PRODUCTION PERFORMANCE COMPARISON BETWEEN WATER ALTERNATING GAS AND DOUBLE DISPLACEMENT PROCESS

Mr. Paruj Chetchaovalit

้บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

> A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Petroleum Engineering Department of Mining and Petroleum Engineering Faculty of Engineering Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

การเปรียบเทียบสมรรถนะการผลิตระหว่างกระบวนการอัดน้ำสลับแก๊สและกระบวนการแทนที่สอง ครั้ง

นายภารุจ เชษฐ์เชาวลิต

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมปิโตรเลียม ภาควิชาวิศวกรรมเหมืองแร่และปิโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	PRODUCTIC	DN PI	ERFORMANCE	COMPA	rison
	BETWEEN	WATEF	R ALTERNATING	g gas	AND
	DOUBLE DIS	SPLACE	MENT PROCESS		
Ву	Mr. Paruj Cł	netchao	ovalit		
Field of Study	Petroleum	Enginee	ering		
Thesis Advisor	Assistant Pr	ofessor	Suwat Athichan	agorn, Ph	ı.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Engineering

(Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

.....External Examiner

(Witsarut Tungsunthonkhan, Ph.D.)

ภารุจ เชษฐ์เชาวลิต : การเปรียบเทียบสมรรถนะการผลิตระหว่างกระบวนการอัดน้ำสลับแก๊สและ กระบวนการแทนที่สองครั้ง (PRODUCTION PERFORMANCE COMPARISON BETWEEN WATER ALTERNATING GAS AND DOUBLE DISPLACEMENT PROCESS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร. สุวัฒน์ อธิชนากร, 212 หน้า.

กระบวนการอัดน้ำสลับแก๊สและกระบวนการแทนที่สองครั้ง เป็นกระบวนการที่มีประสิทธิภาพในการ ผลิตน้ำมันจากแหล่งกักเก็บเนื่องจากได้รวมประโยชน์ของการฉีดอัดน้ำและการฉีดอัดแก๊สเข้าด้วยกัน ในการทดลอง นี้ มีการสร้างแบบจำลองของแหล่งกักเก็บสามแหล่งที่มีความลาดเอียงแตกต่างกันเพื่อศึกษาผลกระทบของตัวแปร การผลิตต่าง ๆ สำหรับกระบวนการผลิตทั้งสามกระบวนการ ได้แก่ การอัดน้ำสลับแก๊สที่ส่วนบนของแหล่งกักเก็บ การอัดน้ำสลับแก๊สที่ส่วนล่างของแหล่งกักเก็บ และการแทนที่สองครั้ง โดยใช้หน่วยเทียบเท่าบาร์เรลน้ำมันดิบเป็น ตัวชี้วัดประสิทธิภาพ

การหยุดกระบวนการอัดน้ำขั้นต้นที่อัตราส่วนการผลิตน้ำต่ำ การอัดน้ำด้วยอัตราสูง การอัดแก๊สด้วย อัตราปานกลาง และการอัดน้ำกับแก๊สเป็นเวลาสั้น ๆ สลับกันนับเป็นผลดีต่อการผลิตด้วยวิธีอัดน้ำสลับแก๊ส นอกจากนี้การเพิ่มอัตราส่วนระหว่างน้ำต่อแก๊สยังช่วยเพิ่มประสิทธิภาพสำหรับแหล่งกักเก็บที่ไม่ลาดเอียงแต่ไม่มีผล ต่อแหล่งกักเก็บที่มีความลาดเอียง เราสามารถเพิ่มประสิทธิภาพของกระบวนการแทนที่สองครั้งโดยการหยุด กระบวนการอัดน้ำขั้นต้นที่อัตราส่วนการผลิตน้ำต่ำ และการอัดน้ำและแก๊สด้วยอัตราสูง ถึงแม้ว่ากระบวนการแทนที่ สองครั้งจะผลิตน้ำมันได้ในปริมาณมาก แต่กระบวนการนี้มีการอัดแก๊สในปริมาณมาก ซึ่งเมื่อคำนวณเป็นหน่วย เทียบเท่าบาร์เรลน้ำมันดิบแล้ว พบว่ากระบวนการอัดน้ำสลับแก๊สมีประสิทธิภาพสูงกว่า กระบวนการที่ดีที่สุดสำหรับ แหล่งกักเก็บที่ไม่มีความลาดเอียง แหล่งกักเก็บที่มีความลาดเอียง 15 องศา และ 30 องศา คือ กระบวนการอัดน้ำ สลับแก๊สที่ส่วนบนของแหล่งกักเก็บที่มีหลุมผลิตแนวตั้งแปดหลุม กระบวนการอัดน้ำสลับแก๊สที่ส่วนองแหล่ง กักเก็บที่มีหลุมผลิตแนวนอนสองหลุม และการบวนการอัดน้ำสลับแก๊สที่ส่วนบนของแหล่งกักเก็บที่มีหลุมผลิต แนวตั้งที่ส่วนบนและหลุมผลิตแนวนอนที่ส่วนล่างของแหล่งกักเก็บ ตามลำดับ

การเพิ่มค่าความสามารถในการซึมผ่านในแนวนอนของแหล่งกักเก็บทำให้ผลิตน้ำมันได้ในปริมาณสูงขึ้น การเพิ่มอัตราส่วนระหว่างความสามารถในการซึมผ่านในแนวตั้งต่อแนวนอนจะเพิ่มปริมาณน้ำมันที่ผลิตได้ ในขณะที่ การลดอัตราส่วนนี้ส่งผลให้ต้องใช้แก๊สปริมาณมาก ความสัมพันธ์ของความสามารถในการซึมผ่านสัมพัทธ์ 3 สถานะ ที่เป็นค่าเริ่มต้นของโปรแกรม สามารถผลิตน้ำมันได้ในปริมาณสูงกว่าความสัมพันธ์แบบสโตน 1 และสโตน 2 การ ผลิตน้ำมันจากแหล่งกักเก็บที่มีความหนาน้อยสามารถทำได้ในเวลาอันสั้นแต่ประสิทธิภาพการผลิตอาจไม่ดี และ น้ำมันเบาที่มีแก๊สปนอยู่ในปริมาณสูงสามารถผลิตได้ง่าย

ภาควิชา	วิศวกรรมเหมืองแร่และปิโตรเลียม	ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมปิโตรเลียม	ลายมือชื่อ อ.ที่ปรึกษาหลัก
าไการศึกษา	2557	

5571209421 : MAJOR PETROLEUM ENGINEERING

KEYWORDS: WATER ALTERNATING GAS PROCESS / DOUBLE DISPLACEMENT PROCESS

PARUJ CHETCHAOVALIT: PRODUCTION PERFORMANCE COMPARISON BETWEEN WATER ALTERNATING GAS AND DOUBLE DISPLACEMENT PROCESS. ADVISOR: ASST. PROF. SUWAT ATHICHANAGORN, Ph.D., 212 pp.

Water alternating gas process (WAG) and double displacement process (DDP) are two effective methods to recover oil in the reservoir as they combine the advantages of water and gas injection. In this study, reservoirs with different dip-angles are constructed by the reservoir simulation software. The effects of different operating parameters are investigated for WAG with up-dip and down-dip injection and DDP by using barrel of oil equivalent (BOE) as an indicator.

Low water cut criteria, high water injection rate, moderate gas injection rate, and shorter injection durations of water and gas are considered to be beneficial for the two types of WAG. Moreover, the increase of water to gas injection duration ratio enhances the oil production performance in a non-dipping reservoir while this ratio does not have a significant effect for an inclined reservoir. We can improve the performance of DDP by using low water cut stopping criteria for water flooding and injecting water and gas at high rates. The best performance process for all reservoirs is WAG. Although DDP yields higher oil recovery factor than WAG, it consumes much larger amount of gas which results in lower BOE. The optimum production processes for a non-dipping reservoir, a 15° dipping reservoir, and a 30° dipping reservoir are (1) WAG with up-dip injection by eight vertical wells, (2) WAG with down-dip injection by two horizontal wells, and (3) WAG with up-dip injection by a vertical well up-dip and a horizontal well down-dip.

Sensitivity analysis shows that the higher horizontal permeability results in the higher oil recovery factor in an inclined reservoir. The increase of k_v/k_h ratio improves the oil production whereas the decrease of k_v/k_h ratio requires much more amount of injected gas due to the earlier breakthrough. For the three-phase relative permeability correlation, ECLIPSE default model gives more oil recovery factor than Stone 1 and Stone 2 models. We can produce oil from the thinner reservoir in shorter time but not always with more efficiency. Light oil containing large amount of solution gas is easy for production.

Department: Mining and Petroleum Engineering Field of Study: Petroleum Engineering Academic Year: 2014

Student's Signature	
Advisor's Signature	

ACKNOWLEDGEMENTS

This thesis has been accomplished by the encouragement from many people who I would like to deeply appreciate.

First of all, I would like to thank Assistant Professor Suwat Athichanagorn, my advisor, for his assistance, information, and great advice that encourage me to complete this thesis.

Secondly, thesis committees and staffs of the Department of Mining and Petroleum Engineering are also appreciated for their recommendations and providing the necessary facility.

I would like to acknowledge Schlumberger for supporting ECLIPSE 100 reservoir simulation software. The financial support from Chevron Thailand Exploration and Production is appreciatively recognized.

Finally, my family members and my friends are admired from the bottom of my heart. I am grateful for their help.

vi

CONTENTS

Pag	зe
THAI ABSTRACTiv	
ENGLISH ABSTRACTv	
ACKNOWLEDGEMENTS	
CONTENTS	
List of Tablesxi	
List of Figuresxvi	
List of Abbreviationsxxii	
Nomenclaturesxxiii	
CHAPTER I INTRODUCTION	
1.1 Background	
1.2 Objectives	
1.3 Outlines of methodology2	
1.4 Outlines of thesis	
CHAPTER II LITERATURE REVIEW	
2.1 Water alternating gas process	
2.2 Double displacement process	
CHAPTER III THEORY AND CONCEPT	
3.1 Water alternating gas11	
3.2 Double displacement process	
3.3 Immiscible displacement in a dipping reservoir14	
3.3.1 Water displacing oil14	
3.3.2 Gas displacing oil	

viii

Page

3.4 Three-phase relative permeability	. 20
3.4.1 ECLIPSE default	. 21
3.4.2 Stone 1 (modified)	. 22
3.4.3 Stone 2 (modified)	. 22
3.5 Fracturing pressure	. 23
3.6 Barrel of oil equivalent	. 23
CHAPTER IV MODEL DESCRIPTION	. 24
4.1 Reservoir model	. 24
4.2 PVT properties	. 26
4.3 SCAL properties	. 28
4.4 Well schedule	. 30
4.4.1 Water alternating gas process (WAG)	. 31
4.4.1.1 WAG with up-dip injection	. 32
4.4.1.2 WAG with down-dip injection	. 32
4.4.2 Double displacement process (DDP)	. 33
4.5 Thesis methodology	. 33
CHAPTER V RESULTS AND DISCUSSION	. 36
5.1 Base cases	. 36
5.1.1 Long-term water flooding	. 36
5.1.2 Short-term water flooding followed by water alternating gas process	
(WAG) base case	. 42
5.1.2.1 WAG with up-dip injection base case	. 42
5.1.2.2 WAG with down-dip injection base case	. 50

Page

5.1.3 Double displacement process (DDP) base case	57
5.2 Effect of stopping criteria for water flooding	67
5.2.1 WAG with up-dip injection	67
5.2.2 WAG with down-dip injection	71
5.2.3 Double displacement process	74
5.3 Effect of water and gas injection rates	78
5.3.1 WAG with up-dip injection	80
5.3.2 WAG with down-dip injection	
5.3.3 Double displacement process	95
5.4 Effect of WAG cycle and injection duration	
5.4.1 WAG with up-dip injection	
5.4.2 WAG with down-dip injection	
5.5 Effect of well pattern	115
5.5.1 WAG with up-dip injection	142
5.5.2 WAG with down-dip injection	146
5.5.3 Double displacement process	150
5.6 Sensitivity analysis	157
5.6.1 Effect of horizontal permeability	157
5.6.1.1 Reservoir without dip angle	157
5.6.1.2 Reservoir with dip angle of 15°	159
5.6.1.3 Reservoir with dip angle of 30°	160
5.6.2 Effect of vertical to horizontal permeability ratio	162
5.6.2.1 Reservoir without dip angle	162

ix

Page

5.6.2.2 Reservoir with dip angle of 15°	
5.6.2.3 Reservoir with dip angle of 30°	
5.6.3 Effect of three-phase relative permeability correlation	
5.6.3.1 Reservoir without dip angle	
5.6.3.2 Reservoir with dip angle of 15°	
5.6.3.3 Reservoir with dip angle of 30°	170
5.6.4 Effect of reservoir thickness	173
5.6.4.1 Reservoir without dip angle	173
5.6.4.2 Reservoir with dip angle of 15°	174
5.6.4.3 Reservoir with dip angle of 30°	175
5.6.5 Effect of oil properties	
5.6.5.1 Reservoir without dip angle	
5.6.5.2 Reservoir with dip angle of 15°	
5.6.5.3 Reservoir with dip angle of 30°	
CHAPTER VI CONCLUSIONS	
REFERENCES	190
APPENDIX	
VITA	212

List of Tables

p	age
Table 2.1 WAG ratios for the experiments (after [5])	7
Table 4.1 Parameters of the reservoir model	24
Table 4.2 Input data for PVT correlation	27
Table 4.3 Water PVT properties	28
Table 4.4 Input parameters for Corey's correlation	29
Table 4.5 Well location and fracture pressure for the base case model	30
Table 4.6 Parameters for well schedule for WAG	32
Table 4.7 Parameters for well schedule for DDP	33
Table 4.8 Cases with different oil properties	35
Table 5.1 Well schedule for WAG with up-dip injection base case	42
Table 5.2 Well schedule for WAG with down-dip injection base case.	50
Table 5.3 Well schedule for DDP base case	57
Table 5.4 Result comparison of the base cases.	66
Table 5.5 Result comparison between different stopping criteria for WAG with up-	70
Table 5.6 Result comparison between different stopping criteria for WAG with	. 10
down-dip injection	73
Table 5.7 Result comparison between different stopping criteria for DDP	76
Table 5.8 Summary of water cut criteria that yield the highest BOE	77
Table 5.9 Water and gas injection rates for WAG	79
Table 5.10 Water and gas injection rates for DDP.	80

Table 5.11 Result comparison between different water and gas injection rates of
WAG with up-dip injection in a reservoir without dip angle
Table 5.12 Result comparison between different water and gas injection rates of
WAG with up-dip injection in a reservoir with dip angle of 15°
Table 5.13 Result comparison between different water and gas injection rates of
WAG with up-dip injection in a reservoir with dip angle of 30°
Table 5.14 Result comparison between different water and gas injection rates of
WAG with down-dip injection in a reservoir without dip angle
Table 5.15 Result comparison between different water and gas injection rates of
WAG with down-dip injection in a reservoir with dip angle of 15°
Table 5.16 Result comparison between different water and gas injection rates of
WAG with down-dip injection in a reservoir with dip angle of 30°
Table 5.17 Result comparison between different water and gas injection rates of
DDP in a reservoir with dip angle of 15°
Table 5.18 Result comparison between different water and gas injection rates of
DDP in a reservoir with dip angle of 30°
Table 5.19 Summary of water and gas injection rates that yield the highest BOE 100
Table 5.20 WAG cycle and injection duration
Table 5.21 Result comparison between different WAG cycle and injection
duration of WAG with up-dip injection in a reservoir without dip angle
Table 5.22 Result comparison between different WAG cycle and injection
duration of WAG with up-dip injection in a reservoir with dip angle of 15°106
Table 5.23 Result comparison between different WAG cycle and injection
duration of WAG with up-dip injection in a reservoir with dip angle of 30°107
Table 5.24 Result comparison between different WAG cycle and injection
duration of WAG with down-dip injection in a reservoir without dip angle111

Table 5.25 Result comparison between different WAG cycle and injection	
duration of WAG with down-dip injection in a reservoir with dip angle of 15°	112
Table 5.26 Result comparison between different WAG cycle and injection	
duration of WAG with down-dip injection in a reservoir with dip angle of 30°	113
Table 5.27 Summary of the WAG cycle and injection duration that give the	
highest BOE	114
Table 5.28 Well location and fracture pressure for pattern 1	116
Table 5.29 Well schedule of WAG with up-dip injection for pattern 1	116
Table 5.30 Well schedule of WAG with down-dip injection for pattern 1	117
Table 5.31 Well schedule of DDP for pattern 1	117
Table 5.32 Well location and fracture pressure for pattern 2	119
Table 5.33 Well schedule of WAG with up-dip injection in a non-dipping reservoir	
for pattern 2	120
Table 5.34 Well schedule of WAG with up-dip injection in a 15° reservoir for	
pattern 2	120
Table 5.35 Well schedule of WAG with up-dip injection in a 30° reservoir for	
pattern 2	121
Table 5.36 Well schedule of WAG with down-dip injection in a non-dipping	
reservoir for pattern 2	121
Table 5.37 Well schedule of WAG with down-dip injection in a 15° reservoir for	
pattern 2	122
Table 5.38 Well schedule of WAG with down-dip injection in a 30° reservoir for	
pattern 2	122
Table 5.39 Well schedule of DDP in a 15° reservoir for pattern 2	123
Table 5.40 Well schedule of DDP in a 30° reservoir for pattern 2	123

Table 5.41 Effect of GOR criteria for switching the producers on BOE for well pattern 2	. 124
Table 5.42 Well location and fracture pressure for pattern 3	. 126
Table 5.43 Well schedule of WAG with up-dip injection in a non-dipping reservoir for pattern 3	. 128
Table 5.44 Well schedule of WAG with up-dip injection in a 15° reservoir for pattern 3	. 129
Table 5.45 Well schedule of WAG with up-dip injection in a 30° reservoir for pattern 3	. 130
Table 5.46 Well schedule of WAG with down-dip injection in a non-dipping reservoir for pattern 3	. 131
Table 5.47 Well schedule of WAG with down-dip injection in a 15° reservoir for pattern 3	. 132
Table 5.48 Well schedule of WAG with down-dip injection in a 30° reservoir for pattern 3	. 133
Table 5.49 Well schedule of DDP in a 15° reservoir for pattern 3	. 134
Table 5.50 Well schedule of DDP in a 30° reservoir for pattern 3	. 135
Table 5.51 Effect of GOR criteria for switching the producers on BOE for well pattern 3	. 136
Table 5.52 Well location and fracture pressure for pattern 4	. 137
Table 5.53 Well schedule of WAG with up-dip injection for pattern 4	. 138
Table 5.54 Well schedule of WAG with down-dip injection for pattern 4	. 138
Table 5.55 Well schedule of DDP for pattern 4	. 139
Table 5.56 Well location and fracture pressure for pattern 5	. 140
Table 5.57 Well schedule of WAG with up-dip injection for pattern 5	. 140
Table 5.58 Well schedule of WAG with down-dip injection for pattern 5	. 141

Table 5.59 Well schedule of DDP for pattern 5	141
Table 5.60 Result comparison between different well patterns of WAG with up-	
dip injection	145
Table 5.61 Result comparison between different well patterns of WAG with	
down-dip injection	149
Table 5.62 Result comparison between different well patterns of DDP	153
Table 5.63 The highest BOEs of different reservoir and process with their	
parameters	155
Table 5.64 The production strategies yield the highest BOE for each reservoir	156
Table 5.65 Cases for the studying of effect of horizontal permeability	157
Table 5.66 Result comparison between different horizontal permeability	161
Table 5.67 Cases for the studying of effect of vertical/horizontal permeability	
ratio	162
Table 5.68 Result comparison between different vertical/horizontal permeability	
ratios	166
Table 5.69 Cases with different relative permeability correlations.	167
Table 5.70 Result comparison between different relative permeability	
correlations	172
Table 5.71 Cases with different reservoir thicknesses.	173
Table 5.72 Result comparison between different reservoir thicknesses	177
Table 5.73 Result comparison between different reservoir thicknesses of the	
cases without production time limit	179
Table 5.74 Cases with different oil properties	180
Table 5.75 Result comparison between different oil properties	186

List of Figures

7	bage
Figure 3.1 Schematic of DDP process (after[15]).	14
Figure 3.2 Linear prototype reservoir model: (a) plan view, (b) cross section (after [16])	15
Figure 3.3 Water displacement: (a) stable, (b) stable, and (c) unstable (after [16])	17
Figure 3.4 Gas displacement: (a) unstable and (b) stable (after [16])	19
Figure 3.5 Relationship of oil, water, and gas saturations for the ECLIPSE default model (after [18])	21
Figure 4.1 The 3D reservoir model	25
Figure 4.2 Grid cells in the x-direction	25
Figure 4.3 Grid cells in the y-direction.	26
Figure 4.4 Grid cells in the z-direction.	26
Figure 4.5 Live oil PVT properties	27
Figure 4.6 Dry gas PVT properties	28
Figure 4.7 Gas/oil saturation functions	29
Figure 4.8 Water/oil saturation functions	30
Figure 4.9 Well locations for base case model	31
Figure 4.10 Well location in 3D for base case model	31
Figure 5.1 Water injection rate and bottom-hole pressure of water injector of	
long-term water flooding	37
Figure 5.2 Oil, gas, and water production rates of long-term water flooding	38
Figure 5.3 Cumulative oil production and oil recovery factor of long-term water	
flooding	39

Figure 5.4 Oil saturation at any time of long-term water flooding (top view, k=1)	40
Figure 5.5 Oil saturation at any time of long-term water flooding (side view, $j=31$)	41
Figure 5.6 Water injection rate and bottom-hole pressure of water injector of the WAG with up-dip injection base case	43
Figure 5.7 Gas injection rate and bottom-hole pressure of gas injector of the WAG with up-dip injection base case	44
Figure 5.8 Oil, gas, and water production rates of the WAG with up-dip injection base case	45
Figure 5.9 Cumulative oil production and oil recovery factor of the WAG with up- dip injection base case	46
Figure 5.10 Oil saturation at any time of WAG with up-dip injection (top view, k=1)	48
Figure 5.11 Oil saturation at any time of WAG with up-dip injection (side view, j=31)	49
Figure 5.12 Water injection rate and bottom-hole pressure of water injector of the WAG with down-dip injection base case.	51
Figure 5.13 Gas injection rate and bottom-hole pressure of gas injector of the WAG with down-dip injection base case.	51
Figure 5.14 Oil, gas, and water production rates of the WAG with down-dip injection base case	52
Figure 5.15 Cumulative oil production and oil recovery factor of the WAG with down-dip injection base case.	53
Figure 5.16 Oil saturation at any time of WAG with down-dip injection (top view, k=1)	55
Figure 5.17 Oil saturation at any time of WAG with down-dip injection(side view, j=31)	56

Figure 5.18 Water injection rate and bottom-hole pressure of water injector of the
DDP base case
Figure 5.19 Gas injection rate and bottom-hole pressure of gas injector of the DDP
base case
Figure 5.20 Oil, gas, and water production rates of the DDP base case
Figure 5.21 Cumulative oil production and oil recovery factor of the DDP base
case
Figure 5.22 Oil saturation at any time of DDP (top view, k=1)63
Figure 5.23 Oil saturation at any time of DDP (side view, j=31)64
Figure 5.24 Effect of stopping criteria for water flooding on oil production rate of
WAG with up-dip injection in a reservoir with dip angle of 15°
Figure 5.25 Effect of stopping criteria for water flooding on water cut of WAG with
up-dip injection in a reservoir with dip angle of 15°
Figure 5.26 Effect of stopping criteria for water flooding on oil production rate of
WAG with down-dip injection in a reservoir with dip angle of 15°71
Figure 5.27 Effect of stopping criteria for water flooding on water cut of WAG with
down-dip injection in a reservoir with dip angle of 15°72
Figure 5.28 Effect of stopping criteria for water flooding on oil production rate of
DDP in a reservoir with dip angle of 15°74
Figure 5.29 Effect of stopping criteria for water flooding on water cut of DDP in a
reservoir with dip angle of 15°75
Figure 5.30 Effect of water and gas injection rates on oil production rate of WAG
with up-dip injection in a reservoir with dip angle of 15°
Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG
with down-dip injection in a reservoir with dip angle of 15°
Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG
with down-dip injection in a reservoir with dip angle of 15° (continued)

Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG	
with down-dip injection in a reservoir with dip angle of 15° (continued)	90
Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a reservoir with dip angle of 15°	95
Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a reservoir with dip angle of 15° (continued)	96
Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a reservoir with dip angle of 15° (continued)	97
Figure 5.33 Effect of WAG cycle and injection duration on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15°	102
Figure 5.33 Effect of WAG cycle and injection duration on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15° (continued)	103
Figure 5.34 Effect of WAG cycle and injection duration on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.	108
Figure 5.34 Effect of WAG cycle and injection duration on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° (contimued)	109
Figure 5.35 Well location in 3D for pattern 1	115
Figure 5.36 Well location in 3D for pattern 2.	119
Figure 5.37 Well location in 3D for pattern 3.	125
Figure 5.38 Well location in 3D for pattern 4.	137
Figure 5.39 Well location in 3D for pattern 5.	139
Figure 5.40 Effect of well pattern on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15°	142
Figure 5.41 Effect of well pattern on gas production rate of WAG with up-dip	
injection in a reservoir with dip angle of 15°	143

rigule 5.42 Effect of well pattern on water production rate of wAd with up-dip	
injection in a reservoir with dip angle of 15°	144
Figure 5.43 Effect of well pattern on oil production rate of WAG with down-dip	
injection in a reservoir with dip angle of 15°	146
Figure 5.44 Effect of well pattern on gas production rate of WAG with down-dip	
injection in a reservoir with dip angle of 15°	147
Figure 5.45 Effect of well pattern on water production rate of WAG with down-dip	
injection in a reservoir with dip angle of 15°	148
Figure 5.46 Effect of well pattern on oil production rate of DDP in a reservoir with	
dip angle of 15°.	150
Figure 5.47 Effect of well pattern on gas production rate of DDP in a reservoir with	l
dip angle of 15°.	151
Figure 5.48 Effect of well pattern on water production rate of DDP in a reservoir	
with dip angle of 15°.	152
Figure 5.49 Effect of horizontal permeability on oil production rate of WAG with	
up-dip injection in a reservoir without dip angle	158
	100
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with	150
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.	159
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with	159
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°	150 159 160
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30° Figure 5.52 Effect of vertical/horizontal permeability ratio on oil production rate	150 159 160
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30° Figure 5.52 Effect of vertical/horizontal permeability ratio on oil production rate of WAG with up-dip injection in a reservoir without dip angle	159 160 163
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30° Figure 5.52 Effect of vertical/horizontal permeability ratio on oil production rate of WAG with up-dip injection in a reservoir without dip angle Figure 5.53 Effect of vertical/horizontal permeability ratio on oil production rate	159 160 163
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30° Figure 5.52 Effect of vertical/horizontal permeability ratio on oil production rate of WAG with up-dip injection in a reservoir without dip angle Figure 5.53 Effect of vertical/horizontal permeability ratio on oil production rate of WAG with up-dip injection in a reservoir without dip angle	159 160 163 164
Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30° Figure 5.52 Effect of vertical/horizontal permeability ratio on oil production rate of WAG with up-dip injection in a reservoir without dip angle Figure 5.53 Effect of vertical/horizontal permeability ratio on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° Figure 5.54 Effect of vertical/horizontal permeability ratio on oil production rate	159 160 163 164

Figure 5.55 Oil relative permeability diagrams as function of three-phase saturation	7
Figure 5.56 Effect of relative permeability correlation on oil production rate of WAG with up-dip injection in a reservoir without dip angle	8
Figure 5.57 Effect of relative permeability correlation on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°	9
Figure 5.58 Effect of relative permeability correlation on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°	0
Figure 5.59 Effect of reservoir thickness on oil production rate of WAG with up-dip injection in a reservoir without dip angle	4
Figure 5.60 Effect of reservoir thickness on oil production rate of WAG with down- dip injection in a reservoir with dip angle of 15°	5
Figure 5.61 Effect of reservoir thickness on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°	6
Figure 5.62 Relationship between oil formation volume factor and pressure for the study of an effect of oil properties	0
Figure 5.63 Relationship between oil viscosity and pressure for the study of an effect of oil properties	1
Figure 5.64 Relationship between solution gas-oil ratio and pressure for the study of an effect of oil properties	1
Figure 5.65 Effect of oil properties on oil production rate of WAG with up-dip injection in a reservoir without dip angle	2
Figure 5.66 Effect of oil properties on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°	4
Figure 5.67 Effect of oil properties on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°	5

List of Abbreviations

BOE	Barrel of oil equivalent	
BSCF	Billion standard cubic feet	
DDP	Double displacement process	
ср	Centipoise	
FRAC.S.G.	Fracturing pressure gradient	
ft	Feet	
GOR	Gas-oil ratio	
lb/ft ³	Pound per cubic foot	
md	Millidarcy	
MMSCF/D	Million standard cubic feet per day	
MMSTB	Million stock tank barrel	
MSCF/STB	Thousand standard cubic feet per stock tank barrel	
OOIP	Original oil-in-place	
psi	Pound per square inch	
psia	Pound per square inch absolute	
PV	Pore volume	
PVT	Pressure-Volume-Temperature	
RB/D	Reservoir barrel per day	
RB/STB	Reservoir barrel per stock tank barrel	
SCAL	Special core analysis	
SCF/STB	Standard cubic feet per stock tank barrel	
STB	Stock tank barrel	
STB/D	Stock tank barrel per day	
TVD	True vertical depth	
WAG	Water alternating gas	

Nomenclatures

μ_g	Viscosity of gas
μο	Viscosity of oil
μ_{w}	Viscosity of water
$ ho_w$	Density of water
$ ho_{\circ}$	Density of oil
θ, α	Dip angle of the reservoir
А	Cross sectional area
f _g	Fractional flow of gas in reservoir
f _w	Fractional flow of water in reservoir
g	Acceleration due to gravity
k	Absolute permeability
k _h	Horizontal permeability
k _{rg}	Relative permeability to gas
k _{ro}	Relative permeability to oil
k _{rocw}	Oil relative permeability in the presence of connate water only
k _{rog}	Oil relative permeability for a system with oil, gas, and connate water
k _{row}	Oil relative permeability for a system with oil and water only
k _{rw}	Relative permeability to water
k _v	Vertical permeability
P _c	Capillary pressure
q _{g,crit}	Critical rate for gas by-passing

- q_i Water injection rate
- q_o Oil flow rate
- qt Total flow rate
- q_w Water flow rate
- q_{w,crit} Critical rate for water by-passing
- R_s Solution gas-oil ratio
- S_g Gas saturation
- S_o Oil saturation
- S_{om} Minimum residual oil saturation
- S_w Water saturation
- S_{wco} Connate water saturation

» uui alongkodn Hnivedgity

CHAPTER I

INTRODUCTION

1.1 Background

After primary recovery by natural drive mechanisms, some amount of oil is not recovered but left in a reservoir as residual oil. There is an effort to produce oil as much as possible from the fields by injection of fluids to displace and chase oil ahead. The reservoir pressure is also maintained. Water injection and gas injection are proven as effective methods. These methods have been used worldwide by several oil companies.

Water alternating gas process (WAG) is one of the widely used oil recovery methods. Water and gas are injected in separate small slugs. These slugs are alternately injected into the reservoir in order to flood the residual oil left after the primary recovery. The sweep efficiency of water and the microscopic displacement efficiency of gas improve the performance of this recovery process.

Double displacement process (DDP) is the process of gas flooding to recover residual oil after water flooding. This process starts with down-dip water injection to displace oil up-dip structure and follows by up-dip gas injection to displace oil and water down-dip structure. It can recover oil due to the better microscopic displacement efficiency of gas and the forming of oil film. These two methods are effective for recovery process and should be studied to compare their performances.

In this study, three reservoirs with different dip angles which are 0-degree, 15degree, and 30-degree are constructed by using ECLIPSE 100. WAG and DDP processes are applied to recover oil from these reservoirs. For WAG, the initial water flooding is performed until water cut of the producer reaches the criteria. Then, WAG injection is started. Thus, the strategies that yield the highest barrel of oil equivalent (BOE) for WAG and DDP are determined, and the effects of the following production parameters are investigated: water cut stopping criteria for initial water flooding, water and gas injection rates, WAG cycle and injection duration (only for WAG), and well pattern. Moreover, WAG process is performed in both up-dip and down-dip injection. After that, the cases that yield the highest BOE for these three reservoirs are analyzed on their sensitivities when reservoir properties (which are horizontal permeability, vertical to horizontal permeability ratio, three phase relative permeability correlation, and reservoir thickness) and oil property are changed.

1.2 Objectives

- 1. To determine the best production strategy for water alternating gas process in terms of stopping criteria for initial water flooding, water and gas injection rates, WAG cycle and injection duration, and well pattern.
- 2. To determine the best production strategy for double displacement process in terms of stopping criteria for initial water flooding, water and gas injection rates, and well pattern.
- 3. To study the effects of reservoir and fluid properties such as horizontal permeability, vertical/horizontal permeability, relative permeability, reservoir thickness, and oil property on water alternating gas and double displacement process.
- 4. To compare the performances of water alternating gas and double displacement process.

1.3 Outlines of methodology

- 1. Review previous studies on WAG and DDP.
- 2. Construct a base case reservoir model in ECLIPSE 100.
- 3. Perform three base case recovery methods as listed below to study their production characteristics.
 - 3.1 WAG with up-dip injection
 - 3.2 WAG with down-dip injection

- 3.3 DDP
- 4. Study the effects of the following parameters on oil recovery efficiency.
 - 4.1 stopping criteria for water flooding
 - 4.2 water and gas injection rates
 - 4.3 WAG cycle and injection duration (only for WAG)
 - 4.4 well pattern

This study is performed in a non-dipping reservoir and 15-degree and 30degree dipping reservoirs.

- 5. Select the cases, from both WAG and DDP, which give the best results for sensitivity study. Reservoir with dip angle of 0°, 15°, and 30° are studied and rock and fluids parameters are varied as follows:
 - 5.1 horizontal permeability
 - 5.2 vertical/horizontal permeability
 - 5.3 relative permeability
 - 5.4 reservoir thickness
 - 5.5 oil property
 - **GHULALONGKORN UNIVERSITY**
- 6. Discuss and compare the performances of WAG and DDP.
- 7. Draw conclusions from simulation results.
- 1.4 Outlines of thesis

There are 6 chapters in this thesis as detailed below:

- Chapter I is the introduction of this study.
- Chapter II illustrates the literature review in the topics of WAG and DDP.
- Chapter III summarizes the related theories and concepts.

- Chapter IV is description of reservoir model and its properties.
- Chapter V shows the simulation results for WAG and DDP. The performances of two methods are compared and discussed. In addition, sensitivity analysis is also investigated in this chapter.
- Chapter VI is the conclusion of this thesis.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER II

LITERATURE REVIEW

Previous studies of water alternating gas and double displacement process are summarized in this chapter.

2.1 Water alternating gas process

In 1972, Dyes et al. [1] presented the alternate injection of high pressure gas (HPG) and water for Hassi Messaoud oil reservoir in Algeria. The volumetric sweep efficiency for this reservoir had been quite low due to its heterogeneity. Therefore, they tried to improve the volumetric sweep efficiency by performing an alternate injection of gas and water. A pilot operation showed significant improvement in volumetric sweep which were 22% for alternate injection and 10-12% for continuous gas injection at gas breakthrough.

Moffitt and Zornes [2] presented one of the first immiscible WAG. A project of CO₂/waterflood was conducted at the Lick Creek Meakin Sand Unit, Arcansas in 1976. This unconsolidated sandstone reservoir has a depth of 2,550 ft., an average thickness of 8.4 ft., an average permeability of 1,200 md, and a porosity of 30.3%. This reservoir contained 15.8 MMSTB of OOIP. Only 4.5 MMSTB or 28.3% of OOIP had been produced by natural depletion for 20 years. It was reported that this project can recover 1.75 MMSTB of incremental oil over primary recovery or 11.1% OOIP.

Mangalsingh and Jagai [3] studied the effect of WAG ratio by performing a core-flooding experiment. Cores were produced from 80 mesh silica sand. Crude oil with 16 – 29 °API and CO₂ with 99.5% purity were used. This experiment was performed at 900 psi and 28 °C to let the CO₂ WAG occur in immiscible condition. They varied WAG ratio from 1:1 to 1:5 and found that ratio of 1:4 was the optimum ratio. They also concluded that WAG had two important advantages as compared to continuous gas flooding such as higher oil recovery and less volume of gas needed.

Li et al. [4] performed a core test to evaluate feasibility of immiscible WAG in Wennan reservoir. Cores with average permeability of 15.0 md and porosity of 21.58% were collected from Wennan reservoir. Immiscible WAG process yielded 61.90% recovery from injection of 0.453 HCPV at breakthrough time but caused a problem of high water production rate (97.94% water cut). However, the final recovery reached up to 95.22%.

Srivastava and Mahli [5] performed core flooding experiments to study effects of different water alternating gas (WAG) injection cycles and changing slug sizes on the performance of oil production. Core plugs, oil sample, and gas sample were collected from Gandhar field. Porosity and permeability of these sandstone cores were 21% and 323.23 md, respectively. Injection rates were 20 cc/h for water and 10 cc/h for gas. To study the effect of number of WAG cycles, single cycle and five cycles of 1 PV of gas and water were injected with WAG ratio of 1:1 after water flooding. The results showed that single-cycle WAG yielded 12.75% incremental displacement efficiency over water flooding while five-cycle WAG with the same injection volume yielded 19.30% incremental displacement efficiency over water flooding. Better displacement efficiency caused better total oil recoveries which were 71.63% and 64.59% for five-cycle and single-cycle, respectively. Moreover, they also performed tapered WAG methods, changeable WAG ratio in each cycle, as shown in Table 1. Gas and water injection volumes were adjusted to be 1.5 PV in this case in both increasing WAG ratio and decreasing WAG ratio experiments. In case of decreasing WAG ratio, more amount of gas could dissolve in the first cycle; thus caused improvement in mobility and increase in oil recovery. Decreasing WAG ratio in which its recovery factor was 72.57% gave 23.84% incremental displacement efficiency over water flooding while increasing WAG ratio in which its recovery factor was 72.34% gave only 20.73% incremental displacement efficiency over water flooding. However, constant WAG ratio over five cycles yielded 71.63% recovery factor which was lower than those two types of tapered WAG. Thus, decreasing WAG ratio had slightly better performance than other cases.

Cycles	WAG ratio for tapered WAG (water:gas)	
	Increasing WAG ratio	Decreasing WAG ratio
1	3:1	3:5
2	3:2	3:4
3	1:1	1:1
4	3:4	3:2
5	3:5	3:1

Table 2.1 WAG ratios for the experiments (after [5]).

Parracello et al. [6] performed a core flooding test in order to investigate efficiency of immiscible water alternating gas (WAG). They used sandstone core with porosity of 17.8% and permeability of 406 md. Viscous oil sample had viscosity of 180 cp and density of 0.870 g/cm³. Two different injection orders were studied. Water and gas were injected alternately starting with water slug in the first test but gas slug in the second test. Although the final oil recovery from the first test was slightly higher than the final oil recovery from the second test which was 35.4% and 34.7%, respectively, much more amount of oil was recovered since early time in the first test. In other words, WAG starting with water slug of injection showed better result in oil recovery. However, relative permeability curves were constructed by simulator.

ulalongkorn University

Pitakwatchara [7] performed water alternating gas (WAG) flooding study in a non-dipping reservoir. Water injection alternating gas dumpflood was proposed and compared to conventional WAG in which both gas and water were injected from surface. From the results, three wells with a distance between each well of 2,000 ft provided high sweep efficiency and recovery factor. A high water cut stopping criteria for water injection was not suitable for the recovery processes due to the requirement of large amount of injected water. An increase of water and gas injection rates shortened the production time but slightly lowered oil recovery factor for conventional WAG. However, for water injection alternating gas dumpflood, an increase in water injection rate yielded better oil recovery factor in shorter production period. For both methods, WAG ratio and slug size did not have a significant influence on oil recovery factor. When two methods were compared, she concluded that water injection alternating gas dumpflood yielded lower oil production than conventional WAG. However, water alternating gas dumpflood does not need surface facilities for gas injection. Effects of vertical to horizontal permeability ratio (k_v/k_h) and oil viscosity were also investigated and concluded that a low k_v/k_h ratio and a low viscosity improved the performance of both two types of WAG.

2.2 Double displacement process

Langenberg et al. [8] studied appropriate recovery method to improve oil production for Hawkins Field in Texas. Oil production from this field reached its peak rate at 112,000 BOPD in 1975 and approached its economic limit in 1987. Ways to extend the production life of this field were studied. Eventually, immiscible double displacement process (DDP) was found to be the most suitable method and was then applied to the East Fault Block of the Hawkins Field Unit. They started to perform DDP in August 1987. The oil production rate was around 3,700 BOPD at the starting time and declined to 1,075 BOPD at the end of 1991 with average nitrogen gas injection rate of 24.5 MMscf/D. The average gas-oil contact moved 81 ft. while the average oil-water contact moved 91 ft. downstucture in three years. This meant the size of oil bank grew 10 ft. They concluded that these moving rates were too high for Hawkins Field. Thus, they decided to reduce gas injection rate to 15 MMscf/D in June 1992. As a result, 32 ft. of oil bank increased to 40 ft. from 1992 to 1993. Oil production rate was 900 BOPD in 1992 and 1,300 in 1993. They summarized that DDP was very successful improved oil recovery method and could be applied for other areas of Hawkins Field.

Ren et al. [9] studied the effects of many parameters on the performance of double displacement process (DDP). A dipping reservoir model with a dip angle of 8° was the base case. Dimensions in the x-, y-, and z-direction were 591 m, 305 m, and 91 m, respectively. This model had porosity of 25% and permeability of 1,500 md.

Oil has gravity of 0.865 g/cm³ and viscosity of 0.9 mPa·s. They constructed a reservoir model with an up-dip gas injector and a down-dip producer and then varied three parameters: injection and production rate, dip angle of the reservoir, and oil relative permeability. Results of this simulation showed that the critical gas injection rate was 510 m³/day. Bigger dip angle showed better performance due to gravity effect. Stone 2 model was the most suitable three-phase relative permeability model for this simulation compared to Stone 1 model, linear isoperm model, and segregated model.

Wang et al. [10] evaluated double displacement process (DDP) for Hibernia Field. Core plug with 18% porosity and 1,800 md permeability was collected from this field. Core flood experiment was done at 210°F and 4,500 psi. Imbibition and drainage processes were studied prior to performing the DDP test. Critical gas saturation of 0.243 and residual oil saturation of 0.065 after gas flooding were measured by core flooding of gas-displacing-oil process. The water-oil relative permeability was then studied and the core from Hibernia was found to be oil-wet. After that, DDP test was performed by two steps of injection which were water and oil, with ratio of 9:1, injection and gas injection sequentially. Oil bank reached the outlet after 0.025 PV of gas was injected. At that time, oil fractional flow equaled to 0.925. After that, oil fractional flow decreased to 0.205 when 0.280 PV of gas was injected and gas reached the outlet. It was also observed that oil flow rate would be higher than water flow rate after gas breakthrough but with lower two-phase, oil and water, flow rate. Water flooding recovered 54% of OOIP. Additional 14% of OOIP and 18.5% of OOIP were recovered by 1 PV and 11 PV of gas injection, respectively.

Gachuz-Muro et al. [11] compared the performances of natural gas and nitrogen gas in double displacement process (DDP). Core was collected from a naturally fractured reservoir. Density and viscosity of crude oil sample were found to be 32 °API and 0.9 cp, respectively. For natural gas DDP, they performed three recovery mechanisms which were natural depletion, water injection, and gas injection sequentially. Recovery factor for each mechanism was 0.9%, 46.99%, and 16.44%, respectively. Core was then cleaned and used again in the next experiment. After that, nitrogen gas DDP was studied by performing three recovery mechanisms similar to natural gas DDP experiment but only different in gas type. Recovery factor for each mechanism was 0.5%, 46.7%, and 3.79%, respectively. In their study, natural gas injection yielded higher recovery than nitrogen injection in DDP process.

Suwannakul [12] studied the effect of production strategies especially the location of gas injector on the performance of double displacement process (DDP). He constructed three dipping reservoirs with dip angles of 5°, 10°, and 20°. Four vertical wells are constructed. Well 1 was located at the most up-dip location while well 4 was located at the most down-dip location. He injected gas at different wells to determine the effect on production time. It was found that the shortest production time was obtained when gas was injected at well 2 (the second most up-dip well) in a 5° reservoir and at well 1 (the most up-dip well) in a 10° reservoir. However, there was an insignificant effect of injector location on production time for a 20° reservoir due to an influence of gravitational force. In addition, he studied the effect of three-phase relative permeability correlation and concluded that it moderately affected production time but did not affect oil recovery factor.

The previous studies prove that WAG and DDP are two of effective oil recovery methods. They are not only performed in laboratory or simulator but also applied to the real oil reservoirs in every part of the world. They are considered to be successful because they provide good results and their operations are feasible. However, operational parameters have strong effect on the performance of oil production by WAG and DDP. Therefore, the investigation of each parameter is necessary to optimize the production strategies.

CHAPTER III

THEORY AND CONCEPT

3.1 Water alternating gas

Water alternating gas (WAG) is a process of injecting water and gas alternately into the formation. This process combines advantages of water flooding and gas flooding which are better sweep efficiency and better microscopic displacement efficiency, respectively. As a result, more amount of oil can be recovered compared to water flooding or gas flooding. WAG also has these following benefits [13]:

1. High injectivities

The injectivity of WAG is higher than the injectivity of water flooding. Gas is not only injected easily but also lowers the bottom-hole pressure requirement.

2. In-situ gas lifting

The oil rate is enhanced by in-situ lifting provided by circulation of produced gas and injected gas.

3. Suppressed water production

WAG reduces water management cost because the presence of trapped gas lowers the water mobility. As a result, less amount of water is produced.

4. Well interaction

WAG is sometimes applied as the tracer. It can determine the communication between the injectors and the producers.

WAG can be divided into two types: miscible WAG and immiscible WAG. Miscible WAG occurs when the pressure is higher than minimum miscibility pressure (MMP) while immiscible WAG occurs when the pressure is below MMP. Efficiency of WAG is affected by [14]:

1. Fluid properties

The performance of WAG is affected by the properties of oil and solution gas in the reservoir. Light oil consisting of high amount of gas can flow easily. However, it involves in the mixing and separating of fluid phases which may have an influence on the flood front.

2. Trapped gas and wettability

The mobilization of oil and the water/gas displacement is affected directly by gas trapping process. It depends mainly on the saturation of initial gas and the rock wettability. In addition, the fluid which is the wetting phase bypasses other phases. As a result, the non-wetting phase fluid will be trapped, thus causing the problem of the decrease in the relative permeability to injected fluid.

3. Reservoir heterogeneity

The ability of fluids to flow between different zones inside the reservoir is the important factor to determine the performance of WAG process. The heterogeneity of the reservoir has a strong influence on this. Additionally, WAG and other displacement processes by water and gas are significantly affected by the viscous force to gravity force ratio.

4. Injection schemes

The important objective of water/gas injection is the improvement of sweep and displacement efficiencies. To improve these efficiencies, the optimization of water and gas injection parameters need to be performed. These parameters include (1) WAG slug size which is the size of water and gas slugs in the basis of pore volume (PV) or duration of slug injection, (2) WAG ratio which is the ratio of water slug size to gas slug size, and (3) cycling frequency which relates to the period of the injection of each cycle.
5. Injection rate

Oil recovery depends on the viscosity to gravity ratio. A low injection rate can stable the flood front but taking long time for production. On the other hand, a high rate accelerates the production process but causing a problem of viscous fingering effect. Thus, injection rate needs to be optimized.

3.2 Double displacement process

The double displacement process (DDP) is a process of gas flooding to recover water-flooded residual oil in dipping reservoir as shown in Figure 3.1. DDP can recover oil up to 85-95% of OOIP [9]. This process starts with down-dip water injection. In this stage, a production well is located at up-structured location while an injection well is located at down-structured location. Oil is displaced up-structure by water through production well. However, some amount of oil is left after water flooding process is done. This residual oil can be divided into two parts [9]:

- Bypassed oil, in water-unswept zone, caused by reservoir heterogeneity or well placement.
- 2. Trapped oil, in water-swept zone, caused by capillary pressure and surface force.

Gas is then injected to displace oil and water down-dip structure. In this stage, location of production well and injection well are alternately changed. Gas flooding can recover bypassed oil due to better microscopic displacement efficiency, as compared to water, and can recover trapped oil due to oil film forming. After that, oil accumulates to form oil bank between water zone and gas zone. In addition, gasoil system is more effective than water-oil system in gravity drainage due to more density difference between phases. Consequently, water-flooded residual oil is recovered.

Figure 3.1 Schematic of DDP process (after[15]).

Reservoirs with the following properties are good candidates for DDP [15]:

- 1. high amount of water-flooded residual oil
- 2. permeability of 300 md or more
- 3. dip angle over 10°
- 3.3 Immiscible displacement in a dipping reservoir

3.3.1 Water displacing oil

For water flooding in a dipping reservoir, water is normally injected down-dip due to higher density of water compared with reservoir fluids. Consequently, injection wells and production wells should be located as shown in Figure 3.2.

Figure 3.2 Linear prototype reservoir model: (a) plan view, (b) cross section (after [16]).

Reservoir fluids are pushed ahead from the injector through the producer after injection. Both oil and water flow together in separated phases due to immiscibility between them. If two fluids are considered incompressible, the relationship of flow rates will be [16]

$$q_t = q_o + q_w = q_i \tag{3.1}$$

where

A fraction of water in total flow can be calculated by fractional flow equation. This equation was derived from Darcy's law. It was first introduced by Leverett in 1941 [16].

$$f_{W} = \frac{1 + \frac{k k_{ro} A}{q_{t} \mu_{o}} \left(\frac{\partial P_{c}}{\partial x} - \frac{\Delta \rho g \sin \theta}{1.0133 \times 10^{6}}\right)}{1 + \frac{\mu_{W}}{k_{rW}} \cdot \frac{k_{ro}}{\mu_{o}}}$$
(3.2)

where f_w = fractional flow of water in reservoir k = absolute permeability

k _{ro}	=	relative permeability to oil
k _{rw}	=	relative permeability to water
μο	=	viscosity of oil
μ_{w}	=	viscosity of water
А	=	area
P _c	=	capillary pressure
х	=	distance in direction of flow
× Δρ	=	distance in direction of flow $\rho_{\rm w}$ – $\rho_{\rm o}$
χ Δρ ρ _w	= =	distance in direction of flow $\rho_{\rm w} = \rho_{\rm o}$ density of water
χ Δρ ρ _w ρ _o	= = =	distance in direction of flow $ ho_w - ho_o$ density of water density of oil
x Δρ ρ _w g	= = =	distance in direction of flow $\rho_w - \rho_o$ density of water density of oil acceleration due to gravity

The wetting phase and non-wetting phase require minimum saturations for flowing in a two-phase system. For oil/water system, the interstitial water saturation or S_{iw} and the residual oil saturation as S_{or} are required as minimum saturations. These values are affected by rock type, wettability, and IFT.

The flooding front is usually stable during the water flooding with low injection rate in a dipping reservoir, but usually unstable with high injection rate.

Chulalongkorn University

Figure 3.3 Water displacement: (a) stable, (b) stable, and (c) unstable (after [16]).

Stable displacement refers to the flooding with constant angle between the water-oil interface and the bedding plane (β) at any distance from injection well through production well as shown in Figure 3 (a) and (b) which are described by the following equation [16]. In this case, gravity force predominates over viscous force.

$$\frac{dy}{dx} = -\tan\beta = constant \tag{3.3}$$

Conversely, viscous force predominates over gravity force in the condition of high injection rate. This causes water underrun or unstable flood front as shown in Figure 3 (c) which is described by the following equation [16].

$$\frac{dy}{dx} = -\tan\beta = 0 \tag{3.4}$$

Figure 3.3 shows three different displacement patterns as shown below:

- (a) stable, G > M-1, M > 1, $\beta < \theta$
- (b) stable, G > M-1, M < 1, $\beta < \theta$
- (c) unstable, G < M-1

The dimensionless gravity number (G) and the end point mobility ratio (M) can be calculated from the following equations [16].

$$G = \frac{k k'_{rw} A \Delta \rho g \sin\theta}{1.0133 \times 10^6 q_t \mu_w}$$
(3.5)

$$M = \left(\frac{k'_{rw}}{\mu_w}\right) \cdot \left(\frac{\mu_o}{k'_{ro}}\right) \tag{3.6}$$

where

k'_{rw} = end point water relative permeability

k'_{ro} = end point oil relative permeability

Water tongue normally occurs when the injection rate is higher than the critical rate for by-passing $(q_{w,crit})$ which can be calculated from the following equation [16].

$$q_{w,crit} = \frac{k \, k'_{rw} \, A \, \Delta \rho \, g \, sin\theta}{1.0133 \times 10^6 \, \mu_w \, (M-1)} \tag{3.7}$$

Thereby, injection rate should be maintained below $q_{w,crit}$ to avoid early breakthrough causing by unstable flood front. Early water breakthrough results in high water cut at the production well. It directly reduces the performance of oil production because high amount of oil is bypassed by this underrunning water. Moreover, the costs of surface facility and management, including separator and waste water management, rise up.

Chulalongkorn University

3.3.2 Gas displacing oil

In a dipping reservoir, gas injection well is normally located at up-dip structure location. Gas displaced oil down-dip to the production well. Gas fractional flow can be calculated by Welge equation [17].

$$f_{g} = \frac{1 + \frac{k \, k_{ro} \, \Delta \rho \, A \sin \alpha}{q_{t} \, \mu_{o}}}{1 + \frac{1}{M}}$$
(3.8)
where $M = \text{mobility ratio} = \left(\frac{k_{rg}}{\mu_{g}}\right) \cdot \left(\frac{\mu_{o}}{k_{ro}}\right)$
$$f_{g} = \text{fractional flow of gas in reservoir}$$
$$k = \text{absolute permeability}$$

 k_{ro} = relative permeability to oil

k_{rg} = relative permeability to gas

$$\Delta \rho = \rho_g - \rho_o$$

A = area of cross section normal to the bedding plane

 α = dip angle of the reservoir

q_t = total flow rate

 μ_o = viscosity of oil

 μ_g = viscosity of gas

Figure 3.4 Gas displacement: (a) unstable and (b) stable (after [16]).

In contrast to water underrun, gas flooding can cause the problem of gas override due to lower density. The angle between the gas-oil interface and the bedding plane is constant throughout the flooding process in the stable displacement but not constant in the unstable displacement as shown in Figure 3.4. Even though the problem of gas override is more difficult to avoid as compared to the problem of water underrun because of the larger difference in fluid viscosities, gas injection rate is still necessary to be optimized. Too high gas injection rate not only decreases the sweep efficiency, which lowers the production performance, but also increases the operating costs. The examples of these costs affected by gas injection rate are the costs of storage tank, pump, separator, and gas conditioning unit. The dimensionless gravity number (G), the end point mobility ratio (M), and the critical rate for by-passing $(q_{g,crit})$ can be calculated from the following equations [16]:

$$G = \frac{k \, k_{rg}^{\prime} \, A \, \Delta \rho \, g \, sin\theta}{1.0133 \times 10^6 \, q_t \, \mu_g} \tag{3.9}$$

$$M = \left(\frac{k_{rg}'}{\mu_g}\right) \cdot \left(\frac{\mu_o}{k_{ro}'}\right) \tag{3.10}$$

$$q_{g,crit} = \frac{k \, k_{rg}^{\prime} \, A \, \Delta \rho \, g \, sin\theta}{1.0133 \times 10^6 \, \mu_g \, (M-1)} \tag{3.11}$$

where k'_{rg} = end point gas relative permeability

3.4 Three-phase relative permeability

Relative permeability is defined as the ability of porous medium or reservoir rock to conduct each fluid in several-fluid-phase system. There are three phases of fluid involving in WAG and DDP, namely, oil, water, and gas. In ECLIPSE, there are three models that can be used to indicate three-phase relative permeability according to Schlumberger's simulation software manuals 2007.1 [18].

3.4.1 ECLIPSE default

Figure 3.5 Relationship of oil, water, and gas saturations for the ECLIPSE default model (after [18]).

In a fraction $S_{e}/(S_{e}+S_{w}-S_{wco})$ of the cell (the gas zone),

the oil saturation is ${\rm S}_{\rm o}$

the water saturation is $\mathsf{S}_{\mathsf{wco}}$

the gas saturation is S_g+S_w-S_{wco}

In fraction $(S_w-S_{wco})/(S_g+S_w-S_{wco})$ of the cell (the water zone),

the oil saturation is S_o

the water saturation is $S_{g}+S_{w}$

the gas saturation is 0

The relative permeability is calculated by the following equation.

$$k_{ro} = \frac{S_{g}k_{rog} + (S_{w} - S_{wco})k_{row}}{S_{g} + S_{w} - S_{wco}}$$
(3.13)

where S_{wco} = the connate water saturation

k_{rog} = the oil relative permeability for a system with oil, gas, and connate water

 k_{row} = the oil relative permeability for a system with oil and water only

This is the modification of Stone 1 model. The relative permeability is calculated by the following equation.

$$k_{ro} = k_{rocw} SS_o F_w F_g \tag{3.14}$$

where k_{rocw} = the oil relative permeability in the presence of connate water only

$$SS_{o} = (S_{o}-S_{om})/(1-S_{wco}-S_{om}) \text{ when } S_{o} > S_{om}$$

$$F_{w} = k_{row}/(k_{rocw}\cdot(1-SS_{w}))$$

$$F_{g} = k_{rog}/(k_{rocw}\cdot(1-SS_{g}))$$

$$SS_{w} = (S_{w}-S_{wco})/(1-S_{wco}-S_{om}) \text{ when } S_{w} > S_{wco}$$

$$SS_{g} = S_{g}/(1-S_{wco}-S_{om})$$

$$k_{w} = \text{the oil relative permeability for a system}$$

k_{rog} = the oil relative permeability for a system with oil, gas, and connate water

k_{row} = the oil relative permeability for a system with oil and water only

Som = the minimum residual oil saturation

3.4.3 Stone 2 (modified)

This is the modification of Stone 2 model. The relative permeability is calculated by the following equation.

$$k_{ro} = k_{rocw} \left[\left(\frac{k_{row}}{k_{rocw}} + k_{rw} \right) \left(\frac{k_{rog}}{k_{rocw}} + k_{rg} \right) - k_{rw} - k_{rg} \right]$$
(3.15)

where k_{rog} = the oil relative permeability for a system with oil, gas, and connate water

k_{row} = the oil relative permeability for a system with oil and water only

 k_{rocw} = the oil relative permeability in the presence of connate water only

3.5 Fracturing pressure

The fracturing pressure is the pressure that can cause fracture in reservoir formation. Therefore, any fluid should be injected below this pressure to prevent the reservoir from any damage. Equation 3.16 is used to calculate fracturing pressure for the M Field in the Gulf of Thailand [19].

 $Fracturing \ pressure \ (bar) = \frac{FRAC.S.G. \times TVD}{10.2}$ (3.16) where FRAC.S.G. = fracturing pressure gradient (bars/meter) = 1.22 + (TVD × 1.6 × 10⁻⁴) TVD = true vertical depth below rotary table (meter)

3.6 Barrel of oil equivalent

Barrel of oil equivalent (BOE) is an effective indicator to illustrate production performance for process involving gas injection and production. Produced oil, produced gas, and injected gas are taken into account for the calculation. BOE can be calculated by the following equation [20].

BOE = Cumulative oil production (STB) + [Cumulative gas production (MMSCF) x 166.7] – [Cumulative gas injection (MMSCF) x 166.7] (3.17)

CHAPTER IV

MODEL DESCRIPTION

The reservoir model is constructed in order to study and compare two recovery processes which are water alternating gas process (WAG) and double displacement process (DDP). Description of the model is shown in this chapter.

4.1 Reservoir model

The homogeneous reservoir model with following parameters as shown in Table 4.1 is constructed for simulation by BlackOil Simulator in ECLIPSE100. This model consists of 45,260 corner-point Cartesian grids as shown in Figure 4.1. The reservoir size of 6,000 ft x 2,000 ft x 200 ft is represented by $73 \times 31 \times 20$ grid blocks. Grid cells in the x, y, and z-direction are shown in Figures 4.2, 4.3, and 4.4, respectively.

Parameters	Values	Units	
Grid number	73 x 31 x 20	block	
Reservoir size	6,000 × 2,000 × 200	ft ³	
Porosity	15.09	%	
X Permeability	126	md	
Y Permeability	126	md	
Z Permeability	12.6	md	
Top of reservoir	5,000	ft	
Initial pressure at 5,000 ft	2,242	psia	
Bubble point pressure	2,242	psia	
Dip angle	15	degree	
Initial oil saturation	0.7	-	

Table 4.1 Parameters of the reservoir model.

Figure 4.2 Grid cells in the x-direction.

Figure 4.4 Grid cells in the z-direction.

4.2 PVT properties

PVT properties refer to properties of oil, gas, water and rock. The densities of oil, gas, and water at standard conditions are assumed to be 51.45684 lb/ft³, 0.04369958 lb/ft³, and 62.42797 lb/ft³, respectively. Data in Table 4.2 have to be put in PVT correlation section to let ECLIPSE generate live oil PVT properties (Figure 4.5)

and dry gas PVT properties (Figure 4.6). Water PVT properties are shown in Table 4.3. The rock compressibility is assumed to be $3.013923 \times 10^{-6} \text{ psi}^{-1}$.

Table 4.2 Input data for PVT correlation.

Input Data	Values	Units
Oil gravity	40	°API
Gas gravity	0.7	s.g. air
Gas oil ratio (R _s)	566	SCF/STB
Standard temperature	60	°F
Standard pressure	14.7	psia
Reservoir temperature	200	°F
Reference pressure 🏾	3000	psia
Rock type	Consolidated sandstone	-

Figure 4.5 Live oil PVT properties.

Figure 4.6 Dry gas PVT properties.

Table 4.3 Water PVT properties.

Properties	Values	Units
Water FVF at P _{ref}	1.021734	RB/STB
Water compressibility	3.09988×10^{-6}	psi ⁻¹
Water viscosity at P _{ref}	0.3013289	ср
Water viscosibility	3.396041 × 10 ⁻⁶	psi ⁻¹

4.3 SCAL properties

Relative permeability curves are generated by ECLIPSE using Corey's correlation. Input parameters for Corey's correlation are listed in Table 4.4. Gas/oil saturation functions and water/oil saturation functions are shown in Figure 4.7 and Figure 4.8, respectively.

Corey water	3	Corey gas/oil	3	Corey oil/water	1.5
S _{wmin}	0.25	S _{gmin}	0	Corey oil/gas	1.5
S _{wcr}	0.25	S _{gcr}	0.15	S _{org}	0.1
S _{wi}	0.25	S _{gi}	0.15	S _{orw}	0.3
S _{wmax}	1	K _{rg} (S _{org})	0.4	K _{ro} (S _{wmin})	0.8
K _{rw} (S _{orw})	0.3	$K_{rg}(S_{gmax})$	0.4	$K_{ro}(S_{gmin})$	0.8
K _{rw} (S _{wmax})	1				

Table 4.4 Input parameters for Corey's correlation.

Figure 4.7 Gas/oil saturation functions.

Figure 4.8 Water/oil saturation functions.

4.4 Well schedule

For the base case model, two vertical wells are constructed in the model, one well at up-dip location and another well at down-dip location as shown in Table 4.5 and Figures 4.9 and 4.10. Fracture pressures of well 1 and well 2 are calculated by Eq. 3.16.

Table 4.5 Well location and fracture pressure for the base case model.

Parameters	Values	Unit
Position of well 1	i=12, j=16	-
Position of well 2	i=62, j=16	-
Fracture pressure of well 1	3,260	psia
Fracture pressure of well 2	4,080	psia

Figure 4.9 Well locations for base case model.

Figure 4.10 Well location in 3D for base case model.

4.4.1 Water alternating gas process (WAG)

In this study, WAG is divided into two types which are WAG with up-dip injection and WAG with down-dip injection. Parameters for well schedule for WAG for the base case are shown in Table 4.6.

Table 4.6 Parameters for well schedule for WAG.

Parameters	Values	Units
Water injection rate	8,000	RB/D
Production rate during water injection	8,000	RB/D
Gas injection rate	8,000	RB/D
Production rate during gas injection	8,000	RB/D
Water cut for stopping time of water injection	60	%
Water injection duration	90	days
Gas injection duration	90	days
Economic constraint	Oil rate < 50	STB/D
Production time	30	years

4.4.1.1 WAG with up-dip injection

For WAG with up-dip injection, well 1 and well 2 are set as producer and water injector, respectively, during the initial water flooding period. After the water cut of well 1 reaches a certain value, both wells are shut for 180 days. Slugs of water and gas are then injected alternately at well 1 while oil is produced at well 2. The production period is limited at 30 years. However, the production is stopped if the oil rate reaches economic constraint.

4.4.1.2 WAG with down-dip injection

For WAG with down-dip injection, well 1 and well 2 are set as producer and water injector, respectively, during the initial water flooding period. After the water cut of well 1 reaches a certain value, both wells are shut for 180 days. Slugs of water and gas are then injected alternately at well 2 while oil is produced at well 1. The production period is limited at 30 years. However, the production is stopped if the oil rate reaches the economic constraint.

4.4.2 Double displacement process (DDP)

For DDP, well 1 and well 2 are set as producer and water injector, respectively, during the initial water flooding period. After the water cut of well 1 reaches a certain value, both wells are shut for 180 days. Gas flooding is then performed by setting well 1 and well 2 as gas injector and producer, respectively. The production period is limited at 30 years. However, the production is stopped if the oil rate reaches the economic constraint. Parameters for well schedule for DDP base case are shown in Table 4.7.

Parameters	Values	Units
Water injection rate	8,000	RB/D
Production rate during water injection	8,000	RB/D
Gas injection rate	8,000	RB/D
Production rate during gas injection	8,000	RB/D
Water cut for stopping time of water injection	60	%
Economic constraint	Oil rate < 50	STB/D
Production time	30	years

Table 4.7 Parameters for well schedule for DDP.

<u>ุ</u>หาลงกรณ์มหาวิทยาลัย

4.5 Thesis methodology

The details of thesis methodology are summarized below:

- 1. Construct a 15° reservoir model consisting of 45,260 corner-point Cartesian grids as detailed in Section 4.1. PVT and SCAL properties for the model are shown in Sections 4.2 and 4.3, respectively.
- 2. Study the production characteristics of long-term water flooding, water alternating gas (WAG), and double displacement process (DDP) by performing four base cases as listed below:
 - 2.1 long-term water flooding base case

- 2.2 short-term water flooding followed by WAG with up-dip injection base case
- 2.3 short-term water flooding followed by WAG with down-dip injection base case
- 2.4 DDP base case
- 3. Since WAG and DDP start with initial water flooding, the effect of stopping criteria for water flooding is studied. Water injection is stopped when water cut of the producer reaches 1, 20, 40, 60, and 80%. This study is performed for reservoir with dip angle of 0°, 15°, and 30°. The water cut stopping criteria that yields the highest barrel of oil equivalent (BOE) for each production process and each reservoir are used in the subsequent studies.
- 4. Determine water and gas injection rates that yield the highest BOE for each production process and each reservoir. These rates are used in the subsequent studies. The 16 cases with the combination of water injection rate (6,000, 8,000, 10,000, and 12,000 RB/D) and gas injection rate (6,000, 8,000, 10,000, RB/D) are applied in this study.
- Study the effect of WAG cycle and injection duration for WAG with up-dip and down-dip injection processes. Cases with different WAG cycles (1:4, 1:2, 1:1, 2:1, and 4:1) and different durations of injection are performed to find the case that provides the highest BOE for each process and each reservoir.
- 6. Construct the following well patterns to study their effects on oil production. Water cut stopping criteria, water and gas injection rates, and WAG cycle and injection duration that yield the highest BOE for each process and reservoir from the previous studies are applied in this study.
 - 6.1 pattern with 2 vertical wells (base case)
 - 6.2 pattern with 4 vertical wells
 - 6.3 pattern with 8 vertical wells
 - 6.4 pattern with 2 horizontal wells

- 6.5 pattern with an up-dip vertical well and a down-dip horizontal well
- 7. Compare the production performances of WAG with up-dip injection, WAG with down-dip injection, and DDP. The production process that yields the highest BOE for each reservoir is summarized.
- Study the effects of the following reservoir and fluid properties on oil production performance. The cases that yield the highest BOE for 0°, 15°, and 30° reservoir are applied in this study.
 - 8.1 horizontal permeability (25.2, 126, and 630 md)
 - 8.2 vertical/horizontal permeability ratio (0.01, 0.1, and 0.5)
 - 8.3 three-phase relative permeability correlation (ECLIPSE default model, Stone 1 model, and Stone 2 model)
 - 8.4 reservoir thickness (50, 200, and 500 ft.)
 - 8.5 oil properties (as shown in Table 4.8)

Table 4.8 Cases with different oil properties.

8	Property	
Case	Oil gravity	R _s
จุหาลง	[°API]	[SCF/STB]
1	30	400
2	40	650
3	50	1,000

CHAPTER V RESULTS AND DISCUSSION

The results of two recovery processes which are water alternating gas process (WAG) and double displacement process (DDP) are presented and discussed in this chapter. For WAG, four parameters which are (1) stopping time for water injection, (2) water and gas injection rates, (3) WAG cycle and injection duration, and (4) well pattern are investigated for their effects. For DDP, three parameters which are (1) stopping time for water injection, (2) water and gas injection rates, and (3) well pattern are examined. These studies are performed for reservoir with dip angle of 0°, 15°, and 30°. After that, sensitivity on the change in (1) horizontal permeability, (2) vertical/horizontal permeability ratio, (3) relative permeability correlation, (4) reservoir thickness, and (5) oil property is conducted.

5.1 Base cases

5.1.1 Long-term water flooding

Water flooding process is performed by continuously injecting water at downdip location (well 2) and producing oil at up-dip location (well 1). This process is stopped when the water cut of the producer reaches 95%. Figure 5.1 shows water injection rate and bottom-hole pressure of the water injector (well 2). Water injection rate of 8,000 RB/D (or approximately 7,850 STB/D) can be kept constant throughout the production time because the bottom-hole pressure is always lower than the fracturing pressure of 4,080 psia.

Figure 5.1 Water injection rate and bottom-hole pressure of water injector of longterm water flooding.

Oil and gas are produced at quite constant rates about 7 years before the breakthrough of injected water. After that, their rates drop dramatically while water production rate increases rapidly between the seventh year and the fifteenth year. As the water cut of producer (well 1) reaches 95%, the production is stopped. The total production time of this long-term water flooding base case is 15.17 years. Oil, gas, and water production rates are illustrated in Figure 5.2.

Figure 5.2 Oil, gas, and water production rates of long-term water flooding.

Long-term water flooding can recover 19.675 MMSTB of oil, equivalent to 56.05% of oil recovery in 15.17 years as shown in Figure 5.3.

Figure 5.3 Cumulative oil production and oil recovery factor of long-term water flooding.

Figures 5.4 and 5.5 illustrate oil saturation inside the reservoir at different times as listed below:

- a) At early time of water flooding (1 year of production), injected water displaces oil around the injector. Most area is still unswept.
- b) At middle time of water flooding (8 years of production), injected water arrives the producer. There is an accumulation of water to form a water bank at the bottom part of reservoir. Most amount of oil is displaced except in the top reservoir layer (z-direction) and the zone up-dip of well 1.
- c) At the end of production (15.17 years), there is a small oil bank in the area up-dip of the producer separating from the water bank due to the difference in their densities. However, water sweeps almost all area of the reservoir.

Figure 5.4 Oil saturation at any time of long-term water flooding (top view, k=1).

Figure 5.5 Oil saturation at any time of long-term water flooding (side view, j=31).

5.1.2 Short-term water flooding followed by water alternating gas process (WAG) base case

Water alternating gas process (WAG) is the injection of water alternately with gas in separated slugs. In this study, the process starts with water flooding by injecting water at down-dip location (well 2) and producing oil at up-dip location (well 1). All wells are shut for 180 days when the water cut reaches 60%. After that, WAG is performed in two different types which are WAG with up-dip injection and WAG with down-dip injection.

5.1.2.1 WAG with up-dip injection base case

After the water cut in the initial water flooding reaches the criteria of 60%, water and gas are injected alternately at up-dip location (well 1) while the production is done at down-dip location (well 2) of which schedule is shown in Table 5.1.

Step of production	Well 1 (up-dip)	Well 2 (down-dip)	
water flooding	producer	water injector	
water nooding	(8000 RB/D)	(8000 RB/D)	
water cut of well 1	shut in for 180 days	shut in for 180 days	
reaches 60%	shut in for 100 days		
WAG with up-dip	water/gas injector	producer	
injection	(8000 RB/D)	(8000 RB/D)	

Table 5.1 Well schedule for WAG with up-dip injection base case.

During the period of water flooding from the first day to the eighth year of production, water is injected at well 2 with the rate of 8,000 RB/D or approximately 7,850 STB/D as shown in Figure 5.6. The bottom-hole pressure of well 2 does not exceed the fracturing pressure of 4,080 psia. This means water can be injected with this rate without fracturing the formation.

For WAG process following the initial water flooding, water and gas injection durations of 90 days are injected alternately at well 1 at the same rate of 8,000 RB/D which are approximately 7,850 STB/D for water and 6.7 MMSCF/D for gas. They also do not cause any fracture because the bottom-hole pressure of well 1 is always lower than the fracturing pressure of 3,260 psia as illustrated in Figures 5.6 and 5.7.

Figure 5.6 Water injection rate and bottom-hole pressure of water injector of the WAG with up-dip injection base case.

Figure 5.7 Gas injection rate and bottom-hole pressure of gas injector of the WAG with up-dip injection base case.

From Figure 5.8, oil and gas start to be produced by well 1 at quite constant rates which are approximately 6,000 STB/D and 3.4 MMSCF/D, respectively, during the initial water flooding for about 7 years before water breakthrough. After that, oil and gas rates drop very rapidly whereas water rate increases because of the arrival of water at well 1. At 8.59 years, fluids are produced by well 2 with a high amount of water which is formerly injected and accumulates around this well at down-dip location. In the twelfth year, a dramatic increase in gas rate occurs together with a slight increase in oil rate and an expeditious decrease in water rate due to the breakthrough of injected gas.

Figure 5.8 Oil, gas, and water production rates of the WAG with up-dip injection base case.

Figure 5.9 shows that the initial water flooding that is implemented until the water cut reaches 60% can recover 17.068 MMSTB of oil or 48.62% recovery while an additional 6.643 MMSTB of oil is recovered by WAG. Therefore, the total amount of oil production reaches 23.711 MMSTB, equivalent to the oil recovery factor of 67.55% in the last year of production.

Figure 5.9 Cumulative oil production and oil recovery factor of the WAG with up-dip injection base case.

Water is injected since the first day of production; however, it starts to be produced in the seventh year after breakthrough. The total amount of injected water is 53.990 MMSTB while the total amount of produced water is 35.557 MMSTB.

The total amount of 28.676 BSCF of gas is produced by two mechanisms: water flooding and WAG. Gas injection is performed since the eight year. Consequently, 9.7 BSCF of gas produced before this time is solution gas in the reservoir. The total amount of gas needed for injection is 25.792 BSCF.

Since there is no water in the reservoir, water cut in the early time is zero. It later increases dramatically to 60%, the stopping criteria for water injection, at the eight year because of the breakthrough of water. At the early time of WAG, water cut is very high because of an accumulation of water around well 2. Then, it drops to about 73% at the seventeenth year and finally increases to 90% in the last year.

Figures 5.10 and 5.11 illustrate oil saturation inside the reservoir at different times as listed below:

- a) At early time of water flooding (1 year of production), oil saturation around well 2 is quite low due to oil being displaced by injected water. Most area is still unswept.
- b) At late time of water flooding (8 years of production), oil between well 1 and well 2 is mostly flooded. Oil in the area up-dip of well 1 is unswept.
- c) At early time of WAG injection (9 years of production), water and gas displace oil around well 1, causing very low oil saturation in this area.
- d) At the end of production (30 years), much amount of oil is produced. However, there is some residual oil which cannot be produced at the zone down-dip of well 2. The side view figure shows higher oil saturation in the middle layer (z-direction) than the upper and the lower layers due to the separation of three fluids which are gas, oil, and water in the upper, middle, and lower layers, respectively.

Figure 5.10 Oil saturation at any time of WAG with up-dip injection (top view, k=1).

Figure 5.11 Oil saturation at any time of WAG with up-dip injection (side view, j=31).

5.1.2.2 WAG with down-dip injection base case

After the water cut in the initial water flooding reaches the criteria of 60%, water and gas are injected alternately at down-dip location (well 2) while the production is done at up-dip location (well 1) of which schedule is shown in Table 5.2.

Step of production	Well 1 (up-dip)	Well 2 (down-dip)					
water flooding	producer	water injector					
water mooding	(8000 RB/D)	(8000 RB/D)					
water cut of well 1	shut in for 180 days	shut in for 180 days					
reaches 60%	shut in for 100 days	shut in for 100 days					
WAG with down-dip	producer	water/gas injector					
injection	(8000 RB/D)	(8000 RB/D)					

Table 5.2 Well schedule for WAG with down-dip injection base case.

Water injection at a rate of 8,000 RB/D or approximately 7,850 STB/D is performed at well 2 as shown in Figure 5.12. It is injected continuously during water flooding but in separated small slugs during WAG injection. The bottom-hole pressure is always lower than the fracturing pressure of 4,080 psia throughout the production time.

Gas is injected at well 2 at a rate of 8,000 RB/D or approximately 7 MMSCF/D in separated small slugs during a WAG injection period. This injection rate always keeps the bottom-hole pressure to be lower than the fracturing pressure of 4,080 psia as shown in Figure 5.13.

Figure 5.12 Water injection rate and bottom-hole pressure of water injector of the WAG with down-dip injection base case.

Figure 5.13 Gas injection rate and bottom-hole pressure of gas injector of the WAG with down-dip injection base case.

Oil and gas production rates are quite constant around 6,100 STB/D and 3.4 MMSCF/D, respectively, during the initial water flooding for about 7 years before water breakthrough. After that, they drop expeditiously whereas water rate increases dramatically due to the breakthrough of water at well 1. All wells are then shut for 180 days. At 8.59 years, the fluids are produced by well 1 with the rates similar to their rates on the last day of initial water flooding because a producer is still the same. The breakthrough of injected gas between the tenth and the eleventh year causes a rapid increase of gas production rate and a dramatic decrease of water rate. This also causes a slight increase of oil production rate. Since the fifteenth year, oil rate slightly decreases until the last year as shown in Figure 5.14.

Figure 5.14 Oil, gas, and water production rates of the WAG with down-dip injection base case.

From Figure 5.15, initial water flooding that is implemented until the water cut reaches 60% recovers 17.068 MMSTB of oil while WAG recovers an additional 5.971 MMSTB of oil. At the last year of production, the total amount of oil production is 23.039 MMSTB, equivalent to 65.63% of oil recovery factor.

Figure 5.15 Cumulative oil production and oil recovery factor of the WAG with downdip injection base case.

Water is injected since the first day of production; however, it starts to be produced in the seventh year after breakthrough. The amount of water required during initial water flooding is 23.094 MMSTB while WAG needs 30.909 MMSTB of water. Thus, the total amount of injected water and the total amount of produced water are 54.003 MMSTB and 30.003 MMSTB, respectively.

The total amount of 34.904 BSCF of gas is produced by two mechanisms: 9.544 BSCF by initial water flooding and 25.357 BSCF by WAG. Gas injection starting in the ninth year requires 27.162 BSCF of gas. Water cut increases rapidly in the eight year and reaches the stopping criteria of 60% in the ninth year. In the WAG period, it increases to 82% in the tenth year, drops to 71% in the fifteenth year, and slightly increases to 95% in the last year.

Figures 5.16 and 5.17 illustrate oil saturation inside the reservoir at different times as listed below:

- a) At early time of water flooding (1 year of production), oil saturation around well 2 is quite low due to oil being displaced by injected water. Most area is still unswept.
- b) At late time of water flooding (8 years of production), oil between well 1 and well 2 is mostly flooded. Oil in the area up-dip of well 1 is unswept.
- c) At early time of WAG injection (9 years of production), water and gas displace oil around well 2, causing very low oil saturation in this area.
- d) At the end of production (30 years), much amount of oil is produced but there is a small layer of oil left in the zone up-dip of well 1.

Figure 5.16 Oil saturation at any time of WAG with down-dip injection (top view, k=1).

Figure 5.17 Oil saturation at any time of WAG with down-dip injection(side view, j=31).

5.1.3 Double displacement process (DDP) base case

Double Displacement Process (DDP) involves two sequential flooding mechanisms which are water flooding and gas flooding. During water injection, the well at up-dip location (well 1) is set to be a producer while the well at down-dip location (well 2) is set to be water injector. After that, well 1 is switched to be gas injector while well 2 is switched to be producer of which schedule is shown in Table 5.3.

Step of production	Well 1 (up-dip)	Well 2 (down-dip)
water flooding	producer	water injector
water nooding	(8000 RB/D)	(8000 RB/D)
water cut of well 1	shut in for 180 days	shut in for 180 days
reaches 60%	shut in for 100 days	shut in for 100 days
מחח	gas injector	producer
DDP	(8000 RB/D)	(8000 RB/D)

Table 5.3 Well schedule for DDP base case.

Water is injected into the reservoir at well 2 at a rate of 8,000 RB/D or 7,800 STB/D since the first day of production. This rate is constant throughout the water flooding period because the bottom-hole pressure of well 2 does not exceed its fracturing pressure. Water injection stops at the eighth year when the water cut reaches the stopping criteria of 60% as shown in Figure 5.18.

Figure 5.18 Water injection rate and bottom-hole pressure of water injector of the DDP base case.

Figure 5.19 shows gas injection rate and bottom-hole pressure of the injector. After the wells are shut for 180 days, gas is injected continuously into the reservoir until the last year of production at well 1 at a rate of 8,000 RB/D or approximately 6.7 MMSCF/D. Gas injection rate is rather constant because the bottom-hole pressure of well 1 does not exceed its fracturing pressure.

Figure 5.19 Gas injection rate and bottom-hole pressure of gas injector of the DDP base case.

Oil, water, and gas production rates are shown in Figure 5.20. Oil is produced by well 1 at constant rate around 6,050 STB/D for almost 7 years. After that, it drops expeditiously to around 2,750 STB/D. Gas is also produced at constant rate around 3.4 MMSCF/D. Gas rate starts to drop similarly to oil rate at the seventh year due to the breakthrough of injected water. Consequently, water is started to be produced at this time with expeditiously increasing rate. At the eighth year of production, both wells are shut for 180 days. During the early time of WAG, a lot of water is produced because of the accumulation of water around well 2 caused by the former water injection. Water rate drops expeditiously after the eleventh year because there is less amount of water in the reservoir. Oil is produced with an increasing rate until it reaches approximately 1,800 STB/D in the nineteenth year but later with a decreasing rate until the last year of production. The oil production rate at the last year is 771 STB/D. Gas is produced with a low rate for a while but with an increasing rate after the breakthrough of injected gas. Gas production rate at the last year is 6.014 MMSCF/D.

Figure 5.20 Oil, gas, and water production rates of the DDP base case.

More amount of oil is produced in the initial water flooding period as compared to the amount of oil recovered in the gas flooding period; they are 17.068 MMSTB and 9.232 MMSTB, respectively. As a result, the total amount of oil of 26.301 MMSTB is produced, equivalent to the oil recovery factor of 74.92% as shown in Figure 5.21.

The amount of water required for injection is 23.094 MMSTB. It is produced mainly in the gas flooding period.

An amount of solution gas approximately 9.544 BSCF is produced during the initial water flooding while the injected gas is produced after the breakthrough. At the last year of production, the total amount of injected gas and total amount of produced gas are 52.733 BSCF and 43.000 BSCF, respectively.

In term of water cut, it is zero for almost 7 years. After the breakthrough, it increases expeditiously to 60% which is the criteria for stopping of water flooding. In the early time of gas flooding, water cut reaches 100% because of the accumulation

of water around the producer. However, it decreases continuously because much amount of water is displaced by oil and gas from up-dip location, causing this water to be produced back.

Figures 5.22 and 5.23 illustrate oil saturation inside the reservoir at different times as listed below:

- a) At early time of water flooding (1 year of production), oil saturation around well 2 is quite low due to oil being displaced by injected water. Only small area is swept by water while oil saturation of most area is still high.
- b) At late time of water flooding (8 years of production), oil between well 1 and well 2 is mostly flooded.
- c) At early time of gas flooding (9 years of production), gas displaces oil around well 1, causing very low oil saturation in this area.
- d) At the end of production (30 years), much amount of oil is produced.
 However, there is some residual oil which cannot be produced at the zone down-dip of well 2.

Table 5.4 shows result comparison of WAG with up-dip injection base case, WAG with down-dip injection base case, and DDP base case. The performance of long-term water flooding having abandonment criteria of 95% water cut is also included in the table. Barrel of oil equivalent (BOE) calculated from Eq. 3.17 is an appropriate indicator for production performance comparison than recovery factor because it accounts for two important terms which are amounts of injected and produced gas. From the results shown in Table 5.4, water flooding needs the shortest production time but it results in the lowest BOE. DDP base case yields the highest recovery factor and BOE even though it is the only case having more injected gas than produced gas.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

		BOE	[MMSTB]		21.505	24 192	24.172	00 200	24.727	24.678
	Total	water	production	[MMSTB]	17.873	35 557	-00.00	30.002		17.516
	Total	water	injection	[MMSTB]	43.310	53 000		EA DO2	000.40	23.094
	Total	gas	production	[BSCF]	10.976	28 676	0.07	20.001	J4.701	43.000
	Total	gas	injection	[BSCF]	0	797	7/1.07	7167	201.12	52.733
	Oil	recovery	factor	[%]	56.05	אן אד	00.10	65 62		74.92
ase cases.	Total	oil	production	[MMSTB]	19.675	23 711	111.02	72 020	600.07	26.301
arison of the ba				[ו במו]	15.17	Uε	2	30	0	30
Table 5.4 Result comp					water flooding	WAG with up-dip	injection base case	WAG with down-dip	injection base case	DDP base case

Cas
base
of the
nparison
COM
Result
5.4
Table .

5.2 Effect of stopping criteria for water flooding

Effect of stopping criteria for water flooding is studied by using the base case model consisting of two vertical wells as represented in Figure 4.10 and varying the stopping criteria for water flooding based on water cut of well 1 which is the producer before starting WAG or DDP. Water and gas injection rates are still the same as the base case at 8,000 RB/D. When water cut reaches the stopping criteria, well 1 and well 2 are shut for 180 days to prepare for WAG or DDP. Water cut stopping criteria of 1%, 20%, 40%, 60%, and 80% are investigated. This study is performed for reservoir with dip angle of 15° (base case), reservoir without dip angle, and reservoir with dip angle of 30°. Results of WAG with up-dip injection, WAG with down-dip injection, and DDP are presented and discussed in this section.

5.2.1 WAG with up-dip injection

Figures 5.24 and 5.25 show oil production rate and water cut for a reservoir with dip angle of 15°. Production profiles for 0 and 30 degree dip angle are not shown here as the thesis will become too long. In the early time of water flooding period, every case has the same production profile. Oil is produced at the rate of 6,000 STB/D without water cut for more than 6 years. After the water cut reaches the criteria set in each case, the oil rate becomes zero as the wells are shut in for 180 days. Then, the oil rate in each case gradually increases after well 2 (down-dip well) is reopened for production while water and gas is alternatively injected updip. At the beginning of WAG, the oil rates for different cases are very much different but they become more similar during the last 10 years of production. The water cut of all cases abruptly increases to 100% when WAG is started because the water injector downdip is now converted to producer. Then, the water cut gradually decreases as water and gas injected updip chase the oil towards the downdip producer. Similar to oil rate, water cuts during the last 10 years of production for all cases exhibit a similar trend. The case with 1% water cut produces the least amount of oil during water flooding but it results in the highest rate and the highest amount of produced oil in WAG period. On the contrary, the case with 80% water cut produces oil with the lowest amount during WAG period because there is the least amount of residual oil but the highest amount of water in the reservoir after water flooding.

Figure 5.24 Effect of stopping criteria for water flooding on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15°.

Figure 5.25 Effect of stopping criteria for water flooding on water cut of WAG with updip injection in a reservoir with dip angle of 15°.

Table 5.5 shows result comparison of different stopping criteria for WAG with up-dip injection. Results of reservoir with dip angle of 0° and 30° are also presented in the table in addition to results of 15° reservoir. Although, up-dip injection cannot be performed for a non-dipping reservoir, it is done similarly to an inclined reservoir by injection at well 1. Long-term water flooding with abandonment criteria of 95% water cut is performed for all reservoirs to compare their performances.

For a non-dipping reservoir, long-term water flooding recovers 21.020 MMSTB of oil in 29.59 years. WAG having the 1% water cut stopping criteria yields the highest amount of produced oil of 22.318 MMSTB and the highest BOE of 23.772 MMSTB. It requires the highest amount of injected gas but the least amount of injected water.

For a 15 degree reservoir, the highest BOE of 24.356 MMSTB is obtained when the water cut stopping criteria is 1%. This case also results in the highest oil recovery factor of 68.15% while long-term water flooding results in the lowest oil recovery factor of 56.05%.

WAG having 1% water cut stopping criteria also yields the highest oil recovery factor of 74.66% and the highest BOE of 23.105 MMSTB for a 30 degree reservoir. It requires 30.429 BSCF of injected gas of which amount is the highest. Long-term water flooding yields 55.36% of oil recovery factor in 12.42 years of production time.

Although, the highest BOEs of 23.772 MMSTB (0°), 24.356 MMSTB (15°), and 23.105 MMSTB (30°) are obtained from the cases of 1% water cut stopping criteria, different criteria shows slightly different results. In addition, their production profiles have the same trend because they have the same production mechanisms and the same water and gas injection rates.

	BOE	[MMSTB]		22.955	23.772	23.706	23.725	23.615	23.556	21.505	24.356	24.294	24.284	24.192	23.926	19.120	23.105	23.096	23.103	23.066	23.027
Total	water	production	[MMSTB]	28.737	27.201	28.088	28.562	29.490	32.210	17.873	33.796	34.346	34.792	35.557	37.728	12.898	38.440	38.777	39.249	39.819	41.328
Total	water	injection	[MMSTB]	55.903	51.732	52.570	53.239	53.983	56.681	43.310	52.099	52.585	53.256	53.990	56.060	35.489	51.402	51.774	52.371	52.853	54.547
Total	gas	production	[BSCF]	11.605	35.737	35.188	34.700	34.123	31.903	10.976	30.183	29.748	29.276	28.676	26.876	9.803	27.574	27.154	26.860	26.364	25.027
Total	gas	injection	[BSCF]	0	27.014	26.485	25.802	25.377	23.147	0	27.589	27.188	26.433	25.792	23.865	0	30.429	29.980	29.580	29.185	27.667
oit	recovery	factor	[%]	58.10	61.69	61.52	61.48	61.25	61.08	56.05	68.15	67.99	67.83	67.55	66.73	55.36	74.66	74.62	74.58	74.52	74.30
Total	oil	production	[MMSTB]	21.020	22.318	22.255	22.242	22.157	22.096	19.675	23.923	23.867	23.810	23.711	23.424	17.486	23.580	23.568	23.556	23.536	23.467
	Production		[Year]	19.59	30	30	30	30	30	15.17	30	30	30	30	30	12.42	30	30	30	30	30
Water cut	stopping	criteria	[%]	95	1	20	40	60	80	95	1	20	40	60	80	95	1	20	40	60	80
	Dip	angle		00	°0	00	00	00	00	15°	15°	15°	15°	15°	15°	30°	30°	30°	30°	30°	30°
				water flooding	WAG up-dip	water flooding	WAG up-dip	WAG up-dip	WAG up-dip	WAG up-dip	WAG up-dip	water flooding	WAG up-dip								

Table 5.5 Result comparison between different stopping criteria for WAG with up-dip injection.

5.2.2 WAG with down-dip injection

Figures 5.26 and 5.27 show oil production rate and water cut for a reservoir with dip angle of 15°. During water flooding, all cases have the same production profile as WAG with up-dip injection. Oil is produced with a rate of 6,000 STB/D for more than 6 years. A case with 80% water cut produces the highest amount of oil before shutting in the wells. After that, it produces the least amount of oil during WAG injection. This case gives the highest water production during WAG because of high amount of water present in the reservoir before starting of WAG injection. After 25 years of production, every case tends to have the same production profile. Oil production rate and water cut in the last year are around 200 STB/D and 95%, respectively.

Figure 5.26 Effect of stopping criteria for water flooding on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

Figure 5.27 Effect of stopping criteria for water flooding on water cut of WAG with down-dip injection in a reservoir with dip angle of 15°.

Table 5.6 shows the result comparison between different stopping criteria for WAG with down-dip injection in a non-dipping reservoir, a reservoir with dip angle of 15°, and a reservoir with dip angle of 30°. For a non-dipping reservoir, injection at well 2 is performed instead of down-dip injection.

For all reservoirs, the amounts of oil production from the cases having different water cut stopping criteria are not much different. However, the cases having lower water cut criteria tend to require more amount of injected gas but less amount of injected water. In term of water production, a case having low water cut criteria produces less amount of water because it has the shorter period of initial water flooding.

The highest BOE of 24.518 MMSTB is yielded from a case with 40% water cut for a non-dipping reservoir. Cases with dip angle of 15° and 30° yield the highest BOE of 24.378 and 22.649 MMSTB, respectively, from 1% water cut.

	BOE	[MMSTB]		22.955	24.483	24.468	24.518	24.473	24.471	21.505	24.378	24.325	24.360	24.329	24.249	19.120	22.649	22.609	22.589	22.528	22.483
Total	water	production	[MMSTB]	28.737	26.455	27.298	27.754	28.612	31.247	17.873	28.248	28.813	29.237	30.003	32.179	12.898	30.314	30.679	31.204	31.824	33.412
Total	water	injection	[MMSTB]	55.903	51.733	52.572	53.240	53.985	56.682	43.310	52.114	52.601	53.269	54.003	56.081	35.489	51.428	51.798	52.395	52.876	54.569
Total	gas	production	[BSCF]	11.605	36.170	35.615	35.106	34.536	32.326	10.976	36.564	36.091	35.580	34.901	32.875	9.803	37.947	37.489	37.138	36.579	35.085
Total	gas	injection	[BSCF]	0	27.207	26.656	25.946	25.496	23.222	0	29.057	28.627	27.843	27.162	25.134	0	32.423	31.930	31.487	31.059	29.432
Oil	recovery	factor	[%]	58.10	63.55	63.50	63.55	63.48	63.45	56.05	65.88	65.75	65.72	65.63	65.40	55.36	68.79	68.65	68.54	68.41	68.20
Total	oil	production	[MMSTB]	21.020	22.989	22.974	22.991	22.966	22.954	19.675	23.127	23.080	23.071	23.039	22.958	17.486	21.728	21.682	21.648	21.608	21.540
	Production		[Year]	19.59	30	30	30	30	30	15.17	30	30	30	30	30	12.42	30	30	30	30	30
Water cut	stopping	criteria	[%]	95	-	20	40	60	80	95	1	20	40	60	80	95	1	20	40	60	80
	Dip	angle		00	00	00	00	00	00	15°	15°	15°	15°	15°	15°	30°	30°	30°	30°	30°	30°
		case name		water flooding	WAG down-dip	water flooding	WAG down-dip	water flooding	WAG down-dip												

Table 5.6 Result comparison between different stopping criteria for WAG with down-dip injection.

5.2.3 Double displacement process

Figures 5.28 and 5.29 show oil production rate and water cut for DDP in a reservoir with dip angle of 15°, respectively. The oil production profiles during initial water flooding period for DDP are the same as those for the two types of WAG previously discussed. A higher water cut criteria results in a longer time for water flooding and more amount of produced oil during this period. In WAG period, every case has similar profile but with slightly different rates due to the difference in amount of residual oil and amount of water present after water flooding.

Figure 5.28 Effect of stopping criteria for water flooding on oil production rate of DDP in a reservoir with dip angle of 15°.

Figure 5.29 Effect of stopping criteria for water flooding on water cut of DDP in a reservoir with dip angle of 15°.

Similar to the two types of WAG previously discussed, a case with the lower water cut stopping criteria results in less amount of water but higher amount of gas required for injection due to the shorter time of initial water flooding period.

For DDP in a reservoir with dip angle of 15°, the highest BOE of 24.914 MMSTB is obtained from the case with 1% water cut stopping criteria. It requires 55.535 BSCF of injected gas and 19.748 MMSTB of injected water. For a reservoir with dip angle of 30°, the case with 20% water cut criteria yields the highest BOE of 23.699 MMSTB while 60.043 BSCF of gas and 19.168 MMSTB of water are required. Although the case with 80% water cut in a non-dipping reservoir yields the highest BOE, its BOE is less than the one for long-term water flooding. Therefore, DDP is not suitable for a non-dipping reservoir. Table 5.7 shows result comparison between different stopping criteria for DDP.

	BOE	[MMSTB]		22.955	17.919	18.593	18.952	19.407	20.280	21.505	24.914	24.847	24.788	24.678	24.333	19.120	23.698	23.699	23.698	23.688	23.647
Total	water	production	[MMSTB]	28.737	12.610	13.116	13.570	14.510	18.207	17.873	14.760	15.595	16.278	17.516	21.326	12.898	13.802	14.520	15.270	16.354	19.269
Total	water	injection	[MMSTB]	55.903	19.147	20.688	21.639	23.304	28.550	43.310	19.748	20.815	21.651	23.094	27.369	35.489	18.331	19.168	20.005	21.188	24.291
Total	gas	production	[BSCF]	11.605	49.959	49.398	48.818	47.875	44.411	10.976	45.158	44.525	43.942	43.000	39.985	9.803	48.964	48.224	47.690	46.738	44.137
Total	gas	injection	[BSCF]	0	54.377	53.280	52.452	51.117	46.741	0	55.535	54.679	53.908	52.733	49.143	0	60.868	60.043	59.444	58.419	55.648
Oil	recovery	factor	[%]	58.10	51.57	53.18	54.06	55.14	57.13	56.05	75.90	75.61	75.35	74.92	73.67	55.36	81.31	81.27	81.23	81.16	80.94
Total	oil	production	[MMSTB]	21.020	18.656	19.240	19.558	19.947	20.669	19.675	26.644	26.540	26.450	26.301	25.860	17.486	25.682	25.669	25.657	25.635	25.566
Drocking		רוווופ	[rear]	19.59	30	30	30	30	30	15.17	30	30	30	30	30	12.42	30	30	30	30	30
Water cut	stopping	criteria	[%]	95	1	20	40	60	80	95	1	20	40	60	80	95	1	20	40	60	80
	Dip	angle		00	00	00	00	00	00	15°	15°	15°	15°	15°	15°	30°	30°	30°	30°	30°	30°
				water flooding	DDP	DDP	DDP	DDP	DDP	water flooding	DDP	DDP	DDP	DDP	DDP	water flooding	DDP	DDP	DDP	DDP	DDP

Table 5.7 Result comparison between different stopping criteria for DDP.

The list of cases resulting in the highest BOEs for each production process and dip angle is shown in Table 5.8. These water cut stopping criteria for initial water flooding will be used in subsequent studies in the following sections. For a nondipping reservoir, DDP study will not be performed because it results in recovery efficiency lower than water flooding. Even though the cases tabulated in the table yield the highest BOEs, they may not be the most suitable cases because the income and cost of injection are not taken into account.

Dip angle	Recovery process	Water cut stopping criteria [%]
	WAG up-dip	1
0°	WAG down-dip	40
	DDP	-
	WAG up-dip	1
15°	WAG down-dip	1
	DDP	1
	WAG up-dip	1
30°	WAG down-dip	1
	DDP	20

Table 5.8 Summary of water cut criteria that yield the highest BOE.

Chulalongkorn University

5.3 Effect of water and gas injection rates

Water and gas injection rates have some influence on production performance of WAG and DDP. A high water injection rate can cause water to underrun while a high gas injection rate causes gas to override. On the other hand, too low rate can take too much production time. Therefore, optimum rates must be found for the most effective performance. In this case, water and gas injection rates are varied from 6,000 RB/D to 12,000 RB/D in 16 cases for WAG as shown in Table 5.15 and 16 cases for DDP as shown in Table 5.10. During the initial water flooding, the production rate is set equal to water injection rate. After that, it is set equal to the highest rate between water and gas injection for WAG and equal to gas injection rate for DDP. This investigation is done for reservoir with a dip angle of 15°, reservoir without dip angle, and a reservoir with a dip angle of 30°. In this study, water cut stopping criteria for initial water flooding from Table 5.8 are used for each recovery process. It is noted that water injection rate of 10,000 and 12,000 RB/D cannot be injected throughout water flooding period for a non-dipping reservoir due to the limitation of fracturing pressure.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Caro	Water	Gas injection	Production rate	Production rate				
Case	injection rate	rate	during water flooding	during WAG				
no.	[RB/D]	[RB/D]	[RB/D]	[RB/D]				
1	6,000	6,000	6,000	6,000				
2	6,000	8,000	6,000	8,000				
3	6,000	10,000	6,000	10,000				
4	6,000	12,000	6,000	12,000				
5	8,000	6,000	8,000	8,000				
6	8,000	8,000	8,000	8,000				
7	8,000	10,000	8,000	10,000				
8	8,000	12,000	8,000	12,000				
9	10,000	6,000	10,000	10,000				
10	10,000	8,000	10,000	10,000				
11	10,000	10,000	10,000	10,000				
12	10,000	12,000	10,000	12,000				
13	12,000	6,000	12,000	12,000				
14	12,000	8,000	12,000	12,000				
15	12,000	10,000	12,000	12,000				
16	12,000	12,000	12,000	12,000				

Table 5.9 Water and gas injection rates for WAG.

จหาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

Case	Water	Gas injection	Production rate	Production rate			
n0	injection rate	rate	during water flooding	during DDP			
110.	[RB/D]	[RB/D]	[RB/D]	[RB/D]			
1	6,000	6,000	6,000	6,000			
2	6,000	8,000	6,000	8,000			
3	6,000	10,000	6,000	10,000			
4	6,000	12,000	6,000	12,000			
5	8,000	6,000	8,000	6,000			
6	8,000	8,000	8,000	8,000			
7	8,000	10,000	8,000	10,000			
8	8,000	12,000	8,000	12,000			
9	10,000	6,000	10,000	6,000			
10	10,000	8,000	10,000	8,000			
11	10,000	10,000	10,000	10,000			
12	10,000	12,000	10,000	12,000			
13	12,000	6,000	12,000	6,000			
14	12,000	8,000	12,000	8,000			
15	12,000	10,000	12,000	10,000			
16	12,000	12,000	12,000	12,000			

Table 5.10 Water and gas injection rates for DDP.

ลงกรณ์มหาวิทยาลัย

5.3.1 WAG with up-dip injection

During the initial water flooding, the oil production rate depends only on water injection rate. Cases with water injection rate of 12,000 RB/D produces the highest oil rate at approximately 9,100 STB/D in the shortest time (about 4.5 years) as shown in Figure 5.30d while cases with the lowest water injection rate of 6,000 RB/D need more than 9 years for water flooding as shown in Figure 5.30a. Water flood front of cases with low injection rate travels slowly from injector to producer which means it needs more time to reach 1% water cut before shutting in the wells.

During WAG, Figure 5.30a shows that a higher gas injection rate results in a higher oil production rate at the initial time of WAG because oil is chased rapidly to the producer. However, it results in the lower oil rate at the late time of WAG because there is less oil in the reservoir than those cases with lower gas injection rate.

From Figure 5.30b, case 8, having the water injection rate of 8,000 RB/D and the gas injection rate of 12,000 RB/D, produces oil at the highest rate from the seventh year to the fifteenth year. After that, case 6 results in the lowest oil rate since the twentieth year to the last year of production.

From Figure 5.30c, case 12 provides the highest oil rate while other cases in the same figure have similar oil rate during the early time of WAG period. Then, the case of 10,000 RB/D of both water and gas injection rates results in the lowest oil rate while other cases have the same profile since the fifteenth year to the last year of production.

Case 16, having the highest gas and water injection rates of 12,000 RB/D, does not provide the highest oil production rate as shown in Figure 5.30d. This case tends to have fingering effect because of too high injection rates which results in low sweep efficiency.

Additionally, the oil rates of the cases having the same gas and water injection rates, i.e. cases 4 and 8, are different. Case 8 in Figure 5.30b has the higher oil production rate than case 4 in Figure 5.30a.

CHULALONGKORN UNIVERSITY

Figure 5.30 Effect of water and gas injection rates on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15°.

Figure 5.30 Effect of water and gas injection rates on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15° (continued).

Tables 5.11 to 5.13 depict results for different water and gas injection rates of WAG with up-dip injection in a non-dipping reservoir, a reservoir with dip angle of 15°, and a reservoir with dip angle of 30°. Case 14 gives the highest BOE for a reservoir with dip-angle of 0° and 15° while case 13 yields the largest BOE for 30° reservoir. Their BOEs are 28.760 MMSTB, 28.697 MMSTB, and 27.153 MMSTB, respectively. High water injection rate is good for oil recovery but high gas rate is not. Gas tends to cause a viscous fingering effect more easily than water because of large difference between oil viscosity and gas viscosity. It is noted that BOE is very low when water injection rate is equal to gas injection rate (cases 1, 6, 11, and 16).

Water consumption depends directly on water injection rate while gas consumption does not. For example, case 6 from Table 5.11 requires 27.014 BSCF of injected gas which is larger than the amounts of gas consumed by cases 7 and 8.

From Table 5.13, case 16 is the only case spending the shortest time for production. It ends in 28.58 years due to the economic limit.

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University
Table 5.11 Result comparison between different water and gas injection rates of WAG with up-dip injection in a reservoir without dip

angle.

		BOE	[MMSTB]		21.962	24.298	25.323	25.789	25.897	23.772	26.288	27.133	27.758	27.361	25.704	27.703	28.441	28.760	28.559	27.430
	Total	water	production	[MMSTB]	18.182	20.705	21.808	22.274	29.147	27.201	29.263	30.396	39.318	38.379	36.437	38.494	47.455	48.086	47.365	45.534
	Total	water	injection	[MMSTB]	41.063	41.030	41.012	40.999	51.678	51.732	51.675	51.641	62.018	62.057	62.122	62.058	71.466	71.493	71.541	71.610
	Total	gas	production	[BSCF]	26.590	29.401	32.732	35.482	27.055	35.737	37.205	39.522	27.551	33.086	42.946	43.425	26.853	31.886	38.089	48.471
	Total	gas	injection	[BSCF]	18.249	19.101	20.183	21.021	15.439	27.014	25.922	25.894	12.815	20.870	33.808	31.464	10.728	16.689	25.484	39.177
	Oil	recovery	factor	[%]	56.86	62.42	64.22	64.62	66.23	61.69	67.47	68.72	69.94	70.00	66.84	71.06	71.19	72.50	73.14	71.54
	Total	oil	production	[MMSTB]	20.572	22.581	23.231	23.379	23.961	22.318	24.407	24.861	25.302	25.324	24.180	25.709	25.753	26.226	26.458	25.880
	Droduction		רוווופ	[rear]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
		Dip	angle		00	00	00	00	00	00	00	00	00	00	00	00	00	₀0	00	00
		Case	no.		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16
1																				

Table 5.12 Result comparison between different water and gas injection rates of WAG with up-dip injection in a reservoir with dip angle of 15°.

		BOE	[MMSTB]		23.520	25.685	26.721	27.183	26.417	24.356	26.985	27.991	28.086	27.444	24.878	27.883	28.663	28.697	28.037	25.146
	Total	water	production	[MMSTB]	25.765	27.602	27.884	28.113	35.287	33.796	35.675	35.875	43.704	43.628	42.365	44.036	53.059	52.744	52.453	51.496
-	Total	water	injection	[MMSTB]	41.610	41.574	41.556	41.543	52.040	52.099	52.043	52.006	62.427	62.460	62.536	62.464	73.060	73.100	73.150	73.250
-	Total	gas	production	[BSCF]	19.320	24.411	29.096	32.516	23.266	30.183	33.183	36.799	25.837	30.637	39.773	41.079	26.855	31.488	38.088	50.307
	Total	gas	injection	[BSCF]	18.600	18.957	20.039	20.845	15.624	27.589	26.147	26.111	13.242	21.683	35.225	32.604	11.379	18.238	28.230	44.901
	Oil	recovery	factor	[%]	66.66	70.58	71.82	71.90	71.63	68.15	73.53	74.66	74.03	73.93	68.71	75.41	74.31	75.46	75.19	69.07
	Total	oil	production	[MMSTB]	23.400	24.775	25.211	25.237	25.143	23.923	25.812	26.209	25.987	25.952	24.119	26.470	26.083	26.488	26.394	24.245
	Production			[rear]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
		Dip	angle		15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°
		Case	no.		1	2	%	4	5	9	7	8	6	10	11	12	13	14	15	16

Table 5.13 Result comparison between different water and gas injection rates of WAG with up-dip injection in a reservoir with dip angle of

		BOE	[MMSTB]		22.802	25.270	26.226	26.604	25.580	23.105	25.827	26.849	26.814	25.930	23.138	26.170	27.153	27.077	26.242	23.194
	Total	water	production	[MMSTB]	29.811	31.047	31.166	31.377	39.737	38.440	39.812	39.764	48.383	48.624	47.321	48.725	57.690	57.411	57.644	53.422
	Total	water	injection	[MMSTB]	41.109	41.055	41.035	41.020	51.326	51.402	51.319	51.281	61.851	61.875	62.001	61.893	72.116	72.155	72.212	69.369
	Total	gas	production	[BSCF]	16.101	22.291	27.191	30.575	20.437	27.574	30.886	34.650	23.306	27.896	38.386	38.832	24.420	28.933	35.187	45.522
	Total	gas	injection	[BSCF]	21.020	19.643	20.311	20.807	16.228	30.429	26.920	26.358	13.444	22.510	39.190	33.586	11.199	18.225	28.702	44.476
:	Oil	recovery	factor	[%]	74.79	78.61	79.40	79.07	78.77	74.66	79.67	80.63	79.69	79.25	73.68	80.09	78.99	80.07	79.66	72.88
	Total	oil	production	[MMSTB]	23.622	24.829	25.079	24.976	24.879	23.580	25.165	25.466	25.170	25.032	23.272	25.296	24.949	25.292	25.161	23.020
	Production	time		L'rear J	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	28.58
	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
		Dip	angle		30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°
		Case	no.		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16

5.3.2 WAG with down-dip injection

As shown in Figure 5.31, the oil production rate during the initial water flooding is affected only by water injection rate. A higher water rate results in a higher oil production rate but with shorter duration of water flooding. Water injection rate also affects the oil rate during WAG period. Although, cases 4, 8, 12, and 16 have the same oil rate at approximately 9,000 STB/D in the early time of WAG, they result in different oil rate after that. A higher oil rate is obtained from a higher water injection rate.

Figure 5.31 (a) and (b) show that gas injection rate has a big impact on oil rate in the early time of WAG. A higher gas rate results in a higher oil rate. However, in Figure 5.31 (c) and (d), gas rate has less impact on oil rate.

Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° (continued).

Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° (continued).

The case having water injection rate of 12,000 RB/D and gas injection rate of 8,000 RB/D yields the highest BOE for all three reservoirs as shown in Tables 5.14 to 5.16. It yields BOE of 28.843 MMSTB, 27.793 MMSTB, and 25.304 MMSTB for a nondipping reservoir, a 15° reservoir, and a 30° reservoir, respectively. Similar to WAG with up-dip injection, cases having water injection rate equal to gas injection rate yield significantly low BOE.

Water injection rate affects water consumption. It is clearly seen that a higher amount of water is required when water is injected at a higher rate. However, for gas consumption, it is not affected directly from gas injection rate. From Tables 5.14 to 5.16, cases 6 and 11 require larger amount of gas than the cases with the same water injection rate but with a higher gas injection rate. In WAG period, the production rates of cases 6 and 11 are adjusted equally to both water and gas injection rate. Therefore, the reservoir pressure can be maintained because the systems of these

two cases are steady state while the pressures of cases 7, 8, and 12 decline in WAG period. When case 6 is compared to cases 7 and 8, we can inject higher amount of gas (in standard unit) in case 6 even though this case has a lower gas injection rate (in RB unit). Likewise, case 11 requires a higher amount of injected gas than case 12 in all reservoirs.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Table 5.14 Result comparison between different water and gas injection rates of WAG with down-dip injection in a reservoir without dip

angle.

		BOE	[MMSTB]		23.321	25.355	26.398	26.905	26.432	24.518	26.805	27.724	28.103	27.640	26.319	27.973	28.587	28.843	28.630	27.925
-	Total	water	production	[MMSTB]	18.054	20.208	21.764	22.408	29.537	27.754	29.611	31.010	39.982	38.921	36.977	39.025	48.084	48.823	47.904	46.274
-	Total	water	injection	[MMSTB]	42.593	42.556	42.539	42.523	53.185	53.240	53.187	53.158	63.157	63.197	63.261	63.184	72.264	72.293	72.339	72.409
	Total	gas	production	[BSCF]	26.185	28.979	31.758	34.165	26.820	35.106	36.514	38.409	27.176	32.628	42.285	42.591	26.320	31.266	37.395	47.294
	Total	gas	injection	[BSCF]	17.170	17.748	18.633	19.306	14.638	25.946	24.586	24.333	12.136	20.036	32.932	30.235	10.159	15.814	24.436	37.980
-	Oil	recovery	factor	[%]	60.31	64.91	66.92	67.52	67.45	63.55	68.60	70.15	70.75	70.60	68.44	71.63	71.57	72.61	73.17	72.90
-	Total	oil	production	[MMSTB]	21.818	23.483	24.210	24.428	24.401	22.991	24.817	25.377	25.596	25.541	24.760	25.913	25.893	26.267	26.470	26.372
	Droduction	riouuction +		L'rear J	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
		Dip	angle		00	00	00	00	00	00	۰0	۰0	۰0	00	00	00	۰0	۰0	00	00
		Case	no.		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16

Table 5.15 Result comparison between different water and gas injection rates of WAG with down-dip injection in a reservoir with dip

0	
ŭ	
<u></u>	
Ŧ	
C	
۵	
_	
0	
<u> </u>	
π	

		BOE	[MMSTB]		23.626	25.684	26.634	27.128	26.201	24.378	26.561	27.488	27.475	26.972	25.213	27.303	27.767	27.793	27.406	25.585
	Total	water	production	[MMSTB]	18.074	19.443	20.893	21.484	29.217	28.248	29.405	30.705	39.967	39.308	38.424	39.509	49.299	49.638	49.409	48.790
	Total	water	injection	[MMSTB]	41.616	41.574	41.553	41.539	52.044	52.114	52.035	52.006	62.429	62.471	62.563	62.470	73.073	73.101	73.157	73.279
	Total	gas	production	[BSCF]	27.018	30.072	32.688	34.620	27.500	36.564	37.740	39.295	27.251	33.835	45.293	44.595	26.644	32.295	40.899	55.758
	Total	gas	injection	[BSCF]	19.221	18.887	19.416	19.861	15.530	29.057	26.201	25.406	12.833	21.660	37.717	32.762	12.388	18.176	28.647	48.592
	Oil	recovery	factor	[%]	63.60	67.86	69.57	70.27	68.96	65.88	70.19	71.71	71.42	71.06	68.23	72.16	72.33	72.47	72.26	69.48
	Total	oil	production	[MMSTB]	22.326	23.820	24.421	24.667	24.206	23.127	24.638	25.172	25.072	24.943	23.951	25.331	25.391	25.439	25.364	24.391
	Production	riouucuou		[rear]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
		Dip	angle		15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°
מווציר י		Case	no.		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16

Table 5.16 Result comparison between different water and gas injection rates of WAG with down-dip injection in a reservoir with dip

(С
(\square
(Ŷ
c	-
	Ċ
	L
	n
	õ
	F

		BOE	[MMSTB]		22.096	23.993	24.769	24.879	24.276	22.649	24.617	25.203	24.985	24.780	23.127	25.087	25.259	25.307	25.179	23.573
	Total	water	production	[MMSTB]	20.119	21.180	22.215	22.035	30.872	30.314	31.102	31.527	40.746	40.937	40.621	41.140	50.419	50.659	51.096	50.919
	Total	water	injection	[MMSTB]	41.114	41.058	41.033	41.021	51.337	51.428	51.337	51.293	61.862	61.913	62.036	61.899	72.168	72.182	72.232	72.382
	Total	gas	production	[BSCF]	27.457	30.225	32.263	33.382	27.371	37.947	38.289	38.590	26.130	34.255	48.328	46.003	26.151	31.747	41.138	58.408
	Total	gas	injection	[BSCF]	21.555	20.030	19.935	21.026	16.335	32.423	27.778	26.474	13.851	23.036	42.885	35.197	13.991	19.791	29.791	52.968
	Oil	recovery	factor	[%]	66.84	70.58	71.91	72.24	71.03	68.79	72.39	73.40	72.62	72.53	70.35	73.72	73.55	73.81	73.73	71.76
	Total	oil	production	[MMSTB]	21.112	22.293	22.714	22.819	22.436	21.728	22.864	23.183	22.938	22.910	22.220	23.286	23.232	23.314	23.287	22.666
	Droduction	riouuction +		[rear]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
		Dip	angle		30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°
ausic		Case	no.		1	2	3	4	5	9	7	ω	6	10	11	12	13	14	15	16

5.3.3 Double displacement process

DDP involves two injection steps which are initial water injection during the water flooding and continuous gas injection. The oil production profile during water flooding is the same as those for the two types of WAG. However, a higher oil rate is caused by higher gas injection rate during gas injection period. However, the oil rate of cases with higher gas injection rate starts to drop earlier because a larger amount of oil has been already produced in the early time of DDP. Figure 5.32 shows effect of water and gas injection rate on oil production rate of DDP in a 15° dipping reservoir.

Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a reservoir with dip angle of 15°.

Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a reservoir with dip angle of 15° (continued).

Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a reservoir with dip angle of 15° (continued).

Tables 5.17 and 5.18 show result comparison between different water and gas injection rates of DDP in a reservoir with dip angle of 15° and 30°. For both reservoirs, case 16 which has water and gas injection rates of 12,000 RB/D yields the highest BOE. It is clearly seen that higher water and gas injection rates result in more oil production. However, these have just slight impact for a 30° reservoir because case 1-16 have similar values of BOE around 23-24 MMSTB as shown in Table 5.18.

In addition, case 16 requires the highest amount of injected gas of 91.048 BSCF for a 15° dipping reservoir and 96.493 BSCF for a 30° dipping reservoir. Water injection rate does not significantly affect the amounts of injected water and produced water. Cases 1-16 require similar amount of water. However, a higher water injection rate results in a higher amount of gas required in gas flooding stage because it accelerates the water flooding mechanism which means there is longer time for gas injection. This effect can be seen from cases 4, 8, 12, and 16 in Tables 5.17 and 5.18.

Table 5.17 Result comparison between different water and gas injection rates of DDP in a reservoir with dip angle of 15°.

Γ

																				_
		BOE	[MMSTB]		23.811	24.370	24.754	25.034	24.450	24.914	25.223	25.443	24.754	25.165	25.434	25.618	24.910	25.289	25.538	25.706
Case Dip noWater injectionGas injectionWord oilTotal injectionTotal oilTotal gasTotal gasTotal materno.angle injectioninjection injectioninjection injectioninjection injectioninjection gaswater materno.angle injectioninjection injectioninjection injectioninjection injectioninjection gaswater materno.angle injectioninjection injectioninjection injectioninjection injectioninjection injectionwater mater115°6,0006,0003025.39472.3437.57928.08719.982215°6,00010,0003025.39472.3439.71419.982315°6,00010,0003026.40275.2161.19451.30619.748415°8,00010,0003026.64475.9045.15819.748715°8,00010,0003026.52677.5845.15819.748815°8,00010,0003027.23277.5882.39119.748915°105008,0003027.23277.5882.31019.7481015°10,0003026.52677.5882.31019.7481115°10,0003026.52677.5887.76119.4801115°10,000 <t< th=""><th>Total</th><th>water</th><th>production</th><th>[MMSTB]</th><th>14.487</th><th>14.723</th><th>14.931</th><th>15.113</th><th>14.524</th><th>14.760</th><th>14.961</th><th>15.135</th><th>14.399</th><th>14.626</th><th>14.826</th><th>14.996</th><th>14.413</th><th>14.637</th><th>14.837</th><th>15.002</th></t<>	Total	water	production	[MMSTB]	14.487	14.723	14.931	15.113	14.524	14.760	14.961	15.135	14.399	14.626	14.826	14.996	14.413	14.637	14.837	15.002
Case bip bip injection injection injectionWater injection injection injectionGas production oil injection injection injectionTotal injection injection injection injectionTotal injection injection injection injectionTotal injection injection injection injectionTotal injection gas <th>Total</th> <th>water</th> <th>injection</th> <th>[MMSTB]</th> <th>19.982</th> <th>19.982</th> <th>19.982</th> <th>19.982</th> <th>19.748</th> <th>19.748</th> <th>19.748</th> <th>19.748</th> <th>19.480</th> <th>19.480</th> <th>19.480</th> <th>19.480</th> <th>19.453</th> <th>19.453</th> <th>19.453</th> <th>19.453</th>	Total	water	injection	[MMSTB]	19.982	19.982	19.982	19.982	19.748	19.748	19.748	19.748	19.480	19.480	19.480	19.480	19.453	19.453	19.453	19.453
Mater Gas Production Total Oil Total Case Dip injection injection injection injection injection gas no. angle rate	Total	gas	production	[BSCF]	28.087	39.714	51.308	63.119	31.995	45.158	58.249	71.574	34.422	48.515	62.504	76.749	35.933	50.589	65.105	79.899
Water Gas Production Total Oil Case Dip injection injection fine production factor no. angle rate rate rate rate production factor 1 15% 6,000 8,000 30 25,394 72.34 2 15% 6,000 10,000 30 25,987 74.03 3 15% 6,000 10,000 30 25,733 76.16 4 15% 6,000 10,000 30 26.402 75.90 5 15% 8,000 10,000 30 26.733 76.16 7 15% 8,000 10,000 30 26.733 75.57 6 15% 8,000 10,000 30 26.733 76.16 7 15% 8,000 10,000 30 26.733 77.58 7 15% 8,000 10,000 30 26.5	Total	gas	injection	[BSCF]	37.579	49.418	61.194	73.306	42.236	55.535	68.738	82.310	45.054	59.234	73.298	87.761	46.777	61.491	76.055	91.048
Water Gas Production time Total oil time no. angle rate rate rate rate rate rate production oil time oil no. angle rate rate rate rate rate rate production oil 1 15° 6,000 8,000 30 25.394 25.394 2 15° 6,000 10,000 30 26.402 3 15° 6,000 10,000 30 26.402 4 15° 8,000 10,000 30 26.443 7 15° 8,000 10,000 30 26.564 7 15° 8,000 10,000 30 26.543 8 15° 8,000 10,000 30 26.544 11 15° 8,000 10,000 30 26.54 11 15° 10,000 30 26.52 26.952 11 15°<	Oil	recovery	factor	[%]	72.34	74.03	75.21	76.16	74.52	75.90	76.84	77.58	75.57	76.78	77.58	78.21	76.11	77.22	77.95	78.53
Case Dip no.Water injectionGas 	Total	oil	production	[MMSTB]	25.394	25.987	26.402	26.733	26.157	26.644	26.971	27.232	26.526	26.952	27.233	27.453	26.718	27.107	27.364	27.564
Case Dip Water Gas no. angle rate rate 1 15° 6,000 6,000 2 15° 6,000 10,000 3 15° 6,000 10,000 4 15° 8,000 10,000 5 15° 8,000 10,000 6 10,000 8,000 10,000 8 15° 8,000 10,000 9 15° 8,000 10,000 10 15° 10,000 8,000 11 15° 10,000 8,000 11 15° 10,000 8,000 13 15° 10,000 8,000 13 15° 10,000 8,000 <	Droduction		וווופ עסיין	[rear]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Case Dip Water no. angle rate 1 15° 6,000 2 15° 6,000 3 15° 6,000 4 15° 6,000 3 15° 6,000 4 15° 6,000 6 15° 8,000 7 15° 8,000 8 15° 8,000 9 15° 8,000 10 15° 10,000 11 15° 10,000 11 15° 10,000 11 15° 10,000 13 15° 12,000 14 15° 12,000 15 15° 12,000 16 15° 12,000	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
Case Dip no. angle 1 15° 2 15° 3 15° 4 15° 6 15° 9 15° 11 15° 11 15° 11 15° 11 15° 11 15° 12 15° 13 15° 14 15° 15 15° 13 15° 14 15° 15 15° 16 15 15 15° 16 15° 15 15° 15 15° 15 15° 15 15° 15 15° 15 15° 15 15°	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
Case no. no. 11 11 22 23 33 33 33 33 33 33 33 33 33 33 33		Dip	angle		15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°
		Case	no.		1	2	3	4	5	9	7	ω	6	10	11	12	13	14	15	16

Table 5.18 Result comparison between different water and gas injection rates of DDP in a reservoir with dip angle of 30°.

Γ

			_																	_
		BOE	[MMSTB]		23.390	23.599	23.732	23.837	23.509	23.699	23.819	23.917	23.563	23.744	23.861	23.956	23.594	23.770	23.884	23.980
	Total	water	production	[MMSTB]	14.775	14.905	14.982	15.041	14.412	14.520	14.585	14.638	14.063	14.165	14.228	14.282	13.889	13.990	14.053	14.106
-	Total	water	injection	[MMSTB]	19.729	19.729	19.729	19.729	19.168	19.168	19.168	19.168	18.752	18.752	18.752	18.752	18.567	18.567	18.567	18.567
	Total	gas	production	[BSCF]	29.121	41.896	54.389	66.625	33.894	48.224	62.254	75.997	36.849	52.111	67.046	81.660	38.706	54.552	70.049	85.202
	Total	gas	injection	[BSCF]	41.217	53.460	65.611	77.557	46.304	60.043	73.706	87.149	49.410	64.051	78.599	92.896	51.360	66.573	81.670	96.493
	Oil	recovery	factor	[%]	80.44	80.82	81.06	81.24	80.98	81.27	81.46	81.61	81.23	81.48	81.64	81.78	81.38	81.60	81.75	81.88
0	Total	oil	production	[MMSTB]	25.407	25.527	25.602	25.660	25.577	25.669	25.729	25.776	25.657	25.735	25.787	25.829	25.703	25.773	25.822	25.862
	Droduction			[rear]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Gas	injection	rate	[RB/D]	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000	6,000	8,000	10,000	12,000
_	Water	injection	rate	[RB/D]	6,000	6,000	6,000	6,000	8,000	8,000	8,000	8,000	10,000	10,000	10,000	10,000	12,000	12,000	12,000	12,000
		Dip	angle		30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°
		Case	no.		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16

The cases yield the highest BOE for each recovery process and dip angle are listed in Table 5.19. All recovery processes require the highest water injection rate of 12,000 RB/D but different gas injection rates. These cases will be used in subsequent studies in the following sections. However, these may not be the most suitable cases when the economic reason is considered.

		Water injection	Gas injection
Dip angle	Recovery process	rate	rate
		[RB/D]	[RB/D]
0°	WAG up-dip	12,000	8,000
0°	WAG down-dip	12,000	8,000
0°	DDP	-	-
15°	WAG up-dip	12,000	8,000
15°	WAG down-dip	12,000	8,000
15°	DDP	12,000	12,000
30°	WAG up-dip	12,000	6,000
30°	WAG down-dip	12,000	8,000
30°	DDP	12,000	12,000

Table 5.19 Summary of water and gas injection rates that yield the highest BOE.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

5.4 Effect of WAG cycle and injection duration

WAG cycle and injection duration according to Table 5.20 are studied to consider their effect on production performance for WAG with up-dip and WAG with down-dip injection. Water cuts from Table 5.14 and Injection rates from Table 5.19 are combined for this study. For example, case 1 of WAG with up-dip injection in a 15° reservoir has a stopping criteria of 1% water cut, water injection rate of 12,000 RB/D, gas injection rate of 8,000 RB/D, water injection duration of 30 days, and gas injection duration of 120 days.

		Water injection	Gas injection
Case no.	WAG cycle	duration	duration
		[day]	[day]
1	1:4	30	120
2	1:4	60	240
3	1:2	30	60
4	1:2	60	120
5	1:2	90	180
6	1:1	30	30
7	1:1	90	90
8	1:1	180	180
9	2:1	60	30
10	2:1	120	60
11	2:1	180	90
12	4:1	120	30
13	4:1	240	60

Table 5.20 WAG cycle and injection duration.

5.4.1 WAG with up-dip injection

Figure 5.33 shows that WAG cycle significantly influences oil rate in the early time of WAG. Between the seventh year and the twelfth year, WAG cycle of 2:1 (see Figure 5.33 (c)) yields the highest oil production rate of approximately 3,400 STB/D

while WAG cycle of 4:1, 1:1, 1:2, and 1:4 yield approximately 3,300 STB/D, 3,200 STB/D, 2,800 STB/D, and 2,500 STB/D, respectively.

Oil production rate may fluctuate due to the arrival of different types of injecting fluid at the producer. In other words, the fluctuation of oil production depends on the cycle of injection. As a result, the longer injection duration causes non-smooth production profile but has the same trend as cases with shorter injection duration having the same WAG cycle (see Figure 5.33 (b)).

Figure 5.33 Effect of WAG cycle and injection duration on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15°.

Figure 5.33 Effect of WAG cycle and injection duration on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15° (continued).

Tables 5.21 to 5.23 show result comparison between different WAG cycle and injection duration of WAG with up-dip injection. Water and gas requirement is affected directly by their injection durations. Cases having longer water injection duration require and produce large amount of water while cases having longer gas injection duration require and produce large amount of gas. For a non-dipping reservoir, we can increase oil recovery factor and BOE by injecting water for longer time than injecting gas (WAG cycle of 2:1 and 4:1) as shown in Table 5.21. Gas has a high tendency to override in this reservoir; consequently, water can efficiently stabilize the flood front which lowers the problem of viscous fingering. In contrast to a non-dipping reservoir, large water slug is not needed to stabilize the flood front in 15-degree and 30-degree dipping reservoirs because a bigger dip angle increases the value of gravity number (G) calculated from Eq. 3.5. Therefore, unstable condition is more difficult to occur in reservoir with bigger dip angle as detailed in Chapter 3. As a result, the ratio of water and gas injection durations has only slightly influence on recovery factor and BOE of dipping reservoirs as shown in Tables 5.22 and 5.23.

Cases 9, 6, and 3 result in the highest BOE for a reservoir with dip angle of 0°, 15°, and 30°, respectively. These three cases have quite shorter injection durations as compared to those cases obtaining lower BOE. In other words, shorter injection duration is appropriate for WAG with up-dip injection because it provides smoother production profile.

In term of WAG cycle, WAG cycle of 2:1, 1:1, and 1:2 yield the highest BOEs for a reservoir with dip angle of 0°, 15°, and 30°, respectively.

Table 5.21 Result comparison between different WAG cycle and injection duration of WAG with up-dip injection in a reservoir without dip

angle.

BOE [MMSTB]		25.974	25.947	27.815	27.733	27.683	28.893	28.760	28.578	29.338	29.234	29.171	29.296	29.189
Total water production	[MMSTB]	21.502	21.680	32.301	32.509	32.766	47.775	48.086	48.742	64.020	64.198	64.425	76.931	77.051
Total water injection	[MMSTB]	39.928	39.938	53.950	53.951	54.526	71.477	71.493	71.496	89.060	89.059	89.416	103.140	103.142
Total gas production	[BSCF]	38.922	38.910	36.184	36.141	36.095	31.942	31.886	31.718	26.636	26.600	26.538	21.403	21.395
Total gas injection	[BSCF]	22.984	23.008	20.261	20.254	20.184	16.684	16.689	16.704	12.520	12.517	12.420	8.433	8.426
Oil recovery factor	[%]	64.45	64.40	69.55	69.34	69.19	72.84	72.50	72.08	74.59	74.32	74.13	75.00	74.71
Total oil production	[MMSTB]	23.317	23.296	25.161	25.084	25.031	26.350	26.226	26.075	26.985	26.887	26.818	27.134	27.027
Production time [Year]		30	30	30	30	30	30	30	30	30	30	30	30	30
rion Lion	Gas	120	240	60	120	180	30	90	180	30	60	90	30	60
Inject durat [Day	Water	30	60	30	60	90	30	60	180	60	120	180	120	240
WAG cycle		1:4	1:4	1:2	1:2	1:2	1:1	1:1	1:1	2:1	2:1	2:1	4:1	4:1
Dip angle		۰0	۰0	۰0	00	°0	۰0	۰0	°0	00	۰0	°0	۰0	00
Case no.		1	2	3	4	5	6	7	8	6	10	11	12	13

Table 5.22 Result comparison between different WAG cycle and injection duration of WAG with up-dip injection in a reservoir with dip 4 1 E O

15	
đ	
Q	
angl	

	BOE	[MMSTB]	28.192	28.106	28.601	28.535	28.463	28.795	28.697	28.565	28.589	28.527	28.631	27.949	27.832
	Total water	production [MMSTB]	29.034	29.078	38.776	38.881	38.958	52.476	52.744	53.107	68.027	68.232	59.377	80.709	80.952
	Total water	injection [MMSTB]	40.793	41.160	54.949	55.184	55.191	72.746	73.100	73.218	90.432	90.784	80.589	104.873	104.882
Implement <	Total gas	production [BSCF]	38.268	38.278	35.631	35.610	35.595	31.565	31.488	31.390	26.098	26.030	29.280	20.682	20.591
Discrimination Injection Initecovery Initec	Total gas	injection [BSCF]	25.710	25.621	22.505	22.443	22.420	18.326	18.238	18.211	13.680	13.583	16.343	9.156	9.150
	Oil recovery	factor [%]	74.35	74.06	75.24	75.04	74.83	75.74	75.46	75.12	75.55	75.36	75.42	74.15	73.85
Case Dip WAG Injection Production no. angle cycle $Injection$ Production no. angle cycle $IDay$ Production 1 15° 1:4 30 120 30 2 15° 1:4 30 120 30 3 15° 1:2 30 240 30 4 15° 1:2 30 30 30 5 15° 1:2 30 10 30 6 15° 1:1 30 30 30 7 15° 1:1 30 30 30 8 15° 1:1 30 30 30 9 15° 1:1 180 30 30 10 15° 2:1 180 30 30 10 15° 2:1 180 30 30 11 15° 2:1	Total oil	production [MMSTB]	26.099	25.996	26.413	26.340	26.267	26.588	26.488	26.368	26.519	26.452	26.475	26.027	25.924
Case Dip WAG Injection no. angle v/AG duration no. angle cycle IDay] no. angle cycle IDay] 1 15° 1:4 30 120 2 15° 1:4 30 120 3 15° 1:4 60 240 4 15° 1:2 30 60 5 15° 1:2 90 180 6 15° 1:1 90 90 90 7 15° 1:1 90 90 90 8 15° 1:1 90 90 90 9 15° 2:1 180 180 90 10 15° 2:1 180 180 180 11 15° 2:1 180 90 180 11 15° 2:1 180 90 180	Production time	[Year]	30	30	30	30	30	30	30	30	30	30	30	30	30
Case Dip WAG Inject Case Dip WAG $durat no. angle cycle durat 1 15° 1:4 30 2 15° 1:4 30 3 15° 1:4 30 4 15° 1:2 90 5 15° 1:2 90 6 15° 1:1 90 7 15° 1:1 90 8 15° 1:1 180 9 15° 2:1 180 9 15° 2:1 180 9 15° 2:1 180 9 15° 2:1 180 10 15° 2:1 120 11 15° 2:1 180 11 15° 2:1 180 11 15° 2:1 180 11 15° 4:1 120 $	tion tion	yJ Gas	120	240	60	120	180	30	06	180	30	60	90	30	60
Case Dip WAG no. angle cycle 1 15° 1:4 2 15° 1:4 3 15° 1:4 4 15° 1:4 5 15° 1:4 7 15° 1:1 8 15° 1:1 9 15° 1:1 10 15° 2:1 11 15° 2:1 12 15° 2:1 11 15° 2:1 11 15° 2:1 12 15° 2:1 11 15° 2:1 12 15° 2:1 12 15° 2:1 12 15° 2:1 13 15° 4:1	lnjec dura	Water	30	60	30	60	06	30	06	180	60	120	180	120	240
Case Dip no. angle 1 15° 2 15° 3 15° 4 15° 5 15° 6 15° 8 15° 9 15° 10 15° 11 15° 12 15° 13 15°	DAW	cycle	1:4	1:4	1:2	1:2	1:2	1:1	$1{:}1$	$1{:}1$	2:1	2:1	2:1	4:1	4:1
Case no. 1 10 101 101 101 101 101 101 101 101 1	Dip	angle	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°
	Case	no.	1	2	3	4	5	6	7	8	6	10	11	12	13

Table 5.23 Result comparison between different WAG cycle and injection duration of WAG with up-dip injection in a reservoir with dip

angle of 30°.

BOE	[ם ו כועוועו]	27.358	27.283	27.394	27.328	27.264	27.238	27.153	27.021	26.884	26.833	26.782	26.225	26.162
Total water	[MMSTB]	31.145	31.150	42.873	42.879	42.889	57.693	57.690	57.918	72.707	72.947	72.974	85.497	85.690
Total water injection	[MMSTB]	39.559	39.517	53.917	54.193	54.292	71.944	72.116	72.439	89.937	90.219	90.128	104.659	104.872
Total gas	[BSCF]	28.816	28.817	27.062	27.070	27.053	24.443	24.420	24.452	20.942	20.913	20.910	16.877	16.823
Total gas	[BSCF]	14.831	14.791	13.357	13.309	13.249	11.297	11.199	11.218	8.775	8.779	8.776	6.173	6.131
Oil recovery factor	[%]	79.23	78.97	79.50	79.26	79.03	79.30	78.99	78.56	78.69	78.55	78.39	77.38	77.19
Total oil	[MMSTB]	25.026	24.944	25.109	25.034	24.963	25.046	24.949	24.814	24.856	24.810	24.759	24.440	24.380
Production time	[Year]	30	30	30	30	30	30	30	30	30	30	30	30	30
tion tion y]	Gas	120	240	60	120	180	30	06	180	30	60	90	30	60
Injec dura [Da	Water	30	60	30	60	60	30	06	180	60	120	180	120	240
DAW	-	1:4	1:4	1:2	1:2	1:2	1:1	1:1	1:1	2:1	2:1	2:1	4:1	4:1
Dip	aliste	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°
Case		1	2	3	4	5	9	7	8	6	10	11	12	13

5.4.2 WAG with down-dip injection

For WAG with down-dip injection, WAG cycle significantly affects oil production between the sixth year and the fifteenth year as shown in Figure 5.34. WAG cycle of 2:1 results in higher oil production rate than other cycles during this time. Cases with the same WAG cycle but different injection durations have the same trend throughout 30 years of production. However, smoother production profile is obtained from shorter injection duration as can be clearly seen in Figure 5.34 (b). Since oil is likely to be produced together with water slug, we can clearly see this effect when water and gas are injected in large slugs. The case of 180/180 (water/gas) days of injection durations results in high fluctuation of oil production rate.

Figure 5.34 Effect of WAG cycle and injection duration on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

Figure 5.34 Effect of WAG cycle and injection duration on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15° (continued).

WAG cycle involves in the requirement of water and gas. We need larger volume of water when water injection duration is longer than gas injection duration. Conversely, when gas injection duration is longer than water injection duration, total amount of injected gas obviously increases.

The gravity number is a function of degree of dip angle. Reservoir with smaller dip angle easily causes the problem of unstable flood front because it directly lowers the gravity number. Accordingly, it requires large water slugs to avoid gas overriding. Cases having higher water/gas injection durations ratio result in better oil recovery factor in a non-dipping reservoir while different WAG cycles do not apparently affect the performance in dipping reservoirs.

Similar to WAG with up-dip injection, shorter water and gas injection durations yield higher BOE as shown in Tables 5.24 to 5.26. Case 6 is the case with the highest BOE for a 15° reservoir and a 30° reservoir while case 9 gives the highest BOE for a non-dipping reservoir. In addition, water and gas requirement depends mainly on their injection durations. However, these parameters do not significantly affect the performance of WAG with down-dip injection. Cases 1-16 do not have obvious difference in BOE.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University Table 5.24 Result comparison between different WAG cycle and injection duration of WAG with down-dip injection in a reservoir without -

L	j
D	N
C	
π	3
2	2
С	2

Ц	BUE [MMSTB]		27.212	27.177	28.301	28.225	28.197	28.964	28.843	28.678	29.146	29.042	28.972	28.982	28.878
Total	water production	[MMSTB]	21.729	21.915	33.020	33.142	33.447	48.530	48.823	49.398	64.438	64.703	64.830	77.180	77.282
Total	water injection	[MMSTB]	41.352	41.656	55.101	55.016	55.378	72.274	72.293	73.154	89.361	89.488	89.994	103.490	103.509
Total	gas production	[BSCF]	37.954	37.936	35.317	35.289	35.245	31.318	31.266	31.074	26.309	26.290	26.215	21.338	21.295
Total	gas injection	[BSCF]	21.560	21.542	19.083	19.073	19.062	15.819	15.814	15.600	11.916	11.950	11.735	8.026	7.945
Oil	factor	[%]	67.67	67.57	70.75	70.55	70.48	72.92	72.61	72.14	73.93	73.67	73.41	73.98	73.67
Total	oll production	[MMSTB]	24.479	24.444	25.595	25.521	25.499	26.380	26.267	26.098	26.747	26.652	26.558	26.763	26.652
Production	time	[Year]	30	30	30	30	30	30	30	30	30	30	30	30	30
tion tion	[۲]	Gas	120	240	60	120	180	30	90	180	30	60	90	30	60
Injec dura	[Da	Water	30	60	30	60	06	30	06	180	60	120	180	120	240
	wAu cycle		1:4	1:4	1:2	1:2	1:2	$1{:}1$	$1{:}1$	1:1	2:1	2:1	2:1	4:1	4:1
ŝ	angle	,	00	00	۰0	00	۰0	۰0	00	00	00	۰0	00	۰0	°0
	no.		1	2	3	4	5	9	7	8	6	10	11	12	13

Table 5.25 Result comparison between different WAG cycle and injection duration of WAG with down-dip injection in a reservoir with dip

angle of 15°.

	BOE		27.331	27.375	27.669	27.657	27.618	27.935	27.793	27.637	27.929	27.797	27.702	27.536	27.386
Total	water	[MMSTB]	20.340	20.832	32.844	33.234	33.583	49.220	49.638	49.949	66.089	66.241	66.315	79.576	79.761
Total	water	[MMSTB]	40.821	41.180	54.948	55.196	55.202	72.742	73.101	73.225	90.430	90.788	91.037	104.894	104.900
Total	gas	[BSCF]	39.443	39.444	36.482	36.409	36.388	32.430	32.295	32.249	27.436	27.316	27.241	22.157	22.121
Total	gas	[BSCF]	23.786	23.869	21.599	21.616	21.682	18.219	18.176	18.357	13.895	13.782	13.735	9.543	9.494
oit	recovery factor	14CLOF [%]	70.42	70.59	71.75	71.77	71.69	72.83	72.47	72.14	73.13	72.76	72.50	72.45	72.02
Total	oil	production [MMSTB]	24.721	24.779	25.188	25.191	25.166	25.566	25.439	25.322	25.671	25.541	25.451	25.433	25.281
Production	time	[Year]	30	30	30	30	30	30	30	30	30	30	30	30	30
tion	rion vl	Gas	120	240	60	120	180	30	90	180	30	60	90	30	60
Injec	durat [Da	Water	30	60	30	60	60	30	60	180	60	120	180	120	240
	WAG Sicio	- cycle	1:4	1:4	1:2	1:2	1:2	1:1	$1{:}1$	$1{:}1$	2:1	2:1	2:1	4:1	4:1
	Dip	angre	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°	15°
	Case	ò	1	2	3	4	5	6	7	ω	6	10	11	12	13

Table 5.26 Result comparison between different WAG cycle and injection duration of WAG with down-dip injection in a reservoir with dip

angle of 30°.

	BOE [MMSTB]		25.082	24.982	25.340	25.269	25.186	25.501	25.307	25.174	25.369	25.241	25.128	25.073	24.903
Total	water production	[MMSTB]	20.479	20.721	33.515	33.857	33.901	50.516	50.659	50.948	67.808	68.081	68.110	82.116	82.189
Total	water iniection	[MMSTB]	39.578	39.535	53.953	54.231	54.342	72.005	72.182	72.509	90.019	90.303	90.214	104.757	104.971
Total	gas production	[BSCF]	38.241	38.381	35.840	35.849	35.912	31.782	31.747	32.084	26.459	26.421	26.465	21.362	21.309
Total	gas iniection	[BSCF]	25.348	25.506	23.372	23.441	23.464	19.828	19.791	20.127	14.913	14.874	14.977	10.087	9.984
Oil	recovery factor	[%]	72.61	72.30	73.65	73.45	73.17	74.43	73.81	73.39	74.23	73.82	73.49	73.43	72.87
Total	oil production	[MMSTB]	22.933	22.836	23.261	23.201	23.111	23.508	23.314	23.181	23.445	23.316	23.213	23.193	23.015
Production	time	[Year]	30	30	30	30	30	30	30	30	30	30	30	30	30
tion	v] v]	Gas	120	240	60	120	180	30	90	180	30	60	90	30	60
Inject	durat [Da	Water	30	60	30	60	90	30	90	180	60	120	180	120	240
	WAG cvcle		1:4	1:4	1:2	1:2	1:2	1:1	1:1	1:1	2:1	2:1	2:1	4:1	4:1
	Dip angle	ņ	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°	30°
	Case no.		1	2	3	4	5	6	7	8	6	10	11	12	13

From Table 5.27, reservoirs with dip angle of 15° and 0° have injection duration (water/gas) of 30/30 and 60/30 that provide the highest BOE, respectively, for both WAG with up-dip and down-dip injection. For a reservoir with dip-angle of 30°, injection duration (water/gas) of 30/60 and 30/30 yield the highest BOE for WAG with up-dip and down-dip injection, respectively. The performances of these cases are considered in term of BOE which takes into account the amount of produced oil and injected gas but not in term of economic.

Table 5.27 Summary of the WAG cycle and injection duration that give the highest BOE.

Dip angle	Recovery process	Water injection duration [day]	Gas injection duration [day]
0°	WAG up-dip	60	30
0°	WAG down-dip	60	30
15°	WAG up-dip	30	30
15°	WAG down-dip	30	30
30°	WAG up-dip	30	60
30°	WAG down-dip	30	30
	44		

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

5.5 Effect of well pattern

This study is performed to investigate oil production performance of different well patterns and to find the appropriate pattern for each reservoir. Five well patterns with different types of well and its location are constructed.

Pattern 1 has two vertical wells at up-dip location (well 1) and down-dip location (well 2) as shown in Figure 5.35. They are fully perforated to allow oil, gas, and water flow into or out of the wells. Each reservoir has its own fracturing pressure which depends on formation depth. Well location and fracturing pressure are listed in Table 5.28.

This well pattern is similar to the base cases but it has parameters which provide the highest BOE. These parameters are stopping criteria of water flooding, water and gas injection rates, and WAG cycle and injection duration from Tables 5.8, 5.19, and 5.27 are applied to yield the highest BOE. Well schedules for all production processes and reservoirs are illustrated in Table 5.29. Every process starts with water injection through well 2 and oil production at well 1. After water cut reaches the criteria, all wells are shut for 180 days. Oil is then produced again until the thirtieth year or the time of economic constraint.

Figure 5.35 Well location in 3D for pattern 1.

Table 5.28 Well location and fracture pressure for pattern 1.

Parameters	Values	Units
Desition of well 1	i=12, j=16,	
Position of wett 1	k=1-20	-
Desition of well 2	i=62, j=16,	
Position of wett 2	k=1-20	-
Fracture pressure of well 1 @top depth of 5,000 ft (0°)	3,080	psia
Fracture pressure of well 2 @top depth of 5,000 ft (0°)	3,080	psia
Fracture pressure of well 1 @top depth of 5,234 ft (15°)	3,260	psia
Fracture pressure of well 2 @top depth of 6,298 ft (15°)	4,080	psia
Fracture pressure of well 1 @top depth of 5,452 ft (30°)	3,420	psia
Fracture pressure of well 2 @top depth of 7,507 ft (30°)	5,070	psia

Table 5.29 Well schedule of WAG with up-dip injection for pattern 1.

Dip angle	Step of production	Well 1	Well 2
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
0°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 60/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
15°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
30°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/60 days)	injector - water (12000 RB/D) - gas (6000 RB/D)	producer (12000 RB/D)

Dip angle	Step of production	Well 1	Well 2			
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)			
0°	water cut of well 1 reaches 40% criteria	shut in for 180 days	shut in for 180 days			
	WAG (cycle 60/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)			
	water flooding	water injector (12000 RB/D)				
15°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days			
	WAG (cycle 30/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)			
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)			
30°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days			
	WAG (cycle 30/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)			

Table 5.30 Well schedule of WAG with down-dip injection for pattern 1.

Table 5.31 Well schedule of DDP for pattern 1.

Dip angle	Step of production	Well 1	Well 2	
15°	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)	
	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days	
	DDP	gas injector (12000 RB/D)	producer (12000 RB/D)	
30°	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)	
	water cut of well 1 reaches 20% criteria	shut in for 180 days	shut in for 180 days	
	DDP	gas injector (12000 RB/D)	producer (12000 RB/D)	

Pattern 2 consists of 4 vertical wells as shown in Figure 5.36 with their locations and fracture pressures in Table 5.32. Note that the positions of the most up-dip well and the most down-dip well in this pattern is not the same as those in pattern 1. This is because we would like to keep the distance between all wells to be constant. It starts with water injection through well 4 which is the well at the

deepest location. Oil is produced at wells 1-3 with the total rate equal to the injection rate at well 4. Then, well 3 is shut in when the water cut reaches the stopping criteria presented in Table 5.8 which is different for each process and dip angle. Wells 1 and 2 are now opened with the total production rate equal to the injection rate at well 4. After well 2 reaches its stopping criteria, it is shut in as oil is continued to be produced by the upper-most well. The production rate at well 1 is set equal to the injection rate at well 4. Oil production is continued until well 1 reaches the stopping criteria. After that, all wells are shut in for 180 days before three different production types (WAG up-dip, WAG down-dip, and DDP) are performed as shown in Tables 5.33-5.40.

For WAG with up-dip injection, water and gas injector is well 1 throughout the production time. Fluid production is from well 2, well 3, and well 4, sequentially. The switching of producer from well 2 to well 3 is done when GOR of well 2 reaches the pre-set value which is different for each dip angle. This value comes from the study of appropriate GOR for switching producer by varying GOR to be 1, 2, 3, 4, and 5 MSCF/STB. GOR resulting in the highest BOE as shown in Table 5.41 is then applied in this section.

For WAG with down-dip injection, it is performed contrarily to WAG with updip injection by injecting at well 4 but producing at well 3, well 2, and well 1, sequentially. Switching criteria for producer is obtained from the varying of GOR to be 1, 2, 3, 4, and 5 MSCF/STB.

For DDP, gas is injected continuously at well 1 while oil is produced at well 2. After GOR of well 2 reaches the value which yields the highest BOE, oil production is switched from well 2 to well 3. GOR used for each reservoir is studied by varying it to be 1, 5, 10, 15, 20, and 25 MSCF/STB. After that, the switching of producer from well 3 to well 4 occurs when GOR of well 3 reaches the setting value. Oil production is then performed by well 4 throughout the production time.

Figure 5.36 Well location in 3D for pattern 2.

Parameters	Values	Units	
Desition of well 1	i=4, j=16,	-	
Position of well 1	k=1-20		
	i=26, j=16,	-	
Position of well 2	k=1-20		
Desition of well 2	i=48, j=16,	-	
Position of wett 3	k=1-20		
Desition of well 4	i=70, j=16,	-	
Position of well 4	k=1-20		
Fracture pressure of well 1 @top depth of 5,000 ft (0°)	3,080	psia	
Fracture pressure of well 4 @top depth of 5,000 ft (0°)	3,080	psia	
Fracture pressure of well 1 @top depth of 5,064 ft (15°)	3,130	psia	
Fracture pressure of well 4 @top depth of 6,468 ft (15°)	4,220	psia	
Fracture pressure of well 1 @top depth of 5,123 ft (30°)	3,180	psia	
Fracture pressure of well 4 @top depth of 7,836 ft (30°)	5,360	psia	

Table 5.32 Well location and fracture pressure for pattern 2.

Step of production	Well 1	Well 2	Well 3	Well 4
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)
water cut of well 3 reaches 1% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)
water cut of well 2 reaches 1% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)
water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days	shut in for 180 days	shut in for 180 days
WAG (cycle 60/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)	shut in	shut in
GOR of well 2 reaches 2 Mscf/stb	injector - water (12000 RB/D) - gas (8000 RB/D)	shut in	producer (12000 RB/D)	shut in
GOR of well 3 reaches 2 Mscf/stb	injector - water (12000 RB/D) - gas (8000 RB/D)	shut in	shut in	producer (12000 RB/D)

Table 5.33 Well schedule of WAG with up-dip injection in a non-dipping reservoir for pattern 2.

Table 5.34 Well schedule of WAG with up-dip injection in a 15° reservoir for pattern 2

Step of production	Well 1	Well 2	Well 3	Well 4	
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)	
water cut of well 3 reaches 1% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)	
water cut of well 2 reaches 1% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)	
water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days	shut in for 180 days	shut in for 180 days	
WAG (cycle 30/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)	shut in	shut in	
GOR of well 2 reaches 3 Mscf/stb	injector - water (12000 RB/D) - gas (8000 RB/D)	shut in	producer (12000 RB/D)	shut in	
GOR of well 3 reaches 3 Mscf/stb	injector - water (12000 RB/D) - gas (8000 RB/D)	shut in	shut in	producer (12000 RB/D)	
Step of production	Well 1	Well 2	Well 3	Well 4	
---	---	--------------------------	--------------------------	--------------------------------	--
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)	
water cut of well 3 reaches 1% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)	
water cut of well 2 reaches 1% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)	
water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days	shut in for 180 days	shut in for 180 days	
WAG (cycle 30/60 days)	injector - water (12000 RB/D) - gas (6000 RB/D)	producer (12000 RB/D)	shut in	shut in	
GOR of well 2 reaches 2 Mscf/stb	injector - water (12000 RB/D) - gas (6000 RB/D)	shut in	producer (12000 RB/D)	shut in	
GOR of well 3 reaches 2 Mscf/stb	injector - water (12000 RB/D) - gas (6000 RB/D)	shut in	shut in	producer (12000 RB/D)	

Table 5.35 Well schedule of WAG with up-dip injection in a 30° reservoir for pattern 2

Table 5.36 Well schedule of WAG with down-dip injection in a non-dipping reservoir

for pattern 2.

Step of production	Well 1	Well 2	Well 3	Well 4
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)
water cut of well 3 reaches 40% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)
water cut of well 2 reaches 40% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)
water cut of well 1 reaches 40% criteria	shut in for 180 days			
WAG (cycle 60/30 days)	shut in	shut in	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)
GOR of well 3 reaches 5 Mscf/stb	shut in	producer (12000 RB/D)	shut in	injector - water (12000 RB/D) - gas (8000 RB/D)
GOR of well 2 reaches 5 Mscf/stb	producer (12000 RB/D)	shut in	shut in	injector - water (12000 RB/D) - gas (8000 RB/D)

Table 5.37 Well schedule of WAG with down-dip injection in a 15° reservoir for

K	ba	tte	rn	2
- 11				

Step of production	Well 1	Well 2	Well 3	Well 4
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)
water cut of well 3 reaches 1% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)
water cut of well 2 reaches 1% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)
water cut of well 1 reaches 1% criteria	shut in for 180 days			
WAG (cycle 30/30 days)	shut in	shut in	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)
GOR of well 3 reaches 3 Mscf/stb	shut in	producer (12000 RB/D)	shut in	injector - water (12000 RB/D) - gas (8000 RB/D)
GOR of well 2 reaches 3 Mscf/stb	producer (12000 RB/D)	shut in	shut in	injector - water (12000 RB/D) - gas (8000 RB/D)

Table 5.38 Well schedule of WAG with down-dip injection in a 30° reservoir for

pattern 2.

Step of production	Well 1	Well 2	Well 3	Well 4	
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)	
water cut of well 3 reaches 1% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)	
water cut of well 2 reaches 1% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)	
water cut of well 1 reaches 1% criteria	shut in for 180 days				
WAG (cycle 30/30 days)	shut in	shut in	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)	
GOR of well 3 reaches 5 Mscf/stb	shut in	producer (12000 RB/D)	shut in	injector - water (12000 RB/D) - gas (8000 RB/D)	
GOR of well 2 reaches 5 Mscf/stb	producer (12000 RB/D)	shut in	shut in	injector - water (12000 RB/D) - gas (8000 RB/D)	

	r	1	(r	
Step of production	Well 1	Well 2	Well 3	Well 4	
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)	
water cut of well 3 reaches 1% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)	
water cut of well 2 reaches 1% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)	
water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days	shut in for 180 days	shut in for 180 days	
DDP	gas injector (12000 RB/D)	producer (12000 RB/D)	shut in	shut in	
GOR of well 2 reaches 5 Mscf/stb	gas injector (12000 RB/D)	shut in	producer (12000 RB/D)	shut in	
GOR of well 3 reaches 5 Mscf/stb	gas injector (12000 RB/D)	shut in	shut in	producer (12000 RB/D)	
			4		

Table 5.39 Well schedule of DDP in a 15° reservoir for pattern 2.

Table 5.40 Well schedule of DDP in a 30° reservoir for pattern 2.

Step of production	Well 1	Well 2	Well 3	Well 4	
water flooding	producer (4000 RB/D)	producer (4000 RB/D)	producer (4000 RB/D)	water injector (12000 RB/D)	
water cut of well 3 reaches 20% criteria	producer (6000 RB/D)	producer (6000 RB/D)	shut in	water injector (12000 RB/D)	
water cut of well 2 reaches 20% criteria	producer (12000 RB/D)	shut in	shut in	water injector (12000 RB/D)	
water cut of well 1 reaches 20% criteria	shut in for 180 days	shut in for 180 days	shut in for 180 days	shut in for 180 days	
DDP	gas injector (12000 RB/D)	producer (12000 RB/D)	shut in	shut in	
GOR of well 2 reaches 5 Mscf/stb	gas injector (12000 RB/D)	shut in	producer (12000 RB/D)	shut in	
GOR of well 3 reaches 5 Mscf/stb	gas injector (12000 RB/D)	shut in	shut in	producer (12000 RB/D)	

GOR criteria for switching the producers [MSCF/STB] Production BOE Dip angle type [MMSTB] 30.605 1 30 609

0° 3 4 5 5 1 2 1 2 4 5 3 15° 3 4 5 10° 4 5 1 2 1 30° 3	30.594 30.506 30.020 29.090 29.178 29.270 29.173 28.830 27.528
WAG up-dip 4 1 2 15° 3 15° 4 5 1 2 30° 3 4	30.506 30.020 29.090 29.178 29.270 29.173 28.830 27.528
WAG up-dip 5 15° 3 4 5 10° 1 22 1 30° 3	30.020 29.090 29.178 29.270 29.173 28.830 27.528
WAG up-dip 15° 15° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10	29.090 29.178 29.270 29.173 28.830 27.528
WAG up-dip 15° 2 30° 4 1 5 1 2 30° 3 4	29.178 29.270 29.173 28.830 27.528
WAG 15° 3 up-dip 15° 4 5 1 2 30° 30° 3	29.270 29.17328.83027.528
4 5 1 2 30°	29.173 28.830 27.528
30° 5 1 2 30° 3 4	28.830 27.528
30° 1 2 30° 3 4	27.528
30° 2 30° 3	
30° <u>3</u>	27.542
	27.399
- / / / / / · · · · · · · · · · · · · ·	26.898
5	26.763
1	29.927
2	30.035
0° 3	30.132
4	30.211
5	30.270
1	28.341
2	28.340
down dia 15° 3	28.360
4	27.856
CHULALON GKORN UNIV 53SITY	28.177
1	25.453
2	25.449
30° 3	25.407
4	25.382
5	25.733
1	26.283
5	26.641
159 10	26.467
15 15	26.166
20	25.776
25	25.326
1	23.586
5	24.252
300 10	24.205
15	24.176
20	24.150

Table 5.41 Effect of GOR criteria for switching the producers on BOE for well pattern 2.

Pattern 3 is similar to pattern 2 but different in the number of wells. There are 8 wells for this pattern arranged in a single row along the x-axis as shown in Figure 5.37. Their positions and fracture pressures are shown in Table 5.42. In the water flooding period, well 8 is a water injector while wells 1-7 are producers. Well 7, 6, 5, 4, 3, and 2 are shut in sequentially when its water cut reaches the stopping criteria shown in Table 5.8. The production rate is always set equal to the injection rate. After well 1 reaches stopping criteria, all wells are shut in for 180 days. Production strategy is different for each process as tabulated in Tables 5.43-5.50.

Figure 5.37 Well location in 3D for pattern 3.

Parameters	Values	Units	
Desition of well 1	i=2, j=16,		
Position of wett 1	k=1-20	-	
Desition of well 2	i=12, j=16,		
Position of wett 2	k=1-20	-	
	i=22, j=16,		
Position of Well 3	k=1-20	-	
	i=32, j=16,		
Position of Well 4	k=1-20	-	
	i=42, j=16,		
Position of Well 5	k=1-20	-	
	i=52, j=16,		
Position of Well 6	k=1-20	-	
	i=60, j=16,		
Position of well 7	k=1-20	-	
	i=72, j=16,		
Position of Well 8	k=1-20	-	
Fracture pressure of well 1 @top depth of 5,000 ft (0°)	3,080	psia	
Fracture pressure of well 8 @top depth of 5,000 ft (0°)	3,080	psia	
Fracture pressure of well 1 @top depth of 5,021 ft (15°)	3,100	psia	
Fracture pressure of well 8 @top depth of 6,510 ft (15°)	4,250	psia	
Fracture pressure of well 1 @top depth of 5,041 ft (30°)	3,120	psia	
Fracture pressure of well 8 @top depth of 7,918 ft (30°)	5,430	psia	

Table 5.42 Well location and fracture pressure for pattern 3.

For WAG with up-dip injection, water and gas are injected alternately by well 1. Production is done sequentially and individually from well 2 to well 8. The switching criteria is GOR of the producer which is varied to be 1, 2, 3, 4, and 5 MSCF/STB. The GOR that yields the highest BOE as shown in Table 5.51 is applied for each reservoir.

For WAG with down-dip injection, it is the inverse of WAG with up-dip injection. Production is done sequentially from well 7 to well 1 while water and gas

are always injected at well 8. The well GOR for switching criteria comes from the varying of GOR to be 1, 2, 3, 4, and 5 MSCF/STB. It is different for each reservoir.

For DDP, gas is always injected at up-dip location by well 1 throughout the production time. Production is performed sequentially from well 2 to well 8. Switching criteria of production well applied for DDP is the GOR among five values: 1, 5, 10, 15, 20, and 25 MSCF/STB that yields the highest BOE.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	Well 8	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	shut in	producer (12000 RB/D)
	Well 7	producer (1714 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in					
	Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in				
	Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
	Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
5	Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in				
יויישיש קש	Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in	shut in	shut in	shut in	shut in	shut in
	Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -qas (8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000 RB/D) -gas(8000 RB/D)
	Step of production	water flooding	water cut of well 7 reaches 1% criteria	water cut of well 6 reaches 1% criteria	water cut of well 5 reaches 1% criteria	water cut of well 4 reaches 1% criteria	water cut of well 3 reaches 1% criteria	water cut of well 2 reaches 1% criteria	water cut of well 1 reaches 1% criteria	WAG (cycle 60/30 days)	GOR of well 2 reaches 2 Mscf/stb	GOR of well 3 reaches 2 Mscf/stb	GOR of well 4 reaches 2 Mscf/stb	GOR of well 5 reaches 2 Mscf/stb	GOR of well 6 reaches 2 Mscf/stb	GOR of well 7 reaches 2 Mscf/stb

Table 5.43 Well schedule of WAG with up-dip injection in a non-dipping reservoir for pattern 3.

Well 8	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	shut in for 180 days	shut in	producer (12000 RB/D)					
Well 7	producer (1714 RB/D)	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in									
Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in				
Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in				
Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in					
Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)
Step of production	water flooding	water cut of well 7 reaches 1% criteria	water cut of well 6 reaches 1% criteria	water cut of well 5 reaches 1% criteria	water cut of well 4 reaches 1% criteria	water cut of well 3 reaches 1% criteria	water cut of well 2 reaches 1% criteria	water cut of well 1 reaches 1% criteria	WAG (cycle 30/30 days)	GOR of well 2 reaches 3 Mscf/stb	GOR of well 3 reaches 3 Mscf/stb	GOR of well 4 reaches 3 Mscf/stb	GOR of well 5 reaches 3 Mscf/stb	GOR of well 6 reaches 3 Mscf/stb	GOR of well 7 reaches 3 Mscf/stb

Table 5.44 Well schedule of WAG with up-dip injection in a 15° reservoir for pattern 3.

Well 8	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	shut in	producer (12000 RB/D)
Well 7	producer (1714 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in					
Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in				
Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in				
Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in	shut in	shut in	shut in	shut in	shut in
Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	injector -water(12000RB/D) -qas(6000RB/D)	injector -water(12000 RB/D) - eas(6000RB/D)	injector -water(12000RB/D) -eas(6000RB/D)	injector -water(12000RB/D) -qas(6000RB/D)	injector -water(12000RB/D) -qas(6000RB/D)	injector -water(12000RB/D) -gas(6000RB/D)	injector -water(12000RB/D) -gas(6000RB/D)
Step of production	water flooding	water cut of well 7 reaches 1% criteria	water cut of well 6 reaches 1% criteria	water cut of well 5 reaches 1% criteria	water cut of well 4 reaches 1% criteria	water cut of well 3 reaches 1% criteria	water cut of well 2 reaches 1% criteria	water cut of well 1 reaches 1% criteria	WAG (cycle 30/60 days)	GOR of well 2 reaches 1 Mscf/stb	GOR of well 3 reaches 1 Mscf/stb	GOR of well 4 reaches 1 Mscf/stb	GOR of well 5 reaches 1 Mscf/stb	GOR of well 6 reaches 1 Mscf/stb	GOR of well 7 reaches 1 Mscf/stb

Table 5.45 Well schedule of WAG with up-dip injection in a 30° reservoir for pattern 3.

	Well 8	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	shut in for 180 days	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)
	Well 7	producer (1714 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in										
	Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in								
-	Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
-	Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
·	Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in
	Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in				
	Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	shut in	producer (12000 RB/D)					
	Step of production	water flooding	water cut of well 7 reaches 40% criteria	water cut of well 6 reaches 40% criteria	water cut of well 5 reaches 40% criteria	water cut of well 4 reaches 40% criteria	water cut of well 3 reaches 40% criteria	water cut of well 2 reaches 40% criteria	water cut of well 1 reaches 40% criteria	WAG (cycle 60/30 days)	GOR of well 7 reaches 3 Mscf/stb	GOR of well 6 reaches 3 Mscf/stb	GOR of well 5 reaches 3 Mscf/stb	GOR of well 4 reaches 3 Mscf/stb	GOR of well 3 reaches 3 Mscf/stb	GOR of well 2 reaches 3 Mscf/stb

Table 5.46 Well schedule of WAG with down-dip injection in a non-dipping reservoir for pattern 3.

Well 8	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	shut in for 180 days	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -qas(8000RB/D)
Well 7	producer (1714 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in										
Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in								
Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in
Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in				
Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	shut in	producer (12000 RB/D)					
Step of production	water flooding	water cut of well 7 reaches 1% criteria	water cut of well 6 reaches 1% criteria	water cut of well 5 reaches 1% criteria	water cut of well 4 reaches 1% criteria	water cut of well 3 reaches 1% criteria	water cut of well 2 reaches 1% criteria	water cut of well 1 reaches 1% criteria	WAG (cycle 30/30 days)	GOR of well 7 reaches 3 Mscf/stb	GOR of well 6 reaches 3 Mscf/stb	GOR of well 5 reaches 3 Mscf/stb	GOR of well 4 reaches 3 Mscf/stb	GOR of well 3 reaches 3 Mscf/stb	GOR of well 2 reaches 3 Mscf/stb

3.
E
te
oat
ъ Г
ĥ
,0ii
eD
es
0
1
р С
.i.
<u>[</u>]
e C
Ē
<u>.</u>
p-c
Ň
9
t
ĭ≥
Ð
\geq
of
P
qn
he
SC
ell
Š
47
5.
ole
Tak

Well 8	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	shut in for 180 days	injector -water(12000RB/D) -qas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)	injector -water(12000RB/D) -gas(8000RB/D)
Well 7	producer (1714 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in										
Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in								
Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in
Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in				
Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	shut in	producer (12000 RB/D)					
Step of production	water flooding	water cut of well 7 reaches 1% criteria	water cut of well 6 reaches 1% criteria	water cut of well 5 reaches 1% criteria	water cut of well 4 reaches 1% criteria	water cut of well 3 reaches 1% criteria	water cut of well 2 reaches 1% criteria	water cut of well 1 reaches 1% criteria	WAG (cycle 30/30 days)	GOR of well 7 reaches 5 Mscf/stb	GOR of well 6 reaches 5 Mscf/stb	GOR of well 5 reaches 5 Mscf/stb	GOR of well 4 reaches 5 Mscf/stb	GOR of well 3 reaches 5 Mscf/stb	GOR of well 2 reaches 5 Mscf/stb

•
\sim
<u> </u>
ē
Ę
g
_
G
Ţ
ō
2
ğ
ě
~
ŏ
3
ŋ
.⊆
C
Ō
E
ĕ
.C
÷Ħ
Ļ
ŕ
~
Š
dov
h dow
vith dow
with dow
G with dow
/AG with dow
WAG with dow
of WAG with dow
e of WAG with dow
ule of WAG with dow
dule of WAG with dow
edule of WAG with dow
chedule of WAG with dow
schedule of WAG with dow
ill schedule of WAG with dow
vell schedule of WAG with dow
Well schedule of WAG with dow
48 Well schedule of WAG with dow
5.48 Well schedule of WAG with dow
5.48 Well schedule of WAG with dow
vie 5.48 Well schedule of WAG with dow
able 5.48 Well schedule of WAG with dow

	Well 8	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	water injector (12000 RB/D)	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	shut in	producer (12000 RB/D)
	Well 7	producer (1714 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in					
	Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in				
	Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
	Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
oir for pattern 3	Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in				
in a 15º reservo	Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in					
nedule of DDP	Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)
Table 5.49 Well scł	Step of production	water flooding	water cut of well 7 reaches 1% criteria	water cut of well 6 reaches 1% criteria	water cut of well 5 reaches 1% criteria	water cut of well 4 reaches 1% criteria	water cut of well 3 reaches 1% criteria	water cut of well 2 reaches 1% criteria	water cut of well 1 reaches 1% criteria	DDP	GOR of well 2 reaches 5 Mscf/stb	GOR of well 3 reaches 5 Mscf/stb	GOR of well 4 reaches 5 Mscf/stb	GOR of well 5 reaches 5 Mscf/stb	GOR of well 6 reaches 5 Mscf/stb	GOR of well 7 reaches 5 Mscf/stb

pattern
for
rvoir
rese
15°
a C
÷
DDF
of
ule
per
SC
Well
49
5.
ole
Tab

Well 8	ater injector 12000 RB/D)	ater injector 12000 RB/D)	ater injector 12000 RB/D)	ater injector 12000 RB/D)	ater injector 12000 RB/D)	ater injector 12000 RB/D)	ater injector 12000 RB/D)	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	shut in	producer 12000 RB/D)
Well 7	producer w (1714 RB/D) (shut in (shut in	shut in	shut in (shut in	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in
Well 6	producer (1714 RB/D)	producer (2000 RB/D)	shut in	shut in for 180 days	shut in	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in				
Well 5	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	shut in	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in
Well 4	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	shut in	shut in	shut in	shut in for 180 days	shut in	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in
Well 3	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	shut in	shut in	shut in for 180 days	shut in	producer (12000 RB/D)	shut in	shut in	shut in	shut in	shut in
Well 2	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	shut in	shut in for 180 days	producer (12000 RB/D)	shut in	shut in				
Well 1	producer (1714 RB/D)	producer (2000 RB/D)	producer (2400 RB/D)	producer (3000 RB/D)	producer (4000 RB/D)	producer (6000 RB/D)	producer (12000 RB/D)	shut in for 180 days	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)	gas injector (12000 RB/D)
Step of production	water flooding	water cut of well 7 reaches 20% criteria	water cut of well 6 reaches 20% criteria	water cut of well 5 reaches 20% criteria	water cut of well 4 reaches 20% criteria	water cut of well 3 reaches 20% criteria	water cut of well 2 reaches 20% criteria	water cut of well 1 reaches 20% criteria	DDP	GOR of well 2 reaches 5 Mscf/stb	GOR of well 3 reaches 5 Mscf/stb	GOR of well 4 reaches 5 Mscf/stb	GOR of well 5 reaches 5 Mscf/stb	GOR of well 6 reaches 5 Mscf/stb	GOR of well 7 reaches

~.
(, ,
LL L
μ
0a
<u> </u>
fo
Ë.
Ş
ē
es
0
õ
n)
⊆
Õ
of
Ą
ILI
e
5
Š
Š
Ó
.5
ц С
ρle
ac
\vdash

135

_

Production type	Dip angle	GOR criteria for switching the producers [MSCF/STB]	BOE [MMSTB]
		1	30.672
		2	30.690
	0°	3	30.554
		4	30.077
		5	29.418
		1	29.042
		2	29.065
WAG	15°	3	29.132
up-aip		4	29.009
		5	28.418
	V.	1	27.510
		2	27.497
	30°	3	27.058
		4	26.452
		5	25.610
		1	30.079
		2	30.160
	0°	3	30.275
	/	4	30.033
		5	29.365
		1	28.439
	44	2	28.436
VVAG	15°	3	28.440
down-dip	จุฬาสง	4	27.905
	CHULALO	NGKORN UN 5ERSITY	26.659
		1	25.521
		2	25.523
	30°	3	25.618
		4	25.367
		5	26.518
		1	26.630
		5	26.840
	150	10	26.501
	15-	15	25.739
		20	25.313
מחח		25	25.175
DDF		1	23.833
		5	24.275
	200	10	24.150
	502	15	24.078
		20	23.986
		25	23.798

Table 5.51 Effect of GOR criteria for switching the producers on BOE for well pattern 3.

Pattern 4 consists of two horizontal wells as shown in Figure 5.38. Well location and fracture pressure are listed in Table 5.52. These two wells are perforated only in the horizontal section. Well schedule for this pattern is the same as the one for pattern 1. It is tabulated in Tables 5.53-5.55.

Figure 5.38 Well location in 3D for pattern 4.

Parameters	Values	Units
Decition of well 1	i=12, j=1-31,	
Position of wett 1	k=1	-
Desition of well 2	i=72, j=1-31,	
Position of wett 2	k=20	-
Fracture pressure of well 1 @top depth of 5,000 ft (0°)	3,080	psia
Fracture pressure of well 2 @top depth of 5,190 ft (0°)	3,230	psia
Fracture pressure of well 1 @top depth of 5,234 ft (15°)	3,260	psia
Fracture pressure of well 2 @top depth of 6,700 ft (15°)	4,400	psia
Fracture pressure of well 1 @top depth of 5,452 ft (30°)	3,430	psia
Fracture pressure of well 2 @top depth of 8,108 ft (30°)	5,595	psia

Table 5.52 Well location and fracture pressure for pattern 4.

Dip angle	Step of production	Well 1	Well 2
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
0°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 60/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
15°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
30°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/60 days)	injector - water (12000 RB/D) - gas (6000 RB/D)	producer (12000 RB/D)

Table 5.53 Well schedule of WAG with up-dip injection for pattern 4.

Table 5.54 Well schedule of WAG with	down-dip injection for pattern 4.
--------------------------------------	-----------------------------------

	1961				
Dip angle	Step of production	Well 1	Well 2		
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)		
0°	water cut of well 1 reaches 40% criteria	shut in for 180 days	shut in for 180 days		
	WAG (cycle 60/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)		
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)		
15°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days		
	WAG (cycle 30/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)		
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)		
30°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days		
	WAG (cycle 30/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)		

Table 5.55 Well schedule of DDP for p	oattern 4.
---------------------------------------	------------

Dip angle	Step of production	Well 1	Well 2		
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)		
15°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days		
	DDP	producer (12000 RB/D)			
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)		
30°	water cut of well 1 reaches 20% criteria	shut in for 180 days	shut in for 180 days		
	DDP	gas injector (12000 RB/D)	producer (12000 RB/D)		

Pattern 5 consists of a vertical well at up-dip location and a horizontal well at down-dip location as shown in Figure 5.39. Well 1 is fully perforated while well 2 is perforated only in the horizontal section. Table 5.56 shows well location and fracture pressure for each reservoir. Well schedule for this pattern is also the same as that for pattern 1 and pattern 4, which is shown in Tables 5.57-5.59.

Figure 5.39 Well location in 3D for pattern 5.

Table 5.56 Well location and fracture pressure for pattern 5.

Parameters	Values	Units
Decition of wall 1	i=12, j=16,	
Position of wett 1	k=1-20	-
Desition of well 2	i=72, j=1-31,	
Position of wett 2	k=20	-
Fracture pressure of well 1 @top depth of 5,000 ft (0°)	3,080	psia
Fracture pressure of well 2 @top depth of 5,190 ft (0°)	3,230	psia
Fracture pressure of well 1 @top depth of 5,234 ft (15°)	3,260	psia
Fracture pressure of well 2 @top depth of 6,700 ft (15°)	4,400	psia
Fracture pressure of well 1 @top depth of 5,452 ft (30°)	3,430	psia
Fracture pressure of well 2 @top depth of 8,108 ft (30°)	5,595	psia

Table 5.57 Well schedule of WAG with up-dip injection for pattern 5.

Dip angle	Step of production	Well 1	Well 2
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
0°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 60/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
15°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/30 days)	injector - water (12000 RB/D) - gas (8000 RB/D)	producer (12000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
30°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/60 days)	injector - water (12000 RB/D) - gas (6000 RB/D)	producer (12000 RB/D)

Dip angle	Step of production	Well 1	Well 2
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
0°	water cut of well 1 reaches 40% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 60/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
15°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
30°	water cut of well 1 reaches 1% criteria	shut in for 180 days	shut in for 180 days
	WAG (cycle 30/30 days)	producer (12000 RB/D)	injector - water (12000 RB/D) - gas (8000 RB/D)

Table 5.58 Well schedule of WAG with down-dip injection for pattern 5.

Table 5.59 Well schedule of DDP for pattern 5.

Dip angle	Step of production	Well 1	Well 2
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
15°	water cut of well 1 reaches 1% criteria	shut 180 days	shut 180 days
	DDP	gas injector (12000 RB/D)	producer (12000 RB/D)
	water flooding	producer (12000 RB/D)	water injector (12000 RB/D)
30°	water cut of well 1 reaches 20% criteria	shut 180 days	shut 180 days
	DDP	gas injector (12000 RB/D)	producer (12000 RB/D)

5.5.1 WAG with up-dip injection

The oil production rate of each pattern is around 9,000 STB/D during water flooding period. However, the stopping time for water injection is different. Patterns 1, 5, and 4 are stopped before pattern 2 and 3 which have more producers. As water displaces oil up structure, there is much amount of oil accumulated at up-dip location while down-dip location contains water bank. In early time of WAG injection, pattern 3 reaches the highest rate oil before other patterns because it has the shortest well spacing between the injector and the first producer (well 2). Meanwhile, other patterns needs more time to let oil bank travel to the producers. Nevertheless, oil rates of all patterns have a similar trend, gradually decreasing from the seventeenth year to the last year of production as illustrated in Figure 5.40.

Figure 5.40 Effect of well pattern on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 15°.

Gas production profiles for all patterns are similar during water flooding as the rate is around 5,000 MSCF/D for all cases. In WAG period, patterns 1, 4, and 5 having two wells show smoother profile than patterns 2 and 3 consisting more wells. Figure 5.41 shows gas production rates of the five well patterns.

Figure 5.41 Effect of well pattern on gas production rate of WAG with up-dip injection in a reservoir with dip angle of 15°.

During the initial water flooding, water is produced for a short period of time before water cut reaches the stopping criteria. It is then produced with high rate when the producer is opened in WAG period because there is a large amount of water accumulated around the producer which is switched from the water injector. After the 12th year, water production rates of all patterns are around 5,600 STB/D as shown in Figure 5.42.

Figure 5.42 Effect of well pattern on water production rate of WAG with up-dip injection in a reservoir with dip angle of 15°.

Table 5.60 shows results comparison among different well patterns of WAG with up-dip injection in three reservoirs. For a non-dipping reservoir, the highest recovery factor and BOE of 78.07% and 30.690 MMSTB, respectively, is obtained from pattern 3 which consists of eight vertical wells. This pattern also needs the lowest amount of injected gas which is 10.579 BSCF among all patterns in the same reservoir. Pattern 4 requires the largest amount of gas while the highest amount of water is required by pattern 5. For a 15° reservoir, patterns with more wells need higher amounts of injected water but less amounts of injected gas due to the longer period of water flooding as discussed in Figure 5.53. Pattern 2, consisting of four vertical wells, yields the highest recovery factor and BOE of 76.60% and 29.270 MMSTB, respectively. This pattern requires 16.530 BSCF of injected gas and 74.967 MMSTB of injected water. For a 30° reservoir, pattern 5 yields the highest recovery factor and BOE of 81.38% and 27.850 MMSTB, respectively. However, this pattern requires the largest amount of injected sas of 13.411 BSCF.

	BOE	[MMSTB]		29.338	30.609	30.690	30.466	29.410	28.795	29.270	29.132	28.058	28.757	27.394	27.542	27.510	27.167	27.850
Total	water	production	[MMSTB]	64.020	63.496	63.046	49.409	65.931	52.476	52.951	53.168	56.671	54.963	42.873	45.663	45.961	45.455	46.328
Total	water	injection	[MMSTB]	89.060	89.673	89.455	74.839	90.830	72.746	74.967	75.233	74.282	73.804	53.917	56.585	56.868	55.733	55.003
Total	gas	production	[BSCF]	26.636	25.511	25.256	32.347	26.472	31.565	30.825	30.672	29.936	30.760	27.062	26.329	26.298	26.535	26.279
Total	gas	injection	[BSCF]	12.520	10.824	10.579	16.882	12.613	18.326	16.530	16.294	18.075	18.294	13.357	12.543	12.620	13.042	13.411
	Oil recovery factor		[07]	74.59	77.84	78.07	77.09	74.91	75.74	76.60	76.16	74.30	76.00	79.50	79.92	79.88	78.89	81.38
Total	oil	production	[MMSTB]	26.985	28.161	28.244	27.888	27.010	26.588	26.887	26.735	26.081	26.679	25.109	25.244	25.229	24.918	25.705
	Production		[Tear]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Well	pattern		1	2	3	4	5	1	2	3	4	5	Ţ	2	3	4	5
		חוף מווצוב		00	00	00	00	00	15°	15°	15°	15°	15°	30°	30°	30°	30°	30°

Table 5.60 Result comparison between different well patterns of WAG with up-dip injection.

ſ

5.5.2 WAG with down-dip injection

Figure 5.43 shows oil production rates of the five well patterns investigated in this study. Oil production profiles during water flooding have the same trend which have a stable rate around 9,000 STB/D. Pattern 1 is the first pattern reaching the stopping criteria between the fourth and the fifth year whereas pattern 3 stops water injection at the latest. During WAG period, patterns with two wells (patterns 1, 4, and 5) produce large amounts of oil in the early time because their producers are located near the oil bank. On the other hand, patterns 2 and 3 produce high amounts of water because their producers are located in water bank area. However, the switching of producers from down-dip to up-dip location results in the increasing of oil production rate around the ninth year. After the twentieth year, all patterns produce oil with quite the same rate throughout the production time.

Figure 5.43 Effect of well pattern on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

Gas is produced with the rate around 5,000 MSCF/D during water flooding. However, during WAG injection period, patterns 1, 4, and 5 produce gas with smoother rates than patterns 2 and 3. Gas rates of all patterns slightly decrease until the last year as illustrated in Figure 5.44.

Figure 5.44 Effect of well pattern on gas production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

As there are only oil and gas in the initial reservoir, water is not produced until it breaks through the producer. Patterns 2 and 3 show the highest water rate around the sixth year after WAG has been started. However, every pattern has a similar rate around 5,200 - 5,600 STB/D after the eighteenth year as shown in Figure 5.45.

Figure 5.45 Effect of well pattern on water production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

Result comparison for different well patterns is shown in Table 5.61. For a non-dipping reservoir, the highest BOE of 30.275 MMSTB is obtained by pattern 3. Amounts of water and gas needed for injection are 63.868 MMSTB and 10.298 BSCF, respectively. Moreover, patterns consisting of more vertical wells require less amounts of injected water and gas. For a 15° reservoir, pattern 4 yields the highest recovery factor of 77.72% and the highest BOE of 29.722 MMSTB. The amount of injected gas required for this pattern is the lowest (17.549 BSCF) while 74.276 MMSTB of water is injected. This pattern also yields the highest recovery factor of 79.61% and the highest BOE of 27.175 MMSTB for a 30° reservoir. Patterns 2 and 3 have shorter production times than the other cases performed for a 30° reservoir. Pattern 2 reaches the economic limit in 25.77 years while pattern 3 reaches the limit in 29.18 years. It can be considered that a higher recovery factor is obtained when additional wells are added. Moreover, using horizontal wells instead of vertical wells efficiently improves the recovery factor.

		BOE	[MMSTB]		29.146	30.270	30.275	28.169	29.918	27.935	28.360	28.440	29.722	29.311	25.501	25.733	26.518	27.175	26.899
	Total	water	production	[MMSTB]	64.438	64.155	63.868	54.573	65.786	49.220	49.931	49.982	50.375	50.404	50.516	48.199	57.279	51.716	51.778
	Total	water	injection	[MMSTB]	89.361	90.157	90.037	82.713	91.382	72.742	74.974	75.229	74.276	73.800	72.005	64.959	72.453	73.222	72.776
-	Total	gas	production	[BSCF]	26.309	25.317	25.098	48.560	26.332	32.430	31.262	31.435	32.189	31.866	31.782	26.867	27.826	30.759	31.200
	Total	gas	injection	[BSCF]	11.916	10.587	10.298	40.308	12.248	18.219	17.604	17.988	17.549	18.113	19.828	15.781	16.647	18.593	20.363
-	Oil recovery	OIL TECOVELY factor		٢٥%]	73.93	76.88	76.87	74.06	76.21	72.83	74.30	74.63	77.72	76.97	74.43	75.62	78.06	79.61	79.44
	Total	oil	production	[MMSTB]	26.747	27.814	27.808	26.793	27.570	25.566	26.083	26.198	27.281	27.019	23.508	23.885	24.654	25.146	25.093
	Drod Iction		רווופ גייין	[rear]	30	30	30	30	30	30	30	30	30	30	30	25.77	29.18	30	30
-		Well	pattern		1	2	3	4	5	1	2	3	4	5	Ţ	2	3	4	5
			חוף מווצוב		00	00	00	00	00	15°	15°	15°	15°	15°	30°	30°	30°	30°	30°

Table 5.61 Result comparison between different well patterns of WAG with down-dip injection.

ſ

5.5.3 Double displacement process

The oil rates in water flooding stage are around 9,000 STB/D for all patterns because they have the same water injection and production rates of 12,000 RB/D. After that, in gas injection stage, pattern 1 results in the smoothest oil rate. Patterns 4 and 5 yield extremely high rates for a short period of time between the eight year and the ninth year due to arrival of oil bank at the producers. For pattern 2 and 3, oil is produced by several wells causing a swing of the rate according to number of producers. Figure 5.46 illustrates oil production rates of five different well patterns.

Figure 5.46 Effect of well pattern on oil production rate of DDP in a reservoir with dip angle of 15°.

The gas production rates are around 5,000 MSCF/D until the stopping period of water flooding. During the early time of gas injection, patterns consisting of two wells have similar gas production profile which is smoother than patterns consisting of more wells. However, they have the same trend since the fourteenth year to the last year of production. Figure 5.47 shows effects of well pattern on gas production rate.

Figure 5.47 Effect of well pattern on gas production rate of DDP in a reservoir with dip angle of 15°.

The highest water production rates of around 11,600 STB/D for all patterns occur in the early time of gas injection. After that, they drop dramatically until there is small amount of water left in the reservoir. Finally, they slightly decrease until the last year of production as shown in Figure 5.48.

Chulalongkorn University

Figure 5.48 Effect of well pattern on water production rate of DDP in a reservoir with dip angle of 15°.

DDP is performed for two reservoirs which are 15° and 30° reservoirs as shown in Table 5.62. For a 15° reservoir, when we consider patterns of vertical wells, patterns consisting of more wells result in higher oil recovery factor and higher amounts of water injection and production but less amounts of gas injection and production. For a 30° reservoir, pattern 3 yields higher oil recovery factor, higher amounts of water injection and production, and higher amounts of gas injection and production than patterns 1 and 2 because pattern 3 has more producers.

When we use horizontal wells (patterns 4 and 5) instead of vertical wells (pattern 1), oil recovery factor is evidently improved. Patterns 4 and 5 require less amounts of injected gas but larger amounts of injected water. Pattern 5, consisting of a vertical well at up-dip location and a horizontal well at down-dip location, yields the highest BOE for both reservoirs. The highest BOE of 27.510 MMSTB and 25.074 MMSTB are obtained in 15° reservoir and 30° reservoirs, respectively.

	BOE	[MMSTB]		25.706	26.641	26.840	27.427	27.510	23.980	24.252	24.275	25.042	25.074
Total	water	production	[MMSTB]	15.002	20.600	21.145	20.041	18.996	14.106	19.564	20.304	18.461	17.954
Total	water	injection	[MMSTB]	19.453	24.046	24.493	22.664	21.432	18.567	22.507	23.036	20.547	20.017
Total	gas	production	[BSCF]	79.899	73.798	73.232	74.768	75.608	85.202	86.568	88.104	76.611	74.122
Total	gas	injection	[BSCF]	91.048	85.956	85.633	88.853	89.793	96.493	102.981	106.090	90.952	88.189
Oil	recovery	factor	[%]	78.53	81.67	82.35	84.82	85.11	81.88	85.44	86.35	86.85	86.81
Total	oil	production	[MMSTB]	27.564	28.668	28.907	29.775	29.874	25.862	26.988	27.273	27.433	27.419
Droduction		רוווופ	[Tear]	30	30	30	30	30	30	30	30	29.11	28.44
	Well	pattern		1	2	3	4	5	1	2	3	4	5
		טוף מווצוב		15°	15°	15°	15°	15°	30°	30°	30°	30°	30°

of DDP.
patterns c
well
different
between
omparison
Result cc
Table 5.62

Г

The production parameters which yield the highest BOE for each process and dip angle are considered from the studying of four parameters which are (1) stopping criteria for water flooding, (2) water and gas injection rates, (3) WAG cycle, and (4) well pattern. Table 5.63 shows these parameters and the results of each process and dip angle.

For a non-dipping reservoir, DDP is not performed because it results in lower performance than long-term water flooding as shown in Table 5.7. Thus, there are two types of WAG being compared to find the most appropriate process. WAG with up-dip injection shows slightly higher oil recovery factor and BOE than WAG with down-dip injection. Their BOEs are 30.690 MMSTB and 30.275 MMSTB for WAG with up-dip and down-dip injection, respectively. Moreover, their requirements for injected gas and injected water are slightly different.

For a 15° reservoir, WAG with down dip injection having parameters shown in Table 5.63 yields the highest BOE of 29.722 MMSTB. Even though DDP gives much higher recovery factor, it requires a lot of injected gas resulting in the lowest BOE of 27.510 MMSTB. However, WAG cases need high amount of water for both water flooding and water injection alternately with gas.

For a 30° reservoir, WAG with up-dip injection yields the highest BOE of 27.850 MMSTB. WAG with down dip injection yields slightly lower BOE of 27.175 MMSTB. DDP results in the lowest BOE of 25.074 MMSTB due to high amount of gas requirement. However, DDP requires the lowest amount of injected water and spends the shortest production time because its oil rate reaches economic limit after the twenty-eighth year.

In this study, DDP is considered to be an ineffective method. Although it yields much higher oil recovery factor than the two types of WAG, it yields the lowest BOE in every reservoir due to the gas requirement. On the other hand, WAG needs less amount of injected gas because of the alternate water injection. However, much more amount of injected water is required by WAG process. Table 5.63 The highest BOEs of different reservoir and process with their parameters.

BOE [MMSTB]	30.690	30.275	ı	29.270	29.722	27.510	27.850	27.175	25.074
Total water production [MMSTB]	63.046	63.868	I	52.951	50.375	18.996	46.328	51.716	17.954
Total water injection [MMSTB]	89.455	90.037	ı	74.967	74.276	21.432	55.003	73.222	20.017
Total gas production [BSCF]	25.256	25.098	I	30.825	32.189	75.608	26.279	30.759	74.122
Total gas injection [BSCF]	10.579	10.298	I	16.530	17.549	89.793	13.411	18.593	88.189
Oil recovery factor [%]	78.07	76.87	ı	76.60	77.72	85.11	81.38	79.61	86.81
Total oil [MMSTB]	28.244	27.808	I	26.887	27.281	29.874	25.705	25.146	27.419
Production time [Year]	30	30	I	30	30	30	30	30	28.44
Well	З	3	I	2	4	Ŋ	Ŀ	4	Ŋ
WAG cycle (water/ gas) [Day]	60/30	60/30	ı	30/30	30/30	ı	30/60	30/30	ı
Gas injection rate [RB/D]	8,000	8,000	ı	8,000	8,000	12,000	6,000	8,000	12,000
Water injection rate [RB/D]	12,000	12,000	I	12,000	12,000	12,000	12,000	12,000	12,000
Water cut criteria for stopping water flooding [%]	1	40	I	1	1	7	1	-	20
Process	WAG up-dip	WAG down- dip	DDP	WAG up-dip	WAG down- dip	DDP	WAG up-dip	WAG down- dip	DDP
Dip angle	°		15°			300			

155

The cases resulting in the highest BOE for each reservoir are shown in Table 5.64. It is noted that these cases are considered only in terms of amount of produced oil and amount of consumed gas, not in term of economic.

Dip angle	Process	Water cut for stopping water flooding [%]	Water injection rate [RB/D]	Gas injection rate [RB/D]	WAG cycle (water/gas) [Day]	Well pattern
0°	WAG up-dip	1	12,000	8,000	60/30	3
15°	WAG down-dip	1	12,000	8,000	30/30	4
30°	WAG up-dip	1	12,000	6,000	30/60	5

Table 5.64 The production strategies yield the highest BOE for each reservoir.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University
5.6 Sensitivity analysis

This part is simulated to consider effects of these following factors: (1) horizontal permeability, (2) vertical to horizontal permeability ratio, (3) relative permeability correlation, (4) reservoir thickness, and (5) oil properties. The operating parameters for each reservoir are the ones tabulated in Table 5.64.

5.6.1 Effect of horizontal permeability

Horizontal permeability (k_h) affects fluid flow in the horizontal direction (x and y directions). It is varied to be five times less and five times higher than the base case of 126 md while the vertical permeability (k_v) is kept constant for all cases as shown in Table 5.65.

Caso	k _h	k _v
Case	[md]	[md]
1	25.2	12.6
2	126	12.6
3	630	12.6

Table 5.65 Cases for the studying of effect of horizontal permeability.

Chulalongkorn Universit

5.6.1.1 Reservoir without dip angle

Horizontal permeability significantly affects oil production rate as can be seen in Figure 5.49. Case 1 has the earliest decline in oil rate but the longest period of water flooding, in which water injection is stopped after the seventeenth year, and WAG is started in the eighteenth year. Case 3, having the highest horizontal permeability, usually has slightly lower oil rate than case 2 except some short periods in the sixth year, the thirteenth year, and from the twenty-fifth to the twenty-seventh year. Fluids flow easily in the reservoir from the injector to the producer in the case of a high horizontal permeability ($k_h = 630$ md) which lets water arrive the producer early. This case takes the shortest time for initial water flooding because water cut reaches the stopping criteria earlier than the other two cases with lower horizontal permeability. The oil rates of all cases are unstable because the well pattern used in this study has 8 vertical wells. The oil rate abruptly changes when oil production is switched from one well to the adjacent well.

Table 5.66 shows that more amount of gas and water can be injected into the reservoir with higher horizontal permeability because they can flow more easily from the injector in the horizontal direction. However, case 2 with moderate horizontal permeability yields the highest oil recovery factor of 78.07% and the highest BOE of 30.690 MMSTB. Case 3 lets the fluids flow easily in the reservoir, it results in faster gas movement causing earlier gas breakthrough. Therefore, well shutting occurs earlier which yields smaller oil recovery factor. In addition, the results show that case 3 requires larger amounts of water and gas injection.

Figure 5.49 Effect of horizontal permeability on oil production rate of WAG with updip injection in a reservoir without dip angle.

5.6.1.2 Reservoir with dip angle of 15°

Case 1 with the lowest horizontal permeability produces oil with lower rate than cases 2 and 3. This is because oil in case 1 flows to the producer with the slowest rate. Additionally, water travels slowly from the injector to the producer causing a longer water flooding period of case 1 than the other two cases. Case 2 and 3 have similar oil rate at early time even though their horizontal permeability is not same because of the limitation of maximum production rate set in the simulator. As a result, case 2 has a similar oil production profile as case 3 in the water flooding period. However, case 3 with higher horizontal permeability shows a higher oil rate in WAG period as illustrated in Figure 5.50.

Table 5.66 shows that higher horizontal permeability results in more oil recovery factor and BOE. When we consider the requirement of injected fluids, the case with the lowest horizontal permeability ($k_h = 25.2$ md) consumes the largest amount of gas but the least amount of water.

Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

5.6.1.3 Reservoir with dip angle of 30°

Case 1 has a distinctive oil production profile from the other cases. It takes more than 9 years for water flooding while the other two cases spend less than 5 years. During water flooding, cases 2 and 3 have similar oil rate around 9,000 STB/D while the oil rate of case 1 is much lower. In the duration of WAG, cases with higher horizontal permeability show higher oil production rate. Figure 5.51 shows oil production profile of three cases with different horizontal permeability.

Oil in case 3 can travel with the fastest rate in the reservoir. From Table 5.66, it can be clearly seen that higher horizontal permeability results in higher oil recovery factor with a shorter production time. Case 3 yields the highest oil recovery factor and the highest BOE which are 84.94% and 29.262 MMSTB, respectively, where it requires the shortest production time of 19.59 years due to economic constraint.

Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with updip injection in a reservoir with dip angle of 30°.

	BOE	[MMSTB]		22.924	30.690	27.638	26.346	29.722	31.113	23.042	27.850	28.460
Total	water	production	[MMSTB]	12.473	63.046	68.855	31.141	50.375	49.417	22.260	46.328	23.993
Total	water	injection	[MMSTB]	34.404	89.455	91.766	54.959	74.276	74.494	37.933	55.003	25.961
Total	gas	production	[BSCF]	19.432	25.256	25.846	29.444	32.189	32.125	25.485	26.279	19.112
Total	gas	injection	[BSCF]	6.944	10.579	12.126	20.042	17.549	17.060	16.374	13.411	9.334
Oil	recovery	factor	[%]	57.61	78.07	70.08	70.59	77.72	81.48	68.14	81.38	84.94
Total	oil	production	[MMSTB]	20.842	28.244	25.351	24.779	27.281	28.601	21.523	25.705	26.830
Droduction			[Year]	30	30	30	30	30	30	30	30	19.59
	Å	[md]		25.2	126	630	25.2	126	630	25.2	126	630
	Drococc					dip-dn	MAG	-uwop	dip			dip-dn
	Dip	angle			00			15°			30°	

÷.	
, permeabilit	
horizontal	
different	
between	
mparison	
Result co	
ole 5.66 f	Í
Tak	

5.6.2 Effect of vertical to horizontal permeability ratio

The vertical to horizontal permeability ratio is varied to be 0.01, 0.1, and 0.5 as shown in Table 5.67 in order to study its effect on WAG and DDP. Only the value of vertical permeability (k_v) is changed while the horizontal permeability (k_h) is always constant at 126 md. This factor affects the fluid flow in the vertical direction.

Case	k _v ∕k _h	k _h [md]	k _v [md]
		[ma]	[III0]
1	0.01	126	1.26
2	0.1	126	12.6
3	0.5	126	63

Table 5.67 Cases for the studying of effect of vertical/horizontal permeability ratio.

5.6.2.1 Reservoir without dip angle

Form Figure 5.52, vertical to horizontal permeability ratio does not affect oil production rate during water flooding period but has a moderate effect on oil rate during WAG. In WAG period, gas flows easily in the vertical direction. There are 8 vertical wells in this study. Case 1 ($k_v/k_h = 0.01$) takes nearly the same duration to switch oil production from one well to the other while case 3 ($k_v/k_h = 0.5$) takes short periods to switch oil production from well 1 to well 2 and subsequentially wells 3, 4, 5, and 6 but longer periods to switch from well 6 to wells 7 and 8 at late time. This is a result of gas movement in the vertical direction. Gas tends to override easily in case 3 because of high vertical permeability. As a result, gas arrives early at each producer and reaches the GOR switching criteria of each producer early.

From Table 5.68, case with more vertical to horizontal permeability ratio requires less gas injection but slightly more water injection. Case 3 has the highest oil recovery factor and BOE which are 82.99% and 32.645 MMSTB, respectively. In addition, even though case 3 consumes the least amount of injected gas, it produces the largest amount of gas because of gas overriding.

5.6.2.2 Reservoir with dip angle of 15°

During water flooding period, every case shows very similar oil production rate as represented in Figure 5.53. After that, oil production rates of all cases are slightly different but follow similar trend throughout the production time of 30 years.

The comparison of results for these three cases is shown in Table 5.68. There is significant difference in gas requirement and production among the three cases. Case 1 requires much more injected gas but produces only few more gas than the other two cases. In term of water, the total water injection and production of every case is not significantly different. Their oil recovery factors are different. Case 1 yields the highest value of 81.83%. However, BOE of case 3 (30.280 MMSTB) is slightly higher than those of case 1 (30.250 MMSTB) and case 2 (29.722 MMSTB).

5.6.2.3 Reservoir with dip angle of 30°

The oil production rate of the three cases is the same during water flooding period as shown in Figure 5.54. Water flooding of all cases is stopped in the fourth year of production. In the WAG injection period, the three cases have a similar trend of oil production profile.

From Table 5.68, case 3 yields the highest oil recovery factor of 84.23% and the highest BOE of 28.533 MMSTB where it reaches the economic constraint slightly earlier than cases 1 and 2. As a result, it takes 29.58 years for the production while the other two cases take 30 years.

Figure 5.54 Effect of vertical/horizontal permeability ratio on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°.

en different vertical/horizontal permeability ratios.	Total Oil Total Total Total Total Total Total	oil recovery gas gas water water BOE	production factor injection production injection production [MMSTB]	earl [MMSTB] [%] [BSCF] [BSCF] [MMSTB] [MMSTB]	30 28.776 79.54 12.705 21.443 89.061 65.527 30.232	30 28.244 78.07 10.579 25.256 89.455 63.046 30.690	30 30.023 82.99 10.502 26.232 89.990 60.882 32.645	30 28.726 81.83 25.221 34.362 73.756 50.864 30.250	30 27.281 77.72 17.549 32.189 74.276 50.375 29.722	30 27.725 78.98 17.035 32.362 74.691 49.870 30.280	30 25.968 82.21 20.045 29.754 54.525 42.419 27.586	30 25.705 81.38 13.411 26.279 55.003 46.328 27.850	
nt vertical/horizonta	Total Oi	oil recov	production fact	[MMSTB] [%	28.776 79.5	28.244 78.0	30.023 82.9	28.726 81.8	27.281 77.7	27.725 78.9	25.968 82.2	25.705 81.3	
hetween differer ו	Droduction			[Tear]	30	30	30	30	30	30	30	30	
parison		4	5 2 2 2		0.01	0.1	0.5	0.01	0.1	0.5	0.01	0.1	L
Result com	Process					סאא	dip-dh	WAG	-uwop	dip		סאעט יולי ייו	din-dn
le 5.68		Dip	angle			0			15°			30°	

atios.	
rmeability r	
orizontal pe	
vertical/ho	
n different	
n betwee	
comparisc	
.68 Result	
Table 5	

5.6.3 Effect of three-phase relative permeability correlation

The three-phase relative permeability correlation of the base case is ECLIPSE default. This study is performed to consider the production performance when Stone 1 and Stone 2 models are applied instead of ECLIPSE default. Table 5.69 lists three cases with different correlations. Figure 5.55 shows oil relative permeability diagrams as function of three-phase saturation of Stone 1 and Stone 2 models.

Case	Relative permeability correlation
1	ECLIPSE default
2	Stone 1
3	Stone 2

Table 5.69 Cases with different relative permeability correlations.

Figure 5.55 Oil relative permeability diagrams as function of three-phase saturation.

5.6.3.1 Reservoir without dip angle

Result of this reservoir is similar to result of a 15° reservoir. All three cases provide quite the same oil rate during water flooding and early time of WAG injection. After that, Stone 2 model produces oil with the lowest rate since the thirteenth year. Additionally, oil rate of Stone 1 model is slightly lower than that of ECLIPSE default model since seventeenth year. Figure 5.56 shows oil production profile of three cases with different relative permeability correlations.

From Table 5.70, ECLIPSE default model yields the highest oil recovery factor of 78.07% and the highest BOE of 30.690 MMSTB which are slightly higher than those of Stone 1 model. However, Stone 2 model is the first case that reaches the economic constraint in the twenty third year. It provides significantly lower oil recovery factor and BOE than the other two cases.

Figure 5.56 Effect of relative permeability correlation on oil production rate of WAG with up-dip injection in a reservoir without dip angle.

5.6.3.2 Reservoir with dip angle of 15°

From Figure 5.57, the three cases have the same oil production profile during water flooding; moreover, their stoppings of water injection occur at the same time in the fifth year. The difference between their oil rates is apparent after the seventh year which is in the WAG injection period. ECLIPSE default model (case 1) show very similar oil production profile to Stone 1 model (case 2) where Stone 2 model (case 3) has a significantly lower oil rate.

Table 5.70 shows that ECLIPSE default and Stone 1 models do not have considerable difference between their oil recovery factors, gas and water injections, and BOEs. Stone 2 model results in the lowest BOE of 26.527 MMSTB and the shortest production time of 24.99 years due to the economic constraint.

Figure 5.57 Effect of relative permeability correlation on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

5.6.3.3 Reservoir with dip angle of 30°

During water flooding period, oil is produced with the same rate by the three cases having different relative permeability correlations. After that, water flooding is stopped in the fourth year. WAG injection is then performed starting at the same time for all cases. ECLIPSE default and Stone 1 models provide higher oil rate than Stone 2 model as illustrated in Figure 5.58.

In term of production time, ECLIPSE default and Stone 1 models spend 30 years while Stone 2 model is stopped in the twenty eighth year because of the economic constraint as tabulated in Table 5.70. ECLIPSE default model yields higher oil recovery factor than Stone 1 and Stone 2 models which are 81.38%, 81.34%, and 74.84%, respectively. However, the highest BOE of 27.858 MMSTB is provided by case 2 in which Stone 1 model is applied.

Figure 5.58 Effect of relative permeability correlation on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°.

For all reservoir, Stone 2 model results in quite low oil recovery factor because it reaches the economic constraint earlier than Stone 1 and ECLIPSE default models. Figure 5.55 shows the relative permeability to oil diagrams as function of three-phase saturation of Stone 1 and Stone 2 models. Stone 2 model shows lower relative permeability to oil than Stone 1 model in most area of the diagram. Therefore, oil flows more difficultly when Stone 2 model is applied to the simulator. As a result, less amount of oil is produced in this case.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

een different relative permeability correlations.	Production Total Oil Total Total Total Total	time oil recovery gas gas water water BOE	production factor injection production injection production [MMSTB]	[Tear] [MMSTB] [%] [BSCF] [BSCF] [MMSTB] [MMSTB]	t 30 28.244 78.07 10.579 25.256 89.455 63.046 30.690	30 27.766 76.75 10.606 24.935 89.600 63.523 30.155	23.54 24.658 68.16 8.891 19.869 70.925 48.107 26.488	t 30 27.281 77.72 17.549 32.189 74.276 50.375 29.722	30 26.844 76.47 17.547 32.070 74.276 50.948 29.265	24.99 24.413 69.54 15.317 28.002 63.696 42.981 26.527	t 30 25.705 81.38 13.411 26.279 55.003 46.328 27.850	30 25.693 81.34 13.424 26.412 54.998 45.731 27.858	
ability correlations	Oil	recovery	n factor inje	[%] [B	78.07 1C	76.75 10	68.16 8.	77.72 17	76.47 17	69.54 15	81.38 13	81.34 13	
lative permeability	Total	oil red	production fa	[MMSTB]	28.244 7	27.766 7	24.658 6	27.281 7	26.844 7	24.413 6	25.705 8	25.693 8	73 638
en different re	Droduction			[rear]	30	30	23.54	30	30	24.99	30	30	78 E7
omparison betwe	Ralativa	netauve pormonbility		moder	ECLIPSE default	Stone 1	Stone 2	ECLIPSE default	Stone 1	Stone 2	ECLIPSE default	Stone 1	C+ONG 2
.70 Result c		Drococc					dip-dip			dim-um			dip-dip
Table 5.	Dip angle				00			15°			30°		

JS.
ation
rela
cor
lity
abil
me
per
Ň
elat
ht r€
erer
diffe
en
Me
bet
ЧO
aris
dL
0
sult
Re
5.70
le 5
Ā

5.6.4 Effect of reservoir thickness

The effect of reservoir thickness is investigated by construction of three reservoirs with different thickness which is varied to be 50, 200, and 500 ft. as shown in Table 5.71.

Table 5.71 Cases with different reservoir thicknesses.

Case	Reservoir thickness
	[ft.]
1	50
2	200
3	500

5.6.4.1 Reservoir without dip angle

Figure 5.59 illustrates oil production profiles of three cases of a non-dipping reservoir. The more thickness results in the longer time for water flooding. The stopping time of water flooding for case 1, case 2, and case 3 are in the third, sixth, and thirteenth year, respectively, because of two reasons. Firstly, more amount of original oil in place is obtained when the reservoir is thicker. Secondly, a large cross sectional area perpendicular to the flow direction which depends on reservoir thickness increases the gravity number (G) as can be calculated from Eq. 3.5. As a result, an unstable flood front is more difficult to occur in a thicker reservoir. Therefore, water cut of case 3 having the largest reservoir thickness reaches the stopping criteria for initial water flooding the latest among all cases. Even though these three cases are different in their reservoir size causing different production rates, their profiles have similar pattern.

Table 5.72 shows the result comparison. For a non-dipping reservoir, case 1 requires the shortage production time before it reaches the economic limit of 50 STB/D for oil rate. Cases 2 and case 3 are produced throughout the production time for 30 years. However, case 2 has the highest oil recovery factor among the three cases.

Figure 5.59 Effect of reservoir thickness on oil production rate of WAG with up-dip injection in a reservoir without dip angle.

5.6.4.2 Reservoir with dip angle of 15°

During initial water flooding period, oil rate cannot be kept constant for the 50-ft reservoir while it is constant around 9,000 STB/D for 5 years and 13 years for the 200-ft and 500-ft reservoir, respectively. WAG is started in the second year for the 50-ft reservoir, in the fifth year for the 200-ft reservoir, and in the thirteenth year for the 500-ft reservoir. As shown in Figure 5.60, the three cases have similar profiles but different in magnitude.

From Table 5.72, case 1 takes the shortage production time which is 26.72 years. In term of oil recovery factor, it is higher for the thinner reservoir. Case 3 having the largest thickness of 500 ft requires the largest amount of injected water due to the large pore volume of the reservoir and longest period of initial water flooding. Although we obtain the highest BOE in this case, it results in the lowest oil recovery factor because there is large amount of oil left in the reservoir.

Figure 5.60 Effect of reservoir thickness on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

5.6.4.3 Reservoir with dip angle of 30°

Case 3 having the highest thickness requires the longest time for water flooding around 11 years. In the early time of WAG injection, it also needs the longest period to produce the injected water before oil bank reaches the producer (from the eleventh year to the nineteenth year). For the other two cases with the lower reservoir thickness, they spend shorter time for water flooding and shorter time to produce water bank as shown in Figure 5.61.

From Table 5.72, smaller thickness results in higher oil recovery factor and less amounts of gas and water are needed for injection because of the smaller reservoir size and the shorter time of initial water flooding. Case 1 (50 ft thickness) takes only 21.57 years for production before it reaches the economic limit. Similar to the other two reservoirs with different dip-angles, the highest BOE is yielded from the reservoir with the largest thickness due to the largest amount of STOIIP.

Figure 5.61 Effect of reservoir thickness on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°.

		BOE	[MMSTB]		7.251	30.690	60.112	7.778	29.722	64.505	7.089	27.850	57.702
	Total	water	production	[MMSTB]	19.572	63.046	44.292	50.659	50.375	37.059	26.150	46.328	54.936
	Total	water	injection	[MMSTB]	26.595	89.455	103.443	56.887	74.276	92.256	31.073	55.003	73.499
	Total	gas	production	[BSCF]	11.958	25.256	37.620	18.852	32.189	39.721	12.155	26.279	27.944
	Total	gas	injection	[BSCF]	8.601	10.579	10.780	15.504	17.549	16.116	8.534	13.411	15.967
nesses.	Oil	recovery	factor	[%]	73.41	78.07	61.46	82.31	77.72	68.96	82.16	81.38	70.49
reservoir unick	Total	oil	production	[MMSTB]	6.692	28.244	55.638	7.220	27.281	60.570	6.485	25.705	55.706
פפה מווופרפתו	Droduction			[rear]	20.08	30	30	26.72	30	30	21.57	30	30
parison perw		Thickness	[ft]		50	200	500	50	200	500	50	200	500
Result COLIN	Process						dıp-dn	WAG .			WAG up-dip		
		Dip	angle			00			15°			30°	

Ś
Q
SS
Ū
×
.0
_
Ļ
.' <u> </u>
Q
2
Ū
Š
é
Ę
สัง
Ľ.
ய
÷
\overline{O}
<u> </u>
5
۳.
≥
2
Ū.
<u> </u>
5
S
g
<u> </u>
3
ō
Ū
÷
÷
ร
نة
Ŕ
\sim
Ň
ц)
ų
0
a
F

When the effect of reservoir thickness is considered without the limitation of production time, cases with the thickness of 200 and 500 ft spend more than 30 years for the production. For a non-dipping reservoir, we need 20.08, 76.76, and 217.02 years to produce oil from the reservoir with thickness of 50, 200, and 500 ft, respectively. In fact, the production rate should be increased to a higher value in the cases of 200 and 500 ft thick reservoirs in order to shorten the production time. For a 15° reservoir, we can extend the production time to 46.78 and 166.41 years for cases having reservoir thickness of 200 and 500 ft, respectively. For a 30° reservoir, reservoirs with thickness of 50, 200, and 500 ft spend 21.57, 43.21, and 57.56 years, respectively, for the production before reaching the economic constraint.

Cross sectional area perpendicular to the flow direction affects the gravity number (G). From Eq. 3.5 in Chapter 3, larger cross sectional area, which means larger reservoir thickness, results in higher gravity number. Consequently, production from the thicker reservoir provides higher oil recovery factor due to more stability of floodfront as shown in Table 5.73.

able 5.73	Result com	parison betw	veen different	: reservoir thick	thesses of th	ie cases wit	hout producti	ion time lim	lit.	
			Droduction	Total	Oil	Total	Total	Total	Total	
Dip	2202020	Thickness		oil	recovery	gas	gas	water	water	BOE
angle	LIULESS	[ft]	חוווש	production	factor	injection	production	injection	production	[MMSTB]
			[rear]	[MMSTB]	[%]	[BSCF]	[BSCF]	[MMSTB]	[MMSTB]	
		50	20.08	6.692	73.41	8.601	11.958	26.595	19.572	7.251
0		200	76.76	28.048	77.53	24.053	40.422	222.223	193.053	30.776
	dıp-dn	500	217.02	74.594	79.88	59.694	103.271	634.282	566.390	81.858
		50	26.72	7.220	82.31	15.504	18.852	56.887	50.659	7.778
15°	הארט היינים הארט היינים	200	46.78	29.114	82.94	23.209	38.263	110.102	82.986	31.623
	dim-uin	500	166.41	73.455	83.63	76.321	116.662	382.757	314.371	80.180
		50	21.57	6.485	82.16	8.534	12.155	31.073	26.150	7.089
30°	סאאס	200	43.21	26.412	83.62	15.859	30.782	73.495	65.848	28.900
	dip-dp	500	57.56	67.592	84.98	30.247	57.986	112.684	83.190	72.217

	. :
•	Ξ
	7
	≒.
-	_
	d)
	ج
:	
	· .
	\cap
•	≚.
	R
	≌
	2
	O
	0
	Ē
	Q
	≒
	2
	Q
	\subset
	-
	⋝
	>
	ŝ
	āί
	š
	ň
	i
	()
	۲
-	È
C C	5
	O
	ŝ
	ăί
	š
	ŝ
	ăί
	¥
	£
	×
	\subseteq
_	
	P
	2
•	$\overline{}$
	9
	~
	τ
	<u>د</u>
	ŝêr
	eser
	reser
	reser
	nt reser
	ent reser
-	ent reser
-	erent reser
	terent reser
	itterent reser
	different reser
	different reser
	n different reser
	en different reser
	sen different reser
	veen different reser
	ween different reser
	itween different reser
	etween different reser
	between different reser
	I between different reser
	in between different reser
	on between different reser
	son between different reser
	rison between different reser
	arison between different reser
· · ·	Darison between different reser
· · ·	nparison between different reser
	mparison between different reser
· · ·	omparison between different reser
· · ·	comparison between different reser
· · ·	comparison between different reser
	lt comparison between different reser
·	ult comparison between different reser
· · ·	sult comparison between different reser
· · ·	esult comparison between different reser
· · ·	lesult comparison between different reser
	Result comparison between different reser
	3 Kesult comparison between different reser
· · · · · · · · · · · · · · · · · · ·	/3 Kesult comparison between different reser
	.13 Kesult comparison between different reser
	5.73 Kesult comparison between different reser
	5.13 Kesult comparison between different reser
	le 5.73 Kesult comparison between different reser
	ole 5.73 Kesult comparison between different reser
· · · · · · · · · · · · · · · · · · ·	able 5.73 Kesult comparison between different reser
· · · · · · · · · · · · · · · · · · ·	lable 5.73 Kesult comparison between different reser

5.6.5 Effect of oil properties

Oil properties are important factors affecting production performance. Their effects are investigated by performing three cases of simulation as listed in Table 5.74. Oil gravity, gas gravity, and solution gas/oil ratio (R_s) are taken into account for this study. Figures 5.62-5.64 illustrate fluid properties which are oil formation volume factor, oil viscosity, and solution gas oil ratio, respectively, as functions of pressure for each case

	Property								
Case	Oil gravity [°API]	Gas gravity [s.g. air]	R _s [SCF/STB]						
1	30	0.7	400						
2	40	0.7	566						
3	50	0.7	800						

Table 5.74 Cases with different oil properties.

Figure 5.62 Relationship between oil formation volume factor and pressure for the study of an effect of oil properties.

Figure 5.63 Relationship between oil viscosity and pressure for the study of an effect of oil properties.

Figure 5.64 Relationship between solution gas-oil ratio and pressure for the study of an effect of oil properties.

5.6.5.1 Reservoir without dip angle

Figure 5.65 shows oil production profile of the three cases with different oil properties. It is clearly seen that oil production rate during water flooding period

depends on oil properties. Case 3 shows a lower rate than case 1 and case 2. As shown in Figure 5.62, case 3 has the highest oil formation volume factor (B_o) which results in the lowest oil production rate at standard condition. For the longest initial water flooding period of case 3, it is affected by the lowest oil viscosity as shown in Figure 5.63 which results in a stable flood front due to a lower value of end point mobility ratio (M) as can be calculated by Eq. 3.6. However, the oil production rates of all cases are not much different during WAG injection period.

Table 5.75 shows the comparison of their results. Case 3 shows the highest oil recovery factor of 82.33%, although it provides the lowest amount of oil production of 27.061 MMSTB because of a high formation volume factor which results in the smallest amount of original oil in place (32.870 MMSTB). When gas production is considered, case 3 produces the highest amount of gas because it has the highest solution gas-oil ratio as shown in Figure 5.64.

Figure 5.65 Effect of oil properties on oil production rate of WAG with up-dip injection in a reservoir without dip angle.

5.6.5.2 Reservoir with dip angle of 15°

Oil production profiles of all three cases have a similar trend. In water flooding period, case 1 has higher oil rate than case 2 and case 3 which are around 10,000 RB/D, 9,100 RB/D, and 7,800 RB/D, respectively, due to the effect of oil formation volume factor (B_0) as shown in Figure 5.62. A higher oil rate at standard condition is obtained by a lower B_0 . For case 1, a high oil viscosity as shown in Figure 5.63 results in a high end point mobility ratio (M) as can be calculated by Eq. 3.6. Therefore, water cut of the producer reaches the stopping criteria early because water tends to underrun. As a result, stopping time for water flooding of case 1 is a little bit earlier than those for the other two cases. Figure 5.66 shows the effect of oil properties on oil production profile.

Similarly to a non-dipping reservoir, case 3 yields the highest oil recovery factor (80.89%), even though it provides the least amount of oil production (25.815 MMSTB) because case 3 has the least amount of original oil in place. This is because case 3 has the highest oil formation volume factor as shown in Figure 5.62. In addition, case 3 produces the largest amount of gas due to the high solution gas-oil ratio as shown in Figure 5.64. However, case 2 yields the highest BOE of 29.722 MMSTB. Their results are tabulated in Table 5.75.

CHULALONGKORN UNIVERSITY

Figure 5.66 Effect of oil properties on oil production rate of WAG with down-dip injection in a reservoir with dip angle of 15°.

5.6.5.3 Reservoir with dip angle of 30°

From Figure 5.67, case 1 has the highest oil rate in water flooding stage while case 3 has the lowest rate. As previously discussed for a non-dipping reservoir and a reservoir with dip angle of 15°, higher oil production rate and shorter period of initial water flooding are affected by lower oil formation volume factor and higher oil viscosity, respectively. However, oil rate of three cases are not much different in WAG injection stage.

Table 5.75 shows result comparison. Case 2 provides the highest oil production of 25.705 MMSTB and the highest BOE of 27.850 MMSTB. Case 3 has the highest oil formation volume factor which results in the lowest amount of original oil in place. Consequently, case 3 provides the smallest amount of oil production although this case yields the highest oil recovery factor of 83.94%. Moreover, the highest solution gas-oil ratio of case 3 gives a high amount of gas production of 31.525 BSCF.

Figure 5.67 Effect of oil properties on oil production rate of WAG with up-dip injection in a reservoir with dip angle of 30°.

	BOE	[MMSTB]		28.954	30.690	30.432	28.907	29.722	29.115	26.219	27.850	26.825
Total	water	production	[MMSTB]	63.602	63.046	62.048	51.367	50.375	49.499	43.176	46.328	45.769
Total	water	injection	[MMSTB]	87.701	89.455	90.279	73.758	74.276	74.742	53.761	55.003	53.994
Total	gas	production	[BSCF]	20.413	25.256	31.188	26.851	32.189	38.071	22.559	26.279	30.327
Total	gas	injection	[BSCF]	12.760	10.579	10.970	17.618	17.549	18.273	12.961	13.411	14.072
oil	recovery	factor	[%]	71.43	78.07	82.33	72.83	77.72	80.89	72.83	81.38	83.94
Total	oil	production	[MMSTB]	27.678	28.244	27.061	27.368	27.281	25.815	24.619	25.705	24.116
Droduction		רוווופ	[teal]	30	30	30	30	30	30	30	30	28.92
	OOIP	[MMSTB]		38.748	36.176	32.870	37.580	35.102	31.914	33.803	31.585	28.731
		רמאת		1	2	3	1	2	3	1	2	3
Process						dıp-dn	WAG	-uwop	dip			dip-dp
Dip angle				°O			15°			30°		

CHAPTER VI

CONCLUSIONS

The following conclusions are made from the results of the studying of water alternating gas process (WAG) and double displacement process (DDP) after initial period of water flooding and their sensitivity.

- 1. Water alternating gas process (WAG) and double displacement process (DDP) after initial water flooding have more efficiencies than long-term water flooding. These two methods produce much more amount of oil, although they involve in gas requirement due to the gas injection mechanisms. However, DDP is not the effective method to produce oil from a non-dipping reservoir.
- 2. Water cut stopping criteria for the initial water flooding have small effect on oil production. Criteria of low water cut results in slightly better production performance because it allows the process to be switched from initial water flooding to WAG or DDP earlier than those cases having higher water cut stopping criteria. Consequently, it contains lower amount of flooded water inside the reservoir which has to be produced back to the surface.
- 3. The increase of water injection rate in both WAG and DDP provides better results, even though the injection rate cannot be kept constant throughout the injection period in some cases because of the limitation of fracturing pressure. However, we have to handle large amount of injected and produced water when the water injection rate is high. For WAG, moderate gas injection rate is appropriate because it yields the highest barrel of oil equivalent (BOE). DDP provides the highest BOE when gas is injected at the highest rate.
- 4. Injection of WAG in smaller slugs (shorter injection duration for each slug) tends to have a little more efficiency. WAG cycle significantly influences the requirement of water and gas. For a non-dipping reservoir, large amount of oil

is produced when water injection duration is longer than gas injection duration (cycle of 4:1 and 2:1) because we need water to stabilize the floodfront. For an inclined reservoir, the recovery factor is not much different when we change the WAG cycle because unstable floodfront is more difficult to occur in a reservoir with bigger dip angle.

- 5. Regarding well locations, different patterns result in different values of BOE. The combination of a vertical well located at up-dip location with a horizontal well located at down-dip location provides the highest BOE for DDP in an inclined reservoir. For WAG with up-dip injection, the highest BOE yielding patterns are (1) eight vertical wells located along the length of reservoir for a non-dipping reservoir, (2) four vertical wells for a 15° dipping reservoir, and (3) the combination of a vertical well and a horizontal well for a 30° dipping reservoir. For WAG with down-dip injection, production by eight vertical wells provides the highest amount of BOE for a non-dipping reservoir while two horizontal wells, one located up-dip and another one located down-dip, are effective for both 15° and 30° dipping reservoirs. Therefore, two wells are considered to be efficient for 15° and 30° reservoirs while a non-dipping reservoir needs the pattern with shorter well spacing (pattern of eight wells) to produce oil from every part of the reservoir.
- 6. Horizontal permeability has a large impact on the performance of oil production. A case of higher horizontal permeability results in higher oil recovery factor in an inclined reservoir because of the ease of oil flowing while the moderate horizontal permeability (126 md) yields the highest oil recovery factor in a non-dipping reservoir because of the problem of early gas breakthrough in a case with the highest horizontal permeability.
- 7. The case in which vertical to horizontal permeability ratio is 0.5 ($k_v/k_h = 0.5$) shows higher oil recovery factor than the case in which $k_v/k_v = 0.1$. However, the recovery factor is also increased when we reduce the value of k_v/k_v to 0.01 but this case requires much more amount of injected gas.

- 8. Oil recovery factors from different three-phase relative permeability correlations are significantly different. The highest oil recovery factor is obtained when ECLIPSE default model is applied. In addition, Stone 1 model provides larger oil recovery factor than Stone 2 model because oil relative permeability calculated by Stone 1 model is often higher than oil relative permeability calculated by Stone 2.
- 9. The important factor that is affected when we change the reservoir thickness is the size of reservoir and the reservoir fluids located inside. When the thickness is reduced, oil production reaches the economic limit earlier. However, it does not indicate that oil recovery factor of smaller reservoir will be lower or higher than that for the larger reservoir. On the other hand, a case with too large thickness reaches the limitation of production time while large amount of oil is still not produced; it thus shows very low oil recovery factor. Nevertheless, cases with higher thickness yields higher oil recovery factor when the production time is not limited because higher thickness results in more stability of floodfront.
- 10. Oil recovery factor increases when oil tends to be lighter and contains higher amount of solution gas. The reason is the improvement in its ability to flow inside the reservoir.

CHULALONGKORN UNIVERSITY

REFERENCES

- Dyes, A.B., et al., Alternate Injection of HPG and Water A Two Well Pilot, SPE
 4082, in the 47th Annual Fall Meeting of the Society of Petroleum Engineers of AIME. 1972: San Antonio, Texas.
- Moffitt, P.D. and D.R. Zornes, Postmortem Analysis: Lick Creek Meakin Sand Unit Immiscible CO2 Waterflood Project, SPE 24933, in the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. 1992: Wasington, DC.
- Mangalsingh, D. and T. Jagai, A Laboratory Investigation of the Carbon Dioxide Immiscible Process, SPE 36134, in the 4th Latin American and Caribbean Petroleum Engineering Conference. 1996: Port-of-Spain, Trinidad & Tobago.
- 4. Li, M., et al., Feasible Evaluation of Natural Gas Floods in Wennan Low Permeability Reservoirs, SPE 77799, in the SPE Asia Pacific Oil and Gas Conference and Exhibition. 2002: Melbourne, Australia.
- J.P.Srivastava, L.M., Water-Alternating-Gas (WAG) Injection a Novel EOR Technique for Mature Light Oil Fileds - A Laboratory Investigation for GS-5C sand Gandhar Field, in 9th Biennial International Conference & Exposition on Petroleum Geophysics. 2012: Hyderabad, India.
- Parracello, V.P., M. Bartosek, and F. Masserano, *Experimental Investigation Of Immiscible Water Alternating Gas (Wag) In Viscous Oil*, in the 11th Offshore Mediterranean Conference and Exhibition. 2013: Ravenna, Italy.
- Pitakwatchara, R., Comparative Production Performance between Conventional Water Alternating Gas Flooding and Water Injection Alternating Gas Dumpflood, in Department of Mining and Petroleum Engineering. 2013, Chulalongkorn University. p. 137.
- Langenberg, M.A., D.M. Henry, and M.R. Chlebana, *Performance And Expansion Plans For The Double Displacement Process In The Hawkins Field Unit.* SPE Reservoir Engineering (1995): 301-308.

- Ren, W., R.G. Bentsen, and L.B. Cunha, A Study of the Gravity Assisted Tertiary Gas Injection Processes. Journal of Canadian Petroleum Technology 44 (February 2005): 26-32.
- 10. Fred H. L. Wang, M.M.H., Nizar F. Djabbarah, Fred M. Haynes, *Characterization* of Multiphase Flow Properties for Tertiary Immiscible Displacement Processes in an Oil-Wet Reservoir, SCA2006-33, in the International Symposium of the Society of Core Analysis. 2006: Trondheim, Norway.
- 11. Gachuz-Muro, H., et al., *Experimental Investigations of DDP and SCWD in a Naturally Fractured Reservoir, HP/HT*, SPE 142853, in *the SPE EUROPEC/EAGE Annual Conference and Exhibition*. 2011: Vienna, Austria.
- Suwannakul, T., Improving Oil Recovery Using Double Displacement Process, in Department of Mining and Petroleum Engineering. 2010, Chulalongkorn University. p. 109.
- Ma, T.D. and G.K. Youngren, Performance of Immiscible Water-Alternating-Gas (IWAG) Injection at Kuparuk River Unit, North Slope, Alaska, SPE 28602, in the SPE 69th Annual Technical Conference and Exhibition. 1994: New Orleans, Los Angeles, U.S.A.
- Surguchev, L.M., et al., Screening of WAG Injection Strategies for Heterogeneous Reservoirs, SPE 25075, in the European Petroleum Conference. 1992: Cannes, France.
- Lepski, B., Z. Bassiouni, and J.M. Wolcott, Screening of Oil Reservoirs for Gravity Assisted Gas Injection, SPE 39659, in the 1998 SPE/DOE Improved Oil Recovery Symposium. 1998: Tulsa, Oklahoma.
- 16. Dake, L.P., Fundamentals of Reservoir Engineering. 1983: Elsevier Science.
- SPE. Displacement Efficiency of Immiscible Gas Injection. 2013 16 August
 2013; Available from: http://petrowiki.org/Displacement efficiency of immiscible gas injection.
- 18. Schlumberger, ECLIPSE Simulation Software Manuals 2007.1. 2007.
- 19. Rangponsumrit, M., Well and Reservoir Managemaent for Mercury Contaminated Waste Disposal, in Department of Mining and Petroleum Engineering. 2004, Chulalongkorn University. p. 155.

20. *Annual Energy Review 1999*. 2000, Energy Information Administration: Washington, DC.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

APPENDIX

In this study, ECLIPSE 100 is used as a simulator to construct the reservoir model. The input data for the water alternating gas with up-dip and down-dip injection base cases and the double displacement process base case are detailed below:

1. Case definition

Simulator:	Black oil
Model dimension:	Number of cells in X direction: 73
	Number of cells in Y direction: 31
	Number of cells in Z direction: 21
Grid type:	Cartesian
Geometry type:	Corner point
Oil-gas-water properties:	Water, oil, gas, and dissolved gas
Solution type:	Fully implicit

2. Grid

จุฬาลงกรณมหาวิทยาลัย ในแนวออาก

2.1Properties

Active grid blocks:	(I=1-73, J=1-31, K=1-20) = 1
	(I=1-73, J=1-31, K=21) = 0
X Permeability:	126 md
Y Permeability:	126 md
Z Permeability:	12.6 md
Porosity:	0.1509

2.2 Geometry

Grid block coordinate lines:	depend on dip angle
Grid block corners:	depend on dip angle

3. PVT

3.1 Water PVT properties

Reference pressure (P _{ref}):	3000 psia
Water FVF at P_{ref} :	1.021734 rb/stb
Water compressibility:	3.09988 x 10 ⁻⁶ psi ⁻¹
Water viscosity at P _{ref} :	0.3013289 ср
Water viscosibility:	3.39604 x 10 ⁻⁶ psi ⁻¹

3.2 Dry gas PVT properties (no vapourised oil)

Pressure	FVF	Viscosity
[psia]	[rb/Mscf]	[cp]
14.7	225.77118	0.013252614
277.08421	11.684415	0.013438669
539.46842	5.8604139	0.013738956
801.85263	3.8557057	0.014127064
1064.2368	2.8465392	0.014597939
1326.6211	2.2432054	0.015149735
1589.0053	1.8454849	0.015780049
1851.3895	1.5665663	0.016484167
2113.7737	1.3625791	0.017254274
2376.1579	1.2088291	0.0180796
2515.1229	1.1423563	0.018534756
3000	0.96700949	0.020187742
3163.3105	0.92257588	0.020757503
3425.6947	0.86218077	0.021676481
3688.0789	0.81250833	0.022592519
3950.4632	0.77111488	0.023499222
4212.8474	0.73619385	0.024392134
4475.2316	0.70639432	0.025268362
4737.6158	0.68069512	0.026126207
5000	0.65831597	0.026964832

3.3 Live oil PVT	properties	(dissolved	gas)
------------------	------------	------------	------

R _s	P _{bub}	FVF	Viscosity
[Mscf/stb]	[psia]	[rb/stb]	[cp]
0.0013251226	14.7	1.069137	1.2402773
	277.08421	1.0521431	1.3157432
	539.46842	1.0516839	1.4498012
	801.85263	1.0515252	1.6261628
	1064.2368	1.0514448	1.8437304
	1326.6211	1.0513962	2.1048022
	1589.0053	1.0513637	2.4132261
	1851.3895	1.0513403	2.7737872
	2113.7737	1.0513228	3.1919255
	2376.1579	1.0513091	3.6735649
	2515.1229	1.0513031	3.9565081
	3000	1.0512863	5.1109132
	3163.3105	1.0512818	5.563312
	3425.6947	1.0512754	6.3634539
	3688.0789	1.05127	7.2595718
	3950.4632	1.0512653	8.2578239
	4212.8474	1.0512612	9.3639202
	4475.2316	1.0512575	10.582968
	4737.6158	1.0512543	11.919316
	5000	1.0512514	13.376406
0.045575432	277.08421	1.0879253	1.0103244
	539.46842	1.0778477	1.0399163
	801.85263	1.0743875	1.0857309
	1064.2368	1.0726378	1.1443819
	1326.6211	1.0715815	1.2143808
	1589.0053	1.0708747	1.2950212
	1851.3895	1.0703685	1.3859858
	2113.7737	1.0699882	1.487169
	2376.1579	1.0696919	1.5985826
	2515.1229	1.06956	1.6617576
	3000	1.0691957	1.9050329
	3163.3105	1.0690982	1.9950402

R _s	P _{bub}	FVF	Viscosity
[Mscf/stb]	[psia]	[rb/stb]	[cp]
	3425.6947	1.068961	2.1482416
	3688.0789	1.0688433	2.3120705
	3950.4632	1.0687413	2.4865287
	4212.8474	1.068652	2.6715637
	4475.2316	1.0685731	2.8670619
	4737.6158	1.068503	3.0728416
	5000	1.0684403	3.2886497
0.10170558	539.46842	1.1124223	0.84002122
	801.85263	1.1044637	0.86288269
	1064.2368	1.100452	0.89456427
	1326.6211	1.0980343	0.93367602
	1589.0053	1.096418	0.97944279
	1851.3895	1.0952613	1.0314041
	2113.7737	1.0943926	1.0892759
	2376.1579	1.0937162	1.152877
	2515.1229	1.0934153	1.1888397
	3000	1.092584	1.3264576
	3163.3105	1.0923615	1.3770001
	3425.6947	1.0920485	1.4625628
	3688.0789	1.0917802	1.5534314
	3950.4632	1.0915475	1.6495173
	4212.8474	1.0913438	1.7507137
	4475.2316	1.0911641	1.8568914
	4737.6158	1.0910043	1.9678962
	5000	1.0908613	2.0835467
0.16395522	801.85263	1.1403543	0.72158197
	1064.2368	1.1333311	0.74074899
	1326.6211	1.1291083	0.76554916
	1589.0053	1.1262889	0.79525994
	1851.3895	1.124273	0.82942227
	2113.7737	1.1227599	0.86772984
	2376.1579	1.1215824	0.90996846
	2515.1229	1.1210587	0.93387599

R _s	P _{bub}	FVF	Viscosity
[Mscf/stb]	[psia]	[rb/stb]	[cp]
	3000	1.1196126	1.0253232
	3163.3105	1.1192256	1.0588533
	3425.6947	1.1186814	1.1155173
	3688.0789	1.1182149	1.1755445
	3950.4632	1.1178104	1.2388412
	4212.8474	1.1174565	1.3053076
	4475.2316	1.1171442	1.3748342
	4737.6158	1.1168665	1.4473002
	5000	1.1166181	1.5225719
0.23059392	1064.2368	1.171041	0.63560714
	1326.6211	1.1644833	0.65228139
	1589.0053	1.1601136	0.67288008
	1851.3895	1.1569925	0.69697368
	2113.7737	1.1546518	0.72426358
	2376.1579	1.1528313	0.75453447
	2515.1229	1.1520219	0.77171711
	3000	1.149788	0.83758903
	3163.3105	1.1491905	0.86176289
	3425.6947	1.1483504	0.90260932
	3688.0789	1.1476303	0.94585271
	3950.4632	1.1470062	0.99140586
	4212.8474	1.1464601	1.0391803
	4475.2316	1.1459783	1.089084
	4737.6158	1.14555	1.1410194
	5000	1.1451668	1.1948828
0.30071672	1326.6211	1.204112	0.57047982
	1589.0053	1.1977854	0.58530969
	1851.3895	1.1932748	0.60302932
	2113.7737	1.1898952	0.62335993
	2376.1579	1.1872685	0.6460935
	2515.1229	1.1861013	0.6590514
	3000	1.1828813	0.70892578
	3163.3105	1.1820205	0.72727362

R _s	P _{bub}	FVF	Viscosity
[Mscf/stb]	[psia]	[rb/stb]	[cp]
	3425.6947	1.1808105	0.75830077
	3688.0789	1.1797735	0.7911639
	3950.4632	1.1788751	0.82578329
	4212.8474	1.1780892	0.86208063
	4475.2316	1.1773958	0.89997696
	4737.6158	1.1767796	0.93939117
	5000	1.1762283	0.98023889
0.37375579	1589.0053	1.2393217	0.51938469
	1851.3895	1.2330917	0.53277298
	2113.7737	1.2284318	0.54837246
	2376.1579	1.2248131	0.56599062
	2515.1229	1.2232059	0.57608583
	3000	1.218775	0.61515125
	3163.3105	1.2175912	0.62957481
	3425.6947	1.2159274	0.65400197
	3688.0789	1.2145023	0.67990635
	3950.4632	1.2132677	0.70721497
	4212.8474	1.212188	0.73585775
	4475.2316	1.2112357	0.76576565
	4737.6158	1.2103895	0.79686929
	5000	1.2096327	0.82909793
0.44931763	1851.3895	1.2764901	0.47815326
	2113.7737	1.2702713	0.4903721
	2376.1579	1.2654501	0.50433103
	2515.1229	1.2633101	0.51238049
	3000	1.2574146	0.54373676
	3163.3105	1.2558405	0.55536757
	3425.6947	1.2536291	0.57510507
	3688.0789	1.2517354	0.59607444
	3950.4632	1.2500957	0.61820842
	4212.8474	1.2486619	0.64144356
	4475.2316	1.2473976	0.66571844
	4737.6158	1.2462744	0.69097242

R _s	P _{bub}	FVF	Viscosity
[Mscf/stb]	[psia]	[rb/stb]	[cp]
	5000	1.24527	0.71714467
0.52711162	2113.7737	1.3154764	0.44411489
	2376.1579	1.3092103	0.4553589
	2515.1229	1.306433	0.46188729
	3000	1.2987883	0.48751927
	3163.3105	1.2967486	0.49707965
	3425.6947	1.2938843	0.51334443
	3688.0789	1.2914326	0.53066473
	3950.4632	1.2893103	0.54897814
	4212.8474	1.2874552	0.56822655
	4475.2316	1.2858199	0.58835452
	4737.6158	1.2843675	0.60930813
	5000	1.2830689	0.63103401
0.60691334	2376.1579	1.3561662	0.41548545
	2515.1229	1.3526287	0.42085551
	3000	1.342916	0.44210218
	3163.3105	1.3403268	0.4500782
	3425.6947	1.3366923	0.46368788
	3688.0789	1.3335828	0.47822137
	3950.4632	1.3308922	0.49362033
	4212.8474	1.3285413	0.50983106
	4475.2316	1.3264694	0.52680291
	4737.6158	1.3246298	0.54448724
	5000	1.3229854	0.56283647
0.64992893	2515.1229	1.3783732	0.40207564
	3000	1.3674175	0.42140791
	3163.3105	1.3645001	0.42868976
	3425.6947	1.3604058	0.44113673
	3688.0789	1.3569038	0.45445068
	3950.4632	1.3538744	0.46857518
	4212.8474	1.3512279	0.48345852
	4475.2316	1.348896	0.49905226
	4737.6158	1.3468257	0.51531007
	5000	1.3449755	0.53218695

3.4 Fluid density at surface conditions

Oil density:	51.45684 lb/ft ³
Water density:	62.42797 lb/ft ³
Gas density:	0.04369958 lb/ft ³
3.5 Rock properties	
Reference pressure:	3000 psia
Rock compressibility:	3.013923 x 10 ⁻⁶ psi ⁻¹

4. SCAL

4.1	Gas/oil	saturation	functions
-----	---------	------------	-----------

Sw	K _{rw}	K _{ro}	P _c [psia]		
0	0	0.8	0		
0.15	0	0.53972801	0		
0.2125	0.00078125	0.44176066	0		
0.275	0.00625	0.35056363	0		
0.3375	0.02109375	0.26668279	0		
0.4	0.05	0.19082267	0		
0.4625	0.09765625	0.12394296	0		
0.525	0.16875	0.067466001	0		
0.5875	0.26796875	0.023852834	0		
0.65	0.4	0	0		
0.75	1	0	0		

4.2 Water/oil saturation functions

c	K	ĸ	P _c
\mathcal{S}_{W}	ις _{rw}	R _{ro}	[psia]
0.25	0	0.8	0
0.3	0.00041152263	0.67044199	0
0.35	0.0032921811	0.54874842	0
0.4	0.011111111	0.43546484	0
0.45	0.026337449	0.33126933	0
0.5	0.051440329	0.23703704	0
0.55	0.088888889	0.15396007	0
0.6	0.14115226	0.083805248	0
0.65	0.21069959	0.02962963	0
0.7	0.3	0	0
1	1	0	0

5. Initialization

Datum depth:	5000 ft
Pressure at datum depth:	2242 psia
WOC depth:	12000 ft
GOC depth:	5000 ft

6. Schedule

6.1 During initial water flooding

6.1.1 Producer

Well specification

Well:	WELL1
Group:	WELL
I location:	12
J location:	16
Preferred phase:	OIL

Inflow equation:	STD
Automatic shut-in instruction:	Shut
Crossflow:	YES
Density calculation:	SEG

Well:	WELL1
K upper:	1
K lower:	20
Open/shut flag:	OPEN
Well bore ID:	0.5522083 ft
Direction:	Z
Production well control	
Well:	WELL1
Open/shut flag:	OPEN
Control:	RESV
Reservoir volume rate:	8000 rb/day
BHP target:	200 psia
6.1.2 Water injector	
Well specification	
Well:	WELL2
Group:	WELL
I location:	62
J location:	16
Preferred phase:	WATER
Inflow equation:	STD
Automatic shut-in instruction	: SHUT
Crossflow:	YES

SEG

Density calculation:

Well:	WELL2
K upper:	1
K lower:	20
Open/shut flag:	OPEN
Well bore ID:	0.5522083 ft
Direction:	Z

Injection well control

Well:	WELL2
Injector type:	WATER
Open/shut flag:	OPEN
Control:	RESV
Reservoir volume rate:	8000 rb/day
BHP target:	4080 psia (depend on dip angle)

6.2 After initial water flooding

6.2.1	Water	alternating	gas with	up-dip	injection

6.2.1.1 Produce	² r จุฬาลงกรณ์มหาวิทยาลัย
Well specification	

Well:	P1
Group:	Ρ
I location:	62
J location:	16
Preferred phase:	OIL
Inflow equation:	STD
Automatic shut-in instruction:	SHUT
Crossflow:	YES
Density calculation:	SEG

Well:	P1
K upper:	1
K lower:	20
Open/shut flag:	OPEN
Well bore ID:	0.5522083 ft
Direction:	Z

Production well control

Well

Well:	P1
Open/shut flag:	OPEN
Control:	RESV
Reservoir volume rate:	8000 rb/day
BHP target:	200 psia
6.2.1.2 Water injector	
specification	
Well:	W1
Group:	W
I location:	12
J location:	16
Preferred phase:	WATER
Inflow equation:	STD
Automatic shut-in instruc	tion: SHUT

Crossflow: YES Density calculation: SEG

Well connection data

Well:	W1
K upper:	1
K lower:	20

Open/shut flag:	OPEN
Well bore ID:	0.5522083 ft
Direction:	Z
Injection well control	
Well:	W1
Injector type:	WATER
Open/shut flag:	OPEN
Control:	RESV
Reservoir volume rate:	8000 rb/day
BHP target:	3260 psia (depend on dip angle)
Automatic cycling of wells	
Well:	W1
On period:	90 day
Off period:	90 day
Start-up time:	1 day
6.2.1.3 Gas injector	
Well specification	
Well: Chulalong	G1 N UNIVERSITY
Group:	G
I location:	12
J location:	16
Preferred phase:	GAS
Inflow equation:	STD
Automatic shut-in instruction:	: SHUT
Crossflow:	YES
Density calculation:	SEG
Well connection data	

	K upper:	1
	K lower:	20
	Open/shut flag:	OPEN
	Well bore ID:	0.5522083 ft
	Direction:	Z
Injectio	on well control	
	Well:	G1
	Injector type:	GAS
	Open/shut flag:	OPEN
	Control:	RESV
	Reservoir volume rate:	8000 rb/day
	BHP target:	3260 psia (depend on dip angle)
Autom	atic cycling of wells	
	Well:	G1
	On period:	90 day
	Off period:	90 day
	Start-up time:	1 day
	6.2.2 Water alternating gas with down-dip injection	
	6.2.2.1 Producer	
Well sp	pecification	
	Well:	P1
	Group:	Р
	I location:	12
	J location:	16
	Preferred phase:	OIL
	Inflow equation:	STD
	Automatic shut-in instruction	: Shut
	Crossflow:	YES

	Density calculation:	SEG
Well co	onnection data	
	Well:	P1
	K upper:	1
	K lower:	20
	Open/shut flag:	OPEN
	Well bore ID:	0.5522083 ft
	Direction:	Z
Produc	tion well control	
	Well:	P1
	Open/shut flag:	OPEN
	Control:	RESV
	Reservoir volume rate:	8000 rb/day
	BHP target:	200 psia
	6.2.2.2 Water injector	
Well sp	pecification	
	Well:	W1
	Group: Chulalong	W
	I location:	62
	J location:	16
	Preferred phase:	WATER
	Inflow equation:	STD
	Automatic shut-in instruction:	SHUT
	Crossflow:	YES
	Density calculation:	SEG

Well:	W1
K upper:	1

K lowe	er:	20
Open/	shut flag:	OPEN
Well b	ore ID:	0.5522083 ft
Directio	on:	Z
Injection well	control	
Well:		W1
Injecto	r type:	WATER
Open/	shut flag:	OPEN
Contro	l:	RESV
Reserv	oir volume rate:	8000 rb/day
BHP ta	rget:	4080 psia (depend on dip angle)
Automatic cyc	ling of wells	
Well:		W1
On per	riod:	90 day
Off per	riod:	90 day
Start-u	p time:	1 day
6.2.2.3	Gas injector	
Well specificat	tion Chulalong	
Well:		G1
Group:		G
I locati	on:	62
J locat	ion:	16
Preferr	ed phase:	GAS
Inflow	equation:	STD
Autom	atic shut-in instruction	: SHUT
Crossfl	OW:	YES

Density calculation: SEG

Well:	G1
K upper:	1
K lower:	20
Open/shut flag:	OPEN
Well bore ID:	0.5522083 ft
Direction:	Z

Injection well control

Well:	G1
Injector type:	GAS
Open/shut flag:	OPEN
Control:	RESV
Reservoir volume rate:	8000 rb/day
BHP target:	4080 psia (depend on dip angle)

Automatic cycling of wells

Well:	G1
On period:	90 day
Off period:	90 day
Start-up time:	1 day

6.2.3 Double displacement process

6.2.3.1 Producer

Well specification

Well:	WELL2
Group:	WELL
l location:	62
J location:	16
Preferred phase:	OIL
Inflow equation:	STD

Automatic shut-in instruction: SHUT

Crossflow:	YES
------------	-----

Density	calculation:	SEG

Production well control

Well:	WELL2
Open/shut flag:	OPEN
Control:	RESV
Reservoir volume rate:	8000 rb/day
BHP target:	200 psia

6.2.3.2 Gas injector

Well specification

Well:	WELL1	
Group:	WELL	
I location:	12	
J location:	16	
Preferred phase:	GAS	
Inflow equation:	STD	
Automatic shut-in instruction: SHUT		
Crossflow:	YES	
Density calculation:	SEG	

Injection well control

Well:	WELL1
Injector type:	GAS
Open/shut flag:	OPEN
Control:	RESV
Reservoir volume rate:	8000 rb/day
BHP target:	3260 psia (depend on dip angle)

VITA

Paruj Chetchaovalit was born in Songkhla, Thailand in 1989. He did his study in high school in Hatyai, Songkhla. In 2008, he entered Mahidol University, Thailand and received a Bachelor's Degree in Chemical Engineering in 2012. After completing his undergraduate study, he started to do the Master's Degree in Petroleum Engineering at Department of Mining and Petroleum Engineering, Chulalongkorn University, Thailand, in 2012.

Chulalongkorn University