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CHAPTER I
INTRODUCTION

Berry-Esseen inequality is one of the most important tools in the theory of prob-
ability. This inequality helps us to quantify the rate of the convergence in the
central limit theorem. For each n € N, let Xi, X5, ..., X, be independent and

n

identically distributed random variables with zero means and Z EX? = 1. De-
i=1
fine

Sn:in

and let ®; be the standard normal distribution, i.e.,

1 T 1p
@1(55) = E/ 6_§t dt.

n
The Berry-Esseen inequality was stated under the assumption that Z E|Xi]* < o0.
i=1
The uniform and non-uniform versions of the inequality are

sup |P(S, < x) — &1 (2)] < Co Y E|X,f?
=1

z€R

and

C1 <
P(S, <z)—® < E|X,|?,
IP(8, < 2) = 0a(@)] < T3 D FIX

respectively, where both Cy and ('} are positive constants. The uniform version
was independently discovered by Berry [5] and Esseen [13] in 1941 and 1945, re-
spectively, while the non-uniform version was discovered by Nagaev [17] in 1965.

Over several decades, many authors put their effort to find the rate of this con-
vergence both uniform and non-uniform versions such as Shevtsova [23], Siganov
[24], Neammanee and Thongtha [18], Chen and Shao [10, 12}, Paditz [19] and
Chaidee [7], etc.



For multidimensional case, let & € N be fixed and n € N be arbitrary,
Y; = (Ya, Y, ..., Yie),i = 1,2,....,n, be independent and identically distributed

random vectors in R* with zero means,
Y EY)=1forj=1,2,... kand (1.1)
i=1
EY;;Yy =0 for j # L. (1.2)

Define

Let F,, be the distribution of W,, and ®; the standard Gaussian distribution in
Rk, i.e.,

1 k
1y
=1

1 2N
Or(A) = 2 /Ae

dz

where A C R*¥ and » = (x1,29,...,2x) € R*. Under the above assumption,
Bergstrom [4] guaranteed that F,, converges weakly to ®;. The uniform bound of
this convergence have been repeatedly refined over subsequent decades by many
researchers such as Esseen [13], Rao [21] and Bahr [2], etc. Esseen [13] assumed

the finiteness of the forth moments,
k
> Byt < oo,
j=1

and used Fourier method to find a uniform bound over the closed sphere By (r) =

{r e RF | 2?2 + a3+ -+ 27 <r?} for r > 0. He proved that

Fu(Bulr)) — i(Bel(r))] <

nk+1

where Cy is an absolute constant depending on k. Rao [21] generalized Esseen’s

result to any convex Borel subset C' of R¥, and his estimation is

Fo(C) = Bu(C)] < - (logm) 5 (13)



In 1967, Bahr [2] assumed

B3V <

for an integer s > k > 1 and improved the rate of convergence in (1.3) by the
inequality

Ci
N

In the case that each random vector Y; may not be identically distributed,

[Fn(C) = 2h(O)] < —= (1.4)

Bhattacharya [6] assumed that for i = 1,2, ..., n,

k
ZE)YM“‘S < oo for some § > 0,
=1

and he gave a bound of the estimation on any Borel subset of R¥. The rate
of convergence in [6] is the same as in (1.4). In 1991, Gotze [14] assumed the
finiteness of the third moments and used the Stein’s method to find a uniform

bound of this convergence. He proved that on any measurable convex set C' in

Rk
[En(C) = @k(C)] < Civs (1.5)
where 3 = Z E|Yi||*, ||| is the Euclidean norm in R* and

Cr = 124.4a,Vk + 10.7,

where aj, = 2.04,2.4,2.69,2.94 for k = 2,3,4,5, respectively and a;, < 1.27v/k for
k > 6. His estimation is of order O(n~2). In 2009, Reinert and Réllin [22] assumed
the finiteness of the third moments and used the Stein’s method to find uniform
bounds. Their estimation is of order O(n_i), but the result can be applied to the
case that the random vectors Y;, i = 1,2,...,n, need not be independent.

Bahr [1] is the first one who investigated the non-uniform bound of this estima-
tion. By assuming the identically distributed on Y;'s, he gave a rate of convergence

on By (r). Under the assumption
k
B(Y_Y5)? < oo,

J=1



for an integer s > 3, the result is

|Fo(Bg(r)) — @p(By(r))] < C}Tdé?) for r> (Zm(s —2) logn) : (1.6)
where m is the largest eigenvalue of the covariance matrix of \/nY;, d(n) is
bounded by one and nh_)nolo d(n) = 0.

In this dissertation, we will find both uniform and non-uniform Berry-Esseen
bounds without assuming that Y/s are identically distributed nor all components
of Y; are independent.

In the first part of our investigation, we obtain both uniform and non-uniform
bounds on the half plane Ay(r) = {r € R¥ | 21 + 29+ -+ + 25, < 7} for r € R.
We investigate the bounds by applying Berry-Esseen inequality in R. In this part,
we give our results under various assumptions on Y;;: the random vaiables Y;; are
bounded, E|Y;;[P < oo for some 2 < p < 3 and E|Y;;|* < oo fori=1,2,...,n and

7 =1,2,... k. The results are as follows:

Theorem 1.1. Let Y; = (Y1, Yio, ..., Yig), i = 1,2,... n, be independent random
vectors in R* with zero means, satisfying (1.1) and (1.2). Define W, = ZY}.
i=1

Let F, be the distribution function of W,. If |Yi;| < & fori =1,2,...,n and
7=1,2,...,k, then

sup |Fo(Ag(r)) — @i A(r)] < 3.3Vkd,

re
and there exists a constant C which does not depend on oy such that for every real
numbers r,

Ck*6y

(VE)3 + |73

Theorem 1.2. Let Y; = (Y1, Yio, ..., Yie), i = 1,2,... n, be independent random

[Fn(Ak(r)) = @x(Ax(r))] <

vectors in R* with zero means, satisfying (1.1) and (1.2). Define W,, = ZY;.
i=1

Let F,, be the distribution function of W,,. If E|Y;;|P < oo for some 2 < p < 3,i =
1,2,....nand j=1,2,... k, then

k n
sup | F (Ag(r)) — ®x(Ag(r))| < T5(4P K2 DN BV,

reR j=1 i=1



and there exists an absolute constant C such that for r € R,

T PRI

7j=1 =1

| Fn(Ak(r)) = @k (Ar(r))] <

Theorem 1.3. Let Y; = (Y1, Yio, ..., Yie), i = 1,2,...,n, be independent random
vectors in R* with zero means, satisfying (1.1) and (1.2). Define W,, = iYi.
Let F,, be the distribution function of W,,. If E|Y;|* < oo fori=1,2,... ,i;lcmd
1=1,2,...,k, then

sup | Fo(Ag(r)) — (Ag(r))] < 0.5600vVE > >~ EJY;,[°

rek j=1 i=1
and for all real numbers r,

k n
Pu(Ax(r) = (A1) < (—%Z B

In the second part, we use Stein’s method to find uniform bounds and give the
constants C' on the half plane A, (r), the closed sphere By (r) and the rectangular
set Ri(r) = {z € R* | |zj| < r;j = 1,2,...,k} where r = (ry,79,...,7;) and

r; >0 for all j =1,2,... k. In this part, we assume further that

k
Z:E|Y,~j|3 <oo forall i=1,2,...n.

i=1

Here are our results.

Theorem 1.4. Let Y; = (Y1, Yio, ..., Yie), i = 1,2,... n, be independent random
vectors in R with zero means and Yi; are independent for all j = 1,2,... k.

Define W,, = ZY}. Let F,, be the distribution function of W,. Assume that

i=1

n k
Y EY;=1forj=12,...kand Y E|Y;’ <oc fori=1,2,...,n. Then

sup |Fy(Bi(r)) — @r(Bi(r))| < CBs

reR

455 3 P
where C = — + —— and B3 = E|Y;:|?
b R 2 2



Theorem 1.5. Under the assumptions of Theorem 1.4, we have

sup [ F, (Ag(r)) — @x(Ax(r))] < Cfs

reR

455 3 P&
where C = — + —— and B3 = E|Y;;|?
ko kv b ; 2; Vil
Observe that the orders of the estimations in Theorem 1.4 and Theorem 1.5

are O(n"2) which is finer than the result in [22] and the constants are smaller

than the constant in (1.5).

Corollary 1 6. Let X;,1=1,2,...,n, be independent random variables with zero

mean and Z EX? = 1. Define W,, = ZX Let F,, be the distribution function

11

of W,. [fE'|)Q|3 < oo fori=1,2,...,n, then

sup | B, (x) = @y ()] < 7.55 ) E|X,[°.

zeR i1

Theorem 1.7. Under the assumption of Theorem 1.4, we have

sup | Fy, (Re(1)) — @p(Ri(r))| < CBs

reR

455 3 e
where C' = —— + and (33 = E|Yi|3.

In the last part of our results, we use the same method as in the the second

part to find a non-unifrom bound on By(r). The result is as follows:

Theorem 1.8. Under the assumption of Theorem 1.4, there exists a positive
constant Cy, (depends on k) such that

CrBs

|F(Bi(r)) — @r(Br(r))] < T4 3

k n
for r >0, where 33 = ZZEWU"?’

j=1 i=1
Note that the result in Theorem 1.8 is obtained for all positive real numbers

r which is broader than the radius r in (1.6).



The contents of this dissertation are organized into five chapters. Firstly, chap-
ter II, a premilinary part, consists of basic information in probability theory and
integration on sphere. The information and propositions concerning the Stein’s
method are explained in chapter III. The proofs of our results are given in chapter
IV, chapter V and chapter VI. In Chapter IV, we give uniform and non-uniform
bounds by using Berry-Essen theorem in R. Uniform bounds provided in Chapter
V are investigated by using the Stein technique. Finally, Chapter VI, contains a

proof of non-uniform bound given in Theorem 1.8.



CHAPTER I1
PRELIMINARIES

In this chapter, we review some basic knowledges in probability and the idea

of integration on sphere.

2.1 Basic Knowledge in Probability

In this section, we give some basic knowledges in probability which will be
used in our work.

A probability space is a measure space (£, F, P) for which P(Q2) = 1. The
measure P is called a probability measure. The set () will be referred to as a
sample space and its elements are called points or elementary events. The
elements of F are called events. For any event A, the value P(A) is called the
probability of A.

Let (2, F, P) be a probability space. A function X :  — R is called a
random variable if for every Borel set B in R, X~!(B) belongs to F. We shall
use the notation P(X € B) in place of P({w € Q|X(w) € B}). In the case that
B = (—o0,a] or [a,b], P(X € B) is denoted by P(X < a) or Pla < X <b),
respectively.

Let X be a random variable. A function F': R — [0, 1] defined by
F(z)=P(X <ux)

is called the distribution function of X.
A random variable X with the distribution function F' is said to be a discrete
random variable if the image of X is countable and it is called a continuous

random variable if F' can be written in the form

F(z) = / wt



for some nonnegative integrable function f on R. In this case, we say that f is
the probability function of X.

Now we will give some examples of random variables.

We say that X is a normal random variable with parameters ; and o2, written
as X ~ N(u,0?), if its probability function is defined by

f(x) = @exp (~ 5male— )

Moreover, if X ~ N(0,1) then X is said to be a standard normal random
variable.

We say that X is a discrete uniform random variable with parameter n if
there exist x1, xs, . .., x, such that P(X = z;) = % forany i =1,2,...,n, denoted
by X ~ U(n).

A random variable X is a gamma random variable with parameters o and (3,

written as X ~ Gam(a, [3), if its probability function is given by

1
HOEREEAC)
0 if <0

e 5 if x>0,

where o, § > 0 and T, called the gamma function, is defined by

INa) = /OOO e Yy dy. (2.1)

A ramdom variable X is a chi-square random variable with degree of freedom
7, denoted by X ~ x*(v), if X ~ Gam(%,2).

Let (Q, F,P) be a probability space and F, is a sub o-algebra of F for each
a € A. We say that {F,|a € A} is independent if and only if for £ € N and
subset J = {aq, aq, ..., a4} of A,

P (ﬂ Aam> = [[ P(A...)

where A, € F,, form=12,... k.
Let &, C F for all & € A. We say that {&,|a € A} is independent if and

only if {¢(&,)|a € A} is independent where o(&,) is the smallest o-algebra with
Ex C o).



10

We say that the set of random variables {X,| o € A} is independent if
{o(X,)| @ € A} is independent, where o(X) = {X~'(B) | B is a Borel subset
of R}.

Theorem 2.1. Random variables Xy, Xs,..., X, are independent if for any
Borel sets By, By, ..., B,, we have

i=1
Proposition 2.2. If X;; ;¢ =1,2,...,n, j = 1,2,...,m; are independent and
fi : R™ — R are measurable, then {fi(Xa, X, ..., Xim,), ¢« = 1,2,...,n} is

independent.

Let X be any random variable on a probability space (2, F, P). If / | X |dP < oo,
Q

then we define its expected value to be

B(X) = / XdP.
Q
Proposition 2.3. Let X be a random variable such that E(|X|) < occ.

(1) If X is a discrete random variable, then E(X) = Z zP(X = x).

zelmX

(2) If X is a continuous random variable with probability function f, then
B(X) = / IneveR:
R

Proposition 2.4. Let X and Y be random variables such that E(|X|) < oo and
E(]Y]) < 0o . Then, we have the followings:

(1) E(aX +bY)=aE(X)+bEY) fora,beR.

(2) IfX <Y, then E(X) < E(Y).

(3) [E(X)] < E(X]).

Let X be a random variable which E(]X|*) < co. Then E(|X|*) is called the

k-th moment of X about the origin and call E[(X — E(X))*] the k~th moment

of X about the mean.
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We call the second moment of X about the mean, the variance of X, denoted
by Var(X). Then
Var(X) = E[X — E(X))%.

We note that
(1) Var(X) = E(X?) - [E(X)].
(2) If X ~ N(u,0?), then E(X) = p and Var(X) = o2

Proposition 2.5. If X1, Xs, ..., X, are independent, E|X;| < co and EX? < 0o
fori=1,2,... n, then

(1) E(XiXs - X,) =EX))E(Xs) - E(X,),
(2) Var (Z aiXi> = ZafVar(Xi) for any real numbers ai,as, ..., ay,.
i=1 i=1
The following inequalities are useful in our work.

1. Holder’s inequality

If X and Y are random variables such that E(|X|?) < oo, E(|Y|?) < oo where
1 1

1<p,qg<o0, —+— =1, then
b q

1

E(XY]) < [EIXP)P[ElY ],

2. Chebyshev’s inequality

For any p > 0 and any random variable X such that E(]X|?) < oo,
E\X|P
P{|X|>¢}) < ’—p| for all € > 0.
£

Let X be a finite expected value random variable on a probability space
(Q, F, P) and D asub o-algebra of F. Define a probability measure Pp : D — [0, 1]
by

and a sign-measure Qx : D — R by

Qx(F) = / XdP for any E € D.
E
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Thus, Qyx is absolutely continuous with respect to Pp. By Radon-Nikodym
theorem, there exists a unique measurable function EP(X) on (9, F, P) such
that

/ EP(X)dPp = Qx(E) = / XdP for any E € D.

E E

We call EP(X) the conditional expectation of X with respect to D.
In addition, for any random variables X and Y on the same probability space

(Q, F, P) such that E(|X|) < oo, we will denote E°)(X) by EY(X).
Theorem 2.6. Let X be a random variable on a probability space (2, F, P) such
that E(|X|) < oo, then the followings hold for any sub o-algebra D of F.

(1) If X is random variable on (Q,D, Pp), then EP(X) = X a.s.[Pp].

(2) E7(X)=X as|P].

(3) If o(X) and D are independent, then EP(X) = E(X) a.s.[Pp].

Theorem 2.7. Let X and Y be random variables on the same probability space
(Q,F, P) such that E(|X|) and E(|Y]|) are finite. Then, for any sub c-algebra
D of F, the followings hold.

(1) If X <Y, then EP(X) < EP(Y) a.s. [Pp).

(2) EP(aX +bY)=aEP(X)+bEP(X) a.s. [Pp] for any a,b € R.

Theorem 2.8. Let X and Y be random variables on the same probability space
(Q, F, P) such that E(|XY]) and E(|Y|) are finite and Dy, Dy sub o-algebras of
F. If X 1s a random variable with respect to Dy, then

(1) EP{(XY)=XEP(Y) as. [Pp,].
(2) EP:(XY) = EP(XEP(Y)) a.s. [Pp,].

Let (2, F, P) be a probability space and D a sub c-algebra of F. For any
event A on F, we define the conditional probability of A given D by

P(A[D) = E°(L,)
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where I, is defined by

1 it we A,
]A(w) =
0 if wé¢ A
Let £ € N and X, X,,..., X, be random variables. The k-dimensional

vector X = (X, Xy,...,X}) is called a random vector in R*. A function

Fx : R¥ — [0, 1] defined by
Fx(z) = P(Xy < a1, Xy <@, Xi < )

for all z = (z1,2,...,7;) € R¥, is called a joint distribution function of the
random vector X.

If the random variables Xy, Xs, ..., X} are discrete, then the random vector X
is considered as a discrete random vector and its joint probability function

is
Px(w) = P(X1 —= $1,X2 = T2,... ,Xk = l’k)
If Fx can be written in the form

o [ [

for some nonnegative integrable function fx on R¥, then the random vector X is
called a continuous random vector. This function fx is the joint probability
function of X.

The expected value of a random vector, denoted by ux, is the vector of

expected values, i.e.
px = (E(X1), E(Xs), ..., E(Xy)).
The k£ x k matrix
E{(X — px)" (X — px) }

is called a covariance matrix of a random vector X, denoted by cov(X). We
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note that

cov(X) = E(X'X) — pixpix

VCLT(X1> 012 01k
- 021 VGT<X2) e 02
L Ok2 s VC”"(Xk)_

where Oij = E(XZ — EXZ)(XJ — EXJ> for Z,j = 1,2, ceey k.

An example of a random vector is a multivariate normal distribution. We say
that X has a multivariate normal distribution, written as X ~ Ny (ux,Y) if its

joint probability density function can be expressed as

fx(x) = m exp {—%(m —ux)S e — MX)T} for € R*

where Y is a covariance matrix of X.

Proposition 2.9. Let X be an k-dimensional random vector with ux < co. Then,
(1) E(Xa® +0b) = puxa® +b for any vector of constant a € R* and any
constant b in R,
(2) E(XA+a)=A-pux+ a for any k x m matriz A and any vector of

constant a € R™.

Proposition 2.10. Let X be an k-dimensional random wvector with covariance

matriz cov(X). Then,
(1) cov(XA+a)=A-[cov(X)]- AT for any k x m matriz A and any vector
of constant a € R™,

(2) cov(X) is a symmetric and positive semi-definite matriz.



2.2 Integration on Sphere
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A k-dimensional sphere, briefly “k-sphere”, is defined as a set of k-tuples of points

(w1, 79, ..., x) in R* that are equidistant from a unique point. The unique point

is called the center and a line from the center to a point on the sphere is called a

radius of the sphere. The equation for an k-sphere centered at the origin is

al s+ ap <1

where r is length of a radius of the sphere. A unit k-sphere is a k-sphere of unit

radius which we denote its area by Sy. Let V. be the k-dimensional volumn of a

k-sphere of radius r. The formula of Vj is given by

Vi = / Sy tF L.
0

The constant S, which depends on k, satisfies
> p k k
/ Ske_tztk_ldt = / e Tim T kg = 3
0 RF

As a gamma function defined by (2.1), we find that

k
2

2m
)

By (2.3) and the explicit form of gamma function,

Sy =

2 4nnl

(2.2)

(2.3)

I'(n) = (n—1), r<n+1>:M and r(%):\/% for all n €N,

the area Sy can be written as S; = 2, Sy = 27 and for k > 3,

(o Efl k-1
22T ifkis odd
((k—2)N)! ’
Sp =
s
kﬂ ' if k£ is even.
(3 —1)

(2.4)

We note that 57 = 2 is the number of points in ) = {—1,1}, Sy = 27 is the

length of the circumference of the unit circle and S3 = 47 is the area of the unit

3-sphere.
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Therefore, we can find the integration of the standard Gaussian distribution

®,. over By(r) by using (2.2) and (2.3). The result is
/ e T Mt
0

S
BB = [ e
1 /T k-1 12
= % t e zdt 2.5
2°2°T(5) Jo 29
1 /T22 B2,
= t2 e dt (2.6)
r'(%) Jo

where (2.6) is obtained from integrating (2.5) by substitution. The equation (2.5)

and (2.6) are useful equations for estimating 1 — ®x(By(r)) in Chapter III.



CHAPTER III
STEIN’S METHOD

At the beginning of ascertaining bounds of the Berry-Esseen theorem, a widely
used technique is Fourier transformation. This method focuses on the characteristic
function rather than the distribution function of random variables. However, this
technique is quite complicated especially for the dependent case.

In 1972, Stein [25] introduced a new approach to find an explicit bound for the
error in normal approximation. This technique is based on a partial differential
equation instead of the Fourier transformation. The advantage of this approach
is that it can be used in many situations in which dependence plays a part. This
technique is called “Stein’s method”. The keys of this technique are the Stein’s
equation and its corresponding solution.

The Stein equation is considered as an equation of a partial differential operator

T. The equation used in normal approximation is of the form
T(f)(w) =h(w) —=N(h), weR (3.1)

where f is a function, h is a function called the test function and N'(h) is a

constant defined by
N (h) = E(h(Zy)), Z is a standard normal random variable.
Thus, for a random variable W, the equation (3.1) becomes
T(f)W) = h(W) = N(h). (3.2)

From (3.2), we obtain a bound of the normal approximation by estimating 7'(f) (W)
instead of h(W) — N (h). Therefore, the bound of the approximation depends on
the solution f of the eqution (3.1).

Stein gave a bound of normal approximation by introducing the operator 7" in
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(3.1) as follows:
T(f)(w) := f'(w) —wf(w) for w € R.

He also gave its corresponding solution f defined by

for all real-valued measureable functions h with N'(h) < co.

Apart from the normal distribution, many researchers have seriously worked
to find equations for other distributions such as Poisson distribution [9], gamma
distribution [16], chi-square distribution [20] and hypergeometric distribution [15],
etc.

In multidimensional case, many researchers gave a stein’s equation for multi-
variate normal distribution under various assumptions on h. Gdétze [14] gave an
equation and found a bound of the approximation when A belongs to a class of
uniformly bounded measurable functions. This class includes a class of indicator
functions on measurable convex sets. Barbour [3] introduced an equation to
find a bound of the approximation when h belongs to a class of twice Frechet
differentiable functions. Chatterjee and Meckes [8] gave an equation and used
exchangeable pair approach to find a bound of the approximation when h € C?(R¥).
Reinert and Réllin [22] used the similar approach of [8] with a different equation to
give a bound of the approximation. In [22], the equation can be applied to the case
that the test function A belongs to a class of indicator functions on measurable
convex sets.

In this chapter, the information is organized into two sections. In section 3.1,
we will introduce the Stein’s equation and give its solution. The properties of the

solution f needed to prove our results are given in section 3.2.

3.1 Stein’s Equation

This section is devoted to introducing the Stein’s equation for multidimensional

vector space R¥ and its solution. They are given in the event that the test function
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h is an indicator function on Borel sets in R*. The result is stated in the following
proposition.
Proposition 3.1. For k € N and a Borel set B in R¥, let hg : R* — R be defined
by
1 if we B,
hp(w) =
0 i wée¢DB

where w = (wy, wy, ..., wy) € RE. A solution fg of the equation

Z i (w0) — Z w; f(w) = VEk[hp(w) — Bi(B)] (3.3)
213 (1 — ®y(B))(1 — &y (w)) if we B,w>0,

V2mer® (1 = &,(B))®y (w) if weB,w<0,
fB(w)

N\

(3.4)
V2mez™ ®(B)(1 — &y (w)) if w¢ B,w>0,

27§, (B) Dy () if wé B,w<0

k
where w = 7 Zwi and f, are the partial derivatives of fp with respect to w;
T

fori=1,2,...

Proof. Case 1) Let w € Int(B) and w > 0.

Fu) = V(L= @(B) [ 521 = 0 0) + (1 = () et

o, ow;
= —V2r(1 — ®(B)) 21k7r weéwz{l\/_;l(w))]
_ %(1 —®(B)) + %fs(w)-
Thus
wal = Vk(1 — ®4(B)) + VEd f5(w)

- \/_[hB( —f-ZwaB )
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Case 2) Let w € Int(B) and w < 0.

Fu) = VIR~ 0u(B) [ 3% ) + 0 0)

ow; ow;
- - 1 wez" ) (w)
= \/_(1 (I)k( )) m + \/E ]
1 w
_ ﬁ“ — & (B)) + ﬁfg(w)

Thus

waz = V(1 = ®4(B)) + Vk f5(w)

= \/—[hB( szfB

The proof of other cases is similar to either case 1) or case 2). Note that each
fw, does not exist on the boundary of B. However, we can define their partial

derivatives from (3.3). If w is a point on the boundary of B, we have

> fulw) szfB )+ VElhs(w) - B.(B)

To preserve the piecewise continuity of f,,., we define f,, by

Juws (W kzwsz +T[h3( w) — x(B)], (3.5)

forv=1,2,..., k. Hence, we have the Proposition 3.1. O

Remark 3.2. For the functions fg and f,, defined as in Proposition 3.1, we have
(1)  fuw, are equal for alli =1,2,... k.

(2) fp and f,, are piecewise continuous fori=1,2,... k.

The first remark is obtained by differentiating all cases in (3.4) together with
(3.5). The derivatives are

Fuw (w0 szfB f[ (w) — P4(B)], (3.6)
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for i = 1,2,... k. The second remark is immediately obtained from (3.4) and
(3.6).

As previously mentioned, the keys of Stein’s technique are the Stein’s equation
and its solution. In order to prove our theorems, we choose an equation (3.3) to
form a Stein’s equation for multidimensional normal approximation. In the next

section, we will give some properties of f which are used to prove our results.

3.2 Properties of Solution

For r > 0, let f, be the solution of Stein’s equation defined in (3.4) with respect to
the Borel set By(r) = {w € R¥ | w? +w3 +---+w} < r?}. In this section, we give
propositions concerning the solution f,.. Proposition 3.3 and Proposition 3.5 pro-
vide bounds of the solution f, and its partial derivatives f,, ,i=1,2,...,k, while
Proposition 3.6 gives us bounds of a function concerning f,.. From now on, the
constant Cy has different values in different places. To prove these propositions,

we let

Proposition 3.3. For k € N, w € R¥ and r > 0, we have

(1) [f(w) < W1| for @ £,
(2) |fr(w)] <2 and

(3) |fo, (w)] < %fom:m,...,k.

Proof. To prove the proposition, we use the following inequalities.

If w> 0, then

and for w < 0,

(3.8)
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(see inequalities (25) and (26), page 23 in [26]).

1) From the above inequalities, we obtain that for w > 0,
1.2 1 1
|fr(w)] < V2mez™ (1 — ®y(w)) < V2me2™ » ———— = —. (3.9)

Likewise, this inequality holds for w < 0 when we apply (3.8) instead of (3.7) in
(3.9). The inequality in this case is that

. . 1 1
(W) < V2re2® ®,(w) < V2me2™ —— = 3.10
|f( )| = ™ 1( )— m \/ﬂh@leéwz |U_J| ( )

Thus, (1) is proved. Furthermore, if w € Bg(r), by (3.4) and (3.9)-(3.10),

2mez® (1 — ®p(By(r))(1 — &1 (w)) if @ > 0,

| fr(w)] = o (3.11)
2mez™ (1 — Op(By(r))) 1 (w) if w<0
L= Ou(Bi(r)) for w # 0 (3.12)
- |w] ' ‘

1
2) To prove (2), we consider @ in two cases. If || > , then (1) implies that

|fr(w)] <
P |
Whilst if |w] < Y by (3.11),

2rez® (1 — &y (w)) if @ >0,
IOIER S
2me2"" dq (w) if w<0
<V 27re%(131(0)
< 1.42.

Therefore, we have (2).

3) By using equation (3.6) and (1), we have

| fru, (w0 !<—|sz\|fv~ \/—[th(r<) O (B (r))]

|sz|+—

IA
o~
S\‘H

IA
=l

+

Hence, (3) is proved and the proposition is completed. O
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Proposition 3.4 is used to prove Proposition 3.5. This proposition gives us an
inequality concerning the integration of Gaussian formula over By(r). To prove
the proposition, we use helpful equations (2.5) and (2.6) which are proposed in
Chapter II.

Proposition 3.4. For k € N and r > 0, there exists an absolute constant Cy

(depends on k only) such that

Cl
1—-¢ < .
W(Br(r) < 75

Proof. To prove the proposition, it suffices to show that

1496

for some absolute constant C. The proof of (3.13) is divided into two cases and
proved by using mathematical induction. Firstly, we will show that (3.13) holds

for all positive odd integers. For a basis step,

Dy (Bi(r)) = Pu(r) — O1(—7)

— 2@1(7’) —1
=1—=2(1=2(r))
2
>l-—7
2nrez
1o Gk
- 1476

where we have used (3.7) in the first inequality. For an induction step, we assume

that (3.13) holds for a positive odd integer k. Thus, by (2.5),

Pppo(Brya(r)) = §—
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where we have used the formulas:

r(3)=ve wd r(neg)=CEYE o nen

2 2 4n . pl

in the third equality. Hence, by mathematical induction, the inequality (3.13)
is true for all positive odd integers. Next, we will show that (3.13) holds for all
positive even integers. For a basis step, by (2.6) and I'(1) = 1, we can compute

directly that

2

Ch
L+

(3.14)

For an induction step, we assume that (3.13) holds for a positive even integer k.

So, by (2.6),

1 T
Ppi2(Bri2(r) = 513 / teetdt
0

where we have used the fact that
I'n)=(mn-1)! for neN

in the third equality. By mathematical induction, the inequality (3.13) is true
for all positive even integers and then holds for all positive integer. Hence, the

proposition is proved. O
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Proposition 3.5 gives us bounds of the expectation of an absolute value of
fr(W) and f,, (W) for all i = 1,2,...,k where W = (W, Ws,..., W) is a

random vector in R¥. For notational convenience, we let

k
— 1
W=—7> W,
Proposition 3.5. For k € N, let W = (W, W, ..., Wy) be a random vector in
k
R* such that Z EW? < 0o. Then, there exists an absolute constant Cy (depends

i=1
on k) such that for r > 0,

Ck

s and

(1) Elf,(W)| <

C ;
(2) Blfr W) < g fori=12,.. .k

Proof. 1) Note that
BLLW)| = BIS(VIOV € Bilr)) + ELWIW ¢ B(r). (319
Firstly, we will find a bound of E|f,(W)I(W € By(r)). Note that
B WIIOV € Bulr)) < B OVIEOV € Bi(r)r (171 < 3)
+ Ef(W)I(W € Be(r))I (ym > %) (3.16)

By (3.4), (3.12) and Proposition 3.4, we have
Cr

BRI € BT (7] < 3 ) < VB (0= Bu(Bilr)) < ooy (17
and
= 1 1 — @y (By(r)) = o1
Bl € B (1712 3) < E( X )I (712 3)
< 2(1 = @(By(r)))
Cr
<7 (3.18)
Thus, we can conclude from (3.16)—(3.18) that
EIf, (W)W € By(r)] < —* (3.19)

1476
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Next, we will estimate the second term of (3.15). By proposition 3.3(2), we obtain

Elf,(W)|I[W & By(r)] < 2EIW ¢ By(r
2P (Z W2 >r )

9 k
2 2 BWE

1=1
< Ch
1412

IN

(3.20)

where Chebyshev’s inequality is used in the second inequality. By (3.15), (3.19)—
(3.20), we complete the proof of (1).
2) In the same way as (3.15), we note that

E|fr,, W) = Elfr,,(WIIW € By(r)) + Elfr, W)IW & Bi(r))  (3.21)

for i =1,2,..., k. We obtain from (3.6), (3.12) and Proposition 3.4 that

11— auBi)

L o)+ =

E|fr,, W)W € By(r)] < 7r

(3.22)

For the second term of (3.21), By Proposition 3.3(3) and Chebyshev’s inequality,

we have
2
E|fr,, W)HIW ¢ By.(r)] < EE”W ¢ By(r)]
5 F
EW?
< Y Ew
C
. +’“T2 (3.23)
So, by (3.21)—(3.23), the proof of (2) is completed. O

In Proposition 3.6, we give bounds of a function concerning f. In this proposition,
the notation W; , is introduced as follows: For a random vector W = (Wy, Wy, ..., W),

u€Randi=1,2,...,k, define

W@u = (Wl,WQ,...,Wi—i—u,...,Wk).
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Proposition 3.6. For k € N and a Borel set B in R¥, let g; : R¥ — R be defined

by
PR
gi(w) = a—wijzlefB(w)
fori=1,2,... k. Then

(1) | gi(w)

(2) If B = By(r) forr >0, then there exists an absolute constant Cy, (depends

i
< 1+ |w)?

on k) such that

k

forr >4, |ul S% and EW?} < oo form=1,2,... k.

Proof. 1.) We can compute directly that

((1 — & (B)[V2r(1 + w2)e2 ™ ®y (w) + ] if we Bandw <0,
) — —(1 — ®(B)[V2r(1 + @2)er™ (1 — &y (w)) —w] if we Bandw >0,
— P (B)[vV27(1 + ©2)e2™ &, (@) + ] if wé¢ Bandw<D0,
| ©x(B)[V2r(1 + w)ex™ (1 — By (w)) — w] if wé¢ Bandw>0.
(3.24)

Note that for x > 0,

2

2
0<V2r(l+a)e? (1 —y(z)) —2 < 3.25
< VIR + )T (- B @) — o S oy (3.25)
(see inequality (5.4) in [10]). If we replace x by —z, then for z < 0,
22

The proof of 1) is completed by using the equations (3.25)—(3.26).
2) We note that

Elgi(Wiw)| = Elgi(Wi ) [I[Wiw € Br(r)] + Elgi(Wiu)[I[Wiu & Be(r)].  (3.27)
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By Proposition 3.4 and (3.24)—(3.26), we obtain

Elg;(Wi )/ I[Wiu € Bi(r)] < 2(

From (1) and Chebyshev’s inequality,

=2P

§2P<

where we used the fact that

(ap +ay+ - +ap)’ <k(a®+ai+---+a})

in the second and the fifth inequality. By

the proposition.

C

1 — ®p(By(r))) < n

— (3.28)

k
> OWE 4 (Wit w)? >0

=1
m£i

k
S OWE 42 2 >0

m=1

k
ZW31+WZ-2>7’2—2U2

m=1

s

‘)

k
S Wr WP >

m=1

(3.29)

(3.30)

(3.27)—(3.29), we have (2) and hence
[

Remark 3.7. Fach function g; defined in Proposition 3.6 is piecewise continuous.

This remark is obtained by the definition of g; and Remark 3.2(2).



CHAPTER IV
BOUNDS ON NORMAL APPROXIMATION
ON A HALF PLANE IN R*

For n € N, let X;,7 = 1,2,...,n, be independent and identically distributed

random variables with zero mean and Z EX? = 1. Define
i=1

sn—anXi

and ®; the standard normal distribution in R. Suppose that E|X;|*> < oo for
1 =1,2,...,n. The uniform and non-uniform versions of the Berry-Esseen inequality

are

sup |P(S, < @) — ®1(2)| < Co Y E|X,f?

zeR i—1

and

[P(Sn < ) = ®u1(2)] <

1+ [z < o
respectively, where Cy and C] are positive constants. Without assuming that X!s

are identically distributed, the best constant Cy and C were given by Shevtsova [23]

and Paditz [19], respectively. The statements are as follow:

Theorem 4.1. ([23]) Let X;,i = 1,2,...,n, be independent random variables
such that EX; =0 and E|X;|> < co. Assume that ZEXZ2 = 1. Then

=1

sup |P(S, < @) — ®1(z)] < 0.5600 Y  E[X;[*.
TeR i—1
Theorem 4.2. ([19]) Under the assumption of theorem 4.1, we have
31935

for all real numbers x.
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In 2001, Chen and Shao [10] relaxed the condition to the finiteness of the
second moments and gave uniform and non-uniform versions of the inequality.

The constant of the non-uniform version was investigated by Neammanee and

Thongtha [18] in 2007. Here are the results.

Theorem 4.3. ([10]) Let X;,i = 1,2,...,n, be independent random variables
such that EX; =0 and Z EX}? =1. Then

i=1

sup |P(S, < z) — ®1(x)] < 4.1 Z{E|Xi\21(\Xi] > 1)+ BIXGPI(X| < 1)}

zeR i—1

and for all real numbers x, there exists an absolute constant C such that

’P(Sn < -T)

BIXPI(|X;| > 14 |z]) | E|XiPI(|X] <1+ |z])
< .
z) CZ{ LR ZR - 1+ [xf

Theorem 4.4. ([18/)Under the assumptions of Theorem 4.3, we have

EX2[X 1 EIXPI(X;] <1
P(S, < 2) — |<CZ{ XL > T+ ]e]) | BIXPI(X] < +|a:|>}

1+ |zf? 1 [zf?

for all real numbers x where

(

1311 if 0<|z| < 1.3,
2854 if 1.3< |z <2,
46.32  if 2 <|z| <3,
61.40 if 3< |z| <7.98,

4012 if 7.98 < |z| < 14,

30.39  if |z > 14.

\

In the case that each X; is bounded, the uniform and non-uniform versions

were given in [12] and [7], respectively.

Theorem 4.5. ([12]) Let X;,i = 1,2,...,n, be independent random variables
such that EX; = 0, ZEXE =1 and | X;| < o, then

i=1

sup |P(S, < x) — ®y(x)| < 3.30.

z€R
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Theorem 4.6. ([7]) Under the assumptions of Theorem 4.5, there exists a constant

C not depends on oy such that for every real numbers x,

PlSy < 0) — 0u(o)| < o

In 2004, Chen and Shao [11] introduced four assumptions on local dependence
and gave bounds of normal approximation under the assumptions. These condi-
tions are circumstances in which dependence involved and the Stein’s method can
be applied to these situations.

Let J be a finite index set of cardianality n, and let {X;,i € J} be a
random field with zero means and finite variances. For A C 7, let X4 denote
{Xi,i € ALA°={j € J:j¢ A} and |A] the cardinality of A. The situations
are proposed as follows:

(LD1) For each i € J there exists A; C J such that X; and X 4. are indepen-
dent.

(LD2) For each ¢ € J there exists A; C B; C J such that X, is independent
of X ae and X4, is independent of X Be-

(LD3) For each i € J there exists A; C B; C C; C J such that X; is inde-
pendent of X Ae, Xa, 18 independent of X Be and Xp, is independent of Xce.

(LD4*) For each i € J there exists A; C B, C Bf ¢ Cf C Df C J such
that X; is independent of X Ae, Xy, is independent of X pe and then X, is inde-
pendent of {X4,,j € B}, {X4,,l € B} is independent of {X,,,j € C;°} and
{X4,,1 € C} is independent of {Xy,,j € D;°}.

Remark 4.7. (LD4*) = (LD3) = (LD2) = (LD1).

The followings are the uniform Berry-Esseen bound under (LD3) and non-

uniform bound under (LD4*) stated in [11].

Theorem 4.8. Let 2 < p < 3. Assume that (LD3) is satisfied with
max(|N(Cy)[, {7 : i € Cj}]) < &

where N(C;) ={j € J : C;N B; # @}. Then

sup | P(S,, < x) — ®1(z)] < 75771 ) E[X|P.

zeR jed
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Theorem 4.9. Assume that E|X;|P < oo for 2 < p < 3 and that (LD4*) is
satisfied. Let k = m:z:njxmaxﬂDﬂ, [{j i€ Dj}|). Then
S

CrP
|P(S, <) — @1(x)| < RENEIE ZE|Xi|p
jed

where C is an absolute constant.

Let n,k € N and Y; = (Y1, Yio, ..., Yix),7 = 1,2,...,n be independent random

vectors in R* with zero means,
Y EV2=1forj=12,.. .k and (4.1)
i=1
EY,;Yy=0forj #l. (4.2)

Define

Let F,, be the distribution of W,, and ®; the standard Gaussian distribution in
RE. In this chapter, we will use Berry-Eesseen bounds in R to find bounds on

multivariate normal approximation on the set

k
Ap(r) = {(wl)w%--wwk) € R* | Zwi < r} for r € R.
i=1

We give our results on various assumptions: each random variable Y;; is bounded,
E|Y;|? < 0o and E|Y;;|P < oo for some 2 < p < 3. Our estimations are stated in

the following theorems.

Theorem 4.10. If |Y;;| < ¢ fori=1,2,...,n and j =1,2,...,k, then
sup | (A4(r)) = @ Ax(r)] < 3.3Vkdy
re
and there exists a constant C not depends on oy such that for every real numbers
T?
Ck?5,

FL(A(r)) — @ (Ap(r)] < ————.
Fa(Ak(r) = @A) < s
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Theorem 4.11. If E|Y;;|? < oo for some 2 < p < 3,i =1,2,...,n and j =
1,2,...,k, then

sup | F, (Ag(r)) — @i(Ax(r))] < 75(4)77 k3 ZZE|YU|

reR J=1 i=1

and there exists an absOlute constant C' such that for all real numbers r,
| Fn(Ar(r)) — @ (Ai(r))] < ElY;
f k+ !r! ]Zl Zl

Theorem 4.12. If E|Y;;]* < oo fori=1,2,...,n and j =1,2,...,k, then

sup | F (Ag(r)) = ®p(Ax(r))] < 0.5600VE Y >~ E|Yy[*

reR j=1 i=1

and for all real numbers r,

k n

Fa(A6lr) = Bu(A)] € 5SS B P

The proof of our main theorems are given in section 4.2. In the next section,

we will give a proprosition which is used to prove the theorems.

4.1 Auxiliary Results

The first auxiliary result gives us that the random field {Y;; |i =1,2,...,n,j =
1,2,..., k} according to the conditions (4.1) and (4.2) satisfies (LD4*). This result

is used to prove Theorem 4.11.

Proposition 4.13. For k,n € N, let Y; = (Y;1, Yo, ..., Yir), i = 1,2, ...,n be inde-
pendent random vectors in RF with zero mean. If each Y; assents to the conditions

(1.1) and (1.2). Then {Y;; |i=1,2,...,n,5 =1,2,...,k} satisfies (LD4").
Proof. This proposition is completed by setting A;; C B;; C Bj; C C}; C Dy; for
1=1,2,...,nand 5 =1,2,... k as follows:

AU:{Zl’l:1727,]€} forizl,Z,...,n
By ={il,i+1)l|1=1,2,...,k} fori=1,2,....,n—1and B,; = Bun_1);,
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By =Cy={il,,(i+ 1), (i+2)[1=1,2,...,k} fori=1,2,...,n -2 and

B,y = Cn-m)j = Bn-2); for m = 1,2,
C’;‘j:{il,(i+1)l,...,(i—|—3)l |11=1,2,...,k}fori=1,2,...,n—3 and
Clnmmyj = Clagy m=1,2,3,

Dy ={il,(i+1l...,(i+4)|l=1,2,... .k} fori=1,2,...,n—4 and
D{, ;= Diogyy m=1,2,3,4.

So, we have the proposition. ]

From the sets defined in the above proposition, we can compute directly that

foreachi=1,2,...,n,
max(|N(Ci)|, {7 : i € Cj}[ <4 (4.3)
and
e max(1DI|, |+ § € DJ}H) <5 (4.4)

where N(C;) is defined in Theorem 4.8.

In order to prove the main theorems, we use the Berry-Esseen Theorems in R in
which the limit distribution is ®;. However, the limit distribution in our theorems
is the standard Gaussian distribution ®; in R*. In the following proposition, we

give a relation between ®; and .

Proposition 4.14. For k € N and r € R, we have
/2

Oy, (A(r)) = @, (ﬁ) .

Proof. To prove the proposition, let w = (wy,ws,...,wg) € Ag(r) and B =
1
{b1,by,...,bx} be an orthonormal basis for R¥ with b = —=(1,1,...,1). The

Vk

existence of B is guaranteed by the Gram-Schmidt process. Set
t1 = (b,w) and t; = (b;,w) for i =2,3,... k.
Then

k
1 r
t, = w; < —,—00 < t; < oo, fori =2,3,...,k, and
' k; vk

N
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where {e1,es,...,¢ex} is the usual orthonormal basis for R¥. We obtain that

k

Su? szezw—nz ezH?—HZ by, ) bHZ—HthHQ
i=1

=1
= Z £, (4.5)
i=1

Let J be the Jacobian matrix,

[ows  owp .. Ouy
oty oty aty
owy  Owy  Owg

J — Oto Oto Oto

Owy  Qwy . Owy

L Oty Oty Oty a

Thus | det(J)| = 1. Then, by (4.5),
k 2
0u(aelr) = o] ARy
)2 )

k//" //ﬁﬁﬂﬁ

eSSk

Hence, the proposition is proved. O]

H\

4.2 Proof of Main Results

We are now ready to prove our results in this section. Theorem 4.10 is proved
by applying Theorem 4.5 and Theorem 4.6. Theorem 4.8 and Theorem 4.9 are
applied in the proof of Theorem 4.11. Likewise, the bounds in Theorem 4.12 are
obtained by applying Theorem 4.1 and Theorem 4.2.

Proof of Theorem 4.10

Proof. Foreachi=1,2,... , nand , j=1,2,..., k, we define

n k
tm=2mamn=2m
1= =
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Thus Ty,Ts, ..., T, are independent,

E(T;) =0, |Ti| < kdo, (4.6)
k n

Wn = (Wlm WQn, cey Wkn) and Z an = Z ,.Tz (47)
j=1 =1

By the assumptions that Y; has zero means and satisfies (4.1) and (4.2), we have
Z Var(Y;;) =1 and Cou(Y;,Yy) =0 for j#k.
i=1
Therefore
1 n 1 n k n
Var (ﬁ Zﬂ) == ZVCL?”(Ti) = ZZV@T(Y;j) =1. (4.8)
i=1 i=1 j=1 i=1

By Proposition 4.14, Theorem 4.5 and (4.6)-(4.8), we have

e

sup |[P(W,, € Ax(r)) — @4 (Ax(r))]

reR
b r
=sup |P Wi, <r| -0 (—)
reR ; L ) ' \/%
= r
=sup [P e (—)
reR ZZI ) . \/E
1 — T r
—swp|P =Y n< =) -a (= 4.9
< 3.3Vkd,.

For the second part, by Theorem 4.6 and (4.9), we have

] < r T
P(ﬁ;T’ < ﬁ) - (ﬁ)‘
C\/Eéo
CEAEAD]
Ok,
(VR |

for all real numbers r. Hence, the proof is completed. O

[P(Wy € Ag(r)) — @x(Ar(r))| =
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Proof of Theorem 4.11

Proof. For each 1 =1,2,...,n, define T; as in Theorem 4.10.

Thus, by the inequality
k

p
> Y

Jj=1

k
<K |V, (4.10)
j=1
we obtain that
k k
EITP = E| Y Yyl <k ) ElYyl" < oo
So, by (4.3), (4.6), (4.8)-(4.10) and Theorem 4.8, we have

P(gyns ) -n(s)

sup |P(W,, € Ax(r)) — ®r(Ax(r))| = sup

reR reR

k n
< TR DY BVl

=1 i=1

For a non-uniform bound, by (4.4), (4.6), (4.8)—(4.10) and Theorem 4.9, we have

(fZT : )“I’l (ﬁ)‘

|P(W,, € Ag(r)) — Prp(Ag(r))

oPC
-
1+ Ifl
E|Y;; P
f Ft rr| Z Z "
for all real numbers r. Hence, the proof is completed. O]

Proof of Theorem 4.12

Proof. By Theorem 4.1, Theorem 4.2 and the same argument as in Theorem 4.11,

we have the theorem. O

Remark 4.15. The assumptions (4.1) and (4.2) in all of the above theorems can

be extended to

Ly (zzy> L

j=1 i=1



CHAPTER V
UNIFORM BERRY-ESSEEN BOUNDS
ON SOME BOREL SETS IN R*

Foreachn,k € Nand i =1,2,...,n,let Y; = (Y1, Yio, ..., Yix) be independent

random vectors in R* with zero vector means,
ZEYz?: 1for j=1,2,...,k and
i=1
EY,;Yy =0 for j # L.

Define

Wn:iYi.

Let F,, be the distribution of W,, and ®, the standard Gaussian distribution in
R*. Assume that the third moments are finite. Gotze [14] used the Stein’s method
to find bounds on multivariate normal approximation. His uniform bound on all

measurable convex sets C' in R” is

|Fn(C) — @k(C)| < Civs (5.1)

where 3 = Z E|Yi||?, || - || is the Euclidean norm in R¥ and
i=1
Cr = 124.4a;,VE + 10.7,
wheren aj, = 2.04,2.4,2.69,2.94 for k = 2,3,4,5, respectively and aj, < 1.27Vk
for k > 6. His estimation is of order O(n"2). In 2009, Reinert and Réllin [22] used
the same method as in [8] with a new Stein’s equation to estimate the bounds of
the approximation. The estimation in [22] is of order O(n~1), but their result can

be applied to the case that Y;, ¢« = 1,2,...,n, may be dependent random vectors.
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In this chapter, we will use the Stein’s method to find bounds on multivariate

normal approximation on the sets

Bi(r)={z e R¥ |22 + 22+ 4+ 22 <7} for r > 0,
Ak@"):{xeRk|$1+I2+~~+xkSr}forreRand
Ri(r)={z e R* | || <rj,j =1,2,...,k} where r = (r1,79,...,7%)

and r; >0 forall j =1,2,... k.

In our theorems, we assume further that all components of Y; are independent for

all 7 =1,2,...,n. The results are as follows:

Theorem 5.1. Let Y; = (Yir, Yio, ..., Yie), i = 1,2,... n, be independent random

vectors in R with zero means and Yi; are independent for all j = 1,2,... k.

Define W,, = ZY;. Let F,, be the distribution function of W,. Assume that

i=1

n k
d EY;=1forj=12,.. . kand) B’ <oofori=12,...n Then

| En(Br(r)) = @x(Bi(r))| < Cs

455 3 LS
—— + —— and :E § E|Y;|?
k k‘\/% P l j|

j=1 i=1

where C =

Theorem 5.2. Under the assumptions of Theorem 5.1, we have

[Fn(Ak(r)) — @x(Ax(r))| < COs

4.55
where C' = — + and 3 = ElY;
k W_ b ;2

The order of the estimations in Theorem 5.1 and Theorem 5.2 are O(n’%)
which is better than the result in [22] and the constants are smaller than the
constant in (5.1). In addition, the constant in Theorem 5.2 is smaller than the

constant in Theorem 4.12 for k > 7.
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Corollary 5 3. Let X;,1=1,2,...,n, be mdependent random variables with zero

means and Z EX? = 1. Define W,, = ZX Let F,, be the distribution function

of W,. IfE|X|3<oof0'r2 2...,n, then

|Fo(z) — ®1(2)| < 755> E|X.

i=1

Theorem 5.4. Under the assumption of Theorem 5.1, we have

| En(Ri(r)) — @x(Ri(r))| < Cs

4.55
where C' = —— + and B3 = E
; W‘ 5 = ;2 1Y

The technique used in all of the above theorems is the Stein’s method. An
information of this method, which is needed to prove these results, has already
been given in Chapter III. In the next section, we will give the proofs of our

results.

5.1 Proof of Main Results

In this section, we will give the uniform bounds of the distribution approximation
of W, by ®;. We use the idea in [12] to prove our results. The Stein’s method
using concentration inequality approach is applied. The key of this approach is

the concentration inequality.

Proposition 5.5. (Concentration inequality)

Let X;, i =1,2,...,n, be independent random variables with zero means and
Y EX?=1.
j=1

Let v =Y E|X;> and W& => " X; — X;. Then

Pla <W9 <b) <V2(b—a)+ (1+V2)y

for all reals a < b and for every 1 =1,2,...,n.
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Proof. See also [12] pp. 32-33. O

To prove our theorems, we introduce the following notations.

For k,ne N, :=1,2,...,nand j =1,2,...,k, let
W, —zn:y W) =W,y — Yy, and W, = (W1, W, Wok)
nj — K nj nj R n nly V¥n2, .-+, VWnk)-

We are now ready to prove our main results.

Proof of Theorem 5.1

Proof. Firstly, we will prove the theorem in the case of k = 2. Let f, be the
solution of (3.3) with respect to the indicator test function on By(r) and f,,, , fr.,,

partial derivatives of f, with respect to w; and wsq, respectively. Thus, by (3.3),

L(Sg —T5) (5.2)

1
— (S —T) + 7

P(W,, € By(r)) — ®3(Bsy(r)) = NG

where

Sl = Efrwl (th Wn2)7 Tl == EWnlfr(th Wn2)7
SZ - Efrw2 (Wnb Wn2)7 and T2 - EWn2fr(Wn17 Wn2)

The theorem is proved when we give a bound on the right handside of (5.2). To
estimate |S; — T4, let

Kij(t) = EYj;[1(0 <t <Yj;) — I(Yy; <t <0)]

forteR,i=1,2,...,n, 5 = 1,2 where [ is the indicator function on §2. We can
follow the idea from [12] to show that

Ky;(t) >0 forallteR, (5.3)
ZHI:E/_(:KM(t)dt _ Zn:EYg 1, (5.4)
iE/_oo It K ZE\ (5.5)
ZE/ Frog (W) + Yir, Wa) K (t)dt, and (5.6)

T, = Z E / Frug (W 4, W) Kt (t)dt. (5.7)
i=1 -
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Thus, by (3.6) and (5.6)—(5.7),

ZE / e WD 1Y Woa) — fo (W 4 6, Wo) K (1)t

where

ZE / By (W) + Vi, W) = iy (W) + 8, Wio)| Ky (£)

ZE/ WY+ Yia + Woa) (W) + Vi, W)
— (W 4t + W) fo (WD 8, Wiao)| Ky (£)dt.
Fori=1,2,...,n, let
Aq = {w €Q| =t +alw) < W (w) < —Yy(w)+ oz(w)} and

B = {w € Q| -Ya(w)—afw) < WT(Lll)(w) < —t-— oz(w)}

where a(w) = /r2 — W2,(w)l(w € A) and A = {w € Q| W2, (w) < r?}.
To find an upper bound of R;, we will show that

{0 € Q| oy (Wi + Vit Wa) (@) = sy (WS + £, W) (w) = 1} € A U By,

(5.9)

To prove (5.9), let w € Q be such that

oy (W + Vi, W) (w) = by (W £, W) (w) = 1 and w ¢ Ayy.

n n

Thus hp, (W% + Vi, Woa)(w) = 1, hpyey (WS + ¢, Wee)(w) = 0 and w € A.
Suppose that w ¢ B;;. Then

W,(fl) (w) < =Y (w) — a(w) or Wézl) (w) > —t — a(w).
If Wéll)(w) < —Yi(w) — a(w), then WT(LZI)(w) + Y (w) < —a(w). Thus
(Wit (w) + Yo (w))? + Wh(w) > 72,

This contradicts to hBQ(T)(W(il) + Yi1, Wye)(w) = 1. Therefore

n

W (w) > — Vi (w) — a(w).
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Assume that WSI) (w) > —t — a(w). Since w ¢ A;;, we have
—t—a(w) < W (w) < —t+a(w) or W (w)>=Ya(w)+a(w).
If —t — a(w) < W(w) < —t + a(w), then
(W (w) + 1) + W (w) < 2.

This contradicts to hBQ(T)(W,(fl) +t, W) (w) =0. If W,EJ? (w) > =Y (w) + a(w),
then

(WD (w) + Vi (w))? + Wy(w) > 2.

This contradicts to th(r)(Wr(Lil) + Y1, Wo2)(w) = 1. Hence w € B;;. This proves
(5.9).

From (5.9) and the fact that hp,(,) is the indicator function, we obtain
o) (Wi + Yin, Wiia) = e (W + 8, Wa) < (A U Bu).

Thus, by (5.3),

R<YE / T (H(An U By K (t)dt
< z":E/OO (L(Air) + I(Bin) K (¢)dt

<3k / A Ea0dt+ S E / (B K (1)t (5.10)

where
[(An) K (t) = 0 for t € [0,00) and  I(BiKu(t) = 0 for ¢ € (=o0,0].
By Proposition 5.5, we obtain
n 0
ZE/ I( A ) K (t)dt
i=1 —00
n 0
=) E / EYoWee [(Ay) Ko (1)t
i=1 —00
n 0
- ZE/ P(Aj | Yir, Wyo) K (t)dt
i=1 —00

Sy
i=1 —00

V2(|Yi —t]) + (1 +v2) i EY,u?| Ka(t)dt. (5.11)
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Similarly, we have

i E /0 (B K (Ddt

<>z
—  Jo

1=1

K (t)dt (5.12)

V2(|Yi —t]) + (1 +V2) Z E|Y,|?

By (5.4)—(5.5) and (5.10)—(5.12), we obtain that
Ry < ZE/ V2(|Ya| + [t]) K (t)dt
i=1 >
+(1+V2) Y B, ZE/ K (t)dt
m=1 =1/~
3V2 ¢ 3 - 3
< T;Eml\ +(1+ ﬂ);Emﬂ

<4.55) B[ (5.13)

i=1
In order to prove
|Ri| < 4.55§njE|n1|3, (5.14)
i=1
it remains to show that
R} >L 455 zn: E|Y; 2. (5.15)
i=1
This inequality holds when we follow an argument as (5.13) and use the relation

that

{w € Q| by (WY + Yir, W) () — by (WY + £, Wina) (w) = —1} C CinUDy
(5.16)
where
Ci = {w €| —-Yiu(w)+ alw) < W,(fl)(w) < —t+ a(w)} and

Diy = {w Q| —t—a(w) < WP (w) < —Vi(w) — a(w)} .
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This relation is proved by using the same argument as (5.9). The relation (5.16)
implies that

Ny (W40, W) = oy (WD £, Wo3) > —I(Ciy U Dyy) and then

Ry > — ZE/ Cin) + I(Diy) Ki (t)dt.

By the same argument as (5.13), we have (5.15) and hence (5.14).
Next, we estimate the bound Rs. Since g; in Proposition 3.6 is piecewise contin-
uous, by Proposition 3.6, (5.3),(5.5) and the fundamental theorem of calculus, we

have

|Ro| =

/ |: nl +Y;1+Wn2)f7"< nl +Y;17W )

Yi1

(W + u, Wia)duKy (t)dt'

<2ZE/ (Wit + 1) ()t

< 3ZE|Y¢1|3- (5.17)

Combining (5.8), (5.14) and (5.17) yields

1S1 —T| < \/_|R1]+ |RQ| <4722E|Yﬂ|3 (5.18)
Similarly, we obtain that
Sy — To| <4.72) " E|Yp|*. (5.19)
=1

Hence, by (5.2), (5.18)—(5.19), theorem 5.1 is proved in case of K = 2. For
multidimensional case, we use the same argument as in the case that k£ = 2.

The results on multidimensional case are as follow:

P(W, € Bi(r)) — @u(Bi(r)) = % S (S — Tl
1] 1 &
= - > R+ N > R (5.20)
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where
Sm = Efrwm (th Wn27 cee 7Wnk>7
Tm = Eanfr(nla Wn27 SRR Wnk)a

o0
—0o0

le :ZE/ {th(T)(thWn%---aWr(LQL+Y;m;---;Wnk)
=1

— "oy Wity Wy oo, WSt W) | K () dt

m

n 0o k
RmZ = ZE/ |i(z Wnl+ (WT(L;)I—FY;m))fT(WnlaWn%>W7EQL+ ima---awnk)
i=1 -

oL =1

l;zm
k . .
— O W+ W, +0) fr(War, W, ... W 48, Wnk>] Kim (t)dt.
=1
l#m

For m =1,2,...,k, we follow the argument as in (5.14) and (5.17) and then

|Ron| <4553 EYiul' and Ry <3 EYi|*. (5.21)

i=1 =1

Combining (5.20)—(5.21), we obtain that

P(W, € By(r)) — ®u(Bu(r)] < (‘%5 ; k?’ﬁ) b

Hence, the theorem for multidimensional case is proved. O]

7‘2
Remark 5.6. In case of k =2, P(W,, & By(r)) converges weakly to e~z for all

r > 0.

The convergence holds due to the relation
Fu(Ba(r))=®2(Ba(r)) = P(Wn & (By(r)) — (1 — ®2(By(r)))

and equation (3.14) in Chapter III, i.e.

3
ol

CI)Q(BQ(T)) = 1 —e
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Proof of Theorem 5.2.

Proof. We follow the argument of Theorem 5.1 by using the relations that

nl

{w €| hBil(T)(Wrgil) + Yir, Wha)(w) — hBil(T)(W(i) +t, Wha)(w) = 1} C E;; and

{1 € QI by (Wi + Yia, W) (@) = g ) (W) + . Wao)(w) = =1 € Fy

where  E; = {w eEQ|r— W,g;)(w) —t< W,Ell) (w) <r— W,E;)(w) — Y;l(w)} :
Fy={we|r— W) - Yaw) < W(w) <r - Ww) —t}.

The estimations are

|Ri| <455 E|Ya[ and [Ry| <3 E[Yal”
=] =1

Hence, the theorem is proved for k£ = 2. For multidimensional case, we use the

same technique as in (5.21) and then have

|Rot| <4553 E[Yi P and Ry <3 EY;,/*
=1 i=1

Hence, Theorem 5.2 is proved. [
Proof of Corollary 5.3.

Proof. Corollary 5.3 is immediately obtained from Theorem 5.2. m
Proof of Theorem 5.4.

Proof. We use the same idea as in Theorem 5.2 with the relations that

{w € Q| hayry (W + Vi, W) (w) — hiyoy (W + 1, Wia)(w) = 1} C Gy U Hyy and

{10 € Q| Ry (WI + Vit W) () = oy (W) + £, Wag) (w) = =1} € I U Ja

where
Gﬂ:{weQ|T1—t<W7§?(w)STl—Yi (w)},
H; = {w €Q|—r — Ya(w) <WH(w) < —r —t},
I = {w €| — Ya(w) < W (w) <r - t}, and
Jin = {w eQ|-—r—t< Wéﬁ)(w) < —r =Y (w)}



CHAPTER VI
NON-UNIFORM BERRY-ESSEEN BOUND
ON THE CLOSED SPHERE IN R

In this chapter, we adopt the same notations as in chapter V.
In 1967, Bahr [1] obtained a non-uniform bound on multivariate normal
approximation for multidimensional Berry-Esseen theorem. He gave a bound of

the estimation on the closed sphere
Bi(ry={z e R¥ | of + 234 -+ 22 <%}

for some positive real numbers r depending on n. The result is obtained under

the assumption that Y}s are identically distributed and the s* moments is finite,

k 3
E (Z Y@) < o0,
j=1

for an integer s > 3 and 7 = 1,2,...,n. The result is stated as follows:

Theorem 6.1. Let M be a covariance matriz of /nY; for i =1,2,...,n. If the

s'" moments of Y; are finite for an integer s > 3, then there exists a positive

constant Cy, (depends on k) such that

1
Cr-d(n 5 2
|F(Bi(r)) — ®r(Bi(r))| < k—y for > (Zm(s— 2) logn> :

rén 2
where m is the largest eigenvalue of the covariance matriz M, d(n) is a function

bounded by 1 and lim d(n) = 0.

5 3
For r < Z—Lm(s —2)logn | , Bahr gave a bound of the estimation when the

limit distribution is the chi-square x?(k) with degree of freedom k. We state here

the result.
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Theorem 6.2. If the forth moments of Y;'s are finite for i = 1,2,...,n and the
covariance matriz M is the identity matriz, then there exists a positive constant

Cx (depends on k) such that

Ci(1 4 rh+2 log n)“5* 5 :
Fu(Bu(r)) — () ()] < Lt )+O(M> or < (‘log”) ’
ear? n T+ n 2
h Ltk =2 and k>3
wnere & = — 1 = ana &6 = —— 1 .
8 VA

In this chapter, we will give a non-uniform bound of this convergence without
assumming that Y;s are identically distributed. We assume that all components

of Y/s are independent and
k
¥ B|Y;* < oo,
j=1

for i =1,2,...,n. The following theorem is the main result.

Theorem 6.3. Let Y; = (Yi1,Yio, ..., Yi), i = 1,2, ..., n be independent random

vectors in R* with zero means and Y;; are independent for all j = 1,2,... k.

Define W,, = ZYi. Let F, be the distribution function of W,. Assume that

i=1

n k

ZEYZ? =1 forj=12,....k and E:E|Yij|3 < oo fori=1,2,....,n. Then
i=1 j=1

there exists a positive constant Cy (depends on k) such that

C
Fu(Br)) — BulBelr)] < 1o
k n
for all positive real numbers r, where B3 = Z Z E|Y;;.
j=1 i=1

The order of convergence in the statement of Theorem 6.3 is O(n_%) which
is better than that in Theorem 6.2 and its result is obtained for all positive real
numbers r which is broader than the result in Theorem 6.1.

The contents in this chapter are organized into two sections. The first section,
Auxiliary Results, contains propositions which is used to prove our result. In the

latter section, Proof of the Main Result, gives a proof of the result.
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6.1 Auxiliary Results

In this section, two propositions required in the proof of main theorem is presented.
Proposition 6.4 gives the inequalities of the truncated random vectors while Propo-
sition 6.5 gives an effective tool, non-uniform concentration inequality, for proving
our main result.

Apart from the notations given in chapter V, we further introduce the following

notations. For i =1,2,...n, 7 =1,2,....k, u € Rand r > 0, let

r — A
= Yyl (|Yy] < 1+Zl), an:ZYija
i=1

W Wi =Y, Wo= W1, W,a,...,W,) and

nj

W(Z _(WannQy-w,W?(g+U,...,Wnk),

nj,u

Proposition 6.4. Let 33 = Z Z E|Y;|*. Then

=1 i=1
(1) ZEW < (2+7) B+ k.
(2) Let g;j be defined as in Proposition 5.6 for j =1,2,... k. Then, there

exists an absolute constant Cy (depends on k) such that

Ck
Blo, (W)l < 125,
forr >4, |ul §£ and (1 +7)f; < 1.
Proof. 1) By Proposition 2.1 in [27], we have
EW,, < (14 %) % +1+ 728 J i 6.1
= U et ) T\ (6-1)
where
- r
ni= Y BV (1Y > 1+ >,and7] ZE| 1 (] j|<1+1).
i=1

By the inequalities:

n; < ZEY; =1andy; < ZE|YZ~]~|3,
i=1

i=1



(6.1) becomes
—4 T - -
EW:, < (1 + Z> SCEYLE+ Y B -3
i=1 =1

T - 3
< (2+Z> ;Emﬂ +3.

Thus,

n

k

4 r —
N EW, < <2+Z> S OS EV[+ 3k
=1

=1 =1
T
< (2 —)
< (243

<

Hence, (1) is proved.
2) By (1) and the assumption that (1 +7)033 < 1, we have

k
SLEW,; < Cx

J=1

ol

(6.2)

(6.3)

for some positive constant Cy. From this inequality and Proposition 3.6(2), we

obtain (2) and hence the proposition.

]

Proposition 6.5 is a non-uniform concentration inequality which is the essential

inequality for this approach. We prove this proposition by applying the concen-

tration inequality in [10].

Proposition 6.5. For j =1,2,....,k and m=1,2,...,n, let

' = —
7L Var(W,;)

nj

Then there exists an absolute constant C' such that

(m)
Pla<T,;” <b) < m{b—wrﬁm}
for all reals 0 < a < b < oo where
1 ~ o — 13
Bz = 5> Vi — EYyl.

( m(an)) =



o2

Proof. Fort=1,2,...,nand j=1,2,...,k, let
i — .
VCLT(an)

By Proposition 3.4 in [10], we obtain that for m =1,2,...,n,

b—a
(m)
<Tm<p<c{—" 45, .
P(a_Tm _b)_c{(1+a)3+5j7a} (6.4)

where

n ~2 B N B
ba= > EX (X5 > 14 a) L BXGPI0Xyl <1+a) [
. i=1 (1+a)? (1+a)?

The proof is completed by (6.4) and the inequality

n 2 Y N B

— (1+a)? (1+a)3
Z EIX;PI(IXy > 14a)  E|XiPI(X; <1+a)
- (1+a)? (1+a)

1 v 13
= 0Fap ZE\XM
i=1

 Bis
- (1+a)¥

6.2 Proof of Main Result

In this section, we will give a non-uniform bound of multivariate normal approxi-
mation on the set of closed sphere By (r). The used technique is the concentration
inequality approach. This proof is based on an idea of [12]. The positive constant

C in the proof has different values in different places.

Proof of Theorem 6.1

Proof. 1f r < 4 then by Theorem 5.1, we have

Crf33
1473

[Fn(Bi(r)) — @x(Bi(r))] <
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for some positive constant C. Next, assume that » > 4. We observe that

|P(W, € Bi(r)) — @u(Bi(r))| < |P(Wy € Bi(r)) — P(W, € By(r))]
+ |P(W,, € Bi(r)) — ®k(By(r))]- (6.5)
Firstly, we will find a bound of the first term on the right side of (6.5). Note that
P(W,, € Bi(r)) — P(W, € By(r))
= P(W,, € Bp(r),W,, =W,,) + P(W,, € By(r), W, # W,)
— P(W,, € By(r))
< P(W, #W,)
and
P(W,, € By(r)) — P(W, € By(r))
= P(W, € Bi(r)) —
— P(W,, € Bi(r),W, #W,)
).

—P(W, # W,

We can conclude from these two inequalities that

|P(W,, € Bi(r)) — P(W,, € Bi(r))| < P(W,, # W,) (6.6)
Note that
W,=Ww, it 1r£180<| <14 -
1<]<7]’<L:
Then,



o4

k n
3
1—1—7"32 BlY:

=1 i=1
el
1473

(6.7)

where Chebyshev’s inequality is used in the third inequality. Therefore, by (6.5)—
(6.7),

|[P(Wo € Bi(r)) — @x(B(r))| < (W € Bi(r)) — ®u(Bi(r))]. (6.8)

Cps
+ 73
To prove our theorem, it remains to estimate the second term of (6.8).

If (14r)83 > 1, by (3.30) and (6.3), we have

|P(W,, € Br(r)) — ®u(By(r))|
< P(W, & Bi(r)) + (1 — ®(By(r))

k
=P (ZW?U > r2> + (1 — @4 (By(r))
=1
1 ] § 4\
%) k
= 7"_4E (ZW"]> i 1476

j=1
k'Ck z —d Ck(l +’I‘)ﬂg

< FE o —

< Cr(L+7)8s  Cifs

- 1474 1475

_ G

T 1413

Next, assume that (1 4+ r)83 < 1. In this case, we will prove the theorem in
case that £ = 2. For multidimensional case, we use the same argument. Let f,
be the solution of (3.3) with respect to the indicator test function on Bs(r) and
fruw, s Jro, Partial derivatives of f. with respect to w; and wy, respectively. Thus,

by (3.3),

— 1 1
P(W,eB — $y(B =—U; — V1) 4+ —=(U; — V& 6.9
( 2(r)) 2(Ba(r)) \/5( 1 1) \/5( 2 2) (6.9)
where
Ul - Ef'rwl (Wnl7Wn2>7 ‘/1 = EWnlf(thW'rﬁ);
U2 = Efrwz (Wnl Wn2)7 ‘/2 = EWan(Wnl)Wn2)~
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To estimate the right handside of (6.9), let

forteR,i=1,2,...,n,7 = 1,2 where [ is the indicator function on 2. We can
follow the idea from [12] to show that

M;;(t) >0 forallteR, (6.10)

E [ My EY, =1-Y EY, 1 1, (6.11
> / 1)t = Z Z Vil > 145 <1, (6)
ZE/ |t| M (t) ZE|Y”|3 (6.12)
ZE/ Y| M (t)dt = ZE|YU|3 and (6.13)

i=1 Bk
vi=>E / Fro, (T2 41, W) My ()t + Z EYaf(W W), (6.14)

i=1 —© i=1
Thus, by (6.11) and (6.14), we have

Up—Vi=Ef, Wn, W) — ZE/ Jran (Wfﬁ +t, Wa) My (t)dt

- ZEYﬂf nl? )
- E(frwl (thWnQ)
- ZE/ frwl W(Zl + Yzlv WnZ) frw ( nl "’t Wn?)]M (t)dt

— By (W0 + Vit Waa)[1 = > BYEL (Yl > 14 5]
=1

- ZEYuf (Wt W)

=Y E [ 1 (P04 T o) = o, (730 4 T Mo (1)
i=1 -
=) o T N\ r
+ Efry (Wt + Vi1, W );Eyj (m1|>1+1)

N BV f (W), Wos)
1=1

=: Ry + Ry + Rs,



o6

where

ZE / s (W 4 Vi, W) — oo (W 4, W,00)| M (£,
R, = E w7 (1) N TAs . 2 T
o= Efr, Wy +Yi, Waa) ZEYZ-J Y| > 1+ 1)

N EVuf (Wi, W)
=1

By Proposition 3.5(2), we get

|Ry| <

-
()
1—|—7"212 al \[Yal > Jr4

C " r
EYZ-3]<YZ» > 1 —)
1+T3¢:Z1 [Yarl [Yal +4

C n
e > E[Yal?. (6.15)
1=k

Similarly, by the independence of Vil,WSi and W ., Proposition 3.5(1) and
0= EYa=BYal (Ya <14 7)+BYal (Ya>1+7),  (616)
we obtain

|Rs| <

14 72 Z|EY“|

C r
ElY, I(YZ- 1 —>
1—1—7’2iz1 Yl L +4

C n
< E|Y; 2. 6.17
< o LB (6.17)
Next, we will find a bound of Ry. By (3.6), Ry can be written as
Ri=—Ry+iR (6.18)
1= g g
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Fori=1,2,...,n, let T( be defined as in Proposition 6.5,

—t
Ap=qweN| ——= i T(Z :
\/Var n1) \/Var n1)
z _t_
Bﬂ: U)GQ| 1 T() a )

\/Var nl) \/Var nl)

af(w) = \/7“2 - Wfﬂ(w)l(w eN)+ EWm and

a; (w) = \/T2 —Wfﬂ(w)](w eN)— EWfﬁ where A = {w €N Wig(w) < 7“2} :

Obviously, A;; N B;; = @. By the same argument as (5.9), we obtain the relation

{w € Q| hpyoy (W + Vi1, W) (W) — Ty oy (W + 1, W) (w) = 1} C A U B,
(6.19)

Thus, by (6.10),

Ru<Y E / I(A;f U Biy) My (t)dt
=1 -

2

— iE/:: Ve haU s (an(w) < %) M (t)dt

2 r

+ iE/_Z I(An U Bin)l (an(w) > Z) M (t)dt. (6.20)

We will find a bound of the first term of (6.20) by using the non-uniform concen-
tration inequality in Proposition 6.5. Note that

Zn:E/OO I(Ain U Bi)l (Wiz(w) < g) My (t)dt

:zn: E /_ Z (A (W;(w) < ;) My (£)dt
+ iE/:: I(Bi)I (WiQ(w) < %2 M, (t)dt

+YE /O 1B (WZQ(M) < TZ) M (t)dt (6.21)



o8

where we used the fact that
](Azl)le<t) =0forte [0, OO) and I(le)Mﬂ(t) =0forte (—OO, 0]
in the last equality. To estimate (6.21), we use the inequality
r
EWY| = ZEYMI (¥l <1+ ) ZEYﬁ (1Val > 1+ Z> <1 (6.22)
l;éz

where the first inequality is obtained from (6.16). In addition, we note from this

inequality that

<> BV + [EW ol |EW,)]
=1

I#i
a r
< ZEY (¥l <1+7)+ ZEY& (I¥al>1+7)
~ 1. (6.23)
2
Assume that ¢t < 0 and w € A;; N {w ] W;n(w) < %} We note from (6.22) that
for r > 4,
—ttar(w) = —t + /12— Wog(w) — EW ) > vr7"|EW|>o (6.24)
and

2 .
Var(Woa) + (—t + \/7«2 W, (Wfﬁ < %) _ EWfﬁ)

>—\/_r—yEW 1]

> C(1+7) (6.25)

for some absolute constant C. By (6.23),(6.25) and Proposition 6.5, we obtain
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that

EY oW [(A)] (W %)

_p —t+ a; (w) < qul'l)<w) < —Yil(w) + a; (w) | ?thW I (Wfﬂ < T_Q)
\/ Var(W,.) Var(W) 1
3
Var(W, ) ([Yal + [t]) + ( Var(W )) B3 2
< 3 - x I (Wfﬂ < Z)
( VaT(Wnl)) + (—t +14/7r% — WZZI(A) — EWS%)]
3
Var(W,)(|[Yal + [t]) + < Var(Wnl)) B3
< . REE
(Var@a) + (ot o - Tl <) - Eszi)]
< e VarTa)(Val + H)+ (Var (7)1
< S (IVal + It]) + zz:; Y — EYy|? (6.26)

where (3 5 is defined as in Proposition 6.5. Note that we can apply Proposition

6.5 because of (6.24). Thus, by (6.26),

2

ZE/ (Wn2 =~ ) M, (t)dt
- Z E / EY i Wnz [( 4] (WM < ) M (t)dt
i=1 —o0
C < o _
e B (Fal it
1+ (R Z / > Vi — EY P My (t)dt
=1

< Yal? Yal?
_1+7’3;| 1‘ +1+T3;’ 1’

C < —
< Yl 2
SerpLLl (6.27)

2
Assume that t > 0 and w € B;; N{w | W;n(w) < TZ} By (6.22), we obtain

— —(i 3 —(i
—t — o (w) = —t — 7“2—Wi2(w) —EWiLi < —Q—Wii < 0.
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Therefore, we can apply Proposition 6.5 to —Tqﬁ)(w) and use the same argument
as (6.27). We have

o Var(Wa)([Yal + [t]) + (Var(Wo))?61s
3 ‘ 3
( Var(Wnl)) + (—t + \/7«2 Wi I(Why < 22) — EW;?)]

< ﬁ;E/OOO(’?M + [t]) M (¢)dt

M, (t)dt

C n o P | .
+ — E/ |Y11 77 EY[1|3M11(t)dt
rr Ll &
C K —
< Yl
~ 1403 ;| al

By (6.21), (6.27)-(6.28), we have

n [e’e) ) T2 C n o ,
;E/Oo I(An U Ba)I (W,ﬂ o Z) Ma(t)dt < 73 ; Yal.  (6.29)

(6.28)

Next, we will find a bound of the second term of (6.20) by using the uniform

concentration inequality. By the same argument as (6.21), we have

n [e's) 2
ZE/ I(Aq U By)I (Wfﬂ(w) > %) M (t)dt
i=1 -
n 0

:ZE/

i=1 -

2

I(Ap)I (Wfﬂ(w) > %) M (t)dt

n

+> E/Ooo I(Bi)I (WZQ(w) > T—z) M (t)dt (6.30)

, 4
=1

By Proposition 5.5, Proposition 6.4(1), (6.11)—(6.13), Chebyshev’s inequality and



61

the same argument as in (5.11), we get
—2 r?
ZE / AT (Wha(w) > 7 ) Ma(t)de
—2 r? YZ + |t])
SZE[(Wn2>Z>{ (Yol + 1) / M (t
i=1

Var
1++2 _ _
+ >3 / Z E[Y) — EYk1|3Mi1(t)dt]

( Var(W,:) T k=1

CE(Wal*) 3 CE(Wal")
1+ — ZE|Y U ZE|Y,1—EY,1|

Cl(2+ )85 + 31<; 2
< T ZE|Y11|

C — /.
< 13 .
< ;I:E}Yzﬂ (6.31)

where we used the assumption that (1 + 7)3; < 1 in the last inequality. By the

same argument as (6.31), we have

ZE/ <Wn2 > 42) M (t)dt < —— Z Vil (6.32)

Therefore, by (6.30)—(6.32), we obtain

n [ele} 9 7,.2 C n _
E;E/O I(Aq U By)I (Wn2(w) > Z) Mu(t)dt < 3= ;E|Yﬂ| . (6.33)

By (6.20), (6.29) and (6.33), we have

Ry < g Yal’ (6.34)
To prove

[Bul< 03 Z Vil (6.35)
it remains to show that

Ry > 3 Z Yl (6.36)



62

This equation is proved by the same argument as (6.34) and using the following

relation,

{0 € Q| by (W + Yia, W) (w) = oy (Wi 4+, Woa) () = =1} € B U Fy
(6.37)

where

Y; —t—i—a
Cia = ’LUGQ’ 1

\/Var nl) \/Va'r 1)
\/ Var(W,) \/VCL?" nl)

We have (6.36) and hence (6.35). To prove our theorem, it remains to estimate

D,‘l: ’(UGQ|

R15. By Proposition 3.6 and the Fundamental Theorem of Calculus, we have

|Ri2| <

Z/ E{](t <Ya) {EY“ (Wit + i + W) f(Wod + Y, W,2)
i=1 Y~
- B+ 4 W) (8 4 )| b0t

+

3 / E{I(t > 7=y [EY (W 4 Vi + W) fT) + Vi, W)
i=1 o

— EWO 4t + W) f(Wo 1 ¢, an)] }Mz‘l(t)dt’

§2ZE/ / A

<7 T3 ;E/_Ooﬂynf + [t]) My (t)dt

1)

nl u?

C & e
< ElY ] 6.38
- 1+r3; Yl (6.38)

By (6.15), (6.17)—(6.18), (6.35) and (6.38), we have

C - —
0 =Vil < s D EIVal, (6.39)
=1

By the same way as (6.39), we have

C <= =
Uy — V| < T § E|Y »)*. (6.40)
=1

By (6.9), (6.39) and (6.40), we complete the proof of theorem 6.3. O
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