CHAFPTER II

EDDY CURRENT IN DISKS

Driving Forces and Torque

A large thin metal disk, 2s in Fig, 2,1 is pierced by fluxes
¢7 and §%, These are the r.m, s, values of auc fluxes, in quadrature,
Such fAuxes will be called a flux pair, Fach is a uniferm flux within
2 circle. The distance between circle centers J and K is a centimetres,
The fluxes have a sine wave variation at frequency f, The circles do
not overlap.

The variation of Py sets up concentric eddies in quadrature
with Pg. Eddy current maximum occurs when O is maximum, Oy
eddies act on Py to produce 2 sine squared wave of force, It will be
shown that the average force, Fyy in dynes, acting along Zy or s is

Fry = G/S {2.1)
where G is developed further along.

The force Fyy is actually 2 resultant force made up of an
infinitude of forces, each due to an element of current reacting with
the flux in the J cirele, The problem of finding the resultant can be
avoided by resorting to familiar analogous situation,

In the analogy, the two circles become sections of long
parallel conductors, normal to the paper, Conduetor currents, Iy
and Iy, are distributed uniformly, Iy sets up a concentric magnetic
field, If long since has been shown that

{a§ Outside its conductor, the field due to Ix is the same
as if I were centered [concentrated in a wire of infinitesimal seckon

at K]

{b) The force due to the distributed I; reacting with the
flux of L is the same as it would be if I were centered at J,

{c} The force per unit length for such a combination is
proportional to { I7 Ik }/s
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From . the analogy, it is clear that in our disk case, Ox
can be centered at ¥, becoming a pencil of flux; OF can be centered
at J, and FKJ ¢ 07 0k /S

Development of G.

In Fig. 2.2, {4 has been centered, thereby becoming a flux
pencil, In centering O3, we have ds, at J. The force originating in
this square is Fy 7, and it now can be developed fully,

The r.m.s, voltage E developed by in the disk turn = 1
and acting around the current ring of ds width is given by the famniliar
equation

E = 27f0gx 1078 (2.2)
where E = r,m.s, value of induced voltage
O = rom.s, value of anc flux

To {ind R, the resistance of the current ring,

o~ = disk resistivity, ohm per cm,
b = disk thickness, centimetres
27S =  path length '
bds =  path section
R - A2 78 (2.3)
hds

To find the r.m. s, current of the ds by ds square

I = E/R
27f O -8
732 7 S x 10
bds
b B, ds -

£ 5

The force in dynes is given by the familiar form, BIL/10,
In the ds by ds square, B = /{ds) x {ds), Iis given by the equation
above and L is equal to ds. The force is then,

) oy . oy 10"8ds 1
Fky = bmss@mi*tms b {ded x g
J PK ~9
= x 10 (2.5)
-
fb O
Let G - ﬁ']. K x 109 {2.6)

yu
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Fi = G/S dynes (2.7)

Because this force is the product of two effective values,
and because the current and flux concerned are in phase, the force
Fygy is the tirne averapge of the actual force,

Torque

The torque Ty ¢ (Fig. 2,1) due to force Fy y acting at lever
arm D about some point O, in dyne = centimetres, is

Txy = Fgy D

= G D/ (2. 8)

Reciprocity Law and Torque of a Flux Pair

It is obvious that in addition to Fyrqs there is an equal
foree Fry, due to J eddies acting on Og. Thus thereisa reciprocity
law as to forces, The total force ig the sum of the two, Thus, fora
flux pair {either in nonoverlapping circles or as pencils] the total F
is

Fp = 2 -GS {2. %}

As to torque, both forces act with lever arm D, Thus there
is a torque reciprocity law, Then the fotal torque Tp for a flux pair is

TP = 2 G D)’S {Z, 10}

Circular Disk

If an 2 « ¢ flux pencil at X, Fig. 2,3, pierced a circular
disk of radius A centimetres, the eddy current cccur in eccentric
circles,

On a very large plate disk, Fig, 2.3, lay out the disk circle
as shown. Extend OK, The imape of the K « pencil of flux can be located
at K', by theory long since develcped, 1f OK = R

KK : (a% . R%)/R
oK' - KK' + R
_ Al . Rré
- A=+ R
- a%/R (2. 11)
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The image of K! pencil is equal fo the Kwpencil but is opposite
in sign. Acting together, the pencil pair will set up the double eccentric
eddy pattern, and within the disk circle, the eddies are identical with
what the K~pencil alone would set up in the real disk.

Passing to Fig. 2,4 we avoid eccentricity troubles by dealing
with the flux pencils individually. In the large disk, the K~pencil seis
up ¢component concentric eddies about itself and likewise, for the K'«
pencil, (Note that this pair within itself creates no net force, the
eddies of each are in quadrature with the flux of the other,)

The foregoing is applied in Fig., Z.5 where a disk is acted on
by flux pair. The flux @ can be centred first at K, The Kupencil
jmage at K' is located next. The flux pair creates a total force as
expressed in the equation:

FP > Z‘GJ'IIS

and a tatal torque 23 given by the equation;

T 2GD/s

P

Similarly, the flux pair @7 and @}, yield another {smaller} force and
torque, the force acting aleng 5° szl: lever arm D!, Since the Image
flux is opposite to the Kwpencil, the image torque opposes the direct
torque, and the net torgue is

Tp = 2G{ 8 B (2. 12)

General Torque Expression; Circular Disk and a Flux Pair

To develop a pgeneral torque expression, use the additional
constructions given in Fig, 2,5. Instead of lever arm D and D! lever
arm C or OF will be used, This calls for the nse, not of the whole
forces along S and 5%, but of their horizontal components {taking C
as vertical,] The components are H/S and H'/ §', respectively,
times two forces. The total torque can be written then
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CH CH!
Tp = 2G (g2 = %)
H H'
- ZGC --2 L] --2 2, 13

2 2 '
In equation above H, H', 5 and 5' can be replaced as follows, if @
iz the angle between C and R

Hd = R sin @

2
A .
H' = = o
= 8in

Using the cosine law of triangles

52 = CE+R2HZCRCOSG
_ Z 2 2 2
and 5'2 = C +({4&A R} ~2C({A /R)cos@
L / > _ :
T. = 2GC R sin @ . { A"/R ) sin @ 2 14
P [CﬂR‘ﬁZCchsG C¢+-{ﬂdIR]‘4HZG'A':IR} cos @ { )

s ! sing sin O ]
A
I{GTRH[RJ"C] cosd {CR!AZH{AZJ"GR}” 2 cos @ J

(2. 15)

_ G sin © ) G sin @ (2. 16)
LG 4By . 1 (CR, A '
Z{R CJ cos @ 2{E+GR] cos @

If T and K are equidistant from O, C = R, and the torgue reduces to

T = { sin@ gin ]
F G[]--c:os@ 1{9]2 + 1 ["E'.‘ zucosG J &1
Z'a 2 'C
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Variation of Disk Torque With Flux Pair Radius

Let the a - ¢ driving fluxes of a circular disk consist of a
flux pair at the same radius{ C = R} either circle may be of any
size, However, the circles may not overlap, nor may they fall partly
outside the disk, if the equations are to hold. [f @ is taken constant
at 30 degrees, for example, a curve of torque versus C for a disk of
fixed A can be worked ocut, This curve, for G » 1 {for example,
when f = 50 cps, b = 0,095 cm, @K =@y ¥ 22,7 maxwells, and
/2 =2.83x10+5, ohm per cm, G is unity) is shown in Fig, 2,6 in terms =
of TP versus C/Al The trends of this curve are interesting.

As C approaches A, the images move in closer to the disk
circle and have an increasing negative torque effect.

As the flux pair is made to retreat from the disk edge, the
images move out and diminish in effect, and the net torque increases.
But as C is reduced further, one is tempted to conclude that since
low C means low lever arm, the torque would fall off again. But it
must be remembered that under the conditions, S is proportional to
C and that eddy current strength, for example, caused by O through
J, is inversely proportional to 5. Therefore, torque will not fall off,
Inspection of the last equation above shows that as C/A approaches
zero, Tp approaches a constant value. The achievement of the
greatest torque at the least possible radius may be somewhat surprising.

Disk Torque Due to Irregular Fluxes

Disk driving torque can arise due to two fluxes in quadrature,
neither flux being ceontained within a circular area and both having
irregular density distribution. Maoreover, the fluxes may overlap
greatly.

L A.D. Moore, "Eddy Current in Disks.!" AIEE Transactions
{on power apparatus and system) Vol. 66, 1947, p, 4
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The area where a flux pierces the disk can be divided into
a number of rectangular areas, each containing a knewn amount of
flux, The other flux is treated likewise, In each little area, the
flux of that area is centered arbitrarily; it becomes 2 flux pencil
located somewhere within the area, If the two fluxes are (05 and
@k, every J - pencils eddies must be allowed to react with every K
- pencil, also [ for the image ) every J' « pencil must be allowed
to react with every K » pencil, and a summation must be arrived
at somehow. The amount of work involved in the solution could be
great, if carried out in terms of equation (2, 14), or (2,15},

Instead of using these general forms, it is much faster to
retreat to the form of torque as given in equation {2, 10), The case
can be drawn to scale, D, S, D, and §' values can be measured
directly, and the computing can be done by using a slide rule, Even
s, the fairly accurate treatment would call for many measurements
and a good deal of slide rule work.

. : L
Braking Forces and Torque i VAL

An electromagnet or 2 permanent magnet puts a flux, uniformly
distributed and of density B, through a circular rotating disk, within
the area shown in Fig, 2.7, The area has any size and shape, There
may be more than one area, each with its own density,

The description of the Foucault currents caused by rotatiom,
and the finding of resulting forces and torques heretofore have not
been attacked successiully for snch general cases, Solutions can
he achieved by means of what is believed to be a new concept, by
the use of some of the a ~ ¢ developments already described and
of some development yet te be mentioned.

Flux Band and Pencil - Pair Concept.

The {lux can be divided into bands, each of constant radius
and narrow width, such as band JK in Fig, 2, 7,Radial elements of
metal sweep through the flux of the band and set up a2 constant
electromotive force aronnd any such paths as path 1 and path 2,

18365066
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The concept referred to above is this; the same electromotive
farce can be set up around such paths in a fixed disk by means of
pencils of flux piercing the disk at J and K, these being opposite
flux pencils, and both increasing or decreasing at the same rate.
Adoption of this concept makes it possible to define the current set
up by the JK flux band and by all other such bands. The concept of
fixed disk and pencil = pair is used only to define the current, The
currents are allowed then to react with the actual flux in order to
find forces and torques,

The adoption of the changing pencil pair makes it possible
to adopt the image and conceutric current ideas already fully outlined
in the 2 = ¢ developments,

Force Due to a Pencil, and Flux in an Angle,

In Fig. 2.8, there are two flux areas, area 1, and area 2,
with densities By and B;. A narrow flux band JK at radius r in
area 1 is replaced for current effects by flux pencils J and K
changing through a fixed disk, As in previons developments, J
has its {opposite} image pencil J' and K has its {opposite) image
pencil K',

There are four flnx pencils through a large disk, each
getting up concentric eddiea about itself. The reaultant of these
four current patterns would be identical within the disk circle,
with the actual current set up in the rotating disk by the JK flux
band., Such of these concentric currents as pass through the areas
will react with B; and B, to produce forces,

Throughout, we may think either of the flux pencils as all
constantly increasing or as decreasing, Herein, they will be treated
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ag decreasing., With rotation as shown in Fig, 2,8, and with downward
flux, the electromative force due to flux band JK would be cutward.

B

Tl!lﬁn the four pencils would have signs as shown in Fig, 2,8 (b} and
they would set np currents as shown., Theae currents would tend to
prevent the {decreasing) change of the flux pencila.
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FIG 2.6 (45
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The flux band electromotive force due to rotation, in volts
per radial centimetre, is

E - wrByx10°® (2.18)
where E = e, m, f, due to rotation, in volt per radial centimatre
w = angular velocity in radians per second
B1 = d -~ ¢ [lux density

Ascribing this electromotive force fo flux pencils in a fixed
disk, we now find the currents element di of width ds, flowing
concentrically about J at radius S frem J, the resistance R offered
to di is given by equation (2, 3]}then

di = E/R

b E ds
LTS

Consider the resultant dynes force df caused by the di
current are within the angle o4 {see Fig, 2. 8).

It is shown easily that the force due to the current arc is
the same as if the current flowed aleong the chord, By symmetry,
. the force acts through J,

Chord = 25 sin ‘;
F = {BIL)/10 dynes, in general
df = 0. 1B, 25 sin~ o di
2
= (0.2 B, sin7 ) § bEds
2 FPo7Ts
_ .ok bEds
= 3,18, sin = —_— 2,19
(0.18, sin%) —2EL (2. 19)

Let ¥, in dynes per centimetre of r designate the forces due
to J ~ currents acting on B, flux contained within the areza bounded
by ares of radius 5, and S; and angle «
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2
F:.: = df
5y
SZ
) inc %1 bE
= / (0. IBZ SR ds
5)
- _xs hE

If O {equal to radius r} is taken vertically, we need the
‘herizontal component of F,, which, acting through J on lever arm
T or OJ, produces torque about O. The horizontal component,

L

FoiH = c-::-aﬁ FD‘IL

= (sin ;] {Szn Sl] Cos B j——r- 1 b—L

B
= {sin %) |{S. = S.] cos E--l-lj- 2WIB) x 10-8
BLLLSE ' COS P
_ L — ) 9
= {s.m:‘} [[,S2 SIJ cos B J TT x 1077 {2.21)
To abbreviate, let
M = gin w
n = (S) » 5 )cosp
wl = _w_z_ w ].[:].“9
Hence,
Fci;H = Mnw* {2.22}

Integration of Horizontal Forces; The "Alpha" I‘:rha!t:r:t2

Some means of integration over the whole of area 2 must be
found, For this, the "alpha'" chart is devised as shown in Fig, 2,9 for

2 Inid, p. 8
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example, this example being drawn for o = 20 degrees, M = 0, 1736,
In the 2, b, ¢, d area, it will be evedent that n, or {5, ~ 5,) cosp,
can be read directly from the vertical parallels spaced one centimetre
apart, when the main line of the chart is lined up through disk centre
O and chart apex is placed at pencil J. In this example, n = 6,9 - 2.4
= 4.5,

The total horizental force Fyy due to J « currents through D>
in area 2 would be {approximately} proportional to the sum cof the

several ]";{.H values
Let N = 0 (2.23)

In the example, start at peint P, proceed clockwise around
the perimeter of area 2, and read off successive values,

N = (5.2 4 0.9+ 7.7+5.3)~(3.1+2,5+2.4+2,5}
In general
Fy = MNw® dynes per centimetre of ¢ {2. 24}

In practice, several "alpha' -::h.ari:s3 are needed, with
ranging from small to large. By selecting the right chart to use on
a near or far area, the area can be sliced always in to enough sectors
to insure high accuracy with minimum time spent at reading and summing
up, The summing is done most easily by putting the readings directly
onto the adding machine,

The less accurate readings are likely to be achieved where the
radial lines soon leave after entering the area, as at ee in Fig. 2.9.
In such cases, a correcting mental estimate is easily made, In general,
the errors of this approximate chart method tend to cancel out, and
high accuracy is achieved,

Torque: One Flux Interacting with ancther

If T in dyne « centimetres per centimetre of r iIs the torque
due to Fy acting at lever arm r (or OJ), then

3
Ibid, p. 8
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Tr = Fyy v
= MNwtr

z
MNwbB B . r 9 2. 25)
= 7P x 10 al

let

wbB., B
W = ._.]'—2 x 1{}”9
e

T - MNW % {2, 26)

Appropriately select severzl different radii from inner
radius R; to outer radius R, 2and find Mer for each, This work is
routinized and curried out in tabular form with the aid of "aipha"
charts, W is commeon throughout and should be omitted until the
tabulations are added up,

Plot a ¢urve of MNJ:2 versus r. Find the mean ordinate and
call it T4, Then, if Ty in dyne - centimetres is the torque due to
all J « pencils on the J » side of area 1,

Ty = Ta{Ro=Ry) W, {2.27)

Ty is found likewise for all K - pencil on the K « side of area 1, The
torque due to the image ~ pencil’s currents requires a different
treatrnent, because the forces act through the image, For the J!
imagse,

1t

T

r

{oT%) F

I

MNw! (OJ?) {2.28)

N is found by now centering the '"alpha" chart apex at J'. Ass
previously shown in equatiou (2, 11)

on = a%lr

MN wrb B, B 2
Then Tr = 172 x lﬂ‘g x f}
: "J?“P x




p
MNA wbB; By 9
T = x 107
I W‘P

MNWAZ (2. 29)

For the same severa} radii from R, to R, as used before,
MNAZ? is found and plotted, T, is obtained, and

T = Ta {R, - R; 1w {2, 30}

Ty is found likewise,

All four torques are combined then to get the net torgque Ty, ,
expressed positively as a braking torque, thus

le - TK - TJ - TK: * T Jt [2,, 31)

The routine above was presented in order to make the analysis
easily understood. However, it requires plotting four curves. This
can be avoided by combining, in the tabulation of data, the MN 12
values {four iu all for each r used} and then plotting only one curve
and finding only one Tp from it,

T1p is the torque due to all currents originated by area 1
ackiug on the flux of area 2,
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