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orem 4.4 with |ẋ1| ≤ 2 (solid lines) and Theorem 4.4 with |ẋ1| ≤ π (dash lines). . . . 35
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CHAPTER I

INTRODUCTION

1.1 Research motivation

In the last couple of years, the quad-rotor helicopter, shortly called the quadrotor, has recieved

increasingly significant attention as an Unmanned Aerial Vehicle (UAV) platform. The quadrotor

concept was established in an attempt to simplify many troublesome issues. Comparing to the

conventional helicopter, it is essentially simpler to build and control. Today, there are many useful

applications such as surveillance, rescue, scout, etc. Therefore, it is essential to autonomously

control its motion with accuracy.

Throughout the last 20 years, the Linear Parameter-Varying (LPV) control framework has

become a promising theoretical approach used to control mildly nonlinear systems. It gives the

better performance than what the classical Linear Time-Invariant (LTI) control can provide, while

the simplicity of the powerful LTI analytical tools are preserved. In this thesis, the LPV control

method is used to control the quadrotor, because it can be applied to the optimal and robust control

problems giving quite attractive results.

In practice, the limit of the force produced by each propeller may make the quadrotor unsta-

ble, if the controller is designed regardless of the input saturation. Thus, in this thesis, the control

theory for saturated linear systems is considered to be applied to the LPV control.

The controller obtained in this thesis is based on the full state feedback control. However, in

the real system, only partial information of the states can be observed from the noisy measurements.

Therefore, the state estimation problem is also considered in order that our controller can be applied

to the real system of the quadrotor.

1.2 Literature review

This section presents some important works on the control of the quadrotor and the develop-

ment of the LPV control framework.

1.2.1 Quadrotor dynamic modeling and control

The quadrotor has become a popular UAV platform in the last decade due to its simplicity

in building and control with many useful applications [1, 2]. Many researchers are interested in

studying the model of the quadrotor [3–6] as well as the development of the control algorithm

[7–10].
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Mistler et al. [9] presented the basic nonlinear dynamic model of the quadrotor and the full

state feedback control by means of the exact linearization. In their work, to simplify the nonlinear

model, the inputs and the outputs were decoupled into independent single input single output chan-

nels. This made the linearized model uncontrollable via the static state feedback control law. Thus,

a dynamic state feedback control law was given to solve this problem.

In many publications, e.g., [7,8], to simplify the controller design, the control loop is decou-

pled into translational control and orientational control. However, this is the wasteful cancellation

of the mutual dynamics.

There exist few researchs on the control of the quadrotor whose the actuators are saturated.

In Alexis et al. [11], the quadrotor dynamics was modeled as a piecewise linear system. Then, the

constrained finite time optimal control was used to stabilize the input-constrained quadrotor around

the nominal angles of operation. In this work, however, the control inputs were transformed into

total force in the z–direction and total torques in the roll angle, the pitch angle, and the yaw angle.

This representation somehow cannot reflect the real saturation of the control inputs.

Rangajeeva and Whidborne [10] applied the LPV control method. In his work, to control the

quadrotor in only the xy plane, the linear velocities in x and y directions, the roll angle, the pitch

angle, and the total thrust were considered as the time-varying parameters. The simulation results

were given to show that the LPV control outperforms theH∞ control.

Since the LPV control has been appeared to be a powerful tool in the control analysis of

uncertain nonlinear systems, in this thesis, we are interested in using it to optimally control the

quadrotor. Next, a review on the LPV control is given.

1.2.2 Linear Parameter-Varying Control

The LPV control framework, introduced by Shamma and Athans [12], was originated from

gain scheduling control [13, 14]. In brief, the gain scheduling is the controller design based on phi-

losophy of divide and conquer. A feedback control law of nonlinear and/or time-varying systems is

constructed from a collection of local LTI controllers that are designed for each local aspect. These

controllers are integrated in real-time via switching or interpolation according to the scheduling

variable for achieving the global control solution to the entire operating regime. Though the gain

scheduling control had been successfully applied to many engineering applications [13,15–17], it is

theoretically unable to guarantee stability of the systems. Therefore it was continuously developed

and eventually the concept of the LPV control was arisen.

In Shamma and Athans [12,18], the context of LPV systems was given along with the stability

condition guaranteeing performance robustness in such a slowly varying system. In addition, the

control of rate constrained LPV systems was also introduced in Shamma and Xiong [19].

In Packard [20], the state space H∞ control theory was taken into consideration of the LPV
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controller synthesis. The controller design was then treated as a finite-dimensional convex opti-

mization problem. The solvability condition through the linear matrix inequality (LMI) constraints

was also studied and given in Apkarian et al. [21, 22]. Kajiwara et al. [23] applied the LPV con-

trol method to the arm-driven inverted pendulum for obtaining a wide-range stabilization. Their

work illustrated that the LPV control outperforms the classical robust LTI control for both the H∞
synthesis and the µ synthesis in terms of performance robustness.

The stability analysis of LPV systems has been studied intensively [24,25]. It is quite similar

to the stability analysis of linear systems with uncertain parameters [26–31]. Thus, both are coex-

istingly devoloped. In Montagner et al. [32], the LMI conditions for the existence of a quadratic sta-

bilizing state feedback gain for LPV systems was given. By using the common quadratic Lyapunov

function, these conditions are adequate to guarantee stability of the LPV systems with unknown

or unbounded variation rate of the parameters. However, using this kind of the Lyapunov function

for guaranteeing all the admissible trajectories of the parameters makes the close-loop performance

suffered from the conservatism. In Geromel and Colaneri [33], the close-loop performance was

improved by replacing the common quadratic Lyapunov function with the parameter-dependent

quadratic Lyapunov function. Though the use of this kind of the Lyapunov function can signif-

icantly improve the close-loop performance, it requires the knownledge about the bound on the

variation rate of the parameters, which is rarely possible in practice. Thus, in this thesis, this prob-

lem will be considered.

Having been appeared in publications, the LPV control can be applied to many fields of

control with many successful applications [34–38]. In this thesis, we will focus only on the optimal

control of LPV systems, which will be used to control the quadrotor.

1.3 Thesis objective

The aim of this thesis is to control the quadrotor by using the LPV control method with input

saturation constraints. The nonlinear dynamic model of the quadrotor is first considered. Then, it

is transformed to an approximated LPV model in order that the LPV control can be applied. To

optimally control the quadrotor, the LQR control is considered to be applied to the LPV model of

the quadrotor. In practice, the quadrotor may be unstable, if the controller is designed regardless

of the saturation. Thus, the saturation constraints are also considered. In addition, only the partial

state of the quadrotor can be measured. In this thesis, a well-known nonlinear state estimator called

the EKF will be used to construct the output feedback controller.

1.4 Scope of thesis

1. To derive the nonlinear model and the LPV model of the quadrotor.
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2. To build a 3D simulation tool of the quadrotor.

3. To design the LPV controller that can optimally control the saturated LPV systems.

4. To autonomously control the quadrotor, whose the control inputs are bounded, by using the

output feedback LPV control method with saturation constraints.

1.5 Methodology

1. Literature review on the quadrotor dynamic modeling.

2. Literature review on the LPV modeling and control.

3. Literature review on the control of saturated linear systems.

4. Build a 3D visualization of the quadrotor simulation for testing the control algorithm.

5. Design the state feedback LPV controller with and without the saturation constraints and test

the controller.

6. Combine the EKF for constructing an output feedback controller.

1.6 Contributions

1. An LPV model of the quadrotor.

2. An LPV controller that can optimally control LPV systems with input saturation constraints.

3. An LPV controller that can autonomously control the quadrotor.

4. A 3D simulation tool used to verify the control of the quadrotor.

1.7 Thesis outline

The organization of this thesis is as the following. In the next chapter, an overview of the

related theories used in this thesis is given. Then, the dynamic modeling including the nonlinear

model and the LPV model of the quadrotor are presented in Chapter 3. In Chapter 4, the linear

parameter-varying quadratic regulator control problem is considered. Additionally, in Chapter 5,

the input saturation is taken into account. All the controllers derived from Chapter 4 and Chapter 5

are applied to the LPV model of the quadrotor and the simulation results are illustrated in Chapter

6. Finally, conclusions of this thesis are given in Chapter 7.



CHAPTER II

RELATED THEORIES

In this chapter, an overview of the related theories used in this thesis will be discussed. Since

the thesis is concerned with the control of LPV systems, the definition of the LPV systems is firstly

considered in Section 2.1. To extract any nonlinear models to an equivalent polytopic LPV repre-

sentation, in Section 2.2, the tensor product model transformation is considered. Next, in Section

2.3, to design the controller that can guarantee stability of the LPV systems, the Lyapunov stability

conditions, accompanying with various types of the Lyapunov function, are given. The aim of this

thesis is to design the controller by means of solving the LMI optimization problem. Therefore, in

Section 2.4, the preliminary LMI conditions are also given. As stated in the introduction, the control

design policy is to obtain the controller that can guarantee and minimize the worst case performance

of a given cost function. In Section 2.5, the linear quadratic regulator (LQR) control problem is then

considered. Of course, the problem is also treated to an LMI optimization problem. To do the linear

quadratic regulator, the system states are assumed to be known. This is rarely possible in practice.

Therefore, in Section 2.6, the problem of the optimal state estimation is considered.

2.1 Linear parameter-varying systems

The LPV systems can be viewed as a bridge between the linear systems and the nonlinear

systems. There are several representations of the LPV systems [39]. However, in this thesis, we

focus only on the LPV systems whose the parameters vary in a certain convex polytope, i.e.,

Definition 2.1 (polytopic LPV systems). An LPV system is called ‘polytopic’ if it can be represented
by the state space matrices, A(ρ), B(ρ), C(ρ), and D(ρ), which are the affine functions depending
on the parameter ρ. Moreover, the parameter ρ ranges over a fixed polytope. Clearly,

ρ ∈ co {ρ1, . . . , ρN} (2.1)

and the state-space matrices range over a matrix polytopeA(ρ) B(ρ)

C(ρ) D(ρ)

 ∈ co


A(ρi) B(ρi)

C(ρi) D(ρi)

 , ∀i ∈ I[1, N ]

 , (2.2)

where I[1, N ] denotes the set of intergers from 1 to N .

By treating the nonlinear system of the form

ẋ = f(x, u), (2.3)

y = h(x, u), (2.4)
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to the linear system subject to the variable parameter ρ, i.e.,

ẋ = A(ρ)x+B(ρ)u, (2.5)

y = C(ρ)x+D(ρ)u, (2.6)

the control of this nonlinear system then falls to the scope of the Linear Time-Varying (LTV) control.

Though the LPV systems are similar to the LTV systems, the parameter trajectories of the LPV

systems are unknown in advance. This distinguishes the LPV systems from the LTV systems. The

control of the LPV systems involves the behavior of the systems along the admissible trajectories.

In contrast, the behavior of the LTI systems is valid only some particular value of the parameters.

2.2 Tensor product model transformation

The Tensor Product (TP) model transformation is a numerical reconstruction of the Higher-

Order Singular Value Decomposition (HOSVD) [40] of continuous functions. It was first used in

the controller design by Peter Baranyi [41] through the capable of transforming a given nonlinear

function into a finite basis TP structure. For any nonlinear functions, possibly matrix or even tensor,

the TP model is given by

F (x) = F ⊗Nn=1 wn(xn)

=

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

N∏
n=1

ωn,in(xn)Fi1,i2,...,iN , (2.7)

for any parameter x, as the parameter-varying combination of a finite number of the basesFi1,i2,...,iN .

More details about the tensor operations can be found in [40]. The TP model has various forms.

Here, we consider only the TP model that is the convex function, i.e., ωn,in(xn) ≥ 0, for all

n, in, xn and
∑In

in=1 ωn,in(xn) = 1, for all n, xn. Further details on the TP model are provided

in [42–45]. In order to obtain the TP model of any nonlinear functions, we use the MATLAB

toolbox called the TP tool, which is free downloadable at [46].

2.3 Lyapunov stability analysis

The Lyapunov stability analysis play a fundamental role in the stability analysis of dynamical

systems. For a dynamical system defined by

ẋ = f(x), (2.8)

such that x ∈ Rn and f : Rn → Rn, the point x∗ at which f(x∗) = 0 is called the equilibrium

point or rest point of the system. It is stable in sense of the Lyapunov stability if for any given

bounded neighbourhood U of x∗, there exists V ⊆ U such that any solution x(·) starting in V

never leaves U . The Lyapunov stability is named to celebrate Aleksandr Mikhailovich Lyapunov,
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a Russian mathematician, who proposed the methods for demonstrating the stability of dynamical

systems. In his original work [47], the two methods for proving the stability were presented. The

first method proved the stability by considering the convergence within the limits of the solution

to the dynamical systems. The second method concerned with seeking the Lyapunov function

V (x) : Xn ⊆ Rn → R, defined around x∗, such that

a) V (x∗) = 0, V (x) > 0 ∀x ∈ Xn\{x∗}, and

b) V̇ (x) := 〈OV (x), f(x)〉 ≤ 0 ∀x ∈ Xn.

Clearly, the Lyapunov function is a non-negative function having a strict minimum on Xn at x∗.

In this thesis, we are interested only the use of the second method. Next, we will consider various

kinds of the Lyapunov function used in this thesis.

2.3.1 Common quadratic Lyapunov function

Consider the following LPV system

ẋ = A(ρ)x. (2.9)

One typical Lyapunov function is a positive definite quadratic function of the form

V (x) = xTPx, (2.10)

where P is a positive defintie matrix. Its time derivative is computed as follows

V̇ (x) = xT
(
PA(ρ) +A(ρ)TP

)
x. (2.11)

Thus, to verify the stability of the LPV system (2.9), one might seek for a positive definite matrix

P such that

PA(ρ) +A(ρ)TP ≤ 0, (2.12)

for all possible A(ρ).

2.3.2 Parameter-dependent quadratic Lyapunov function

Since we are dealing with the LPV systems, it is too restrictive to use the common P for all

possibleA(ρ). An alternative choice of the quadratic Lyapunov function is the use of the parameter-

dependent positive definite matrix P (ρ). This leads to the following quadratic Lyapunov function

V (x) = xTP (ρ)x. (2.13)

With this Lyapunov function, we have the following time derivative

V̇ (x) = xT
(
Ṗ (ρ) + P (ρ)A(ρ) +A(ρ)TP (ρ)

)
x. (2.14)



8

Therefore, to verify the stability of the LPV system (2.9), one might seek for a positive definite

matrix-valued function P (ρ) such that

Ṗ (ρ) + P (ρ)A(ρ) +A(ρ)TP (ρ) ≤ 0, (2.15)

for all possible trajectory of the parameter.

2.3.3 Composite quadratic Lyapunov function

The difficulty of using the parameter-dependent quadratic Lyapunov function arises when the

matrix derivative term appears. This will be discussed later in Chapter 4. To avoid this problem,

we consider the use of the composite quadratic Lyapunov function [48, 49]. With a set of positive-

definite matrices {P1, . . . , PN}, let Qi = P−1
i for all i ∈ I[1, N ]. For a vector ρ ∈ ΛN such

that

ΛN =

{
ρ ∈ RN :

N∑
i=1

ρi = 1, ρi ≥ 0 ∀i ∈ I[1, N ]

}
, (2.16)

the two positive definite matrix-valued functions are defined as follows

Q(ρ) :=
N∑
i=1

ρiQi, (2.17)

P (ρ) := Q(ρ)−1. (2.18)

With these definitions, we obtain the composite quadratic Lyapunov function, which is defined by

Vc(x) := min
ρ∈ΛN

xTP (ρ)x. (2.19)

Clearly, Q(ρ), P (ρ) > 0 for all ρ ∈ ΛN and Vc(·) is a non-negative function that is continuously

differentiable. A very nice property of the composite quadratic Lyapunov function is stated as the

following lemma.

Lemma 2.1 (Composite quadratic Lyapunov function). Let ρ∗(x) be the optimal ρ such that

xTP (ρ∗(x))x = min
ρ∈ΛN

xTP (ρ)x, (2.20)

then the derivative of Vc(x) with respect to x is computed as follows

∂Vc
∂x

= 2P (ρ∗(x))x. (2.21)

Proof. See Appendix A.1 in [48].

Using this lemma, the term Ṗ (ρ) in the time derivative of the Lyapunov function (2.14) is vanished.

2.4 Linear matrix inequality

In this thesis, the LMI is the main tools used to design the controller, especially in the Lya-

punov stability analysis. Generally, the LMI is used to formulate the convex optimization problem,

then it is solved by the LMI tools provided by MATLAB. In this section, the preliminary LMI

conditions used in this thesis are given.
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2.4.1 Schur complement

In the matrix theory, the Schur complement of the matrix block D in X , such that

X =

A B

C D

 , (2.22)

is defined by

S = A−BD−1C. (2.23)

It is named to celebrate Issai Schur, who used the above definition to prove the Schur’s lemma [50].

The Schur complement is provably useful in the LMI optimization problems [51]. Let X be a

symmetric matrix given by

X =

 A B

BT C

 , (2.24)

and S be the Schur complement of the matrix block C in X , i.e.,

S = A−BC−1BT . (2.25)

If C > 0, then X ≥ 0 if and only if S ≥ 0. Clearly, the condition S ≥ 0 is nonlinear in B and C.

However, if the condition C > 0 is satisfied, then the linear condition X ≥ 0 can be used instead.

2.4.2 Containment of an ellipsoid inside a polyhedron

Consider a polyhedral set defined by

L(K,σ) :=
{
x ∈ Rn : K ∈ Rm×n, |kix| ≤ σ, ki : ith row of K

}
. (2.26)

Since the Lyapunov function, defined by V (x) = xTPx, is related to an ellipsoidal set of the form

E(P, γ) :=
{
x ∈ Rn : xTPx ≤ γ, P = P T > 0

}
, (2.27)

it is easier to verify the stability of an ellipsoidal set than the polyhedral set. Therefore, we will

restrict our analysis domain in an inner approximated ellipsoidal set of the polyhedral set. As stated

in [52], we have the following LMI condition, which is used to verify the containment of an ellipsoid

inside the polyhedron.

Lemma 2.2 (Containment of an ellipsoid inside the polyhedron). For a matrix P = P T > 0 ∈
Rn×n, a matrix K ∈ Rm×n, and two positive scalars σ and γ, let ki be the ith row of K. The
ellipsoid E(P, γ) is inside the polyhedron L(K,σ) if and only if

γkiP
−1kTi ≤ σ2 ⇔

 σ2 ki (P/γ)−1

(P/γ)−1 kTi (P/γ)−1

 ≥ 0, ∀i ∈ I[1,m].

This lemma will be useful in the analysis of saturated systems, which will be seen later in Chapter

5.
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2.5 Linear quadratic regulator

To obtain the controller that can guarantee and minimize the worst case performance of a

given quadratic cost function, in this section, the LQR control is studied. For a given LTI system

ẋ(t) = Ax(t) +Bu(t), (2.28)

the LQR control seeks for a state feedback control law

u(t) = −Kx(t), (2.29)

that is not only asymptotically stabilizable (2.28), but also the best choice among all such the feed-

back control law, regarding to the performance criterion of the form

J(x(0), u(·)) =

∫ ∞
0

(
u(t)TRu(t) + x(t)TQx(t)

)
dt. (2.30)

The solution of this problem is related to finding a positive definite matrix P satisfying the following

Algebraic Riccati Equation (ARE) [53]

ATP + PA− PBR−1BP +Q = 0, (2.31)

and the optimal state feedback gain, corresponding to the ARE, is computed as follows

K = R−1BTP. (2.32)

A systematic way for solving this problem is stated in the following theorem

Theorem 2.1 (Linear quadratic regulator via linear matrix inequality optimization). Assume the
existence of a positive definite matrix Y and an arbitrary real matrix L satisfying

max
Y, L

tr(Y )

s.t.


−(AY −BL)− (AY −BL)T Y LT

Y Q−1 0

L 0 R−1

 > 0, (2.33)

then the LTI system (2.28) under the control law (2.29) satisfies

J(x(0), u(·)) < min
Y, L

x(0)TPx(0),

where K = LP and P = Y −1.

Proof. See Appendix A.1.1
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2.6 Optimal state estimation

In practical consideration, the process noise causes the actual state of the system to diverge

from the desired state. While the full state of the system cannot be observed, we have only the

partial information of the system from the noisy measurement data. So as to do the full state

feedback control, in this section, the optimal state estimation will be considered.

The Kalman filter, established in 1960s by Rudolf E. Kalman [54], is known as a fundamental

tool for solving the estimation problem. In general, the Kalman filter applications are implemented

in the discrete-time domain. However, in this thesis, to study the behavior of the dynamical system,

the Kalman filter is considered to be implemented in the continous-time domain. The continuous-

time Kalman filter is the collaborated work of Rudolph Kalman and Richard Bucy. Thus, it is

sometimes called the Kalman-Bucy filter [55]. For any linear systems, the Kalman filter performs

recursively the estimation on streams of noisy data to produce a minimum mean square estimation

error. Nevertheless, to deal with the nonlinear model of the quadrotor, the Kalman filter cannot give

the satisfactory result. Therefore, we need to explore the nonlinear extension of the Kalman filter.

The Extended Kalman Filter (EKF) [56], which was proposed by Stanley Schmidt, is selected. The

basic idea underlying the EKF is that the nonlinear system is linearized around the estimated state,

then the conventional Kalman filter is applied.

Before we move on to the state estimation problem, the relationship between the continuous-

time and the discrete-time white noise is first considered. Then, the continous-time EKF algorithm

will be given. Finally, to ensure that the optimal state estimation is well defined for the optimal

control problem, the principle of the separation between the optimal control and the optimal state

estimation will be discussed.

2.6.1 Continuous-time white noise

In practice, both the process noises and the measurement noises are acquired and expressed

in the discrete-time covariance matrices. However, to study the behavioral dynamics of the quadro-

tor, the continuous-time filter is considered. In particular, for simulating purpose, the relationship

between the discrete-time and the continuous-time white noise is given as the following:

Process noise

The continuous-time process noise is defined by

E
[
w(t)w(τ)T

]
= Qcδ(t− τ), (2.34)

where δ(·) is the impulse function. From this definition, we have the following relationship between

the discrete-time and the continuous-time process noise

Qc = Qd/T. (2.35)
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To be cleared, the continuous-time dynamical system having the identity state transition matrix will

be considered

ẋ(t) = w(t), (2.36)

w(t) ∼ (0, Qc). (2.37)

The discrete-time model with a sample time of T , approximated to the above system, is computed

as follows

xk = xk−1 + wk−1, (2.38)

wk ∼ (0, Qd). (2.39)

It is assumed that the initial condition is zero. The state covariance, derived from the continuous-

time model, is computed as follows

E
[
x(t)x(t)T

]
=

∫ t

0

∫ t

0
E
[
w(α)w(β)T

]
dαdβ

= Qct, (2.40)

and also the state covariance, derived from the discrete-time model, is computed as follows

E
[
x(t)x(t)T

]
= E

[
xkx

T
k

]
= E

[
(w0 + . . .+ wk−1)(w0 + . . .+ wk−1)T

]
= kQd. (2.41)

Since t = kT , this implies that

Qd = QcT. (2.42)

Here, we see that the state covariance of the continuous-time model and the discrete-time model

increases with time in exactly the same way. Although it is counter-intuitive because w(t) is zero

correlated with w(τ) when t 6= τ , but it is infinitely correlated with w(τ) when t = τ . However, it

is mathematically well defined, which can describe the real processes approximately.

Measurement noise

The continuous-time measurement noise is defined likewise the continuous-time process

noise. That is

E
[
v(t)v(τ)T

]
= Rcδ(t− τ), (2.43)

where δ(·) is the impulse function. Nevertheless, the relationship between the discrete-time and the

continuous-time measurement noise is given by

Rc = RdT. (2.44)



13

This relationship is obtained by considering the following discrete-time measurement model, de-

rived approximately from the continuous-time measurement model.

yk =
1

T

∫ tk

tk−1

y(t)dt

=
1

T

∫ tk

tk−1

(Cx(t) + v(t)) dt

≈ Cxk +
1

T

∫ tk

tk−1

v(t)dt. (2.45)

This implies that

vk =
1

T

∫ tk

tk−1

v(t)dt. (2.46)

Consequently, we have

Rd = E
[
vkv

T
k

]
=

1

T 2

∫ tk

tk−1

∫ tk

tk−1

E
[
v(α)vT (β)

]
dαdβ

= Rc/T. (2.47)

Now, we have the conversion between the discrete-time white noise and the continous-time

white noise. Next, we will consider the problem of the optimal state estimation of the continuous-

time nonlinear systems.

2.6.2 Continuous-time extended Kalman filter

As mentioned before, the Kalman filter is known as a linear quadratic estimator giving least

mean square estimation error. However, if the systems we are interested are nonlinear systems, the

conventional Kalman filter is inadequate for estimating the system state. Thus, the continuous-time

EKF is given here. Its algorithm can be summarized as follows.

Algorithm 2.1 (Continuous-time extended Kalman filter).

1. Suppose that the nonlinear dynamic system is given by the following equations:

ẋ = f(x, u, w), (2.48)

y = h(x, v), (2.49)

w ∼ (0, Qc), (2.50)

v ∼ (0, Rc), (2.51)

where w and v are assumed to be continuous-time zero mean white gaussian noises.
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2. Compute the following Jacobian matrices, then evaluate them at the current estimated state:

A =
∂f

∂x

∣∣∣∣
x̂

, (2.52)

L =
∂f

∂w

∣∣∣∣
x̂

, (2.53)

C =
∂h

∂x

∣∣∣∣
x̂

, (2.54)

M =
∂h

∂v

∣∣∣∣
x̂

. (2.55)

3. Compute the following matrices:

Q̃ = LQcL
T , (2.56)

R̃ = MRcM
T . (2.57)

4. Initialize the following mean and covariance:

x̂(0) = E [x(0)] , (2.58)

P (0) = E
[
(x(0)− x̂(0))(x(0)− x̂(0))T

]
. (2.59)

5. As the system is processing, execute the following Kalman filter equation:

Ṗ = AP + PAT + Q̃T − PCT R̃−1CP, (2.60)

K = PCT R̃−1, (2.61)

x̂ = f(x̂, u, 0) +K(y − h(x̂, 0)). (2.62)

Obviously, the continuous-time EKF is straightforward combination of the continous-time

Kalman filter and the conventional discrete-time EKF. The full derivation of the algorithm stated

above can be found in [57], Chapter 13.

2.6.3 The separation principle

Taking into account the process noise and the measurement noise of the optimal state feed-

back control, this leads to the so-called optimal stochastic control. The problem of designing an

optimal state feedback control for a stochastic system is involved. To facilitate the design, the sep-

aration principle, formally known as a principle of separation of estimation and control, will be

discussed.

The separation principle states that if the state feedback control loop and the state estima-

tion loop are both stable, then the overall system is stable. To proof the separation principle, the

following linear, possibly time-varying, system will be considered

ẋ(t) = Ax(t) +Bu(t), (2.63)

y(t) = Cx(t). (2.64)
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Here, the optimal state feedback control law is given by

u = −Kcx̂, (2.65)

and the optimal state estimator is computed as follows

˙̂x = (A−KeC)x̂+Bu+Key. (2.66)

By defining the estimated error as e = x − x̂, the closed-loop dynamics can be written as the

following ẋ
ė

 =

A−BKc BKc

0 A−KeC

x
e

 . (2.67)

Since the system matrix is a triangular matrix, the stability of the state feedback control and the state

esimation are obviously independent. Figure 2.1 illustrates the block diagram of the state feedback

control of stochastic systems. This shows that the state feedback control and the state estimation

can be separated explicitly.

u(t)

w(t)

v(t)

C

C

A

A

1
s
_

1
s
_

Ke

-Kc

B

B

Optimal control

Optimal state estimate

+
+

+
-

+

+
+

+

+
+

x̂(t)

x(t)

y(t)

ŷ(t)

Figure 2.1: Optimal stochastic linear quadratic regulator control.



CHAPTER III

QUAD-ROTOR HELICOPTER DYNAMIC MODELING

In order to control any dynamical systems, the dynamic model is firstly required. Therefore,

this chapter is dedicated to the dynamic modeling of the quadrotor. In Section 3.1, the representation

of rigid motions in the three dimensional space is considered. The goal of this section is to provide

the mathematical tools that will be used to represent the kinematics of the quadrotor. In Section 3.2,

the nonlinear dynamic model of the quadrotor, including its kinematics and dynamics, is derived.

To apply the LPV control, in Section 3.3, the nonlinear dynamic model is then transformed to an

approximated LPV dynamic model.

3.1 Rigid motions in the three dimensional space

This section is related to establishing the representation of the kinematics of moving objects

on the Earth-fixed coordinate frame, which is an inertial space. Of course, both the Earth-fixed

coordinate frame and the Body-fixed coordinate frame, which is attached to the objects, are the

cartesian coordinate. And also, the attitude of the objects comprises the positions and the orienta-

tions. To represent the positions, we project all forces into the Earth-fixed coordinate frame, then

apply the Newton’s law, ΣF = ma. Because the objects are rotateable, the angles used to compute

the projection of the forces are also variable. Therefore, in this section, the rotation matrix, the

coordinate rotation, the Euler angles, and the Euler angle rates used to describe the relationship

between the moving objects and the fixed coordinate frame will be considered.

3.1.1 Rotation matrix and the coordinate rotation

The rotation matrix is a matrix that can rotate the vector with the same length. There are two

possible conventions for defining the rotation matrix: the rotation of an object relative to the fixed

reference frame and the rotation of the reference frame. However, in the attitude representation, only

the rotation of the reference frame is used. For example, in Figure 3.1, the point v is represented by

the two coordinate frames specified by v0 and v1. The rotation matrix describing the relationship

between these two coordinate frames is given by

Rθ =

 cθ sθ

−sθ cθ

 , (3.1)

and the relationship between v0 and v1 is obtained as follows

v1 = Rθv
0. (3.2)
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Figure 3.1: Rotation of the reference frame.

In the three-dimensional coordinate systems, the basic rotation matrices representing the ro-

tation about the x-axis, y-axis, and z-axis are given by

Rx,θ =


1 0 0

0 cθ sθ

0 −sθ cθ

 , Ry,θ =


cθ 0 −sθ
0 1 0

sθ 0 cθ

 , Rz,θ =


cθ sθ 0

−sθ cθ 0

0 0 1

 ,
respectively. It is easy to verify that these basic rotation matrices have the following property

(Ri,θ)
−1 = (Ri,θ)

T , (3.3)

where i represents x, y, or z. The multiplication of two rotation matrices yields another rotation

matrix. Thus, we can form a more complex rotation matrix by multiplying the above basic rotation

matrices. For example, we assume that a point p can be represented by the coordinates specified by

p0, p1, p2, and the relationship among these representations are

p1 = Rx,φp
0, (3.4)

p2 = Ry,θp
1, (3.5)

p2 = Rxyp
0. (3.6)

Comparing the equations (3.4)-(3.6), we can immediately infer that

Rxy = Ry,θRx,φ

=


cθ sφsθ −cφsθ
0 cφ sφ

sθ −sφcθ cφcθ

 . (3.7)

Figure 3.2 illustrates the composition of the rotations about the x-axis and the y-axis respectively.

To describe any rotation in a three-dimensional space, let us consider the triple rotations in

which the first rotation is an angle φ about the i-axis, the second rotation is an angle θ about the
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Figure 3.2: Composition of the coordinate rotations.

j-axis, and the third rotation is an angle ψ about the k-axis. For convenience, these angles are

arranged in a three-dimensional vector, called the Euler angle vector and defined by

α := [φ θ ψ]T . (3.8)

The function that maps the Euler angles to its corresponding rotation matrix Rijk is defined by

Rijk(φ, θ, ψ) := Rk(ψ)Rj(θ)Ri(φ). (3.9)

Obviously, there exist twelve possibilities of the permutation used to form the rotation matrices,

which can be used to describe any rotation in the three dimensional space. In the general case,

let pE ∈ R3 be a vector in the Earth-fixed coordinate frame and pB ∈ R3 be the same vector that

is expressed in the Body-fixed coordinate frame. One of the functions that maps the Euler angle

vector to the rotation matrix is obtained as follows

Rxyz(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ)

=


cθcψ cφsψ + sφsθcψ sφsψ − cφsθcψ
−cθsψ cφcψ − sφsθsψ sφcψ + cφsθsψ

sθ −sφcθ cφcθ

 , (3.10)

and the relationship between the vector pE and the vector pB is computed by

pB = Rxyz(φ, θ, ψ)pE. (3.11)

Discussed thus far, we have considered only the coordinate transformation in terms of the

positions as a function of the Euler angle vector. Since the Euler angles are changed while the

object is rotating. In order to determine the value of the Euler angles, we will then consider the

time-derivative of the Euler angles.

3.1.2 Angular velocities in the rotating coordinate

The time-derivative of the Euler angles, called the Euler angle rates, are the angular veloc-

ities of the objects relative to the rotating coordinate. To compute the Euler angle rates, we have
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to express them as the functions of the angular velocities of the object relative to itself. For con-

venience, we define the three dimensional angular velocities relative to the Body-fixed coordinate

frame as follows

ωB := [p q r]T . (3.12)

The superscript ’B’ denotes that the angular velocities are expressed in the Body-fixed coordinate

frame. Furthermore, we also define the following Euler angle rate matrix

EB
ijk(φ, θ, ψ) :=

[
Rk(ψ)Rj(θ)êi, Rk(ψ)êj , êk

]
, (3.13)

where êi, êj , and êk are the unit directional vectors in the i, j, and k directions respectively. The

Euler angle rate matrix is used to transform the Euler angle rates to the angular velocities of the

objects relative to the Body-fixed coordinate frame. More details about the angular velocities of the

rotating coordinate are provided in [58], Section 4.2-4.4. If the rotation matrix used to transform

the coordinate is defined as (3.10), then we have

ωB = EB
xyz(α)α̇, (3.14)

where

EB
xyz(α) =


cθcψ sψ 0

−cθsψ cψ 0

sθ 0 1

 . (3.15)

As a result, we obtain the Euler angle rate vector as a function of the Euler angle vector and the

angular velocities of the object relative to the Body-fixed coordinate frame as follows
φ̇

θ̇

ψ̇

 =


cψ/cθ −sψ/cθ 0

sψ cψ 0

−cψtθ sψtθ 1



p

q

r

 (3.16)

To this end, we obtain the attitude representation that can fully describe the kinematics of the objects

in the three dimensional space. In the next section, we will apply this attitude representation to the

quad-rotor helicopter for obtaining its dynamic model.

3.2 Nonlinear dynamic modeling

This section presents the nonlinear dynamic modeling of the quadrotor. As named, the

quadrotor is composed of four rotors. Each rotor comprises an electric DC motor and a rotor

blade. Figure 3.3 illustrates the quadrotor configuration. The forward motion of the quadrotor is

accomplished by increasing speed of the rear rotor (#3) while simultaneously reducing speed of

the forward rotor (#1) at the same amount. The aft, left, and right motions work similarly. The

rotation around the yaw angle is accomplished by accelerating or decelerating the two clockwise
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Figure 3.3: Quadrotor configuration.

turning rotors (#1, #3) while anti-accelerating or anti-decelerating the counter-clockwise turning

rotors (#2, #4).

The equations describing the motions of the quadrotor are related to the basic rotation of a

rigid body having six degrees of freedom. They can be separated into the following kinematics and

dynamics.

3.2.1 Kinematics

The kinematic equations are related to the motion of the quadrotor without consideration of

the forces and torques driving its motion. In the three dimensional space, let the position of the

quadrotor is defined by r := [rx ry rz]
T , the velocity of the quadrotor that is the time-derivative of

the position is defined by v := [vx vy vz]
T , the angular velocity of the quadrotor relative to itself is

defined by ω := [p q r]T , and the Euler’s angle is defined by α := [φ θ ψ]T . Furthermore, let the

superscript ’B’ and ’E’ are used to denote that the variables are defined relatively to the Body-fixed

coordinate frame and the Earth-fixed coordinate frame respectively. From the previous section, we

readily obtain the following kinematic equations describing the motion of the quadrotor,
rE
x

rE
y

rE
z

 =


cθcψ −cθsψ sθ

cφsψ + sφsθcψ cφcψ − sφsθsψ −sφcθ
sφsψ − cφsθcψ sφcψ + cφsθsψ cφcθ



rB
x

rB
y

rB
z

 , (3.17)

and 
φ̇

θ̇

ψ̇

 =


cψ/cθ −sψ/cθ 0

sψ cψ 0

−cψtθ sψtθ 1



p

q

r

 . (3.18)

3.2.2 Dynamics

The dynamic equations are concerned with the motion of the quadrotor influenced by the

external forces and torques. By applying the Newton’s laws at the center of the mass, we obtain the
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following dynamic equations

mr̈E =
∑

F E
ext, (3.19)

Jω̇B = −ωB × JωB +
∑

TB
ext, (3.20)

where m is the total mass of the quadrotor,
∑
F E

ext is the summation of the external forces repre-

sented in the Earth-fixed coordinate frame,
∑
TB

ext is the summation of the external torques repre-

sented in the Body-fixed coordinate frame, and J is the inertia matrix given by

J =


Ix 0 0

0 Iy 0

0 0 Iz

 . (3.21)

The exogenous forces and torques acting on the quadrotor consist of the gravity, thrusts, drags,

gyroscopic effects, and aerodynamic effects. Of course, the gravity is considered as a constant.

The thrusts, which are the inputs of this system, are produced by the rotor blades. The drags

and gyroscopic effects occur when the quadrotor is moving and rotating. However, the amount of

these two terms are very small. Therefore, to simplify our model, they are ignored. In practical

consideration, the aerodynamic effects, such as airflow disruption, are hardly possible to anticipate

their models. In this thesis, we treat them as the process noises which will be discussed later in

Chapter 6.

Let Fi be the force produced by the ith rotor blade, the summation of the external forces

represented in the Earth-fixed coordinate frame is obtained as follows

∑
F E

ext = Rxyz(φ, θ, ψ)T


0

0∑4
i=1 Fi

−


0

0

mg



=


sθ
∑4

i=1 Fi

−sφcθ
∑4

i=1 Fi

cφcθ
∑4

i=1 Fi −mg

 . (3.22)

On the other hand, the summation of the external torques represented in the Body-fixed coordinate

frame is obtained as follows

∑
TB

ext =


`(F2 − F4)

`(F3 − F1)

d(F1 + F3 − F2 − F4)

 , (3.23)

where l is the lever and d is the scaling factor between the lift force and drag force produced by

each rotor blade. Now, let the state vector and the control input vector of the quadrotor dynamic

model are defined by
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x =
[
vE
x vE

y vE
z rE

x rE
y rE

z p q r φ θ ψ
]T
, (3.24)

u = [F1 F2 F3 F4]T , (3.25)

respectively, the nonlinear dynamic model of the quadrotor is obtained as follows

ẋ = f(x, u) =



sθ(
∑4

i=1 Fi)/m

−sφcθ(
∑4

i=1 Fi)/m

cφcθ(
∑4

i=1 Fi)/m− g

vE
x

vE
y

vE
z

`(F2 − F4)/Ix − qr(Iz − Iy)/Ix

`(F3 − F1)/Iy − pr(Ix − Iz)/Iy

d(F1 + F3 − F2 − F4)/Iz − pq(Iy − Ix)/Iz

pcψ/cθ − qsψ/cθ
psψ + qcψ

(qsψ − pcψ)tθ + r



. (3.26)

3.3 LPV dynamic modeling

In order to apply the LPV control strategies, the nonlinear model of the quadrotor derived

in the previous section is required to be transformed to the LPV model. The structure of the LPV

model we are interested is discussed in Section 2.1. To obtain the polytopic structure from the

nonlinear model of the quadrotor, the nonlinear model is linearized in the following

f(x, u) ≈ f(x∗, u∗) +
∂f(x, u)

∂x

∣∣∣∣
(x∗,u∗)

(x− x∗) +
∂f(x, u)

∂u

∣∣∣∣
(x∗,u∗)

(u− u∗). (3.27)
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The Jacobian matrices are computed as follows

∂f(x, u)

∂x
=


03×3 03×3 03×3 Ā1

I3×3 03×3 03×3 03×3

03×3 03×3 Ā2 03×3

03×3 03×3 Ā3 Ā4

 , (3.28)

∂f(x, u)

∂u
=



sθ/m sθ/m sθ/m sθ/m

−sφcθ/m −sφcθ/m −sφcθ/m −sφcθ/m

cφcθ/m cφcθ/m cφcθ/m cφcθ/m

03×1 03×1 03×1 03×1

0 `/Ix 0 −`/Ix

−`/Iy 0 `/Iy 0

d/Iz −d/Iz d/Iz −d/Iz

03×1 03×1 03×1 03×1



, (3.29)

where

Ā1 =


0 cθ(

∑4
i=1 Fi)/m 0

−cφcθ(
∑4

i=1 Fi)/m sφsθ(
∑4

i=1 Fi)/m 0

−sφcθ(
∑4

i=1 Fi)/m −cφsθ(
∑4

i=1 Fi)/m 0

 ,

Ā2 =


0 r(Iy − Iz)/Ix q(Iy − Iz)/Ix

r(Iz − Ix)/Iy 0 p(Iz − Ix)Iy

0 0 0

 ,

Ā3 =


cψ/cθ −sψ/cθ 0

sψ cψ 0

− cψtθ sψtθ 1

 ,

Ā4 =


0 (pcψ − qsψ)tθ/cθ −(psψ + qcψ)/cθ

0 0 pcψ − qsψ
0 (qsψ − pcψ)/c2

θ (psψ + qcψ)tθ

 .
Then, they are evaluated at

x∗ =
[
0 0 0 rE

x rE
y rE

z 0 0 0 0 0 ψ
]T
, (3.30)

u∗ = [mg/4 mg/4 mg/4 mg/4]T . (3.31)

Consequently, we have the following LPV model of the quadrotor

ẋ = A(ψ)x+B(u− u∗), (3.32)

where
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A(ψ) =



0 0 0 0 0 0 0 0 0 0 g 0

0 0 0 0 0 0 0 0 0 −g 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 cψ −sψ 0 0 0 0

0 0 0 0 0 0 sψ cψ 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0



, (3.33)

B =



0 0 0 0

0 0 0 0

1/m 1/m 1/m 1/m

0 0 0 0

0 0 0 0

0 0 0 0

0 `/Ix 0 −`/Ix

−`/Iy 0 `/Iy 0

d/Iz −d/Iz d/Iz −d/Iz

0 0 0 0

0 0 0 0

0 0 0 0



. (3.34)

Finally, the matrix A(ψ) is transformed to the polytopic structure. That is

A(ρ) =

4∑
i=1

ρi(ψ)Ai, (3.35)

where each element in Ai is equal to the element in A(ψ) except the nonlinear part that is equal to

a1, a2, a3, and a4,

a1 =

−1 −1

1 −1

 , a2 =

1 −1

1 1

 , a3 =

−1 1

−1 −1

 , a4 =

 1 1

−1 1

 ,
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Figure 3.4: Parameter ρi as the function of ψ.

for A1, A2, A3, and A4 respectively. Here, the new parameters corresponding to the bases Ai for

all i ∈ I[1, 4] are computed as the following

ρ1 =

(
1 + sψ

2

)(
1− cψ

2

)
, (3.36)

ρ2 =

(
1 + sψ

2

)(
1 + cψ

2

)
, (3.37)

ρ3 =

(
1− sψ

2

)(
1− cψ

2

)
, (3.38)

ρ4 =

(
1− sψ

2

)(
1 + cψ

2

)
. (3.39)

Figure 3.4 illustrates the parameter ρi as the function of ψ.

In this chapter, we have derived the dynamical model of the quad-rotor helicopter. Both the

nonlinear model and its approximated LPV model have been considered. Next, in chapter 4, to

obtain the LPV state feedback control of the quadrotor, the LQR control of LPV systems will be

considered.



CHAPTER IV

CONTROL OF LINEAR PARAMETER-VARYING SYSTEMS

This chapter presents the control of polytopic LPV systems of the form

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t). (4.1)

We assume that the state space matrices A(ρ(t)) and B(ρ(t)) are the bounded continuous functions

depending affinely on ρ(t), i.e., ρ(t) = [ρ1(t) . . . ρN (t)]T and

A(ρ(t)) =
N∑
i=1

ρi(t)Ai , (4.2)

B(ρ(t)) =
N∑
i=1

ρi(t)Bi . (4.3)

We further assume that the real parameter vector ρ(t) is online measured and varied in a certain

polytope, i.e., ρ(t) ∈ ΛN such that

ΛN :=

{
λ ∈ RN :

N∑
i=1

λi = 1, λi ≥ 0

}
. (4.4)

For the sake of simplicity, the time specific t will be omitted. However, it is important to keep in

mind that the parameter still depends on time. In order to obtain a good state feedback controller,

this chapter provides the following. In Section 4.1, the stabilization problem of the LPV systems

(4.1) is first considered. The common quadratic Lyapunov function and the parameter-dependent

quadratic Lyapunov function are applied so that the quadratic Lyapunov stability conditions are

obtained. Then, in Section 4.2, all the results are extended to the LQR problem. These lead to the

linear parameter-varying quadratic regulator, which will be called LPVQR. The LPVQR computed

via the parameter-dependent quadratic Lyapunov function requires the knowledge about the bound

on the rate of the parameter. This is rarely available in practice. Therefore, in this section we also

propose the use of the composite quadratic Lyapunov function to avoid this problem.

4.1 Quadratic stabilization

The quadratic stabilization of LPV systems concerns with finding the state feedback con-

troller that makes the closed-loop systems satisfy the quadratic Lyapunov stability condition men-

tioned in Chapter 2.
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4.1.1 LPV quadratic stabilization via common quadratic Lyapunov function

The quadratic stabilization of the LPV system (4.1) considers the control law given by

u = −K(ρ)x, (4.5)

where K(ρ) =
∑N

i=1 ρiKi. Substituting (4.5) into (4.1), the closed-loop system can be written as

ẋ = (A(ρ)−B(ρ)K(ρ))x. (4.6)

The condition for the closed-loop system (4.6) to be quadratically stable is the existence of a

quadratic Lyapunov function such that V (0) = 0, V (x) > 0 and V̇ (x) < 0 for all x 6= 0. The

adoptation of the common quadratic Lyapunov function defined by

V (x) = xTPx, (4.7)

where P = P T > 0, results in the following time derivative of the Lyapunov function

V̇ (x) = xT
(
P (A(ρ)−B(ρ)K(ρ)) + (A(ρ)−B(ρ)K(ρ))T P

)
x. (4.8)

The neccessary and sufficient condition for quadratic stabilization of the LPV system (4.1) via the

common quadratic Lyapunov function is then obtained as the following lemma.

Lemma 4.1 (Quadratic stabilization of LPV systems via the common quadratic Lyapunov function).
The LPV system (4.1) is quadratically stabilizable via the common quadratic Lyapunov function if
and only if there exist a positive definite matrix Y and an arbitrary real matrix-valued function L(ρ)

such that
A(ρ)Y + Y A(ρ)T −B(ρ)L(ρ)− L(ρ)TB(ρ)T < 0. (4.9)

Consequently, the LPV stabilizing gain is given by

K(ρ) = L(ρ)Y −1. (4.10)

Proof. See Appendix A.2.1.

To solve the LMI feasibility problem with the infinite dimensional LMI constraint in Lemma

4.1, a sufficient condition with the finite constraints is given as the following theorem.

Theorem 4.1 (Sufficient condition for quadratic stabilization of LPV systems via the common
quadratic Lyapunov function). If there exist a positive definite matrix Y and a set of real matrices
{L1, . . . , LN} such that

AiY + Y ATi −BiLi − LTi BT
i < 0, ∀i ∈ I[1, N ], (4.11)

AiY +AjY + Y ATi + Y ATj −BiLj −BjLi − LTi BT
j − LTj BT

i < 0, ∀i ∈ I[1, N − 1], (4.12)

∀j ∈ I[i+ 1, N ],

then the LPV system (4.1) is quadratically stabilizable and the LPV stabilizing gain is given by

K(ρ) =
N∑
i=1

ρi(t)Ki, (4.13)

where Ki = LiY
−1 for all i ∈ I[1, N ].
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Proof. See Appendix A.2.2.

The use of the common P for quadratic Lyapunov functions often gives the conservative

result or even fails to stabilize the system. Next, to obtain a less conservative result, the use of the

parameter-dependent quadratic Lyapunov function will be considered.

4.1.2 LPV quadratic stabilization via parameter-dependent quadratic Lyapunov function

The parameter-dependent quadratic stabilization of LPV systems also considers the control

law given by (4.5), but the Lyapunov function is defined by

V (x) = xTP (ρ)x, (4.14)

where P (ρ) = P (ρ)T > 0. We assume that the parameter dependency of the matrix P (ρ) has the

same structure as the feedback gain matrix K(ρ), i.e.,

P (ρ) =

N∑
i=1

ρiPi. (4.15)

The time derivative of the parameter-dependent quadratic Lyapunov function is computed as follows

V̇ (x) = xT
(
Ṗ (ρ) + P (ρ)(A(ρ)−B(ρ)K(ρ)) + (A(ρ)−B(ρ)K(ρ))TP (ρ)

)
x, (4.16)

and the neccessary and sufficient condition for parameter-dependent quadratic stabilization of the

LPV system (4.1) via the parameter-dependent quadratic Lyapunov function is obtained as the fol-

lowing lemma.

Lemma 4.2 (Parameter-dependent quadratic stabilization of LPV systems via the parameter-depen-
dent quadratic Lyapunov function). The LPV system (4.1) is parameter-dependent quadratically
stabilizable via the parameter-dependent quadratic Lyapunov function if and only if there exist a
positive definite matrix-valued function Y (ρ) and an arbitrary real matrix-valued function L(ρ)

such that
A(ρ)Y (ρ) + Y (ρ)A(ρ)T −B(ρ)L(ρ)− L(ρ)TB(ρ)T − Y (ρ̇) < 0. (4.17)

Consequently, the LPV stabilizing gain is given by

K(ρ) = L(ρ)Y (ρ)−1. (4.18)

Proof. See Appendix A.2.3.

To obtain a sufficient condition with finite constraints for solving the LMI feasibility problem

in Lemma 4.2, there are necessary assumptions to be defined. First, we assume that the rate of the

parameter varies in a certain convex polyhedral set. Clearly,

ρ̇(t) =
M∑
k=1

σk(t)νk ∈ co {ν1, . . . , νM} , (4.19)
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where νk ∈ RN and σ(t) = [σ1 . . . σM ]T ∈ ΛM such that

ΛM :=

{
λ ∈ RM :

M∑
k=1

λk = 1, λk ≥ 0

}
. (4.20)

To determine the set {ν1, . . . , νM}, since
∑N

i=1 ρi(t) = 1 , it is important to restrict the magnitude

of ρ̇(t) by imposing that ||ν||1 = 0 and ||ν||∞ ≤ ν0. Moreover, we define the linear matrix function

as

U(x) :=
∑
i

xiUi, (4.21)

for any finite dimension vector x. To this end, we have the following sufficient condition.

Theorem 4.2 (Sufficient condition for parameter-dependent quadratic stabilization of LPV systems
via the parameter-dependent quadratic Lyapunov function). If there exist a set of positive definite
matrices {Y1, . . . , YN} and a set of real matrices {L1, . . . , LN} such that

AiYi + YiA
T
i −BiLi − LTi BT

i − Y (νk) < 0, ∀i ∈ I[1, N ], (4.22)

∀k ∈ I[1,M ],

AiYj +AjYi + YiA
T
j + YjA

T
i −BiLj −BjLi − LTi BT

j − LTj BT
i − 2Y (νk) < 0, ∀i ∈ I[1, N − 1], (4.23)

∀j ∈ I[i+ 1, N ],

∀k ∈ I[1,M ],

then the LPV system (4.1) is parameter-dependent quadratically stabilizable and the LPV stabilizing
gain is given by

K(ρ) =

N∑
i=1

ρi(t)Ki, (4.24)

where Ki = LiY (ρ)−1 for all i ∈ I[1, N ] and Y (ρ) =
∑N

i=1 ρi(t)Yi.

Proof. See Appendix A.2.4.

So far we have considered only the problem of stabilization. To obtain the controller that can

guarantee the cost function while the worst case on this cost function is minimized, next we will

apply the LQR mentioned in Chapter 2 to the LPV systems.

4.2 Linear Parameter-Varying Quadratic Regulator (LPVQR)

The LQR control of LPV systems, denoted by LPVQR, concerns with finding the state feed-

back controller that minimizes the upper bound on the cost function defined by

J =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (4.25)

The LPVQR is straightforward by applying the LQR control of LTI systems to the LPV systems.

Here we consider both the use of the common quadratic Lyapunov function and the parameter-

dependent quadratic Lyapunov function. The sufficient conditions are obtained in the same way as

the stability analysis. Furthermore, we also propose the LPVQR that use the composite quadratic

Lyapunov function (2.19) to avoid the problem of unknowing the bound on the rate of the parameter.
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4.2.1 LPVQR via common quadratic Lyapunov function

Consider the LPV system (4.1) under the LPV control law,

u = −K(ρ)x, (4.26)

where K(ρ) =
∑N

i=1 ρiKi. By using the common quadratic Lyapunov function defined by

V (x) = xTPx, (4.27)

an upper bound on the cost function (4.25) can be computed by the following theorem.

Theorem 4.3 (Sufficient condition for LPVQR via the common quadratic Lyapunov function). As-
sume the existence of a positive definite matrix Y and a set of real matrices {L1, . . . , LN} satisfying

max
Y, L1,...,LN

tr(Y )

s.t.


−(AiY −BiLi)− (AiY −BiLi)T Y LTi

Y Q−1 0

Li 0 R−1

 > 0, ∀i ∈ I[1, N ], (4.28)


−(AiY +AjY −BiLj −BjLi)
−(AiY +AjY −BiLj −BjLi)T

2Y LTi + LTj

2Y 2Q−1 0

Li + Lj 0 2R−1


> 0, ∀i ∈ I[1, N − 1],

∀j ∈ I[i+ 1, N ],

(4.29)

then the LPV system (4.1) under the control law (4.26) such that Ki = LiY
−1 for all i ∈ I[1, N ]

satisfies
J(x(0), u(·)) < min

Y, L1,...,LN

x(0)TPx(0),

where P = Y −1.

Proof. See Appendix A.2.5.

It is remarkable that if the matrix B is constant, i.e. B(ρ) = B, then the LMI constraints in

Theorem 4.3 can be reduced as stated in the following corollary.

Corollary 4.1 (Sufficient condition for LPVQR via the common quadratic Lyapunov function,
B(ρ) = B). Assume the existence of a positive definite matrix Y and a set of matrices {L1, . . . , LN}
satisfying

max
Y, L1,...,LN

tr(Y )

s.t.


−(AiY −BLi)− (AiY −BLi)T Y LTi

Y Q−1 0

Li 0 R−1

 > 0, ∀i ∈ I[1, N ], (4.30)
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then the LPV system (4.1) in which B(ρ) = B under the control law (4.26) such that Ki = LiY
−1

for all i ∈ I[1, N ] satisfies

J(x(0), u(·)) < min
Y, L1,...,LN

x(0)TPx(0),

where P = Y −1.

Proof. See Appendix A.2.6.

The use of the common P for Lyapunov functions always leads to the conservative result.

To reduce the conservativeness, we will next consider the use of the parameter-dependent quadratic

Lyapunov function for the LPVQR.

4.2.2 LPVQR via parameter-dependent quadratic Lyapunov function

The LPV system (4.1) under the control law (4.26) is again considered. By using the parameter-

dependent quadratic Lyapunov function defined by V (x) = xTP (ρ)x, an upper bound on the cost

function (4.25) can be computed by the following theorem.

Theorem 4.4 (Sufficient condition for LPVQR via the parameter-dependent quadratic Lyapunov
function). Assume the existence of a set of positive definite matrices {Y1, . . . , YN} and a set of real
matrices {L1, . . . , LN} satisfying

max
Y1, . . . , YN
L1, . . . , LN

∑
tr(Yi)

s.t.

Y (νk)− (AiYi −BiLi)− (AiYi −BiLi)T Yi LTi

Yi Q−1 0

Li 0 R−1

 > 0,
∀i ∈ I[1, N ],

∀k ∈ I[1,M ],

(4.31)


2Y (νk)− (AiYj +AjYi −BiLj −BjLi)
−(AiYj +AjYi −BiLj −BjLi)T

Yi + Yj LTi + LTj

Yi + Yj 2Q−1 0

Li + Lj 0 2R−1


> 0,

∀i ∈ I[1, N − 1],

∀j ∈ I[i+ 1, N ],

∀k ∈ I[1,M ],

(4.32)

then the LPV system (4.1) under the control law (4.26) such that Ki = Li

(∑N
j=1 ρj(t)Yj

)−1
for

all i ∈ I[1, N ] satisfies

J(x(0), u(·)) < min
Y1, . . . , YN
L1, . . . , LN

x(0)TP (ρ(0))x(0),

where P (ρ(0)) =
(∑N

i=1 ρi(0)Yi

)−1
.

Proof. See Appendix A.2.7.
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With a good choice of the bound on the rate of the parameter, the parameter-dependent

quadratic Lyapunov function significantly outperforms the common quadratic Lyapunov function

in terms of the conservatism. This will be seen in the illustrating example in Section 4.2.4. How-

ever in practice, the bound on the rate of the parameter is often unknown. Moreover in our LPV

model of quadrotor, the use of the parameter-dependent quadratic Lyapunov function is still being

suffered from the conservativeness and failed to stabilize. This will be discussed later in Chapter 6.

Therefore, we propose to use the composite quadratic Lyapunov function for the LPVQR, because

this kind of Lyapunov function does not attend to the rate of the parameter and also work well with

our system.

4.2.3 LPVQR via composite quadratic Lyapunov function

Consider the composite quadratic Lyapunov function defined by

Vc(x) := min
ρ
xTP (ρ)x. (4.33)

From the fact that if ρ∗ is the optimal ρ such that xTP (ρ)x is minimized then

∂Vc
∂x

= 2P (ρ∗(x))x, (4.34)

we obtain the following time derivative of the composite quadratic Lyapunov function

V̇c(x) = xT
(
P (ρ∗)(A(ρ∗) +B(ρ∗)K(ρ∗)) + (A(ρ∗) +B(ρ∗)K(ρ∗))TP (ρ∗)

)
x. (4.35)

As a result, an upper bound on the cost function (4.25) can be computed by the following theorem.

Theorem 4.5 (Sufficient condition for LPVQR via the composite quadratic Lyapunov function).
Assume the existence of a positive definite matrix-valued function Y (ρ) and an arbitrary real
matrix-valued function L(ρ) satisfying

max
Y (ρ), L(ρ)

tr(Y (ρ))

s.t.


−(A(ρ)Y (ρ)−B(ρ)L(ρ))− (A(ρ)Y (ρ)−B(ρ)L(ρ))T Y (ρ) L(ρ)

Y (ρ) Q−1 0

L(ρ)T 0 R−1

 > 0, (4.36)

then the LPV system (4.1) under the control law (4.26) such that Ki = Li

(∑N
j=1 ρj(t)Yj

)−1
for

all i ∈ I[1, N ] satisfies

J(x(0), u(·)) < min
Y (ρ), L(ρ)

x(0)TP (ρ(0))x(0),

where P (ρ(0)) = Y (ρ(0))−1.

Proof. See Appendix A.2.8.
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However, this infinite dimensional optimization problem has to be solved along the trajectory

of the parameter. To solve this problem in a systematic way, we apply the tensor product transfor-

mation by griding the system and solve for a set of fixed-parameter LMI optimization problems

instead. Finally, we obtain the approximated solution that is expressed by the parameter of the

system with a finite set of the basis of solution.

4.2.4 Illustrating example

Example 4.1. Consider the following simple model of an inverted pendulum [59]

ẋ1 = x2, (4.37)

ẋ2 = −0.1x2 + sin(x1) + u. (4.38)

This nonlinear dynamical system can be transformed to an LPV system as follows

ẋ = A(ρ)x+B(ρ)u, (4.39)

where

A(ρ) = ρ1A1 + ρ2A2,


A1 =

[
0 1

1 −0.1

]
, ρ1 =

sin(x1)

x1

A2 =

[
0 1

0 −0.1

]
, ρ2 =

x1 − sin(x1)

x1

,

B(ρ) =

0

1

 .
Note that ρi ≥ 0 for all i and ρ1 + ρ2 = 1 for all t ≥ 0. Figure 4.1 illustrates the parameter ρi as
a function of x1 and the partial derivative of ρi with respect to x1. Let Q = diag(4, 4) and R = 1,
the LPVQR with various types of the quadratic Lyapunov function give the following results:

Figure 4.1: The parameter ρ (left) and the partial derivative of ρ with respect to x1 (right).
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Guaranteed cost Actual cost Remark

Common quadratic Lyapunov function
77.9747 58.5117 –

77.9747 58.2753 B(ρ) = B

Parameter dependent quadratic Lyapunov function
72.3877 58.0670 |ẋ1| ≤ π

55.7618 55.6300 |ẋ1| ≤ 2

Composite quadratic Lyapunov function 55.8658 55.7392 –

Piecewise quadratic Lyapunov function [59] 58.75 – –

Table 4.1: Performance assessment of the LPVQR control with various types of Lyapunov function

Table 4.1 shows the performance evaluation of each Lyapunov function. The use of the piece-
wise quadratic Lyapunov function, accompanying with the original work of this example, is also
compared. The table shows that the Lyapunov function with variable parameter, including the
composite quadratic Lyapunov function, gives the better performance than the common quadratic
Lyapunov function and the piecewise quadratic Lyapunov function. However, the use of Theorem
4.4 requires the appropriate value of the bound on the rate of the parameter. Figure 4.2 illustrates
the comparison between the use of Theorem 4.3 and Corollary 4.1. The results are quite similar.
However, Corollary 4.1 gives a slightly better performance in terms of the actual cost, while the
implementation is easier because of the use of fewer LMI conditions. Figure 4.3 illustrates the com-
parison between the use of Theorem 4.4 with two values of the bound on the rate of the parameter,
±π and ±2. It is obvious that the bound closer to the actual value of ẋ1 gives the better perfor-
mance. Figure 4.4 illustrates the guaranteed cost that is computed by Theorem 4.4 as a function of
the bound on the rate of x1. The guaranteed cost grows up to a limited value. However, this value
is less than the guaranteed cost computed by the use of the common quadratic Lyapunov function.
Figure 4.5 illustrates the comparison between the use of Theorem 4.4 with |ẋ1| ≤ 2 and Theorem
4.5. Both give quite similar results. The composite quadratic Lyapunov function gives a bit worse
result owing to the effect of approximation.

In this chapter, the quadratic stabilization and the quadratic regulator control of LPV systems

have been studied. Three types of the Lyapunov function, the common quadratic Lyapunov func-

tion, the parameter-dependent quadratic Lyapunov function, and the composite quadratic Lyapunov

function, have been considered. The parameter-dependent quadratic Lyapunov function gives the

best result while the common quadratic Lyapunov function gives the worst result. However, the

parameter-dependent quadratic Lyapunov function requires the appropriate value of the pre-defined

bound on the rate of the parameter which is often unknown in practice. Therefore, the use of the

composite quadratic Lyapunov function for LPVQR is proposed. To use the composite quadratic

Lyapunov function, the LMI optimization problem needs to be solved along the trajectory of the

parameter. The tensor product transformation is applied to reduce the infinite dimensional LMI

optimization problem into a set of finite dimensional LMI optimization problems.
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Figure 4.2: Comparison of control responses, control inputs, and costs between the use of Theorem
4.3 (solid lines) and Corollary 4.1 (dash lines).

Figure 4.3: Comparison of control responses, control inputs, and costs between the use of Theorem
4.4 with |ẋ1| ≤ 2 (solid lines) and Theorem 4.4 with |ẋ1| ≤ π (dash lines).
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Figure 4.4: Guaranteed cost of the controller computed by Theorem 4.4 as the function of the bound
on the rate of x1.

Figure 4.5: Comparison of control responses, control inputs, and costs between the use of Theorem
4.4 with |ẋ1| ≤ 2 (solid lines) and Theorem 4.5 (dash lines).



CHAPTER V

CONTROL OF SATURATED LINEAR PARAMETER-VARYING
SYSTEMS

This chapter considers the LQR control of saturated LPV systems. First in Section 5.1, we

focus on the LQR control of the saturated LTI systems. The controller obtained in this section

is named saturated LQR (SLQR). Unlike the conventional LQR, the SLQR can guarantee both

stability and performance of the saturated LTI systems. Nevertheless, the appearing performance of

the SLQR is dropped from one obtained from the LQR. To improve the performance of the SLQR,

in Section 5.2, the idea of using the high-gain controller, stated in [60], is applied to the SLQR. This

results in the high-gain SLQR. Finally in Section 5.3, both the SLQR and the high-gain SLQR are

incorporated with the LQR control of the saturated LPV systems, the saturated LPVQR (SLPVQR)

and the high-gain SLPVQR are then obtained, respectively.

5.1 Saturated linear quadratic regulator

This section considers LTI systems with the bounded control inputs of the form

ẋ = Ax+Bu, (5.1)

u = −satσ(Kx), (5.2)

where

satσ(Kx) =


sgn(k1x) min(|k1x|, σ)

...

sgn(kmx) min(|kmx|, σ)

 , ki : ith row of K

σ : bounding level
. (5.3)

To understand the effect of saturation on the dynamical systems, we consider the following LTI

system ẋ1

ẋ2

 =

0 1

0 0

x1

x2

+

0

1

u. (5.4)

Under the cost function defined by ∫ ∞
0

(
xTQx+ uTRu

)
dt, (5.5)

where Q = diag(1, 1) and R = 0.001, the LQR state feedback control law is computed as follows

u = −Kx, K =
[
31.6241 32.6078

]
. (5.6)
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Figure 5.1: State trajectories of the LQR control; the control input is unbounded (solid lines) and
bounded by |u| ≤ 1 (dashed lines).

Figure 5.2: Ellipsoidal domain of attraction and unsaturated region computed by the LQR.

Figure 5.1 illustrates the state trajectories of the closed-loop system. This figure shows that the

saturation entails degradation of the closed-loop performance. Figure 5.2 illustrates an ellipsoidal

domain of attraction defined by
{
x : xTPx ≤ 1

}
. It also illustrates the unsaturated region which

is bounded by the two straight lines. Obviously, the performance degradation occurs because the

real input cannot reach to the desired input. This will happen if the state of the system is outside

the unsaturated region. To guarantee stability and performance of this system, next, the ellipsoid is

stipulated to be inside the unsaturated region. The LMI condition stated in Lemma 2.2 is applied to

the conventional LQR. This leads to the following theorem.
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1

2

x

V(x)

1

x2

Figure 5.3: Geometrical representation of the use of Theorem 5.1.

Theorem 5.1 (Linear quadratic regulator for saturated LTI systems). Assume the existence of a
positive definite matrix Y and an arbitrary real matrix L satisfying

max
Y, L

tr(Y )

s.t.


−(AY −BL)− (AY −BL)T Y LT

Y Q−1 0

L 0 R−1

 > 0, (5.7)

σ2/γ `i

`Ti Y

 > 0, ∀i ∈ I[1,m], `i : ith row of L, (5.8)

then the LTI systems (5.1) with the bounded control inputs (5.2) in which K = LY −1 satisfies

J(x(0), u(·)) < min
Y, L

x(0)TPx(0),

where P = Y −1 for all x(0) ∈ {x : xTPx ≤ γ}.

Proof. See Appendix A.3.1

The state feedback gain K obtained from Theorem 5.1 is called the SLQR. Figure 5.3 illus-

trates the geometrical representation of the use of Theorem 5.1. Here, we assume that the system

has single input. Furthermore, we assume that σ2
1/γ1 = σ2

2/γ2. This results in the same matrix P .

The figure shows that the value of σ determines the bounding level of the unsaturated region. This

value is limited by the physical property of the actuator. It also shows that the value of γ determines
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the bound on the guaranteed performance corresponding to the bounding level σ. The value of γ

can be increased arbitrarily to obtain the larger size of the ellipsoid. However, this trades with the

increased upper bound on the cost function.

Applying Theorem 5.1, in which σ = 1 and γ = 1, to the system (5.4) with the cost function

(5.5) gives the following SLQR state feedback control law

u = −Kx, K =
[
0.4378 1.1094

]
. (5.9)

Figure 5.4 illustrates the state trajectories and the ellipsoidal domains of attraction computed by the

LQR and the SLQR. Obviously, the ellipsoid computed by the LQR cannot guarantee performance

or even stability of the system. On the other hand, the ellipsoid computed by the SLQR is invariant.

This implies the capability of guaranteeing stability of the system. It is noticeable that this ellipsoid

is also inside the unsaturated region, which is bounded by the two blue straight lines. Figure 5.5

illustrates the ellipsoidal domains of attraction computed by the SLQR with various values of σ.

Here, the value of γ is fixed to 1. This figure shows that the unsaturated region is enlarged as the

value of σ is increased. The shape of the ellipsoid, fitted to the unsaturated region, gradually tends

to the shape of the ellipsoid that is computed by the LQR. However, its shape is no larger than the

shape of the ellipsoid computed by the LQR, though the value of σ is further increased. Figure 5.6

also illustrates the ellipsoidal domains of attraction computed by the SLQR. Here, the value of σ is

fixed to 1 and the value of γ is varied. This figure shows that the larger ellipsoid can be obtained by

increasing the upper bound on the guaranteed cost.

The controller obtained from Theorem 5.1 is sometimes called the low-gain controller. Figure

5.7 illustrates the comparison of the control responses, the control inputs, and the costs obtained

by applying the LQR control and the SLQR control, of which the value of γ is varied. This figure

shows that though the SLQR with γ = 60 can guarantee both stability and performance of the

system, i.e., x(0) = [0 2]T ∈ E(P, γ), its performance is much worse than one obtained from the

LQR. Therefore, next, we will consider how to improve the performance of the SLQR.

LQR

SLQR

< < < <

< < < <

Figure 5.4: State trajectories and their corresponding ellipsoidal domains of attraction computed by
the LQR and the SLQR.
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LQR
SLQR,     =1 
SLQR,     =25 
SLQR,     =175 
SLQR,     =225 

Figure 5.5: Ellipsoidal domains of attraction and unsaturated regions computed by the LQR and the
SLQR with various values of σ.

LQR
SLQR,     =1 
SLQR,     =30 
SLQR,     =60

Figure 5.6: Ellipsoidal domains of attraction and unsaturated regions computed by the LQR and the
SLQR with various values of γ.

Figure 5.7: Control responses, control inputs, and costs by using the LQR control (solid lines) and
the SLQR control with σ = 1 and γ = 1 (dashed lines), 30 (dot-dashed lines), and 60 (dotted lines).
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5.2 Improvement using high-gain feedback

In the previous section, we have considered the ellipsoidal domain of attraction guaranteeing

the upper bound on the cost function. The ellipsoid is forced to be inside the unsaturated region.

This restriction leads to the lower gain and the lower performance. As suggested in [60], in this

section, a more relaxed condition is considered to improve the performance of the SLQR. With an

auxiliary state feedback gain, the ellipsoidal domain of attraction is provably need not to be inside

the unsaturated region. For a vector v ∈ V, such that

V := {v ∈ Rm : vi = 1 or 0} , (5.10)

and two matrices K and F ∈ Rm×n, we define the following matrix function

S(v,K, F ) =


v1k1 + (1− v1)f1

...

vmkm + (1− vm)fm

 . (5.11)

There are 2m possibilities of v used to form a new matrix S(v,K, F ) from the rows of K and F ,

i.e., if vi = 1, then the ith row of S(v,K, F ) is ki, otherwise the ith row of S(v,K, F ) is fi. With

this definition, the improved SLQR is obtained as the following theorem.

Theorem 5.2 (Improved linear quadratic regulator for saturated LTI systems). Assume the existence
of a positive definite matrix Y and arbitrary real matrices L and M satisfying

max
Y, L, M

tr(Y )

s.t.


−(AY −BS(v, L,M))

−(AY −BS(v, L,M))T
Y S(v, L,M)T

Y Q−1 0

S(v, L,M) 0 R−1


> 0, ∀v ∈ V, (5.12)

σ2/γ Mi

MT
i Y

 > 0, ∀i ∈ I[1,m], Mi : ith row of M, (5.13)

then the LTI systems (5.1) with bounded control inputs (5.2) in which K = LY −1 satisfies

J(x(0), u(·)) < min
Y, L, M

x(0)TPx(0),

where P = Y −1 for all x(0) ∈ {x : xTPx ≤ γ}.

Proof. See Appendix A.3.2
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The state feedback gain K obtained from Theorem 5.2 is called the high-gain SLQR. Apply-

ing Theorem 5.2, in which σ = 1 and γ = 1, to the system (5.4) with the cost function (5.5) gives

the following high-gain SLQR state feedback control law

u = −Kx, K =
[
117.0280 152.2037

]
. (5.14)

Figure 5.8 illustrates the state trajectories and the ellipsoidal domain of attraction computed by

the high-gain SLQR. They are also compared with the results from the LQR and the SLQR. In

this figure, the two coinciding dash-dotted straight lines signify for the unsaturated region, which is

very strait. This shows that the ellipsoid computed by the high-gain SLQR can guarantee the closed-

loop stability, though it is not inside the unsaturated region. Figure 5.9 illustrates the comparison of

the control responses, the control inputs, and the costs obtained by applying the LQR control, the

SLQR control, and the high-gain SLQR control, of which the values of σ and γ are set to 1 and 60

respectively. Obviously, the cost obtained from the high-gain SLQR is significantly improved. This

cost is very close to the cost obtained from the LQR.

hg-SLQR

LQR
SLQR

>

Figure 5.8: State trajectories and their corresponding ellipsoidal domains of attraction computed by
the LQR, the SLQR, and the high-gain SLQR.

Guaranteed costs Actual costs Remarks

LQR 0.1304 12.9183 Fail to guarantee stability.

SLQR

5.9236 14.6245 γ = 1 , Fail to guarantee stability.

39.6801 39.6767 γ = 30, Fail to guarantee stability.

59.6855 59.6823 γ = 60, Guarantee stability and performance.

High-gain
SLQR

5.9238 12.9800 γ = 1 , Fail to guarantee stability.

39.6809 13.7781 γ = 30, Fail to guarantee stability.

59.6850 14.1560 γ = 60, Guarantee stability and performance.

Table 5.1: Performance assessment of the LQR, the SLQR, and the high-gain SLQR control of the
saturated linear system.
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Figure 5.9: Control responses, control inputs, and costs by using the LQR control (solid lines), the
SLQR control (dashed lines), and the high-gain SLQR control (dash-dotted lines) with σ = 1 and
γ = 60.

All the results from the LQR, the SLQR, and the high-gain SLQR control of the LTI system

(5.4) with the bounded control input, such that |u| ≤ 1, can be concluded as showed in Table 5.1.

The use of the LQR is failed certainly. For the use of the SLQR and the high-gain SLQR, the

ellipsoids guaranteeing the stability of the system are quite similar. Therefore, the guaranteed costs

are obtained similarly for each value of γ. When γ is set to 1 or 30, both the SLQR and the high-gain

SLQR are failed to guarantee the stability. This is because the initial state, which is set to [0 2]T ,

is outside the guaranteeing ellipsoids. However, if γ is set to 60, the ellipsoids are large enough to

guarantee the stability of the system. The guaranteed performance is then followed. In this case,

the simulation shows that the actual cost obtained from the high-gain SLQR is much better than one

obtained from the SLQR.

5.3 Extension to LPV systems

In chapter 4, we have derived the LQR control of the LPV systems. The use of the com-

mon quadratic Lyapunov function, the parameter-dependent quadratic Lyapunov function, and the

composite quadratic Lyapunov function are considered. The first two Lyapunov functions are failed

in the designing of the controller, used to control the LPV model of the quadrotor. This will be

discussed in the next chapter. The use of the composite quadratic Lyapunov function seems to work

well with our system. However, when the saturation is taken into account, the controllability of
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the LPVQR decreases rapidly until the quadrotor is failed to stabilize. Therefore, in this section,

we will extend the results from the SLQR control and the high-gain SLQR control to the LPVQR

control, that uses only the composite quadratic Lyapunov function.

We recall here the LPV systems defined in (4.1)

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t). (5.15)

Under the bounded control inputs of the form

u = −satσ(K(ρ)x), (5.16)

K(ρ) =
N∑
i=1

ρiKi, (5.17)

the SLPVQR and the high-gain SLPVQR are obtained as the following theorems.

Theorem 5.3 (Sufficient condition for SLPVQR via the composite quadratic Lyapunov function).
Assume the existence of a positive definite matrix-valued function Y (ρ) and an arbitrary real
matrix-valued function L(ρ) satisfying

max
Y (ρ), L(ρ)

tr(Y (ρ))

s.t.

−(A(ρ)Y (ρ)−B(ρ)L(ρ))− (A(ρ)Y (ρ)−B(ρ)L(ρ))T Y (ρ) L(ρ)

Y (ρ) Q−1 0

L(ρ)T 0 R−1

 > 0, (5.18)

 σ2/γ `i(ρ)

`i(ρ)T Y (ρ)

 > 0, ∀i ∈ I [1,m] , `i(ρ): ith row of L(ρ), (5.19)

then the LPV system (5.15) with the bounded control inputs (5.16)–(5.17) such that

Ki = Li

 N∑
j=1

ρj(t)Yj

−1

, ∀i ∈ I[1, N ],

satisfies
J(x(0), u(·)) < min

Y (ρ), L(ρ)
x(0)TP (ρ(0))x(0),

where P (ρ(0)) = Y (ρ(0))−1, for all x(0) ∈ {x : xTP (ρ)x ≤ γ}.

Proof. See Appendix A.3.3.
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Theorem 5.4 (Sufficient condition for high-gain SLPVQR via the composite quadratic Lyapunov
function). Assume the existence of a positive definite matrix-valued function Y (ρ) and arbitrary
real matrix-valued functions L(ρ), M(ρ) satisfying

max
Y (ρ), L(ρ), M(ρ)

tr(Y (ρ))

s.t.


−(A(ρ)Y (ρ)−B(ρ)S(v, L(ρ),M(ρ)))

−(A(ρ)Y (ρ)−B(ρ)S(v, L(ρ),M(ρ)))T
Y (ρ) S(v, L(ρ),M(ρ))

Y (ρ) Q−1 0

S(v, L(ρ),M(ρ))T 0 R−1


> 0, ∀v ∈ V,

(5.20) σ2/γ Mi(ρ)

Mi(ρ)T Y (ρ)

 > 0, ∀i ∈ I [1,m] , Mi(ρ) : ith row of M(ρ), (5.21)

then the LPV system (5.15) with the bounded control inputs (5.16)–(5.17) such that

Ki = Li

 N∑
j=1

ρj(t)Yj

−1

, ∀i ∈ I[1, N ],

satisfies
J(x(0), u(·)) < min

Y (ρ), L(ρ), M(ρ)
x(0)TP (ρ(0))x(0),

where P (ρ(0)) = Y (ρ(0))−1, for all x(0) ∈ {x : xTP (ρ)x ≤ γ}.

Proof. The proof is followed in the proof of Theorem 5.2 and Theorem 5.3.

In this chapter, the LQR control of the saturated LPV systems has been considered. Firstly,

the LQR control of the saturated LTI systems was derived. Two approaches, the low-gain and the

high gain, were considered. These result in the SLQR and the high-gain SLQR, respectively. The

SLQR and the high-gain SLQR were then extended to the saturated LPV systems. Consequently, the

SLPVQR and the high-gain SLPVQR were obtained. Evidently, the SLPVQR and the high-gain

SLPVQR have the abilities of guaranteeing the stability and the performance of the closed-loop

LPV systems in a local domain. In the next chapter, we will apply them to control the LPV model

of the quadrotor, having been derived in Chapter 3.



CHAPTER VI

OUTPUT FEEDBACK CONTROL OF QUAD-ROTOR
HELICOPTER WITH INPUT SATURATION

In this chapter, the LPVQR control of the quadrotor is considered. To verify the control

strategies derived in Chapter 4 and Chapter 5, the simulation based on the MATLAB simulink is

given. In Section 6.1, the simulation setup is presented. Then, the results from the simulation

are discussed in Section 6.2. Here, we consider both the unsaturated and the saturated LPVQR

control of the quadrotor. Moreover, the output feedback control problem, of which the system is

incorporated with the process noise and the measurement noise, is also considered.

6.1 Simulation setup

The simulation given in this thesis is based on the MATLAB simulink. The simulink block

called the VR Sink is used to build the 3D visualization of the quadrotor for demonstrating the

results. The VR Sink links the signals from other simulink blocks to the WRL file. This is the file

associated with the Virtual Reality Markup Language (VRML) [61]. The VR Sink then displays

and interacts the 3D graphic user interface (GUI) as shown in Figure 6.1. Figure 6.2 illustrates the

WRL editor, which is provided by the MATLAB. This editor is used to create the 3D objects and

generate the input ports of the VR Sink for specifying the properties of these 3D objects. Figure

6.3 illustrates the simulink block diagram comprising the quadrotor dynamic s-function, the LPV

controller, the EKF, and the VR Sink. The EKF algorithm was provided in Chapter 2 and the

nonlinear dynamic model of the quadrotor was derived in Chapter 3. Here, the parameters of the

quadrotor are assumed as shown in Table 6.1. Of course, the LPVQR, the SLPVQR, and the high-

gain SLPVQR, derived in Chapter 4 and Chapter 5, are applied to the LPV controller block. To

verify the control strategies and study the characteristic of the controllers, in the next section, the

simulation results with various parameter setting will be given and discussed.

Parameters Values Units Parameters Values Units

m 2 kg g 9.807 m/s2

Ix 1.25 kg·m2 ` 0.3 m

Iy 1.25 kg·m2 d 0.0750 –

Iz 2.5 kg·m2

Table 6.1: Parameters of the dynamic model of the quadrotor.
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x

z

y

Figure 6.1: 3D visualization of the quad-rotor helicopter.

Figure 6.2: WRL editor.



49Figure 6.3: Simulink block diagram.
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6.2 Results

In this section, the simulation results are given. The full state feedback control of the quadro-

tor, of which the control inputs are unbounded, is first considered. The LPVQR control is then

applied. Next, the saturation of the control inputs is taken into account. The SLPVQR control and

the high-gain SLPVQR control are then applied. Finally, we focus on the simulation of the real sit-

uation. We specify that only the partial information of the system state can be observed. Moreover,

the control process and the measurement data are influenced by the noise. Then, we apply the EKF

to do the state estimation in order that our control strategies can be applied to the output feedback

control problem.

6.2.1 Full state feedback with unbounded control inputs

By applying Theorem 4.1 and Theorem 4.2 to the LPV model of the quadrotor (3.32), the

LMI constraints produce no solution. This is because the LPV model of the quadrotor is very

conservative. Specifically, to represent the whole range of the only parameter ψ, the polytopic

structure of the LPV model requires at least four bases. As a result, Theorem 4.3 and Theorem 4.4

are failed to be applied to the LPV model of the quadrotor. However, when we apply Theorem 4.5

with

Q = diag(1, 1, 100, 1, 1, 50, 50, 50, 50, 1, 1, 100), (6.1)

R = diag(0.001, 0.001, 0.001, 0.001), (6.2)

the LPVQR via the composite quadratic Lyapunov function produces the following LPVQR state

feedback gains

K1 =

[
−47.7494 47.7494 158.4679 −22.3607 22.3607 111.8035

−47.7494 −47.7494 158.4679 −22.3607 −22.3607 111.8035

47.7494 −47.7494 158.4679 22.3607 −22.3607 111.8035

47.7494 47.7494 158.4679 22.3607 22.3607 111.8035

−0.0000 −163.1777 123.0254 −390.4586 −390.4586 158.1147

163.1777 −0.0000 −123.0254 390.4586 −390.4586 −158.1147

−0.0000 163.1777 123.0254 390.4586 390.4586 158.1147

−163.1777 −0.0000 −123.0254 −390.4586 390.4586 −158.1147

]
(6.3)

K2 =

[
47.7494 47.7494 158.4679 22.3607 22.3607 111.8035

−47.7494 47.7494 158.4679 −22.3607 22.3607 111.8035

−47.7494 −47.7494 158.4679 −22.3607 −22.3607 111.8035

47.7494 −47.7494 158.4679 22.3607 −22.3607 111.8035

−0.0000 −163.1777 123.0254 −390.4586 390.4586 158.1147

163.1777 −0.0000 −123.0254 −390.4586 −390.4586 −158.1147

−0.0000 163.1777 123.0254 390.4586 −390.4586 158.1147

−163.1777 −0.0000 −123.0254 390.4586 390.4586 −158.1147

]
(6.4)
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K3 =

[
−47.7494 −47.7494 158.4679 −22.3607 −22.3607 111.8035

47.7494 −47.7494 158.4679 22.3607 −22.3607 111.8035

47.7494 47.7494 158.4679 22.3607 22.3607 111.8035

−47.7494 47.7494 158.4679 −22.3607 22.3607 111.8035

−0.0000 −163.1777 123.0254 390.4586 −390.4586 158.1147

163.1777 −0.0000 −123.0254 390.4586 390.4586 −158.1147

−0.0000 163.1777 123.0254 −390.4586 390.4586 158.1147

−163.1777 −0.0000 −123.0254 −390.4586 −390.4586 −158.1147

]
(6.5)

K4 =

[
47.7494 −47.7494 158.4679 22.3607 −22.3607 111.8035

47.7494 47.7494 158.4679 22.3607 22.3607 111.8035

−47.7494 47.7494 158.4679 −22.3607 22.3607 111.8035

−47.7494 −47.7494 158.4679 −22.3607 −22.3607 111.8035

−0.0000 −163.1777 123.0254 390.4586 390.4586 158.1147

163.1777 −0.0000 −123.0254 −390.4586 390.4586 −158.1147

−0.0000 163.1777 123.0254 −390.4586 −390.4586 158.1147

−163.1777 −0.0000 −123.0254 390.4586 −390.4586 −158.1147

]
(6.6)

correspondingly to the parameters given by (3.36)-(3.39). It should be noted that the above state

feedback gains can be reduced to the LPV state feedback gain depending on the yaw angle as

follows

K(ψ) =

[
47.7494cψ 47.7494sψ 158.4679 22.3607cψ 22.3607sψ 111.8035

−47.7494sψ 47.7494cψ 158.4679 −22.3607sψ 22.3607cψ 111.8035

−47.7494cψ −47.7494sψ 158.4679 −22.3607cψ −22.3607sψ 111.8035

47.7494sψ −47.7494cψ 158.4679 22.3607sψ −22.3607cψ 111.8035

−0.0000 −163.1777 123.0254 −390.4586sψ 390.4586cψ 158.1147

163.1777 −0.0000 −123.0254 −390.4586cψ −390.4586sψ −158.1147

−0.0000 163.1777 123.0254 390.4586sψ −390.4586cψ 158.1147

−163.1777 −0.0000 −123.0254 390.4586cψ 390.4586sψ −158.1147

]
.(6.7)

Figure 6.4 illustrates the control responses. Here, only the position and the orientation of the quadro-

tor are considered. The red solid lines signify for the references and the blue dashed lines signify

for the responses. Figure 6.5 illustrates the varying parameters of the system. In Figure 6.6, the

forces required to drive the quadrotor are presented. We see that when the set point is changed,

the controller requires the actuators to produce the impulse forces. This is impossible in the real

system. Therefore, next, we will consider the situation when the saturation is taken into account.
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Figure 6.4: Control responses of the quadrotor with the unbounded control inputs by using the
LPVQR control.

Figure 6.5: Varying parameters of the quadrotor.
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Figure 6.6: Unbounded control inputs of the quadrotor by using the LPVQR control.

Figure 6.7: Control responses of the quadrotor with the unbounded (solid lines), the 2g bounded
(dashed lines), and the 1g bounded (dotted lines) control inputs by using the LPVQR control.
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6.2.2 Full state feedback with bounded control inputs

Now, we take the limit on the forces produced by the actuators. By using the state feedback

gain computed by the LPVQR, the control responses of the quadrotor are obtained as shown in

Figure 6.7. Obviously, the controllability of the quadrotor goes down as the capability of producing

the forces is reduced. Moreover, when the force is limited by 1g for each rotor, the LPVQR is failed

to control the quadrotor. Next, we will apply the SLPVQR control and the high-gain SLPVQR

control, which were given respectively in Theorem 5.3 and Theorem 5.4. We note that both the

SLPVQR and the high-gain SLPVQR are only applicable to the case that the saturation is sym-

metry. However, in the real system, the motors driving the rotor blades are always rotateable in

one direction. This makes the saturation asymmetry. Fortunately, our LPV model of the quadrotor

has the non-zero inputs when it is stationary. Clearly, the force produced by each rotor is equal to

mg/4 when the quadrotor is floating stationary. Thus, we can apply the SLPVQR and the high-gain

SLPVQR by defining the input range to be [0,mg/2] for each rotor. Figure 6.8, Figure 6.9, and

Figure 6.10 illustrate respectively the control responses, the control inputs, and the hovering paths

by using the SLPVQR control. Here, the value of σ is set to mg/4 and the value of γ is varied. In

Figure 6.8: Control responses of the quadrotor with the 1g bounded control inputs by using the
SLPVQR control with σ = mg/4 and γ = 1 (solid lines), 10 (dashed lines), and 20 (dotted lines).
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Figure 6.9: 1g bounded control inputs of the quadrotor by using the SLPVQR control with σ =

mg/4 and γ = 1 (solid lines), 10 (dashed lines), and 20 (dotted lines).

Figure 6.10: Hovering paths of the quadrotor with the 1g bounded control inputs by using the
SLPVQR control with σ = mg/4 and γ = 1 (solid lines), 10 (dashed lines), and 20 (dotted lines).
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Figure 6.11: Control responses of the quadrotor with the 1g bounded control inputs by using the
SLPVQR control with σ = mg/4 and γ = 1 (solid lines), 10 (dashed lines), and 20 (dotted lines);
the distance in the x-axis is increased.

Figure 6.10, we use the markers to indicate for each one second time step. These figures show that

the SLPVQR is satisfactory for using to control the quadrotor, of which the actuators are saturated.

They also show that the more the value of γ is increased, the lower the performance is obtained.

Although the lower value of γ is better, it should be assigned by a large enough number so that the

system keep stable in the design domain. For the sake of clarification, in Figure 6.11, the distance in

the x-axis is increased. The SLPVQR, of which the value of γ is set to 1, is then failed to control the

quadrotor. This is because the value of γ is too small. From this figure, the selection policy of the

value of γ becomes evidently dependent on the domain of the state space we are considering. Next,

by applying the high-gain SLPVQR control, of which the values of σ and γ are set to mg/4 and

20 respectively, we have the control responses and their corresponding control inputs as illustrated

in Figure 6.12 and Figure 6.13. They are also compared with the SLPVQR control with the same

values of σ and γ. These figures show that the high-gain SLPVQR can significantly improve the

control responses from the SLPVQR.

As yet, we have considered only the saturation problem. Next, the problem of the state

estimation, which is also an important problem in the practice, will be considered.
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Figure 6.12: Comparison of the control responses obtained by using the high-gain SLPVQR (solid
lines) and the SLPVQR (dashed lines) with σ = mg/4 and γ = 20.

Figure 6.13: Comparison of the control inputs computed by the high-gain SLPVQR (solid lines)
and the SLPVQR (dashed lines) with σ = mg/4 and γ = 20.
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6.2.3 Output feedback control with input saturation

To do the output feedback control, in this thesis, the EKF is used to estimate the unknown

states of the quadrotor. For simulating purpose, the nonlinear dynamic model of the quadrotor is

assumed that the forces applied to the system are blended with the process noises wi(t), i.e.,

ẋ = f(x, u, w) =



sθ(
∑4

i=1 Fi + wi)/m

−sφcθ(
∑4

i=1 Fi + wi)/m

cφcθ(
∑4

i=1 Fi + wi)/m− g

vE
x

vE
y

vE
z

`(F2 + w2 − F4 − w4)/Ix − qr(Iz − Iy)/Ix

`(F3 + w3 − F1 − w1)/Iy − pr(Ix − Iz)/Iy

d(F1 + w1 + F3 + w3 − F2 − w2 − F4 − w4)/Iz − pq(Iy − Ix)/Iz

pcψ/cθ − qsψ/cθ
psψ + qcψ

(qsψ − pcψ)tθ + r



.

(6.8)

Furthermore, the measurement model is assumed that only the position and the orientation of the

quadrotor are measurable. They are also blended with the measurement noises vi(t), i.e.,

y = h(x, v) =



rE
x + v1

rE
y + v2

rE
z + v3

φ+ v4

θ + v5

ψ + v6


. (6.9)

Here, the discrete-time covariance matrices of the process noises and the measurement noises are

assumed to be known. They are defined by

Qd = 0.0001I4×4, (6.10)

Rd =

0.01I3×3 03×3

03×3 (5π/180)2 I3×3

 , (6.11)

for the sampling time T = 0.002. To perform the EKF, we first compute the following Jacobian

matrices
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A(x, u, w) =
∂f

∂x
=


03×3 03×3 03×3 Ā1

I3×3 03×3 03×3 03×3

03×3 03×3 Ā2 03×3

03×3 03×3 Ā3 Ā4

 , (6.12)

L(x, u, w) =
∂f

∂w
=



sθ/m sθ/m sθ/m sθ/m

−sφcθ/m −sφcθ/m −sφcθ/m −sφcθ/m

cφcθ/m cφcθ/m cφcθ/m cφcθ/m

03×1 03×1 03×1 03×1

0 `/Ix 0 −`/Ix

−`/Iy 0 `/Iy 0

d/Iz −d/Iz d/Iz −d/Iz

03×1 03×1 03×1 03×1



, (6.13)

C =
∂h

∂x
=

 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

 , (6.14)

M =
∂h

∂v
= I6×6, (6.15)

where

Ā1 =


0 cθ(

∑4
i=1 Fi + wi)/m 0

−cφcθ(
∑4

i=1 Fi + wi)/m sφsθ(
∑4

i=1 Fi + wi)/m 0

−sφcθ(
∑4

i=1 Fi + wi)/m −cφsθ(
∑4

i=1 Fi + wi)/m 0

 ,

Ā2 =


0 r(Iy − Iz)/Ix q(Iy − Iz)/Ix

r(Iz − Ix)/Iy 0 p(Iz − Ix)Iy

0 0 0

 ,

Ā3 =


cψ/cθ −sψ/cθ 0

sψ cψ 0

− cψtθ sψtθ 1

 ,

Ā4 =


0 (pcψ − qsψ)tθ/cθ −(psψ + qcψ)/cθ

0 0 pcψ − qsψ
0 (qsψ − pcψ)/c2

θ (psψ + qcψ)tθ

 .
We assume that the initial state is exactly known. This results in the following

x̂(0) = x(0), (6.16)

P (0) = 012×12. (6.17)
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Executing the EKF algorithm to the high-gain SLPVQR control of the quadrotor gives the following

results. Figure 6.14 illustrates the measurement data compared with the actual states. This figure

shows that the high-gain SLPVQR is usable to control the quadrotor, though the only partial infor-

mation from the noisy measurement is observed. Figure 6.15 illustrates the saturated control inputs

with and without the process noises. This figure shows that the system is work well, though the

unsaturated region is very small and the control inputs are noisy. In figure 6.16, the state estimation

errors and their corresponding ±3σ bounding levels are also given to proof the consistency of the

EKF.

In this chapter, we have presented the way to simulate the quadrotor. The 3D visualization

via the MATLAB simulink is used. Then, we apply the LPV control methods derived in Chapter

4 and Chapter 5 to the LPV model of the quadrotor. The simulation results show that our control

strategies are satisfactory for using to do both the full state feedback control and the output feedback

control of the quadrotor, the control inputs of which are bounded.

Figure 6.14: Control responses and measurement data.
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Figure 6.15: Saturated control inputs with and without process noises.

Figure 6.16: State estimation errors and ±3σ bounding levels.



CHAPTER VII

CONCLUSIONS

7.1 Summary

This thesis has presented the output feedback control of the quad-rotor helicopter with input

saturation constraints. The main idea underlying the controller design is the transformation of the

nonlinear model to an approximated LPV model of the quadrotor. Then, the LPV control technique

is applied. The advantage of the LPV control strategy is that we can apply almost the existed tools

used in linear control analysis to control the nonlinear systems.

In this thesis, the nonlinear and the LPV dynamic modeling of the quadrotor were first con-

sidered in Chapter 3. To obtain the nonlinear dynamic model, we assumed that forces and torques

acting on the quadrotor are induced by the thrust and the gravity. We noted that the drag force

and the gyroscopic effect are ignored. Moreover, the aerodynamic effects are treated as the process

noises. By linearizing the nonlinear dynamic model of the quadrotor around the zero roll and pitch

angle, we obtained the LPV model of the quadrotor that depends on the yaw angle. The polytopic

structure of the LPV model was then obtained by applying the tensor product model transformation.

Next, in Chapter 4, the LPV quadratic stabilization and the LPVQR control were derived. To

obtain the LPV quadratic stabilization, two types of the Lyapunov function, the common quadratic

Lyapunov function and the parameter-dependent quadratic Lyapunov function, were considered.

Then, they were extended to the LPVQR control problem. The use of the parameter-dependent

quadratic Lyapunov function gives the better result than the use of the common quadratic Lyapunov

function in terms of the conservativeness. Nevertheless, the sufficient condition for solving the

LPVQR via the parameter-dependent quadratic Lyapunov function requires the knowledge about

the bound on the rate of parameters, which is often unknonwn in practice. Moreover, when we are

dealing with the highly conservative LPV systems, e.g., the LPV model of the quadrotor of which

the parameter dependence is polynomial, the use of the parameter-dependent quadratic Lyapunov

function is still suffered from the conservativeness. This makes the quadrotor cannot be stabilized.

Therefore, we also proposed the use of the composite quadratic Lyapunov fiunction. By using this

kind of the Lyapunov function, the matrix derivative term in the time-derivative of the parameter-

dependent quadratic Lyapunov function is eliminated. The simulation results also showed that the

use of the composite quadratic Lyapunov function works well with our system.

In Chapter 5, the saturation of the control inputs was taken into consideration. We first

derived the LQR control of the saturated LTI systems. Two approaches, the low-gian SLQR and
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the high-gain SLQR, were obtained. For the low-gain SLQR, the ellipsoidal domain of attraction

was forced to be inside the unsaturated region. In this case, the effect of the saturation is avoided

by decreasing the controller gain in order that the control inputs are unsaturated. This leads to the

lower closed-loop performance. On the other hand, for the high-gain SLQR, the ellipsoidal domain

of attraction was proved that it need not to be inside the unsaturated region. In this case, the desired

control inputs tolerate the occurrence of the saturation. The simulation results showed that the high-

gain controller significantly improves the closed-loop performance. Subsequently, we extended the

SLQR and the high-gain SLQR to the saturated LPV systems. The SLPVQR and the high-gain

SLPVQR were then obtained respectively.

In Chapter 6, we applied the LPVQR, the SLPVQR, and the high-gain SLPVQR to control

the quadrotor. At the beginning of this chapter, the simulation setup was discussed. The 3D visual-

ization of the quadrotor via the MATLAB simulink was given to demonstrate the results. Then, by

applying the LPVQR, the simulation results showed that the LPVQR via the composite quadratic

Lyapunov function can control the LPV model of the quadrotor. Nevertheless, the forces required

to be applied to the quadrotor are the impulse functions. In addition, when the force is bounded

by [0, 1g] for each rotor, the quadrotor is failed to be stabilized. This problem was subsequently

fixed by applying the SLPVQR and the high-gain SLPVQR. As expected, the simulation results

showed that the high-gain SLPVQR gives the better performance than the SLPVQR. Beside the

LQR control of the quadrotor, we also applied the EKF to do the state estimation in order that our

LPV control methods can cope with the output feedback control problem. The output feedback

control of the quadrotor with the input saturation constraints was then accomplished.

7.2 Future work guideline

There is still a lot of room for additional development in the LPV control of the quadrotor. It

is stated in the following topics.

1. Robustness and model uncertainties

In this thesis, the model parameters of the quadrotor are assumed to be exactly known. How-

ever, in practice, these parameters are experimentally acquired. In addition, the quadrotor is

not a rigid body. It is assembled from many components with many kinds of material. The

looseness of joints and the elasticity of materials may make the system model changeable

as the system is processing. Designing the controller regardless of model uncertainties may

cause the undesired situation. To cope with this problem, we suggest applying the robust con-

trol of linear systems with model uncertainties, e.g., [26–31], which can be applied directly

to the LPV model of the quadrotor.

2. Off equilibrium improvement
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The approximated LPV model of the quadrotor was obtained by linearizing the nonlinear

model around the zero roll and pitch angle. The simulation results showed that this model is

properly used in a local domain around the equilibrium space. However, when the system is

unawares stirred to a particular roll and pitch angle, the system becomes unstable. This prob-

lem should be fixed by extending the control space to include the overall range of the roll

angle and the pitch angle. Unfortunately, the polytopic LPV model of the quadrotor describ-

ing the whole space of those angles is too complicated. It makes the real-time implementation

impossible.

In recent years, many researchers concentrate on studying the piecewise linear control [59].

This control method divides the nonlinear system into many approximated linear systems.

Then the modified linear control strategies are applied. The advantage of the PWL system

over the LPV system is that it can be used to represent the more complex nonlinear system.

Even if we have showed in Chapter 4 that the LPVQR control outperforms the PWL quadratic

regulator control in terms of the performance, we recommend combining the PWL control to

the LPV control for obtaining the better result.

3. Discrete-time control

This thesis considers only the controller designed in the continuous-time domain. However,

to implement the control algorithms in a digital controller, we need to analyse them in the

discrete-time domain. This problem have been intensively studied in the publications.

4. Trajectory planning and tracking problem

To obtain a fully autonomous controller, it is essential to do the trajectory planning. In ad-

dition, the controller must has the ability of tracking the generated path. For these reasons,

both the trajectory planning problem and the tracking problem have to be encompassed and

included into the control design procedure.

Beside the control of the quadrotor, finally, we hope that this thesis had better be useful in the

control of other nonlinear systems.
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[39] Tóth, R. Modeling and identification of linear parameter-varying systems. Germany : Springer-

Verlag Berlin Heidelberg, 2010.

[40] Lathauwer, L.D., Moor, B.D., and Vandewalle, J. A multilinear singular value decomposition.

SIAM Journal on Matrix Analysis and Applications 21 (2000) : 1253–1278.

[41] Baranyi, P. TP model transformation as a way to LMI based controller design. IEEE Transaction

on Industrial Electronics 51 (April 2004) : 387–400.

[42] Baranyi, P., Várkonyi, P.L., Korondi, P., and Yam, Y. Different affine decomposition of the model

of the prototypical aeroelastic wing section by TP model transformation. IEEE Interna-

tional Conference on Intelligent Engineering Systems 2005 (September 2005) : 93–98.

[43] Baranyi, P., Petres, Z., Várkonyi, P.L., Korondi, P., and Yam, Y. Determination of different poly-

topic models of the prototypical aeroelastic wing section by TP model transformation.

Journal of Advanced Computational Intelligence 10 (2006) : 486–493.

[44] Baranyi, P. Output feedback control of two dimensional aeroelastic system. Journal of Guidance,

Control, and Dynamics 29 (May 2006) : 762–767.
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Birkhäuser, 2001.

[53] Jacobson, D.H., Martin, D.H., Pachter, M., and Geveci, T. Extensions of linear-quadratic control

theory. Germany : Springer-Verlag Berlin Heidelberg, 1980.

[54] Kalman, R. A new approach to linear filtering and prediction problems. ASME Journal of Basic

Engineering 82 (March 1960) : 35–45.

[55] Kalman, R, and Bucy, R. New results in linear filtering and prediction theory. ASME Journal of

Basic Engineering 83 (March 1961) : 95–108.

[56] Schmidt, S.F. Applications of state space methods to navigation problems. In C.T.Leondes (ed.),

Advance in control systems, pp.293–340. New York : Academic Press, 1966.

[57] Simon, D. Optimal state estimation: Kalman, H∞, and nonlinear approaches. United States of

America : John Wiley & Sons, 2006.

[58] Spong, M.W., Hutchison, S., and Vidyasagar, M. Robot modeling and control. United States of

America : John Wiley & Sons, 2006.

[59] Johansson, M. Piecewise linear control systems: A computational approach. Germany : Springer-

Verlag Berlin Heidelberg, 2003.

[60] Hu, T., Lin, Z., and Chen, B.M. An analysis and design method for linear systems subject to

actuator saturation and disturbance. Automatica 38 (February 2002) : 351–359.

[61] Wolfgang, B., and Tanja, K. VRML: today and tomorrow. Computers & Graphics 20 (1996) : 427–

434.



APPENDICES



APPENDIX A

PROOFS

A.1 Proof from Chapter2

A.1.1 Proof of Theorem 2.1

The proof starts with the quadratic Lyapunov function defined by

V (x) = xTPx, (A.1)

where P is a positive definite matrix. The time derivative of the quadratic Lyapunov function is

computed as follows

d

dt
xTPx = (Ax+Bu)TPx+ xTP (Ax+Bu). (A.2)

It is supposed that the system (2.28) is stabilizable. Integrating (A.2) from t = 0 to∞ gives

−x(0)TPx(0) =

∫ ∞
0

(
xT (PA+ATP )x+ 2uTBTPx

)
dt. (A.3)

We recall here the performance criterion defined in (2.30). For simplicity, the time specific t is

omitted.

J(x(0), u(·)) =

∫ ∞
0

(
uTRu+ xTQx

)
dt. (A.4)

Adding (A.3) to (A.4) gives

J(x(0), u(·)) =

∫ ∞
0

(
uTRu+ 2uTBTPx+ xT (ATP + PA+Q)x

)
dt+ x(0)TPx(0), (A.5)

which is equivalent to

J(x(0), u(·)) =

∫ ∞
0

[
(u+R−1BTPx)TR(u+R−1BTPx)

+ xT (ATP + PA− PBR−1BTP +Q)x
]
dt+ x(0)TPx(0).

(A.6)

Now, we assume that the matrix P is chosen to satisfy the following algebraic Riccati inequality

ATP + PA− PBR−1BTP +Q < 0. (A.7)

Since R is a positive definite matrix, the optimal control u(·) is readily computed as follows

u = −Kx, (A.8)

K = R−1BTP. (A.9)
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Consequently, we have the following upper bound on the cost function

J(x(0), u(·)) < x(0)TPx(0). (A.10)

Now, to reformulate the nonlinear matrix inequality constraint (A.7) to the LMI constraint, it is first

transformed to an equivalent matrix inequality of the form

−P (A−BK)− (A−BK)TP −Q−KTRK > 0. (A.11)

Pre and post multiplying the inequality (A.11) by Y = P−1 and defining L = KP−1 give

−(AY −BL)− (AY −BL)T − Y QY − LTRL > 0. (A.12)

Then, by applying the Schur complement, an equivalent LMI constraint is obtained as follows
−(AY −BL)− (AY −BL)T Y LT

Y Q−1 0

L 0 R−1

 > 0. (A.13)

To minimize the upper bound on the cost function, the criterion of minimizing the trace of the

matrix P is chosen. Since Y = P−1, the minimized upper bound on the cost function, for any

initial condition x(0), is then obtained by maximizing the trace of the matrix Y instead.

A.2 Proofs from Chapter 4

A.2.1 Proof of Lemma 4.1

Let P = Y −1 and K(ρ) = L(ρ)Y −1. Pre and post multiplying (4.9) by P , we have

P (A(ρ)−B(ρ)K(ρ)) + (A(ρ)−B(ρ)K(ρ))TP < 0. (A.14)

Thus the existence of a positive definite matrix Y and an arbitrary real matrix-valued function L(ρ)

satisfying (4.9) is equivalent to the existence of a positive definite matrix P satisfying the quadratic

Lyapunov stability condition of the closed-loop system (4.6). The quadratic stabilizability of the

LPV system (4.1) is then followed.

A.2.2 Proof of Theorem 4.1

We first multiply each inequality in (4.11) by the non-negative scalar ρ2
i and multiply each

inequality in (4.12) by the non-negative scalar ρiρj . Then, we sum them up. These yield

N∑
i=1

N∑
j=1

ρiρj(AiY + Y ATi −BiLj − LTj BT
i ) < 0. (A.15)
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For each fixed i, summing up the result from j = 1 to N gives

N∑
i=1

ρi(AiY + Y ATi −BiL(ρ)− L(ρ)TBT
i ) < 0. (A.16)

Now, we sum up (A.16). This yield

A(ρ)Y + Y A(ρ)T −B(ρ)L(ρ)− L(ρ)TB(ρ)T < 0, (A.17)

which implies the quadratic stabilizability.

A.2.3 Proof of Lemma 4.2

Let P (ρ) = Y (ρ)−1 and K(ρ) = L(ρ)Y (ρ)−1. Pre and post multiplying (4.17) by P (ρ), we

have

P (ρ)(A(ρ)−B(ρ)K(ρ)) + (A(ρ)−B(ρ)K(ρ))TP (ρ)− Y (ρ)−1Y (ρ̇)Y (ρ)−1 < 0. (A.18)

Since

Ṗ (ρ) = P (ρ̇) = −Y (ρ)−1Y (ρ̇)Y (ρ)−1, (A.19)

the inequality (A.18) becomes

Ṗ (ρ) + P (ρ)(A(ρ)−B(ρ)K(ρ)) + (A(ρ)−B(ρ)K(ρ))TP (ρ) < 0. (A.20)

Hence the existence of a positive definite matrix-valued function Y (ρ) and an arbitrary real matrix-

valued function L(ρ) satisfying (4.17) is equivalent to the existence of a positive definite matrix-

valued function P (ρ) satisfying the parameter-dependent quadratic Lyapunov stability condition of

the closed-loop system (4.6). The parameter-dependent quadratic stabilizability of the LPV system

(4.1) is then followed.

A.2.4 Proof of Theorem 4.2

For each fixed i, multiplying each inequality in (4.22) by the non-negative scalar σk and

summing up the results from k = 1 to M give

AiYi + YiA
T
i −BiLi − LTi BT

i − Y (ρ̇(t)) < 0, ∀i ∈ I[1, N ]. (A.21)

Also, for each fixed i and j, multiplying each inequality in (4.23) by the non-negative scalar σk and

summing up the results from k = 1 to M give

AiYj +AjYi + YiA
T
j + YjA

T
i −BiLj −BjLi − LTi BT

j − LTj BT
i − 2Y (ρ̇(t)) < 0, ∀i ∈ I[1, N − 1],

∀j ∈ I[i+ 1, N ].
(A.22)

We multiply each inequality in (A.21) by the non-negative scalar ρ2
i and multiply each inequality in

(A.22) by the non-negative scalar ρiρj . Then, we sum them up. These yield

N∑
i=1

N∑
j=1

ρiρj(AiYj + YjA
T
i −BiLj − LTj BT

i − Y (ρ̇)) < 0. (A.23)
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For each fixed i, summing up the inequality (A.23) from j = 1 to N gives

N∑
i=1

ρi(AiY (ρ) + Y (ρ)ATi −BiL(ρ)− L(ρ)TBT
i − Y (ρ̇)) < 0. (A.24)

Now, we sum up (A.24). This yields

A(ρ)Y (ρ) + Y (ρ)A(ρ)T −B(ρ)L(ρ)− L(ρ)TB(ρ)T − Y (ρ̇) < 0, (A.25)

which implies the parameter-dependent quadratic stabilizability.

A.2.5 Proof of Theorem 4.3

In the analogous way of the proof of Theorem 4.1, the existence of a positive definite matrix

Y and a set of matrices {L1, . . . , LN} satisfying (4.28)-(4.29) implies that
− (A(ρ)Y −B(ρ)L(ρ))− (A(ρ)Y −B(ρ)L(ρ))T Y L(ρ)T

Y Q−1 0

L(ρ) 0 R−1

 > 0. (A.26)

We apply the Schur complement, then pre and post multiply the result by P . These yield

P (A(ρ)−B(ρ)K(ρ)) + (A(ρ)−B(ρ)K(ρ))T P < −Q−K(ρ)TRK(ρ), (A.27)

which is equivalent to the following algebraic Riccati inequality

A(ρ)TP + PA(ρ)− PB(ρ)R−1B(ρ)TP +Q < 0. (A.28)

The rest of this proof is now similar to the proof of Theorem 2.1.

A.2.6 Proof of Corollary 4.1

We multiply each inequality in (4.30) by the non-negative scalar ρi and sum up the results.

These yield 
− (A(ρ)Y −BL(ρ))− (A(ρ)Y −BL(ρ))T Y L(ρ)T

Y Q−1 0

L(ρ) 0 R−1

 > 0. (A.29)

The rest of this proof is now similar to the proof of Theorem 4.3.

A.2.7 Proof of Theorem 4.4

In the analogous way of the proof of Theorem 4.2, the existence of a set of positive definite

matrices {Y1, . . . , YN} and a set of matrices {L1, . . . , LN} satisfying (4.31)-(4.32) implies that
Y (θ̇)− (A(θ)Y (θ)−B(θ)L(θ))− (A(θ)Y (θ)−B(θ)L(θ))T Y (θ) L(θ)

Y (θ) Q−1 0

L(θ)T 0 R−1

 > 0 (A.30)
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The parameter-dependent LMI (A.30) is equivalent to the following parameter-dependent algebraic

Riccati inequality

Ṗ (ρ) +A(ρ)TP (ρ) + P (ρ)A(ρ)− P (ρ)B(ρ)R−1B(ρ)TP (ρ) +Q < 0. (A.31)

This is derived similarly to the algebraic Riccati inequality in the proof of Theorem 2.1, but the

Lyapunov function is the parameter-dependent quadratic Lyapunov function and the dynamic sys-

tem is the LPV system instead. The rest of this proof is now similar to the proof of Theorem 2.1,

other than the existence of the matrix derivative Ṗ (ρ).

A.2.8 Proof of Theorem 4.5

Because we are trying to minimize xTP (ρ)x along the trajectory of ρ, the solution of P (ρ)

is certainly satisfied the condition of the composite quadratic Lyapunov function and the algebraic

Riccati inequality is readily obtained as follows

A(ρ)TP (ρ) + P (ρ)A(ρ)− P (ρ)B(ρ)R−1B(ρ)TP (ρ) +Q < 0, (A.32)

which is equivalent to (4.36). Therefore, the existence of a positive definite matrix-valued function

Y (ρ) and an arbitrary real matrix-valued function L(ρ) satisfying (4.36) implies that

J(x(0), u(·)) < x(0)TP (ρ(0))x(0). (A.33)

By the heuristic rule, the minimum of this bound is obtained by minimizing the trace of the matrix

P (ρ), or equivalently maximizing the trace of the matrix Y (ρ), along the trajectory of the parameter.

A.3 Proofs from Chapter 5

A.3.1 Proof of Theorem 5.1

We define the analysis domain as follows

E(P, γ) =
{
x : xTPx ≤ γ

}
. (A.34)

With the Lyapunov function defined by V (x) = xTPx, let Y = P−1 and L = KY , we have the

following LQR condition
−(AY −BL)− (AY −BL)T Y LT

Y Q−1 0

L 0 R−1

 > 0. (A.35)

Since the system works aright inside the unsaturated region, to ensure that the analysis domain

(A.34) can guarantee the LQR performance, it is enforced to be inside the unsaturated region. That
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is E(P, γ) ⊂ L(K,σ). From Lemma 2.2, we have the following LMI condition σ2 ki (P/γ)−1

(P/γ)−1 kTi (P/γ)−1

 ≥ 0, ∀i ∈ I[1,m], (A.36)

which is equivalent toσ2/γ `i

`i Y

 ≥ 0, `i : ith row of L, ∀i ∈ I[1,m]. (A.37)

Under these two conditions, (A.35) and (A.37), the cost function (5.5) readily satisfies

J(x(0), u(·)) < x(0)TPx(0), ∀ x(0) ∈ E(P, γ). (A.38)

By the heuristic rule, the minimum of this bound is obtained by minimizing the trace of the matrix

P , or equivalently maximizing the trace of the matrix Y .

A.3.2 Proof of Theorem 5.2

The following quadratic Lyapunov function is considered

V (x) = xTPx. (A.39)

With the saturated LTI system (5.1), the time derivative of the Lyapunov function is computed as

follows

V̇ (x) = xT (PA+ATP )x−
m∑
i=1

2xTPbisatσ(kix), bi : ith column of B. (A.40)

Let P = Y −1 and F = MY −1, the constraint (5.13) implies that E(P, γ) ⊂ L(F, σ). This results

in the following

−σ ≤ fix ≤ σ, ∀x ∈ E(P.γ), ∀i ∈ I[1,m].

Consequently, for each term of 2xTPbisatσ(kix), we have

1) If xTPbi ≥ 0 and kix ≤ σ, then kix ≤ satσ(kix) and 2xTPbisatσ(kix) ≥ 2xTPbikix.

2) If xTPbi ≥ 0 and kix ≥ σ, since fix ≤ σ, then 2xTPbisatσ(kix) = 2xTPbiσ ≥

2xTPbifix.

3) If xTPbi ≤ 0 and kix ≥ −σ, then kix ≥ satσ(kix) and 2xTPbisatσ(kix) ≥ 2xTPbikix.

4) If xTPbi ≤ 0 and kix ≤ −σ, since fix ≥ −σ, then 2xTPbisatσ(kix) = −2xTPbiσ ≥

2xTPbifix.
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These can be deduced to a single inequality as follows

2xTPbisatσ(kix) ≥ min
{

2xTPbikix, 2xTPbifix
}
, (A.41)

which is equivalent to

−2xTPbisatσ(kix) ≤ −min
{

2xTPbikix, 2xTPbifix
}
. (A.42)

As a result, for all x ∈ E(P.γ), we have

V̇ (x) ≤ xT (PA+ATP )x−
m∑
i=1

min
{

2xTPbikix, 2xTPbifix
}
. (A.43)

Next, with a vector v ∈ V defined in (5.10), if 2xTPbikix < 2xTPbifix, we set vi = 1, otherwise

we set vi = 0. The inequality (A.43) becomes

V̇ (x) ≤ xT (PA+ATP )x− 2xTP

(
m∑
i=1

bi (viki + (1− vi)fi)

)
x

= xT (PA+ATP )x− 2xTPBS(v,K, F )x. (A.44)

We now turn back to the LQR problem. From (A.44), we have

−x(0)TPx(0) =

∫ ∞
0

(
xT (PA+ATP )x− 2xTPBsatσ(Kx)

)
dt

≤
∫ ∞

0

(
xT (PA+ATP )x− 2xTPBS(v,K, F )x

)
dt, (A.45)

for all x ∈ E(P, γ) ⊂ L(F, σ). By incorporating (A.45) with the performance criterion of the form

J(x(0), u(·)) =

∫ ∞
0

(uTRu+ xTQx)dt, (A.46)

it follows that

J(x(0), u(·)) =

∫ ∞
0

(
xT (PA+ATP +Q)x− 2xTPBsatσ(Kx)

+satσ(Kx)TRsatσ(Kx)
)
dt+ x(0)TPx(0)

≤
∫ ∞

0

(
xT (PA+ATP +Q)x− 2xTPBS(v,K, F )x (A.47)

+xTS(v,K, F )TRS(v,K, F )x
)
dt+ x(0)TPx(0).

This means that if E(P, γ) ⊂ L(F, σ) and

ATP +PA+Q−PBS(v,K, F )−S(v,K, F )TBTP +S(v,K, F )TRS(v,K, F ) < 0, (A.48)

for all v ∈ V, then we have an upper bound on the cost function as follows

J(x(0), u(·)) < x(0)TPx(0), ∀x(0) ∈ E(P, γ). (A.49)
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We note that the inequality (A.48) is equivalent to the following LMI condition
−(AY −BS(v, L,M))− (AY −BS(v, L,M))T Y S(v, L,M)T

Y Q−1 0

S(v, L,M) 0 R−1

 > 0 (A.50)

where Y = P−1, L = KP−1 and M = FP−1. Finally, the trace of the matrix Y is maximized to

obtain the minimum of the upper bound on the cost function.

A.3.3 Proof of Theorem 5.3

This proof is similar to the proof of Theorem 5.1, except that the analysis domain is defined

by

E(P (ρ), γ) :=
{
x : xTP (ρ)x ≤ γ

}
(A.51)

and the unsaturated region is defined by

L(K(ρ), σ) := {x : |ki(ρ)x| ≤ σ, ∀i ∈ I[1,m]} . (A.52)

To enforce the analysis domain (A.51) to be inside the unsaturated region (A.52), i.e., E(P (ρ), γ) ⊂

L(K(ρ), σ), Lemma 2.2 is modified to the LPV condition. That is σ2/γ `i(ρ)

`i(ρ)T Y (ρ)

 > 0, ∀i ∈ I[1,m]. (A.53)

The rest of this proof is now similar to the proof of Theorem 5.1.
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