CHAPTER I

BULK SUPERCONDUCTIVITY

This chapter reviews the historical background and some of the

essential concepts about superconductivity which we shall encounter.

1.1 Early Experiments and Macroscopic Theories

As is well known, many metals and alloys become superconducting
below a certain temperature T, - the temperature being different for
different materials. In this state the d.c. electrical resistivity is
zero. This was thought to be simply a case of infinite conductivity

for more than twenty years after its discovery by Kammerlingh Onnes in

1911,

1.1.1 Meissner Effect

It was not until 1933 that Meissner and Oschenfeld (9) showed that
a superxconductor is a perfect diamagnet. Thus the magnetic field B
penetrates only to a depth A = 500 R and is excluded from the main body
of the material. Even when cooled into the superconducting state in
the presence of a magnetic field, the flux is expelled from the interior.
If one (incorrectly) argues that the vanishing zero-frequency electrical
resistance implies that there can be no electric field (of any frequency)

in a superconductor, Maxwell's equation

Q)
wl

|

VXIE = —%, (1.1)

2

ot

shows that the magnetic field present in the normal metal will be



"frozen in" when the metal becomes superconducting. This is contrary
to the Meissner effect, which states that the field is expelled in the

superconducting phase.

1.1.2 Thermodynamic Properties

In zero magnetic field, there is a second-order phase transition
at Tc. The jump in specific heat is generally about three times the
electronic specific heat ’[TC in the normal state just above the tran-
sition, where 9 is a constant characteristic of the material. In well-
annealed pure specimens the width of the transition can be as small as
lO"4 K although this is not believed to be the intrinsic width of the
transition. As T / Tc-e-O, the electronic specific heat generally falls
as a e_b/T, presumably due to the energy gap for creating elementary
excitations. A plot of the specific heat of a superconductor is shown in

3

Fig. 1. PFor T :& Tc / 2, the curve is reasonably well fitted by T,

where o 1is a constant.

In the presence of a manetic field the N-S transition for a bulk

specimen is first order, i.e., a latent heat is involved.

1.1.3 Gorter-Casimir Model

In 1934, Gorter and Casimir (10) advanced a phenomenological model
to account for the thermal properties of a superconductor. Their general
assumption ié that a fraction of the electrons condensed into the ground
state and take part in superfluid flow, while the rest behave normally

and contribute to the specific heat.

If x represents the fraction of electrons which are in the
"normal" fluid and (1 - x) the fraction condensed into the superfluid,

Gorter and Casimir assumed that the free energy for the electrons is of
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Fig. 1.1. .The electronic speéific heat of Sn.



the form

P (x;T) = Xlifn (T) + (1-x%) fS(T) (1.2)

where fn and fS were chosen to be
" 2
fn(T) = =Lq9T (2:..3)

where <y is the usual coefficient defining the electronic specific

heat, and
fs(T) = - /3 = const. (1.4)

In the normal metal the electronic free energy is just Eq. (1.3) . so
that the free energy of the S- and N-phases agree when (1 - x) — 0,
i.e., at Tc . The energy _/9 represents the condensation energy
associated with the superfluid. By minimizing F(x,T) with respect to
x for fixed T, one finds that the fraction x of "normal" electrons at

a temperature T is given by

% - (% ) (1.5)

From the thermodynamic relation
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one finds from Egs. (1.2) - (1.5) the expression

2
HC(T) = Ho[l = (T/Tc) ] (1.7)

For the temperature-dependent critical field. Thus, Hc is predicted
to be a parabolic function of (T/TC) + in rough agreement with experiment,

In addition, the free energy gives the electronic specific heat in the

S-phase :as

3
Ces(T) = 3’(TC(T/TC) (1.8)



so that the relative jump in the electronic specific heat at Tc is 3;

again in general agreement with experiment.

1.1.4 The London Theory

In the year following Gorter and Casimir work (10), F. and H.
London (11) developed a phenomenological theory of the electromagnetic
behavior of superconductors. Their scheme is based on a two-fluid type = -
concept with superfluid and normal fluid densities n_ and pn plus the
associated yvelocities LA and vy Owing to local charge neutralify, the
densities are restricted by n; & nn = n, where n is the average number
of electrons per unit volume, The super and normal fluid current densities

are postulated to satisfy
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The first of these equations is nothing more than F = ma applied to a
set of free particles of charge -e and density n_. Apparently the
superfluid is affected by the usual scattering mechanisms which produce

the finite conductivity 0; associated with normal fluid.

The second (and most famous) equation of the London theory is
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This latter equation leads to the Meissner effect. One can see this by

considering the curl of one of Maxwell's equations:
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where we have neglected the displacement current and the normal fluid
current Jn since we are interested in the static Meissner effect. On

combining Egs. (1.10) and (1.11) one has

== = 2 2 = 2 . =
VB = (41Yns e” /mc") B = (1/a) B (1.12)
where the London's penetration depth £ is defined by

_ 2 2. %
?\L = (mc” / 4'1Tns e”) (1.13)

If Egq.(1.12) is applied to a plane boundary located at x = 0, the
magnetic field (parallel to the surface) decreases into the supercon-

ductor according to

B (x) = B(O) ey _ (1.14)

Therefore the magnetic field vanishes in the bulk of the material and

one obtains perfect diamagnetism as required.

To understand the relation between London's two equations (1.9),
(1.10)  we notice that &he curl of Eg. (1.95) is the time derivative of
Eg. (1.10). Therefore, outsidé of a constant of integration, the Meissner
effect follows from the "perfect" conductivity of the superfluid, i.e.
Eq. (l.9a). By postulating Eg. (1.10), the Londons added the allimpor-
tant restriction that'E = 0 inside the sﬁperconductor regardless of its

history, which is the essence of the Meissner effect.

If one combines the result Eg, (1.5) of the Gorter-Casimir

model
(L %) = R (T/TC)4 = n (T /n (1.15)

for the temperature dependence of the sumerfluid density, with London's



expression Eq, (1.,13) for the penetration depth, one finds

x(m = a©)/[r-(r/rnY (1.16)

Thus, for T-= Tc’ A =00, so that no flux is excluded at T« As T
drops infinitesimally below T, A decreases rapidly, thereby esta-
blishing the Meissner effect in bulk specimens for all T < T.. This
temperature dependence is surprisingly close to that obseryed experi=
mentally although the results of the microscopic theory are in some

what better agreement with experiment than is Eg. (1.16).

1.1.5 Pippard's Nonlocal Generalization of the London Theory

The basic equations (1.9) and (1.10) of the London theory are
"local"” in the sense that they relate the éurrent densities and the
electromagnetic potentials at the same point in space. On the basis of
numerous experimental results,Pippard (12) cOncluded'that these local rela-
tions must be replaced by nonlocal relations giving the currents at a
given point in space as a space ayerage of the field strengths taken
over a region of extent EO ~ 1074 cm about the point in question. One
of the most compelling arguments for this generalization is that the
penetration depth A increases appreciably if a sufficient amount of
impurity is introduced into the material. This effect sets in when
the mean free path £ of electrons in the normal state falls below a
distance g, known as Pippard's "coherence" length. As we shall see,
Eo is a measure of the pair bound state from which the superfluid wave
function is constructed. In the microscopic theory it is related to
the energy gap 2/\ by Eo = hvf/'lIA ; where vp is the Fermi velocity.
On the other hand, in the London theory A 1is not expected to be appre-

ciably affected by impurities, particularly near T = 0, where all of the
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electrons are condensed. In choosing a form for the nonlocal relations,
Pippard was guided by Chambers' nonlocal expression (13).rélating the current
density and electric field strength in the normal metal

Sty = 3¢ (B R-Ba] ™ ;5=7-7 (1.17)
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where ¢ is the long wavelength electrical conductivity. Chambers':
expression is a solution of Boltzmann's transport equation if the scat-
tering mechanism ié characterized by a mean free path Z. For field
varying slowly over a mean free path £, (1.17) reduces to Ohm's law J

= ¢ E., With Chambers' expression in mind, Pippard assumed that London
's equation

S e Alx) i) =nS(Tle2 o 41.18)

s c /A (T) "TAM =

should be replaced by

Bt wnt il S'_ﬁ R-Ak] a3 (1.19)
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The effectiye coherence length ¥ is given by

- (1.20)
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where o 1is an empirical constant of order unity and fé is a length
characteristic of the material. For a pure material, Pippard's equa-
tion reduces to London's equation if A (r) varies slowly over a cohe-
rence length. For an impure material, Pippard's equation leads to an
extra factor ¥ /B, < 1 multiplying (1/ ¢ A ) in London's equation
in this long wavelength limit, thereby increasing the effective pene-
tration depth. In most cases distances of order AL B are of
importance in penetration phenomena so that the full reduction X /7 go

is not effective. In highly impure specimens } is of order or greater
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Y
than f and one has A ~ (g, JAE.

1.1.6 Isotope Effect

The isotope effect shows that lattice vibrations play an
essential role in bringing about superconductivity. Experiments were
undertaken independently by Reynolds, Serin et al.(14) at Rutgers and
by Magwell (15) at the National Bureau of Standards in 1950. In
particular, one finds that the transition temperature TC

T, oc_i%z (0~ %) (1.22)
where M is the isotope mass of the material. The mass would not be an
important parameter unless the motion of the ions is involved, which
suggested that superconductivity must arise from some sort of the

lattice vibrations.

That the electron-phonon interactions lead to an effective
attractive interaction between electrons by exchange of virtual phonons
was shown by Frohlich (16) by use of field-theoretical technigues. His
analysis was extended by Pines and Bardeen to include Coulomb interac-

tions.

1.2 Microscopic Theories

The next major step was made by Cooper (17), who showed that if
there is an effective attractive interaction, a pair of quasiparticles
above the Fermi sea will form a bound state no matter how weak the inter-
actipn. 'If the binding energy is: of the order of kB Tc, the size of the
pair wavefunction is of the order of lO—5 to lO“4 cm. This calculation

showed definitely that, in the presence of attractive interactions, the
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Fermi sea which describes the ground state of the normal metal is

unstable against the formation of such bound pairs.

However. one could not use this calculation immediately to
construct a theory of superconductivity. If all the electrons within
» ~ ky T, of the Fermi surface form such bound pairs, the spacing
between the pairs would be only ~ 1076 cm, a distance much smaller
than the size of a pair. Because of the considerable overlap between
the pairs, because of the exclusion principle and required antisymmetry
of the wave functions, they cannot be regarded as moving independently
Thus, the picture proposed earlier by Schafroth (18). , and developed
more completely in cooperation with Butler and Blatt,(1%) of electron pairs
as "localized entities (pseudo-molecules) whose center-of-gravity
motion is essentially undisturbed", and which at low temperatures under-
go an Einstein-Bose condensation, is not valid. New methods were re-
guired to construct a theory of superconductivity, and this was first—

accomplished by the joint efforts of Bardeen, Cooper and Schrieffer. (20)

1.2.1 The BCS Theory (20)

One may describe the low-lying configurations for the normal
phase of a metal by specifying the occupancy in k-space of the quasi-
particles above the Fermi sea and of unoccupied states or holes below
the sea.- In accordance with the Landau Fermi liquid model, the energy
of one quasi-particle may depend on the distribution of the other
quasi-particles. These quasi-particle configurations are not exact
solutions of the Hamiltonian when Coulomb and phonon interaction inter-
action energies are included, but are reasonably well defined if the

excitation energies are not to high. The configurations are presumed
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to include correlation energies and quasi-particle self-energies
characteristic of the normal phase. Superconductivity arises from

residual attractive interactions between the normal quasi-particles.

Bardeen, Cooper and Schrieffer (20) took for the variational
wavefunction ground state of superconductor a linear combination of
normal configurations in which the quasi-particle states are occupied
in pairs (le .3 y ) of opposite spin and thg same total momentum,
ki1 + ky; = g, common to all pairs. In any configuration, the two states
of a pair are either both occupied or both empty, Values of q different
from zero describe current flow in the ground state; that for g = 0
for zero current has the lowest energy. They also worked out a quasi-
particle excitation spectrum for a superconductor in one-to-one corres-
pondence with that for a normal metal(.with a temperaturedependent
energy gap for excitation of particles from the superconductinc ground

state.

1.2.2 The Bogoliubov-Valatin Transformation

Since the original publications of the BCS theory, the mathe-
matical formulation of the theory has been developed considerably.
Several different mathematical formulations (21,22,23) have been given
which have improved the rigor and have extendgd the theory so as to
apply to a wider variety of problems., Particular mention should be made
of the work of Bogoliubov and co-workers(21l), who, along with Valatin(22),
introduced the now famous transformation to quasi-particle variables,
gave much improved treatment of Coulomb interactions, provided a treatment
of collective excitgtions(-and made other noteworthy contributions, We

would like to illustrate briefly their procedure below,
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1.2.2.1 Superconducting .Ground State

We begin with the Hamiltonian of the system:
= E k) bi + E X)bi__. g .
- £ S%) Pk by k_l-r-kZIkV( TPk, ¢ bk_i"“x-ﬂbkl'T Pk, 3 (1.22)

where by . b;a, are annihilation and creation operators for electrons.
The first term represents the kinetic energy of the elctrons, measured
from the Fermi level, It is often convenient to assume that this is
variable — that the total number of the electrons N is not definitely
fixed, by introducing the chemical potential, Mo of the electron gas,

and writing the first term

ja
Il

% n [E®) - p |
>

0 Z5/0 2Tuy (1.23)

The second term in Eg. (1,22) represents the scattering whose
effect is to "destroy" the electrons in k1,and kz,and then to "re-
create" them in k; + K and k- K, with the matrix element V(K). We

assume here that only opposite spins interact.

Bogoliubov's method is to make a canonical transformation of
t oy : :
the set, by, and bko’ to new annihilation and creation operators
having the same commutation relations. In particular, these must link

the state (k, 1) with the state (-k, J ), as suggested by the Cooper

effect,
For simplicity let us drop the spin indices, and write
ﬁ}t = ukb: " VPt Py m NPy 'kafk = (1.24)
fy =Pl r M B fy T ub kalt
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The operatoxr pk,/Q; will haye the proper anticommutation relations

for fermions if

B 2
e ok w = B (1.25)

When we solvye Eq. (1.24) for the original operators, and substi-
tute into the Hamiltonian Eq. (1.22), we get a variety of different
terms containing products of the new 0perators/6k . /e;. Now when any
of these terms contains an annihilation operator by, we can use the

anticommutator to shift to the right, e.g.

i1 B b +
Py Bxr = G T Pre Py (1.26)

Suppose that ouxr superconducting state is the "vacuum", | 0) , of
these new operators, By definition, there are no objects in the vacuum

that can be annihilated, so that

A 40y o= O, | o

for all k, Such terms in the Hamiltonian do not contribute to the
energy of the ground state, |0) , which is thus an eigenstate of all

this part of H,

But there remains terms which cannot be eliminated in this way-
terms which contain only creation operators like ﬁi, These arise from
the kinetic energy part of Egq, (1.22), and also from the reduction of
the interaction terms, as when k and k' in Eq, (1,26) happen to be equal.

We find that our Hamiltonian can be written,

= (= v2 + :E v
= e,
H 2 (k) 3 pK.V(K) uk uk xyij

2 g E ¥ a4
% [2 LI g v+ -v) EVE) u o el AT (1.28)
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The first term will give us the energy of our ground state — if only

we could eliminate the creation operators in the final sum.

We choose our transformation coefficients W ¢ Vg SO as to

make each "dangerous" term vanish, We let

2o - 1.29
2 B0 w v +a-vy) %V(K) Y+ K k+K 9 k e

In general, this is a complicated integral equation for the
unknown function u, and Vier which are subject also to the condition
Eq. (1.25). But let us make the assumptions that V(K) ' is a constant,
V, within an enerxrgy range + w, and zero beyond, The constant w is to
be of the order of kg Tp , where Tp is the Debye temperature. We let
the sum oyer K in Eg, (1.29) be a parameter

w

bo =-v _% Uk+R Vi4K (1..30)

and solve Egs. (1.29) and (1.25) simultaneously, The result is

250 R -~ 3 g (x)
= :J- 4 1 —
g 5[1+ /"2. € 2, .gz(k)j' Vi = = NCETHY ' {3,33)

which may be substituted back in Eq. (1.30) to give

w >
o "%V-;,z [Aoz_'_ gz(k)] -1/2

2w
- N (0) V1n — , (2 32)
A £

o

where N(O) is the density of states at the Fermi level.

We can put this this back into the remainder of Eq. (1.28),

from which all the operators have now been removed. We get

0y (1.33)

& = 2; € (k) - %AiE[AiJf £ (k) =% //"
<0 (& 7
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Thus, the state |0) is an eigenstate of H - but with lower energy
than the full Fermi sphere of electrons, whose energy would just be

the sum of the values of E (k) for the occupied states, as in Eq.

@,z23),

1.2.2.2 Quasi-Particles and the Enerqgy Gap

It is very important to understand the significance of. the
operators ,6'}2 and ﬁk' We note that /3"]'{ alv}ayé creates an excita-
tion with net momentum k and spin up. Well aboye the Fexmi surface,
uknfl, vk~'0, and the excitation is electron-like. Below the Fermi
surxface, uk~< Vk, and the excitation is predominantly a hole at k.
Right at the Fermi sufface, there is equal mixture but in all cases
the net effect is to add k1 overall. The /Bk excitation similarly
always add —kl to the momentum and spin of the system, The excita-
tions of the superconducting state are thus rather peculiar quasi-
particles which change from being "electrons" to be "holes" as they

pass through the Fermi leyel.

The energy of an excitation can also be calculated, We look

for the coefficient of terms containing the operator

G .
By sefe By : A1, 39

in the expansion of (1,22), since this measures the number of quasi-

particles that have been excited in this mode. The result is

€(k)

i

2 2
€ (k) (uk—vk) - Zukvk% V(K) U@k K

2 2
,/7A0 + 5 (k) . {1.35)

fox our simplified interaction, using Eg. (1,30) and (1.31).
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This is very important, for it demonstrates the existence of
an enexgy gap [So above the superconducting ground state. When E (k)
> Ao+ then € (k) ~ E (k) - the energy of the quasi-particle is the
energy required to excite an ordinary electron above the Fermi level.
But as k approaches the Fermi surface, where .E (k) is zero, the energy
of the quasi-particle tends to the constant value /A, . Then, as k
decreases still further, € (k) increasés again, until it becomes
nearly equal to lz(k)l. This is of course, the energy required to
remoye an electron from the state of negative € (k) , just as we expect

from our interpretation of the guasi-particle operators.

1:2:2:3 Teinperature Dependence of the Energy Gap

The ground state is only appropiate at T = 0. At a finite
temperature we expect quasi-particles to be excited according to the

usual Fermi-Dirac function

By x (1.36)

e e(k)/kBT + 1

In the normal state such excitations, above or below the Fermi level,
are independent of one another. In the superconducting state they

tend to interact, co-operatively, and destroy the energy gap.

Let us suppose that we are dealing with the state |[fi) ,
in which the ayerage number of quasi-particles in the kth state is
given by Eq. (1,36). The effect on this state of a destruction opera-

ter bk is not zero, On the average, we can replace Eg, (1.34) by

(137

The reduction of the Hamiltonian to diagonal form, when applied

to the state 102, depended upon Eq. (1.27). If now we try to do the
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same thing, applied to the state ffk) ;, there will be extra terms
arising from the reduction of products of operators to standard order
as in Eg. (1.26), multiplying the "dangerous" products ﬁ: fLI in Eq.
(1.28). To remove these "pairproduction" parts of the Hamiltonian, our

condition Eg. (1.29) must be changed to read

2E() uwet (-2 2V u (1-26£,__)=0  (1.38)

k+k “k+K k+K

(allowing for the two possible spin states associated with each k).

This integral equation can be solved, for the simplified

interaction V, by replacing Z&o in Egs. (1.30) and (1.31) by

w
4 G e v_z w2V A ERE SN {1.39)

Instead of Eq. (1.32), we then get, using Eqg. (1.36),

1= =) VWE 1 tanh e (k) - (1.40)
“w €(k) 2K
B
w
= - N(O) V f 148 N, (1.41)
-w € 2kBT

where, as before, € 1is the energy of an excitation,

2 2 :
e(k)=,\/z B Y (1.42)

The two equations (1.41) and (1.42) yield an implicit relation
between /\ and T. This relationship is rather untidy, but the main
point is that A\ decreases from [&o at T = 0 as T increases, 1In
other words, the energy gap, L% , decreases as the temperature increases,
and closes to zero at a well-defined temperature, To» where, by (1.42),

€(k) = |E (k)] . Thus, we can find T by integrating
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o = 2 X 1 ‘banh ( € ) de , (1,43)
N (o) €

whose solution is
Do ~1.76 kT (1.44) .

Above T, there is no solution of the equations, Just below T,

the energy gap rises steeply from zero, varying as

A(T) ~ 3.2 kT (1= T ¥ (1.45)

as may be verified by seeking an approximate solution of Egs. (1.41)
and (1.42) in the neighbourhood of the solution of Eg. (1.43). At
lower temperatures it increases more slowly, and flattens off to

below about T ~ % T.

1.2.3. Nambu-Gor'koy Formalism

As soon as impurities are introduced into the system, it becomes
impossible to make direct use of the BCS procedure because one cannot
find the single-particle states even in the normal metal. Fortunately,
one neither wants nor needs these states., The only physical quantities
are sums over all such states and in these.:sums the complexities of the
individual states disappear. In order to make use of this simplification :
we shall employ as our basic computational tool Green's functions, which
are sums over all states of the products of creation and annihilation
operators. These Green's functions are a standard computational tool in

the analysis of doped normal and superconducting materials.
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In Nambu formalism (57) one works with matrix Green's functions,

where the field operator is a two-component spinor

- [ ¥(x)
¥ (x) ( b (1.46)
W;(X) _

and the Green's function is a 2 x 2 matrix defined by

¢ (x, x = -i<ofT { Y Yrxn}|od (1.47)

where x or x' denotes a set of four Variables (the coordinate T and the
time t), |0> is the ground state in the Heisenberg representation and
T is the Wick time ordering operator. The 11 component of G is the
ordinary electron Green's function and the 12 component is the Gor'kov's

"anomalous" Green's function (55).

It is possible to prove (62) that G has the convenient Fourier

series representation,

G (x-x') = j eipx G (p) d4p

——

(2 M)

(1.48)

where

p = (B, Po)

3
d p =d p dpg

- -
PX =P . T - po (t-t')

Using Nambu's Hamiltonian (57), in the absence of interactions we have

\ ]
¢, ® = [pol- £, 1, ] . (1.49)

where EP B p2/2 m is the free-particle energy, 1 is the 2 x 2 unit

matrix and Tl p Té and T3 are the Pauli matrices:
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o5 _ (0 -i 2 (l 0 )
e | (1 o) £ (i 0 ) 3T hy =1 L
To account for the workings of interactions we consider the most general

form for the self-energy (py according to

t(p) = [l- Z (p)] Po 1 + xX(p) ’63 + ¢ (p) 'Cl (1.51)
From Dyson's equation

G_l(p) = G;l'(p) - Z(p) (1.52)
and Eq.(1.51) we have

G(p)=[Z<p)p1—§z—qS<>'z]’l (1.53)

o p '3 ; P 1 e

where

£(p) = £, * % () (1.54)

The advantage of the Nambu scheme lies in the fact that $(p)
may be expanded in almost the standard fashion in a power series in the
interaction potential and G. In the general case, the Nambu formalism
is equivalent to a self-consistent perturbation approach to determine

the coefficients of the Pauli matriees in the expression for 2 [Eq.(l.Slﬂ

The highly automatic nature of the zero-temperature perturbation
series for G can be carried over to finite temperature by an'elegantly
simple procedure introduced by Abrikosov, Gor'kov and Dzyaloshinski (63),
who extended the pioneering work of Matsubara (64) in this area.

Similar techniques were advanced independently by Martin and Schwinger
(65) in their fundamental work on Green's function techniques in the
many-body problem. The basic result of their development is that G(p,pg)
can be determined by the analytic continuation of a Green's function

g? (p, iWﬁ) defined over a discrete set of pure imaginary frequencies
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iwp. The function @;(p, iw,) can be constructed by the usual Feynman-
Dyson rules if all energy variable po associated with fermion lines

occurring in the zero-temperature expansion are formaily replaced by
Po -—>iwn = i(2n + 1) T kBT (n = integer) (1.55)

and the corresponding energy integrals are replaced by

[72)
S &% , kT D (1.56)
g B
27 n = = ‘
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