CHAPTER 1V

PROXIMITY EFFECT SANDWICHES
CONTAINING

NONMAGNETIC LOCALIZED STATES

In this chapter, we present the extension of McMillan's calcu-
lation to the case when the normal side contains nonmagnetic localized
states. ‘The Hamiltonian of the total system therefore is identical to
that of McMillan except for the inclusion of resonance scattering and -
Coulomb correlation terms describing the effects of the nonmagnetic
impurities in the normal film. As in McMillan's theory, the transfer
Hamiltonian is treated self-consistently up to secqnd order in pertur-

bation theory.

4.1 Gap Equations

The physical system we are interested in is similar to that of
McMillan (7) (see Fig. 3.1) except that the normal layer contains
randomly distribution of nonmagnetic localized states. Both N and S
films are assumed to be clean ( £ ~ d) and the coherence length ’E‘
be much larger thén d. The purpose of this section is to derive self-
consistent equations for the renormalized superconductivity energy-gap
functions in each film. The gap functions determine the nature of the

one-electron excitation spectrum in the superconducting state.

The Hamiltonian for such a sandwich in the McMillan tunnéling

model (7) is given by



47

= + H_+ H . . : (4,1)
3 He BBy Sy

(a) HS is the total Hamiltonign of film S and is given by

BCS
= + H .
Hg Hos Sss (4.2)

H is the noninteracting Hamiltonian for the superconducting film

0os
BCS: ; : s ; "
and HSS is the BCS interaction between superconducting pairs with

coupling constant AS'

(b) HN is the total Hamiltonian for the nonmagnetic alloy

film and is written

=, + H + .
HN HON res Hcorr e

HoNisjthef.noninteracting Hamiltonian for the alloy. The resonance

scattering are described by

R = :E :E (

N O b, LAY ¢ 4.4
res i . k'Jsph K3l dsk's. k] k'sts) ( )
where b;,s and bk's are creation and destruction operators for an
s-electron state with spin s in the alloy film, and similarly c;s
and c_.ls for a d-electron state and spin s. :Ei is the sum over

impurity sites. It is assumed that there is no significant interac-

tion between different impurity sites.

The effect on the pairing of the d-d Coulomb repulsion U is
given by

.=—§i %Ad“*cf )

corr i1 j4+ cj&cjf (=5

where
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Aq =-U<cd‘L édf> (4.6)

(c) The electrical contact between these films is described by
the transfer Hamiltonian HT given by
H, = T Z (At by A BT ja e EoE B, (4.7)

' -
T mo k 'k k

Tm is the transfer matrix element assumed independent of k and k'.

The Hamiltonian H in Eq. (4.1) is treated self-consistently to
second order in both T and V in the Nambu-Schrieffer formalism for super-
conductivity (60). The equations for the 2 x 2 matrix self-energies are
presented in diagrammatic form in Fig. 4.1. ES(QD and Zn(a» are the
self-energies of superconducting electrons in the superconducting and
normal films. Ed(u» is the self-energy of d electrons in the normal
film. The double lines represent the full matrix propagators Gs(uﬂ,
Gn«u) and GdUQ) for electrons in the superconducting and normal films

and d electrons in the normal film respectively.

The term (a) in Fig 4.1 represents the BCS pairing correlation

an f1lmes . B ds gimen by
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where A is the usual BCS order parameter.
s

Term (c) and (e) describe the resonance scattering of s electrons
with d electrons in film N. These terms are obtained by using the
standard technique developed by Edwards (60) and by Abrikosov and Gor 'kov

(61) and are given by
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‘:
A FON e Ty
N kj 3 3 Gdj ﬁu)’t3 (4.9)
and
2
res Z .
Zd = [vkj | - Ty Gl T (4.10)

Term (b) and (d) represent the penetration of electrons

through the barrior. These self-energy terms are

tunneling 5
= T
Z T E Ty Cpger (@ Ty (4.11)
s X
and
tunneling 5
= T
;4 T, E 3 Gg @ '(.3 (4.12)
” X

Term (f)arises from the Coulomb repulsion of opposite spin d

electrons and is given by

) 2 = A_ % e 3

In the usual way, we write

Gsk(aJ)

=1
[zs(w)wl — Ty~ b tw) 'r,l] (4.14a)

=
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I

zgrwl-¢, v- ¢ (@) Tl] (4,14b)

=1
5 [zd(w)wi = 8 g 8, (49) fc:l] (4.14c)
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where ] is the 2 x 2 unit matrix, ’Cl and ’C3 are Pauli matrices.

Substitution of Eq. (4.8) into equations represented by the diagrams
of Fig. 4.1 gives the following self-consistent equations (at tempera-
ture T)

z(w) 1+ gy (@) (4.15a)

(g ) + 2.7 (w) el K

P (w) N LT (4.15b)

= 2 2 297

[¢N (W) + 2" (W) w]
FNZS(UJ)
2.4 fad) = X4 2 2 2 5
N [¢S (w) + ZS () ]
Z_(w)
¥ 3 rd a (4.16a)
mN,_(0) 2 2 2 Rt
N ¢d (ou)+zd (w)ou+Ed
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Fig. 4.1. Self-energy equations in diagrammatic
form in film S and N. GS@») is the full electron
propagator in film 8§ GN(w) and Gd(uﬁ are the full
s- and d-electron propagators in film N. Tm is the
tunneling matrix element. DS is the BCS electron-
phonon interaction in film S, U the Coulomb repulsion
of opposite spin d electrons; the crosses represent

resonance scattering at an impurity site, with matrix

_elements de.



- 52

Sy I_N ¢S(wl )
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$.(W) = Fig @1} 14.170)
< - W)+ Z 2(0)) uﬁ &
[ oy 2t 2 ]
where w = (2n + 1) WCkBT, n is an integer. rS and !—N are
the McMillan tunneling parameters, defined as in Eq. (3.8). [~d is

the half-width of the d resonanceée and Ed is the displacement of its

centre from the Fermi level. ra is given by

ry = NN(O)TEIV 'jl . (4.18)

n is the impurity concentration in atomic fraction.

At temperature T, the self-consistent potential Asph is

given by

Asph = 27\SNS(O)'KkBT z ¢s(w) (4119)

e 2 2 24%
(lw|<wD)[¢S TR W)l

Egns. (4.9), (4.10), (4.11) and (4.13) can be simplified by introducing

— N a (4.20)
Ps Py P

so that
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u APh = w + rs(“N’ ug) (4.21)
s “g
b
1+ u )
I—N(uN— us) = ga D l_d
2. %
@+ ug ) 'ITNN(ol
2. %
X (ag= ) (1 + u) (4.22)
h 5 2
[ocASP (1 + ) +Fc;](1 * 0.")
au, APD = we Falug ug (4.23)
2.5
(1 + uN )
and
ph o :
AS }\SNS(O) 2'Tka'I‘ 2 12 : (4.24)
(jol < w ) (Lmm)

where, as in Tang and Roongkeadsakoon theory (5),6= Ad/lﬁsph

constant.

4.2 Transition Temperature

The equation of the critical temperature Tc for the NS sand-
wich is obtained by linearizing Egs. (4.15) to (4.18) by the expansion
method of Shiba .(60), by substituting into them the expansion of us,>

: prh
wr Uy in power of AS

g o= a A Phea /AP | (4.25a)

=
|

by BB £ B o KPR (4.25b)



u, = ¢ Asph+c_l/ASPh (4.25¢)

d 1

: h ’
Equating the coefficients of Asp and 1/ Asph of the resulting

equations, we have (See Appendix A)

_ (w+Tb_; (4..26)

Sb_) +TQ)

Fyw 4 np My w
(w+[) RN O (w + Fd)z
b = 5 (4,27}
l_N + nIrd oL
w+rs 'KNN(O) 8 +[—d)2

W +

g A (4.:28)

e VN [a—lbl S P ) ] (4 29y
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and

"
'IINN(O) R 4 PR 2

b, _[n Lo odf a= D ol bbb o — b

2 U P
slpi =D F AT BaE g, )] [——————N =

3
2a__l b_l (b_l+rs)

2
+ nl Py

} (4.30)
2
’T[NN(O)c_l (b__l + | a )
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c, = F r—lbl T a—l] , (4.31)
1
Vs 2

Equations (4.18) and (4.19a) giye the equation for Tc

3y

1n = 2Tk,T, E (X =1 ) (4.32)
w

a

.
'I‘B- w -1
(&

where TB is the transition temperature of the Bulk material of film
'c.

S.

Eg. (4.26) have been solyed by computer using a trial-error
procedure (see Appendix C). We have plotted the resulting values of

Tc as a function of impurity concentration np in Fig;. 4.2

4.3 Jump of the Specific Heat at the Transition temperature

The jump of the specific heat AC is easily evaluated by
employing the equation for the order parameter near TC. In-fact.
after substituting Eq. (4.1%a) into Eg. (4.18), we have

B

h
In TC' = B, (B0 B, T)( ASp )2+ (4.33)
[ T = 5 I F __—27'(]( T
Ly B
wvhere
(0 o)
BO(nI,T) = 2‘!'LkBT E (=1 ) (4.34
n=0 w a
-1
and
3 o y
B (n,m) = 2Tk D> > (a+ 1)(1)° (4. 35)
J. 2= B 1 — —
n=0 a a

-1 %
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Fig. 4.2. Reduced transition temperature Tc/T vs.
0

?

t

c
impurity concentration ny for rd 210375 eV, Ed =0
fé = O.Q.AB,l_N = 0.8 AB (AB is the order parameter of

the bulk superconductor),

56



g7

a_q and a, are determined from Egns. (4.20) and (4.23). The difference

between the values of the thermodynamic potential for the superconduc-

ting and normal states of the S layer is expressed as (see Appendix B)

i ER '
S
Q_ -0 = .)’ aAPh (A Ph2 dl/AQ) (4.36)
=t o ° A Es
dAS
which reduces to
‘ T Y
. =0, = C Ns(o)Bl(nI,T) S . (4.37)
(2 TthTc)
near TC. Here use has been made of the relation
. ph ph
J =) =-N_(0)B, (n_,T) B 4 g - (4.38)
AS S A AT >
(2 Tk\8 )
B c

which is derivable from Eg. (4.27) for T 5; Tc. For temperature closed
to T, leph can be determined by expanding both sides of Eg. (4.27)

about Tc to give

2
( Asph)2 = 2(27(]{13,r‘[‘c) (1 + TLaBO(NI'TC) )
Bl(nI,Tc) Vi TC
X (l o ) (4.39)
T, -

The jump in the specific heat at TC of the S layer can be obtained

from the thermodynamic relation
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Fig. 4.3. Reduced specific heat jump AC/ACO at

TC vs. reduced transition temperature Tc/Tc Tor
0

rd = 0.75 eV, E; = 0, FS = 0,24, My = 0.8,
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2
2(21\',kB) TCNS(O) (140 aBO(nI,TC) )2

= (4.40)
2T
Bl(nI,Tc) c
vhich finally gives
P R i (1 + T 9 BT ) 2 (4.41)
]
Ac, co  Bi(np.T) nE

where A CO is the jump in the specific heat at Tc of the pure proximity

effect sandwich.

Shown in Fig. 4.3 is a plot of the specific heat jump AC/ACO

vs. reduced transition temperature Tc/ Tc The numerical values of

o
Fi¥ory ACO are computed from Eg. (4.35) by substituting into . it the
values of nI and the coxresponding Tc as obtained from Eq. (4.26)

(see Appendix Q).
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