CHAPTER II

HISTORICAL

Chemical Constituents of Genus Artocarpus

Chemical constituents of the genus *Artocarpus* have been studied for more than 40 years. These compounds were reported as steroids, triterpenoids, flavonoids, and several miscellaneous substances. However, the two main groups are flavonoids and triterpenoids.

The distribution of flavonoids in the genus Artocarpus is shown in Table 1.

Table 1. Distribution of flavonoids in the Artocarpus.

Plant and chemical compound	Plant part	Reference	
Artocarpus altilis (Park.) Fosb.			
Artocarpin	Heartwood	Venkataraman, 1972	
Artocarpus chalcone AC-3-1	Flower	Fujimoto et al., 1987	
Artocarpus chalcone AC-3-2	Flower	Fujimoto et al., 1987	
Artocarpus chalcone AC-5-1	Flower	Fujimoto, Agusutein, and Made, 1987	
Artocarpus flavanone AC-3-3	Flower	Fujimoto et al., 1987	
Artocarpus flavanone AC-5-2	Flower	Fujimoto et al., 1987	
Artocarpus flavone KB-1	Bark	Fujimoto et al., 1990	
Artocarpus flavone KB-2	Bark	Fujimoto et al., 1990	
Artocarpus flavone KB-3	Bark	Fujimoto et al., 1990	
Artomunoxanthentrione	Root bark	Shieh and Lin, 1992	
Artomunoxanthone	Root bark	Shieh and Lin, 1992	

Table 1. (continued)

Plant and chemical compound	Plant part	Reference	
Artoxanthotrione epoxide	Root bark	Lin, Shieh, and Jong, 1992	
Artonin E	Bark	Hano et al., 1990	
Artonin F	Bark	Hano et al., 1990	
Artonin V	Root bark	Hano, Inami, and Nomura	
Cudraflavone A	Root bark	Shieh and Lin, 1992	
Cycloaltilisin	Stem	Chen et al., 1993	
Cycloartobiloxanthone	Bark	Hano et al., 1990	
Cycloartocarpin	Heartwood	Venkataraman, 1972	
Cycloartomunin	Root bark	Lin and Shieh, 1991	
Cycloartomunoxanthone	Root bark	Lin and Shieh, 1991	
Cyclocommunin	Root bark	Lin and Shieh, 1992	
Cyclocommunol	Root bark	Lin and Shieh, 1992	
Cyclomorusin	Root bark	Lin and Shieh, 1991	
	Stem	Chen et al., 1993	
Cyclomulberrin	Root bark	Lin and Shieh, 1992	
	Stem	Chen et al., 1993	
Dihydrocycloartomunin	Root bark	Lin and Shieh, 1991	
Dihydroisocycloartomunin	Root bark	Lin and Shieh, 1992	
Engeletin	Stem	Chen et al., 1993	
Isocyclomorusin	Stem	Chen et al., 1993	
Isocyclomulberrin	Stem	Chen et al., 1993	
Morin	Heartwood	Venkataraman, 1972	
Morusin	Bark	Fujimoto et al., 1990	
Norartocarpetin	Heartwood	Venkataraman, 1972	

Table 1. (continued)

Plant and chemical compound	Plant and chemical compound Plant part	
Artocarpus chaplasha Roxb.		
Artocarpesin	Heartwood	Rao, Rathi, and
		Venkataraman, 1972
Artocarpin	Heartwood	Rao et al., 1972
Chaplashin	Heartwood	Rao et al., 1972
Cycloartocarpesin	Heartwood	Rao et al., 1972
Cycloartocarpin	Heartwood	Rao et al., 1972
Artocarpus elastica Reinw. ex Bl.	1000	
Artocarpin	Heartwood	Pendse et al., 1976
Cycloartocarpesin	Heartwood	Pendse et al., 1976
Cycloartocarpin	Heartwood	Pendse et al., 1976
Integrin	Heartwood	Pendse et al., 1976
Norartocarpin	Heartwood	Pendse et al., 1976
Artocarpus gomezianus Wall. ex	# 1 To 1	6 9 12 0 3 - 4
Trec.		
Artocarpesin	Heartwood	Venkataraman, 1972
Artocarpin	Heartwood	Venkataraman, 1972
Cycloartocarpin	Heartwood	Venkataraman, 1972
Morin	Heartwood	Venkataraman, 1972
Norartocarpin	Heartwood	Venkataraman, 1972
Artocarpus heterophyllus Lamk.		
Afzelechin- $(4\alpha \rightarrow 8)$ -catechin	Leaf	An et al., 1992
Artocarpanone	Heartwood	Radhakrishnan, Rao, and
	200	Venkataraman, 1965
Artocarpesin	Heartwood	Radhakrishnan et al., 1965
Artocarpetin	Heartwood	Venkataraman, 1972
Artocarpin	Heartwood	Radhakrishnan et al., 1965

Table 1. (continued)

Plant and chemical compound	Plant part	Reference	
Artoflavanone	Root	Dayal and Seshadri, 1974	
Artonin A	Root bark	Hano et al., 1989	
Artonin B	Root bark	Hano et al., 1989	
Artonin C	Root bark	Hano, Aida, and Nomura,	
Artonin D	Root bark	Hano, Aida, and Nomura,	
Artonin I	Root bark	Hano et al., 1992	
Artonin J	Root bark	Aida et al., 1993	
Artonin K	Root bark	Aida et al., 1993	
Artonin L	Root bark	Aida et al., 1993	
Artonin S	Bark	Aida et al., 1994	
Artonin T	Bark	Aida et al., 1994	
Artonin U	Bark	Aida et al., 1994	
(+)-Catechin	Leaf	Yamazaki et al., 1987	
Cyanomaclurin	Heartwood	Radhakrishnan et al., 1965	
Cycloartocarpesin	Heartwood	Parthasarathy et al., 1969	
Cycloartocarpin	Heartwood	Venkataraman, 1972	
Cycloartocarpin A	Root bark	Lu and Lin, 1994	
Cycloheterophyllin	Bark	Rao, Varadan, and Venkataraman, 1971	
	Root bark	Hano et al., 1989	
Dihydromorin	Heartwood	Venkataraman, 1972	
Heteroflavanone A	Root bark	Lu and Lin, 1993	
Heteroflavanone B	Root bark	Lu and Lin, 1993	
Heteroflavanone C	Root bark	Lu and Lin, 1994	
Heterophyllin	Root bark	Hano et al., 1989	

Table 1. (continued)

Plant and chemical compound	Plant part	Reference	
Isocycloheterophyllin	Bark	Rao, Varadan, and	
		Venkataraman, 1973	
Morin	Heartwood	Radhakrishnan et al.,	
		1965; Parthasarathy et	
		al., 1969; Mu and Li,	
	100	1982	
Morin-calcium-chelate	Heartwood	Mu and Li, 1982	
Norartocarpetin	Heartwood	Radhakrishnan et al., 1965	
Norartocarpin	Heartwood	Venkataraman, 1972	
Oxydihydroartocarpesin	Heartwood	Parthasarathy et al., 1969	
Procyanidin B-3	Leaf	An et al., 1992	
Procyanidin C-1	Leaf	An et al., 1992	
Artocarpus hirsuta Lamk.		March State Committee	
Artocarpanone	Heartwood	Venkataraman, 1972	
Artocarpesin	Heartwood	Venkataraman, 1972	
Artocarpetin	Heartwood	Venkataraman, 1972	
Artocarpin	Heartwood	Venkataraman, 1972	
Cyanomaclurin	Heartwood	Venkataraman, 1972	
Cycloartocarpesin	Heartwood	Venkataraman, 1972	
Cycloartocarpin	Heartwood	Venkataraman, 1972	
Dihydromorin	Heartwood	Venkataraman, 1972	
Morin	Heartwood	Venkataraman, 1972	
Norartocarpetin	Heartwood	Venkataraman, 1972	
Oxydihydroartocarpesin	Heartwood	Venkataraman, 1972	
Artocarpus integer (Thunb.) Merr.			
Artocarpanone	Heartwood	Pendse et al., 1976	
Artocarpesin	Heartwood	Pendse et al., 1976	

Table 1. (continued)

Plant and chemical compound	Plant part	Reference	
Artocarpetin	Heartwood	Pendse et al., 1976	
Artocarpin	Heartwood	Pendse et al., 1976	
Chaplashin	Heartwood	Pendse et al., 1976	
Cycloartocarpesin	Heartwood	Pendse et al., 1976	
Cycloartocarpin	Heartwood	Pendse et al., 1976	
Cyclointegrin	Heartwood	Pendse et al., 1976	
Cyanomaclurin	Heartwood	Pendse et al., 1976	
Dihydromorin	Heartwood	Pendse et al., 1976	
Integrin	Heartwood	Pendse et al., 1976	
Morin	Heartwood	Pendse et al., 1976	
Oxydihydroartocarpesin	Heartwood	Pendse et al., 1976	
Oxyisocyclointegrin	Heartwood	Pendse et al., 1976	
Artocarpus lakoocha Roxb.			
Artocarpin	Heartwood	Venkataraman, 1972	
Cycloartocarpin	Heartwood	Venkataraman, 1972	
5,7-Dihydroxyflavone-3-O-α-L-	Root bark	Chauhan and Kumari,	
rhamnoside		1979	
5-Hydroxy-7,2',4'-trimethoxy-	Stemwood	Pavaro and Reutrakul	
flavone		1976	
Galangin-3-O-α-L-(-)-rhamno-	Root bark	Chauhan and Kumari,	
pyranoside		1979	
Galangin -3-O-β-D-galactosyl-(1-	Root bark	Chauhan, Kumari, and	
4)-α-L-rhamnoside		Saraswat, 1979	
Kaempferol-3-O-β-D-xylopyra-	Root bark	Chauhan et al., 1982	
noside			
Norartocarpin	Heartwood	Venkataraman, 1972	
Norcycloartocarpin	Heartwood	Venkataraman, 1972	

Table 1. (continued)

Plant and chemical compound	Plant part	Reference
Quercetin-3-O-α-L-rhamno- pyranoside	Root bark	Chauhan et al., 1982
Artocarpus nobilis Thw.	1	
Artobilochromene	Bark	Pavanasasivam,
		Sultanbawa, and
		Mageswaran, 1974;
		Kumar et al., 1977;
		Sultanbawa and
		Surendrakumar, 1989
Artobiloxanthone	Bark	Sultanbawa and
		Surendrakumar, 1989
Chromanoartobilochromen A	Trunk bark	Kumar et al., 1977
Chromanoartobilochromen B	Trunk bark	Pavanasasivam et al.,
	1.5	1974; Kumar et al., 1977
Chromanoartobilochromene	Bark	Pavanasasivam et al., 1974
Cycloartobiloxanthone	Bark	Pavanasasivam et al., 1974
(-)-Dihydrofuranoartobilochromen	Trunk bark	Kumar et al., 1977
A		
(-)-Dihydrofuranoartobilochromen	Trunk bark	Kumar et al., 1977
B-1		
(-)-Dihydrofuranoartobilochromen	Trunk bark	Kumar et al., 1977
B-2		
Furanoartobilochromen A	Bark	Pavanasasivam et al., 1974
Furanoartobilochromen B-1	Bark	Pavanasasivam et al., 1974
Furanoartobilochromen B-2	Bark	Pavanasasivam et al., 1974

Table 1. (continued)

Plant and chemical compound	Plant part	Reference
Oxydihydromorusin	Trunk bark	Kumar et al., 1977; Fukai and Nomura, 1993
Artocarpus pithecogalla C. Y. Wu.		British Territoria
Morin	Heartwood	Mu and Li, 1982
Morin-calcium-chelate	Heartwood	Mu and Li, 1982
Artocarpus rigida Blume.	1.0%	
Artobiloxanthone	Bark	Hano, Inami, and Nomura,
Artonin E	Bark	Hano, Inami, and Nomura,
Artonin G	Bark	Hano, Inami, and Nomura,
Salar annual annual annual	-	1990
Artonin H	Bark	Hano, Inami, and Nomura,
Artonin M	Bark	Hano, Inami, and Nomura,
Artonin N	Bark	Hano, Inami, and Nomura,
Artonin O	Bark	Hano, Inami, and Nomura,
Artonin P	Bark	Hano, Inami, and Nomura,
Cycloartobiloxanthone	Bark	Hano, Inami, and Nomura,

The distribution of Artocarpus triterpenoids is shown in Table 2.

Table 2. Distribution of triterpenoids in the Artocarpus.

Plant and chemical compound	Plant part	Reference	
Artocarpus altilis (Park.) Fosb.	4		
α-Amyrin	Latex	Ultee, 1949	
α-Amyrin acetate	Fruit	Altman and Zito, 1976	
β-Amyrin acetate	Latex	Ultee, 1949	
Cycloart-23-ene-3β-25-diol	Fruit	Altman and Zito, 1976	
Cycloart-24-ene-3β-ol	Fruit	Altman and Zito, 1976	
Cycloart-25-ene-3β-24-diol	Friut	Altman and Zito, 1976	
Cycloartenol	Bark	Pavanasasivam and	
		Sultanbawa, 1973	
Cycloartenone	Bark	Pavanasasivam and	
		Sultanbawa, 1973	
Cycloartenyl acetate	Bark	Pavanasasivam and	
		Sultanbawa, 1973	
Lupeol acetate	Root bark	Shieh and Lin, 1992	
Artocarpus chaplasha Roxb.			
Cycloartenyl acetate	Stem bark	Mahato, Banerjee, and	
		Chakravarti, 1971	
Isocycloartenol acetate	Stem bark	Mahato et al., 1971	
Lupeol acetate	Stem bark	Mahato et al., 1971	
Artocarpus elasticus Reinw.ex Bl.		and the second	
β-Amyrin acetate	Latex	Ultee, 1949	
Lupeol acetate	Latex	Ultee, 1949	
Artocarpus gomezianus Wall. ex			
Trec.			
Lupeol acetate	Leaf	Kingroungpet, 1994	

Table 2. (continued)

Plant and chemical compound	Plant part	Reference
Simiarenol	Leaf	Kingroungpet, 1994
Artocarpus heterophyllus Lamk.	10	
Artostenone	Fruit	Nath and Mukherjee, 193
Betulin	Root bark	Lu and Lin, 1994
Betulinic acid	Root	Dayal and Seshadri, 1974
	Root bark	Lu and Lin, 1994
Butyrospermol	Fruit	Barton, 1951
Cycloartenol	Fruit	Barton, 1951
	Wood	Nogueira and Correia, 1958
	Bark	Pavanasasivam and
		Sultanbawa, 1973
	Latex	Barik et al., 1994
Cycloartenone	Fruit	Barton, 1951
	Bark	Pavanasasivam and
	-	Sultanbawa, 1973
	Root	Dayal and Seshadri, 1974
	Latex	Pant and Chaturvedi, 1989
		Barik et al., 1994
Cycloartenyl acetate	Bark	Pavanasasivam and
		Sultanbawa, 1973
9,19-Cyclolanost-23-ene-3β,25-	Fruit	Kielland and Malterud,
diol		1994
9,19-Cyclolanost-25-ene-3β,24-	Fruit	Kielland and Malterud,
diol	4	1994
9,19-Cyclolanost-3-one-24,25-diol (24R)	Latex	Barik et al., 1994

Table 2. (continued)

Plant and chemical compound	Plant part	Reference
9,19-Cyclolanost-3-one-24,25-diol (24S)	Latex	Barik et al., 1994
Ursolic acid	Root	Dayal and Seshadri, 1974
	Root bark	Lu and Lin, 1994
Artocarpus lakoocha Roxb.		hi-
Amyrin acetate	Bark	Kapil and Joshi, 1960
Cycloartenol	Bark	Pavanasasivam and
	100	Sultanbawa, 1973
Cycloartenone	Bark	Pavanasasivam and
		Sultanbawa, 1973
Lupeol	Root bark	Chauhan and Kumari,
		1979
Lupeol acetate	Bark	Kapil and Joshi, 1960
Artocarpus nobilis Thw.		
Cycloartenol	Bark	Pavanasasivam and
	1400	Sultanbawa, 1973
	Heartwood	Pavanasasivam and
		Sultanbawa, 1973
Cycloartenone	Bark	Pavanasasivam and
		Sultanbawa, 1973
	Heartwood	Pavanasasivam and
		Sultanbawa, 1973
Cycloartenyl acetate	Bark	Pavanasasivam and
		Sultanbawa, 1973
	Heartwood	Pavanasasivam and
		Sultanbawa, 1973

The distribution of miscellaneous compounds in the genus Artocarpus is shown in Table 3.

Table 3. Distribution of miscellaneous compounds in the Artocarpus.

Plant and chemical compound	Category	Plant part	Reference
Artocarpus altilis (Park.)			1
Fosb.			
γ-Aminobutyric acid	Protein	Leaf	Durand et al., 1962
β-Sitosterol	Steroid	Root bark	Shieh and Lin, 1992
Artocarpus chaplasha Roxb.		CORN'IL	
Oxyresveratrol	Benzenoid	Heartwood	Rao et al., 1972
Resorcinol	Benzenoid	Heartwood	Rao et al., 1972
β-Resorcyaldehyde	Benzenoid	Heartwood	Rao et al., 1972
Resveratrol	Benzenoid	Heartwood	Rao et al., 1972
β-Sitosterol	Steroid	Stem bark	Mahato et al., 1971
Artocarpus elasticus Reinw.		Tale 1	
ex Bl.			
β-Sitosterol	Steroid	Heartwood	Pendse et al., 1976
Artocarpus gomezianus Wall.			
ex Trec.			
Arbutin	Phenolic	Leaf	Kingroungpet, 1994
	glycoside		
1-Dotriacontanol	Alcohol	Leaf	Kingroungpet, 1994
Mesoerythritol	Phenolic .	Heartwood	Venkataraman, 1972
	compound		
β-Sitosterol	Steroid	Leaf	Kingroungpet, 1994

Table 3. (continued)

Plant and chemical compound	Category	Plant part	Reference
Artocarpus heterophyllus			
Lamk.			
Acetylcholine	Alkaloid- miscellaneous	Seed	Pereira, Medina, and Bustos, 1962
Artocarpus integra α-D- galactose specific lectin	Lectin	Seed	Suresh, Appukuttan, and Basu, 1982
Artocarpus integrifolia lectin	Lectin	Seed	Chatterjee, Sarkar, and Rao, 1982; Namjuntra and Culavatnatol, 1984
Artocarpus lectin CE-A-I	Lectin	Seed	Ferreira et al., 1992
Artonin Q	Phenolic compound	Bark	Aida et al., 1994
Artonin R	Phenolic compound	Bark	Aida et al., 1994
Aurantiamide acetate	Protein	Seed	Chakraborty and Mandal, 1981
9-Hydroxytridecyldocosa- noate	Lipid	Root bark	Lu and Lin, 1994
4-Hydroxyundecyldocosa- noate	Lipid	Latex	Pant and Chaturvedi, 1989
Heterophylol	Phenolic compound	Root bark	Lin and Lu, 1993
Jacalin	Lectin	Seed	Hagiwara et al., 1988; Ferreira et al., 1992
Lymphoagglutinin	Lectin	Seed	Arora, et al., 1987

Table 3. (continued)

Plant and chemical compound	Category	Plant part	Reference
Recinoleic acid	Lipid	Seed oil	Daulatabad and Mirajkar, 1989
β-Sitosterol	Steroid	Heartwood	Parthasarathy et al.,
		Root	Dayal and Seshadri,
		Root bark	Lu and Lin, 1994
Artocarpus hirsuta Lamk.		NAME OF	A-23-1-1-19
Lymphoagglutinin	Lectin	Seed	Arora et al., 1987
Artocarpus integer (Thunb.)		1-1-1	
Merr.			
Artocarpus lectin C	Lectin	Seed	Hashim, Gendeh, and Jaafar, 1992
β-Sitosterol	Steroid	Heartwood	Pendse et al., 1976
Artocarpus lakoocha Roxb.			
Artocarpus lakoocha lectin	Lectin	Seed	Chatterjee et al., 1982
Lymphoagglutinin	Lectin	Seed	Arora et al., 1987
Oxyresveratrol	Benzenoid	Heartwood	Venkataraman, 1972
Resorcinol	Benzenoid	Heartwood	Venkataraman, 1972
β-Sitosterol	Steroid	Root bark	Chauhan and Kumari,
2,4,3',5'-Tetrahydroxy- stilbene	Benzenoid	Wood	Mongolsuk, Robertson, and Towers, 1957; Sambhandharaksa and Ratanachai, 1962;
			Ratanachai, 1962,

Table 3. (continued)

Plant and chemical compound	Category	Plant part	Reference
		Heartwood	Ratanachai, 1962.
		Root	Sambhandharaksa and
			Ratanachai, 1962;
			Ratanachai, 1962.
		Branch	Sambhandharaksa and
			Ratanachai, 1962.

Isoprenylated Flavonoids of the Moraceae.

1. Introduction to Flavonoids

The flavonoid which is one of the most numerous and widespread groups of naturally occurring substances, is of importance and of interest to a wide variety of biological and physical scientists. Flavonoids occur almost universally in higher plants, but are uncommon in the Cryptogams. They are not synthesized by animals, but are of dietary origin (Harborne, 1965).

Flavonoids are C15 compounds composed of two phenolic nuclei connected by a three-carbon unit. The system uses for numbering carbon atoms and the three rings of flavonoids are referred to as A, B, and C rings. The carbon numbering begins at the heterocyclic atom and proceeds through to the ring junction carbon C-9 and C-10. In some texts these ring junction carbons are called C-8a and C-4a, respectively. B-ring carbons are denoted by primed numbers, and sugar carbons often by double and triple primed numbers, according to the distance of the sugar from the flavonoid nucleus (Markham,1989). The basic structure of flavonoids is shown below.

Flavonoid nucleus

The flavonoid compounds are subdivided into a number of classes depending on the state of oxidation of the connecting C3 moiety. Ikan (1991) has classified the flavonoids into classes as shown below.

Flavone

Flavonol

Flavanone

Flavanonol

Isoflavone

Chalcone

Dihydrochalcone

Aurone

Anthocyanidin

Flavan-3-ol (Catechin)

Flavan-3,4-diol (Leucoanthocyanidin)

Chalcones, dihydrochalcones and aurones are not strictly flavonoids but their close relationship, both chemically and biosynthetically, makes it sensible to include them in the flavonoid grouping. However, care must be taken over the numbering of these molecules which are different from those of flavonoids. The chalcone numbering is particularly confusing, whereas the aurone change is merely a consequence of the contraction of the heterocyclic ring (Goodwin and Mercer, 1983).

2. Isoprenylated Flavones and Flavanones.

Moraceous plants are amongst those that are rich sources of isoprenoid-substituted flavonoids. Recently, a large number of flavone derivatives bearing isoprenoid side-chain have been isolated from various *Artocarpus* plants. These flavone derivatives have a unique structural feature involving a dihydroxanthone skeleton, which may be formed through an oxidative cyclization between the B-ring at the C-3 position of the flavone derivative. Artobiloxanthone (46) is the first report of the occurrence of dibenzoxanthone in plants (Sultanbawa and Surendrakumar, 1989). The flavones from *Artocarpus* plants are also characteristic in having an isoprenoid side-chain at the C-3 position, as in the case of the *Morus* flavonoids. Artonins E (39) and F (71) are such typical flavones (Nomura and Hano, 1994).

The terms pyranoflavonoids and furanoflavonoids have come into use in recent years. If the pyran or furan ring jointly with the aromatic ring to which they are linked from a benzochromene or a furanochromene system, these flavonoids can also be called chromenoflavonoids. However this term cannot be used for those in which annulation takes place from C-6' to C-3 (Wollenweber, 1982).

It is obvious that flavones with pyrano and furano substitution are still restricted to only a few families, namely Fabaceae (Leguminosae), Rutaceae, and Moraceae. The few reported from Asteraceae (Compositae), Lamiaceae, and Rubiaceae are exceptional (Wollenweber, 1994).

2.1 Flavones and Flavanones with Simple C5 and C10 Side-chains

The occurrence of flavones with C_5 , OH- C_5 , and C_{10} side-chains is still almost completely restricted to the Moraceae. The examples of flavones and flavanones with simple C_5 , OH- C_5 , and C_{10} side-chains are shown in table 4.

Table 4. Flavones and flavanones with simple C_5 and C_{10} side-chains.

Chemical compound	Source	Reference
Albanin A (1) HO OH OH OH	Brosimopsis oblongifolia	Ferrari, Messana, and do Carmo, 1989
Artocarpesin (2)	Artocarpus chaplasha A. gomezianus A. heterophyllus A. hirsuta A. integer	Rao et al., 1972 Venkataraman, 1972 Radhakrishnan et al., 1965 Venkataraman, 1972 Pendse, et al., 1976
Oxydihydroartocarpesin (3) HO OH OH OH OH	A. heterophyllus A. hirsuta A. integer	Parthasarathy, et al., 1969 Venkataraman, 1972 Pendse et al., 1976

Table 4. (continued)

Source	Reference
A. heterophyllus	Aida et al., 1994
A. integer	Pendse et al., 1976
A. altilis A. chaplasha A. elastica A. gomezianus A. heterophyllus A. hirsuta A. integer	Venkataraman, 1972 Rao et al., 1972 Pendse et al., 1976 Venkataraman, 1972 Radhakrishnan et al., 1965 Venkataraman, 1972 Pendse et al., 1976 Venkataraman, 1972
	A. integer A. altilis A. chaplasha A. elastica A. gomezianus A. heterophyllus

Table 4. (continued)

Chemical compound	Source	Reference
Artonin V (7) OH OH OH OH OH	A. altilis	Hano, Inami, and Nomura, 1994
Kuwanon C (8)	Morus alba	Nomura, Fukai, and Katayanagi, 1978
Cudraflavone C (9) HO OH OH	Cudrania tricuspidata	Hano, Matsumoto et al., 1990
Cudraflavone D (10) HO OH OH OH	C. tricuspidata	Hano, Matsumoto et al., 1990

Table 4. (continued)

Chemical compound	Source	Reference
Artonin H (11) HO OH OH OH	A. rigida	Hano, Inami, and Nomura, 1990
Brosimone H (12)	B. oblongifolia	Ferrari, Messana, and do Carmo, 1989
MeO OH OH		
Brosimone L (13)	B. oblongifolia	Ferrari, Messana, and do Carmo, 1989; Ferrari, 1992

Table 4. (continued)

Chemical compound	Source	Reference
Artoflavanone (14) OMe OMe OMe	A. heterophyllus	Dayal and Seshadri, 1974
Heteroflavanone B (15) MeO OMe	A. heterophyllus	Lu and Lin, 1993
OH O		
Heteroflavanone C (16) MeO OMe OMe OM	A. heterophyllus	Lu and Lin, 1994
Antiarone F (17) HO OH OH OH	Antiaris toxicaria	Hano, Mitsui, and Nomura, 1990a

Table 4. (continued)

Chemical compound	Source	Reference
Antiarone G (18) HO OHOOME	A. toxicaria	Hano, Mitsui, and Nomura, 1990a
Antiarone H (19)	A. toxicaria	Hano, Mitsui, and Nomura, 1990a
Artocarpus flavanone AC-3-3 (20)	Artocarpus altilis	Fujimoto et al., 1987
ОН О	11 11 11	

Table 4. (continued)

Chemical compound	Source	Reference
Artocarpus flavanone AC-5-2 (21) OH OH OH	A. altilis	Fujimoto et al., 1987
Kuwanon E (22)	M. mongolica	Sun, Hano, and Nomura, 1989
Sigmoidin (23) HO OH OH	Antiaris toxicaria	Hano, Mitsui, and Nomura, 1990a
Antiarone I (24) HO OH OH	A. toxicaria	Hano, Mitsui, and Nomura, 1990a

2.2 Pyranoflavones and Pyranoflavanones

Cycloartocarpin (31) is unique as the first flavone reported as having an additional pyran ring (Venkataraman, 1972), which cycloheterophyllin (56) is reported as the first flavone with three isoprenoid groups attached to the chromone ring (Rao, Varadan, and Venkataraman, 1971). The examples of Moraceous pyranoflavones and pyranoflavanones are shown in Table 5.

Table 5. Pyranoflavones and pyranoflavanones

Chemical compound	Source	Reference
Cyclocommunol (25) HO OH OH OH	Artocarpus altilis	Lin and shieh, 1992
Cyclocommunin (26)	A. altilis	Lin and shieh, 1992
Cyclomulberrin (27) HO OH O	A. altilis	Lin and shieh, 1992; Chen et al., 1993

Table 5. (continued)

A. altilis	GI 1 1000
	Chen et al., 1993
B. oblongifolia	Ferrari et al., 1989
A. chaplasha A. heterophyllus C. tricuspidata	Rao et al., 1972 Parthasarathy et al., 1969 Hano et al., 1990
A. altilis A. chaplasha A. elastica A. gomezianus A. heterophyllus A. hirsuta A. integer	Venkataraman, 1972 Rao et al., 1972 Pendse et al., 1976 Venkataraman, 1972 Venkataraman, 1972 Venkataraman, 1972 Pendse et al., 1976 Venkataraman, 1972
	A. chaplasha A. heterophyllus C. tricuspidata A. altilis A. chaplasha A. elastica A. gomezianus A. heterophyllus A. hirsuta

Table 5. (continued)

Chemical compound	Source	Reference
Cycloartocarpin A (32) HO OH O OH	A. heterophyllus	Lu and Lin, 1994
Dihydrocycloartomunin (33) OH OH OH OH OH	A. altilis	Lin and Shieh, 1991
Dihydroisocycloartomunin (34) OMe OH OH OH OH	A. altilis	Lin and Shieh, 1992
Cycloaltilisin (35) OH OMe OH O OH O	A. altilis	Chen et al., 1993

Table 5. (continued)

Chemical compound	Source	Reference
Cudraflavone B (36)	C. tricuspidata	Hano, Matsumoto et al., 1990
Morusignin L (37)	M. insignis	Hano et al., 1993
Morusin (38)	A. altilis M. alba M. mongolica	Fujimoto et al., 1990 Nomura et al., 1976 Sun, Hano, and Nomura, 1989
Artonin E (39)	A. altilis A. rigida	Hano et al., 1990 Hano, Inami, and Nomura, 1990

Table 5. (continued)

Chemical compound	Source	Reference
Artocarpus flavone KB-2 (40) HO OH OH OH	A. altilis	Fujimoto et al., 1990
Artocarpus flavone KB-3 (41) HO OH OH	A. altilis	Fujimoto et al., 1990
Kuwanon A (42)	M. alba	Nomura, Fukai, and Katayanagi, 1978
Kuwanon B (43)	M. alba	Nomura et al., 1978

Table 5. (continued)

Chemical compound	Source	Reference
Brosimone G (44)	B. oblongifolia	Ferrari et al., 1989
Artocarpus flavone KB-1 (45)	A. altilis	Fujimoto et al., 1990
Artobiloxanthone (46)	A. nobilis A. rigida	Sultanbawa and Surendrakumar, 1989 Hano, Inami, and Nomura, 1990
Artomunoxanthone (47) OH OH OH OH	A. altilis	Shieh and Lin, 1992

Table 5. (continued)

Chemical compound	Source	Reference
Artonin B (48)	A. heterophyllus	Hano et al., 1989
Artonin N (49)	A. rigida	Hano, Inami, and Nomura, 1993
Cyclomorusin (50)	A. altilis M. alba	Lin and Shieh, 1991; Chen et al., 1993 Nomura et al., 1978
Isocyclomorusin (51) OH OH OH OH OH OH OH OH OH O	A. altilis	Chen et al., 1993

Table 5. (continued)

Chemical compound	Source	Reference
Cycloartomunin (52) OH OMe OH OH OH	A. altilis	Lin and Shieh, 1991
Chromenoartobilochromen B (53)	A. nobilis	Pavanasasivam, Sultanbawa, and Mageswaran, 1974; Kumar et al., 1977
Artobilochromen (54)	A. nobilis	Pavanasasivam et al., 1974
Heterophyllin (55)	A. heterophyllus	Hano et al., 1989

Table 5. (continued)

Chemical compound	Source	Reference
Cycloheterophyllin (56)	A. heterophyllus	Rao et al., 1971; Hano et al., 1989
Cudraflavanone A (57)	C. tricuspidata	Hano, Matsomoto et al., 1990
о́н ö		

2.3 Furanoflavones and Furanoflavanones

Furanoflavones are almost completely restricted to the genera Pongamia of the family Leguminosae and Artocarpus of the family Moraceae (Wollenweber, 1982). The examples of flavones and flavanones carrying furan ring are shown in Table 6.

Table 6. Furanoflavones and furanoflavanones

Source	Reference
M. alba	Deshpande, Wakharkar, and Rao, 1976
A. heterophyllus	Aida et al., 1993
A. heterophyllus	Aida et al., 1993
	M. alba A. heterophyllus

Table 6. (continued)

Chemical compound	Source	Reference
Artonin L (61) MeO OH OH	A. heterophyllus	Aida et al., 1993
Artonin T (62) HO OH OH	A. heterophyllus	Aida et al., 1994
Artonin G (63)	A. rigida	Hano, Inami, and Nomura, 1990
Dihydrofuranoartobilochromen A (64) OH	A. nobilis	Kumar et al., 1977

Table 6. (continued)

Chemical compound	Source	Reference
Dihydrofuranoartobilochromen B1 (65)	A. nobilis	Kumar et al., 1977
Dihydrofuranoartobilochromen B2 (66)	A. nobilis	Kumar et al., 1977
Furanoartobilochromen A (67)	A. nobilis	Pavanasasivam et al., 1974
Furanoartobilochromen B1 (68)	A. nobilis	Pavanasasivam et al., 1974

Table 6. (continued)

Chemical compound	Source	Reference
Furanoartobilochromen B2 (69) HO OH OH	A. nobilis	Pavanasasivam et al., 1974
Artonin A (70)	A. heterophyllus	Hano et al., 1989
Artonin F (71)	A. altilis	Hano, Yamagami et al., 1990
Cycloartobiloxanthone (72) HO OH OH OH	A. altilis A. nobilis A. rigida	Hano et al., 1990 Sultanbawa and Surendrakumar, 1989 Hano, Inami, and Nomura, 1990

Table 6. (continued)

Source	Reference
A. altilis	Lin and Shieh, 1991
A. rigida	Hano, Inami, and Nomura, 1993
M. mongolica	Sun et al., 1989
M. mongolica	Sun et al., 1989
	A. altilis A. rigida M. mongolica

2.4 Flavones with Oxepine and Oxocin Ring

The number of flavones with a 7-membered oxepine ring and with oxocin ring has been increased from the past. Cyclointegrin (77) is the first natural flavone with an oxocin ring system, while Chaplashin (80) is the first flavone with oxepine ring (Rao et al., 1972), and is also the first natural product of this type. A 3,4-dihydrooxocin ring system is formed by cyclization of a prenyl group in the 3-position with the 2'-hydroxyl group (Pendse et al., 1976).

The flavones with oxepine and oxocin ring are shown in Table 7.

Table 7. Flavones with oxepine and oxacin ring

ound Source Reference	Chemical compound
A. integer Pendse et al., 1976	Cyclointegrin (77)
ОН	MeO OH OH
A. integer Pendse et al., 1976	Oxyisocyclointegrin (78)
	MeO OH O HO

Table 7. (continued)

Chemical compound	Source	Reference
Artonin S (79) MeO OH OH OH	A. heterophyllus	Aida et al., 1994
Chaplashin (80) MeO OH OH OH OH	A. chaplasha	Rao et al., 1972
Compound A (81)	M. alba	Nomura et al., 1976
Isocycloheterophyllin (82)	A. heterophyllus	Rao et al., 1973

3. Minor Isoprenylated Flavonoids

Minor flavonoids which carry isoprenyl side-chains of the Moraceous plants belong to the chalcone, dihydrochalcone, aurone or isoflavone group.

Antiaris toxicaria, a member of the Moraceae, has recently come under close scrutiny. Among the compounds isolated from this poisonous species are the first two naturally occurring C-prenylated aurones, namely antiarones A (92) and B (93) (Hano, Mitsui and Nomura, 1990b). More recently, two prenylated dihydrochalcones, antiarones J (86) and K (87) have been isolated from the same source (Hano *et al.*, 1991). In both of these compounds, one sees an unusual five-membered ring system, which has formed between the 2-prenyl function and β -carbon of the bridge.

The isoflavonoids enjoy only a limited distribution in the plant kingdom, and are almost entirely restricted to the subfamily Papilionoideae of the Leguminosae. Among the non-legume plants, a number of families are known to produce isoflavonoid derivatives including the Moraceae. In this family, only the genus *Maclura* and *Cudrania* are reported as containing isoprenyl-substituted isoflavonoids (Dewick, 1994).

The distribution of isoprenylated chalcones, dihydrochalcone, aurones, and isoflavones are shown in Table 8.

Table 8. Minor isoprenylated flavonoids

Chemical compound	Source	Reference
Chalcones and dihydrochalcones Antiarone C (83) HO OH OH OH	Antiaris toxicaria	Hano, Mitsui, and Nomura, 1990a
Antiarone D (84) HO OH OMe	A. toxicaria	Hano, Mitsui, and Nomura, 1990a
Antiarone E (85) OMe OH OH OH	A. toxicaria	Hano, Mitsui, and Nomura, 1990b
Antiarone J (86) HO OH OH OH	A. toxicaria	Hano et al., 1991

Table 8. (continued)

Chemical compound	Source	Reference
Antiarone K (87) HO OH OH OME OME	A. toxicaria	Hano et al., 1991
Artocarpus chalcone AC-3-1 (88)	Artocarpus altilis	Fujimoto et al., 1987
Artocarpus chalcone AC-3-2 (89)	A. altilis	Fujimoto et al., 1987
Artocarpus chalcone AC-5-1 (90)	A. altilis	Fujimoto et al., 1987

Table 8. (continued)

Source	Reference
Broussonetia papyrifera	Fang, Shieh, and Lin, 1994
Antiaris toxicaria	Hano, Mitsui, and Nomura, 1990b
A. toxicaria	Hano, Mitsui, and Nomura, 1990b
Cudrania tricuspidata	Hano et al., 1990
	Broussonetia papyrifera Antiaris toxicaria

Table 8. (continued)

Chemical compound	Source	Reference
Cudraisoflavone A (95)	C. cochinchinensis	Sun, Chang, and Cassady, 1988
OH OHO OH		
5,3',4',2-Tetrahydroxy-6-(3"-methyl-3"-butenyl) isoflavone (96)	Maclura pomifera	Monache et al., 1994
OH OH OH		

4. Biflavonoids with Isoprenyl Side-chains

As the final comment on flavonoids of *Morus*, it should be noted that Hano et al. (1988) have isolated additional Diels-Alder-type dimeric compounds from the root bark. The example of these compounds are shown in Table 9.

Table 9. Biflavonoids with isoprenyl side-chains

Chemical compound	Source	Reference
Artonin C (97) HO OH OH OH OH	Artocarpus heterophyllus	Hano, Aida, and Nomura, 1990
Artonin D (98) HO OH OH OH OH OH OH OH OH O	A. heterophyllus	Hano, Aida, and Nomura, 1990

Table 9. (continued)

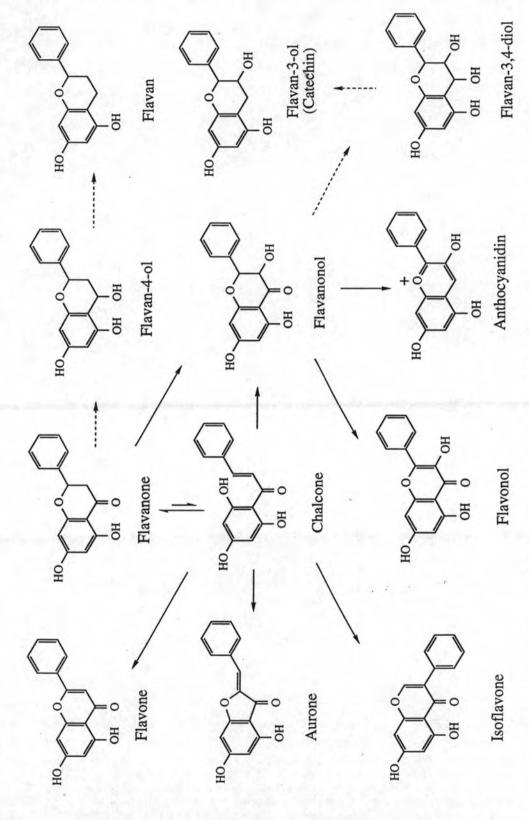
Chemical compound	Source	Reference
Artonin I (99) HO OH OH OH OH	A. heterophyllus	Hano et al., 1992
Kuwanon G (100)	Morus alba	Nomura and Fukai,
(Albanin F, Moracein B) HO OH		1980ь
Kuwanon H (101) (Albanin G, Moracein A) HO OH HO OH	M. alba	Nomura and Fukai, 1980a; Nomura, Fukai, Narita et al., 1981
OH O HO OH	Morus sp.	Oshima et al., 1980

Table 9. (continued)

Chemical compound	Source	Reference
Kuwanon L (102) HO OH OH OH OH OH	M.alba	Hano et al., 1988
Sanggenon C (103)	M. mongolica	Sun, Hano, and Nomura, 1989;
HO OH OH OH		Nomura, Fukai, Hano et al., 1981
Sanggenon O (104) HO OH OH OH OH OH OH OH OH O	M. mongolica	Sun et al., 1989

Table 9. (continued)

Source	Reference
M. mongolica	Sun et al., 1989
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Biosynthesis of Flavonoids

1. General Aspects

All classes of flavonoids are biosynthetically closely related, with a chalcone being the first common intermediate (Scheme 1 and 2). Earlier feeding experiments with radioactively labelled precursors have established that the chalcone skeleton is derived from acetate and phenylalanine: A ring is form by head to tail condensation of three acetate units and B ring as well as carbons 2, 3, and 4 of the heterocyclic C ring arise from phenylalanine (Wollenweber, 1982).

The common substituents of flavonoid compounds are hydroxyl groups, which may be methylated or glycosylated. The location of some hydroxyl groups is a consequence of the general biosynthetic pathway. Thus, in most flavonoid compounds ring A has hydroxyl groups either at C-7 or at both C-5 and C-7. These are rarely methylated. Ring B is virtually always hydroxylated at C-4' and commonly also at C-3' and C-5'; hydroxyl groups at these latter two positions are often methylated (Britton, 1983).

Scheme 1 Biosynthetic pathway of flavonoids

Overall scheme of flavonoid biosynthesis illustrating demonstrated (——) and postulated (----) biogenetic relationships among the various flavonoid classes. Scheme 2

2. Biogenetic Aspects of Moraceous Flavonoids

The biogenesis of Artocarpus pigments is of special interest because of their unique structural features: the β -resorcylic acid orientation of hydroxyl group in the B-ring in all the compounds (with an additional hydroxyl in cycloheterophyllin) and the C_5 substituent in the 3-position in artocarpin (6), cycloartocarpin (31) and cycloheterophyllin (56). All the flavonoids isolated so far from Artocarpus heterophyllus fit into a biosynthetic scheme (Scheme 3) in which the hydroxylation pattern of both the A and B rings is fixed at the chalcone stage; an exception is cycloheterophyllin.

The only other flavone having 2',4'-hydroxylation is morin, the colouring matter of 'old fustic', Morus tinctoria, which also occurs in M. alba, M. bambycis and Maclura pomifera, and the flavones, mulberrin, cyclomulberrin, mulberrochromene, and cyclomulberrochromene, isolated from Morus alba bark, which are similar to some of the Artocarpus pigments in having a C₅ unit attached to the 3- and 6-positions of the chromene ring. Both species appear to be unique among plants in possessing an enzyme system which directs (106) to a pathway in which it condenses with a phloroglucinol precursor in the acetate route to form the chalcone (107) (Rao et al., 1971).

Attack of the phloroglucinol nucleus of the chalcone (108) by one unit of γ , γ -dimethylallyl pyrophosphate leads to the prenylated chalcone (109) and artocarpin. The dibenzoylmethane (110) may be formed as indicated, and attack by a second unit

Scheme 3 Biogenesis of the flavonoids isolated from A. heterophyllus

of dimethylallyl pyrophosphate, followed by cyclization and shift of an olefinic bond to conjugate with the benzene ring, will lead to artocarpin. Further cyclization of artocarpin to cycloartocarpin involves the oxidation of the doubly allylic CH₂ to CHOH (Radhakrishnan, Rao and Venkataraman, 1965).

In the biosynthesis of cycloheterophyllin (56) the attack of the third γ , γ -dimethylallyl group may occur at any stage; but the additional hydroxylation in the B ring probably represents the final step (Rao *et al.*, 1971). Although a number of isoflavones having 2',4',5'-pattern of oxygenation are known, few such flavones with this unusual oxygenation pattern are reported (e.g. cycloheterophyllin (56), and isocycloheterophyllin (83) from the bark of *Artocarpus heterophyllus* and artobilochromen (54), chromanoartobilochromen B (53), dihydrofuranobilochromens A (64), B1 (65), and B2 (66) from the bark of *A. nobilis*). The other flavones isolated thus far from *Artocarpus* have the 2',4'-oxygenation pattern; it is likely that the additional hydroxylation on B ring occurs during the final step of biosynthesis (Kumar *et al.*, 1977).

Both artonins A (70) and B (48) have unique structure in which the C-C linkage takes place between the C-6' position of the B-ring and the C-10 position of isoprenoid moiety located at the C-3 position. Taking no optical activities into account, artonins A and B are biogenetically assumed to be derived from heterophyllin (55) through the oxidative coupling reaction as shown in Scheme 4 (Hano *et al.*, 1989).

As artobiloxanthone (46) and artobilochromen (54) have the same oxygenation pattern as the simple flavone (111), a biogenetic relationship between dihydrobenzoxanthones and flavones seems likely. A feasible biosynthetic route for the formation of artobiloxanthone (46) and cycloartobiloxanthone (72) from simple flavone is suggested in Scheme 5. The epoxidation-dehydration mechanism is similar

HO
$$+$$
 OH $+$ O

Scheme 4 Biogenesis of artonins A and B from heterophyllin

Artobiloxanthone

0

OH

Cycloartobiloxanthone

0

OH

Scheme 5 A feasible biosynthetic route for the formation of artobiloxanthone and cycloartobiloxanthone

to that proposed for the biosynthesis of the rotenoid, amorphigenin. (Sultanbawa and Surendrakumar, 1989).

Biogenesis of integrin (5) and the two related flavones, cyclointegrin (77), and oxyisocyclointegrin (78), is of interest because they are the first natural flavones in which the A-ring is derived from phloroglucinol and C-prenylation occurs in the 3-position, and not on one of the strongly nucleophilic carbon atoms of the phloroglucinol moiety. If the dibenzoylmethane derivative (112) is the intermediate in the biosynthesis of the *Artocarpus* pigments, the presence of a specific enzyme in *A. integer* and *A. elasticus*, which preferentially prenylates the -COCH₂CO- group and not the phloroglucinol nucleus, must be assumed. Other possibilities are the attack of the prenyl cation on (a) the 3-position of a flavone in which the electron density at this position is increased by 2'- and 4'-hydroxyl groups or (b) the α-carbon of the chalcone intermediate (Pendse *et al.*, 1976).

The isoprenoid-substituted flavonoid compounds from the mulberry tree (Morus alba), optically active Diels-Alder-type adducts, such as Kuwanons G (100) and H (101), are attractive compounds from a biosynthetic point of view because of their structural features and large optical rotations. In the biosynthetic study of mulberry Diels-Alder-type adducts, it has been established that the adducts are

biosynthesized through an intermolecular Diels-Alder-type reaction between an isoprenyl portion of an isoprenyl phenol as the diene and an α,β -double bond of a chalcone derivative as the dienophile (Scheme 6).

Artonins C (97), D (98), and I (99) obtained from *Artocarpus* heterophyllus can also be regarded as typical intermolecular Diels-Alder-type adducts (Nomura and Hano, 1994).

Sanggenon Q (105), the only isoflavonoid Diel-Alder-type adduct, has been obtained from *Morus mongolica*, a chinese *Morus* plant, along with the known adduct sanggenon C (103). Sanggenon Q has been considered to be formed through a pinacol-pinacolon-type rearrangement of sanggenon C.

Scheme 6 Biosynthesis of mulberry Diels-Alder-type adducts Kuwanons G and H

Kuwanon H R = ...

Bioactivities of Moraceous Flavonoids

The discovery of new plant flavonoids has added to increasing number of pharmacological effects of these compounds. The biological activities of flavonoids were quite diverse, and specific aspects of their activities had been reported.

A number of prenylflavonoids have recently been reported to act as cytotoxic agents. Cyclocommunol (25), cyclocommunin (26), and cyclomulberrin (27) exhibited potent inhibition of human hepatoma PLC/PRF/5 and KB cells *in vitro*, while cyclomorusin (50), dihydrocycloartomunin (33), and artomunoxanthone (47) showed significant inhibition of KB cells only (Liou *et al.*, 1993). Cudraisoflavone-A (95) was found to be cytotoxic against PS cell in culture (Sun *et al.*, 1988). Furthermore, artocarpus chalcone AC-5-1 (90) showed inhibition of Yoshida sarcoma cells *in vitro* (Fujimoto, Augusutein, and Made, 1987).

Artocarpus KB-1, KB-2, and KB-3 strongly inhibited the growth of leukemia cells (L-1210) in tissue culture at IC₅₀ 2.0-0.5 μg/ml (Fujimoto *et al.*, 1990).

Both artonin E (39) and artocarpus chalcone AC-5-1 (90) had potent arachidonate 5-lipoxygenase inhibitory activity with the values of ID₅₀ of 0.36 μ g/ml and 0.05 × 10⁻⁶ M, respectively (Reddy *et al.*, 1991; Koshihara, Fujimoto, and Inoue, 1988a,1988b).

Sanggenon C (103), Kuwanons G (100) and H (101) showed a marked hypotensive effect in rabbit at an *i.v.* dose of 1 mg/kg, (Nomura and Fukai, 1980a, 1980b; Nomura, Fukai, Hano *et al.*, 1981).

Ferrari et al., (1989) reported the activity of brosimone I (29) as antimicrobial against S. aureus and C. glabrata (MIC and MLC: 3.12, 3.12 and 25, 25 µg/ml, respectively).