

Chapter 4

T_{c} equations

In this chapter I will show how to obtain T_{c} from Eq. (3.55). Since the structure of the matrix in equation (3.55), which determines T_{c}, depends on the nature of different conducting layers in the unit cell and their surrounding.

The transition temperature T_{c} for a three-layer type is given by the solution of the determinant,

One superconducting layer per unit cell
We first consider the one layer per unit cell system,

Fig. 4.1 One superconducting layers per unit cell
here $\mathrm{V}_{\mathrm{d}}=0, \mathrm{~K}=\mathrm{K}^{\prime}=0$ and hence

$$
1-N_{c} V_{c} F=0
$$

where

$$
\begin{aligned}
\mathrm{F} & =2 \pi T_{c} \sum_{\mathrm{n}=0} \frac{1}{\omega_{n}} \\
& =\ln \left(1.13 \omega_{\mathrm{D}} / \mathrm{T}_{c}\right) \quad \text { (see appendix) }
\end{aligned}
$$

then

$$
\begin{equation*}
T_{c}=1.13 \omega \exp \left[-1 / N_{c} V_{c}\right] \tag{4.1}
\end{equation*}
$$

here ω is the cutoff frequency.

Two superconducting layers per unit cell

Fig. 4.2 Two superconducting layers per unit cell

Let us now calculate the critical temperature for the sample where there are two superconducting layers per unit cell, our T_{c} is determined by the condition

Solving Eq.(4.2), we obtain

$$
\begin{aligned}
& T_{c}=1.13 \exp \left[-\mathrm{N}_{c} \mathrm{~V}_{c}+\mathrm{N}_{d} \mathrm{~V}_{d}+\mathrm{N}_{\mathrm{d}} \mathrm{~K}\left(\mathrm{~V}_{\mathrm{d}}-\mathrm{V}_{e r}^{2}\right)+\mathrm{N}_{\mathrm{c}} \mathrm{~K}\left(\mathrm{~V}_{\mathrm{c}}-\frac{\mathrm{V}_{e r}^{2}}{\mathrm{~V}_{\mathrm{c}}}\right)\right. \\
& +\int\left[N_{c} V_{c}\left(1+K^{\prime}\right)+N_{d} V_{d}(1+K)-V_{e r}^{2}\left(N_{d} K+N_{c} K^{\prime}\right)\right]^{2} \\
& -4 N_{c} N_{d}\left(V_{c} V_{d}-V_{e r}^{2}\right) \underbrace{\left(1+K\left(1-V_{e r}\right)\right.}_{V_{d}}+\frac{\mathrm{K}\left(1-\frac{V_{e r}}{V_{d}}\right)}{\mathrm{V}_{\mathrm{d}}})] 1 / 2 / 2 N_{c} N_{d}\left(\mathrm{~V}_{c} \mathrm{~V}_{d}-\mathrm{V}_{o r}^{2}\right)] \\
& \text { (4.3) }
\end{aligned}
$$

In solving Eq. (4.2) for F, we obtain two solutions for T_{c}. The solution which gives the highest T_{c} is acceptable, while the other with the lower T_{c} value is rejected because the system is already superconducting once the system reaches the high T_{c} value. Consider limit t tends to zero, $N_{c}=N_{d}$, and $v_{c}=V_{d}$. From Eq.(4.3) we obt.ain

$$
\begin{equation*}
\mathrm{T}_{c}=1.13 \dot{\omega} \exp \left(-1 / \mathrm{N}_{c}\left(\mathrm{~V}_{c}+\mathrm{V}_{o r}\right)\right) \tag{4.4}
\end{equation*}
$$

which is precisely the result of Ihm and Yu (46).
From equation (4.3), it is concluded that T_{c} is always raised by the presence of $\mathrm{V}_{\text {er }}$. We also see clearly that the effect of small but finite t is detrimental to high- T_{c} superconductivity in consistent with ref.(55). Recently Cava et al.(56) synthesized $\mathrm{La}_{1.0} \mathrm{Sr}_{\mathrm{o} .4} \mathrm{CaCuO}_{2} \mathrm{O}_{6}$, the layer-stacking sequence in this compound is $\mathrm{LaO}-\mathrm{CuO}_{2}-\mathrm{Ca}-\mathrm{CuO}_{2}$. This system is a bi-layer superconductor. The upper and lower CuO_{2} layers of this system are equivalent.

Equation (4.3) also gives

$$
\begin{equation*}
T_{c}=1.13 \omega \exp \left(-1 / N_{c}\left(V_{c}+V_{o r}\right)\right) \tag{4.5}
\end{equation*}
$$

for this system, assuming that $\mathrm{t} \neq 0$. Eqs. (4.4) and (4.5) are identical this is because of the fact that in a system of equivalent double layers, whether there is a direct electron hopping process or not, does not change the physical situation at all.

For two inequivalent double layer, Eq. (4.3) yields

where $t=0$.
Three identical layers per unit. cell

Fig. 4.3 Three identical layers per unit cell

For three identical layers, the interactions $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{d}}$, if $t=0$ and $N_{c}=N_{d}$, the 3×3 determinant of equation (3.55) gives

$$
\begin{equation*}
T_{c}=1.13 \omega \exp \left(-1 / N_{c}\left(V_{c}+\sqrt{2} V_{e r}\right)\right) \tag{4.7}
\end{equation*}
$$

We recover the formula of Ihm and Yu (46).

We next consider, for example the compound $\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}$, here the $\mathrm{TlO}-\mathrm{TlO}-\mathrm{CuO}_{2}$ layers bounding the middle CuO_{2} sheets are mediating the interaction and maintaining its 2 dimensional property. These layers have the density of states, at the Fermi level, of the same magnitude with the carrier from the middle CuO_{2} layer. It is plausible that the excitations from the TlO-Tlo layers have a strong influence on the interactions in the bounding CuO_{2} layer, the two outer CuO_{2} layers are therefore different from the middle CuO_{2} layer. We have for this system

$$
\begin{align*}
& T_{c}=1.13 \omega \exp \left[-\left[N_{c} V_{c}\left(1+\frac{K}{\left(1-V_{e r}\right.}\right)+N_{d} V_{d}\left(1+K\left(1-V_{e r}\right)\right.\right.\right. \\
& \left.+2 K V_{e r}\left[\left(1-V_{e r}\right) V_{d} V_{d}+\left(1-V_{e r}\right) V_{c} V_{e r}\right]\right) / 2 N_{c} N_{d}\left(V_{c} V_{d}-2 V_{e r}^{2}\right) \\
& -\int\left(N _ { c } V _ { c } \left(1+K\left(1-V_{e r}\right)+N_{d} V_{d}\left(1+K\left(1-V_{e r}\right) ~\left(\underset{V_{e r}}{V_{d}}\right)+2 K V_{e r}\left(\left(1-V_{e r}\right) \frac{V_{d} N_{d}}{V_{d}} V_{c}\right.\right.\right.\right. \\
& \left.\left.+\left(1-V_{e r}\right) V_{c} V_{e r}\right)\right)^{2}-4 N_{c} N_{d}\left[V_{c} V_{d}-2 V_{e r}^{2}\right]\left[1+K\left(1-V_{e r}\right)+K^{\prime}\left(1-V_{e r}\right)\right. \\
& \left.\left.-\underset{V_{e r}}{K K}\left(\underline{V_{e r}}\right)\right]\right)^{1 / 2} \bar{V}_{d}\left(2-N_{c} N_{d}\left(V_{c} V_{d}-2 V_{e r}\right)\right] \tag{4.8}
\end{align*}
$$

For the bounding layers of insulating nature $V_{d}=0=V_{\text {er }}$, non-zero hopping becomes important and we have a system of a superconducting plane interposed between two insulating sheets.

Fig. 4.4 A superconducting layer between two insulating layers.

Equation (4.8) yields

$$
\begin{equation*}
\mathrm{T}_{c}=1.13 \omega \exp \left\{-1 / \mathrm{N}_{c} \mathrm{~V}_{c}-\pi_{i t}^{2} \mathrm{~N}_{\mathrm{d}} / 4 \mathrm{~T}_{c o}\right\} . \tag{4.9}
\end{equation*}
$$

The critical temperature decreases with the increased direct hopping between layers.

In order to further understand the physics of high-T ${ }_{c}$ superconductor it is important to study the influence of the decoupling of the CuO_{2} bilayer by the insulating layer.

Fig. 4.5 An insulating layer between two superconducting layers.

Here $V_{c}=0=V_{\text {er }}$, and Eq. (4.8) yields

$$
\begin{equation*}
\mathrm{T}_{\mathrm{c}}=1.13 \omega \exp \left\{-1 / \mathrm{N}_{\mathrm{d}} \mathrm{~V}_{\mathrm{d}}-\pi^{2} \mathrm{t}^{2} \mathrm{~N}_{\mathrm{c}} / 4 \mathrm{~T}_{c o}\right\} . \tag{4.10}
\end{equation*}
$$

This last equation indicates that the coupling between the CuO_{2} layers across the insulating layer is reduced.

