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A review of the credit risk models that were used for pricing credit
derivatives and risk management during the financial crisis of 2008 shows that the
models fail to capture the severe event that a lot of firms default simultaneously and
measure credit losses dynamically. As a result, the models underestimate credit risk
and misprice complex credit derivatives, for example, Collateralized Debt Obligations
(CDOQs). The aim of the study is to propose the model that has the capacity to produce
strong default dependency for pricing CDOs. Our proposed model is a kind of the
intensity based models. To create default correlation among the CDO’s underlying
firms, we construct firms’ default intensity processes based on market factor intensity
processes. The market factors are modeled as the jump-diffusion distribution that has
a drift-diffusion component and a jump component. Unlike any existing models, our
model corporates in correlated market factor intensity processes. In addition, we use
the Gamma-Poisson mixture process as the counting process of jumps in market
factor intensities. Another objective of this research is to develop efficient methods
which are used to implement our correlated market factor model for computing the
portfolio loss distribution. The methods that we suggest are a recursive method and a
Mimicking Markov chain method. The empirical results show that our model prices
CDO tranches better than the traditional jump-diffusion model. The correlations
between the market factor intensities are economically interpretable. Gamma-Poisson
mixture processes governing arrival of jumps in intensities have an immense impact

to the tails of the portfolio loss distribution.
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CHAPTER I
INTRODUCTION

In this chapter, we first introduce credit derivatives and existing credit risk models
that are used to price credit derivatives. Then we address problems from past literature
and our motivation to propose our model. After that, we mention the objective of the
study and the contributions of our work.

1.1 Problem Review

Credit derivatives are financial instruments used by market participants such as banks
and hedge funds for risk management and trading of credit risk. Derivatives can be
distinguished by the number of underlying reference credits being referenced. In
single-name credit derivatives, the product relates to only one underlying asset. In
multi-name credit derivatives, there are multiple credit references. The well-known
single-name products and multi-name products are Credit Default Swaps (CDS) and
Collateralized Debt Obligations (CDOs) respectively. CDOs have underlying
reference entities such as bonds and CDSs. CDO tranches are classified by the
different levels of the portfolio loss. However there are unobservable dependencies
between defaults in a portfolio. Undiversified risk has been known in another name as
systematic risk. Normally, they mitigate systematic risk in credit portfolios such as
CDOs by hedging. In order to hedge risk exposure in a portfolio, there is the need to
know its pricing mechanism.

For pricing credit derivatives, the model is required to characterize the loss
distribution of the underlying assets. One example of credit risk models is the
standard Gaussian copula. The dependence structure of the defaults can be modelled
through the marginal default distributions and their default correlation. Although it is
easy to implement, the model has no capacity to measure dynamically dependent
defaults. In financial crisis of 2008, the Gaussian copula has been blamed for
mispricing CDOs. Due to the fact that the Gaussian copula cannot explain strongly
joint defaults in a portfolio, it underestimates the actual risk. Many of those who use
the Gaussian copula as if it were a reliable model suffered a lot from the great loss. As
a result, a number of literature have proposed their model to solve the Gaussian
copula’s problems. Another interesting kind of credit risk models which has been
accepted worldwide is the intensity based model.

Intensity-based models have been successfully used to price single-name
credit derivatives such as CDSs. The portfolio loss of intensity-based models is
concerned by underlying firms’ default times and the loss due to credit event. The
default time of each firm in a portfolio is determined by its arrival rate of defaults
which follows a stochastic process. One example of basic intensity-based models is
the drift-diffusion model. Nevertheless, the drift-diffusion model has an issue with



weak default correlation in multi-name credit derivatives. There are numerous models
that have been invented to defeat this issue. For example, Mortensen [1] uses the
affine-jump diffusion model. His model is accomplished enough to capture the default
dependency in both homogenous and heterogeneous portfolios. Peng and Kou [2]
propose the Conditional Survival (CS) model. The CS model uses cumulative
intensity processes to construct market factors. The market factors that are shared
among firm intensity processes are also allowed to have jumps in terms of cumulative
intensities. Because of its flexibility and mathematical favor, we choose to develop
the intensity-based model.

Our proposed model is an extension of Duffie and Garleanu [3]’s notable
multi-issuer default model. In the Duffie and Garleanu [3]’s model, the defaults are
concerned as the first jumps of their cox processes with stochastic intensity processes.
The individual firm intensity consists of market factors and an idiosyncratic factor. In
particular, each market factor independently responds to different type of default risks
such as regional risk and global risk, causing the dependence between default events.
There are other literature motivated by the Duffie and Garleanu [3]’s model, for
example, Mortensen [1] and Peng and Kou [2]. Unlike any of them, our market
factors are allowed to be correlated.

The aim of this thesis is to propose the model that has the ability to capture a
strong default correlation in multi-name credit derivatives such as CDOs. In doing so,
we model the default intensity process of each firm to have systematic or market
factors shared among underlying firms. Market factors are formed of a continuous
component and a jump component. The continuous component is assumed to follow
the Ornstein Ublenbeck (OU) process that is decomposed into a drift term and a
Brownian-Motion-driven diffusion term. Most importantly, market factors are
correlated through their Brownian motions. With positive correlation between market
factors, it is expected to increase default dependency in a portfolio. If market factors
are negatively dependent, systematic risk is supposed to be reduced.

We also indicate market factors to incorporate jumps. The Gamma-Poisson
mixture distribution is used to model jump times, since this distribution can represent
the default contagion phenomena. Specifically, any two events modeled by a Gamma-
Poisson mixture process are time interdependent, which means that occurrence of an
event triggers an increase of the probability of other events occurring. The feature of
the Gamma-Poisson mixture distribution is that the mean is not necessary to be equal
to the variance. In addition, the Gamma-Poisson mixture processes governing arrival
of jumps present more shapes in the tail of the portfolio loss distribution than would
be done by the Poisson process.

Even though market factors are being part of firms’ default intensities, firms
can be exposed to market risk with different levels. The sensitivity of a firm’s default
risk to each market factor can be measured by the magnitude of its market factor
loadings. Furthermore, individual firm has its particular risk represented by the



idiosyncratic factor in firm’s default intensity.

As another objective of this work, we show how to implement our model
using two alternative methods: a recursive method and a Mimicking Markov Chain
simulation method. Owing to the fact that market factors are dependent, the default
state of each individual firm is unable to be described by the marginal default
probability of each market factor separately. Instead, it must be done by given the
path of a vector of all market factor processes in the system. This is the huge issue for
applying the correlated market factor model. Therefore we provide the Laplace
transform function to describe the characteristics of dependent processes. The
Laplace transform function is used to solve for explicit solutions required in
implementation mechanisms of a recursive method and a Mimicking Markov Chain
simulation method.

To calculate the portfolio loss, we first define the conditional loss distribution
given the path of market processes and then estimate the unconditional ones. We use
the recursive method that is applied from Andersen [4]. The conditional loss
distribution given the path of a vector-valued market-factor process can be written in
a recursive form. The portfolio (unconditional) loss distribution is found by taking the
expectation of the conditional loss distribution. The difficulty of solving the
unconditional loss distribution from the recursive form depends on the number of
underlying firms in the portfolio. For a large heterogeneous portfolio, it is hard to find
a simple closed-form solution. Moreover, the computation of the portfolio loss has to
involve with numerous mathematical operations on numbers in the large range that is
from very small to very large number. Therefore, the number of firms in a portfolio
should be limited.

However, if the portfolio is homogeneous, the loss of a portfolio is binomial
distributed. We can derive the conditional mass function of the portfolio loss given
the path of a vector of market-factor processes in a simple way. By taking the
expectation, the unconditional one is done in a closed form. The closed-form
solutions of some unconditional terms are obtained by only concerning the required
inputs and assigning zeros to irrelevant inputs of the Laplace transform function
which we have derived.

The Mimicking Markov Chain simulation method is adopted from Giesecke et
al. [5]. Instead of using usual firms’ intensities to indicate default times, the arrival
time of the next default is determined by the functions of firm transition rates based
on the mimicking Markov chain. The individual firm’s transition rate function has the
meaning of the expectation of its intensity conditioning on a vector of firms’ states in
the portfolio. However, Giesecke et al. [5] don’t present how to use their method with
the model that has correlated market factors.

We choose to apply the Mimicking Markov chain method because it provides
the time and the firm that defaults without any time discretization. For that reason, we
apply their simulation scheme with our model. To implement the model, we need to



mimic our own continuous-time Markov chain to structure consequences of firms’
states in a portfolio. Like Giesecke et al. [5], state arrivals of the mimicking Markov
chain depend on the transition rate functions of firms in a portfolio. Now market
factor intensities are replaced by their conditional intensity given firms’ state vector
embedded in individual firm’s transition rate function. It is even more difficult to find
the solution for the expectation of each market factor’s intensity conditioning on the
vector of firms especially when market factors are not independent. Fortunately, the
problem is resolved by the help of the Laplace transform function that we have
mentioned.

It is not easy to calibrate the model for pricing multi-name credit derivatives
since default dependencies among underlying reference firms cannot be apparently
observed on market data. However, tranches of the index are sensitive to systematic
risk. Especially pricing the senior tranche and the super senior tranche requires strong
default dependencies. Thus, market factors’ parameters are estimated from the spreads
of CDO tranches, whereas each firm’s specific parameters such as market factor
loadings are calibrated to its market quoted CDS.

The rest of the thesis is organized as follows: Chapter 2 is a background of the
intensity-based model, representing CDO pricing and reviewing our inspired existing
models. In Chapter 3, we discuss our proposed model: ‘Multicorrelated Market Factor
Model’. In Chapter 4, we show a step by step guide to implement our model using
suggested methods such as a recursive method and a Mimicking Markov chain
method. Chapter 5 shows numerical results and compares our model with existing
models. Chapter 6 concludes the results and suggests further work. In Appendix, there
are closed form solutions of the exponential-affine characteristic function of our
proposed model, CDO and CDS framework, and the thinning scheme algorithm.

1.2  Contributions and Study Objectives

In this thesis, the contributions of the work is to propose the model incorporated
correlated market factors that produces strong default correlation in multi-name
portfolios such as CDOs. The objectives of the study includes:

I.  Studying improvement in accuracy of pricing CDOs from a normal multi-
market factor model to the model which has market factors correlated across
Brownian motions.

Il.  Studying performance development in capturing joint defaults from the model
that has jumps in market-factor intensities driven by Poisson processes to the
model that has Gamma-Poisson mixture processes characterizing jumps’
frequency in market factors.

I1l.  Developing efficient methods to compute a portfolio loss distribution and
exactly simulate default times for our proposed model



CHAPTER II
BACKGROUND

It is known that value of credit derivatives is derived from the loss due to defaults of
assets being referenced. The prices of the multi-name credit derivatives or CDO
tranches are significantly dependent on the default correlations among names.
Consequently, we measure the performance of our proposed model in producing
default dependency through fitting the model to index tranche spreads of CDOs.

In order to understand pricing of CDOs and the credit risk modelling, this
chapter gives a grasp on CDO pricing, the basic concepts of the credit risk models,
and the review of existing models. We will show our proposed model later in the next
chapter.

2.1 CDO Pricing
Suppose that a portfolio has n firms. The portfolio loss process is defined as

n
L, = 2(1 — R)O;N(t),t =0,
i=1

where R; is the deterministic recovery rate, ; is the notional principle ©;, N¢ is the
indicator process that presents the status (O=survive,1=default) of the underlying firm
i. When the firm defaults at time 7, the indicator process N; jumps from 0 to 1,
illustrated by

N(t) =1, i=1,..,n

The tranches of a CDO are classified by the level of the portfolio loss. The
loss process of the tranche for the attachment point K; and the detachment point K, is
given by

ptakel(t) = (L — K)* = (L = K)*,t 2 0,

As shown in the equation above, the tranche loss process U¥1X2! js underlying
on the portfolio loss process L. To calculate any coupon premiums or the loss
payment of the [K;, K] tranche, we need to model the portfolio loss process. The
credit risk model is used to describe the probability of loss P(L, = 1) at any time t
and construct the default correlations among underlying firms. For more information
of CDO and CDS framework, it can be found in Appendix B.



2.2 Basic Concepts for The Intensity-Based Models

In our research, we emphasize on the intensity-based models. We use a Bottom-up
approach to model the portfolio loss. The Bottom-up approach specifies each firmi’s
stochastic intensity process A; to drive its indicator process N;. The advantage of the
intensity-based model using the Bottom-up approach is that it is flexible to modify
dependencies among indicator processes N1, N2, ..., N™ through their default intensity
processes A4, 1, ..., 4,,. For the Bottom-up approach, the loss of the portfolio can be
obtained by combining all underlying firms’ losses determined by their indicator
processes N1, ..., N™. To enlarge an intuition about the portfolio loss distribution
based on the Bottom-up approach, we write

E[(L, — K)*] = f (U= K)*P(L, = D dl
0

n
= z max <Z(1 —R)O,B' —K;, 0) P(N(t) = B).
Be{0 1}" i=1
where the portfolio indicator process N = (N1, ...,N™) runs over {0 1}"*. According
to the equation above, there is the need of the method used to implement the model to
compute the loss distributions (calculate P(L, = [) or P(N(t) = B)). One example of
simple methods is the simulation of default times 72, ..., t™to determine their indicator
processes Ny, ..., Ny,.
The default times ¢ could be considered as

t
Tt = inf{t > 0: j Ai(s)ds = éVL} i=1,..,n,
0

where 1; is the intensity of the ith firm , € is an independent standard exponential
random variable. Any standard exponential random variable €, is simulated by
generating a uniform random variable U; € [0,1] and calculating €, = log(1 — U;). To
give a clear picture of the default time t;, we solve it by generating a path of

fot)li(s)ds and an exponential random & Then we set the firmi’s default time 7

equal to the minimum time t > 0 that makes fot/li(s)ds > €.

However, this method is not practiced in our research. The firm i’s default
intensity 4;is not a deterministic function but a stochastic process, and is also
correlated to intensities of other firms. Moreover, simulated default times are bias

because we need to discretize time to compute fot A;(s)ds. Hence we suggest another
method that can simulate default times exactly in Chapter 4.



2.3  Review of Existing Models

There are many existing models that have been proposed for credit risk pricing. Their
main contribution is usually to propose the model than has capacity to generate fat-
tailed loss distribution, long-tailed loss distribution, or asymmetric loss distribution,
which cannot be explained by the standard Gaussian Copula model.

In this research, we study the intensity-based models. As stated before, this
kind of the models can adjust default correlation in a portfolio via referenced default
intensity processes. Generally, the processes that are generally used to drive default
intensities are affine-jump diffusions which are the combination between a continuous
process and a jump process. The basic affine-jump process X that has the continuous
component following the Cox-Ingersoll-Ross (CIR) process that incorporates with a
jump process with parameters (k, 8, o, u, £) solves

dX(t) = k(6 — X(©))dt + o/X(©)dW (t) + dJ(£),t = 0
where k is the speed of adjustment, 6 is the long-term mean, o is volatility, W is a
Brownian motion, and J is the jump process that has u as the mean of exponential-
distributed jump sizes and ¢ as the Poisson arrival rate of jumps. It is widely known
that the CIR process has the boundary condition 2k > 2. As long as the boundary
rule is not broken, simulated intensities are always positive.

2.3.1 Duffie and Garleanu [3]’s Multi-Issuer Default Model
In order to describe the structure of default dependency in underlying firm, Duffie and
Garleanu [3] model the default intensity process of any firmi to have systematic
factors such sectorial risk factors and a global risk factor shared among other firms.

Consider a n-firm portfolio. There are S sectors which each firm particularly
belongs to. The ith firm’s intensity process A; is adapted to the filtration F generated
by the firm default processes, idiosyncratic risk factors X;, 1 < i < n, sectorial risk
factors Y,y , c(i) € {1,...,S} and a global risk factor Z, where X;, Y,y and Z are
supposed to be independent affine-jump processes sharing the same parameters k, o
and u, having different long-term mean 6;, 6.(;), 6, and jump arrival rate £;, £.;), £,
respectively. Then A! is a basic affine-jump process with parameters (k, 8, o, u, £),
defined as

() = X;(t) + Yi»y(®) + Z(D),

where 6 = 6; + 0.+ O, and £ = £; + £, + 2.

Duffie and Garleanu [3] assume that a portfolio is homogeneous, that is all
firms’ intensity processes in the portfolio have the same model parameters.



2.3.2 Mortensen [1]’s Multi-Name Intensity Model
He modifies Duffie and Garleanu [3]’s work to handle heterogeneous portfolios. Let F

denote the filtration generated by the firm default processes, idiosyncratic risk
factors X;,1 < i <n, and a market risk factor Y. X; and a;Y are supposed to be
independent  affine-jump processes with parameters (k, 6;,\/a;0,a;u,€¢) and
(k, a;0y,\/a;0, a;u, €) respectively, where £ = £, + £,, .

The ith firm’s intensity process A; takes the form

() = a;Y(6) + X;(2),

where the parameter a; refers to the sensitivity of firm i to the market factor Y. It is
implied that 4; is an affine-jump process with parameters (k, a;6y + 6;,/a;o, a;u, €).

In his paper, numerical results show that his jump-diffusion model based on
only one market factor fits all index tranches well and outperforms the pure diffusion
model, the Gaussian copula, the RPL Gaussian copula, and the Double-t copula. He
assumes that CDO portfolios are heterogeneous and he observes that his model can
price tranches of index from Markit iTraxx Europe Investment grade family in the
case of homogeneous portfolios.

2.3.3 Peng and Kou [2]’ Conditional Survival Model
Peng and Kou [2] propose the new Conditional Survival (CS) Model to produce

default clustering. Peng and Kou [2] consider that Duffie and Garleanu [3]'s the multi-
issuer default model cannot produce strong default correlation in spite of the fact that
there are jumps or even simultaneous jumps in market factors shared among firms.
Peng and Kou [2] illustrate that for the model of Duffie and Garleanu [3], once the
jump in intensity of market factor occur, it just smoothly increases the cumulative
intensity of market factor. As a result, the probability that the firm defaults is higher,
though, several firms might not default simultaneously. Consequently, Peng and Kou
[2] propose the CS model that has dynamics of idiosyncratic factor X;, and market
factors My, ..., M; in terms of cumulative intensity processes (e.g.X;(t) = fot x;(s)ds).

Consider a portfolio of n firms, A; is the cumulative intensity process of
firm i, whose default time in this case is defined as

tt=inf{t=>0:A () =EL1<i<n,

where €, is an independent exponential random variable with mean 1.

The ith firm’s cumulative intensity process A; is adapted to the filtration F
generated by the firm default processes, cumulative market factors M;, 1 <j <],

cumulative idiosyncratic factors X;, 1 < i < n, specified as
J

A(E) = z ag My(t) + X(t), 1S i<nt=0,
j=1
where the factor loading a; ; represents the sensitivity of firm i to market factor j. The
market factors My, ..., M; are allowed to be full of jump processes themselves, not



being part of intensity processes. Interestingly, Peng and Kou [2] don’t define
particular distributions for idiosyncratic factors because their CS model can relate
underlying firm’ conditional survival probability to the unconditional survival
probability that is extracted from market data of that firm’s CDS spread without the
need to simulate intensities of the idiosyncratic factors X,, X5, ..., X;,.

In numerical results of Peng and Kou [2], they use Polya processes and the
integral of CIR processes to model market-factor cumulative intensities. The market
factor’s Polya process M; can be viewed as the Poisson counting process that has a
Gamma random variable as arrival rate of jumps. Peng and Kou [2] state that the
jumps govern by the Polya process are positively increasingly correlated and then
result in generating a strong degree of default dependency. In addition, they use
integral of CIR processes to provide dynamic and describe dependency structure of
defaults under normal situation.

In their paper, their model with three market factors could fit tranche spreads
of the iTraxx Europe 5-year Index on both March 14, 2008 and September 16, 2008
really well. They choose CDO spreads on those dates in order to show that their
model is efficient even in the financial crisis. Especially, 16" September 2008 is the
day after the collapse of Fannie Mae and Freddy Mac, and Lehman Brother. However,
there is a bit of trivia about their numerical results. Some part of their parameters of
the cumulative CIR process that is used to drive one market factor is (k,60,0) =
(0.0526,0.1,1.6837). The boundary condition 2k@ > o2 of the CIR process is
violated. Although they simulate intensities by generating Chi-square random variable
and then summing them up to be the discrete integral. It is unpractically feasible
because negative intensities are not allowed for the CIR process.
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CHAPTER 111
OUR PROPOSED MODEL

As mentioned in the introduction, our proposed model is primarily adjusted from the
multi-issuer default model introduced by Duffie and Garleanu [3]. It also gets inspired
from Mortensen [1]’s multi-name intensity model and Peng and Kou [2]’s conditional
survival model. All models that we have referred are classified as the intensity-based
models. The appeals of intensity-based models are their past success and flexibility.
The intensity-based model is seen to be easily applied or extend such as adding more
distributions. What makes our proposed model different from the others is the market
factors that are allowed to be correlated. We are looking for parameters that increase
the probability of joint default events or provide advantages to efficiently fitting
particular CDO index tranche spreads. The results from Peng and Kou [2] imply that
one market factor is not adequate to price CDOs under crisis situation. It is worth a try
if making market factors correlated gains benefits.

We will deliberately discuss more details about our proposed model and make
comparisons with other models in the end of this chapter.

3.1 Muticorrelated Market Factor Model
Suppose that there are n underlying reference firms in a portfolio. As mentioned
before, we define 7' as the time that the ith firm defaults in the portfolio, which is
determined by the first time that its cox process jumps from 0 to 1 with the default
intensity process A;. We define firm i’s default intensity to have systematic or market
factors shared among firms and its idiosyncratic factor. More specifically, the default
correlations are modeled through market factors. The idiosyncratic factor represent
individual firm’s particular risk. Denote m as the number of market factors in the
system, X;, X5, ..., X,, as market factors, and Y; as the idiosyncratic factor of firm i.
The ith firm’s intensity process is specified as

O =) By KO +H(O,1<i<n ®
j=1

where B; ; is the market factor loading representing the sensitivity of the ith firm to
market factor j,1 < j < m.
Let’s start with the systematic part. The jth market factor has dynamics
dx;(t) = k; (6; = X;()) dt + g;dW;(¢) + dZ/ (1), @)
where k; is rate of mean-reversion, 6; is long-term mean, o; is the volatility, W;(t) is
a standard Brownian motion, and Z/ is jump process.



11

For the Brownian motions W, (t), W,(t), ..., W,,(t), they are assumed to be correlated
such that
dw,(®)dw;(t) = py;dt, 1<v<m 3
Brownian motions are allowed to be correlated among market factors because they
provide dynamic dependence among market-factor processes. Moreover, these
correlation parameters are meaningful. If market factors are negative correlated, the
portfolio is more diversified. Conversely, the model that has positive correlation
between market factors produces stronger default dependency.
In addition, the jump processes Z1,Z2,...,Z™ are independently distributed.
The Gamma-Poisson mixture processes are used to model jumps’ frequency of the
jump processes Z1,Z2,...,Z™ whose jump sizes are exponential distributed. For the
sake of clarity, we define Z/,1 < j < m as
I (t)

Zi(t) = Z Y/, (4)

where T1/(t) is a counting Poisson process that has a arrival rate A/ modeled by
Gamma distribution with the shape parameter a’/ and the scaled parameter B/, and the

jump sizes Y], Y} ... are exponentially distributed random variables with the mean /.

We choose Gamma-Poisson mixture processes to model jumps because jump
times are interdependent, which causes serial correlated defaults. The degree of serial
correlation of any Gamma-Poisson mixture counting process I/ can be measured by

cov (V(6), (¢t + h) - I (r)) = /B ht.

Unlike the Gamma-Poisson mixture process, the Poisson distribution has no capacity
to produce jumps that are serial correlated. In addition, the Poisson process restricts
that the variance are equal to the mean, but the variance of the Gamma-Poisson
mixture process can be selected arbitrarily. As a result, the Gamma-Poisson mixture
process has the ability to produce more shapes in the tails of the portfolio loss
distribution.

For the idiosyncratic factors Yy, ..., Y,,, we consider them as errors, which is
similar to Peng and Kou [2]. We will discuss this argument more in Chapter 5.

As can be seen in the equation (1), the factor loadings f; ; of market factor
j,1 <j<mare varied across firmi,1 <i <n. It implies that we cannot rely on
factor loadings only to create default correlation. Moreover there would be n x m
factor loadings needed to be calibrated against just 5-6 tranches of the index if factor
loadings were assumed to be the source of systematic risk. Schonbucher [6] mentions
that “The number of parameters needed to describe the dependence structure of the
defaults in the model should be limited, in particular it should not grow exponentially
in the number of obligors” (p. 289). Thus the factor loadings are used to fit CDS
curves of individual firm like Mortensen [1] and Peng and Kou [2]. The unobservable
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parameters, for example, the correlations of Brownian motions and other parameters
of market factors, are used to fit the CDO tranche spreads.

3.2  Comparing with Existing Models
We compare our proposed model with the models that have been reviewed in this
paper.

1. Our proposed model has the market factors that are allowed to be correlated,
which doesn’t actually present in other literature. Peng and Kou [2] mention
that their model supports this idea but they don’t show how to model them and
use it to price correlated products.

2. There is a jump process incorporated in every market factor. The arrival of
jumps are governed by the Gamma-Poisson mixture process. Unlike our
model, Peng and Kou [2] use this kind of distribution called Polya distribution
to model jumps in terms of cumulative intensities. We assume that there is not
much different between jump cumulative intensities and the intensities that
have jump processes being part of them. If it is true, our model fits CDO
tranche spreads well as Peng and Kou [2]’s CS model. Our model has ability
to produce contagious defaults and is more dynamic due to random jump
sizes.

3. There are closed-form solutions such as survival (or default) probabilities that
are derived from the Laplace transform function. Consequently, we can
exactly compute the portfolio loss distribution whether by using a
straightforwardly recursive method or a mimicking Markov chain method for
simulating default times without time discretization.
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CHAPTER IV
SUGGESTED METHODS
IN COMPUTING LOSS DISTRIBUTION

To compute a portfolio loss distribution, we must know how to define the default
times or the process counting defaulted firms in a portfolio. It is known that each
firm’s default time is considered as the first time that its cox process or indicator
process with a stochastic intensity jumps from O to 1. There are several ways to
estimate default times such as Monte Carlo simulation and Semi-analytical transform
techniques. The Monte Carlo simulation is easily used to simulate any random
variables of any stochastic processes and discretize time to approximate expected
values. However, simulation errors are large and it is very time consuming to compute
cumulate intensities by time discretization. In this paper, two recommended methods
are as follow:

1. A recursive method. Define the process that counts the number of defaulted

firms in a portfolio as

N(t) = ZNi(t),t > 0.
i=1

The method is used to recursively calculate the probability P(N(t) = [) based
on the portfolio indicator process N = (N2, ..., N™) to compute the portfolio
loss distribution. There is no default time identified. Hence, we need to
assume that the defaults occur between coupon payment dates for pricing
spreads of a CDO tranche.

2. A Mimicking Markov Chain method. The edge of this method over a recursive
method is that the defaulted firms and default times are acknowledged. The
Mimicking Markov Chain method uses transition rate functions to determine
default times in a portfolio. Underlying firms’ transition rate functions are
straightforwardly computed using closed forms or numerical methods. There
IS no need to simulate default intensities and discretize time to estimate
cumulative intensities. Therefore, it is useful for the process that has unknown
distributions, for example, a cumulative terms of CIR process.

Nevertheless, we can’t instantly use those suggested methods to implement
our proposed model because market factors are correlated. To use those method, we
have more works to do. We provide the Laplace transform function that can describe
the structure of processes that are dependent. The Laplace transform function is used
to find the solutions for suggested methods. In this chapter, we first present how to
implement our proposed model using a recursive method and a Mimicking Markov
chain method, and then finally show how to derive the Laplace transform function.



14

4.1  Recursive Method
Suppose that underlying firms have the same recovery rate R and notional principal ©.
The portfolio loss process satisfies

L= (1— R)G)Z Ni(t) = (1 — R)ON(),t = 0

To compute the portfolio loss distribution, we specify

P(N() = 1) = E[P(N(6) = [|(X(s))s<)],
where (X(5))s<; , X = (X4, ..., X;) is the path of a vector of market factor processes
that are correlated. We have to take the expectation on the conditional probability
given the path of a vector of correlated-market-factor processes (X(s))s<; because all
firms’ default intensity processes have market factors shared among them and most
importantly market factors are correlated.

Before proceeding to the next step, let us introduce P*(N(t) = v|(X(5))s<t)
as the probability that there are v defaulted firms from u firms that consists
of uth, (u — 1, ..., 24, 15¢ firms given the path of a vector of correlated-market-
factor processes(X(s))s<;- Let us define the conditional survival probability of
firm i given the path of a vector of correlated-market-factor processes (X(s))s<; as

n t t
P(z" > t|(X(5))sst) = exp _zﬁi’j fo Xi(s)ds |E lexp (—L K-(s)ds)l. (5)
=

To compute the conditional loss distribution P(N(t) = [|(X(5))s<t), We set

P(N(t) = l|(X(s))s<t) = P"(N(D) = [|(X(8))s<e), O0<l<n (6)
According to Andersen [4], we can solve P"(N; =1|(X(5))s<t), 0<1<n, by
following the steps below recursively.

Ifu =0, PP(N(t) = v|(X(s))s<) = 1.
Elseifu =v,
PY(N(t) = v[(X(5))s<t)
= PPTH(N(E) = v = 1|/(X())s)[1 = P(2¥ > t](X(5))s<0)]-
Elseifv =0,
P(N(t) = 0[(X(5))s<e) = P (N(t) = 0](X(5))s<e) P(t* > t[(X(5))s=t)-
Elseif 0<v<u,
P*(N(t) = v|(X(5))sst)
= P*HN() = v — 1| (X(5))s<)[1 = P(z* > t](X(5))s<c)]
+ PYHN() = v]|(X(5))s<)P(T™ > t](X(5))s=t)-
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However, the computation of the unconditional mass function of the loss
becomes intensive when the number of assets in a portfolio is large. For example,
CDX IG NA and Itraxx Europe have 125 firms in their portfolios. Assuming that the
underlying reference firms are homogeneous, we let the portfolio loss follows
Binomial distribution, which is specified as

P(N(t) = l|(X(5))sst)
= (7) (1= P> t|(X(5))520) (P(r > t|(X())5)) - (7)
Modified the Euler-Maclaurin sums that is represented in Papageorgiou [7], the
conditional loss distribution above can be rewritten as

P(N(t) = [|(X(5))s=t)
l

_(n l =i (=D YT ,B-ftX-(s)ds —ftY(s)ds n-i
=(1) ), () e BBk Os g [ hrOe]
i=0
Note that entire firms use the same factor loadings 4, 52, ..., B due to the assumption
of the homogeneous portfolio. By taking expectation of the equation (8), its

unconditional loss distribution becomes
l

A n—i
P(N(t) =1) = (Tll) z (f) (_1)l—i E [e—(n—1)2j=1 Bj fOth(s)ds] E [e— fOtY(S)ds] . 9)
=0
The Laplace transform function is used to solve the closed-form solutions
presented in this paper. We will discuss the Laplace transform function and how to
derive it deeply in the end of this chapter. However, to get a grasp on how to apply the
Laplace transform function, we represent

m t
Elexp| —(n— i)Zﬁjj Xj(s)ds || = ¢*(t,(n — D)(B1, -\ Bm), O, X (0)),
=1 0

where 0,,, is a m-zero vector and the Laplace transform function ¢* is defined as

m T m
¢*(T,u,z,X(0)) = E |exp —Zujf Xj(s)ds—ZZij(T)
j=1 "0 j=1

In addition, the idiosyncratic factor is concerned as error, then we gain
E [e— fOtY(s)ds] =1
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4.2  Mimicking Markov Chain Method

Giesecke et al. [5] develop the simulation approach that is exact and efficient for a
vector process. They construct the mimicking Markov chain M = (M?,...,M™) €
{0,1}™, which has the same property as the portfolio default indicator process N =
(N%,..,N™) € {0,1}*, in its own filtration G = (G,);»o generated by M. The
filtration G contains all information for each t that is represented by the o-algebra G,.
The mimicking Markov chain M is determined by the transition rate function h(:, M)
instead of intensity process A.

The transition rate function hi(¢,B) is the expectation of A;(t)I(z' > t)
conditioning on the portfolio indicator N(t) = B, which B = (B}, ...,B™) € {0,1}",
defined as

hi(t,B) = E(A;,(®)I(zt > t)|N(t) = B).
For our proposed model, the function of transition rate h‘(t, B) can be rewritten as

hi(t, B) = (1 — BY) Zﬁi,jE(Xj(t)lN(t) =B) +E(v,0)|r' > t) | (10)
=1

However, when market factors are correlated we have to perform many steps to
solve E (Xj (t)|N () = B). By Bayes’ theorem and the law of iterated expectations,
we obtain
E(X0IN® =B))  E(X;()P(N(®) = BI(X(5))s=0) )
E(X;(®OIN(t) =B) = — = :
P(N; = B) E(P(N(t) = B|(X(s)sst))
We will show how to find the explicit solutions of E(P(N(t) = B|(X(s))sst))
and E (Xj(t)P(N(t) = B|(X(s))sst)). First of all the conditional probability at time t

that the portfolio default indicator process N(t) = B given the path of a vector of
correlated-market-factor processes (X (s))s<; IS given by

P(N(t) = B|(X(s))s<t) = H[Bi — (2B = DP(z" > t|(X(5))ssc]-
Substituting (5) into the equation abol;elz, we have
P(N(t) = B|(X(s))s<t)

n

- H [Bj —(2B) - 1)6(—zﬁlﬁi,jf(fx,-(s)ds)E [e(— th(s)ds)”_ (11)

i=1
The right hand side of the equation (11) can be in the expansion of 2" terms. Before
getting lost in the trees, we will give identity to each term in the expansion of the
equation (11), which is used to explain the explicit solution of the transition rate
function hi(t,B).

Let us denote by A the array of 2™ elements, each of them is assigned to a bit
vector of length n mapping to its based-2 index (e.g. A° = (0,0,...,0,0),A! =
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(0,0, ...,0,1)). Each element k of the array A corresponds to term k in the expansion
formula (11). Let n,(t) be the coefficient of the k-th term of the expansion of the
equation (11), defined as

Ne(t) = 1_[ [(1 — A*())B + AK()(2B' - 1)E [exp <— ftYi(s)ds>H.
i=1 0

Let us introduce by ; as the factor loading for the k-th term to market factor j, given
by

n
bij= ) 1Ak(i)(zBl — 1B
1=
Using the coefficients 7, (t) and by ; for k, 0 < k < 2™, we can now represent the
expansion of equation (11) as
2m—1

m t
PN = BIK(Dse) = . me@exp| = D by [ Xi(s)ds |
k=0 =1 0
Taking expectation on both sides of the equation above leaves
2m—1

EIPN(E) = BIKSse)] = . m@E[exp| = D ey [ Xi(s)ds
k=0 =1 0

7 (12)

2n—1

- Z Me(®) d*(t, (b1, > bim), Om, X(0)).
k=0

Note that 0,, is denoted as a m-zero vector. As seen before, the Laplace transform
function is given by

m T m
¢*(T,u,z,X(0)) = E |exp —Zujf Xj(s)ds—ZZij(T)
F=0INIVE j=1

Similar to Giesecke et al.[5], the explicit solution of the iterated expectation
E(Xj(t)P(N(t) =B)|(X(s))sst) can be solved by taking the derivative of the
equation (12) with respect to —z;, and then substituting z = 0,,

E(X;(t)P(N(t) = B)|(X(5))s<t)

P> (13)

= = > ® S (6 By oo o), 2 X (0) =0,
k=0 J
It is unquestionable that the idiosyncratic factors Y3, ..., ¥;, are independent distributed.
We can write
. apY
. E (Yl (t)P(Tl > t)) ai;l (t' 1, Zj, Yi(o))lzi=0 (14)
(@' > 1) P(ri > 0) 967 (¢, 1,0, Y,(0))

where the Laplace transform function of an idiosyncratic factor is given by
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T
¢J/(T’ u;, zZj, YL(O)) =F [exp <_ulf Yl(s)ds - ZlYL(T)>
0
Substituting (12), (13), and (14) in the equation (10), we obtain
JdY
A R
a¢r(t, 1,0,Y;(0))
2not 997 (¢, b b X(0
k=0 nk(t) aZj (t,( k,1» == k,m)'Z' ( ))|Z=0m

moy
) ]Zf VIR M© ¢%(6 Birs s brm), Oy X (0))

hi(t,B) = —

In the filtration G, we denote T,,; as the time that M(T,) changes states
to M(Ty,,). Like Giesecke et al. [5], the process of the portfolio transition rate
function H(t, k) is given by

n
H(t k) = Z hi(t, M(T), Ty < t < Tepp k = 1,2, ...
i=1
Commonly, the brute-force simulation is a simple method used to generate the

sequence of default times Ty, T,, ..... The default time is T} determined by

t
Ty = inf {t > 0: f H(s, k)ds = €f<},
0

where € is an independent exponential random variable with mean 1. Then the firm
that defaults is acknowledged with probability h*(t, M(T},))/H(t, k),i = 1,2, ...,n. If
the ith firm defaults, the next mimicking Markov chain M(T,,) is the updated
version of the previous chain with M*(T,) = 1. The computation stops when the
default time of all firms in a portfolio are specified. By doing so, there is error from
discretizing time for integration and it is computationally expensive. To avoid
discretization error, we can use the thinning scheme.

4.2.1 Thinning Scheme
In Giesecke et al. [5], the thinning algorithm is applied to simulate the mimicking

chain M by generating the firm defaults' identities and their default times. The
advantage of this scheme is that there is no need for time scaling and discrete-time
integration.

First, we determine the appropriate value of the number of intervals M for the
intensity H(t, k), next create a partition of the given interval [0, T] such that 0 < L, <
L <...< Ly =T to obtain a subinterval [L; L;_,] and then find the majorizing
function H* (i, k) such that

H*(i,k) = sup{H (s, k):L;_y < s <L;}, (15)
where i = 1, ..., M. After the exponentially distributed arrival time x,x € (L;_4,L;)
with intensity rate H*(i, k) is generated, x is accepted with probability H(x, k)/
H*(i, k).
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Laplace Transform Function

We provide the Laplace transform function that is applied in the recursive method and
the Mimicking Markov Chain method. Usually, the Laplace transform is used to
explain the characteristic of any independent process such as an idiosyncratic factor,
is defined as

¢Y (T, w;, 2, Y;(0)) = E

T
exp (—ui f Yi(s)ds — zmm)]. (16)

Similar to Giesecke et al. [5], the Laplace transform of the idiosyncratic factor Y; only
relates to the distribution of its own idiosyncratic factor Y;. In this research, we ignore
the idiosyncratic factors Y;, ..., Y;,, because their values are assumingly small as errors
analogous to Peng and Kou [2]. We concentrate on create default correlation through
market factors.

Nonetheless, the distribution of market factor X, (t), X, (t), .., X, (t) cannot be
transformed into their own characteristic functions because market factors are not
independent. Alternatively, we describe the characteristics of the distributions of
X1(t), X2(t), .., X;rn (t) through the sum Y72, X;(t). We define the Laplace transform
of a vector-valued market-factor process associated with their integrals as

m

e T
¢*(T,u,z,X(0)) =E |exp —Zujj Xi(s)ds — ZZ]-X]-(T) . 17)
j=1 0 j=1
Before solving the Laplace transform above, let us introduce f(t,u,z, A, X) as
the exponentially-affine characteristic function conditioned on the vector of jump
arrival rates A = (A, Ay, ..., Ay,), for all input (t,u,z, A, x) € [0,T] Xx R™ x R™ X
[0, 0]™ x R™ where the constant vector u = (u4, ..., u,,), the constant vector z =
(z4, ..., zm), the vector of initial values at time t of market factors x = (x4, ..., X;n)-
For a given value of A, letF = (F;):so be the filtration generated by market
factors X1, X5, ..., Xm, which contains F: = of{UjZ; Xj(s),0 <s <t}. P is a risk
neutral measure. By the Feynman-Kac approach, the characteristic function
f(t,u, z, A, x) has the stochastic representation

m T m
f(t,u,z A x) =Ef|exp —Zujf Xj(s)ds—ZZij(T) | A (18)
j=1 -t j=1

According the notation E¥[- | A], it implies that the expectation is taken conditional on
time t information or the t-time filtration F, with X(t) = x, and the vector of jump
arrival rates A.

A key idea in solving the Laplace transform function (17) is to make the
connection to the characteristic function f(t,u, z, A, X(t)) that is

¢*(T,u,z,X(0)) =E[f(0,u,z A X(0))].
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Our proposed model has jump arrival rates following Gamma distributions, not
constant variables. Hence we first find the solution of the function f(t,u, z, A, X(t))
that treats jump counting processes as Poisson processes conditioned on the arrival
rate of jumps A. Then we find the expected value of the function f(t,u,z, A, X(t))
unconditioned the jump arrival rates A considering that the jJump counting processes
are actually Gamma-Poisson mixture processes.

Now, let’s start off by solving the characteristic function f(t, u, z, A, X(t)). To
understand the equation (18) better, we rewrite the characteristic function f and

m t
multiply both sides by e~ Zi=1%i Jo Xi)4 then have

t T
e T h MDD F (£, 7,0, X(6)) = BF [e”ZR o MO £(T,u, 2, X(T))] A]

m t
Thus e~ /=1%o Xis (¢ 1, 7, A, X (1)) is a martingale.

Let us denote by Q’ the vector of length m which has that the jth element is
one and the rest of elements are zeros, II;(t) a counting Poisson process of a jump
process at time t with Gamma distributed intensity A/ with the shape parameter o’
and the scaled parameter B/. According to multivariable Ito’s formula for jump
processes, we have

f(tu,z A X(t))

t
= f(0,u,z A X(0)) + j fi(s,u,z, A, X(s))ds
0

- jot o (w2 0,X(5) d (K (6 = %)) ds + o s)
=1

I [t
+§ZZJ‘ f.;C]xv(S;upZ,A’X(S))pjvo-jo-vds
0

j=1v=1

+ ]z: fot fow[f(s' wz,A,X(s) +eQ))

- f(sl u,z, AIX(S))]g(Ej, H])dSJdH](S)

Note that the jump sizes &1, &2, ...,e™ are generated from the probability density
. . . . . 1 P 1 sj . . .
function of an exponential distribution g(ef; yf) = ﬁexp(— E) with their respective

meanpu’/,1 <j <m.
In order to obtain the martingale part of the equality, we subtract the
i fooo[f(s, u,z,A,X(s) + €9Q7) — f(s,u,z, A X(s)]g(e/; w/)de/ d(A/s)  term
from dI1/(s) and add it back to the corresponding ds term. We take the form
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+ ; v fom[f(s» w2z, AX(s) +/Q’)

fi(s,u,z, A, X(5)) + z ij (s,u,z, A, X(s))k; (Hj - X; (s))
j=1

+

N[ =

— f(s,u,z, A X(s)]g(&’; ,uj)dej] ds

+> Uf (5,2, A, X(s)) d (0;dW(s))
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+J:J;)00[f(s,u,z,A,X(s) +&/Q7)

— f(s,u,z,0,X(s)]g(e’;u/)de’ (T (s) — Ajs)l,

Hence, the stochastic differential equation of the characteristic function f becomes

df = lft(t, wz, A XO)+ ) fr(tuz,A X0k (6 - X,(0))

+

N =

m m
Z z ijx,,(t: u,z, A,X(t))p]vO'JO'U
=1

=1v

~.

+ Affoo[f(t,u,z,A,X(t)+€ij)

0

s

=

]:

—ftuz A X)) ]g(e’; Mj)dsj] dt

+ Z Iij (t,u, z, A, X(t))o;dW;(t)
=

+foo[f(t,u,z,A,X(t) +&/Q))
0

— ft,wz A X(@)]g(e/; w)del d(T(8) — A t)l :
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By using the product rule, we obtain
d (e—z}’iluj fotxj(s)dsf)
_ fde—z;ilujf(ij(s)ds tem ’J?glujf(ij(s)dsdf
+ de~ T o X s g ¢
Because e~ 2= o Xj)As £ js a martingale, the dt term must be zero. The partial

m t
differential equation of e~ Z=1% Jo Xj()4s £ jg

m

0= — Zu,X @ | f+ 1 +fo - X; (t) %ii ft P v 03 O

J=1

+2 Y f [F (5w, X(©) +£7Q7) = f (5,1, 2,0, X())]g (&F; w1 )de.
=1 7P

We want to have the function f (¢, u, z, A, X(t)) in the affine form

f(t, u,z, A, x) — ea(T—t,u,z)+Z}';1 bf(T—t,uj,Zj)Xj(t)+Z;’;1 cf(T—t,uj,z]-)Af (19)
where a: [0, T] x R® X R™ - R, b/: [0,T]x RXxR - R, and ¢/: [0,T] x Rx R —
R with the initial conditions a(0,u,z) = 0, b/(0,u;,z) = —z;,c’(0,u;,z) = 0, for
1 <j < m. In doing so, the affine-form function f(t,u,z, A, X(t)) (18) must satisfy
the partial differential equation

m m .
da(T —t,u,z) ob’ (T —t, uj,zj)
0=~ Z“fxf() TTea-n & ea-n Y
J= Jj=

_Zacj(;(;f:)j'zj)AJ +ZbJ(T t,u;, 2 )k; ( - X; (t))

j=1
m

m
z pv0io,bI (T — t,u;, ;)b (T — t,uy, 2,,)

j=1v=1

m co
+ ZAJJ [ebJ(T‘t'”f'Zf)‘gj — 1] g(el;pu)del.
j=1 70
Accordingly, the ordinary differential equations are

0
a(s w2) Zk 0,b7 (s, u;,2)) + Zzzpﬂﬁ]%b (5,25, 2)b" (s, up, 2,),

j=1v=

N =

+

abJ(S, 'U,j,Zj) _
ds B

ac’ (s, u;, z;) P sz el o
T:jo [e (sujzj)e —1]g(£1;u1)d81.

The solutions of them can be found in Appendix A.

uj — kb’ (s, 7),
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Here is a quick summary of the explicit solution of the Laplace transform
function (17)
¢*(T,u,z,X(0)) =E[f(0,uz A X(0))]

m
— ea(T,u,z)+Z;Z1 bj(T,uj,Zj)Xj(O) 1_[ E [eCj(T,Uj,Zj)Aj ] .

Jj=1

m .
— ea(T,u,z)+Z}-”=1 bf(T,uj,zj)Xj(O) 1_[(1 . (T, uj, Zj)BJ-)—aJ
j=1
The moment generating function of the gamma distribution is given by

E [e”‘j] =f eh g(A;ad,B))dN = (1 - ch)_aj,
0
where the probability density function g(A/; a/,B/) =

According to the stochastic differential equation (2), it is possible to have
negative market factors. However negative intensities are not allowed to happen in
practice. To make it clear, we use the equation (2) for deriving the closed-form
solution of the Laplace transform that we have stated in the introduction. In reality,
market factors are assumed to be always positive in such a way that

X/ (t) = max(X;(t),0) ateverytimet > 0,1 <j <m.
To be more accurate, the ith firm’s intensity process can be rewritten as

A,(0) = Z BXF®+Y(®,1<i<n
=1

We need some constraints to prevent negative intensities in order to have the
solutions we derive from the Laplace transform close to the real outcomes. In doing
so, we select values of the any market factor j’s parameters that satisfy the two
constraints. The first constraint is as follows:

S1 Sy
exp <—f Xj(v)d'u)] = E Iexp (—f Xj(v)dv)
0 0
where 0 < 5; <5, <...< t.

exp <— fth(v)dv>
0

The approach above also applies to the firm i’s idiosyncratic factor i or any
positive intensity process. In this thesis, the important thing to keep in mind is that
market factors are correlated. It must include the second constraint:

1=E >...

> E >0

m

m

T

0 <E|exp —Zujf Xi(s)ds —ZZj)(j(T) < 1,for any zj, u; € R*.

- 0 .
j=1

j=1
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Unlike the first constraint, E [exp (— T fOT Xj(s)ds — XL, szj(T)) ] (a.k.athe
Laplace transform we have derived) is not necessary to be decreasing with respect to
time when parameters u; > 1,z; > 1,1 < i < m plugged in the equation.
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CHAPTER V
NUMERICAL RESULTS

In this chapter, we show how to calibrate our model to multi-name portfolios such as
CDOs. The data and tools that are used for computation are stated later. Then we
display numerical results of our model used to price the CDO index tranches. We also
analyze the portfolio loss distributions that are implied from quoted market index
tranches using our proposed model and make a comparison of performance with some
models we have studied.

Our model is able to apply to both heterogeneous and homogeneous portfolios.

We demonstrate them as follows:

For the homogeneous portfolio, every firm in a portfolio is assumed to have the
same weight, notional principle and recovery rate. Restating the equation (1)
m

2,(6) = Zﬁi,j X +Y(),1<i<n
j=1
We set the market factor loading g; ; of any firm i to the market factor j to be 1
and ignore the idiosyncratic factor Y. Each market factor has 7 parameters. We
only use market factors’ parameters for fitting index tranches. More specifically,
we find the calibrated parameters of market factors such as the rate of mean-
reversion k, the volatility o, the shape parameter «, the scaled parameter B, the
mean of jump size u, and the correlation parameter p that reduces the Root Mean
Square Error (RMSE) the most. The RMSE is given by

S +S
RMSE = IEK: 2k G o)\’
Kk=1 Sk_s’l‘)

where s, is the k-th credit index tranche spread of the model and s, s> are the
ask and bid price of index tranche spread from the market, and K is the number of
index ranches. The long-term mean & and the initial value of the market
intensity X(0) are used to fit the CDO index spread. The CDO index spread can
be view as the weighted mean of underlying CDS spreads, computed as the
running spread of the 0-100% index tranche.

Due to the fact that the model has many parameters, there are many
local solutions of parameter values. It is hard to find the optimal solutions by
using numerical methods alone. The optimal solutions are majorly led by initial
value parameters. Thus we first initialize values of parameters and then use a
numerical method such as Multivariate Newton’s Method to adjust them.
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To initialize the model’s values of m X 7 parameters, we perform as follows:

1. It begins with setting based parameter values.

2. We estimate the parameters of a jump component of the market factor
(with large value of the scaled parameter of Gamma B, the small value of
Gamma’s shape parameter B) that has the ability to create the high serial
correlation of defaults. Increasing serial default correlation through jump
parameters particularly results in increasing the senior and super senior
tranche spreads, which doesn’t cause exaggeratedly upshifting in the
prices of other tranches. Those jump process’s parameters have an
immense impact on the extreme tail risk and therefore are adjusted to
match quoted market spreads of the senior tranche and especially the
super senior tranche.

3. There are another kind of jump processes in market factors (with the small
value of the scaled parameter of Gamma B, the large value of Gamma’s
shape parameter @) that can produce heavier and longer tail of the
portfolio loss distribution with low serial default correlation. The
parameters of that market factor’s jump process are used to fit the equity
tranche and the mezzanine tranches. If the mean of jump size u are too
large, all index tranches are more likely to be exceedingly overestimated.
Hence the calibrated jump size’s mean usually has a small value.
Moreover, this jump process of the market factor doesn’t affect the spread
of the super senior tranche.

4. The rest of market factors’ parameters are used to fit the index tranches
more accurately. Changing values of parameters of market factors such as
the rates of mean-reversion has a considerable effect on many index
tranches. As a result, we might have to recalibrate market factors’ jump
process’s parameters. We also use the correlation parameters for
specifically adjusting the equity tranche and the mezzanine 1 tranche.

5. We continue revising market factors’ parameters according to step 2-4
until the RMSE is acceptable. Each step of initialization has the reasons
which will be illustrated later in the rest of this chapter.

For the heterogeneous portfolio, our proposed model can be calibrated by
adopting Peng and Kou [2]’s calibration algorithm. Under the heterogeneous
portfolio assumption, the model is calibrated to all index tranche market quotes,
the CDO index spread including its referenced firms’ CDS spread all together.
According to Peng and Kou [2]’s calibration algorithm, market factors’
parameters are considered as free parameters used to fit index tranches. The
idiosyncratic factors are concerned as small error terms while market factor
loadings can be estimated by using their optimization problem. Nonetheless, there
are numerous parameters such as market factor loadings (about m X 7 X n
parameters, m is the number of market factors in the system, n is the number of
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referenced firms in the index) to be gauged. Papageorgiou [7] argues that by
doing so the model is over parameterized. Papageorgiou [7] uses the name
grouping method to decrease the number of idiosyncratic factors and the results
are more satisfied. However, we don’t show the results from the case of
heterogeneous portfolios because the empirical results under the homogeneous
portfolio assumption are satisfyingly acceptable.

5.1 Dataand Tools

CDX NA IG and Itraxx Europe index are chosen to be calibrated on models. We
consider those indices that mature in 5 years. CDX NA IG and Itraxx Europe are
relied on 125 CDS indices of investment grade firms in North American and Europe
respectively. Every series of CDX and Itraxx is released on every March and
September. The recently issued index that has a 5-year maturity is regarded as the on-
the-run index. The on-the-run index is actively traded and then has no arbitrage. On
the contrary, the off-the-run index is older and passively traded. There are the equity
tranche, the mezzanine tranche, the senior tranche and the super senior tranche
classified by the level of the portfolio loss, ranked from the riskiest to the safest. From
series 1 to series 11, the equity tranche has different mechanism of pricing from the
other tranches, paying an upfront cash with a 500-bps fixed running spread whereas
the other tranches pay running spreads only. After the subprime crisis 2007-2008,
other tranches have upfront fees with fixed running spreads. For instance, all index
tranches of are quoted on upfront fees with a 100-bps fixed running spread for CDX
NA IG series 12 to 14.

As stated earlier in the introduction, we assume credit derivatives portfolios to
be homogeneous. The prices of the CDS index and the index tranches that we choose
are from Mortensen [1], Peng and Kou [2], Choi [8] and Bloomberg. The selected
indexes from those literature are mostly on-the-run indexes. A recovery rate of any
underlying reference firm is set to be 40%. For interest rates, we found that they can
be assumed to be constant or bootstrapped from swap rates. The characteristics of
interest rates don’t directly have an impact on the performance of the model in
capturing the events of joint defaults. The important things are the model of default
intensities and the method that is used to implement the model for computing the
portfolio loss distribution.

Papageorgiou [7] suggests that in order to reduce errors from calculating the
large portfolio loss distribution which is based on the binomial distribution, the
number of underlying reference firms should not be exceeded 30. However, we solve
the big number issue by using the GNU MPFR library. It is an open source and
supports C/C++ programming language for computations of high precision numbers.
The computation time depends on the digit precision whose numbers are set. When
using the MPFR library, our program could compute spreads of the 125-firm CDO
tranches faster than compared to simulation methods.
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5.2 Results
We price credit index tranche using our proposed model and then make a comparison
between our proposed models themselves under following circumstances:

e With and without correlation between market factors.

e Two correlated market factors and three independent market factors.

We set up the case studies above to investigate performance improvement of the
correlated market factor model. The model is also compared with other models that
are as follows:

e Mortensen [1]’s Multi-Name Intensity Model. We want to verify that Gamma-
Poisson mixture processes outperform Poisson processes for modeling jumps
in intensity processes.

e Peng and Kou [2]’s Conditional Survival Model. We want to verify that our
model that has jump processes being components of market factors is capable
of joint default events, fat tails and tail dependence. There is no need to model
jump processes as cumulative intensities like Peng and Kou [2]’s Conditional
Survival model accordingly. If correct, our proposed model could price CDOs
as well as theirs.
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Test 1
To examine the sensitivity of the portfolio loss distribution to market factors’

correlation, we establish the models that have the same parameter values of market
factors with different correlation parameters. As shown in Figure 1, the correlation
parameters are easy to understand. The more positive correlation between market
factors the model has, the more dispersion of the portfolio loss distribution is. In
contrast, the models with negative correlation parameters generate higher peak and
thinner-tail distributions.

012 T T T T T T T T

he correlation parameter = -1

0L the correlation paratmeter =-0.5 |
(Xﬁno correlation

the correlation parameter = 0.5

the correlation parameter = 1

Probability
T

0.04 -

0.02 -

0 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

number of defaults

Figure 1: The 5-year loss distribution of the 125-firm portfolio from three two-market-factor models.
The models with the correlation parameters —1 (perfectly negative), -0.5, without correlation, and the
correlation parameter -0.25, 1 (perfectly positive) are corresponded to the blue line, the green line, the
black line, the yellow line, and the red line respectively. All models have the sets of the first market

factor’ parameters (k, = 2,6, = 0.005,X,(0) = 0.001,5, = 0.0085,u; = 0.5,a; = 0.05,B, =
1) and (k, = 1,6, = 0.0085, X,(0) = 0.0005, o, = 0.0055,u, = 0.05,a, = 1,B, = 0.08) for
the second market factor. The recovery rate is 40% and the interest rate is 5%.

Let’s begin with calibrating our proposed model to CDX NA IG S2 5Y and
CDX NA IG S5 5Y on August 23, 2004 and December 5, 2005 respectively. CDX
NA IG S2 5Y was launched on March 23, 2004 and matured on June 22, 2009 with
quarterly coupons. CDX NA IG S4 5Y was launched on September 21, 2005 and
matured on December 20, 2010. The interest rate and recovery rate are assumed to be
5% and 35% respectively. The equity tranche has an upfront fee with a running spread
of 500 bps while other tranches are quoted on running spreads without upfront fees.
We choose those index series in order to compare our results to Mortensen [1]’s. Most
importantly, we analyze the impact of the correlation between market factors on index
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tranche spreads and study performance in pricing of three-independent-market-factor
model. The calibrated parameters are represented in Table 1.

Date Part Para- 2-factor model 3-independent-factor model

(Series) meter Factor 1 Factor 2 Factor 1 Factor 2 Factor 3
k 0.1000 1.3000 0.1000 1.3000 2.0000
0 0.0040 0.0042 0.0030 0.0035 0.0006
Cont. Xo 0.0004 0.0006 0.0003 0.0005 0.0002
23/4/2004 o 0.0008 0.0006 0.0006 0.0005 0.0004
(CDX S2) u 8.0000 0.0720 6.0000 0.0600 0.1000
Jump a 0.0010 10.000 0.0010 10.000 1.0000
B 25.000 0.0100 25.000 0.0100 0.0300

Correlation p -1.0000
k 0.6000 2.0000 0.6000 2.0000 1.5000
0 0.0030 0.0040 0.0030 0.0035 0.0004
Cont. %o 00020 | 00008 | 00020 | 00007 | 0.0002
5/12/2005 o 0.0010 0.0048 0.0010 0.0042 0.0005
(CDX S5) u 1.0000 0.0168 1.0000 0.0147 0.0005
Jump a 0.0016 0.0700 0.0016 0.0700 3.0000
B 2.0000 2.5000 2.9000 2.5000 0.2000

Correlation p -1.0000

Table 1: Estimated parameters of our models on August 23, 2004 for CDX NA IG S2 5Y and
December 5, 2005 for CDX NA IG S4 5Y.

As can be seen in Table 2 and Table 3, the 2-correlated-market-factor model
prices CDO tranche spread slightly better than the 2-uncorrelated-market-factor
model. Although the correlation parameter is -1 or 1, the model still has two market
factors if there are different jump processes. The results implies that the negative
correlation parameter causes in decreasing the mezzanine 1 (3-7%) tranche spread
while increasing the equity (0-3%) tranche spread. Even though the changes in the
spreads of the equity (0-3%) tranche and the first mezzanine (3-7%) tranche are
visually seen small in Table 3, they are considerably large when concerned with bid-
ask spread. Admittedly, it is feasible that adjusting some parameters can reproduce the
outcome of the model that has correlated market factors. However several index
tranches get affected while changing some values of parameters as the rates of mean-
reversion. Contrary to other parameters, the correlation parameter can be varied and
has a particular influence on the equity tranche and the first mezzanine tranche
without considerably affecting other index tranches.
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Source
2-factor model 3-idp-
Tranches % Market Bid/Ask Mortensen fact(F))r
Correlated Uncorrelated

model
0-3 40.0% 2.0% 46.9% 39.4% 39.32% 40.11%
3-7 312.5 15.0 340.2 318.3 319.29 349.83
7-10 1225 7.0 119.7 118.4 118.52 120.94
10-15 425 7.0 61.9 45.0 45.0 42.61
15-30 125 3.0 14.3 12.7 12.7 12.08
RMSE 2.1 0.37 0.40 1.12

Table 2: Comparison of the results of our models and the old results of Mortensen [1],and the CDX NA
IG S2 5Y index tranche spreads on August 23, 2004. The equity (0-3%) tranche pays an upfront cash
with 500-bps running spread. The other tranches are quoted on running coupons.

Source
2-factor model 3-idp-
Tranches% Market Bid/Ask Mortensen factsr
Correlated Uncorrelated
model
0-3 41.1% 0.8% 43.2% 40.96% 40.59% 41.07%
3-7 117.5 6.8 125.9 122.02 127.42 121.04
7-10 32.9 5.3 30.6 33.27 33.40 29.36
10-15 15.8 3.0 21.3 15.85 15.88 14.53
15-30 7.9 1.0 8.8 7.33 7.33 8.01
RMSE 1.58 0.40 0.76 0.43

Table 3: Comparison of the results of our models and the old results of Mortensen [1], and the CDX
NA IG S2 5Y index tranche spreads on December 5, 2005. The equity (0-3%) tranche pays an upfront

cash with 500-bps running spread. The other tranches are quoted on running coupons.

Table 2 displays that the RMSE of the 3-uncorrelated-market-factor model is
greater than the 2-factor model’s. Conversely, Table 3 shows that the prices of CDO
tranches from the 3-indepenent-market-factor model are more accurate than the
results of the 2-independent-market-factor model. We have to calibrate a set of
parameters for one more market factor but obtain similar results. Consequently, the
correlation parameter is more satisfied in the sense of convenience. The reason why
the model that has three independent market factors is counterintuitively
underachieving is that the two-correlated-market-factor model has already created the
necessary shapes of the portfolio loss distribution. It is really hard to compete the
model that has a small value of RMSE.

Moreover, it is shown that our model can solve Mortensen [1]’s problem about
overpricing equity (0-3%) tranche, the mezzanine 1 (3-7%) tranche, and the
mezzanine 3 (10-15%) tranche in Table 2. Likewise, Table 3 shows that our model
fits the mezzanine 1 (3-7%) tranche better that the jump-diffusion model of [4]’s. The
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RMSEs from August 23, 2004 and December 5, 2005 of our proposed model are
smaller.

Note that the results of Mortensen [1] based on the assumption that the index’s
underlying reference firms are heterogeneous.” jump-diffusion model has a market
factor of 6 free parameters used to fit the index tranche and 7 X n idiosyncratic
parameters including the market factor loading calibrated to underlying CDSs. Thus
there are 6 + 7 X n estimated parameters. Mortensen [1] states that for iTraxx Europe
the homogenous and heterogeneous portfolios yield similar outcomes, which doesn’t
apply to CDX NA. He said that the heterogeneous portfolio assumption is more
attainable for CDX NA. In spite of the assumption of homogenous portfolios, our
model could price the CDX index’s tranche spreads with smaller RMSEs.

Test 2
Following Peng and Kou [2]’s footsteps, we calibrate our models to ITraxx Europe S8

5Y on March 14, 2008 and iTraxx Europe S9 5Y on September 16, 2008, which are
good examples to demonstrate market during financial crisis of 2008. The iTraxx
Europe S8 5Y was released on September 20, 2007 and matured on December 20,
2012. The iTraxx Europe S9 5Y was released on March 20, 2008, and matured on
June 20, 2013. Both index series have 124 underlying firms rated as investment grade.
There are numerous firms shared between those iTraxx series. Every firm is assumed
to have a 40% recovery rate. The interest rates are extracted from Euro swap rates.

To make sure that our proposed model literally outperforms the Mortensen [1]’s
jump-diffusion model, we use Mortensen [1]’s jump-diffusion model calibrated
against those series under the same homogenous portfolio assumption. In this case,
there are 6 parameters to be gauged, which all of them are treated as free parameters
for matching spreads of the index tranches.

For the jump-diffusion model, the values of parameters we obtain from
calibration to iTraxx Europe S8 5Y on March 14, 2008 are k =0.02, 6 =
0.14, 1, = 0.003,0 = 0.0721,u = 0.7, and £ = 0.025. Whereas the estimated of
iTraxx Europe S9 5Y on September 16, 2008 are k = 0.02, 6 = 0.13, 4, = 0.003,
0 =0.0721, u=0.7, and# = 0.02. For our proposed model, the estimated
parameters are shown in Table 4.

Date(Series) k 0 X, o u a B p
14/3/2008 0.1 | 0.00750 | 0.00048 | 0.00060 | 30.0000 | 0.00800 | 550.000 1
(iTraxx S8) 2 0.00440 | 0.00040 | 0.00400 | 0.12000 | 24.0000 | 0.00500
16/9/2008 0.1 | 0.00250 | 0.00015 | 0.00050 | 1.00000 | 0.01000 | 37.0000 1
(iTraxx S9) 2 0.00500 | 0.00050 | 0.00500 | 0.10500 | 7.00000 | 0.02000

Table 4: Estimated parameters of the two-correlated-market-factor model on March 14, 2008 for
iTraxx Europe S8 5Y and September 16, 2008 for iTraxx Europe S9 5Y
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As noted before, there are differently correlated market factors in the model if
market factors have distinctive jump processes. The series 8 and series 9 of iTraxx
Europe have a lot of underlying firms in common so their calibrated parameters have
closely values. The correlation parameter p = —1 is used to diverse the portfolio of
iTraxx Europe S8 on March 14, 2008. For the iTraxx Europe S9 on September 16,
2008, it is interpretable that the correlation parameter p = 1 is used to disperse the
portfolio loss distribution by increasing the equity tranche spread and decreasing the
mezzanine tranche spread.

Itraxx Europe S8 5-year loss distribution, 14th March 2008
025 —

No jump
02} #& 1 market factor with the mean of jump = 30, a=0.008, B=550

0.5 — ﬁ—1 market factor with the mean of jump = 0.12, =24, B=0.005
2 market factor model

Probability

01p

0 20 40 60 a0 100 120 140
S-year loss

Figure 2: The implied 5-year loss distribution for iTraxx Europe S8 5Y on March 14, 2008 of the two-
factor models with the different jump processes.

With two market factors, our proposed model is flexible to fit index tranche
spreads. The Gamma-Poisson mixture distribution offers two interesting shapes of the
portfolio loss distribution. As can be seen in Figure 2, the green line demonstrates the
intensity-based model incorporating with the jump process with the mean of
exponential distributed jump sizes u = 30, and the arrival rate of jumps driven by
Gamma-Poisson mixture process with the shape parameter « = 0.008 and the scaled
parameter B = 500. This kind of jump processes has high serial correlation and
generates steeply increased probability of loss at the end of tail, sharpest peak and
thinnest right tail of the probability of loss around 0-20 firms. The jump process with
low serial correlation has the jump size’s mean u = 0.12, and arrival of jump driven
by Gamma-Poisson mixture process with the shape parameter ¢ = 24 and the scaled
parameter B = 0.005, represented by the red line. Between losses of 0-20 firm, the
lower serial-correlated jump process creates a fatter right tail of the portfolio loss
distribution. Corresponded by the blue line, the combination between those two jump
processes produces the lowest peak of the portfolio loss distribution but has the
capacity to generate both characteristics of fat-tailed distributions. The yellow line
displays what would be expected from the bivariate drift-diffusion without jump
processes. As shown in Figure 3, the default times that are driven by the model that
has correlated market factors with jump processes are more clustering when compared
with the model that has dependent market factors without jump processes.
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5th default time (year)

4th default time (year) 3th default time (year)

The scatter plot of 50000 scenarios of the times of third 73, fourth *, and fifth > defaults in

a 125-firm portfolio that are simulated by using a Mimicking Markov chain method. The values of
parameters are from calibration on March 14 2008 of iTraxx Europe series 8, which are shown in Table
4. The red maker and the yellow maker respectively correspond to the model with and without jump
processes. The means of the default times 73, ¢*, 7> which are generated by the model with jump
processes are 3.5246, 4.2879 and 4.9934 years respectively. For the model without jumps in intensities,
we obtain the averages of the default times 73, ¢*, 7> which respectively are 4.2648, 5.3537, and
6.4013 years.
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In Figure 4 and Figure 5, the 5-year loss distribution of the two-correlated-
market-factor model has a higher peak and fatter right tail of 5-year loss and is more
leptokurtic than the jump-diffusion model’s loss distribution. The jump process with
high exponential distributed jump size’s mean and the jump arrival rate distributed as
Gamma that has low value of the shape parameter a and high value of the scaled
parameter B has high serial correlation. As a result, it particularly helps to fit the
senior and super senior tranche spread. It is shown by dramatically upward trend of
the green line at the end of the right tail of 5-year loss distribution in Figure 4 and
Figure 5. With large mean of jump size and jump’s arrival rate of the Poisson process,
the model overestimates all CDO tranche spreads. No matter how many times we’ve
tried to manipulate parameters values, the Poisson process could not reach the same
level and curvature as the Gamma-Poisson mixture process has done in the tail. It is
because the Poisson process has no ability to create serial correlation.

Source
Tranches % Market Bid/Ask Jump-arfigqnodel Peng&Kou Our model
(Mortensen)
0-3 51.4% 1.6% 50.07% 50.48% 51.9%
3-6 649.0 24.3 668.65 691.14 658.9
6-9 401.1 245 331.03 395.47 374.5
9-12 255.3 19.8 237.00 261.23 249.5
12-22 143.4 11.8 192.47 168.62 166.6
22-100 69.9 2.9 59.88 66.96 68.0
RMSE 2.57 1.24 0.98

Table 5: Comparison of our empirical results of the jump-diffusion model and the 2-correlated factor
model, and the old results of Peng and Kou [2], and the iTraxx Europe S8 5Y index tranche spreads on
March 14, 2008. The equity (0-3%) tranche pays an upfront cash with 500-bps running spread. The

other tranches are quoted on running coupons.

Source
Tranches % Market Bid/Ask Jump-diffusion model Peng&Kou Our model
(Mortensen)
0-3 45.98% 1.18% 46.40% 46.10% 46.93%
3-6 618.25 14 588.52 630.49 627.94
6-9 374.50 12.59 276.39 347.43 335.19
9-12 215.16 10.55 191.96 217.43 211.39
12-22 102.17 5.33 154.18 131.53 134.84
22-100 58.81 2.58 47.99 52.18 53.78
RMSE 5.52 2.66 2.95

Table 6: Comparison of our empirical results from the jump-diffusion model and the 2-correlated factor
model, the old results of Peng and Kou [2], and the iTraxx Europe S9 5Y index tranche spreads on
September 16, 2008. The equity (0-3%) tranche pays an upfront cash with 500-bps running spread. The
other tranches are quoted on running coupons.
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After analyzing the implied portfolio loss distributions of the jump-diffusion
model and our proposed model, we now examine performance of those models for
pricing. Table 5 exhibits that the jump-diffusion model underprices the mezzanine 2
(6-9%) tranche and the super senior (22-100%) tranche, overpricing the senior (12-
22%) tranche. The results of the jump-diffusion model in Table 6 show that the
mezzanine 1 (3-6%) tranche, the mezzanine 2 (6-9%) tranche, and the super senior
(22-100%) tranche are underestimated, while the senior (12-22%) tranche is
overestimated significantly. In Table 5 and Table 6, our proposed model underprices
the second mezzanine (6-9%) tranche and overprices the senior (12-22%) tranche
exceeding their bid-ask spreads. However compared to the jump-diffusion model, our
proposed has smaller RMSEs and perform better in pricing after all. It is unarguable
that our proposed model outperforms the jump-diffusion process because it has more
free parameters to fit tranche spreads. Nevertheless, those free parameters are
meaningless if they are not able to introduce different traits of distribution.
Fortunately, Gamma-Poisson mixture processes can produce either high or low serial
correlation of jumps in market factors.

We also compare our proposed model with Peng and Kou [2]’s Conditional
Survival (CS) Model. For clarification, we use the former results of Peng and Kou [2]
to compare with our empirical results. Peng and Kou [2] assume that the portfolio is
heterogeneous. They use the model that has three market factors which are in terms of
cumulative  intensities  following  the integral CIR  process  with
parameters (kq,x4,(0),07), two Polya processes (a.k.a Gamma-Poisson mixture
processes) with parameters (a; ,B,) and (a3, B;) to fit index tranches. While market
factor loadings are calibrated to referenced CDSs of n underlying firms. Hence there
are 7 + 3 X n estimated parameters.

Peng and Kou [2]’s CS model and our proposed model obviously perform
better than the jump-diffusion model with small RMSEs. Furthermore our proposed
model has verified that it could imitate the past numerical results of Peng and Kou [2].
Thus why their model is successfully used to price CDO tranches is because of
characteristics of Gamma-Poisson jump counting processes. When there is the large
jump in cumulative term of intensities, infinities are likely to be boundless.
Theoretically, it is unsatisfied to allow infinite intensities to happen.
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Date Source | 0-3% 3-7% 7-10% | 10-15% | 15-30% | RMSE | 0-100%
(Series)
19/7/2007 Market | 29.50% | 90.25 19.93 | 9.65 3.41 43.15
(CDX S7) Bid/Ask | 0.23% | 2.00 1.42 1.19 0.87
*Bloomberg Model | 29.75% | 91.95 19.70 | 7.69 4.28 1.05 41.08
14/3/2008 Market | 67.92% | 836.9 462.22 | 265.56 | 129.45 182
(CDX 89) Bid/Ask | 0.56% | 9.21 9.07 9.11 4.97
Choi | 67.77% | 843.35 440.26 | 288.30 | 12556 | 1.63 167.54
Model | 68.02% | 840.96 44445 | 279.10 | 129.49 | 1.12 160.23
20/7/2008 Market | 51.55% | 447.32 240.75 | 124.01 | 66.66 115
(CDX S10) Bid/Ask | 0.78% | 7.37 6.5 4.75 3.37
Choi | 51.92% | 459.27 226.01 | 13951 |5156 | 2.78 102.64
Model | 51.84% | 455.65 23231 |132.85 |67.17 |1.14 102.23
16/9/2008 Market | 82.31% | 1202.27 |518.16 | 222.31 | 117.9 232.25
(CDX S7) Bid/Ask | 4.401% | 42 27.929 | 13.606 | 7.69
*Bloomberg Model | 77.32% | 1278.54 | 473.87 | 23353 | 112.72 | 1.28 232.41
16/10/2008 Market | 71.50% | 1297 676.67 | 209.34 | 66.50 173
(CDX S11) B/A 1.5% 50 26.67 |11.33 |10
Choi | 77.84% | 1386.39 |588.96 | 269.74 |53.74 | 3.52 162.14
Model | 71.61% | 1341.91 | 584.59 |237.99 | 6856 | 1.95 156.13

Table 7: The fitting results of the two-correlated-market-factor on market tranche spreads for the CDX
NA IG 5Y indexes between 2007-2008 and the past results of Choi [8]. The equity (0-3%) tranche pays
an upfront cash with 500-bps running spread. The other tranches are quoted on running coupons.

Additionally, our proposed model could price CDOs and its CDS index really
well with small RMSEs as compared to the results of Choi [8]. Choi [8] uses the
equity-credit intensity-Based model which is analogous to Mortensen [1]’s jump-
diffusion model. However there is trivial difference from Mortensen [1] that the CDO
tranche spreads and the CDS spreads are also dependent on the stock market index
such as the S&P 500 index. The link between the CDO and the S&P 500 index is
formed through correlated Brownian motions of the jump-diffusion model’ market
factor and the stock price model that has a stochastic variance process. According to
Choi [8]’s backward problem, the jump-diffusion model’s parameters are first
calibrated to market prices of the CDO and CDSs. Then relevant market factor’s
calibrated parameters are plugged into Black-Scholes model in order to extract
implied volatilities from S&P 500 options. Consequently, the CDO tranche spreads
and CDS spreads obtained by using this approach are not affected by changes in the
values of the Black-Scholes model’s parameters. Our empirical results from our
model and the past results from Choi [8] are shown in Table 7 and 8. Note that Choi
[8] assumes that the CDO portfolios are heterogeneous. The CDS index spread from
Choi [8] is the weighted average of all underlying CDS spreads.
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Date. Source | 0-3% 3-7% 7-10% | 10-15% | 15-30% | RMSE | 0-100%
(Series)
8/7/2009 Market | 64.00% | 34.89% | 16.73% | 6.80% | -0.83% 139.00
(CDX S12) Bid/Ask | 0.52% | 0.53% | 0.63% | 0.48% | 0.25%

Choi 66.67% | 29.97% | 15.73% | 7.61% | -0.94% | 4.86 130.06

Model | 63.93% | 33.34% | 18.19% | 831% | -0.82% | 2.18 127.70
8/9/2009 Market | 62.38% | 27.31% | 10.88% | 5.21% | -1.84% 121.00
(CDX S12) Bid/Ask | 0.50% | 0.50% | 0.50% | 0.50% | 0.29%

Choi 61.48% | 20.77% | 7.75% | 1.27% | -3.45% | 7.83 108.33

Model | 62.37% | 25.84% | 12.70% | 5.10% |-1.61% | 2.12 107.35
8/12/2009 Market | 53.42% | 22.54% | 857% | 1.75% | -2.44% 98.00
(CDX S13) Bid/Ask | 1.00% | 0.78% | 0.62% | 0.50% | 0.40%

Choi 54.74% | 19.45% | 9.05% | 3.88% |-1.26% | 2.99 95.11

Model | 53.49% | 2052% |8.99% |253% |-2.66% | 1.40 84.36
8/3/2010 Market | 53.81% | 19.75% | 7.38% | 0.88% | -2.60% 89.00
(CDX S13) Bid/Ask | 1.00% | 1.00% | 1.13% |0.75% | 0.50%

Choi 54.70% | 17.92% | 7.30% | 2.19% |-2.32% | 1.22 86.65

Model | 53.80% | 19.16% |7.75% | 1.67% |-2.91% | 0.63 82.74
8/6/2010 Market | 52.95% | 14.95% |-1.61% | 0.81% | -1.48% 141.00
(CDX 89) Bid/Ask | 0.52% | 0.45% | 0.43% |0.28% | 0.09%

Choi 52.27% | 8.38% | -3.62% | 0.96% |-1.98% | 7.32 127.57

Model | 53.42% | 13.06% | -2.62% | 0.96% | -1.47% | 2.47 147.78
8/9/2010 Market | 47.98% | 7.23% | -5.78% | 1.53% | -1.71% 118.00
(CDX 89) Bid/Ask | 0.25% | 0.25% | 0.25% | 0.26% | 0.05%

Choi 47.75% | 5.25% | -6.18% | -1.03% | -2.10% | 5.10 110.28

Model | 47.56% | 7.72% | -5.14% | 0.003% | -1.78% | 1.96 127.57

Table 8: The fitting results of the two-correlated-market-factor on tranche spreads of the CDX NA IG
5Y indexes between 2009-2010 and the past results of Choi [8]. The equity (0-3%) tranche, the first
mezzanine (3-7%) tranche, and the second mezzanine (7-10%) tranche pay upfront cashes with 500-
bps running coupons. The other tranches are quoted upfront cashes with 100-bps running coupons.
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CHAPTER VI
CONCLUSION AND FURTHER WORK

The purpose of the study is to propose the model that has the ability to create strong
default dependency of underlying assets for pricing CDOs. In doing so, we model the
default intensity processes of firms to have systematic or market factors shared among
firms. We define the market factors’ processes to have two components which are a
continuous process and a jump process. The continuous component follows the drift-
diffusion process. The jump process has the Gamma-Poisson mixture process as the
jump counting process and the jump sizes are exponential distributed. There are two
distinctive properties of our proposed model. First market factors can be correlated.
Second, the arrival rates of jumps in market factor intensities are driven by Gamma-
Poisson Mixture process.

Unfortunately, correlation between Brownian motions is not substantial
enough to construct fat-tailed distributions. However it is economically meaningful.
If market factors are positively correlated to each other, this yields in more dispersion
of the portfolio loss distribution. This applies to the case of negative correlation
among market factors as well but resulting in the reversed consequence. It is found to
be helpful to use the correlation parameter to particularly adjust spreads the equity
tranche and the first mezzanine tranche.

Empirical results show that the model that has two market factors has the
potential to create effective shapes of the portfolio loss distribution. The two-market-
factor model has even good performance in fitting index tranches traded during the
global financial crisis of 2008-2009. Incorporating three or more market factors in the
model are somewhat better but not significantly improving in pricing. The time spent
on calibration and computation is of course based on the number of model parameters.
The market factors should be selective and have abilities to introduce different
characteristics of distributions such as long tail, fat tail, and high serial correlation.

As the objective of the study, we compare our proposed model with the
existing credit risk models. Mortensen [1] uses Poisson processes to model jumps in
default intensities. The numerical results show that the Gamma-Poisson mixture
processes outperform the Poisson processes. Compared to the Poisson process, the
Gamma-Poisson mixture process has the ability to generate more shapes of the
portfolio loss distribution and even high serial default correlation. For example, the
jump process, which has independently exponential distributed jump sizes with the
large mean and Gamma distributed arrival rates with a small value of the shape
parameter and a large value of the scaled parameter, causes uprising in probability of
loss at the end of tail. It is used to fit the senior tranche and super senior tranche
spreads easily and doesn’t have any impact on other tranches.
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Peng and Kou [2] proposed the CS model that has market factors as
cumulative intensities to generate default clustering. Unlike us, they use Polya
(Gamma-Poisson mixture) processes to model jumps in term of cumulative
intensities. Peng and Kou [2] states that jumps in intensities don’t result in producing
simultaneous defaults. However our model that has the Gamma-Poisson mixture
process modeling jumps’ frequency can price all index tranche spreads with small
RMSEs like theirs. The results imply that the serial correlation in defaults that is
generated by the Gamma-Poisson process of our model is strong enough. In addition,
Peng and Kou [2]’s Conditional Survival Model is counterintuitive. Default intensities
can be infinity and untraceable if intensities are allowed to have jumps in cumulative
terms.

In conclusion, our model is efficient and dynamic enough to price all tranches
of CDOs and its CDS index. We also show the way to implement our model using
suggested methods: a Recursive method and Mimicking Markov chain method.

For further work, we plan to use our model applied to risk measure such as
value at risk and expected shortfall. We also want to improve the calibration
algorithm that is adequately fast and accessible to price sname CDS spread
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APPENDIX

A The Exponentially-Affine Characteristic Function

The exponentially-affine characteristic function f (¢, u, z, A, X) has jumps distributed
as Poisson with arrival rates A = {A;, 1 <i <]}, forall (t,u,z,A,X) € [0,T] X
R™ x R™ x [0, co]™ x R™ is written as

f(tu,z A X)) =exp (a(T —t,u,z)

m
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B CDS and CDO Framework

For a CDS, there are two counterparties that enter to a contract which are a protection
buyer (CDS buyer) and a protection seller (CDS seller). The premium leg corresponds
the periodic payments S; of the ith firm’s CDS that the protection buyer has to pay

until the credit event happens, defined as
M

. , : Tj :
PL.L = SIE Z exp (—r(min{Tj,r‘} - t))f I(z' > s)ds|,
j=1 Tj-1
where M is the number of coupon payment dates T;, T, ..., T);. When the default

event occurs, the protection seller covers the loss given firm i’s recovery rate R; for
the protection buyer represented by the default leg. The default leg is specified as

DL =E|(1—R)exp(—r(ci = £))I(z' < T)|.
Since the premium leg and the default leg have the equal value, the CDS spread of
DL
PLY
Let us consider the CDO tranches with a reference credit pool of n names. The
loss process of a portfolio at time ¢t is defined as

n
Ly = Z(l — RO 1y
i=1

firm i can be obtained by S} =

Ut[Kl'KZ] is the process of loss of the tranche at time ¢ for the attachment point K; and
the detachment point K,, defined as follows
ytkel(ty = (L, — K)* — (Le — Kp)*

Like CDS mechanism, there are protection sellers (CDO buyers) and
protection buyers (CDO sellers). The default leg refers to the present value of the sum
of contingent payments upon default that protection sellers (CDO buyers) must pay as
agreed. The default leg at time t is specified as

DL, =E U exp(—r(s — 1)) dU[Kl'KZ](s)l.

The premium leg is the sum of payments that the protection seller (CDO buyer)
receives from the protection buyer (CDO seller). Let St[Kl'KZ] denote the running
spread of the CDO tranche, F denote a fixed upfront fee. The premium payment at
time ¢t is defined as

T]- O[KanZ]

M
PL, = F(K, — K;) + S/ g Z exp (—r(Tj — t)) (1,-7T_,) | —=——as]|,
j=1 Tj-1 Tj =T

where the national outstanding 0! is given by
Ot[Kl'KZ] =K, — K, — U[Kl'KZ](t).

If default times are unknown, we assume that default occurring between
coupon dates. This assumption is used in Peng and Kou [2] and Mortensen [1].
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C Thinning Scheme Algorithm

The algorithm of Thinning scheme is used to generate sequences

of (T, Ix) k=12, Where the kth default time T, < T and the firm that defaults I;, < n,
where n is the number of underlying firms in a portfolio. Denote the number of
intervals M, the transition rate function h(t, B) where B = (B?,...,B™) € {0,1}", the
portfolio transition rate function H(t, k), and the majoring intensity function H*(i, k) .
Inputs are the current interval i such thati = {i*: L;s_; <t < L;+}, the firms’ states
vector M, the current time ¢, the number of the firms that have defaulted k, and the
vector Q/ which has that the jth element is equal to one and the rest of elements are
zero. First, we initialize t=0, k=0, T=0,, M=0, and i=1. Then we proceed as follows:

1.
2.

Generate x~exponential random variable with the mean H*(i, k).
Ift+x<L;set t —t+xandif t>Tori> M stop, else go to step 4. Else
ift+x > 1L;, gotostep 3.
Setx « H*(i, k)(t +x —Ly)/H* (i +1,k),t « L;,i « i+ 1. Gotostep 2.
Generate w,~random[0,1].
If w, < H(t,k)/H*(i, k), set T, « t and go to step 5. Otherwise, go to 1.
Define the defaulted firm J by drawing from the pool of survival firms. Each
n(t,Mr),)

H(t,k)
Thensetl, = J, Mg, ., = Mg, + Q’,and k = k + 1. Return to step 1.

firm j, 1 < j < n has the probability being selected as
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