2554

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

CHARACTERISTICS OF TANTALUM NITRIDE THIN FILMS ON GLASS AND POLYIMIDE SUBSTRATES DEPOSITED BY REACTIVE SPUTTERING

Mr.Samatcha Vorathamrong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Electrical Engineering Department of Electrical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

()
()
()
()
)	

.

.

.....

.....

<u>2554</u>	 	

5270806621 : MAJOR ELECTRICAL ENGINEERING KEYWORDS : TANTALUM NITRIDE / POLYIMIDE / REACTIVE SPUTTERING

SAMATCHA VORATHAMRONG : CHARACTERISTICS OF TANTALUM NITRIDE THIN FILMS ON GLASS AND POLYIMIDE SUBSTRATES DEPOSITED BY REACTIVE SPUTTERING. THESIS ADVISOR : ASSOC. PROF. SOMCHAI RATANATHAMMAPHAN, Ph.D., 44 pp.

Tantalum nitride (TaN) has wide range of applications in electronics industry due to its interesting properties, such as high mechanical strength, chemical inertness and thermal stability at high temperature. In this research, thin films of Tantalum nitride were deposited on glass and polyimide substrates by reactive sputtering method under N₂/Ar atmosphere. Gas mixture, sputtering power, and working pressure were varied as processing parameters. Crystal structure, surface morphology, electrical resistivity and deposition rate of the films were investigated by X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), 4-point probe method, and stylus profilometer.

XRD results showed that TaN (111) and (200) was formed when N_2 was introduced to the system. Film crystal structure gradually transformed to amorphous while increasing the amount of N_2 . Surface morphology, electrical resistivity, and deposition rate also correlate with N_2 ratio. Deposition rate increases monotonically with an increase in sputtering power. Working pressure influences in lower deposition rate. Effect of substrate results in difference deposition rate and crystal properties of the films on glass and PI substrates.

Department : Electrical Engineering	Student's Signature
Field of Study : Electrical Engineering	Advisor's Signature
Academic Year : 2011	

MEKTEC

. .

1			1
1			1.1
2		2	1.2
2		}	1.3
3		1	1.4
4			2
4			2.1
6	1	2.1	
7	2 Stoichiometry	2.1	
7	3	2.1	
8	4	2.1	
9		<u>)</u>	2.2
9	1 Ion beam assisted deposition	2.2	
9	2 Chemical Vapor Deposition (CVD)	2.2	
11	3 sputtering	2.2	
14			3
14	sputterina		3.1
	1	31	
14		5.11	

	3.1.2		
		PI	15
	3.1.3		
	Sputterir	1g	16
3.2	·	·	16
	3.2.1	4-point probe	16
	3.2.2 Atomic F	orce Microscope (AFM)	17
	3.2.3 X-Ray D	iffraction Analysis (XRD Analysis)	19
	3.2.4 Stylus Pi	rofilometer	21
	,		
4			22
4.1			
			22
	4.1.1	XRD	22
	4.1.2	AFM	23
	4.1.3		25
	4.1.4	4-point probe	27
4.2)		
		PI	28
	4.2.1	XRD	28
	4.2.2	AFM	29
	4.2.3		31
	4.2.4	4-point probe	32
4.3	}		
	sputtering		32
	4.3.1		33
	4.3.2		36
F			<u> </u>
5			31

 39
 44

4.1		
10		25
4.2		27
4.3	וח	01
4.4	PI	31
	PI	32

2.1		5
2.2	hexagonal ~	
	$\frac{1}{2}, \frac{2}{3}, \frac{1}{2}$ $\frac{2}{3}, \frac{1}{3}, \frac{1}{2};$	
	0,0,0 •	6
2.3	Interstitial nitrides	
	carbides	
	D	
	800	8
2.4	CVD	10
2.5	sputtering	
	target	
	(substrate)	12
3.1	4-point probe	16
3.2	AF	18
3.3	Bragg	
	(d)	19
3.4	X-Ray Diffraction Analysis	20
3.5	Stylus Profilometer	19
4.1	AFM	
	0.0% (a) 5.0% (b) 10.5% (c)	
	15.5% (d) 22.2% (e) 27.8% (f)	23
42	nucleation site (a)	20
1.2	nucleation site (h)	
		2/
12	ΛFM DI	24
J''	በ በ% (ቃ) ፍ በ% (h) 1በ ፍ% (ሐ) 1ፍ ፍ% (ሐ)	
	יט איט גען גען איט גען גען גער גען גער גען גער גען גער גער גען גער	າດ
	۲۲.۲/۵ (۲) ۲/۰۵ (۱)	Ζ۶

4.4		nucleation site	(a)	
	PI (b)			30
4.5				33
4.6		sputtering		
				35
4.7				36

1.1

[1]

1

[2]

[3]

(Integrated Circuit) [4]

(Diffusion Barrier) [5]

ı

[6] Chemical Vapor Deposition (CVD) [7] Ion beam assisted deposition [8] sputtering [9] reactive sputtering

1.2

reactive sputtering (PI) sputtering

AFM Stylus

Profilometer XRD 4-point probe

1.3

reactive sputtering

2

sputtering

2

1.4

1.4.1 sputtering

1.4.2

2

1.4.3 sputtering

stoichiometry

(Ta)

2.1

V (N)

electronegativity

5 [10]

() Covalent nitrides electronegativity

() Intermediate nitrides (VII VIII)

electronegativity

3

stoichiometry

() Volatile nitrides

6 7

() Interstitial nitrides electronegativity

(interstitial site)

[11]

hexagonal

a =

5.1808 A° c = 2.9049 A°

Interstitial site

 $\frac{1}{2}, \frac{2}{3}, \frac{1}{2}$

2.2

0,0,0

•

 $\frac{2}{3}, \frac{1}{3}, \frac{1}{2};$ [12]

close pack

			interstitia	al site	
Interstitial defect	(stoichiometric	ratio)			
Ν	Х		1	MN _x	Μ
Х	1		stoichiom	netry	

2.1.3

2.1.2

Interstitial nitrides

Stoichiometry

IV V

0 0 0 0 0 0 0 0 Ti V Cr TiC VC Cr ₃ C ₂ TiN VN Cr ₂ N -1677 -1917 -1900 3067 2648 1810 2949 2177 ~1500 0 0 0 0 0 0 0 0 0 Zr Nb Mo ZrC NbC MoC ZrN NbN MoN 1852 2487 2610 3420 3600 2982 2204 / D 0 0 0 0 0 0 0 0 0 Hf Ta W HfC TaC WC HfN TaN WN 2222 2997 3380 3928 3983 2776 3387 3093 D	IV	V	VI	IV	L V	VI		<u>v</u>	VI.
Ti V Cr TiC VC Cr ₃ C ₂ TiN VN Cr ₂ N -1677 -1917 -1900 -3067 2648 -1810 2949 2177 ~1500 0 0 0 0 0 0 0 0 0 2r Nb Mo ZrC NbC MoC ZrN NbN MoN 1852 2487 2610 3420 3600 29600 2982 2204 0 0 0	0	0	0	$ \circ $	0	0	0	0	0
	Ti	V	Cr	TiĆ	vc	Cr3C2	TiN	VN	Cr ₂ N
O O O O O O O Zr Nb Mo ZrC NbC MoC ZrN NbN MoN 1852 2487 2610 3420 36QQ 2600 2982 2204 Q O O O O O O O O O Hf Ta W HfC TaC WC HfN TaN WN 2222 2997 3380 3928 3983 2776 3387 3093 D	1677	- 1917	1300	3067	2648	_ <u>_1810_</u>	2949	_2177_	~15QQ
Zr Nb Mo ZrC NbC MoC ZrN NbN MoN 1852 2487 2600 3420 36QQ 2500 2982 2204 Q O	0	0	0	O	\circ	0	0	0	0
1852 2487 2610 3420 3600 2600 2982 2204 0 O O O O O O O O 0 0 Hf Ta W HfC TaC WC HfN TaN WN 2222 2997 3380 3928 3983 2776 3387 3093 D Elements Carbides Nitrides	Zr	Nb	Mo	ZrC	NbC	MoC	ZrN	NbN	MoN
O O O O O O O Hf Ta W HfC TaC WC HfN TaN WN 2222 2997 3380 3928 3983 2776 3387 3093 D Elements Carbides Nitrides	1852	2487	2610	3420	36QQ	2600	2982	2204	D
Hf Ta W HfC TaC WC HfN TaN WN 2222 2997 3380 3928 3983 2776 3387 3093 D Elements Carbides Nitrides	0	0	0	\bigcirc	\cap	0	Ō	Ō	0
Elements Carbides Nitrides	Hf 2222	Ta 2997	W 3380	HfC 3928	TaC 3983	WC	HfN 3387	TaN	WN
Elements Carbides Nitrides									
		Elements			Carbides			Nitrides	

2.3

Interstitial nitrides carbides

Interstitial

(refractory) [14]

"Refractory nitrides"

2.1.4

1)

Interstitial nitrides

(M-N)

Interstitial nitrides

stoichiometry (2.1.2)

Interstitial nitrides

2.2

2)

3)

2.2.1 Ion beam assisted deposition

Ion beam assisted deposition

(target)

chamber

chamber

gas discharge

sputtering

sputtering chamber

reactive sputtering

chamber

3

Magnetron sputtering

Reactive sputtering

2

sputtering

sputtering

3.2

3.1

3.1

sputtering UNIVEX350 and Technology Development)

3.1.1

1 2 chamber sputtering 3 chamber 4.5×10^{-5} mbar

reactive (Center of Research

Mektec

(flow rate) 50 sccm 4 Glow discharge 5 10 Glow discharge 5 6 flow rate 20 sccm 200 W sputtering 10 $1.6 \times 10^{-2} \text{ mbar}$ sputtering 1 chamber 6 7 flow rate flow rate 1.6×10^{-2} mbar 0.0 - 27.8% 3.1.2 PI 3.1.1 Polyimide (PI) PI

3.1.1

3.1.3

probe

probe 4

probe

probe

S

probe

-

t

$$(\not >> \cdot s) \qquad (\rho)$$

$$\rho = 2\pi s \left(\frac{1}{2} \right) \qquad (3.1)$$

$$(t < s) \qquad (\rho)$$

$$\rho = \frac{\pi_{i}}{\hbar_{i}} \left(\frac{\hbar}{\lambda} \right) \tag{3.2}$$

sheet resistivity (R)

K

$$\mathcal{R}_{S} = \mathcal{A}\left(\frac{\mathcal{V}}{\mathcal{V}}\right) \tag{3.3}$$

K

geometric	c factor	
4.53	$\frac{\pi}{//2}$	

(cantilever)

(tip) (Si) (Si₃N₄)

tip

(Photodiode)

(Laser)

- Contact mode

- Noncontact mode

Piezoelectric

- Tapping mode

Contact mode Noncont

Noncontact mode

Contact Noncontact

mode mode

Atomic Force

Microscope Seiko FTA400

Semiconductor Device Research Laboratory

3.2.3 X-Ray Diffraction Analysis (XRD Analysis)

XRD

Bragg's Law :

$$2d \sin \theta = n\lambda \tag{3.4}$$

Diffractometer Rigaku (SA-HFM3)

3.2.4 Stylus Profilometer

Stylus

Stylus Profilometer

Stylus

X-ray

(Amorphous)

4

(a)

(C)

AFM 4.1

> 22.2% (e) 27.8% (f)

AFM

(b)

(d)

0.0% (a) 5.0% (b) 10.5% (c) 15.8% (d)

100 nm

AFM

50 nm

 $(N_2 = 0.0\%)$

5.0%

Large void Zone-B Zone-A

nucleation site (a)

nucleation site (b)

4.2

site

(c) [23]

Percentage of N ₂ (%)	Deposition Rate (µm/hr)	
0.0	3.96	
5.0	1.85	
10.5	1.5	
15.8	0.6	
22.2	0.5	
27.8	0.4	

4.1	

0.5 – 4.0 μm/

Leszek Gladczuk et al. [24]

1.

sputtering yield

(4.2)

$$S = k \frac{1}{\lambda \cos \theta} \frac{M_1 M_2}{(M_1 + M_2)^2} E$$
 (4.2)[26]

K

λ mean free path
θ target
M₁
M₂ target *E*

$$S \propto \frac{M_1}{M_2} \frac{M E}{E} \frac{1}{\cos \theta}$$
(4.3)

sputtering yield

 M_1

 M_{1}

reactive sputtering M_1

40

7 sputtering yield

4-point probe

Percentage of N ₂ (%)	<i>ρ</i> (μΩ.cm)
0.0	150
5.0	250
10.5	210
15.8	245
22.2	360
27.8	700
10	

0.0%

150 μΩ.cm 250 μΩ.cm 5.0 - 22.2% [28] 4.1.1 4.1.2 27.8% [29] 4.2 Pl 3.1.1 Pl 3.1.1 4.2.1 XRD 71 XRD Pl

22.2%

4.2.2

(e)

22.2% (e) 27.8% (f)

(b)

(d)

(f) Pl 0.0% (a) 5.0% (b) 10.5% (c) 15.8% (d)

Percentage of N ₂ (%)	Deposition Rate (µm/hr)	
0.0	2.91	
5.0	1.64	
10.5	1.68	
15.8	0.5	
22.2	0.45	
27.8	0.35	
4.3	Pl	

PI

energy

PI

4.1.3

PI

PI

surface

Percentage of N ₂ (%)	$ ho$ ($\mu\Omega$.cm)	
0.0	145	
5.0	260	
10.5	250	
15.8	380	
22.2	680	
27.8	710	
4.4	PI	

Δ	Δ	
	ът	

PI 150 – 700 $\mu\Omega$.cm PI 22.2% 4.2.1

4.2.2

4.3 sputtering

5.0%

PI

W

t

W

sputtering

$$\mathcal{R} = \frac{\mathcal{U}}{\mathcal{L}} \tag{4.4}$$

sputter

(4.5)

$$\mathcal{W} \approx \frac{\kappa_1 \, \mathcal{M}_0}{\rho_G} \tag{4.5}$$

4.3.1

$$\mathcal{R} \propto \frac{1}{\mu}$$
 (4.6)

(4.6) sputtering

> sputter discharge sputter

A.

sputtering yield

Aryasomayajula et al. [32]

4.1.3

$$\mathcal{S} = k \frac{1}{\lambda \cos \theta} \frac{\hbar_1 \hbar_2}{(\hbar_1 + \hbar_2)^2} \mathcal{E}$$
(4.7)

(4.7) sputtering yield (S) (E) sputtering

4.3.2

		5	
Profilometer	4-point probe	2	XRD AFM Stylus
	(111) (200) peak	XRD	peak nucleation site peak
		4-point pro	be

sputtering sputtering

target

surface energy

- [1] Oyama, S. T. <u>The Chemistry of Transition Metal Carbides and Nitrides</u>. Hartnolls Limited, Chapman&Hall, 1996.
- [2] Chatterjee, S., Shudarshan, T. S., and Chandrashekhar, S. Deposition processes and metal cutting applications of TiN coatings. <u>J. Mater Sci.</u> 27 (1992) : 121
- [3] Nazon, J., Sarradin, J., Flaud, V., Tedenac, J. C., and Frety, N. J. Copper diffusion into silicon substrates through TaN and Ta/TaN multilayer barriers. <u>Alloys</u> <u>Compd</u> 464 (2008) : 526-531
- [4] Radhakrishnan, K., Ng Geok Ing, and Gopalakrishnan, R. Reactive sputter deposition and characterization of tantalum nitride thin films. <u>Materials</u> <u>Science and Engineering: B</u> 57 (1999) : 224-227
- [5] Aryasomayajula, A., Valleti, K., Aryasomayajula, S., and Bhat, D. G. Pulsed DC magnetron sputtered tantalum nitride hard coatings for tribological applications. <u>Surface and Coatings Technology</u> 201 (2006) : 4401-4405
- [6] Riekkinen, T., Molarious, J., Laurilla, T., Nurmela, A., Sumi, I., and Kivilahti, J. K. Effect of annealing temperature on structural and electrical properties of tantalum nitride thin film resistors deposited on SiO2/Si substrates by dc sputtering technique. <u>Microelectron. Eng.</u> 64 (2002) : 289
- [7] Lemberger, M., Baunemann, A., and Bauer, A. J. Chemical vapor deposition of tantalum nitride films for metal gate application using TBTDET and novel

single-source MOCVD precursors. <u>Microelectronics Reliability</u> 47(2007) : 635-639

- [8] Volz, K., Kiuchi, M., and Ensinger, W. Tantalum nitride films formed by ion beam assisted deposition: analysis of the structure in dependence on the ion irradiation intensity. <u>Surface and Coatings Technology</u> 128– 129 (2000) : 298-302
- [9] Wormald, M. R., Underwood, B. Y., and Allen, K. W. The preparation of tantalum nitride targets by reactive sputtering. <u>Nuclear Instruments and Methods</u> 107 (1973) : 233-235
- [10] Pierson, H. O. <u>Handbook of Refractory Carbides and Nitrides:properties,</u> <u>characteristics, processing, and applications.</u> Noyes Publications (New Jersey), Noyes Publications, 1996.
- [11] Pierson, H. O. <u>Handbook of Refractory Carbides and Nitrides:properties,</u> <u>characteristics, processing, and applications.</u> Noyes Publications (New Jersey), Noyes Publications, 1996.
- [12] Toth, L. E. <u>Transition Metal Carbides and Nitrides.</u> Academic Press, INC. (LONDON), Academic Press, 1971.
- [13] Toth, L. E. <u>Transition Metal Carbides and Nitrides.</u> Academic Press, INC. (LONDON), Academic Press, 1971.
- [14] Pierson, H. O. <u>Handbook of Refractory Carbides and Nitrides:properties,</u> <u>characteristics, processing, and applications.</u> Noyes Publication, Noyes Publication, 1996.

- [15] MEMS and Nanotechnology Exchange (MNX). <u>MEMS Thin Film Deposition</u> <u>Processes.</u> [Online] Available from http://www.memsnet.org/mems/ processes/deposition.html
- [16] Wales J. <u>Atomic force microscope.</u> [Online] Available from http://en.wikipedia.org /wiki/Atomic_force_microscopy
- [17] Wales J. <u>X-ray crystallography.</u> [Online] Available from http://en.wikipedia.org/wiki /X-ray_crystallography
- [18] Grebenkemper, J., <u>Powder X-ray Diffraction.</u> [Online] Available from http://chemwiki .ucdavis.edu/Analytical_Chemistry/Instrumental_Analysis/Powder_X-ray_ Diffraction
- [19] Reche, J. <u>Metrology of Thin Films.</u> [Online] Available from http://www.waferbumping.com/documents/techno/metrology.html
- [20] Lee, W. H., Lin, J. C., and Lee, C. Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N₂/Ar gas mixtures. <u>Material</u> <u>Chemistry and Physics</u> 68 (2001) : 266-271
- [21] Movchan, B. A., and Demchishin, A. V. Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide <u>Phys. Met. Metallogr</u> 28 (1969) : 83
- [22] Elangovan, T., Murugeshan, S., Mangalaraj, D., Kuppusami, P., and Sudha C. Synthesis and high temperature XRD studies of tantalum nitride thin

films prepared by reactive pulsed dc magnetron sputtering. <u>Journal of</u> <u>Alloys and Compounds</u> 509 (2011) : 6400-6407

- [23] Tsukimoto, S., Moriyama, M., and Murakami, M. Microstructure of amorphous tantalum nitride thin films. <u>Thin Solid Films</u> 460 (2004) : 222-226
- [24] Gladczuk, L., Patel, A., Demaree, J. D., and Sosnowski, M. Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel. <u>Thin Solid</u> <u>Films</u> 476 (2005) : 295-302
- [25] Wasa, K., and Hayakawa, S. <u>Handbook of Sputter Deposition Technology</u>. Noyes Publications (New Jersey), Noyes Publications, 1992.
- [26] Wasa, K., and Hayakawa. S. <u>Handbook of Sputter Deposition Technology</u>. Noyes Publications (New Jersey), Noyes Publications, 1992.
- [27] Almen, O., Bruce, G. Collection and Sputtering Experiments with Noble Gas Ions <u>Nucl. Instr. Methods</u> 11 (1961) : 257-279
- [28] Yu, L., Stampfl, C., Marshall, D., Eshrich, T., Narayaanan, V., and Rowell, J. M. Mechanism and control of the metal-to-insulator transition in rocksalt tantalum nitride <u>Phys. Rev. B</u> 65 (245110) (2002) : 1–5
- [29] Nazon, J., Sarradin, J., Flaud, V., Tedenac, J. C., and Frety, N. Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering. <u>Journal of Alloys and Compounds</u> 464 (2008) : 526-531
- [30] Petrie, E. M. <u>Handbook of Adhesives and Sealants.</u> 2nd edition, R. R. Donnelly&Sons CO., McGraw-Hill, 2006.

- [31] Wasa, K., and Hayakawa, S. <u>Handbook of Sputter Deposition Technology.</u> Noyes Publications (New Jersey), Noyes Publications, 1992.
- [32] Aryasomayajula, A., Valleti, K., Aryasomayajula, S., and Bhat, D. G., Pulsed DC magnetron sputtered tantalum nitride hard coatings for tribological applications. <u>Surface and Coatings Technology</u> 201 (2006) : 4401-4405

27 . . 2527

2546

2552

37 (37)Deposition and Characterization of TantalumNitride Films on Glass and Polyimide Substrates