CHAPTER 1I

THE THEORY OF IDENTITY

(1) Definition of identity

 $^{11}X~\mp~y^{11}$ means ^{11}X has every property of y and y has every property of χ_{\bullet}^{11}

(2) Rule of substitution

If $x \ge y$, then any expression containing x is identical with the corresponding expression containing y in place of x.

- (3) Th. $x \ge x$
- (4) Th. If x = y then y = x
- (5) Th. If $x \equiv y$ and $y \equiv z$ then $x \equiv z$.
- (b) The If $x \equiv z$ and $y \equiv z$ then $x \equiv y$

Example of proof: th. (3)

" $x \equiv x$ " means " x has every property of x and x has every property of x."

The latter statement is obviously true.

Example of proof: th. (5)

Suppose
$$x \equiv y$$
 ----- (1) and $y \equiv z$ ----- (2)

Then, from (2), any expression containing y is identical with the corresponding expression containing z in place of y (Rule of substitution).

Therefore, from (1), " $x \equiv y$ " is identical with the " $x \equiv z$."

Therefore if $x \equiv y$ and $y \equiv z$ are true, it follows that $x \equiv z$ is true.