อัตราส่วนความว่องไวของ 4-คลอโร-2-(4'-ไวนิลฟีนิล)-5-ฟีนิลออกซาโซล

และเมทิลเมทาคริเลตสำหรับโคพอลิเมอไรเซชัน

นางสาวธิดารัตน์ หิรัญวิริยะ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์

หลักสูตรปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2543

ISBN 974-346-759-9

ลิบสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

REACTIVITY RATIOS OF 4-CHLORO-2-(4'-VINYLPHENYL)-5-PHENYLOXAZOLE AND METHYL METHACRYLATE FOR COPOLYMERIZATION

MISS DHIDARATANA HIRUNVIRIYA

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Petrochemistry and Polymer Science Program of Petrochemistry and Polymer Science Faculty of Science, Chulalongkorn University Academic Year 2000 ISBN 974-346-759-9

Thesis title	Reactivity Ratios of 4-Chloro-2-(4'-vinylphenyl)-5-
	phenyloxazole and Methyl Methacrylate for Copolymerization
By	Miss Dhidaratana Hirunviriya
Program	Petrochemistry and Polymer Science
Thesis Advisor	Associate Professor Supawan Tantayanon, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

......Dean of Faculty of Science (Associate Professor Wanchai Phothiphichitr, Ph.D.)

(Associate Professor wanchar Photinphichur, Ph

Thesis Committee

.....Chairman

(Professor Pattarapan Prasassarakich, Ph.D.)

......Thesis Advisor

(Associate Professor Supawan Tantayanon, Ph.D.)

(Associate Professor Wimonrat Trakarnpruk, Ph.D.)

......Member

(Nattaya Ngamrojanavanich, Ph.D.)

นางสาวธิดารัตน์ หิรัญวิริยะ : อัตราส่วนความว่องไวของ 4-คลอโร-2-(4'-ไวนิลฟีนิล)-5-ฟีนิลออก ซาโซลและเมทิลเมทาคริเลตสำหรับโคพอลิเมอไรเซชัน (REACTIVITY RATIOS OF 4-CHLORO-2-(4'-VINYLPHENYL)-5-PHENYLOXAZOLE AND METHYL METHACRYLATE FOR COPOLYMERIZATION)

อาจารย์ที่ปรึกษา : รศ. คร.ศุภวรรณ ตันตยานนท์, อาจารย์ที่ปรึกษาร่วม, 80 หน้า. ISBN 974-346-759-9

4-กลอโร-2-(4'-เอทิลฟีนิล)-5-ฟีนิลออกซาโซล สามารถเตรียมได้จากปฏิกิริยาระหว่างพารา-เอทิลเบน ซัลดีไฮด์และเบนโซอิลไซยาไนด์ในสารละลายเททราไฮโครฟีวแรน ที่อิ่มตัวด้วยแก๊สไฮโครเจนคลอโรค์ โบรมิ เนชันของสารดังกล่าวโดยเอ็น-โบรโมซักซินิมีด แล้วทำดีไฮโครโบรมิเนชันโดยใช้โซเดียมเทอร์เทียรีบิวทอก ไซด์ ได้4-กลอโร-2-(4'-ไวนิลฟีนิล)-5-ฟีนิลออกซาโซล

ใด้สังเคราะห์พอลิ[4-กลอโร-2-(4'-ไวนิลฟีนิล)-5-ฟีนิลออกซาโซล-โค-เมทิลเมทาคริเลต] ที่มีสัดส่วน ของมอนอเมอร์ต่างๆกัน โดยใช้วิธีพอลิเมอไรเซชันแบบสารละลายในโทลูอีน ที่อุณหภูมิ 50±1 องศาเซลเซียส และมีเอไอบีเอ็นเป็นตัวริเริ่มปฏิกิริยา โคพอลิเมอร์ที่เกิดน้อยกว่า 10% คอนเวอร์ชัน ในอัตราส่วนต่างๆ ในโทลู อีน ถูกวิเคราะห์โดยแก๊สโครมาโทกราฟีและพิสูจน์เอกลักษณ์โดยเอ็นเอ็มอาร์สเปกโทรสโกปี ค่าอัตราส่วนความ ว่องไวของมอนอเมอร์ถูกหาโดยวิธี Fineman-Rossได้เป็น r 4-CHymyb-PPO = 1.07 และ r MM = 0.38

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา	ลายมือชื่อนิสิต
สาขาวิชา	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	

##4072276923 PETROCHEMISTRY AND POLYMER SCIENCE OXAZOLE / METHYL METHACRYLATE / REACTIVITY RATIOS / FINEMAN-ROSS / SCINTILLATOR DHIDARATANA HIRUNVIRIYA : REACTIVITY RATIOS OF 4-CHLORO-2-(4'-VINYLPHENYL)-5-PHENYLOZAXOLE AND METHYL METHACRYLATE FOR COPOLYMERIZATION THESIS ADVISOR : ASSOC. PROF. SUPAWAN TANTAYANON, Ph. D. 80 pp. ISBN 974-346-759-9

The reaction between *p*-ethylbenzaldehyde and benzoyl cyanide in a tetrahydrofuran solution saturated with hydrogen chloride gas gave 4-chloro-2-(4'- ethylphenyl)-5-phenylozaxole. Its bromination by *N*-bromosuccinimide followed by dehydrobromination with sodium *t*-butoxide gave 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole.

Poly[4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole-co-methyl methacrylate] at different monomer ratios was synthesized using solution copolymerization in toluene at 50±1 °C. AIBN was used as the initiator. The various copolymer ratios in toluene to give conversion less than 10% have been analyzed by gas chromatography and characterized by NMR spectroscopy. The monomer reactivity ratios were determined by Fineman-Ross method which give $r_{4-Cl-(vinyl)-PPO}=1.07$ and $r_{MMA} = 0.38$.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Program	Student's signature
Field of study	Advisor's signature
Academic year	

Acknowledgment

The author would like to express her deepest gratitude to her advisor, Associate Professor Dr. Supawan Tantayanon for valuable guidance and encouragement throughout the course of research. Sincere thank and gratification are going to Assistant Professor Dr. Prapaipit Chamsuksai Ternai, Professor Dr. Bela Ternai and Dr. Pakamas Tongjareonsirikul for the valuable and helpful advice during working this thesis.

She would like to thank Chulalongkorn University and the Tab Foundation for financial support of this work and the Chemistry Department for allowing her to use their equipment and instrument. She also would like to acknowledge National Science and Technology Development Agency for all support during working the research.

Furthermore, many thanks are going to her friends and all those who helped and encouraged her over the years of this study. Finally, she owes deep gratitude for love and support from her family.

CONTENTS

	PAGE
ABSTRACT(in Thai)	iv
ABSTRACT (in English)	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES.	xii
ABBRAVIATIONS	xiv
CHAPTER	
I: INTRODUCTION	
Scintillator	1
Plastic Scintillator	4
Synthesis of 2,5-diaryloxazole	5
Objectives of the Research	8
II : THEORETICAL CONSIDERATION	
Polymer Photophysics	9
Absorption	9
The Molecular Pathway	10
Determination of monomination restricts	12
Determination of monomer reactivity ratios	13
Types of Copolymerization Behavier	14

III : EXPERIMENTAL SECTION

General Procedure	

- Part I : Preparation of 4-Chloro-2-(4-vinylphenyl)

-5-phenyloxazole

CONTENTS (continued)

Synthesis of 4- Chloro-2-(4'-ethylphenyl)-5-	
phenyloxazole	19
Synthesis of 4- Chloro-2-4'-(α -bromoethyl	
phenyl)-5-phenyloxazole	20
Synthesis of 4- Chloro-2-(4'-vinylphenyl)-5-	
phenyloxazole	21
Part II : Synthesis of Copolymer	22
Part III : The Determination of Copolymer Compositions	
by Gas Chromatography	26
Part IV : Fluorescence Emission Analysis IV : RESULTS AND DISCUSSIONS	25
Synthesis of 4- Chloro-2-(4'-vinylphenyl)-5-	
phenyloxazole	29
Synthesis of 4- Chloro-2-(4'-vinylphenyl)-5-	
phenyloxazole	28
The Bromination of 4- Chloro-2-(4'-ethylphenyl)-5-	
phenyloxazole	31
The Dehydrobromination of 4- Chloro-2-4'-	
(α-bromoethylphenyl)-5-phenyloxazole	34
Synthesis of Poly[4-Cl-(vinyl)-PPO-co-MMA]	37
Structure Elucidation of Poly[4-Cl-(vinyl)-PPO	
-co-MMA]	38
Gas Chromatography of Copolymer	41
The Determination of Monomer Reactivity Ratios	42

Investigation of Copolymerization at Low Conversion	42
Effect of Time on the Copolymerization of 4-Cl-(vinyl)-	
PPO with MMA	44
Effect of Temperature on the Copolymer of 4-Cl-(vinyl)-	
PPO with MMA	45
Effect of the Amount of Solvent on Copolymerization of	
4-Cl-(vinyl)-PPO with MMA	46
Copolymerization of 4-Chloro-2-(4-vinylphenyl)	
-5-phenyloxazole with Methyl Methacrylate	47
Calculation of the Monomer Reactivity Ratios	49
Fluorescence Emission Analysis	60
V : CONCLUSION	
Conclusion	62
REFERENCES	64
APPENDICES	
APPENDIX A: CALIBRATION CURVE	66
APPENDIX B : GC DATA	69
VITA	80

LIST OF TABLES

TABLE	PAGE
2.1 : The molecular pathways of photophysical process	13
3.1 : The composition of poly[4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole-	
co- methyl methacrylate]	23
4.1 : The % conversion of copolymerization at 70°C; t = 22 min	43
4.2 : The % conversion of copolymerization at 70°C in various times	44
4.3 : The % conversion of copolymerization at 50°C in various times	45
4.4 : The % conversion of copolymerization at toluene 1mL and 3 mL in	46
various times	
4.5 : Peak area of 4-Cl-(vinyl)-PPO and MMA at t = 0	49
4.6 : Peak area of 4-Cl-(vinyl)-PPO and MMA at time less than 10%	
conversion	50
4.7 : Copolymerization of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole with	
methyl methacrylate	52
4.8 :The F-R parameters for a 4-Cl-(vinyl)-PPO-MMA copolymer	
system	54

LIST OF TABLES (continued)

PAGE

B1 : The GC data of the copolymerization at temp.= 50 ± 1 °C in different	
ratios and times	70
B1-1 : 4-Cl-(vinyl)-PPO (0.01 mmol) : MMA (0.09 mmol)	70
B1-2 : 4-Cl-(vinyl)-PPO (0.03 mmol) : MMA (0.07 mmol)	71
B1-3 : 4-Cl-(vinyl)-PPO (0.06 mmol) : MMA (0.04 mmol)	72
B1-4 : 4-Cl-(vinyl)-PPO (0.07mmol) : MMA (0.03 mmol)	73
B1-5 : 4-Cl-(vinyl)-PPO (0.08 mmol) : MMA (0.02 mmol)	74
B1-6 : 4-Cl-(vinyl)-PPO (0.09 mmol) : MMA (0.01 mmol)	75
B2 : The GC data of copolymerization at $t = 22$ mins. And temp.= 70°C	76
B3 : The GC data of copolymerization of 4-Cl-(vinyl)-PPO (0.05 m.mol) :	
MMA (0.45m.mol) at temp.= 70°C in various times	78
B4 : The GC data of copolymerization of 4-Cl-(vinyl)-PPO (0.05 m.mol) :	
MMA (0.05m.mol) at temp.= 50°C in various times	79

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

FIGURE	PAGE
1.1 Schematic diagram of scintillation counter	1
2.1 Jablonski state diagram of energy levels of organic molecules	10
3.1 The teperature program of column oven	24
4.1 ¹ H NMR spectrum of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole.	29
4.2 ¹³ C NMR spectrum of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole	29
4.3 IR spectrum of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole	30
4.4 ¹ H NMR spectrum of 4-chloro-2-4'(α -bromoethylphenyl)	
-5-phenyloxazole	32
4.5 ¹³ C NMR spectrum of 4-chloro-2-4'(α -bromoethylphenyl)	
-5-phenyloxazole	32
4.6 IR spectrum of 4-chloro-2-4'(α-bromoethylphenyl)	
-5-phenyloxazole	33
4.7 ¹ H NMR spectrum of 4-chloro-2-(4'-vinylphenyl)	
-5-phenyloxazole	35
4.8 ¹³ C NMR spectrum of 4-chloro-2-(4'-vinylphenyl)	
-5-phenyloxazole	35
4.9 IR spectrum of 4-chloro-2-(4'-vinylphenyl)	
-5-phenyloxazole	36
4.10 ¹ H NMR spectrum of poly[4-Cl-(vinyl)-PPO-co-MMA]	38
4.11 IR spectrum of poly[4-Cl-(vinyl)-PPO-co-MMA]	39
4.12 IR spectrum of methyl methacrylate	40
4.13 The typical gas chromatogram of the mixture of 4-Cl-(vinyl)-PPO	
and MMA in toluene (a) before and (b) after copolymerization	41

4.14 The chromatogram of copolymer solutions by gas chromatography	
in different mole ratios	
4.15 Monomer -copolymer composition curves of 4-Cl-(vinyl)-PPO-	53
MMA in copolymer system	55
4.16 Fineman-Ross plot	57
4.17 The chemical structures of 4-Cl-(vinyl)-PPO and MMA	
4.18 Fluorescence emission spectrum of 4-Cl-(vinyl)-PPO 1 mg in	60
chloroform 100 mL	
4.19 Fluorescence emission spectrum of poly[4-Cl-(vinyl)-PPO-co-	61
MMA] 11x10 ⁻² mg in chloroform 10 mL	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ABBRAVIATIONS

4-cnioro-2-(4'-etnyipnenyi)-5-pnenyioxazole
$\label{eq:a-chloro-2-4} 4-chloro-2-4'(\alpha-bromoethylphenyl)-5-phenyloxazole$
4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole
methyl methacrylate
tetrahydrofuran
carbon tetrachloride N-bromosuccinimide
benzoyl peroxide 2,2'-azobisisobutylonitrile
degree Celsius
centimeter
mole fraction in feed
mole fraction in copolymer
reactivity ratio

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Chapter I

Introduction

Scintillator is employed in scintillation counters to detect the several types of radiation. Generally, a counter consists of a scintillator, a photomultiplier tube converting the light flash into electrical impulses and an electronic device for counting these impulses as shown in Figure 1.1.

Figure 1.1 Schematic diagram of scintillation counter[1]

Historically, the first scintillators were single crystals such as antimony, sodium iodide, anthracene, naphthalene, *trans*-stilbene. Pure liquid e.g. *p*-xylene and pure plastics e.g. polystyrene were also used. Unfortunately, they exhibited low fluorescence intensities, thus their scintillation efficiency is too low for practical use.

A significant development has been the development of the binary system of liquid scintillators which contained one or more organic fluorescent compound(s)

dissolved in an organic solvent system. The scintillator solutes are a selected class of compounds with a property of losing energy from their excited states in the form of light emission.

A common feature of efficient organic scintillator solute is aromatic ring linked in a manner to allow extended conjugation throughout the molecule. The aromatic ring systems which have been incorporated into scintillation solutes are phenyl, furan, pyrrole, oxazole, immidazole ring, etc.

Attempts to establish relationships between chemical structure and scintillation ability focus on the following requirements[2]:

-how to obtain fluorescence spectra at longer wavelengths.

-how to incorporate heterocyclic ring systems(such as oxazole) with better stability and sensitivity.

-structure – activity relationships found that : methyl, fluoro, and chloro substituent groups cause no difficulty and bromo, iodo, and hydroxyl show undesirable heavy atom effects.

จพาลงกวณมหาวทยาลย

In efforts to improve upon the existing liquid scintillator counting and to provide data which would help to correlate chemical structure with the ability of various solutes to scintillate, a large number of organic compounds have been investigated [3,4]. *p*-Terphenyl in *p*-xylene was first proposed as a liquid scintillator in 1950[2]. Other chemicals which are often used as scintillator solutes are naphthalene, biphenyl, carbazole, 2,5-diphenyloxazole, anthracene, diphenylene oxide, etc. The solvent used in the system is usually aromatic such as benzene, toluene, and *p*-xylene which also provide effective transfer of excitation energy to the scintillator solute. The energy transfer can occur in two ways ; to another fluorescent molecule or to the solvent. Therefore the emission and efficiency of the liquid scintillator is influenced by the concentration of the fluorescent solute, the temperature and the viscosity of the solvent.

The development of plastic scintillators was prompted by advances in physics and the needs for computerized three dimensional scintillation counting. Plastic scintillators usually consist of an organic fluorescent compound mixed with polymer.

The advantage of plastic scintillator :

- producing a short emission of light (~10⁻⁹ sec.) and can be used in a broader range of temperatures than liquid scintillators. Since the polymer has a higher fluorescence quantum efficiency than the liquid solvent, there is an appreciable (10-20 %) component of radiative transfer resulting in higher fluorescence intensity than that of the liquid scintillator.

- the diffusion effect is not present in plastic systems.

- can be made into a variety of sizes and shapes such as thin film, rod, plate or cylinder.

The problem of plastic scintillators is the migration of the fluorescent compound to the plastic surface. Thus, the scintillator have lower efficiency with use. To solve this problem, the copolymerization of scintillator solute with a monomer was carried out in order to bind it to the polymer.

Plastic scintillators[5]

Plastis scintillators represent a complex system composed of a polymer (polymer base) and an organic fluorescent compound(fluorescent additive). The main caracteristics of plastic scintillators are their scintillation efficiency and light yield.

The scintillation efficiency of the polymeric compound depends on the properties of both the fluorescent additives and the polymer base. The use of polymer in scintillation compounds is determined by their ability to convert excited energy into light energy, which happens because of the presence of the π -conjugated system in the macromolecule. The main requirement imposed on fluorescent additives is a high quantum yield.

The first plastic scintillators were produced on the basis of polystyrene and pterphenyl in1950. The purpose of further investigations was to increase the scintillation efficiency of plastic scintillator by suitable selection of fluorescent additives and the polymer base. A large number of organic luminophore such as polyphenyls, aromatic condensed ring compounds, phenyl substituted derivatives of ethylene and diene and heterocyclic compounds.

The most promising is the application of the copolymer of given monomers either with styrene or methyl derivatives of styrene in the benzene ring or with methyl methacrylate. Of the inactive polymer bases, poly(methyl methacrylate) is most popular owing to its good physical and mechanical properties and high transmission. However, because of the absence in the repeating unit of PMMA of π -conjugation, PMMA based scintillators have low scintillation efficiency, not exceeding 10% compared with that of polystyrene. The light yield of inactive bases is increased by introducing a secoundary solvent. Satisfactory results are obtained with such secoundary solvent as naphthalene and phenanthrene. However, the light yield of large scintillator based on PMMA is no less than that polystyrene based scintillator.

Synthesis of 2,5-diaryloxazole

2,5-Diaryloxazole, such as 2,5-diphenyloxazole (PPO) is the most efficient fluorescent compounds which can be used as scintillators. The scintillators should be synthesized with absolute purity as even minute impurities can cause significant quenching of fluorescence emission.

In general, 2,5-diaryloxazoles has been widely prepared by **the Fischer synthesis** from the one step reaction between an aryl cyanohydrin and an arylaldehyde in absolute ether at 0°C with dry hydrogen chloride [6,7].

The reaction always gives 2,5-diaryl-oxazolid-4-one as the main byproduct together with other heterocyclic colored compound. The yield of this byproduct amounts to half of the yield of the oxazole under optimal conditions, while in the presence of even traces of water the yield of the oxazole drops rapidly with increased yield of the oxazolid-4-one. There is also a certain ambiguity in that the starting materials may exchange hydrogen cyanide, thus causing scrambling of the phenyl ring in the product if this bears different substituents.

In 1963, a modification of the Fischer synthesis using an aroyl cyanide instead of cyanohydrins had been developed which yielded 2,5-diaryl-4-chloro(or bromo)oxazoles [8]. This method is led to the oxazoles in high yields (typically twice the yield of the analogue Fischer method) without the formation of the corresponding oxazolid-4-ones. The mechanism of the reaction involves iminohalide intermediates as shown in Scheme 1.

The halogen in the 4-position (Cl, Br or F) can be easily removed by reduction with Na amalgam in ethanol. Due to the convenience of using stable starting materials, easy purification of the product, obtained in high yield, this method is used almost exclusively for the commercial production oxazole based scintillators.

Generally, the fluorescence quantum yield of scintillators containing a halogen are generally low due to the "heavy atom" effect. However, it has been stated that the chloro group causes no difficulty in scintillation counting [9].

This thesis reports the synthesis of 4'-chloro-2-(4-vinylphenyl)-5phenyloxazole, its copolymerization with methyl methacrylate and determination of the monomer reactivity ratios.

Objectives of the research

The aim of this research is to synthesize a new copolymer of 4- chloro-2-(4'vinylphenyl)-5-phenyloxazole and methyl methacrylate which can be used as an effective plastic scintillator. The fluorescence emission properties and the reactivity ratios of the copolymer were determinated.

Scope of the research

- 1. Synthesis of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole.
 - 1.1 Synthesis of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole
 - 1.2 Bromination of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole
 - 1.3 Dehydrobromination of 4-chloro-2-4'-(α-bromoethylphenyl)
 - -5- phenyloxazole
- 2. Preparation of poly(4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole-comethyl methacrylate) with various ratios of monomers.
- 3. Determination of the monomer reactivity ratios by Fineman and Ross method.
- Investigation the absorption and fluorescence emission properties of the copolymer.

Chapter II

Theoretical Consideration

1.Polymer photophysics[10-13]

The photophysics of synthetic polymers can be simplified by considering them to have similar properties in photophysical terms like their small molecule analogues. These can be treated in the conventional way with reference to a stage diagram of Jablonski [10]. There are three states which play dominant roles in the photophysical process of organic molecules. They are the ground (unexcited) state (S_0) with opposing spins paired in molecular orbitals, the lowest triplet state (T_1) with parallel spins, and the lowest excited singlet state (S_1) which is higher in energy than the corresponding triplet state.

1.1 Absorption

The absorption of light (i.e. photons) by organic polymer molecules results in the excitation of π - and n-valence electrons including the additional excitation by molecular vibration. Absorption processes are graphically presented by using **Jablonski state diagrams** (Figure 2.1). The energy level indicated corresponds to energy differences.

Figure 2.1 : Jablonski state diagram of energy levels of organic molecules

The processes are described by the Jablonski state diagrams in which states represented by horizontal lines are grouped into vertical columns according to their multiplicity. The individual processes are indicated by arrows (radiative process = straight arrow, non-radiative process = wavy arrows). The energy difference between the ground state (S₀), singlet states (S₁,S₀) and triplet states(T₁,T₂) are progressively lower at higher vibrational states. Each process is characterized by the rate constant (K_i); the sum of the reciprocal values of the deactivation rates of a vibrational state determines its lifetime (τ_i).

1.2 The molecular pathway

The reverse process to absorption, that is, the removal of the electron from the excited state back to the ground state, results in the emission of a photon. This

process can occur via radiative transition which involves the spontaneous emission of a photon e.g. fluorescence and phosphorescence or radiationless transition e.g. internal conversion and intersystem crossing.

Radiative processes

Fluorescence is defined as the spin allowed emissive transition between vibrational states of identical multiplicity, usually from excitation of singlet S_1 to ground state S_0 . The vibrational structure of fluorescence bands is a mirror image of the longer wavelength bands in the absorption spectrum, shifted to longer wavelengths. Fluorescence is comparatively fast with lifetimes usually in the range of 10^{-6} - 10^{-4} sec. Because of the relatively short lifetime of fluorescence, the emission can be used to probe for a variety of interesting characteristics of polymers.

Phosphorescence is the spin forbidden emission of radiation between vibrational states of different multiplicity, generally from the T_1 state to the S_0 state. Since the T_1 state always lies below the S_1 state, this band occurs at longer wavelengths than that of fluorescence. The lifetimes are relatively long in the range of 10^{-4} -10 sec.

Non-radiative process

There are two non-radiative processes. The first or **internal conversion**, denotes a radiationless transition between two electronic states of the same multiplicity, usually $S_n \rightarrow S_{n-1}$ or $T_n \rightarrow T_{n-1}$. In the specific case being considered, this would be the ground electronic state, and the transition would be denoted $S_1 \rightarrow S_0$. **Intersystem crossing** is a similar radiationless transition connected with a change in multiplicity (mostly $S_1 \rightarrow T_1$, $T_1 \rightarrow S_0$). Radiationless transitions are isoenergetic transition to a vibrationally excited lower electronic state, and followed by very rapid **vibrational relaxation** which occurs from any vibrational state and represents a return to the thermal equilibrium of the vibrational ground state within the same electronic state, for instance $S^{v} \rightarrow S$ or $T^{v} \rightarrow T$. This occurs in condensed systems by energy transfer, i.e. transfer of vibrational energy to the surrounding medium.

All processes discussed above, except simple vibrational relaxation, are unimolecular which can be illustrated with simple kinetic schemes presented in Table 2.1.

Process	reaction	rate	$k_i(S^{-1})$
Absorption or	$S_0 + h\nu \rightarrow S_1$	la	
Excitation			
Fluorescence	$S_1 \rightarrow S_0 + h\nu$	k{S1]	$10^{6} - 10^{9}$
Phosphorescence	$T_1 \to S_0 + h \nu'$	$k_p[S_1]$	$10^{-2} - 10^{-3}$
Internal conversion	$S_1 \rightarrow S_0$	$k_{1C}[S_1]$	$10^7 - 10^{12}$
Intersystem crossing	$S_1 \rightarrow T$	$k_{ST}[S_1]$	$10^8 - 10^{11}$
	$T \rightarrow S_0$	$k_{TS}[S_1]$	$10^{-2} - 10^{-3}$

Table 2.1 The molecular pathways of photophysical process.

2. Determination of Monomer Reactivity ratios[14]

Most procedures for evaluating r_1 and r_2 involve the experimental determination of the copolymer composition for several different comonomer feed compositions in conjunction with the differential form of the copolymerization equation. Copolymerizations are carried out to as low degrees of conversion as possible (<10%) to minimize errors in the use of the differential equation. The copolymer composition is determined either directly by analysis of the copolymer feed or indirectly by analysis of comonomer feed. The copolymer compositions are analyzed by spectroscopy(IR, UV, NMR). Comonomer feed compositions are typically analyzed by high-pressure liquid chromatography(HPLC) or gas chromatography(GC).

The method has been used to obtain monomer reactivity ratios from the copolymer composition data. The most often used method involves a rearrangement of the copolymer composition equation into a linear form in the monomer reactivity ratios. Fineman and Ross [15] rearranged the copolymer equation to

$$G = r_1 F - r_2$$

Where G = X(Y-1)/Y, $F = X^2/Y$, $X = [M_1] / [M_2]$, $Y = d[M_1] / d[M_2]$. *G* is plotted against *F* to yield a straight line with slope r_1 and intercept r_2 .

3. Types of Copolymerization Behavior

Different types of copolymerization behavior are observed depending on the values of the reactivity ratios. Copolymerizations can be classified into three types based on whether the product of the two monomer reactivity ratios r_1r_2 is unity, less than unity, or greater than unity.

3.1 Random copolymerization : $r_1r_2 = 1$ or $r_1>1$, $r_2<1$ or $r_1<1$, $r_2>1$

Random copolymerization occurs when the two types of propagating species M_1^* and M_2^* show the same preference for adding one or the other of the two

monomers. Most ionic copolymerization (both anionic and cationic) are characterized by the random type of behavior.

When $r_1 = r_2 = 1$ the two monomers show equal reactivities toward both propagating species. The polymer composition is the same as the comonomer feed with a random placement of the two monomers along the copolymer chain. For the case where the two monomer reactivity ratios are different, that is, $r_1 > 1$ and $r_2 < 1$ or $r_1 < 1$ and $r_2 > 1$, one of the monomers is more reactive than the other toward both propagating species. The copolymer will contain a larger proportion of the more reactive monomer in random placement.

3.2 Alternating copolymerization : $r_1 = r_2 = 0$

When $r_1 = r_2 = 0$ (and $r_1r_2 = 0$), the two monomers enter into the copolymer in equimolar amounts in a nonrandom, alternating arrangement along the copolymer chian. Each of the two types of propagating species preferentially adds the other monomer, that is, M_1^* adds only M_2 and M_2^* adds only M_1 . As the r_1r_2 product decreases from unity toward zero, there is an increasing tendency toward alternation. Perfect alternation occurs when r_1 and r_2 are both zero.

A special situation arises when one of the monomer reactivity ratios is much larger than the other. For the case of $r_1 \gg r_2$ (that is, $r_1 \gg 1$ and $r_2 \ll 1$), both types of propagating species preferentially add monomer M_1 . There is a tendency toward

consecutive homopolymerization of the two monomers. Monomer M_1 tends to homopolymerize until it is consumed ; monomer M_2 will subsequently homopolymerize.

3.3 Block copolymerization : $r_1 > 1$, $r_2 > 1$

If both r_1 and r_2 are greater than unity (that is $r_1r_2 > 1$) there is a tendency to form a block copolymer in which there are blocks of both monomers in the chain. This type of behavior has been encountered only in a few copolymerizations initiated by coordination catalysts.

Chapter III

Experimental section

General Procedure

NMR spectra were recorded on a Bruker AC 200 MHz spectrometer. Chloroform-d was used as solvent for all samples and the spectra were recorded relative to the tetramethyl silane peak in ppm of the applied field.

IR spectra were recorded on a Impact 410 spectrometer. Solid samples were obtained using KBr pellets, while liquid samples were held between NaCl plates.

Gas chromatography data were recorded on a GC-14B with different concentrations of solutions (0.5 μ l). The flow rate is 200 cm³/min in silica capillary column (dia. 0.5 mm).

Fluorescence emission spectra were recorded on a spectrofluorometer FP-777 with different concentrations of solutions in 1 cm path-length quartz cuvette.

Purification of Materials

1. Preparation of anhydrous tetrahydrofuran.

Tetrahydrofuran (250 mL) was heated under reflux over calcium hydride. The solvent was then distilled immediately before use.

2. Preparation of dry carbon tetrachloride

Carbon tetrachloride was dried by simple distillation prior to use, rejecting the first 10 percent of distillate, until the distillate is clear (bp. 77°C).

3. Preparation of sodium tert-butoxide

Place 10 ml of *tert*-butylalcohol in a 25-mL round-bottomed flask and introduce 0.2 g of clean sodium metal in small pieces and warm under reflux until all the sodium has reacted about 2 hours.

4. Purification of N-bromosuccinimide

N-bromosuccinimide was recrystallized from 10 times its weight of hot water. The crystals were allowed to dry at room temperature in the dark.

5. Purification of methyl methacrylate monomer

The inhibitor was removed from the methyl methacrylate by washing twice with equal amounts of 10% NaOH solution. The methyl methacrylate was washed with distilled water until litmus paper showed that the base had been all removed. The methyl methacrylate was then dried over sodium sulphate anhydrous and evaporated under reduced pressure. The methyl methacrylate was stored in a refrigerator for no more than 24 hours before use.

Part I Preparation of 4-chloro-2-(4'- vinylphenyl)-5- Phenyloxazole

The synthetic procedure of 4-chloro-2-(4'- vinylphenyl)-5- phenyloxazole is show in the following three steps.

1. 4-chloro-2-(4'- ethylphenyl)-5-phenyloxazole ; 4-Cl-(Et)-PPO[8]

A solution of benzoyl cyanide (6.6 g, 50.0 mmol) and *p*-ethylbenzaldehyde (7.5 mL, 55.0 mmol) in 50 mL of dry tetrahydrofuran was contained in reaction flask. The reaction flask was then connected to a HCl gas cylinder, the reaction mixture was allowed to cool in an ice-NaCl cooling bath to 0°C and then dry HCl gas passed into the solution in the reaction flask until the HCl gas was no longer absorbed by the reaction mixture (about 2 hours, tested by ammonia). At this stage, the

reaction flask was quickly sealed, the stopper secured by wire and placed into the freezer compartment of the refrigerator overnight. The reaction mixture was then poured onto approximately 150 g of crushed ice with continuous stirring and extracted with dichloromethane (4x25 mL). The dichloromethane layer was washed with water (2x10 mL), saturated sodium bisulfite solution (2x10 mL) and then dried over magnesium sulfate. This was evaporated to dryness by rotary evaporation. The crude product (11.74 g) was a pale yellow viscous liquid. The viscous liquid was recrystallized from methanol to give 4-chloro-2-(4'- ethylphenyl)-5-phenyloxazole as colorless needles : mp 74.5-75.5 °C ; 10.34 g , 36.47 mmol , 73 % yield.

2. 4-chloro-2-4'-(a-bromoethylphenyl)-5-phenyloxazole ; 4-Cl-(BrEt)-PPO

N-bromosuccinimide (0.89 g, 5.00 mmol) and benzoyl peroxide (0.05 g, 0.2 mmol) were dissolved in freshly distilled carbon tetrachloride(15 mL). The solution was then added to 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole (1.42 g, 5.00 mmol) in a 25-mL round bottom flask equipped with a condenser and a calcium chloride drying tube. The mixture was heated under reflux for one hour. The reaction mixture

became orange and a white precipitate separated. After this time, the mixture was allowed to cool to room temperature and the succinimide was removed by suction filtration. The filtrate was concentrated to dryness by rotary evaporation under vacuum to give 4-chloro-2-4'-(α -bromoethyl)phenyl-5-phenyloxazole as pale yellow solid which was recrystallized from hexane to give 4-chloro-2-4'-(α -bromoethyl) phenyl-5-phenyloxazole as yellow crystals : mp 82-84 °C ; 1.77 g , 4.11 mmol , 82.51 % yield

3. 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole ; 4-Cl-(vinyl)-PPO

Sodium *tert*-butoxide was prepared in *tert*-butanol. 4-chloro-2-(4'bromoethyl)phenyl-5-phenyloxazole (0.72 g, 1 mmol) was added to the solution. The mixture was heated to reflux for three hours. After this time, the solution was cooled to room temperature and poured onto approximately 25 g of crush ice with continuous stirring. The cooled mixture was extracted with methylene chloride (4x20 mL), the methylene chloride layer was washed with water (2x20 mL) and then dried over sodium sulfate anhydrous. This was dried by rotary evaporation to give 0.54 g the pale yellow solid which was recrystallized from ethanol to give 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole as yellow crystals : mp 120-122 °C ; 0.48 g , 1.705 mmol , 85.71% yield.

Part II Synthesis of polymer

1. Synthesis of poly[4-chloro-2(4'-vinylphenyl)-5-phenyloxazole-co-methyl methacrylate] ; by solution polymerization.

4-chloro-2(4--vinylphenyl)-5-phenyloxazole and distilled methyl methacrylate in toluene and AIBN were taken in a glass tube. The tube was capped with a septum and flushed with nitrogen gas for 10 minutes. The polymerizations of 4-chloro-2(4-vinylphenyl)-5-phenyloxazole with methyl methacrylate were carried out in solution at 50°C by varying the feed ratios in monomers (Table 3.1). The initiator content was
fixed at 0.53 molar percent to monomers. The reaction was stopped at a conversion of <10% by precipitating the copolymer in hexane.

 Table 3.1 : The composition of poly[4-chloro-2(4-vinylphenyl)-5-phenyloxazole-comethyl methacrylate]

4-Cl-(vinyl)-	MMA	f 4-Cl-(vinyl)-PPO	f мма
РРО			
0.01	0.09	0.1	0.9
0.03	0.07	0.3	0.7
0.06	0.04	0.6	0.4
0.07	0.03	0.7	0.3
0.08	0.02	0.8	0.2
0.09	0.01	0.9	0.1

 $f_{4-Cl-(vinyl)PPO}$ and f_{MMA} are the mole fractions of 4-chloro-2(4'-vinylphenyl)-5-

phenyloxazole and methyl methyl methacrylate monomers in the feed.

<u>Part III</u> The determination of copolymer compositions by gas chromatography.

The feeds compositions of each monomer mixture were varried to produce copolymers .The composition of each copolymer was determinated by gas chromatography. The copolymer mixture (0.5 μ l) was injected at injection port temperature 265 °C, detection port temperature 275 °C and the column oven was working in temperature program which consists of the initial temperature, initial time, program rate, final temperature and final time as in Figure 3.1.

Figure 3.1 The temperature program of column oven

Part IV Fluorescence Emission Analysis

The fluorescence emision spectra were recorded at 300-600 nm. with excitation wavelength at 260 nm at room temperature ($25^{\circ}C$) with chloroform solutions. 1-cm pathlength quartz cuvettes were used for emission spectra. The dilute 4-Cl-(vinyl)-PPO and poly[4-Cl-(vinyl)-PPO-co-MMA] solutions of 1mg in 100 mL of chloroform and 11×10^{-2} mg in 10 mL of chloroform, respectively, was analyzed.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Chapter IV

Results and Discussions

4.1 Synthesis of 4-Chloro-2-(4'-vinylphenyl)-5-phenyloxazole

The aim of this study is to synthesize 4-chloro-2-(4'-vinylphenyl)-5phenyloxazole(1) for copolymerization with methyl methacrylate which is a new fluorescent polymer and determine the monomer reactivity ratios of both monomers. The chemical structure of (1) was shown below :

Scheme 4.1 shows the synthesis of 4-chloro-2-(4'-vinylphenyl)-5phenyloxazole which consists of 3 steps of reaction sequence. The synthetic route started from the synthesis of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole by following the method of Ternai and Lakhan[8], which is the most efficient method due to the high yield and lack of by-products.

Scheme 4.1 The synthesis of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole

4.1.1 Synthesis of 4-Chloro-2-(4'-ethylphenyl)-5-phenyloxazole

The first reaction involves the cyclization of benzoyl cyanide and *p*ethylbenzaldehyde which is saturated with hydrogen chloride. The crude product was recrystallized from methanol to give colorless needle-like crystals (mp. 74.5-75.5°C) in 73%yield. Tetrahydrofuran (THF) had been used instead of diethyl ether which gave the product with higher than previously reported by Miss Athinee[17]. The ¹H NMR spectrum of 4-Cl-(Et)-PPO (Figure 4.1) in chloroform-*d* exhibits the characteristic absorption of the ethyl group as triplet at δ 1.26 (3H, t, J = 7.6 Hz) ppm coupled with a quartet at δ 2.69 (2H, q, J = 7.6 Hz) ppm. The chemical shifts of aromatic protons appear at δ 7.95 (5H,m) and 7.39 (4H,m) ppm.

The assignment of ¹³C NMR spectrum of 4-Cl-(Et)-PPO (Figure 4.2) shows C-2, C-4 and C-5 of oxazole at 159.2, 143.5 and 147.6 ppm, respectively. The chemical shifts position of aromatic carbons appear at 123-128 ppm and that of ethyl group exhibits at 29.0 ppm and 15.5 ppm due to the $-CH_2$ - and $-CH_3$.

ล แบน เทยบาก เว จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.1 ¹H NMR spectrum of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole (CDCl₃)

Figure 4.2 ¹³C NMR spectrum of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole (CDCl₃)

The IR spectrum of 4-Cl-(Et)-PPO (Figure 4.3) shows aromatic C-H stretching at 3025 cm⁻¹ and aliphatic C-H stretching at 2962 cm⁻¹. The absorption of C=N appears at 1497 cm⁻¹. The absorption of chloro compound appears at 1275 and 1219 cm⁻¹ are due to C-Cl stretching. These peaks appear at about double the frequency normally designed to C-Cl stretching. The absorption peak at 1582 and 1614 cm⁻¹ are assigned to the vibration arising from aromatic ring system. Accordingly, all data indicate that the product is 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole.

Figure 4.3 IR spectrum of 4-chloro-2-(4'-ethylphenyl)-5-phenyloxazole (KBr pellet)

4.1.2 The Bromination of 4-Chloro-2-(4'-ethylphenyl)-5-vinyloxazole

The bromination of 4-Cl-(Et)-PPO was carried out using *N*-bromosuccinimide(NBS) and benzoyl peroxide(BPO) in carbon tetrachloride solution. This let to 4-chloro-2-4'-(α -bromoethylphenyl)-5-phenyloxazole [4-Cl-(BrEt)-PPO]. The crude product was recrystallized from hexane as yellow needle-like crystal (mp.=82-84°C)in 82.51 %yield. .The ¹H-NMR spectrum shows the bromoethyl protons at δ 5.21 (1H, q, J = 7.0 Hz)ppm due to the –CHBr- and δ 2.06 (3H, d, J = 7.0 Hz) ppm due to –CH₃ as shown in Figure 4.4.

The ¹³C-NMR spectrum of 4-Cl-(BrEt)-PPO (Figure 4.5) exhibits signals of $-CH_3$ and -CHBr- at δ 26.4 and 48.2 ppm. The aromatic signals are at δ 125.0-128.8 ppm while the oxazole carbons show peaks at δ 158.3 (C-2), 144.0 (C-4) and 158.3 (C-5) ppm.

The IR spectrum of 4-Cl-(BrEt)-PPO (Figure 4.6) looks similar to spectrum of 4-Cl-(Et)-PPO except the strong absorption at 593 cm⁻¹ which is due to the C-Br stretching. Consequently, all spectroscopic data confirms the structure of 4-Cl-(BrEt)-PPO.

Figure 4.4 ¹H NMR spectrum of 4-chloro-2-4'-(α-bromoethylphenyl)-5phenyloxazole(CDCl₃)

Figure 4.5 ¹³C NMR spectrum of 4-chloro-2-4'-(a-bromoethylphenyl)-5phenyloxazle(CDCl₃)

Figure 4.6 IR spectrum of 4-chloro-2-4'-(α-bromoethylphenyl)-5-phenyloxazole (KBr pellet)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

4.1.3 The Dehydrobromination of 4-Chloro-2-4'-(α-bromoethylphenyl)

-5-phenyloxazole

4-Chloro-2-(4'-vinylphenyl)-5-phenyloxazole [4-Cl-(vinyl)-PPO] was prepared by nucleophilic attack on the bromoethyl compound. Firstly potassium hydroxide had been used and very low yield of the product was obtained. Therefore, the more bulky base was used in order to suppress the substitution reaction and enhance the yield of the product. It was found that the product was formed. The 4-Cl-(vinyl)-PPO was recrystallized from methanol as yellow crystal (mp.=120-122°C) in 85.71 %yield. The ¹H-NMR spectrum of 4-Cl-(vinyl)-PPO (Figure 4.7) exhibits peak at δ 6.74 (1H , dd, J = 10.9, 8.7Hz) ppm for -CH= and δ 5.85 (1H, dd, J = 17.0, 0.6 Hz) ppm and δ 5.35 (1H, dd, J = 10.3, 0.6) ppm for the =CH₂ trans- and cis- protons, respectively.

The ¹³C-NMR of 4-Cl-(vinyl)-PPO (Figure 4.8) confirms the identity of the product, since the chemical shifts of -CH= appears at δ 135.9 ppm and =CH₂ at δ 115.8 ppm. The rest of spectrum is similar to 4-Cl-(Et)-PPO, except to absorption at δ 29.0 and 15.5 ppm which is due to ethyl group.

The IR spectram of 4-Cl-(vinyl)-PPO (Figure 4.9) reveals the absence of the peak at 593 cm⁻¹. This obviously illustrates the dehydrobromination of 4-Cl-(BrEt)-PPO and the formation of 4-Cl-(vinyl)-PPO.

Figure 4.7 ¹H NMR spectrum of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole (CDCl₃)

Figure 4.8 ¹³C NMR spectrum of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole (CDCl₃)

Figure 4.9 IR spectrum of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole (KBr pellet)

4.2 Synthesis of Poly[4-Cl-(vinyl)-PPO-co-MMA]

Copolymerization of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole[4-Cl-(vinyl)-PPO] with methyl methacrylate(MMA) was prepared by solution polymerization using AIBN as initiator in toluene. The copolymer was obtained as pale yellow solids which was soluble in aromatic and chlorinated solvents and insoluble in cyclohexane, methanol and water. They were characterized by ¹H-NMR and IR spectroscopy. The formula of poly[4-Cl-(vinyl)-PPO-co-MMA] is illustrated in Scheme 4.4.

Scheme 4.2 The structure of poly[4-Cl-(vinyl)-PPO-co-MMA]

4.2.1 Structure Elucidation of Poly[4-Cl-(vinyl)-PPO-co-MMA]

¹H-NMR spectrum of poly[4-Cl-(vinyl)-PPO-co-MMA] (Figure 4.10) shows resonance absorption at 2.8 ppm and at 6.5-8.0 ppm due to the methylene proton and the aromatic protons of 4-Cl-(vinyl)-PPO, respectively. The methyl protons of ester give a broad peak at 3.5 ppm. The signals at 1.66 ppm is due to the methylene protons of the main chain. The broad signals at 0.7 ppm may be assigned to the α -methyl protons of MMA units. Disappearance of the absorption at 5.0-6.0 ppm indicates the polymerization of 4-Cl-(vinyl)-PPO and MMA and the purity of the product.

Figure 4.10 ¹H NMR spectrum of poly[4-Cl-(vinyl)-PPO-co-MMA] (CDCl₃)

The IR spectrum of the copolymer appears at 1732 cm⁻¹ due to the C=O stretching of ester carbonyl protons and at 1494 cm⁻¹ due to the C=N stretching of 4-Cl-(vinyl)-PPO. These absorption are comparable to C=O stretching of MMA and C=N stretching of 4-Cl-(vinyl)-PPO as shown in Figures 4.11-4.12.

Figure 4.11 IR spectrum of poly[4-Cl-(vinyl)-PPO-co-MMA] (KBr pellet)

Figure 4.12 IR spectrum of methyl methacrylate (CHCl₃)

4.2.2 Gas Chromatography of Copolymer

Copolymerization of 4-Cl-(vinyl)-PPO and MMA can be monitored by gas chromatography, by using gas chromatography at the condition described in experimental section. In this experiment, the solution of 4-Cl-(vinyl)-PPO and MMA was thus analyzed before and after reaction. From the copolymerization of 4-Cl-(vinyl)-PPO and MMA at the mole ratio of 3:7. 4-Cl-(vinyl)-PPO and MMA had different retention time, 3.7 and 24.1 min, respectively. The gas chrpmatogram showed the decrease in the peak height of both monomers after 30 minutes of the reaction as shown in Figure 4.13.

Figure 4.13 The typical gas chromatogram of the mixture of 4-Cl-(vinyl)-PPO and MMA in toluene (a) before and (b) after copolymerization.

4.3 The Determination of Monomer Reactivity Ratios

The determination of the monomer reactivity ratios, copolymerizations were carried out to as low degree of conversion. The determination of suitable condition of copolymerization was considered from several factors, such as, time, temperature, amount of solvent, etc.

4.3.1 Investigation of Copolymerization at Low Conversion

The copolymerization of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole with methyl methacrylate at different mole ratios were carried out at 70°C with the reaction time of 22 min. The gas chromatography was used for analysis. The reduced peak area of each monomer was assumed that was the amount of incorporated monomers in copolymer. The degree of conversion in Table 4.1 was calculated by the below equation:

% conversion = (peak area of monomer feed – peak area of monomer at the copolymerize time)x100 / peak area of monomer feed

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Ratios (mmol)		% Conversion	
4-Cl-(vinyl)PPO	MMA	4-Cl-(vinyl)PPO	MMA
0.05	0.45	58.69	7.12
0.10	0.40	64.94	17.82
0.15	0.35	63.89	28.10
0.20	0.30	66.16	21.86
0.25	0.25	57.76	11.20
0.30	0.20	58.49	21.75
0.35	0.15	53.68	10.43
0.45	0.05	49.66	13.05

Table 4.1 The % conversion of copolymerization at 70° C; t = 22 min.

From Table 4.1, % conversion of every ratio is higher than 10% which indicated that all ratios used in the copolymerization have too long reaction time. Therefore, the reaction time could be reduced.

ุฬาลงกรณ์มหาวิทยาลัย

4.3.2 Effecct of Time on the Copolymerization of 4-Cl-(vinyl)-PPO with MMA

The time range 0-15 minutes was used for copolymerization at 0.05:0.45 mole ratio of 4-Cl-(vinyl)-PPO and MMA with the reaction temperature of 70°C. The degree of conversion was shown in Table 4.2.

Time	% Conversion			
(min)	4-Cl-(vinyl)PPO MMA			
0	- 9			
2	28.14	17.06		
5	44.19	21.23		
7	41.84	22.37		
10	48.35	22.40		
15	51.47	25.88		

Table 4.2 The % conversion of the copolymerization at 70°C in various time.

From the % conversion of this condition it indicates that the copolymerization extended over 10%. Observing to the reaction time at 2 min, the percentage conversion is still much higher than 10% which may be occurred by effect of temperature.

4.3.3 Effect of Temperature on the Copolymer of 4-Cl-(vinyl)-PPO with MMA

The suitable temperature must be considered with initiator which was azobisisobutylonitrile(AIBN). AIBN was commonly used at 40-70°C. Thus, the reaction temperature was selected at 50°C. The mole ratio of 4-Cl-(vinyl)-PPO and MMA was used at 1:1.

Table 4.3 The % conversion of the copolymerization at 50°C in various time

Time (min)	% Conversion		
	4-Cl-(vinyl)-PPO	MMA	
0	ALC: ALL	-	
1	3.56	0.38	
2	2.89	1.76	
5	14.87	9.87	
7	18.05	14.31	
10	23.21	14.36	

From above data it was indicated that the copolymerization time at 1 and 2 min give the conversion less than 10% of both monomers. Thus, the suitable condition is about 1 or 2 min. Besides time and temperature, the amount of solvent may be involved.

4.3.4 Effect of the Amount of Solvent on Copolymerization of 4-Cl-(vinyl)-PPO with MMA

If the concentration influences to the reaction, high concentration will allow the collision of molecules more possibility than lower concentration. In this study toluene was used in different volume (1 mL and 3 mL). The reaction time range 0-10 was used on the mole ratio at 1:1 of 4-Cl-(vinyl)-PPO and MMA, respectively.

Table 4.4 The % conversion of copolymerization in toluene 1 mL and 3 mL in various time

Time(m	% conversion		% conversion	
in)	in toluene 1 mL		in toluene 3 mL	
	4-Cl-(vinyl)-PPO	MMA	4-Cl-(vinyl)-PPO	MMA
0	<u>สถาบับว</u> ้	19/1 8 1 9	เริ่การ	-
1	2.31	1.61	4.02	4.99
2	4.47	3.15	16.64	9.94
5	12.13	10.23	24.16	13.27
7	14.99	12.69	31.54	24.42
10	18.84	15.25	50.71	28.86

From Table 4.4, it was indicated that the concentration of solution not effective to the percentage of conversion because of toluene 1 mL gives % conversion less than 10 with reaction time of 1 and 2 min and 3 mL give % conversion less than 10 with the reaction time of 1 min. Therefore, the suitable condition for determining the monomer reactivity ratios was carried out at 50°C in toluene 1 mL in reaction time about 2 mins.

4.3.5 Copolymerization of 4-Chloro-2-(4'-vinylphenyl)-5-phenyloxazole with

Methyl Methacrylate

Copolymers with various proportions of 4-chloro-2-(4'-vinylphenyl)-5phenyloxazole(4-Cl-(vinyl)-PPO) and methyl methacrylate (MMA) were prepared by radical polymerization in toluene solution using 2-2'-azobisisobutylonitrile as initiator at 50°C±1. The incorporatation of 4-Cl-(vinyl)-PPO and MMA in copolymers was determined by gas chromatography. The typical chromatogram of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole and methyl methacrylate in copolymer solutions was shown in Figure 4.13. There are five peaks in the chromatogram, i.e., AIBN peak, MMA peak, toluene peak, AIBN radical peak and 4-Cl-(vinyl)-PPO peak which had the retention time at 1.9, 3.8, 6.3, 11.8 and 24.6, respectively.

Figure 4.14 The chromatogram of copolymer solutions by gas chromatography in different mole ratios (a) 4-Cl-(vinyl)-PPO(0.03m.mol) : MMA(0.07m.mol) (b) 4-Cl-(vinyl)-PPO(0.07m.mol) : MMA(0.03m.mol)

The amount of monomers was represented by peak area of gas chromatogram . The peak area and % conversion of poly[4-Cl-(vinyl)-PPO-co-MMA] in six mole ratios and time were represented in the Appendix B. The composition of each copolymer was calculated from the linear equation of the calibration curve of 4-Cl-(vinyl)-PPO in Figure A1 and MMA in Figure A2. The calibration curves was plotted between peak area (Table 4.5) and the amount of monomer in the feed.

Ratios of Monomer	Peak Area		
(mmol)	125		
4-Cl-(vinyl)-PPO : MMA	4-Cl-(vinyl)-PPO	MMA	
0.01 : 0.09	10373.0	26021.5	
0.03 : 0.07	16063.0	20436.5	
0.06 : 0.04	32940.5	10730.0	
0.07 : 0.03	33949.5	8024.0	
0.08 : 0.02	38497.0	5148.5	
0.09 : 0.01	40886.5	2422.0	

Table 4.5 Peak area of 4-Cl-(vinyl)-PPO and MMA at t = o

4.3.6 Calculation of the Monomer Reactivity Ratios

The calibration curves (Figures A1-A2) are represented to yield the linear

equation :

and

$$Y = 400760X + 6431.6$$
 for 4-Cl-(vinyl)-PPO
 $Y = 297612X - 940.97$ for MMA

X and Y are the concentration and the peak area of monomers, respectively.

Both linear equations were used to determine the non polymerized monomer which indicated in the peak area and it was converted to concentration (Table 4.6).

 Table 4.6 Peak Area of 4-Cl-(vinyl)-PPO and MMA at time less than 10%

 conversion

Ratios of Monomer	Peak Area		Amount of	
(mmol)			Non-Copolymerize Monomer	
			(mmol)	
4-Cl-PPO:MMA	4-Cl-PPO	MMA	4-Cl-PPO	MMA
0.01 : 0.09	9690.0	25546.5	0.008	0.089
0.03 : 0.07	15953.0	19296.5	0.023	0.068
0.06 : 0.04	28874.0	10552.5	0.056	0.039
0.07 : 0.03	32316.5	7898.0	0.065	0.029
0.08 : 0.02	36239.0	4819.5	0.074	0.019
0.09 : 0.01	37949.0	2308.5	0.079	0.009

Each monomer incorporated in the copolymer was assumed to be the converted monomer amount relative to the initial amount, revealed from the gas chromatography. Therefore, the incorporated monomer amounts in the copolymer in each mole ratio were shown in Table 4.7, which resulted in the copolymerization in various mole ratios and time (Appendices B1-1 to B1-6). The minimum time for less than 10% conversion of monomers was chosen.

The extent of incorporation of 4-Cl-(vinyl)-PPO and MMA into the poly[4-Cl-(vinyl)-PPO-co-MMA] was observed that the increasing of amount of monomer feed involves the increasing of incorporated monomer in copolymer.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Monomer Feed	Monomer Feed	Mole Fraction of	Mole Fraction of	Reaction Time	Conver	sion
4-Cl-(vinyl)-PPO	MMA	4-Cl-(vinyl)-PPO	MMA	(min)	(%)	I
(mmol)	(mmol)	in Copolymer	in Copolymer		4-Cl-(vinyl)-	MMA
		(m ₁)	(m ₂)		РРО	
0.01	0.09	0.667	0.333	2	6.58	1.80
0.03	0.07	0.777	0.222	2	0.68	5.57
0.06	0.04	0.800	0.200	1	9.22	1.65
0.07	0.03	0.833	0.167	1	4.81	1.57
0.08	0.02	0.857	0.143	1	5.86	5.63
0.09	0.01	0.917	0.083	1	7.18	4.68

 Table 4.7 Copolymerization of 4-chloro-2-(4-vinylphenyl)-5-phenyloxazole with methyl methacrylate

จุฬาลงกรณมหาวิทยาละ

m = mole fraction of monomers in the copolymer.

Figure 4.15 is clearly shown that the mole fraction of 4-Cl-(vinyl)-PPO in copolymer is higher than mole fraction of MMA in copolymer in every ratio. Althought, some ratios have MMA higher than 4-Cl-(vinyl)-PPO. This is probably because the polymer radical of 4-Cl-(vinyl)-PPO unit at the chain end is considerably more active than the MMA units, which means that the addition of 4-Cl-(vinyl)-PPO will be more rapid than in the MMA units.

The reactivity ratios were calculated using the linear equation proposed by Fineman-Ross[16].

$$G = r_1 F - r_2$$

Where G and F represented by

$$G = \frac{X(Y-1)}{Y}$$
 and $F = \frac{X^2}{Y}$

Where *X* and *Y* are the ratios of the mole fractions of the monomers in the feed and in the copolymer formed(Table 4.8).

Table 4.8 The F-R parameters for a 4-Cl-(vinyl)-PPO-MMA copolymer system

Sample	$X = M_1 / M_2$	$Y = m_1/m_2$	G=X(Y-1)/Y	$F = X^2/Y$
1	0.111	2 003	0.056	0.006
1	0.111	2.005	0.050	0.000
2	0.429	3.500	0.306	0.053
3	1.500	4.000	1.125	0.563
4	2.300	4.997	1.839	1.059
5	4.000	6.001	3.333	2.666
6	9.000	11.008	8.182	7.358

 M_1 is mole fraction of 4-Cl-(vinyl)-PPO in feed; M_2 is mole fraction of MMA in feed; m_1 is mole fraction of 4-Cl-(vinyl)-PPO in copolymer; m_2 is mole fraction of MMA in copolymer

From Table 4.8, *G* was plotted against *F* (Figure 4.15) to yield a straight line with slope r_1 and intercept r_2 .

Figure 4.16 Fireman-Ross plot

 r_1 is the reactivity ratio of 4-Cl-(vinyl)-PPO and r_2 is the reactivity ratio of MMA. The value of r_1 and r_2 obtained from the F-R plot are $r_1 = 1.07$ and $r_2 = 0.38$. The value of r_1 is more than 1 and that of r_2 is less than 1, and this indicates that 4-Cl-(vinyl)-PPO is more reactive than MMA. The r_1 and r_2 values suggest that the system represents a random copolymerization.

The structure molecule of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole is larger than the structure molecule of methyl methacrylate. Thus, methyl methacrylate should be more active than 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole, but in this study it indicated that 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole is more active than methyl methacrylate from r values.

In this case, the less reactivity of methyl methacrylate monomer is probably due to the chemical nature of the polymerizable end group. Considering the structure of 4-Cl-(vinyl)-PPO, it is clearly shown that the 4-Cl-(vinyl)-PPO molecule has lone pair electron at =N- position on oxazole ring which is electron donating group effective to delocalize on π -bond of 4-Cl-(vinyl)-PPO. This effect involves the reactivity on vinyl group of 4-Cl-(vinyl)-PPO. On the other hand, the structure of MMA contains carbonyl group(C=O) which is electron withdrawing group, involves reduced reactivity on vinyl group of MMA as shown in Figure 4.17.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.17 The chemical structures of 4-Cl-(vinyl)-PPO and MMA

However, the radical copolymerization may be depended on several factors, such as, the reaction medium (solvent) considering its polarity, pH, etc.

Deviations are also observed in some copolymerizations where the copolymer formed is poorly soluble in the reaction medium . Under these conditions, altered copolymer compositions are observed if one of the monomers is preferentially added by the copolymer. Thus for methyl methacrylate(M₁)-*N*-vinylcarbazole(M₂) copolymerization, r_1 =1.8, r_2 =0.6 in benzene but r_1 =0.57, r_2 =0.75 in methanol [18].The propagating polymer chains are completely soluble in benzene but are microheterogeneous in methanol. Some effect of viscosity on reactivity ratio has been observed. Copolymerization of styrene(M_1)-methyl methacrylate (M_2) in bulk leads to a copolymer containing less styrene than when reaction is carried out in benzene solution [19]. The gel effect in bulk polymerization decreases the mobility of styrene resulting in a decrease in r_1 and an increase in r_2 .

The monomer reactivity ratio for an acidic and basic monomer shows dependence on pH since the identity of the monomer changes with pH. For example, acrylic acid(M₁)-acrylamide(M₂) copolymerization shows $r_1 = 0.90$, $r_2 = 0.25$ at pH = 2 but $r_1 = 0.30$, $r_2 = 0.95$ at pH = 9 [20-21]. A related phenomenon is the increase in the monomer reactivity ratio for ethyl-3-oxo-4-pentenoate when it copolymerizes with styrene in a nonpolar solvent compared to a polar solvent[22]. Ethyl 3-oxo-4-pentenoate exists in a keto-enol equilibrium with the concentration of enol increasing with solvent polarity. The enol has a higher reactivity compared to the keto form, and this results in a copolymer richer in ethyl-3-oxo-4 pentenoate in nonpolar solvent.

Copolymerization involving the combination of polar (M_1) and nonpolar (M_2) monomers offen shows different behavior depending on the polarity of the reaction medium. The copolymer composition is richer in the less polar monomer in a polar (either aprotic or protic) solvent, compared to nonpolar solvent. Calculation of the monomer reactivity ratios shows a decrease in r_1 usually coupled with an increase in r_2 for copolymerization in the polar solvent relative to
values in the nonpolar solvent. This behavior has been observed in a system such as styrene with acrylamide, acrylonitrile, 2-hydroxyethyl methacrylate, acrylic acid, or methacrylic acid and methacrylic acid with methyl methacrylate[23-26].

4.4 Fluorescence Emission Analysis

The diluted 4-Cl-(vinyl)-PPO solutions of 1 mg in 100 mL of chloroform was analyzed. Typical fluorescence emission spectrum of 4-Cl-(vinyl)-PPO in chloroform is shown in Figure 4.17. The fluorescence emission spectrum of 4-Cl-(vinyl)-PPO exhibits band at 399 nm when excited at 260 nm.

Figure 4.18 Fluorescence emission spectra of 4-Cl-(vinyl)-PPO 1 mg in chloroform 100 mL

The copolymer of 4-Cl-(vinyl)-PPO and MMA $11x10^{-2}$ mg in 10 mL of chloroform was analyzed with excitation wavelength of 260 nm. The fluorescence emission spectrum appears at 403 nm as shown in Figure 4.18. Poly[4-Cl-(vinyl)-PPO gives fluorescence spectrum at longer wavelength than 4-Cl-(vinyl)-PPO due to the π - π interaction between carbonyl group of MMA with the phenyl ring of 4-Cl-(vinyl)-PPO. The emission wavelengths of poly[4-Cl-(vinyl)-PPO and 4-Cl-(vinyl)-PPO were little different which may involve the incorporation in copolymer of MMA less than 4-Cl-(vinyl)-PPO.

Figure 4.19 Fluorescence emission spectrum of poly[4-Cl-(vinyl)-PPO-co-MMA] 11×10^{-2} mg in chloroform 10 mL

Chapter V

Conclusion

The Ternai reaction between *p*-ethylbenzaldehyde and benzoyl cyanide in a tetrahydrofuran and saturated with hydrogen chloride gave 4-chloro-2-(4'ethylphenyl)-5-phenyloxazole. Bromination by *N*-bromosuccinimide followed by dehydrobromination with sodium *tert*-butoxide gave 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole with 51.66 % yield based on benzoyl cyanide.The spectroscopic data indicate that the required oxazoles have been obtained.

Solution polymerization of 4-chloro-2-(4'-vinylphenyl)-5-phenyloxazole with methyl methacrylate using AIBN as an initiator at 50±1 °C was carried out at six different mole ratios. The reaction time was selected at less than 10% conversion. The incorporated monomers in copolymer were calculated from gas chromatogram of the monomers feed. The monomer reactivity ratios were determined by Fineman-Ross method. The $r_{4-\text{Cl-(vinyl)PPO}}$ is greater than 1 and r_{MMA} value is less than 1, and this indicates that 4-chloro-2-(4'-vinylphenyl)-5phenyloxazole is more reactive than methyl methacrylate. The $r_{4-\text{Cl-(vinyl)PPO}}$ and r_{MMA} values show that the system represents a random copolymerization.

The chemical structure of 4-Cl-(vinyl)-PPO influences the extent of incorporated 4-Cl-(vinyl)-PPO in copolymer because of the =N- position on oxazole ring has lone pair electron which is electron donating group by

compairing with electron withdrawing on carbonyl group of MMA. Thus, 4-Cl-(vinyl)-PPO is more incorporated than MMA in copolymer chain.

References

- William, J. P. Nuclear Radiation Detector. New York: Magraw-Hill, 1958: 163
- Birks, J. B. *The Theory and Principle of Scintillation Counting*. New York: Pergamon Press, Ltd, **1965**: 285
- Kerr, V. N.; Hayes, F. N.; Ott, D. G.; Habsbury, E. J. Org. Chem. 24, 1959: 1861
- 4. Shorr, M. G.; Torney, F. Y. Phys. Rev. 80, 1950: 474
- Barashkov, N. N.; Gunder, O. A. Fluorescent Polymer. London: Eillis Horwood, 1994
- 6. Fisher, E. Ber .29, 1963 : 205
- Balaban, A. T.; Frangopol, P. Acad. Rep. Pop. Rom. Stud Cercet. Chim. 6, 1968: 427 Chem. Abstr. 53, 1959:161129
- 8. Lakhan, R.; Ternai, B. J. Heter. Chem. 14, 1972: 317
- Hayes, F. N.; Ott, D. G.; Kerr, V. N.; Rogers, B. S. Nucleonics. 13, 12, 1955:
 38
- 10. Kopecky, J. Organic Photochemistry : a visual approach New York: VCH Publishers, Inc. **1992**: 31-43
- 11. Phillips, D. Polymer Photophysics.London:Chapman and Hall, 1985:114-237
- Gillet, J. Polymer Photophysics and Photochemistry Cambridge: Cambridge University press, 141-190

- Klopffer, W. Introduction to Polymer Spectroscopy. Berlin: Springer-Verger press, 1984: 30-47
- 14. George, O. *Principles of Polymerization*. New York: Wiley and Sons, Inc,**1950**: 452-529.
- 15. Fireman, M.; Ross, S. D. J. Polym. Sci. 5, 1950: 259
- 16. Bajaj, P.; Sen, K.; Bahrami, S. H. J. of Appli. Polym. Sci. 59, 1996:1539
- 17. Viyakarn, A. "Fluorescence Emission Properties of Poly[4-chloro-2-(4'vinylphenyl)-5-phenyloxazole-co-styrene]" Master Thesis, Department of Petrochemistry and Polymer Science, Graduate School, Chulalongkorn University, **1997**, ISBN 974-639-427-4
- 18. Ledwith, A.; Galli, G.; Chillini, E.; Solara, R. Polym. Bull. 1, 1979: 491
- 19. Johnson, M.; Karmo, T. S.; Smith, R. R. Eur. Polym. J. 14, 1978: 409
- 20. Ponratnamm S.; Kapur, S. K. Macromol. Chem. 178, 1977: 1029
- 21. Truong, N. D.; Galin, J. C.; Francois, J.; Pham, Q. T. Polymer. 27, 1986: 467
- 22. Masuda, S.; Tanaka, M.; Ota, T. Makromole. Chem. 188, 1987: 371
- 23. Boudevska, H.; Todorova, O. Makromol. Chem. 186, 1985: 1711
- 24. Harwood, H. J.; Makromol. Chem. Macromol. Symp. 10, 11, 1987:331
- 25. Lebdaska, J.; Snuparek, J.; Kaspar, K.; Cermak, V. J. Polym. Sci. Polym. Chem. Ed. 24, **1986**: 777
- 26. Plochoka, K. J. Macromol. Sci.-Rev. Macromol. Chem. C20, 1981: 67

Appendix A

Calibration curve

Figure A1 Calibration curve of 4-chloro-2-(4'-vinylphenyl)-5- phenyloxazole

67

Figure A2 Calibration curve of methyl methacrylate

68

Appendix B

GC data

B1: The GC data of the copolymerization at temp.= $50\pm1^{\circ}$ C in different ratios

and time

Table B1-1 4-Cl-(vinyl)-PPO (0.01 mmol) : MMA (0.09 mmol)

	Peak Area					
Time	4-0	Cl-(vinyl)-P	PO		MMA	
(min)	1	2	ave.	1	2	ave.
0	11610	9136	10373	26283	25760	26021
2	10924	<mark>8456</mark>	9690	25018	26075	25546
4	8491	7 <mark>6</mark> 10	8050	25347	25469	25408
6	7349	8462	7905	24393	25559	24976
8	7552	8022	7787	22942	26359	24600
10	7921	8688	8304	26221	22424	24322

	% Conv	version
Time (min)	4-Cl-(vinyl)-PPO	MMA
0	າຂອງຄາສ	<u>าวิ</u> ขายา
2	6.58	1.8
4	22.39	2.36
6	23.78	4.02
8	24.93	5.46

		Peak Area					
Time	4	-Cl-(vinyl)-	PPO		MMA		
(min)	1	2	ave.	1	2	ave.	
0	15896	16230	16063	20060	20813	20436	
2	16661	15245	15953	19329	17264	19296	
4	14609	15317	14963	19067	19280	19173	
6	14995	14859	14927	19508	18534	19021	
8	14423	15041	14732	18683	17681	18182	
10	15136	13799	14467	17328	18015	17671	
	G				9		

Table B1-2 4	-Cl-(vinyl)-PPC	0 (0.03 mmol)	: MMA	(0.07 mmol)

	% Conversion			
Time (min)	4-Cl-(vinyl)-PPO	MMA		
0	านวหยา	ารยาร		
2	0.68	5.57		
4	6.85	6.18		
6	7.07	6.93		
8	8.29	11.03		

	Peak Area					
Time	4-0	Cl-(vinyl)-P	PO	6	MMA	
(min)	1	2	ave.	1	2	ave.
0	32405	33476	32940	11053	10407	10730
1	28637	29111	28874	10327	10778	10552
2	27252	27165	27208	10117	10860	10488
4	28028	26326	27177	10283	10623	10453
6	25863	26475	26169	10480	9612	10046
8	25441	2 <mark>4</mark> 944	25192	9962	9774	9868
10	24253	24175	24214	9715	9400	9557

Table B1-3 4-Cl-(vinyl)-PPO (0.06 mmol) : MMA (0.04 mmol)

	% Conv		
Time (min)	4-Cl-(vinyl)-PPO	MMA	
0	านวายา	ารยาร	
 1	9.22	1.65	9 (
2	13.31	2.73	6
4	17.50	2.58	
6	20.56	6.37	
8	23.52	8.03	

	Peak Area					
Time	4-0	Cl-(vinyl)-P	PO		MMA	
(min)	1	2	ave.	1	2	ave.
0	34804	33095	33949	8274	7774	8024
1	31949	32684	32316	7543	8253	7898
2	32433	30115	31274	7471	8024	7747
4	31814	29620	30717	7939	7417	7678
6	29983	31029	30506	7560	7315	7437
8	31089	29124	30106	7094	7799	7446
10	30158	29586	29872	7769	6504	7136

Table B1-4 4-Cl-(vinyl)-PPO (0.07 mmol) : MMA (0.03 mmol)

	- T	% Conversion				
	Time (min)	4-Cl-(vinyl)-PPO	MMA			
	0	านวายา	ารยาร			
201	1	4.81	1.57	20		
1 7	2	7.88	3.45	618		
	4	9.52	4.31			
	6	10.14	7.31			
	8	11.32	7.20			

	Peak Area					
Time	4-0	Cl-(vinyl)-P	PO		MMA	
(min)	1	2	ave.	1	2	ave.
0	38342	38652	38497	5013	5284	5148
1	34618	37860	36239	4868	4776	4819
2	32113	32606	32359	4078	4983	4530
4	31669	32106	31887	4853	3989	4421
6	29619	28775	29197	4482	4353	4417
8	28571	28888	28729	3824	4250	4037
10	28204	32744	30474	4362	3556	3959

TableB1-5 4-Cl-(vinyl)-PPO (0.08 mmol) : MMA (0.02 mmo	ol)
--	-----

		% Conv	version	
	Time (min)	4-Cl-(vinyl)-PPO	MMA	
	0			
	สถาเ	5.86	5.63	
	2	15.94	12.00	
17	4	17.17	14.13	
	6	24.16	14.19	
	8	25.37	21.59	

	Peak Area						
Time	4-(Cl-(vinyl)-P	PO		MMA		
(min)	1	2	ave.	1	2	ave.	
0	40577	41196	40886	2339	2505	2422	
1	38349	37549	37949	2355	2262	2308	
2	35844	36627	36235	2373	2210	2291	
4	34547	35570	35058	2511	2062	2286	
6	34829	34882	34855	2238	2307	2273	
8	35549	34145	34847	2140	2318	2229	
10	35588	38141	36864	2191	2050	2120	

TableB1-6 4	4-Cl-(vinyl)-PPO ((0.09 mmol)	: MMA ((0.01 mmol))
-------------	--------------------	-------------	---------	--------------	---

	% Conversion				
Time (min)	4-Cl-(vinyl)-PPO	MMA			
0		ปรการ			
 1	7.18	4.68			
2	11.37	5.38			
4	14.25	5.59			
6	14.75	6.15			
8	14.77	7.97			

Ratios(mmol)		Peak Area		Peak Area at	
		at t :	= 0	t = 22	2 min
4-Cl-	MMA	4-Cl-	MMA	4-Cl-	MMA
(vinyl)PPO		(vinyl)PPO		(vinyl)PPO	
0.05	0.45	27971	114496	11554	106344
0.10	0.40	40247	122879	14110	100984
0.15	0.35	48257	116624	17422	83847
0.20	0.30	53581	94860	18131	74120
0.25	0.25	54171	61446	22882	54561
0.30	0.20	61935	53467	25710	41837
0.35	0.15	66206	38534	30665	34516
0.45	0.05	75330	13052	37924	11349

Table B2 The GC data of copolymerization at t = 22 min and temp.= 70°C.

Ratios (m.mol)		% Conversion		
4-Cl-(vinyl)PPO	MMA	4-Cl-(vinyl)PPO	MMA	
0.05	0.45	58.69	7.12	
0.10	0.40	64.94	17.82	
0.15	0.35	63.89	28.10	
0.20	0.30	66.16	21.86	
0.25	0.25	57.76	11.20	
0.30	0.20	58.49	21.75	
0.35	0.15	53.68	10.43	
0.45	0.05	49.66	13.05	

Time	Peak Area						
(min)	4-Cl-(vinyl)PPO				ММА		
	1	2	ave.	1	2	ave.	
0	30968	-	30968	148934	-	148934	
2	25377	19131	22254	115948	131115	123531	
5	152 <mark>45</mark>	19321	17283	111373	123271	117322	
7	17439	18581	18010	110441	120806	115623	
10	13590	18402	15996	113160	117997	115578	
15	13038	17018	15028	113143	107654	110398	

Table B3 The GC data of copolymerization at 4-Cl-(vinyl)PPO(0.05 mmol) : MMA(0.45 mmol) in various times.

	Time	% Conv		
	(min)	4-Cl-(vinyl)PPO	MMA	
	0		ปรการ	
2.049	2	28.14	17.06	2
	5	44.19	21.23	191
	7	41.84	22.37	
	10	48.35	22.40	
	15	51.47	25.88	

Time	Peak Area						
(min)	4-Cl-(vinyl)-PPO				MMA		
	1	2	ave.	1	2	ave.	
0	30405	36403	33404	15242	15006	15124	
1	28067	36364	32215	14468	15665	15066	
2	33541	31332	32436	14313	14903	14858	
5	29387	27484	28435	14340	12922	13631	
7	27742	27010	27376	12676	13245	12960	
10	27015	242 <mark>8</mark> 5	25650	12857	13045	12951	

Table B4	The GC data of copolymerization at 4-Cl-(vinyl)-PPO (0.05mmol) : MMA
	(0.05mmol) in various times.

Time (min)	% Conver				
สภาข	4-Cl-(vinyl)-PPO	MMA	5		
0	г <u>ың т</u> ың Г		6		
จทำลงก	3.56	0.38	าละ		
9 2	2.89	1.76			
5	14.87	9.87			
7	18.05	14.31			
10	23.21	14.36			

Vita

Miss Dhidaratana Hirunviriya was born on March 25, 1974 in Yala. She graduated with a Bachelor degree of Science (Polymer Science) from Prince of Songkhla University in 1995. Since then she was accepted as graduate student in the program of Petrochemistry and Polymer Science, Chulalongkorn University. She received a Master's Degree of Science in 2000.

