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Chapter II

ELEMENTS OF DIFFRACTION THEORY AND INTERPRETATION

OF X-RAY DIFFRACTION PHOTOGRAFPHS

?+1 Diffraction from a three - dimensional lattice

A erystal consists of a three dimensional array of atoms,
x-rays are scattered from these atoms in a manner similar to that
in which light waves are scattered from the ruled lines of a
diffraction grating. The conditions for additive interference
between the x-rays scattered from corresponding points along any
line in the lattice may be seen from Fig. 1

The incident rays travelling in the direction PA make an
anglesd with the line AB passing through a row of lattice points,
The diffracted rays travelling in the direction AQ make a
corresponding angle with AB. Contrasting the rays PAQ and RES,
we see that the path difference amounts to

AD - BC = AB cos)y - AB cosas (1)
The condition for additive interference is that the path difference
evaluated in (1) shall be equal to a whole multiple of the wave
length A

HAN = AB (cosy - cos ) (2)
where H = integer.

let I and § be unit vectors of the incident and scattered
x-rays respectively and let the repeated translation along AB be

given by a ; (2) becomes
H M
Hh: E-(E-i} (""}

a(cos ¥ - cos A+) (3)

If A and I remain fixed, 5 can be in any direction making an angle
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with &, The diffracted beams will therefore lie in the surfaces of
cones, whose common axis is the line of points and whose semivertical
angles are V (Fig. 2a).

For scattering from a 2 - dimensional lattice net with b as
the second vector defining the net, a second condition

KN = b. (8 - I), K = integer (5)

is imposed and diffracted beams will only occur along the lines of
intersection of the two sets of cones having directions a and b as
axes (Fig. 2b).

If ¢ is the third vector defining the lattice, then the

third condition

L'Y = ¢4 (s -1), L =integer (6)
must also be satisfied, Diffracted beams can only occur when cones
pointed along a , b,c all intersect in one line (Fig 2¢). 1In
general, there is no such direction and if a beam of monochromatic
x=-rays impinges on a perfect crystal it is unlikely that it will
give rise to a diffracted beam.

There are two ways in which the angles of the cones, can be
altered so that the three cones intersect in one line, and all
three diffraction conditions are satisfied,

a) Varying ,J? constant (Stationary crystal).

White radiation with a continuous range of wawvelengths is
used and the crystal picks out the wavelengths which satisfy the
three "Laue conditions" Egs. (4),(5),(6) for various values of the

integers H,K and L. But because the wavelengths of the diffracted

beams are all different this method has only a restricted use.



b) Varyingjﬂf, X constant (Moving crystall).

Varying the directions of a, b, o, relative to I is most
simply achiewed by rotating the crystal., The angles of the cones
will vary continuously and when three of them intersect, the
diffraction conditions will be satisfied for the monochromatic

radiation employed and a diffracted beam will flash ocut.

The development of the Laue conditions in terms of lattice planes

Since 8-1 = n 2 sin ® , as shown Fige. 3, where
% - unit vector in the direction of s - I, the Laue conditions

can be written as

2. N2 ein®#! EXxy= ph A
B .n2sin& = K™ = pkA (7)
e.n2sine = L>» = plh

where h,k,1 contain no common factor, These equations can be writtfex

i - ba - 5.8 = ph (®
h k 1 2ein &

These are the equations of a plane cutting the axes at a/h,
b/lz, ¢/1 (i.e. the nearest plane to the origin of the set hldl)
whose normal is n and whose distance from the origin is pA/2sin 9,
Since the next plane of the set passes through the origin, p» /2sin?®
=dhk1 the interplanar spacing. The incident and diffracted beams
make equal angles, 90°-@ , with the normal n to the set of planes,
and n is necessarily in the same plane as s and iI. The incident and
diffracted beams obey the ordinary laws of reflection from the set
of planes hkl,, but in aﬂ&itian, reflection only occurs when the

condition pA = 24 sin® 1is satisfied.



2.2 Laue photograph and the reciprocal lattice concept

In the discussions of x-ray diffraction it is convenient
to construct the reciprocal lattice and the sphere of reflection
(James 1962, p.7) illustrated in Fig 4.1. The diffraction condition
is satisfied whenever a reciprocal point lying, lies on the sphere
of reflection this can be used to determine directly which planes
in the ecrystal are in reflecting position.

If we consider the reciprocal lattice plane cutting the
sphere of reflection along some circle, the diffracted beams passing
through the reciprocal lattice points along this circle (Fig. S5¢71)
form a cone, the Laue coneé. This axis of the cone is normal to the
reciprocal lattice plane. The reciprocal lattice points belonging
to this Laue cone are said to have a common zone axis, each
reciprocal lattice point represents a lattice plane that is parallel
to this zone axis.

When a symmetry element in a stationary crystal is parallel
to the incident white x-ray beam, the diffractions surrounding the
beam are symmetric., The diffracted beams are recorded on the
photographic plate in the front or in the back reflection region
perpendicular to the direct beam. The resultant photograph, called
Laue photugraph? is used to determine the symmetry of a crystal

and its orientation relative to the x-ray beam.

Symmetry of Laue photograph.

When a Laue photograph (transmission or back reflection) is
taken the symmetry of the diffraction pattern thus recorded is related
to the symmetry of the crystal structure about the direction of
transmission of the original x-ray beam, If the incident x-ray bean

is directed
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along a zone axis the symmetry of the diffracted beam is that of
the zone axiss If for example, the direction is the principal axis
of a tetragonal crystal, the photograph would display four fold
symmetry.

This method, however, has an important limitation. It is
impossible to tell whether the crystal is centro symmetrical or not.
For this reason, the 32 classes of symmetry give only eleven different

groups distinguishable by means of Laue photographs (Phillips 1963,

pe 155)

Triclinic - N
Monoelinie :. 2/m
Orthorhombic : mmm
Trigonal H i, 3m
Tetragonal s 4/m, 4/mmm
Hexagenal i 6/m, 6/mmm
Cubic : m3, m3m

2.3 Rotation photograph

In this method the crystal is rotated about an axis
perpendicular to the incident x-ray beam. This allows lattice planes
to come into the appropriate positions for reflecting the radiation,

When a crystal is rotated about a principal axis of the
crystal, the plane of reciprocal lattice perpendicular to this axis
will cut the reflecting sphere in a small circle, producing & cone
of reflection as in Fig. 4. The cones of reflected rays are recorded
on a cylindrical film (co-axial with the rotation axis) in a series
of circles which form straight lines when the film is laid flat.

These lines are ¢alled the layer lines,
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Since cylindrical film is used, it is convenient to use
eylindrical co-ordinates to specify the reciprocal lattice, Thus the

orientation of the reciprocal lattice vector G is specified by

Arl
two mutually orthogonal vectors: g'along the rotation axis and‘3 in
a plane normal to the rotation axis. The angle § is formed by the
direct beam and the plane containing § and % (Fig. 5)

When the crystal is rotated, the reciprocal lattice planes
cut the sphere of reflection at a constant 3'above the equator,
Similarly, points having a constant EF value lie in a ¢cylinder about
the rotation axis and cut the Ewald sphere along curves (Fig. 6.)
These curves appear on & cylindrical film as shown in Fig. 7. [rom
this we can prepare a chart, for a series of constant ¥ ana F y 8lso
taking into account the radius of cylindrical film, known as Bernal
chart, Fige. 7. Such a chart can be superimposed directly over the

film and the 3 and g} co-ordinates of each spot of reflection can

be read direetly off the chart.

Measurument of unit cell dimensions (Henry, Lipson, Wooster 1961,p.51)

We have seen that straight layer lines are produced only
when a zone axis of the crystal is taken as the rotation axis. The
spacing between layer lines in a rotation photegraph is directly
proportional to ¥ (Fig. 4), the spacing between reciprocal lattice
planes normal to rotation axis.

Fror the § values of the layer lines on the film we can
obtain a dimension of the Bravais lattice along the direction of the
rotatirg zone axis. Fig 8 shows a unit cell of triclinic Bravais
lattice with the three reciprocal axes. By definition, the directions

of x* y* and z* are normal to the plane yz,zx and xy respectively.
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Hence the se¢t of planes of reciprocal points paralled to x* and y*
perpendicular to the zone axis LGG1] (z axis). The perpendicular
distance between these planes of reciprocal points is denoted by ﬁPD?J

and where fﬁ?01} is the angle between the z axis and the z* axis,

foor} =
By definition c* =
But it is clear that dg(n s
Hence ?[ﬂ01] =

Since a set of parallel planes through the re.:::.i'pracal points exists
perpendicular to each zone axis, this result is general and we
can write

a = nwh/ 9§ (13)
where d is the repeat distance along a zone axis and ‘.Tnis the
value of ¥ for the nth layer line in photograph taken with the
zone axis as the axis of rotation.

If a Bernal Chart is not available, the value of ¥ can be
obtained from a measurement of the distance of any layer line from
the zeroth layer line. 1In Fig 4, it is clear that §/1 = sin ¥
(reflecting sphere radius = 1 reciprocal lattice unit (r 1 u.)
and for eylindrical camera of radius r ,

m/r = tan M
where m is the height of the layer line above the zeroth layer line

Thus by taking rotation photographs with each of the three

erystallographic axes as rotation axis we can determine the

dimensions a,b,c, of the unit cell.
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Diagram showing the relation between the z axis of

the Bravais lattice and of the reciprocal lattice.
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2.4 Weissenberg Photograph

The rotation photograph methed is an attempt at recording
the reflection corresponding to the three co-ordinates of a
reciprocal lattice point with two film co-ordinates. Thus it is
difficult to identify the spot of reflection exactly. To resolve
this problem, K. Weissenberg in 1924, proposed a moving film method
in whieh only a reflection from one layer of a reciprocal lattice
plane (which is two dimensional) is allowed to be recorded on the
film, Each layer line was singled out by a layer line screen (Fig9).
The film cassette was translated parallel to the rotation axis and
being synchronised to the rotation of the crystal. While the
irradiated crystal rotates, causing successive reciprocal lattice
points to intersect the sphere of reflection, the film is continuousi~
moving, so that, as successive reflections emanate from the orystal,
the film is displaced by a finite amount. Each Weissenberg photogravh
records the reflection for ome layer of the reciprocal lattice plane,
the different refleotions being clearly resolved on different
portions of the film,

N07048

Normal beam photograph of zero layer.

In order to see the relationship between the reciprocal
lattice construction and the appearance of individual reflections
on a film, consider Fig. 10. Suppose that at an initial position =2
central row in the reciprocal lattice is oriented at right angles to
the direct beam, If the points row rotates from this initial positir~
through and angle ¢ , the reflected beam is deviated with respect

to incident beam by an angle 1* . Hence the distance of the spot

P 185E0T &G
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Fig.? Comnonent parts of Weigsenberg goniometer.

7ig.11a Normal beam non-zerc layer Fig. 11h Bqui-inclination
non-gero layer only

Fig.11 Geometric arrangement for the Welssenberg methods
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produced by the reflected x-rays from a line trace of direct beam on
the film is 2¢RW where R is the radius of the film,

The translation of the camera during a rotation of the
erystal through an angle(ii is f*), wher f is the appropriate
coefficient, synchronizing translation of the film and the rotation
of the crystal.

Since Eth? is proportiocnal to fﬁithe reflected spots must
lie on a diagonal straight line sloping at an angle tan—1{2 waf}.
As the crystal rotates through 180° the points along OP will produce
two collinear lines of spots one above the central band on the film
and the other below this bhand. Next consider a reciprocal lattice
row that is parallel to those we have just discussed, but which do
not pass through the origin, and consequently is not tangent to the
sphere at the direct beam trace op the film. In fact as can be sceen
in Fig.10, such a row intersects the sphere of reflection at point X,
and then proceeds to cut it on both sides of this point as the crystal
rotates. (Henry, Lipson. Wooster 1961, p. 84)

A side wiew of the rotating crystal surrounding by the Ewald
sphere is shown in Fig 11a, when the incident beam is perpendicular
to the rotation direction, a blind region develops near the center
of the any upper level. A Weissenberg photograph of an upper level
in the normal beam arrangement therefore fails to record certain
reflections lying near the origin of that level. As pointed out by
Buerger, it is possible to move the rotating point of any level onto
the sphere of reflection. The arrangement shown in Fig. 11b, is
called the Buerger equi-inclination method. This is the case when

the direct beam is inclined to the normal by an amount «,
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This has the obvious advantage that the central blind
region is eliminated and the reciprocal lattice distortion in the
n-level photograph is identical with that of a zero-level photograph,

The setting of the instrument to record upper level requires
a knowledge of the layer line separations parallel to the rotation
axis, This is usually determined by first taking a rotation photograph.

The relationship betwesen the interlayer distance m on the
film and the radius of the camera (film radius) is Rr’ according to
Fig. 11a

tan V

n

n/R, (15)

where sin/ ¥/, = Ef1 Y (16)

In Fige 11 b the equi-inclination angle « is related to ¥ by
sir S R 2 (17)

le can solve for s (Azaroff 1968, p, 441)

It is also necessary to advance the layer line screen opening
by an appropriate amount. The necessary displacement s is determined
by the radius of the layer line screen cylinder r

s = rtanM, (18)

The leissenberg chart

As has been seen, a set of parallel point rows produced a
family of curves on the photographic film. So a standard of such
curves corresponding to point rows at a distance off,1 reciprocal
lattice unit (rlu) apart has been built on the photograph (Fig 12).
It is easy to read off directly the distance apart of the point rows
which gives the prominent family of curves on the photographic film

by superimposing the standard curve on the film.
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Transformation from a film position te polar co-ordinates of the

reciprocal lattice. (Buerger 1965, p. 254)

The diagram of Fig 11b shows that the nth layer of the
reciprocal lattice cuts the reflection sphere in a circle of radius

Re 4#nd the radius of this circle is evidently given by

cos¥ = R (19)

and is controlled by the relation:
sin ¥ = Sy2 | (2)
Fig.13, corresponds to a view looking along the rotating
axis of the crystal, The reciprocal co-ordinate \i {(in cylindrical

co-ordinates) of the corresponding spot on a film may heigdhiigé;\\\
P Rl
F A S Y o
obtained from the relation. £ ry o

_1_
siw’T/2 ¥ /2 g, (21)

T = %X/R, (22)

where Rw is the film radius, x is the distance of the spot from
the direct beam trace (Fig. 13), and T is the angle between direct
beam and reflected beam, From these relations we can build a scale
of ?xwhich helps us to read directly the f value of each spot from
the film, by superimposing this scale on the film (Fig. 14),

Note that, a different layer, corresponding to a different
radius of reflecting circle, requires a different scale of % value,

The axis of Efis generally taken along the OZI (inclined
axis having slope = Ewaf}, but not along the vertical edge of the film
because in ecylindrical cn—crdinates}thE:F value of each reciprocal
lattice point are on line radiated from the origin which each line
produced a straight line having slope = Ewaf on the film as we have

discussed. ¥We can read the 5 values of reflecting spots in the sanme



Fig.13 Relation of film position and polar coordinate.

o 2R /T

Fige14 Apparatus for measuring % coordinate and angle f.
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row promptly., Since the rotation of the crystal and the translation
of the film are synchronised, an angle ﬁ between each row can be

measured directly from the film.,

Reconstruction of the reciprocal lattice

As in Fig, 14 we construct a 5 value on a side of triangle

sliding along a horizontal ruler so the Hfalnng one side of the
triangle and ¢ , rotation angle of the crystal, along the ruler
cdn be measured.

We can choose any spot on the film as an initial position,
then the f? and Q values of each reflection related to this positio
can be plotted., By this method the reciprocal net was reconstructed,
and we can choose the axis of the rec¢iprocal net. It is advantageous
to choose the axis of reciprocal lattice from the film by first
determining the pumber of densely populated central reciprocal
lattice rows recorded in a 180° rotation interval. From these we

construct the reciprocal net and then index each spot of reflection.
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