing through the exit window of the accelerator is a narrow peak sufficiently

characterized by a single energy value E,. The most probable energy, E_ is referred

P.a



to the “nominal accelerator energy”. As the electrons beam passes through the exit
window, scattering foils, the ionization chamber, and the light mirror shift the

electron spectrum to energy lower than E,, and cause a broaden of the spectrum.

pa
At the phantom surface, two energy parameters which are nearly the same value,
the “most probable energy” E,, which is the energy value corresponds the peak of
the cure and “mean energy” E, . which is slightly smaller than E,o by a few MeV.
Energy losses from the electron beam are large when the beam traverses the thick
layers of the phantom. The beam parameters inside the phantom are the maximum

energy E,,, the most probable energy E,, , and the mean energy E, .
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Figure 2. 1. Electron beam energy parameters considered in the

accelerator phantom geometry [2].



The Nordic Association of Clinical Physics [3] recommends the specification of
most probable energy, E,, (defined by the position of the spectral peak in Figure 2.1)

at the phantom surface and the use of the following relationship:
Ep,O - C1 + Csz + C2R123 (21)

where Rj is the practical range in centimeters. For water, C; = 0.22 MeV, C, = 1.98
MeV cm, and C; = 0.0025 MeV cm” [4-6]. They further recommend that the field
size for range measurements be no less than 12 x 12 cm2 for energies up to 10 MeV

and no less than 20 x 20 cm for higher energies.

The mean energy of the electron beam, E., at the phantom surface is related
to Rs, (the depth at which the dose is 50% of the maximum dose) by the following

relationship:
Ey= C4Rso (2.2)

where C; = 2.33 MeV/cm for water. Again the divergence correction is applied to

each point on the depth dose curve before determining Rs,.

Harder has shown that the most probable energy and, approximately, the
mean energy of the spectrum decrease linearly with depth [7]. This can be expressed

by the relationships:

and approximately:



where z is the depth.

Equation 2.4 is important in dosimetry because for absorbed dose
measurements it is necessary to know the mean electron energy at the location of

the chamber.

2.1.2. Physical Characteristics of Electron Beam

2.1.2.1. Percentage Depth Dose (PDD)

As the beam is incident on a patient (or a phantom), the absorbed dose in the
patient varies with depth. This variation depends on many conditions: beam energy,
depth, field size, distance from source, and beam collimator system. Thus, the
calculation of dose in the patient involves considerations in regard to these
parameters and others as they affect depth dose distribution. An essential step in the
dose calculation system is to establish depth dose variation along the central axis of

the beam.

One-way of characterizing the central axis dose distribution is to normalize dose
at depth with respect to dose at a reference depth. The quality percentage (or
simply percent) depth dose may be defined as the quotient, expressed as a
percentage, of absorbed at a fixed reference depth d, along the central axis of the

beam.
Percentage depth dose (PDD) is thus:

PDD = If—d x 100 (2.5)

do

where d is any depth and d, is reference depth of maximum dose (d, = d,,).



Parameters are determined from depth absorbed dose distributions as shown in
Figure 2.2. An electron beam absorbed dose distribution in a water phantom showing
the significance of various parameters: D,, is the maximum absorbed dose, D, is the
absorbed dose due to bremsstrahlung, Rqyo is the depth of dose maximum, Rgs is the
therapeutic range (it is here assumed that R; = Rgs; the depth at which the
therapeutic interval intersects the depth dose curve near the skin entrance is
designated by R’gs). The practical range R, and the half-value depth Rs; are of special
importance for range energy measurements: Ry is defined as the depth where the
tangent to the descendent part of the curve intersects the prolongation of the

bremsstrahlung tail; Rs, is defined as depth where the absorbed dose is 50% of the

maximum.
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