การวัดอัตราปริมาณรังสีแกมมา ณ พื้นที่จากต้นกำเนิดแบบแผ่นโดยใช้หัววัดรังสีเจอร์มาเนียม บริสุทธิ์สูง

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีนิวเคลียร์ ภาควิชาวิศวกรรมนิวเคลียร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2558 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IN SITU GAMMA-RAY DOSE RATE MEASUREMENT FROM PLANAR SOURCE USING HIGH PURITY GERMANIUM DETECTOR

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Nuclear Technology Department of Nuclear Engineering Faculty of Engineering Chulalongkorn University Academic Year 2015 Copyright of Chulalongkorn University

Thesis Title	IN SITU GAMMA-RAY DOSE RATE MEASUREMENT FROM PLANAR SOURCE USING HIGH PURITY GERMANIUM DETECTOR
Ву	Mr. Lyheng Tan
Field of Study	Nuclear Technology
Thesis Advisor	Associate Professor Nares Chankow
Thesis Co-Advisor	Associate Professor Somyot Srisatit

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

_____Dean of the Faculty of Engineering (Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

COMMITTEE	
////2=24	Chairman
(Associate Professor Sunchai Nilsuwankosit, Pl	h.D.)
	Thesis Advisor
(Associate Professor Nares Chankow)	
	Thesis Co-Advisor
(Associate Professor Somyot Srisatit)	
	Examiner
(Somboon Rassame, Ph.D.)	
	External Examiner
(Assistant Professor Attaporn Pattarasumunt)	

ลีเฮง ตัน : การวัดอัตราปริมาณรังสีแกมมา ณ พื้นที่จากต้นกำเนิดแบบแผ่นโดยใช้หัววัดรังสีเจอร์มา เนียมบริสุทธิ์สูง (IN SITU GAMMA-RAY DOSE RATE MEASUREMENT FROM PLANAR SOURCE USING HIGH PURITY GERMANIUM DETECTOR) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. นเรศร์ จันทน์ขาว, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. สมยศ ศรีสถิตย์, 99 หน้า.

้งานวิจัยนี้ได้นำเสนอวิธีง่าย ๆ สำหรับการวัดอัตราปริมาณรังสีจากต้นกำเนิดรังสีแบบแผ่นโดยใช้ ้หัววัครั้งสีเจอร์มาเนียมบริสุทธิ์สูงในการวัคสเปกตรัมรังสีแกมมา ก่ากวามเข้มรังสีสุทธิของพีกพลังงานต่าง ๆ จาก ้สเปกตรัมที่ได้จะถกใช้ในการกำนวณหาอัตราปริมาณรังสีรวม โดยเริ่มจากการซื้อสีทาฝ้าเพดานที่มียเรเนียมและ ทอเรียมมาจำนวน 4 ตัวอย่างและทำการหาปริมาณยูเรเนียมและทอเรียมด้วยวิธีแกมมาเรย์สเปกโทรเมตรีที่ใช้ ้หัววัครั้งสีชนิดเจอร์มาเนียมบริสุทธิ์สูงซึ่งมีประสิทธิภาพสัมพัทธ์ 30% โดยพบว่ามีนิวไกลด์ลูกของยูเรเนียม เช่น ตะกั่ว-214, บิสมัท-214 และนิวไคลค์ลูกของทอเรียม เช่น ทัลเลียม-208 (²⁰⁸Tl), แอกทิเนียม-228 (²²⁸Ac) ใน ตัวอย่างทั้งหมด คือมี ²³⁸U อยู่ในช่วง 144.61±3.28 ถึง 299.76±4.87 Bq/kg และ ²³²Th อยู่ในช่วง 1773.59±23.66 ถึง 2121±26.52 Bq/kg ตามลำคับ จากนั้นได้เตรียมตัวอย่างทคสอบจำนวน 8 ชิ้นจากสีทาฝ้า เพคาน 4 ตัวอย่างดังกล่าว โดยนำไปทาบนแผ่นไม้อัดขนาด 30 ซม. X 30 ซม. ตัวอย่างละ 2 แผ่น ทำให้ได้แผ่น ใม้ที่มีความแรงรังสีจำเพาะของ 238 U และ 232 Th อยู่ในช่วง 0.018 - 0.071 Bq/cm² และ 0.22 - 0.49 Bq/cm² ตามลำคับ อีกสองตัวอย่างทคสอบได้เตรียมจากการผสมสีที่ไม่มีกัมมันตภาพรังสีกับสารมาตรฐานแร่ยูเรเนียม และทอเรียมในสัดส่วนต่างกันแล้วนำไปทาบนแผ่นไม้อัดขนาดเดียวกันทำให้ใด้ความแรงรังสีจำเพาะของ ²³⁸U และ ²³²Th เท่ากับ 0.027 กับ 0.030 Bq/cm² และ 0.043 กับ 0.056 Bq/cm² ตามลำดับ จากนั้นจึงใช้หัววัดรังสี ชนิคเจอร์มาเนียมบริสทธิ์สงที่มีประสิทธิภาพสัมพัทธ์ 10% วัครั้งสีจากตัวอย่างแผ่นไม้อัคแต่ละแผ่น โคยวาง หัววัครั้งสีห่างจากกึ่งกลางของแผ่นไม้อัค 2 ซม. บริเวณค้านข้างของหัววัครั้งสีมีก้อนตะกั่ววางอยู่โดยรอบเพื่อ ้ จำกัดพื้นที่สำหรับการวัดให้เหลือเพียง 10 ซม. X 10 ซม. ผลการวัดพบว่านิวไกลด์กัมมันตรังสีหลัง ²²²Rn ใน อนกรม ²³⁸U และหลัง ²²⁰Rn ในอนกรม ²³²Th ไม่อยู่ในสมุคลทางกัมมันตรังสีกับนิวไคลค์แม่ จึงทำให้ค่าที่วัดได้ ต่ำกว่าค่าที่ได้จากการคำนวณ อย่างไรก็ตามมีเพียง ²²⁸Ac เท่านั้นที่ค่าที่ได้จากการวัดใกล้เคียงกับที่ได้จากการ ้ คำนวณเพราะเป็นตัวเคียวที่อยู่ในสมดุลทางกัมมันตรังสีกับ ²³²Th ซึ่งเป็นนิวไกลด์แม่ จึงได้ใช้วิธีใหม่เพื่อ ้แก้ปัญหานี้โดยทำการปรับเทียบด้วยต้นกำเนิดรังสีแกมมาแบบจุด ซึ่งวางไว้ที่ตำแหน่งต่าง ๆ กัน แล้วกำนวณหา ้ค่าปรับแก้ทางเรขาคณิต และพบว่ามีค่าเท่ากับ 0.74 สำหรับทกพลังงาน จากการวัคค้วยวิธีนี้พบว่าอัตราปริมาณ ้รังสีที่วัดจากตัวอย่างทดสอบทั้ง 10 ตัวอย่างได้ผลเป็นที่น่าพอใจมาก นอกจากนี้ยังได้เตรียมสูตรที่ใช้ในการ ปรับเทียบและการกำนวณอัตราปริมาณรังสีบนเวอร์กชิตเพื่อกวามสะดวกในการทำงาน

สาขาวิชา เทคโนโลขีนิวเคลียร์ ลายมือชื่อ อ.ที่ปรึกษาหลัก	ภาควิชา	วิศวกรรมนิวเคลียร์	ลายมือชื่อนิสิต
	สาขาวิชา	เทคโนโลยีนิวเคลียร์	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา 2558 ลายมือชื่อ อ.ที่ปรึกษาร่วม	ปีการศึกษา	2558	ลายมือชื่อ อ.ที่ปรึกษาร่วม

5670575021 : MAJOR NUCLEAR TECHNOLOGY

KEYWORDS: GAMMA-RAY SPECTRUM / CEILING PAINT / RADIOACTIVE ISOTOPES

LYHENG TAN: IN SITU GAMMA-RAY DOSE RATE MEASUREMENT FROM PLANAR SOURCE USING HIGH PURITY GERMANIUM DETECTOR. ADVISOR: ASSOC. PROF. NARES CHANKOW, CO-ADVISOR: ASSOC. PROF. SOMYOT SRISATIT, 99 pp.

This research proposes a simple method for dose rate measurement from planar source using a high purity germanium (HPGe) detector by measurement of gamma-ray spectrum. Net peak intensities of all energies from the measured spectrum were then used to obtain the total dose rate. First of all, 4 ceiling paint samples containing uranium and thorium were purchased and determined uranium and thorium contents by using high resolution gamma-ray spectrometry equipped with an HPGe detector of 30% relative efficiency. Radioactive isotopes including uranium daughter radionuclides such as ²¹⁴Pb and ²¹⁴Bi as well as thorium daughter radionuclides such as ²⁰⁸Tl and ²²⁸Ac were found in all samples. The specific activities of ²³⁸U in the range of 144.61±3.28 to 299.76±4.87 Bq/kg and ²³²Th in the range of 1773.59±23.66 to 2121±26.52 Bq/kg respectively. After that 8 test specimens were prepared from the four paint samples by painting on 30 cm x 30 cm plywood, two pieces per paint sample. The specific activities of 238 U and 232 Th on the plywood samples were in the range of 0.018 - 0.071 Bq/cm² and 0.22 - 0.49 Bq/cm² respectively. The other two radioactive paint samples were prepared by mixing non-radioactive paint sample with standard uranium and standard thorium ores of different proportions to make the specific activities of ²³⁸U and ²³²Th on the plywood of 0.027 and 0.030 Bq/cm² and 0.043 and 0.056 Bq/cm² respectively. A portable gamma-ray spectrometer equipped with 10% relative efficiency HPGe was then used to measure radioactivity from the prepared ten plywood samples at 2 cm distance at right angle from the middle of the samples. To limit the detector detecting area to 10 cm x 10 cm, the detector sides were surrounded by lead blocks. Unfortunately, the radionuclides after ²²²Rn in ²³⁸U series and after ²²⁰Rn in ²³²Th series were not in radioactive equilibrium with the parent radionuclides which made the measured dose rates lower than the calculated values. However, the dose rate of ²²⁸Ac was in good agreement with the calculated value because it was the only radioisotope that was in radioactive equilibrium with the parents ²³²Th. To overcome the problem, a new technique was then introduced by calibrating the detector with point gamma-ray standard sources at different position to obtain geometrical correction factors. The correction factor was found to be 0.74 for all energies. The results of dose rate measurements from the ten test specimens using the proposed technique were very satisfactory. In addition, a worksheet with necessary formulae was prepared for convenience in calibration and calculation of the dose rate.

Department:Nuclear EngineeringField of Study:Nuclear TechnologyAcademic Year:2015

Student's Signature
Advisor's Signature
Co-Advisor's Signature

ACKNOWLEDGEMENTS

First of all, I would like to give my deepest gratitude to Assoc. Prof. Nares Chankow, my principle advisor, and special thanks to Assoc. Prof. Somyot Srisatit, my co-adviser, for their supervision, suggestion, and efforts for steering me towards the right direction during this research until this thesis was completed. Moreover, Thanks to Asst. Prof. Attaporn Pattarasumunt and Dr. Somboon Rassamme for being my external examiner and examiner respectively in order to give comments and edition for this thesis research.

My thanks go to the Graduate School, Chulalongkorn University, Faculty of Engineering, Department of Nuclear Engineering, International Program in Nuclear Security and Safeguards, for supporting this program, especially to Assoc. Prof. Dr. Sunchai Nilsuwankosit, the head department of Nuclear Engineering and the chairman for my thesis defence, for his kindly help, support, and encouragement me to complete this thesis in time. Thanks to EU Project 29 for funding both school fees and stipend. I would never forget all my friends at the Nuclear Security and Safeguards group and the other laboratories of the nuclear Engineering Department for their help and support.

Finally, I am deeply gratitude to my father, mother, brothers, sisters, and fiancée for their moral support and encouragement during a challenging time.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTS vi
CONTENTSvii
LIST OF TABLESviii
LIST OF FIGURESix
Chapter 11
Introduction1
1.1 Background information
1.1.1 Sources of radiation exposure4
1.2 Objectives
1.3 Scopes
1.4 Benefits
Chapter 26
Theory and Literature Review
2.1 Natural and manmade radiation sources
2.1.1 Cosmic rays
2.1.2 Terrestrial radiation
2.1.3 Manmade sources
2.2 Nuclear weapons fallout
2.2.1 Vertical migration studies of ¹³⁷ Cs from nuclear weapons fallout and the Chernobyl accident (Almgren. S, 2006)
2.3 Radiological monitoring12
2.3.1 Radiological monitoring of terrestrial natural radionuclides in Kinta District, Perak, Malaysia (Lee. S. K, 2009)
2.4 Validation of in situ object counting system (ISOCS)
2.4.1 Validation of in situ object counting system (ISOCS) mathematical efficiency calibration software (Venkataraman. R, 1999)
2.5 In situ and air borne of gamma-ray spectrometry

Page

(Andrew N	I. Tyler, 2008)
2.6 Decay s	series of ²³² Th and ²³⁸ U14
2.7 Interact	ion of gamma-rays with matters17
2.8 Gamma	n-rays detectors
2.11 Ca	alculation of activity27
Chapter 3	
Methodology.	
3.1 Equipm	nent
3.1.1 Ec	quipment for analysis of uranium-238 and thorium-232 contents 33
3.2.2 \$	Samples preparation
Sa	amples preparation for laboratory measurement
Sa	amples preparation for in situ measurement
3.3 Laborat	cory analysis for uranium-238 and thorium-232 contents
3.3.1 H	Energy Calibration for laboratory analysis
3.3.2	Calculation of the specific activity
3.4 In situ	gamma measurement using a High Purity Germanium (HPGe) 39
3.4.1 H	Energy Calibration for in situ measurement41
3.4.2 H	Efficiency
3.4.3 I	n situ dose rate calculated from known activity and from
m	easurement
3.5 In situ o	bbject counting software (ISOCS)
3.6 In situ g GM ene	gamma measurement using the survey meter of HDS-101 GN and ergy compensated
3.6.1 \$	Survey meter of HDS-101 GN44
3.6.2 \$	Survey meter of GM energy compensated
Chapter 4	
Data Analysis	and Results
4.1 Data an	alysis and results for laboratory measurement
4.1.1 H	Energy calibration for samples by using the standard sources48

	Page
4.1.2 Calculation of the specific activity of ²³⁸ U and ²³² Th	.49
4.2. Data analysis and results for in situ measurement	. 55
4.2.1 Energy calibration for samples by using standard point sources	.55
4.2.3 In situ dose rate calculation	. 62
Dose rate calculated from activity of known ²³⁸ U and ²³² Th contents	. 68
Dose rate calculated from measurement	.72
4.3 In situ dose rate measurement from the ISOC software	.75
4.4 Recording of gamma-rays dose rate from survey meters	.75
4.4.1 HDS-101-GN	.75
4.4.2 Gamma neutron survey meter, GM energy compensated	.76
4.5 Comparison the results of in situ dose rate measurement with the survey	
meters	.77
Chapter 5	.78
Conclusion and Recommendation	.78
5.1 Conclusion	.78
5.2 Recommendation	.79
REFERENCES	. 80
APPENDIXES	. 83
VITA CHULALONGKORN UNIVERSITY	.99

LIST OF TABLES

Table 2.1: The purpose and comments of HPGe and NaI detector 25
Table 3.1: The energy and channels using the standard sources of uranium-ore and
thorium-ore
Table 3.2: The energy and channels of the standard sources
Table 4.1: The energy and channels of the radionuclides
Table 4.2: The specific activity $(Bq/kg\pm 1\sigma)$ of some natural radionuclides with
counting time of 2 hours
Table 4.3: The specific activity (Bq/kg $\pm 1\sigma$) of ²³⁸ U and ²³² Th
Table 4.4: The energy and cannels of the radionuclides
Table 4.5: The efficiency at the center and right side of the detector
Table 4.6: The efficiency at the left side of the detector
Table 4.7: The ratio efficiency of different position with different energy
Table 4.8: The energy and the efficiency of the radionuclides
Table 4.9: List of the gamma fraction and mass absorption coefficient of air
$(\mu_A/\rho)^{air}$
Table 4.10: The mass (g/cm ²) of all samples are shown below
Table 4.11: The specific activity (Bq/cm ²) of samples W1a, W1b, W2a, W2b,
G1a, G1b, G2a, and G2b69
Table 4.12: The specific activity (Bq/cm ²) of samples M and N were be shown
below69
Table 4.13: The list of flux or intensity with their energy70
Table 4.14: The list of total gamma dose rate with their energy calculated from
known activity of ²³⁸ U and ²³² Th contents of all samples71
Table 4.15: The list of the activity (Bq/cm^2) with their energy

Table 4.16: The list of flux or intensity with their energy	73
Table 4.17: The list of total gamma dose rate with their energy from the	
measurement of all samples	74
Table 4.18: The dose rate of sample W1a, W1b, W2a, W2b, G1a, G1b, G2a, and	l
G2b obtained from the HDS-101 GN	75
Table 4.19: The average dose rate from the GM energy compensated gamma	
survey meter	76
Table 4.20: The dose rate (μ Sv/hr) measurement obtained from in situ dose rate	
measurement, dose rate calculated from known activity, and the survey meters of	f
HDS-101 GN and GM energy compensated.	77

LIST OF FIGURES

Figure 1.1: HPGe spectrum from an air filter exposed for 24 hours
Figure 1.2: A pie chart of the natural and manmade resources
Figure 2. 1: ²³² Th decay series
Figure 2. 2: ²³⁸ U decay series
Figure 2. 3: Photoelectric effect
Figure 2. 4: Compton Scattering
Figure 2. 5: Pair production
Figure 2. 6: The spectrum of HPGe Vs NaI
Figure 2. 7: The mass absorption coefficient for several materials in cm^2/g 31
Figure 3. 1: Showing a sample in the container for laboratory analysis35
Figure 3. 2: A photo of painted plywood sample for in situ measurement
Figure 3. 3: Lead shield to lower gamma background level
Figure 3. 4: The laboratory analysis using a High Purity Germanium (HPGe) detector

Figure 3. 5: The linear line of energy calibration
Figure 3. 6: The in situ measurement using the HPGe detector40
Figure 3. 7: The HPGe detector with the sample and the lead shield41
Figure 3. 8: The linear equation of energy calibration using standard sources of ¹⁵² Eu,
¹³⁷ Cs, and ⁶⁰ Co
Figure 3. 9: The picture of survey meter, HDS-101 GN46
Figure 3. 10: The in situ measurement using the survey meter of the HDS-101 GN
Figure 3. 11: The gamma neutron survey meter, GM energy compensated47
Figure 3. 12: The GM energy compensated in side lead shield for the measurement
Figure 4. 1: The energy calibration curve
Figure 4. 2: Characteristic Gamma Spectrum of RGU-1 with Counting Time 7,200
Figure 4. 3: Characteristic Gamma Spectrum of RGTh-1 with Counting Time 7,200 s
Figure 4. 4: Characteristic Gamma Spectrum of blank (interior paint sample) with
Counting Time 7,200 s
Figure 4. 5: Characteristic Gamma Spectrum of Ceiling Paint Sample W1 with
Counting Time 7,200 s
Figure 4. 6: Characteristic Gamma Spectrum of Ceiling Paint Sample W2 with
Counting Time 7,200 s53
Figure 4. 7: Characteristic Gamma Spectrum of Ceiling Paint Sample G1 with
Counting Time 7,200 s53
Figure 4. 8: Characteristic Gamma Spectrum of Ceiling Paint Sample G2 with
Counting Time 7,200 s54
Figure 4. 9: The linear line of energy Vs Channels
Figure 4. 10: The ratio efficiency curve of different position for different energy 59
Figure 4. 11: The fitting curve for the ratio efficiency
Figure 4. 12: The efficiency curve of point sources, ¹⁵² Eu and ¹³⁷ Cs, at center 60

Figure 4. 13: The spectrum of 152 Eu and 137 Cs at center counting time 600 s 61
Figure 4. 14: The line of the efficiency and the energy of the radionuclides62
Figure 4. 15: The spectrum of blank, an interior paint sample, for in situ measurement
with counting time of 7,200 s62
Figure 4. 16: The spectrum of sample W1a for in situ measurement with counting
time of 7,200 s63
Figure 4. 17: The spectrum of sample W1b for in situ measurement with counting
time of 7,200 s63
Figure 4. 18: The spectrum of sample W2a for in situ measurement with counting
time of 7,200 s
Figure 4. 19: The spectrum of sample W2b for in situ measurement with counting
time of 7,200 s64
Figure 4. 20: The spectrum of sample G1a for in situ measurement with counting time
of 7,200 s
Figure 4. 21: The spectrum of sample G1b for in situ measurement with counting time
of 7,200 s
Figure 4. 22: The spectrum of sample G2a for in situ measurement with counting time
of 7,200 s
Figure 4. 23: The spectrum of sample G2b for in situ measurement with counting time
of 7,200 s
Figure 4. 24: The spectrum of the sample M for in situ measurement with counting
time of 7200 s
Figure 4. 25: The spectrum of the sample N for in situ measurement with counting
time of 7200 s67

Chapter 1

Introduction

Radionuclides in Naturally Occurring Radioactive Materials (NORMs) consist primarily of material containing ⁴⁰K and the isotopes which belong to the primordial series such as the long-lived isotopes of ²³⁸U in uranium series and ²³²Th in thorium series. These radionuclides present since the creation of the earth (4.5 billion years). Human beings can be exposed to ionizing radiation through the external sources such as terrestrial radiation and cosmic radiation. They irradiate the body with the gamma photon. However, the internal hazard requires the incorporation of the radioactive materials into our body by ingestion or inhalation. Radon-222 (²²²Rn) is a daughter product of radium-226 (²²⁶Ra), which is derived from uranium-238 (²³⁸U). Thoron (²²⁰Rn) is the daughter of thorium-232 (²³²Th). ²²²Rn and ²²⁰Rn are naturally occurring radioactive gas which can cause lung cancer.

Nowadays ceiling paint may contain these radionuclides which can cause harmful to people and animals. According to the United State Environmental Protection Agency as well as the Scientific and Medical Communities, they have recognized Radon as a class A carcinogen (Schmidt, 2011, p. 3). Furthermore, the Environmental Protection Agency estimated that 14,000 American die every year from radon-related lung cancer, but this number could range from 7,000 to 30,000 deaths per year (EPA, 1993, p. 3). The data regarding the specific activity of ²³⁸U, ²³²Th, and ⁴⁰K in ceiling paint belonging to Thailand is not available in literature. Moreover, Knowledge of radioactivity in ceiling paint samples enables one to assess any possible radiological risk to human health (Kumar et al, 2003, p 465). Therefore, the specific activity of these radionuclides were firstly determined in our low background HPGe gamma-ray spectrometer with a CANBERRA lead shield (coated inside by the thin layer of copper). This semiconductor detector is the best choice for this research because of its superior energy resolution. Furthermore, the gamma-ray spectrometry of this detector is a power method which can identify and quantify the radionuclides for determining the specific

activity of gamma emitting isotopes in a variety of matrices. According to the rule that all exposure to radiation should be kept "as low as reasonably achievable" (ALARA), and the results obtained in the present study are compared with the relevant results available in some other countries of the world.

In this research, the ceiling paint samples have been primarily analyzed in our low background HPGe gamma-ray spectrometer with a CANBERRA lead shield (coated inside by the thin layer of copper). This analysis was used to determine the specific activity and the present of those radionuclides in the samples. The dose rate of the samples were also estimated. Moreover, these samples were simulated as the sources which were painted on the plywood with the surface area of $30 \text{ cm} \times 30 \text{ cm}$ for the in situ measurements. It is based on the in situ gamma-rays measurement of a high purity germanium (HPGe) detector. This in situ measurement of the gamma-ray dose rate from planar sources based a collimator of a lead shielding with the distance of 2 cm. The dose rate of these samples were determined. The results obtained from this measurement will be compared with the results obtained from the calibrated gamma-ray survey meters, the dose rate calculated from the known activity of ²³⁸U and ²³²Th content, and the ISOC software.

หาลงกรณ์มหาวิทยาลัย

1.1 Background information

In the last century, man-made activities have begun to contribute significantly to the radiation level in the environment due to the release of the anthropogenic radionuclides. This release is primarily from two different sources:

1. The releases from the nuclear reactors caused by the accident

2. The releases from the atmospheric testing of the nuclear explosive devices

The radionuclides were found in the radioactive fallout such as ¹³¹I, ¹³³I, ¹³⁴Cs, ¹³⁷Cs, ⁹⁵Zr, ¹⁴¹Ce, ⁹⁵Nb, and ¹³²Te (Brune, 2001). For example, in the Chernobyl fallout, the radionuclides which have contributed the most to the human radiation exposure are ¹³¹I and ¹³⁷Cs (Brune, 2001). The average contribution to the human exposure for the

worldwide scale from the anthropogenic sources is about one order of magnitude lower than that from radioactivity (Brune, 2001). However, dose rate can be very high locally. Therefore, the accurate methods for assessing the activity levels in the environment, both for emergency preparedness purpose and on longer timescale for the radioecological surveys are essential because the radioactivity in the environment can have the severe implications on the human health.

In general, the immediate estimated result of dose rate measurement is obtained by using the hand-held instruments. However, this measurement cannot be used for identification or quantification of the individual radionuclides. It means that the dose rate of the temporal change cannot be predicted. Therefore, the in situ gamma-ray spectrometry is a powerful method that can identify and potentially quantify the radionuclides directly at the measurement site. It can be performed as the mobile measurements such as on foot, car, or airborne. Nowadays, the high purity germanium (HPGe) detectors are often the choice for the in situ measurements because of their superior energy resolution.

An example of an HPGe spectrum from an air filter exposed for 24 hours on March 23-24, 2011 at the LBF facility at LBNL containing both natural and fission radionuclides (counted for 1250 minutes) (Smith. R. A. 2014)

Figure 1.1: HPGe spectrum from an air filter exposed for 24 hours

1.1.1 Sources of radiation exposure

There are two main sources of radiation exposure such as natural and manmade radiation sources. The NORMs are the Naturally Occurring Radioactive Materials such as ⁴⁰K (potassium-40), ²³⁸U (uranium-238), and ²³²Th (thorium-232). All of these radionuclides exist since the creation of the earth. Human and animals can be exposed to ionizing radiation by the terrestrial radiation and cosmic radiation which irradiate into the body with the gamma photon, but the internal hazard requires the incorporation of radioactive materials into the body by ingestion or inhalation. ²²²Rn (radon-222) is a daughter product of ²²⁶Ra (radium-226). Thoron (²²⁰Rn) is the daughter of thorium-232 (²³²Th). ²²²Rn and ²²⁰Rn are naturally occurring radioactive gas which can cause lung cancer. Although some harmful effects can be produced by exposure to natural background radiation, those effects are relatively minor and, in most cases, not even can be measurable. It is a fact that human activities have added to normal background radiation. For example, when the nuclear weapons were exploded, they released radioactive isotopes into the atmosphere.

A pie chart in the Figure 1.2 below shows the various sources of radiation from both natural and manmade sources. The main source for radiation exposure with 55 % which comes from the radon sources (NCRP, 1987).

Figure 1.2: A pie chart of the natural and manmade resources

1.2 Objectives

There are two main objectives:

1. To develop a simple technique for in situ measurement of the gamma-ray dose rate from planar sources

2. To prepare the worksheet for calibration and calculation of the gamma-ray dose rate

1.3 Scopes

This study is focused on:

1. Development of a simple technique for in situ measurement of the gamma-ray dose rate from planar sources using an HPGe detector for the desired coverage areas based on a collimator and the detector-to-source distance.

2. Preparation of the worksheet to calibrate the energy and efficiency based on linear relations and to calculate the gamma-ray dose rate based on generally accepted formulas.

3. Measurement of the dose rate from planar sources having area of \leq 1m² using the developed method in comparison with those obtained from **ISOC** software and a calibrated gamma-ray survey meter.

1.4 Benefits

The developed method and worksheet can be used to identify radionuclides and accurately measure the gamma-ray dose rate using an HPGe detector from planar sources both in normal situations and after incident such as spillage, dirty bomb explosion, etc.

Chapter 2

Theory and Literature Review

2.1 Natural and manmade radiation sources

Throughout history, mankind has been exposed to radiation from the environment which comes from two main sources such as:

1. Cosmic rays (highly energetic radiation bombarding the earth from outer space),

2. Terrestrial radiation, originating in radionuclides found in the earth and in our own bodies.

Nowadays, these natural radiation sources are augmented by medical x-rays, nuclear weapons, nuclear reactors, television, and numerous other radiation producing devices. It is very important to know the magnitude of the doses that the public receives from these sources. Then the standards of the radiation exposure were established by the various regulatory bodies.

2.1.1 Cosmic rays

The primary cosmic radiation incident on the earth primarily consisted of a mixture of protons (87%), alpha particles (11%), a trace of heavier nuclei (1%), and electrons (1%). The range of the energies of these particles was between 10^8 and 10^{11} eV. There was no known mechanism for the production of such highly energetic radiation. In short, the origin of cosmic rays was not understood. The primary cosmic rays were almost entirely attenuated as they interact in the first few hundred g/cm² of the atmosphere such as neutron, additional protons, and charged pions (short-lived subnuclear particles). The subsequent decay of the pions resulted in the production of electrons, muons (other subnuclear particles), and a few photons. The resulting particles fluxed depended on somewhat on the geomagnetic latitude.

The annual cosmic ray dose rate was between 26 and 27 mrems at sea level. The dose rate increased with the altitude. For instance, persons living in Denver received approximately twice the annual dose from cosmic rays as people living at sea level. The average annual dose due to cosmic rays in the United States was about 31 mrems. Because some of this radiation was shielded by buildings, this dose were reduced to 28 mrems.

2.1.2 Terrestrial radiation

There were approximately 340 naturally occurring nuclides which were found on earth, and 70 of them were radioactive. There was radioactivity everywhere, and there was no one can escape from radiation exposure due to natural radioactivity in the environment or in human body. The natural radionuclides were divided into two groups depending on their origin, such as:

- 1. Primordial radionuclides, those that have been here since the creation of the earth
- 2. Cosmogenic radionuclides, those that were produced by the action of cosmic rays

The primordial nuclides were very long lived. Since the earth was formed approximately 4.5×10^9 years, so a nuclide with a half-life even as long as 10 million years would have passed through 450 half-lives. The most common primordial nuclides were ²³⁸U with the half-life of 4.5×10^9 years, ²³⁵U with the half-life of 7.1×10^8 years, ²³²Th with the half-life of 1.4×10^{10} years, ⁸⁷Rb with the half-life of 4.8×10^{10} years, and ⁴⁰K with the half-life of 1.3×10^9 years.

The presence on earth of naturally occurring short-lived radionuclides (¹⁴C with the half-life of 5730 years) was because of their production by cosmic rays. If ¹⁴C was not continually replenished, it would disappear billions years ago. There were about 25 other cosmogenic radionuclides that they have been identified, but only ¹⁴C leaded to the significant radiation doses. This nuclide was primarily formed in the interaction of

the thermalized cosmic-ray neutrons with nitrogen in the atmosphere via the exothermic reaction ^{14}N (n, p) ^{14}C .

External exposure to terrestrial radioactivity originated with the gamma-ray which was emitted following by the decay of uranium, thorium, and their daughter products. The Colorado Plateau was a top geological formations rich in uranium and radium. As a result, this region tended to have a much higher radiation level than other parts of the country. In Brazil and India, the present thorium bearing monazite sands leaded to radiation levels that were especially high (up to 3 mR/hr). The annual external terrestrial dose of the average population in the United States was 26 mrems.

The principal source of the internal terrestrial exposure was from primordial 40 K. This nuclide decays both by negative beta decay to 40 Ca and by positive beta decay or electron capture to 40 Ar. Its isotopic abundance was 0.0118 %. Thus there was about 0.0157 g of 40 K from a total of 130 g of potassium in an average person weighing 70 kg. The total activity of the 40 K in the body was approximately 0.11 µci.

The heavy primordial nuclides and their daughters will enter the body by ingestion of drinking water or foodstuffs in which they were distributed in various trace amounts. Heavy radionuclides also entered the body as the results of inhalation of ²²²Rn with the half-life of 3.8 days and its daughter products such as ²¹⁰Pb with the half-life of 21 years. ²²²Rn was the immediate daughter of the decay of ²²⁶Ra. Therefore, it was in radium bearing rocks, soil, and construction materials. Since ²²²Rn is the noble gas, it diffused into the atmosphere, and it may travel large distances before it decayed via several short-lived species to ²¹⁰Pb. The half-life of ²²²Rn is long if it was compared with the residence time of air in the lungs. The more important of chemical inertness of radon prevented its long-term retention within the body. Therefore, ²²²Rn itself contributed very little to the internal body dose. However, ²¹⁰Pb may also entered the body through ingestion or by the decay of ingested parents. In any event, if these were not already complicated enough, the ²¹⁰Pb did not itself lead to significant internal doses because it was only a weak beta ray emitter. Rather, it was ²¹⁰P with the half-life of 138 days, the decay product of ²¹⁰Pb, which will emit a powerful 5.3 MeV alpha particle

that provided the ultimate dose. Therefore, the ²²²Rn and ²¹⁰Pb can be viewed as different sorts of the carriers for ²¹⁰Po, the actual source of radiation damage.

The heavy radionuclides will provide local doses out of proportion to their concentration. This was because many of these nuclides such as ²¹⁰Po decay by emitting alpha particle were more energetic than the beta rays or gamma rays emitted by other species. In an addition, alpha particles were more harmful biologically because of their higher quality factors. Both ²²⁶Ra and ²²⁸Ra were chemically similar to calcium which tended to concentrate in the bone. The dose to the structural bone tissue was considerably higher than the dose to the marrow. Fortunately, these tissues were not radiosensitive. The bulk of the heavy element dose to the gonads and marrow was due to ²¹⁰Po although some studies suggested that radon and its progeny were the second leading cause of lung cancer behind smoking.

 14 C was the only cosmogenic nuclide to make a significant contribution to internal human exposure. The concentration of 14 C in natural carbon has been found to be the same in all living species, 7.5 picocuries per total body burden of an average 70 kg man is approximately 0.1 µCi. This gave an estimated dose of 0.7 mrem/year.

จุฬาลงกรณิมหาวิทยาลัย Chulalongkorn University

2.1.3 Manmade sources

Medical exposures: The largest nontrivial-localized dose which was received by the public at large from man-made sources was in connection with the healing arts. This dose included contributions from medical and dental diagnostic radiology, clinical nuclear medicine (the use of radionuclides for various purposes), radiation therapy, and occupational exposure of medical and dental personnel.

Fallout: It was from a nuclear weapon. It consisted of fission fragments and neutron activation products in weapon debris which became attached to dust and water particles in the atmosphere. The larger of these particles soon came to earth near the site of detonation, but the smaller particles may remain aloft in the upper uniformly around the world. Furthermore, it contributed to the general level of environmental radiation, and the long-term exposure from fallout was mostly internal, from fission.

Nuclear power: The dose was due not only to radiation released from power plants themselves, but also from uranium mines, mills and fabrication plant, and fuel reprocessing facilities. In general, the population averaged dose in the United States was less than 1 mrem per year in 1980.

Building materials: Many building materials such as granite, cement, and concrete contained a few parts per million of uranium and thorium, together with their radioactive daughters, and ⁴⁰K. The annual dose of the radiation emanating directly from the walls of brick or masonry structures was 7 mrem per year.

Building materials were also a source of ²²Rn, especially those with poor ventilation, may receive substantial lung doses from the subsequent decay of the ²¹⁰Po. Radon also entered buildings from other natural sources through basement openings, window, and other openings. It was also from the burning of natural gas, which frequently contained large amounts of radon. The average radon related dose to an individual was estimated to be 200 mrem per year.

Air Travel: The radiation dose from air travel stemmed from modern jet aircraft fly at high altitudes, from 9 to 15 km, where cosmic ray dose rate was much greater than it was on the ground. For example, at 43^{0} north latitude (just north of Chicago) and at an altitude of 12 km, the dose rate was 0.5 mrem per hour. Moreover, a 10 hour round trip flight across the United States can result in a total dose of as much as 5 mrems.

Television: Radiation was released in the form of x-rays. Because of increasing numbers of television viewers exposed to this radiation, the US congress in 1968 passed standards requiring that the exposure rate averaged over 10 cm² at any readily accessible point 5 cm from the surface of a television received not exceed 5 mR/hr.

Moreover, with the adoption of this averaged annual dose to the gonads of viewers is now between 0.2 to 1.5 mrems.

Tobacco: As noted earlier, ²²²Rn diffused from the earth to the atmosphere and then decays into ²¹⁰Pb, which subsequently fallen to the earth attached to dust or moisture particles. If these particles fall onto leafy vegetables or pasture grasses, the ²¹⁰Pb may enter directly into the food chain. It is the fact that if the particles fall onto broadleaf tobacco plants, the ²¹⁰Pb and its daughter ²¹⁰Po may be incorporated into commercial smoking materials. As a result, measurement showed that there was on the order of 10 to 20 pCi of both ²¹⁰Pb and ²¹⁰Po in an average pack of cigarettes. The inhalation of the cigarette smoke deposited these radionuclides on the tracheobronchial tree, where the ²¹⁰Po irradiated the radiosensitive basal cells of the bronchial tissue. The annual local dose to this tissue for an average cigarette smoker (1.5 packs per day) was estimated to be as high as 8 rems (8000 mrems) and proportionately higher for heavy smokers.

Other manmade sources: Segments of the public were exposed to several other, often unsuspected, sources of radiation. For example, clocks and wristwatches with luminous dials, eyeglasses or porcelain dentures containing uranium or thorium, smoke detectors with alpha emitting sources, fossil fueled power plants emitted radioactive ash. Moreover, many other manmade devices resulted in generally small whole body doses, but occasionally high local doses. For instance, porcelain teeth and crowns in the United States contained approximately 0.02 % uranium by weight. This was estimated to give an annual local tissue dose of about 30 rem per year, mostly from alpha particles.

2.2 Nuclear weapons fallout

2.2.1 Vertical migration studies of ¹³⁷Cs from nuclear weapons fallout and the Chernobyl accident (Almgren. S, 2006)

33 sampling sites were studied from the vertical migration of ¹³⁷Cs which originated from the nuclear weapons fallout and the Chernobyl accident in western

Sweden. This study was used the field gamma in situ measurement to compare traditional soil sampling technique for determining the activity of 137 Cs. For in situ gamma-rays measurement, an HPGe detector was placed 1 m above the ground looking downwards with the counting time of 15 and 30 minutes. The activities of 137 Cs were given as the equivalent surface deposition and then corrected for the actual depth distribution. For the traditional soil sampling technique, it was performed at each reference site by using a specially design metal corer. This sampling device delivered soil cores from the acquired depth with a diameter of 80 mm. At each site, three cores placed in the corners of a triangle with 60 cm side were taken and cut into slices at 0-2 cm, 2-4 cm, 4-6 cm, 9-12 cm, and 12-15 cm depth. The vertical transport of 137 Cs was found to be very slow, and mostly was still present in the upper most part of the soil with an average depth of the maximum activity of 5.4 ± 2.2 (1SD) cm. The apparent diffusion coefficient (D) and the apparent convection velocity (v) were in the same ranges as the values found in other studies.

2.3 Radiological monitoring

2.3.1 Radiological monitoring of terrestrial natural radionuclides in Kinta District, Perak, Malaysia (Lee. S. K, 2009)

From 2003 to 2005 in Kinta District, Perak, Malaysia, Natural background gamma radiation and radioactivity concentrations were investigated. Sample locations were distant from any 'among' processing plants. In various rocks and soils external, the gamma dose contributions were mainly from the presence of 40 K, 232 Th and 238 U and their progeny. Dose measurements were made at approximately every 1 km (more frequently if the significant change in radiation level was detected) for using a portable survey meter. The position of the locations was determined by using the global positioning system, GPS Garmin Model 12X with accuracy ±50. The HPGe detector was used for the measurement of gamma-energy spectrum. For lab measurement, soil samples were collected from areas of different soil types at 128 locations. About 2 to 3 kg of soils samples were collected from the top 10 cm of the soil. The dose rate ranged from 39 nGy h⁻¹ to 1039 nGy h⁻¹ are over the world average.

2.4 Validation of in situ object counting system (ISOCS)

2.4.1 Validation of in situ object counting system (ISOCS) mathematical efficiency calibration software (Venkataraman. R, 1999)

The ISOCS calibration method was used for calibrating the detector efficiency as a function of energy for a wide variety of source geometries and activity distributions. The ISOCS software consisted of a Canberra characterization of the detector. Source geometry data was input, and the efficiency calibration was produced. Firstly, an MCNP model of the detector was developed. The model was independently validated using measurements with a NIST traceable source. It contained a series of mathematical models that can simulate a wide variety of sample shapes. Each source region into a number of voxels was divided by the ISOCS software. At a given energy, the detector efficiency was calculated for each voxel, taking into account the attenuation due to absorbers both inside and outside the source. At the given energy, the efficiencies for all the voxels were summed up. About 109 samples were tested to determine the accuracy of this calibration method. With the same geometry, a reference efficiency calibration was compared to an ISOCS efficiency calibration for each test. The tests were categorized into three different counting geometries, namely, Field, Laboratory, and Collimated geometry. The mean ratio of ISOCS/True efficiencies was (I) 1.09±0.014 for the Collimated geometries (II) 0.97±0.007 for the Laboratory geometries, and (III) 1.01±0.007 for the Field geometries.

2.5 In situ and air borne of gamma-ray spectrometry

(Andrew N. Tyler, 2008)

In situ and air borne of gamma-spectrometry were commonly used for the measurement of environmental radioactivity. The ability of these two methods can make rapid real time measurements of environmental radioactivity to bring immediate benefits to surveys for the purposes of prospecting, baseline monitoring, contamination

mapping, and site characterization. In addition, a detector based at 1 m for in situ gamma spectrometry (IGS) and 100 m for airborne gamma spectrometry, AGS). The obtained results showed that AGS clearly has an important role to play in nuclear emergency response. Influences of the vertical activity distribution generally had a greater impact on IGS measurements than AGS measurements because of the larger solid angle between the IGS detector and source, unless the detector was collimated.

2.6 Decay series of ²³²Th and ²³⁸U

In nuclear science, the decay chain referred to the radioactive decay of the different discrete radioactive decay products such as the chained series of transformation. This transformation takes place over a defined period of time (known as a half-life) as a result of electron capture, fission or the emission of alpha particles, beta particles, or photons (gamma radiation or x-rays) from the nucleus of an unstable atom. Moreover, a parent isotope was one that undergoes decay to form a daughter isotope. For example, Uranium, atomic number 92, decayed into thorium, atomic number 90. The daughter isotope may be stable, or it may decay to form a daughter isotope of its own. The figure below were the ²³²Th and ²³²U series respectively.

จุฬาลงกรณมหาวิทยาลัย Chulalongkorn University

Figure 2. 1: ²³²Th decay series

Figure 2. 2: ²³⁸U decay series

2.7 Interaction of gamma-rays with matters

There are three major interaction processes of gamma photon with matter:

1. Photoelectric Effect (E < 0.5MeV): A photon interacted with an orbital electron bound in an inner shell (K or L), and then it gave the full energy (hv). The electron liberated from the orbit, called photo electron, and it had kinetic energy of E_e = hv-b, where b was binding energy of orbit. Another orbital electron filled the vacancy, and a characteristic X-ray or an Auger electron was emitted, of which energy was equal to the difference of each binding energy. Cross section for K-electron was proportional to $Z^{5}(hv)^{-3.5}$.

Figure 2. 3: Photoelectric effect

2. Compton Scattering (E > 0.5MeV): A photon interacted with an electron, and it gave a partial energy. Then it scattered for different direction. Energies of the scattered photon and the secondary electron are calculated by:

Scattered photon: $hv' = \frac{hv}{\{1+\alpha(1-\cos\theta)\}}$ when $\alpha = \frac{hv}{m_0v^2}$

Secondary electron $E_e = h\nu - h\nu'$

3. Pair production ($E \sim 1.022$ MeV): A photon produces an electron (e^{-}) and a positron (e^{+}) near the nucleus, and the total kinetic energy of both electron is:

$E_{e^-} + E_{e^+} = h\nu - 2m_0c^2$

Positron combined with an electron nearby after losing kinetic energy, then the electron and positron pair annihilated and emitted two photons (annihilation photon: $m_0c^2 = 511$ keV). This process is called positron annihilation.

2.8 Gamma-rays detectors

Many different detectors was used to register the gamma-rays and its energy. In Non-Destructive Analysis (NDA), it was necessary to measure not only the amount of radiation emanating from a sample but also its energy spectrum. Therefore, the detectors of most use in NDA applications were those whose signal outputs were proportional to the energy deposited by the gamma-rays in the sensitive volume of the detector.

1. Semiconductor detectors: There are several types of semiconductor detectors such as Surface Barrier, Diffused Junction, Silicon Lithium-Drifted Si (Li), Silicon Lithium-Drifted Si (Li), CdTe, HgI₂, and High Purity Germanium (HPGe) detectors.

- The Surface Barrier detectors: Silicon of high purity, normally n-type, is cut, ground, polished, and etched until a thin wafer with a high grade surface is obtained. Then the silicon is left exposed to air or to another oxidizing agent for several days. As a result, the surface energy states are produced that induce a high density of holes and form,

especially a p-type layer on the surface. A very thin layer of gold evaporated on the surface serves as the electrical contact, and it will lead the signal to the preamplifier.

- The Diffused-Junction detectors: Silicon of high purity, usually p-type, is the basic material for this detector. The silicon piece has the shape of a thin wafer with the surface barrier detectors. A thin layer of n-type silicon is formed on the front face of the wafer by applying a phosphorus compound to the surface and then heating the assembly to temperatures as high as 800 to 1000 ⁰C for less than an hour. The phosphorus diffuses into the silicon and "dopes" it with donors. The n-type silicon in front and the p-type behind it form the p-n junction.

- The Silicon Lithium-Drifted Si (Li) detectors: The sensitive region has an upper limit of about 2000 μ m for both surface barrier and diffused junction detectors. This limitation has affected the maximum energy of a charged particle that can be measured. For electrons in Si, the range of 2000 μ m corresponds to an energy of about 1.2 MeV, and for protons the corresponding energy is about 17 MeV. Moreover, for alpha, it is about 90 MeV. The length of the sensitive region can be increased if lithium ions are left to diffuse from the surface of the detector towards the other side. This process has been used successfully with Si and Ge, and it has produced the so called Si (Li) and Ge (Li) semiconductor detectors. Moreover, Lithium drift detectors have been produced with depth up to 5 mm in the case of Si (Li) detectors and up to 12 mm in the case of Ge(Li) detectors.

The lithium drifting process consists of two major steps such as formation of an n-p conjunction by lithium diffusion and increase of the depletion depth by ion drifting. Lithium diffuses into a p-type silicon for forming the n-p conjunction. The simplest method consists of painting a lithium in oil suspension onto the surface. This method drifting is to begin, and other methods are lithium deposition under vacuum or electrodepositing. Moreover, lithium is an n-type impurity (donor atom) with high mobility in silicon. N_p is always constant throughout the silicon crystal, while the donor concentration (N_n) is high on the surface and zero everywhere else. The donor

concentration has changed with depth as the diffusion has proceeded. Drifting is accomplished by heating the junction from 120 to $150 \,^{0}$ C while applying a reverse bias that may range from 25 V up to about 1000 V. Therefore, higher the temperature and the voltage are the faster the drifting proceeds.

- The High Purity Germanium (HPGe) detectors: As the production of high purity germanium (HPGe) with an impurity concentration of 10^{16} atoms/m³, it has made possible the construction of detectors without lithium drifting. By applying a reverse bias across a piece of germanium, the detector is simply formed. The sensitive depth of the detector (depletion layer) depends on the impurity concentration and the applied voltage. The fabrication of HPGe detectors follows the same procedure as with Ge (Li) detectors, except the lithium-drifting process is not needed. The construction of the ohmic contacts is very important step of fabrication of the HPGe detectors. The n side contact (on the front surface) has been formed by letting lithium diffuse into the crystal or by depositing gold or palladium on it. According to a recent breakthrough reported by one of the manufacturers, it makes possible to eliminate the front metal contact. The good contact on the back side has been made by using metals or by implanting boron.

The HPGe detectors are made in planar or coaxial geometry which do not have undrafted central core of Ge (Li) detectors. Therefore, the central part along the axis of the crystal is removed, and a contact is made on the inside of this central hole. It can be made with either n- or p-type germanium. Moreover, it blocks up to 60 mm in diameter which have been produced, making feasible the construction of coaxial detectors with a volume up to 2×10^5 mm³. Planar detectors with a thickness up to 20 mm and coaxial ones with a volume up to 5×10^4 mm³ have been constructed. The major advantage of this detector is that they can be stored at room temperature because of the absence of lithium drifting. At room-temperature storage is particularly helpful when here is a need to ship the detector.

- CdTe, HgI₂, and other detectors: The major disadvantage of lithium drifted detectors is the requirement for continuous cooling. For HPGe detectors, it needs to cool down during operation, and cooling requires a cryostat. There is a great incentive to develop semiconductor detectors that can be stored and operated at room temperature. CdTe or HgI₂ semiconductor detectors have been constructed with thickness up to 0.7 mm to 100 mm². It requires a small detector volume such as monitoring in space, measurement of facility in nuclear power plants, medical portable scanning, or medical imaging devices. Although the detector volume is small, the efficiency is considerable because the high atomic number of the elements is involved. The energy which is needed for the production of an electron hole pair is larger for CdTe and HgI₂ detectors. They are used in measurement where their energy resolution is adequate while, at the same time, their small volume and room temperature operation offer a distinct advantage over Si (Li) and Ge (Li).

2. The Scintillation detectors: Luminescent material (a solid, liquid, or gas) is the sensitive volume of a scintillation detector. It is viewed by a device that detects the gamma-rays induced light emissions (usually a photomultiplier tube). There are three main types of scintillators such as inorganic scintillators, organic scintillators, and gaseous scintillators.

- The Inorganic scintillators (Crystal scintillators): Most of the inorganic scintillators are crystal of the alkali metals. In alkali iodides, they contain a small concentration of an impurity such as NaI (Tl), CsI (Tl), LiI (Tl), and CaF₂ (Eu). The element which is showed in the brackets is the impurity or activator. This activator is the agent which is responsible for the luminescence of the crystal. Although the activator has relatively small concentration, thallium in NaI (Tl) is 10^{-3} on a per mole basis. Inorganic scintillator of NaI (Tl) is the most commonly used for gamma-rays. It has been produced in the singled crystals of up to 0.75 m in diameter and considerable thickness of 0.25 m with relative high density is 3.67×10^3 kg/m³. Moreover, its high atomic number combines with the large volume which makes it a gamma-rays detector with very high efficiency. They cannot replace the NaI (Tl) in experiments where the large detector volumes are needed although semiconductor detectors have better energy resolution. The emission spectrum of NaI (Tl) peaks at 410 nm, and the light-conversion efficiency is the highest of all inorganic scintillators. Furthermore, it is brittle and

sensitive to temperature gradients and thermal shocks. It is also so hygroscopic that it should be kept encapsulated at all times. It always contains a small amount of potassium, which creates a certain background because of the radioactive ⁴⁰K.

-The Organic scintillators: The materials which are efficient organic scintillators belong to the class of aromatic compounds. They consist of the planar molecules which are made up of the benzenoid rings. For example, toluene and anthracene are the class of aromatic compounds. Organic scintillators are formed when the appropriate compounds are combined. They are classified as unitary, binary, ternary, and so on, depending on the number of compounds in the mixture. The substance with the highest concentration is called the solvent, and the others are called solutes. For instance, a binary scintillator consists of a solvent and a solute, while a ternary scintillator is made of a solvent, a primary solute, and a secondary solute. There are two types of the organic scintillators.

Firstly, the organic crystal scintillator, activator is not needed to enhance the luminescence of organic crystals. In fact, any impurities are undesirable because their presence reduces the light output and makes the crystal pure. The most common crystal scintillators are Anthracene and trans-stilbene. Anthracene has a density of 1.25×10^3 kg/m³, and it has the highest light conversion efficiency of all organic scintillators. It is still only about one third of the light conversion efficiency of NaI (Tl). Its decay time (-30 ns) is much shorter than that of inorganic crystals. It can be obtained in different shapes and sizes. Trans-Stilbene has a density of 1.15×10^3 kg/m³ and a short decay time (4-8 ns). It conversion efficiency is about half of that for anthracene. Moreover, it can be obtained as a clear, colorless and single crystal with a size up to several millimeters. Stilbene crystals are sensitive to the thermal and the mechanical shock.

Secondly, the organic liquid scintillators, it consists of a mixture of a solvent with one or more solutes. Xylene, toluene, and hexamethylbenzene are the compounds that have been used successfully as solvents. In a binary scintillator, the incident radiation deposits almost all of its energy in the solvent, but the luminescence is due almost entirely to the solute. Thus, in the case of inorganic scintillators, an efficiency energy
transfer is taking place from the bulk of the phosphor to the material with the small concentration (activator in inorganic scintillators, solute in organic ones). It acts as the wavelength shifter if a second solute is added. It increases the wavelength of the light which is emitted by the first solute. As a result, the emitted radiation is better matched with the characteristics of the cathode of the photomultiplier tube. This scintillator is very useful for measurements where a detector with large volume is needed to increase efficiency.

- The gaseous scintillators: They are mixtures of the noble gases, and the scintillations are produced as a result of the atomic transitions. Other gases, such as nitrogen, are added to the main gas to act as the wavelength shifters because the light which is emitted by noble gases belongs to the ultraviolet region. Thin layer of fluorescent materials uses for coating the inner walls of the gas container to achieve the same effect. The gaseous scintillators exhibit such as very short decay time, light output per MeV deposited in the gas depending very little on the charge and mass of the particle being detected, and very low efficiency for gamma detection.

3. The gas-filled detectors: they operate by utilizing the ionization which are produced by radiation as it passes through a gas. Counter consists of two electrodes, and it is filled with a gas. Ionizing radiation which passes through the space between the electrodes dissipates part or all of its energy by generating electron-ion pairs. Both electron and ions are the charge carriers which move under the influence of the electric field. Their motion induces a current on the electrodes that may be measured.

The ionization chambers: No charge multiplication will take place. The output signal is proportional to the particle energy which is dissipated in the detector. Therefore, the measurement of particle energy is possible. Since the signal from an ionization chamber is not large, only strongly ionizing particles such as alpha, photons, fission fragments, and other heavy ions are detected by such counters. Furthermore, the voltage applied is less than 1000 V.

The proportional counters: Charge multiplication will take place, but the output signal is still proportional to the energy which is deposited in the counter. The measurement of the particle energy is possible. An alpha particle and an electron having the same energy and entering either of the counters will give the different signal. The alpha particle signal will be bigger than the electron signal, and the range of the applied voltage for the proportional counter is between 800 and 2000 V.

The Geiger-Muller (GM) counters: They are very useful because their operation is simple, and they provide a very strong signal, so strong that a preamplifier is not necessary. They can be used with any kind of ionizing radiation, with different level of the efficiency. The disadvantage of GM counters is that their signal is independent of the particle type and its energy. Therefore, a GM counter provides information only about the number of particles. Another minor disadvantage is their relatively long dead time (200 to 300 μ s). The range of applied voltage for GM counters is from 1000 to 3000 V.

There are two main widely used detectors for gamma-rays measurement such as HPGe and NaI detector.

Detectors	Purpose of use	Comments
HPGe	- Gamma-rays measurement and spectrometry	- Used for dose measurement and gamma spectrometry (Good energy resolution)
NaI	- Gamma-rays measurement and spectrometry	- Used for dose measurement and gamma spectrometry (Poor energy resolution)

Table 2.1: The purpose and comments of HPGe and NaI detector

Figure 2. 6: The spectrum of HPGe Vs NaI

2.9 Characteristics of gamma-rays detector

Require high Z and large volume particularly for high energy photons

No restriction for specimen size and thickness

Low energy photon may require self-absorption factor

Need proper shielding

In Situ measurement is possible

Measurement of complex gamma-rays spectrum is most practical for identifying unknown radionuclides

2.10 Calculation of efficiency

The efficiency is calculated by using the formula as the following:

Absolute efficiency
$$= \frac{Cps}{f \times A}$$
 (1)

Where,

- Cps is the net peak area per second
- f is the gamma-ray fraction
- A is the point source activity now expressed in Bq

$$A = A_0 \times e^{-\lambda t} \tag{2}$$

- A₀ is the original point source activity expressed in Bq

- t is the time of the source decay until now expressed in s

- λ is the decay constant expressed in s⁻

$$\lambda = \frac{ln2}{t_{1/2}} \tag{3}$$

- $t_{1/2}$ is the half-life of the source

2.11 Calculation of activity

This quantity tells us how many atoms in a sample of a radioactive material are disintegrating per unit time. In other word, the activity of a radioactive source is the number of nuclei decaying in one second. For example, at the end of the first second, ten million atoms have decayed, so ninety million will be left. 10 % or 9 million will decay. In this way, the activity of the source will decrease every second. After a certain time, it will have only half of its original activity. This period of time is called the half-life of the source. The decay of a radionuclides is statistical in nature and it is impossible to predict when any particular atom will disintegrate. The result of this uncertainty regarding the behavior of any particular atom is that the radioactive decay law is exponential in nature, and is expressed mathematically as the follow:

$$N = N_0 \times e^{-\lambda t} \qquad (4)$$

Where,

- N₀ is the number of nuclei present initially

- N is the number of nuclei present at time t

- λ is the radioactive decay constant

The half-life $(T_{1/2})$ of a radioactive species is the time required for one half of the nuclei in a sample to decay. It is obtained by putting N = N₀/2 in the above equation.

$$\frac{N_0}{2} = N_0 \times e^{-\lambda t} \tag{5}$$

Then dividing across by N₀ and taking natural logarithm

$$\ln\left(\frac{1}{2}\right) = -\lambda \times T_{\frac{1}{2}} \qquad (6)$$
$$T_{1/2} = \frac{\ln 2}{\lambda} \qquad (7)$$

Because of the disintegration rate or activity of the sample is proportional to the number of unstable nuclei, this varies exponentially with time.

$$A = A_0 e^{-\lambda t} \tag{8}$$

Where,

- A is the activity of nuclei present at time t

- A₀ is the activity of nuclei present initially

- λ is the radioactive decay constant

Each radionuclides has its own particular half-life which never changes, regardless of the quantity, past history, or form of the materials such as liquid, solid, gas, element or compound. The half-lives range from microsecond for some radionuclides to millions of years for others.

The activity of nuclei can be also calculated by:

$$A = \lambda \times N \qquad (9)$$

Where,

- A is the activity of nuclei

- λ is the decay constant

$$\lambda = \frac{ln2}{T_{1/2}}$$
, $T_{1/2}$ is the half life of the nuclei (10)

- N is the number of atoms

$$N = \frac{N_A \times W}{A} \qquad (11)$$

Where,

- N_A is the Avogadro's number (6.022 \times 10²³ atoms/mole)
- A is the atomic weight
- W is the weight of the nuclei

From the measurement, the amount of uranium and thorium could be obtained from the following relationships in equation.

Sample Act= (Std Act \times Sample Area \times Mass Std)/ (Std Area \times Mass Sample) (12)

Where,

- Std and Sample Area are the net peak area per second of the standard and sample respectively expressed in (cps)

- Mass Std and Sample are the mass in gram of the standard and sample respectively expressed in (kg)

- Std and Sample Act are the specific activity of standard and sample respectively expressed in (Bq/kg).

2.12 Calculation of dose rate (John R. Lamarsh, 2001)

The energy deposition rate per unit mass is given by $I E ({}^{\mu a}/_{\rho})^{air}$ and $1R = 5.47 \times 10^7 MeV/g$ then it follows that the exposure rate X is given by:

$$X = \frac{IE(\mu_a/\rho)^{air}}{5.47 \times 10^7}$$
(13)

$$= 1.83 \times 10^{-8} IE (\frac{\mu_a}{\rho})^{air} R/_{sec}$$
(14)

Where,

- I (photons/cm²-sec) is the gamma-ray intensity
- E (MeV) is the gamma-ray energy

- $({^{\mu_a}}/{_{\rho}})^{air}$ (cm²/g) is the mass absorption coefficient of air at the energy E

For many practical problems, it is more appropriate to express X in mR/hr, rather than in R/sec.

$$\frac{1R}{sec} = 3.6 \times 10^6 \frac{mR}{hr}$$
 (15)

Then exposure rate can be written as:

$$X = 0.0659IE(\frac{\mu_a}{\rho})^{air} \frac{mR}{hr}$$
(16)

Where, X is the exposure rate expressed in (mR/h), I is the gamma ray intensity expressed in (photon/cm²-sec), E is the gamma ray energy expressed in (MeV), and $(\mu_a/\rho)^{air}$ is the mass absorption coefficient of air at the energy E expressed in (cm²/g) (Larmarsh and Baratta, 2001, pp. 511-539). The mass absorption coefficient of air (cm²/g)^{air} at the energy E can be calculated by interpolation between two energy in the figure below.

	2.4							Gamma	I-ray en	ergy, M	eV							
Material	0.1	0.15	0.2	03	0.4	0.5	9.0	0.8	1.0	1.25	1.50	2	Э	4	5	9	8	10
Н	.0411	.0487	.0531	.0575	0589	0591	0650.	.0575	.0557	.0533	0209	.0467	.040I	.0354	.0318	.0291	.0252	.0255
Be	.0183	.0217	.0237	.0256	.0263	.0264	.0263	.0256	.0248	.0237	0227	.0210	.0283	.0164	0151	.0141	.0127	.0118
C	.0215	.0246	.0267	.02.88	.0296	.0297	.0296	.0289	.0280	.0268	.0256	.0237	0209	.0190	7710.	.0166	.0153	.0145
Z	.0224	.0249	.0267	.02.88	.0296	.0297	.0296	0289	.0280	.0268	.0256	.0236	.0211	.0193	.0180	.0171	.0158	0151
0	.0233	.0252	.0271	.0289	.0296	.0297	.0296	.0289	.0280	.0268	.0257	.0238	.0212	.0195	.0183	.0175	.0163	0157
Na	.0289	.0258	.0266	.0279	0283	.0284	0284	.0276	.0268	0257	.0246	.0229	.0207	.0194	.0185	.0179	1710.	.0168
Mg	.0335	.0276	.0278	.0290	.0294	.0293	.0292	.0285	.0276	.0265	0254	.0237	.0215	.0203	.0194	.0188	.0182	.0180
AI	.0373	.0283	.0275	.0283	.0287	.0286	.0286	.0278	.0270	.0259	0248	.0232	.0212	.0200	.0192	.0188	.0183	.0182
Si	.0435	0300	.0286	.0291	.0293	.0290	0290	.0282	.0274	.0263	.0252	.0236	.0217	.0206	8610.	.0194	0610	.0189
Р	.0501	.0315	.0292	.0289	.0290	.0290	0287	.0280	0271	.0260	.0250	.0234	.0216	.0206	.0200	7910.	.0194	.0195
S	10907	.0351	0310	0301	0301	.0300	.0298	.0288	0279	,0268	.0258	.0242	.0224	.0215	0209	.0206	.0206	.0206
Ar	.0729	.0368	.0302	.0278	.0274	0272	.0270	.0260	.0252	.0242	.0233	.0220	.0206	0199	2610.	.0195	.0194	7910.
K	6060	.0433	.0340	.0304	.0298	.0295	1620.	.0282	.0272	.0261	.0251	.0237	.0222	.0217	.0214	.0212	.0215	0219
Ca	III.	.0489	.0367	.0318	0309	.0304	.0300	.0290	0279	.0268	.0258	.0244	.0230	.0225	.0222	.0223	.0225	0231
Fe	.225	.0810	0489	.0340	.0307	.0294	0287	.0274	.0261	.0250	0242	.0231	.0224	.0224	0227	.0231	0239	.0250
Ū	.310	.107	0594	.0368	.0316	.0296	.0286	.0271	.0261	.0247	0237	.0229	.0223	.0227	.0231	.0237	.0248	.0261
Mo	922	294	.141	.0617	.0422	.0348	.0315	.0281	.0263	0248	.0239	.0233	.0237	.0250	.0262	.0274	.0296	.0316
Sn	1.469	.471	222	.0873	.0534	.0403	.0346	.0294	.0268	.0248	0239	.0233	.0243	.0259	.0276	.0291	.0316	0339
-	1.726	.557	260	.100	.0589	.0433	.0366	.0303	.0274	.0252	.0241	.0236	.0247	.0265	.0283	.0299	.0327	.0353
M	4.112	1356	.631	230	.1219	.0786	0599	.0426	.0353	.0302	.0281	,0271	.0287	03 11	.0335	.0355	.0390	0426
Ł	4.645	1.556	611	262	.138	.0892	.0666	.0465	0375	.0315	.0293	.0280	.0296	.0320	.0343	.0365	,0400	.0438
F	5.057	1.717	161.	285	.152	.0972	0718	.0491	£6£0.	.0326	0301	.02.88	.0304	.0326	.0349	.0354	.0406	.0446
Ъ	5.193	1.753	821	294	.156	.0994	.0738	.0505	.0402	.0332	9060.	.0293	2060.	.0330	.0352	.0373	.0412	.0450
D	9.63	2337	1.096	392	208	.132	8960	.0628	.0482	,0383	.0346	.0324	0332	.0352	.0374	.0394	0443	.0474
Air	.0233	.0251	.0268	.0288	.0296	.0297	.0296	.0289	.0280	.0268	.0256	.0238	.0211	.0194	.0181	.0172	.0160	.0153
NaI	1.466	.476	224	.0889	.0542	.0410	.0354	.0299	.0273	.02.53	.0242	.0235	.0241	.0254	.0268	.0281	.0303	.0325
H ₂ O	.0253	.0278	.0300	.0321	.0328	.0330	.0329	.0321	.0311	.0298	.0285	.0264	.0233	.0213	.0198	.0188	.0173	.0165
Concrete	.0416	.0300	.0289	.0284	.0297	.0296	.0295	.0287	.0278	.0272	.0256	0239	.0216	.0203	.0194	.0188	0180	7710.
Tissue	.0271	.0282	.0293	.0312	0317	.0320	0319	.0311	.0300	.0288	0276	0256	0220	.0206	.0192	.0182	.0168	.0160

THE MASS ABSORPTION COEFFICIENT ($\mu_{\rm A}/\rho)$ FOR SEVERAL MATERIALS, IN CM²/G*

Figure 2. 7: The mass absorption coefficient for several materials in cm^2/g

Exposure rate (mR/h) can be converted to dose rate (Sv/hr or μ Sv/hr) in air by the following factors:

1rad 100ergs/g = 1**R** 87.5 ergs/g = 1**R** 0.875rad = 100rad 1Gy =1**R** 0.00875Gy = For gamma-ray, the quality factor (Q) = 1 $0.00875 \times 10^{6} \,\mu Sv$ Therefore, 1R =0.00875 Sv =

The gamma ray intensity was calculated using the flux or gamma ray intensity from a planar disc source.

$$I = (S/4) \times \ln[1 + (R^2/X^2)]$$
(17)

Where, S is the activity expressed in gamma-ray isotropically per cm²-sec, R is the radius of the ceiling expressed in (m) and X is the distance between source and people or the center of the detector expressed in (m). The exposure rate (mR/hr) can be converted to the dose rate (μ Sv/hr).

Chapter 3

Methodology

3.1 Equipment

3.1.1 Equipment for analysis of uranium-238 and thorium-232 contents

- Four cans of ceiling paint samples (Two cans are white ceiling paint, and other two are grey ceiling paint)

- One can of non-radioactive paint which is used as the a blank
- Two Standard Reference Materials IAEA RGU-1 and RGTh-1
- The portable HPGe detector with relative efficiency 30%
- The Canberra Genie 2000 Gamma Analysis Software
- The Canberra low level background lead shield surrounding
- The Digital Spectrum Analyzer (DSA)
- Five plastic containers of 3" diameter-2" height
- The cryotank with liquid nitrogen
- The Desktop

Chulalongkorn University

3.1.2 Equipment for in situ dose rate measurement

- Four cans of ceiling paint samples (Two cans are white ceiling paint, and other two are grey ceiling paint)

- One can of non-radioactive paint which is used as the a blank
- Two Standard Reference Materials IAEA RGU-1 and RGTh-1
- Three point standard sources of ¹³⁷Cs, ⁶⁰Co, and ¹⁵²Eu
- Two calibrated gamma survey meters of HDS-101 GN and GM energy compensated
- The ISOC software
- The portable HPGe detectors with relative efficiency 10%

- The Canberra Genie 2000 Gamma Analysis Software
- The Multi-Channel Analyzer (MCA), Amplifier, and High Voltage
- Eight pieces of lead shield
- Eleven pieces of plywood ($30 \text{ cm} \times 30 \text{ cm}$ in each piece)
- The cryotank with liquid nitrogen

- The Desktop

3.2 Experiment procedures

3.2.1 Samples collection

Samples collection for both laboratory and in situ measurement

From our preliminary survey used a simple GM pancake survey meter to measure radiation outside the paint cans, and it was found that two kinds of paint samples are radioactive. They were ceiling paints of the same brand having different colours i.e. ash grey and white. The first two samples were then bought, one for each colour weighing approximately 3.8 kg. The other two samples were later bought from another shop to obtain samples from different lots.

เงกรณมหาวัทยาล์

3.2.2 Samples preparation Samples preparation for laboratory measurement

Four samples weighing 312, 314, 313, 336, and 276 g namely W1, W2, G1, G2, and a non-radioactive paint sample respectively were taken from the cans to fill in a 3"diameter-2" height plastic container. Then they were sealed to prevent the escape of radioactive radon gas and left for at least 30 days to obtain the radioactive equilibrium between uranium-238 (238U) and its daughters as well as thorium-232 (232Th) and its daughters (Abudlkarim et al, 2013, p. 867).

Figure 3. 1: Showing a sample in the container for laboratory analysis

Samples preparation for in situ measurement

The samples were taken from the can to paint on the $30 \text{ cm} \times 30 \text{ cm}$ of the planar plywood and then kept about 3 days until they were dry. There were four cans of the ceiling paint which were W1, W2, G1, and G2. Each can was taken for two samples. The samples W1a and W1b from the sample W1 and the samples W2a and W2b from the sample W2 were the white ceiling paints. Moreover, the samples G1a and G1b from the sample G1 and G2a and G2b from the sample G2 were the grey ceiling paints. Therefore, there were eight samples. A non-radioactive paint sample was also bought to be used as our blank. In addition, the IAEA RGU-1 and RGTh-1 with the weight of 5.538 g and 7.538 g respectively were also used to mix with the blank to paint on the plywood for the measurements, and this standard represents sample M. Another IAEA RGU-1 and RGTh-1 with the weight of 10.35 g and 11.86 g respectively were later used for the measurement, and this standard represents sample N.

Sample (30 cm \times 30 cm)Figure 3. 2: A photo of painted plywood sample for in situ measurement

3.3 Laboratory analysis for uranium-238 and thorium-232 contents

A gamma spectrometer equipped with a high purity germanium (HPGe) semiconductor detector Canberra model GC3021 was used for the measurements. It had a relative efficiency of 30%. To reduce the natural gamma-ray background level, the detector was installed inside a low background lead shield with 10 cm thickness as illustrated in Figures 3.3 & 3.4. The detector was connected to a digital spectrum analyzer (DSA) which was connected with a desktop computer. Canberra Genie-2000 Gamma Analysis Software run on the desktop computer was used to control the measurement and to perform data acquisition and spectrum analysis. The Standard Reference Materials including RGU-1 (uranium ore standard) and RGTh-1 (thorium ore standard) obtained from the International Atomic Energy Agency (IAEA) were used in this research. The specific activities of RGU-1 and RGTh-1 were 4903.47 Bq/kg with the weight of 324.15 g and 3257.89 Bq/kg with the weight of 313 g respectively. These Standard Reference Materials were filled in a 3"diameter-2" height plastic container and then were kept as the same samples. Two Standard Reference Materials, four samples, and a blank (a non-radioactive paint sample) were used for the measurements, and they were placed on top of the HPGe detector for measurement one after the other for 7,200 seconds. All spectra were then analyzed to identify radioactive isotopes from their energy peaks and to calculate the specific activity of uranium-238 and thorium-232 from the net peak intensities by using the method of the direct comparison.

Figure 3. 3: Lead shield to lower gamma background level

Figure 3. 4: The laboratory analysis using a High Purity Germanium (HPGe) detector

3.3.1 Energy Calibration for laboratory analysis

Table 3.1: The energy and channels using the standard sources of uranium-ore and thorium-ore

Sources	Energy (keV)	Channels
²²⁶ Ra	186	346
	242	451
²¹⁴ Pb	295	549
	352	655
²¹⁴ Bi	609	1133
²²⁸ Ac	911	1693

Figure 3. 5: The linear line of energy calibration

3.3.2 Calculation of the specific activity

The specific activity of ²³⁸U and ²³²Th in the ceiling paint samples was determined in our laboratory with the low level background lead shield. These specific activities were determined using the method of the direct comparison in equation (12).

3.4 In situ gamma measurement using a High Purity Germanium (HPGe)

A gamma spectrometer equipped with the High Purity Germanium (HPGe) semiconductor detector Canberra model GC1020 was used for the measurements. It has the relative efficiency 10%. To reduce the natural gamma-rays background level, the detector was installed inside the lead shield with 5 cm thickness as illustrated in Fig. 3.6. The detector was connected to a Multi-Channel Analyzer (MCA) and a notebook computer. The Canberra Genie 2000 Gamma Analysis Software ran on the notebook computer was used to control the measurement and to perform the data acquisition and the spectrum analysis.

The point sources of ¹⁵²Eu, ⁶⁰Co, and ¹³⁷Cs were used for the energy calibration. Moreover, the point sources of ¹⁵²Eu and ¹³⁷Cs were used for the standard efficiency calibration curve. The standard materials including RGU-1 (uranium standard) and RGTh-1 (thorium standard) obtained from the International Atomic Energy Agency (IAEA) were also used in this research for the dose measurement. The low intensity of RGU-1 and RGTh-1 with the weight of 5.54 and 7.54 g respectively were mixed with the blank, a non-radioactive paint sample, and then were painted on the plywood for the measurements. Moreover, the high intensity of RGU-1 and RGTh-1 with the weight of 10.35 and 11.86 g respectively were also mixed with the blank, a non-radioactive paint sample, and then were painted on the plywood for the measurements. Each point source, reference material, sample, and blank was placed 2 cm away from the center of the HPGe detector for the measurement one after the other for 7,200 seconds. All spectra were then analyzed to identify the radioactive isotopes from their energy peaks and to calculate the dose rate from these samples.

Figure 3. 6: The in situ measurement using the HPGe detector

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 3. 7: The HPGe detector with the sample and the lead shield

3.4.1 Energy Calibration for in situ measurement

Sources	Energy (keV)	Channels
UHUL	121.78	37
¹⁵² Eu	244.7	77
	344.28	110
¹³⁷ Cs	662	213
	778.9	251
152Eu	964.08	311
Lu	1089.5	351
	1112.07	360
60 C a	1172	380
	1132	431
¹⁵² Eu	1408	456

Table 3.2: The energy and channels of the standard sources

Figure 3. 8: The linear equation of energy calibration using standard sources of 152 Eu, 137 Cs, and 60 Co

3.4.2 Efficiency

The efficiency of this measurement is calculated based on the point sources of ¹⁵²Eu and ¹³⁷Cs which are placed on the center of the detector with the distance of 2 cm. Then these point sources are moved from the center of the detector to the right side at 1 cm, 2 cm, and 3cm until the end of the detectable side in the same line. Moreover, these sources were also moved to the left the same as the right. The sources were moved to the right and left in order to find the correction factor for the accurate efficiency.

3.4.3 In situ dose rate calculated from known activity and from measurement

In this research the dose rate of planar plywood can be calculate by: Dose rate calculated from the activity of known ²³⁸U and ²³²Th contents.

- The activity (in Bq/g) of the paint samples and the standard reference materials (RGU-1 and RGTh-1) were known, so it can be converted to Bq/cm². Therefore, with the radius of our samples and the distances from the center of the detector, the dose rate and the flux were calculated in equation (16) and (17) respectively.

Dose rate calculated from the measurement

- The efficiency of the planar plywood with the surface of $10 \text{ cm} \times 10 \text{ cm}$ of each energy was calculated by the equation in the standard efficiency curve of the point sources with the correction factor. Then the activity (Bq/100cm²) was calculated by the equation

$$Activity (Bq/100cm2) = \frac{Net area}{(Efficiency \times decay fraction)}$$
(18)

- Net area is the net peak area at each energy expressed in cps

- Efficiency it the absolute efficiency at each energy

- decay fraction the gamma-ray fraction at each energy

The activity (Bq/cm^2) can be converted from this activity. As the result, the dose rate and the flux were calculated in equation (16) and (17) respectively.

3.5 In situ object counting software (ISOCS)

Canberra designed the ISOCS product to be a complete In Situ Object Counting System or Software. It is now practical to use the in situ gamma spectroscopy in a wide variety of applications with this product. It can be used accurately to access the contamination levels in or on soil, building surfaces, pipes, ducts, tanks, boxes, bags, drums, and other objects with the different shapes and the activity distributions. The ISOCS measurements can be performed more quickly and at lower cost than other assessment method.

A complete ISOCS package which is integrated by Canberra typically includes an MCNP-characterized germanium detector, a Canberra MCA, a personal computer, appropriate shielding, the Basic Spectroscopy and Gamma Analysis packages for genie 2000, and the ISOC software. The Genie 2000 Efficiency CAM file must be created using ISOC software on the PC and then moved to the VMS system. The steps of the ISOCS measurement process are to:

- Characterize the detector at the factory

- Acquire spectral data from the sample

- Specify the dimensions and physical composition of the measured object

- Generate an efficiency calibration file appropriate for the specified counting configuration

- Use these efficiency results to analyze the acquired spectra

The ISOCS calibration software is used to enter all necessary measurement parameters and to generate the efficiency calibration file. Moreover, the Canberra's Genie 2000 software is used to acquired and analyze the spectral data.

3.6 In situ gamma measurement using the survey meter of HDS-101 GN and GM energy compensated

3.6.1 Survey meter of HDS-101 GN

Power on:

- Press the On/Off push button, and the device will go into a Power Up Sequence

- Check the profile choice and the alarm level choice

- The HDS will go to a self-test procedure, a radiation background update phase

(Attention! No radiation source should be located close to the HDS-101 during the power up sequence)

- At the end of the count down, it switches to Detection mode with the default user profile.

Notice for routine checks:

- No fault message

- Background level is displayed
- Goes from "Calib. ID" to "ID Ready in less than two minutes.

For this measurement, the mode number 3 which is the integration mode was used because:

- Making a measurement with a high precision
- Acquiring a cumulated spectrum
- Identifying a radioactive source
- The integration screen shows the following information:
- Instant gamma counts per second
- Indication about the position of the HDS-101:

1. Source OK: means that the HDS-101 is positioned at a distance which give an acceptable count rate.

2. Source too far: means that the HDS-101 is too far from the source which results in a too low counts rate which will lead to a long measurement time.

3. Source to close: means to that the HDS-101 is too close from the source which results in a too high counts rate which will lead to a saturated spectrum and may give a wrong identification.

The screen display of the survey meter during the measurement as be shown in the Fig. 3.9 below is "source too far". Then the button "Acq" was pressed for the measurement. When integration is completed, three screens are available. The first screen is the identification result, which gives the list of isotopes identified (isotope category, name and confidence index). The gain error is indicated and should be less than 3%. The second screen gives the spectrum. The last screen gives the mean values, dose rate, during the integration period.

Figure 3. 9: The picture of survey meter, HDS-101 GN

Figure 3. 10: The in situ measurement using the survey meter of the HDS-101 GN

3.6.2 Survey meter of GM energy compensated

Another survey meter which is called gamma neutron survey meter, GM energy compensated was also used for this measurement. This survey meter displayed the dose rate in μ Sv/hr.

Figure 3. 11: The gamma neutron survey meter, GM energy compensated

Figure 3. 12: The GM energy compensated in side lead shield for the measurement

Chapter 4

Data Analysis and Results

4.1 Data analysis and results for laboratory measurement

4.1.1 Energy calibration for samples by using the standard sources

By using the linear equation of Y = 1.86X + 0.88 in the energy calibration curve of standard sources of RGU-1 and RGTh-1, the channels of each energy can be calculated.

Where,

Y is the channel number, and X is the energy in keV.

Radionuclides	Energy (keV)	Channels
Pb-214	352.2	656
Bi-214	609.3	1134
Ac-228	209.4	390
Pb-212	238.7	445
Ac-228 CHUL	ALONGKO 270.5 JERSITY	504
T1-208	277.6	517
Ac-228	337.9	629
Ac-228	462.5	861
T1-208	510.9	951
T1-208	583.1	1085
Bi-212	726.7	1353
Ac-228	794.2	1478
T1-208	860.1	1601
Ac-228	910.8	1695
Ac-228	969.0	1803
T1-208	2612.9	4861

Table 4.1: The energy and channels of the radionuclides

Figure 4. 1: The energy calibration curve

4.1.2 Calculation of the specific activity of ²³⁸U and ²³²Th

The obtained spectra of all four ceiling paint samples showed the peaks of uranium daughters such as lead-214 (²¹⁴Pb) and bisbmuth-214 (²¹⁴Bi) and thorium daughters such as actinium-228(²²⁸Ac) and thallium-208 (²⁰⁸Tl). The spectra indicated that there were uranium and thorium in the ceiling paint samples. Uranium and thorium mainly present in soil and rock. Products having raw materials from soil and rock always contain uranium and thorium such as construction materials, ceramic tiles, fertilizers, coals, etc. Normally paint samples should not contain uranium and thorium at a detectable level except they are intentionally added.

From our measurement, the amount of uranium and thorium could be obtained by using the method of direct comparison in equation (12). The uncertainties of these specific activities were determined by using the error propagation formula (Ahmad. 1997, p. 13; Knoll. G. F., 2000. p. 89). The specific activities of the radionuclides ranged from 149.22±3.58 to 2124.55±26.30 Bq/kg for all samples as be shown in Table 4.2 below.

Samples (Activity)	²¹⁴ Bi (E=609.3 keV)	²²⁸ Ac (E=910.8 keV)
W1	176.87±3.86	2124.55±26.30
W2	171.88±3.82	2018.70±25.50
G1	149.22±3.58	1792.45±23.61
G2	306.07±5.30	2116.97±27.64

Table 4.2: The specific activity $(Bq/kg\pm 1\sigma)$ of some natural radionuclides with counting time of 2 hours

The highest specific activity of these radionuclides was found in the sample W1 (2124.55±26.30 Bq/kg) in ²³²Th series of ²²⁸Ac (E=911 keV), but the lowest specific activity was found in the sample G1 (149.22±3.58 Bq/kg) in ²³⁸U series of ²¹⁴Bi (E=609.3 keV). Moreover, in ²³⁸U series, the specific activity of ²¹⁴Bi (609 keV) in all samples ranged from 149.22±3.58 to 306.07±5.30 Bq/kg. Furthermore, in ²³²Th series, the specific activity of ²¹²Ac (911 keV) ranged from 1792.45±23.61 to 2124.55±26.30 Bq/kg.

The gamma-rays spectra of the standard reference materials of RGU-1 and RGTh-1 were be shown below. For RGU-1 and RGTh-1, there were several peak intensities emitting from the several radionuclides. The specific activity of ²³⁸U was calculated based on the radionuclide of ²¹⁴Bi (E=609 keV), and the specific activity of ²³²Th was calculated based on the radionuclide of ²²⁸Ac (E=911 keV). Their peak intensities represented the emitted radiation from the radionuclides with their energy in keV.

Figure 4. 2: Characteristic Gamma Spectrum of RGU-1 with Counting Time 7,200

The gamma spectra of four samples and a blank were shown below. The gamma spectrum of the blank showed very low peak intensities of radionuclides while the spectra of four samples showed several energy peaks with high peak intensities. Their peak intensities represented the emitted radiation from the radionuclides with their energy in keV.

Figure 4. 4: Characteristic Gamma Spectrum of blank (interior paint sample) with Counting Time 7,200 s

Figure 4. 5: Characteristic Gamma Spectrum of Ceiling Paint Sample W1 with Counting Time 7,200 s

Figure 4. 6: Characteristic Gamma Spectrum of Ceiling Paint Sample W2 with Counting Time 7,200 s

Figure 4. 7: Characteristic Gamma Spectrum of Ceiling Paint Sample G1 with Counting Time 7,200 s

Figure 4. 8: Characteristic Gamma Spectrum of Ceiling Paint Sample G2 with Counting Time 7,200 s

The peak intensity of 214 Bi (E=609 keV) in the uranium ore standard were higher than the speak intensity of 214 Bi (E=609 keV) in all samples. Moreover, the peak intensity of 228 Ac (911 keV) in the thorium ore standard were slightly higher than the peak intensities of 228 Ac (911 keV) in all samples.

The gamma spectrum of the blank in Fig. 4.4 showed that the background was very low. This means that this blank was not radioactive. However, the spectra of four samples such as W1, W2, G1, and G2 were shown that there were the several peak intensities emitting from the different radionuclides with their individual energy in keV. The peak intensities of those radionuclides were found out that they were the daughters of ²³⁸U, and ²³²Th series because the energy peaks of them were the same as the energy peaks of the uranium and thorium standards.

The specific activity of 238 U was calculated as 226 Ra (The parent of 222 Rn) activity based on its decay products 214 Bi (E=609.3 keV) in the radioactive equilibrium

with their parent. In the ²³⁸U decay series, ²¹⁴Bi is considered as ²²⁶Ra indicators corresponding with the radium mobility in geological times because of the geochemical reasons (Corte et al., 2005, p. 590). In the secular equilibrium, the specific activity of ²²⁰Rn was equal to the specific activity of its parent, ²³²Th. The uncertainties of these specific activities were determined using the error propagation formula.

_		
Samples Activity	²³⁸ U	²³² Th
W1	176.87±3.86	2124.55±26.30
W2	171.88±3.82	2018.70±25.50
G1	149.22±3.58	1792.45±23.61
G2	306.07±5.30	2116.97±27.64

Table 4.3: The specific activity (Bq/kg $\pm 1\sigma$) of ²³⁸U and ²³²Th

In secular equilibrium, the specific activity of 238 U and 232 Th is equal to the specific activity of their daughters. The highest specific activities of 232 Th was found in sample W1 (2121.11±26.52 Bq/kg), and the highest specific activity of 238 U was found in sample G2 (299.76±4.87 Bq/kg). The lowest specific activities of 238 U and 232 Th were found in sample G1 (144.61±3.28 and 1773.59±23.66 Bq/kg) respectively. The specific activities of 238 U and 232 Th of these four samples were higher than the corresponding world mean values for the building materials (50 and 50 Bq/kg respectively) (UNSCEAR, 1993, p. 41).

IULALONGKORN UNIVERSIT

4.2. Data analysis and results for in situ measurement

4.2.1 Energy calibration for samples by using standard point sources

By using the linear equation of Y = 0.33X - 2.56 in the energy calibration curve of standard sources of ¹⁵²Eu, ⁶⁰Co, and ¹³⁷Cs, the channels of each energy can be calculated.

Where,

Y is the channel number, and X is the energy in keV.

Radionuclides	Energy (keV)	Channels
Pb-212	238.7	76
Ac-228	337.9	109
Pb-214	352.2	114
Ac-228	462.5	150
T1-208	510.9	166
T1-208	583.1	190
Bi-214	609.3	199
Bi-212	726.7	237
Ac-228	910.8	298
Ac-228	969	317
T1-208	2612.9	860

Table 4.4: The energy and cannels of the radionuclides

Figure 4. 9: The linear line of energy Vs Channels

4.2.2 Efficiency

Sources with energy (keV)	Efficiency at center	Efficiency move 1 cm to right	Efficiency move 2 cm to right	Efficiency move 3 cm to right
¹⁵² Eu at 121.78	0.0473	0.0445	0.348	0.0242
¹⁵² Eu at 242.7	0.0208	0.0205	0.0170	0.0131
¹⁵² Eu at 344.28	0.0141	0.0135	0.0114	0.0086
¹³⁷ Cs at 662	0.0061	0.0059	0.0051	0.0039
¹⁵² Eu at 778.9	0.0061	0.0056	0.0048	0.0037
¹⁵² Eu at 964.08	0.0049	0.0049	0.0040	0.0032
¹⁵² Eu at 1085.9	0.0055	0.0051	0.0040	0.0028
¹⁵² Eu at 1408	0.0036	0.0034	0.0029	0.0022

Table 4.5: The efficiency at the center and right side of the detector

Table 4.6: The efficiency at the left side of the detector

Sources with energy (keV)	Efficiency move 1 cm to left	Efficiency move 2 cm to left	Efficiency move 3 cm to left
¹⁵² Eu at 121.78	0.0434	0.0350	0.0263
¹⁵² Eu at 242.7	0.0204	0.0164	0.0127
¹⁵² Eu at 344.28	0.0137	0.0113	0.0089
¹³⁷ Cs at 662	0.0057	0.0048	0.0039
¹⁵² Eu at 778.9	0.0054	0.0047	0.0039
¹⁵² Eu at 964.08	0.0045	0.0041	0.0033
¹⁵² Eu at 1085.9	0.0035	0.0035	0.0024
¹⁵² Eu at 1408	0.0033	0.0027	0.0022

By taking the average of the efficiency from the left and right at the same position then divide by the efficiency at center. The center also needs to divide by itself.

The result of the taking average and dividing the center represents the counting rate related to position 0. As a result, the correction factor is determined.

- Efficiency at center/center represents position 0 cm

- The average efficiency of left and right at 1cm from the center and then divide the efficiency at the center represents position 1 cm

- The average efficiency of left and right at 2 cm from the center and then divide the efficiency at the center represents position 2 cm

- The average efficiency of left and right at 3 cm from the center and then divide the efficiency at the center represents position 3 cm

Energy (keV)	Position (cm)	Counting rate related to position 0
¹⁵² Eu at 121.78	0	1
¹⁵² Eu at 242.7	0	1
¹⁵² Eu at 344.28	0	1
¹³⁷ Cs at 662	0	1
¹⁵² Eu at 778.9	0	1
¹⁵² Eu at 964.08	าลงกร0โมหาวิ	ายาลัย 1
¹⁵² Eu at 1085.9 CHU	ALONG ODRN UN	IVERSITY 1
¹⁵² Eu at 1408	0	1
¹⁵² Eu at 121.78	1	0.93
¹⁵² Eu at 242.7	1	0.98
¹⁵² Eu at 344.28	1	0.96
¹³⁷ Cs at 662	1	0.95
¹⁵² Eu at 778.9	1	0.9
¹⁵² Eu at 964.08	1	0.96
¹⁵² Eu at 1085.9	1	0.78
¹⁵² Eu at 1408	1	0.93
¹⁵² Eu at 121.78	2	0.74

Table 4.7: The ratio efficiency of different position with different energy

Energy (keV) (cont.)	Position (cm) (cont.)	Counting rate related to position 0 (cont.)
¹⁵² Eu at 242.7	2	0.8
¹⁵² Eu at 344.28	2	0.8
¹³⁷ Cs at 662	2	0.81
¹⁵² Eu at 778.9	2	0.78
¹⁵² Eu at 964.08	2	0.83
¹⁵² Eu at 1085.9	2	0.68
¹⁵² Eu at 1408	2	0.78
¹⁵² Eu at 121.78	3	0.53
¹⁵² Eu at 242.7	3	0.62
¹⁵² Eu at 344.28	3	0.62
¹³⁷ Cs at 662	3	0.64
¹⁵² Eu at 778.9	3	0.62
¹⁵² Eu at 964.08	3	0.66
¹⁵² Eu at 1085.9	3	0.47
¹⁵² Eu at 1408	3	0.61

The curve of ratio efficiency of different position for different energy and the fitting of ratio efficiency of different position for different energy were plotted in order to find the correction factor for the accurate efficiency were shown in the figures below.

Figure 4. 10: The ratio efficiency curve of different position for different energy

Figure 4. 11: The fitting curve for the ratio efficiency

According to the curve of counting rate related to position 0, the correction factor for the efficiency of this measurement is the average of the lowest (efficiency=0.47) and highest (efficiency=1). Therefore the correction factor for this efficiency of planar plywood with the surface of 10 cm \times 10 cm is 0.74. The standard efficiency curve of the standard point sources, ¹⁵²Eu and ¹³⁷Cs at center.

หาลงกรณ์มหาวิทยาลั

Figure 4. 12: The efficiency curve of point sources, ¹⁵²Eu and ¹³⁷Cs, at center

Figure 4. 13: The spectrum of ¹⁵²Eu and ¹³⁷Cs at center counting time 600 s

By using the linear equation of standard efficiency Vs energy at 2 cm away from the center of the detector, the efficiency of our measurement is calculated, and the correction factor which is equal to 0.74 is then taken into account.

0,		0.7
Isotopes	Energy (keV)	Efficiency
²¹² Pb	238.7	0.0160
²²⁸ Ac	337.9	0.0111
²¹⁴ Pb	352.2	0.0107
²²⁸ Ac	462.5	0.0080
20871	510.9	0.0073
11	583.1	0.0063
²¹⁴ Bi	609.3	0.0060
²¹² Bi	726.7	0.0050
228 🗛 с	910.8	0.0040
AL	969	0.0037
²⁰⁸ Tl	2612.9	0.0013

Table 4.8: The energy and the efficiency of the radionuclides

Figure 4. 14: The line of the efficiency and the energy of the radionuclides

4.2.3 In situ dose rate calculation

The gamma dose rate was calculated due to the gamma ray emission from radiation hazard of the radionuclides in ²³⁸U series, and ²³²Th series in the ceiling paint samples. The spectrum of samples W1a, W1b, W2a, W2b, G1a, G1b, G2a, G2b, M, and N below showed the emitting of different peak intensities from several radionuclides. The radionuclides in these spectrum are not in secular equilibrium

Figure 4. 15: The spectrum of blank, an interior paint sample, for in situ measurement with counting time of 7,200 s

Figure 4. 16: The spectrum of sample W1a for in situ measurement with counting time of 7,200 s

Figure 4. 17: The spectrum of sample W1b for in situ measurement with counting time of 7,200 s

Figure 4. 18: The spectrum of sample W2a for in situ measurement with counting time of 7,200 s

Figure 4. 19: The spectrum of sample W2b for in situ measurement with counting time of 7,200 s

Figure 4. 20: The spectrum of sample G1a for in situ measurement with counting time of 7,200 s

Figure 4. 21: The spectrum of sample G1b for in situ measurement with counting time of 7,200 s

Figure 4. 22: The spectrum of sample G2a for in situ measurement with counting time of 7,200 s

Figure 4. 23: The spectrum of sample G2b for in situ measurement with counting time of 7,200 s

Figure 4. 24: The spectrum of the sample M for in situ measurement with counting time of 7200 s

Figure 4. 25: The spectrum of the sample N for in situ measurement with counting time of 7200 s

Dose rate calculated from activity of known ²³⁸U and ²³²Th contents

The gamma dose rate was calculated due to the gamma ray emission from the radionuclides such as 238 U series and 232 Th series in the ceiling paint. The ceiling areas were $0.3 \text{m} \times 0.3 \text{m} = 0.09 \text{m}^2$ (radius = 0.15 m) with the distance of 0.02 m between the ceiling paint samples and the people or the center of the detector. The list of mass absorption coefficient below are calculated by the interpolation from the figure. 9. Thus the flux and the dose rate were estimated.

Energy (MeV)	Gamma fraction	$(\mu_A/\rho)^{aur}$ (cm ² /g)
0.3522	0.3710	0.0292
0.6093	0.4610	0.0296
0.2094	0.0388	0.0270
0.2387	0.4360	0.0276
0.2705	0.0343	0.0282
0.2776	0.0631	0.0284
0.3379	0.1130	0.0291
0.4625	0.0444	0.0297
0.5109	0.226	0.0297
0.5831	0.845	0.0296
0.7267	0.0665	0.0292
0.7942 CHU	0.0436	0.0289
0.8601	0.124	0.0286
0.9108	0.266	0.0284
0.969	0.162	0.0281
2.6129	0.99	0.0221

Table 4.9: List of the gamma fraction and mass absorption coefficient of air $(\mu_A/\rho)^{air}$

Table 4.10: The mass (g/cm^2) of all samples are shown below.

Samples	Mass (g/30cm ²)	Mass (g/cm ²)
W1a	132	0.1467
W1b	148	0.1644
W2a	220	0.2444
W2b	132	0.1467

Samples (cont.)	Mass $(g/30cm^2)$ (cont.)	Mass (g/cm ²) (cont.)
G1a	146	0.1622
G1b	108	0.1200
G2a	208	0.2311
G2b	126	0.1400

By using the specific activity (Bq/g) and the mass in kilogram per square centimeter (g/cm2) in the analysis of uranium-238 and thorium-232 contents, the activity (Bq/cm²) was calculated for the samples of our in situ measurement. Therefore, the activity (Bq/cm²) for samples W1a, W1b, W2a, W2b, G1a, G1b, G2a, and G2b were be shown below.

Table 4.11: The specific activity (Bq/cm²) of samples W1a, W1b, W2a, W2b, G1a, G1b, G2a, and G2b

Sample Activity	²³⁸ U	²³² Th
W1a	0.0259	0.3116
W1b	0.0291	0.3494
W2a	0.0420	0.4935
W2b	0.0252	0.2961
G1a	0.0242	0.2908
G1b	0.0179	0.2151
G2a GHULALONGK	0.0707	0.4893
G2b	0.0428	0.2964

Table 4.12: The specific activity (Bq/cm^2) of the samples M and N were be shown below.

Sample Activity	²³⁸ U	²³² Th
М	0.0564	0.0429
Ν	0.0302	0.0273

Energy		Flux (photons/cm ² -sec)								
(MeV)	W1a	W1b	W2a	W2b	Gla	G1b	G2a	G2b	М	Ν
0.3522	0.0097	0.0109	0.0158	0.0095	0.0091	0.0067	0.0265	0.0161	0.0113	0.0212
0.6093	0.0121	0.0136	0.0196	0.0118	0.0113	0.0083	0.0330	0.0200	0.0141	0.0263
0.2094	0.0122	0.0137	0.0194	0.0116	0.0114	0.0084	0.0192	0.0116	0.0011	0.0017
0.2387	0.1375	0.1541	0.2177	0.1306	0.1283	0.0949	0.2159	0.1308	0.0120	0.0190
0.2705	0.0108	0.0121	0.0171	0.0103	0.0101	0.0075	0.0170	0.0103	0.0009	0.0015
0.2776	0.0199	0.0223	0.0315	0.0189	0.0186	0.0137	0.0312	0.0189	0.0017	0.0027
0.3379	0.0356	0.0400	0.0564	0.0339	0.0333	0.0246	0.0559	0.0339	0.0031	0.0049
0.4625	0.0140	0.0157	0.0222	0.0133	0.0131	0.0097	0.0220	0.0133	0.0012	0.0019
0.5109	0.0713	0.0799	0.1129	0.0677	0.0665	0.0492	0.1119	0.0678	0.0062	0.0098
0.5831	0.2664	0.2987	0.4220	0.2532	0.2486	0.1839	0.4184	0.2534	0.0233	0.0368
0.7267	0.0210	0.0235	0.0332	0.0199	0.0196	0.0145	0.0329	0.0199	0.0018	0.0029
0.7942	0.0137	0.0154	0.0218	0.0131	0.0128	0.0095	0.0216	0.0131	0.0012	0.0019
0.8601	0.0391	0.0438	0.0619	0.0372	0.0365	0.0270	0.0614	0.0372	0.0034	0.0054
0.9108	0.0839	0.0940	0.1328	0.0797	0.0783	0.0579	0.1317	0.0798	0.0073	0.0116
0.9690	0.0511	0.0573	0.0809	0.0485	0.0477	0.0353	0.0802	0.0486	0.0045	0.0070
2.6129	0.3121	0.3500	0.4944	0.2966	0.2913	0.2155	0.4902	0.2969	0.0273	0.0431

Table 4.13: The list of flux or intensity with their energy

Energy	Dose rate (mR/hr) 10 ⁻⁶ for each and summation energy (MeV)									
(MeV)	W1a	W1b	W2a	W2b	Gla	G1b	G2a	G2b	М	Ν
0.3522	6.954	7.408	10.69	6.415	6.161	4.557	18.00	10.90	7.688	14.36
0.6093	15.13	16.12	23.26	13.96	13.40	9.913	39.15	23.70	16.72	31.23
0.2094	4.805	5.109	7.216	4.329	4.252	3.145	7.154	4.334	0.3992	0.6287
0.2387	62.88	66.86	94.43	56.66	55.65	41.16	93.63	56.72	5.224	8.228
0.2705	5.735	6.098	8.613	5.168	5.075	3.754	8.540	5.173	0.4765	0.7505
0.2776	10.88	11.57	16.34	9.806	9.630	7.123	16.20	9.816	0.9041	1.424
0.3379	24.35	25.89	36.57	21.94	21.55	15.94	36.26	21.96	2.023	3.186
0.4625	13.35	14.19	20.04	12.03	11.81	8.737	19.87	12.04	1.109	1.747
0.5109	75.12	79.87	112.8	67.68	66.47	49.17	111.8	67.75	6.240	9.829
0.5831	319.8	340.0	480.2	288.1	283.0	209.3	476.1	288.4	26.56	41.84
0.7267	30.88	32.83	46.37	27.82	27.32	20.21	45.97	27.85	2.565	4.040
0.7942	21.94	23.33	32.95	19.77	19.42	14.36	32.67	19.79	1.823	2.871
0.8601	66.91	71.14	100.5	60.29	59.21	43.80	99.62	60.35	5.558	8.755
0.9108	150.8	160.3	226.4	135.9	133.4	98.69	224.5	136.0	12.53	19.73
0.9690	96.80	102.9	145.4	87.22	85.66	63.36	144.1	87.30	8.041	12.67
2.6129	1255	1335	1885	1131	1111	821.6	1869	1132	104.3	164.3
Summa tion mR/hr	2162	2298	3247	1948	1913	1415	3243	1964	2021	325.5
Summ ation µSv/hr	0.0189	0.0201	0.0284	0.0170	0.0167	0.0124	0.0284	0.0172	0.0018	0.0028

Table 4.14: The list of total gamma dose rate with their energy calculated from known activity of 238 U and 232 Th contents of all samples

The dose rate of these four samples ranged from 0.0018 to 0.0284 μ Sv/hr. The highest gamma dose rate was found in sample W2a and G2a (0.0284 μ Sv/hr for both samples), while the lowest gamma dose rate was found in sample M (0.0018 μ Sv/hr).

Dose rate calculated from measurement

The efficiency of each energy was calculated. Through this efficiency, the activity (Bq/cm^2) was also calculated. The ceiling areas were $0.3 \text{ m} \times 0.3 \text{ m}$ (radius 0.15 m) with the distance of 0.02 m between the ceiling paint samples and the people or the center of the detector. Therefore, the intensity and the dose rate were estimated.

Energy	Activity (Bq/cm ²)									
(MeV)	W1a	W1b	W2a	W2b	G1a	G1b	G2a	G2b	М	Ν
0.2387	0.3199	0.3622	0.4841	0.3513	0.2289	0.1803	0.4837	0.2432	0.0229	0.0597
0.3379	0.2504	0.2972	0.3751	0.2392	0.1192	0.1057	0.3863	0.1979	Not detectable	Not detectable
0.3522	0.0012	0.0349	0.0480	0.0278	0.0404	0.0232	0.1468	0.0301	0.0214	0.0340
0.4625	0.2022	0.4816	0.1232	0.4004	0.5096	0.2408	0.7196	0.1672	Not detectable	Not detectable
0.5109	0.1889	0.1618	0.1991	0.1398	0.1406	0.0881	0.2329	0.1584	Not detectable	0.0847
0.5831	0.0771	0.0976	0.1305	0.1074	0.0752	0.0317	0.0882	0.0994	Not detectable	Not detectable
0.6093	0.0259	0.0344	0.0463	0.0110	0.0140	0.0070	0.0982	0.0543	0.0110	0.0434
0.7267	0.4568	0.5733	0.3284	0.4031	0.0830	0.1463	0.4598	0.4299	0.0705	Not detectable
0.9108	0.4065	0.4227	0.4403	0.4497	0.3390	0.2539	0.5686	0.3957	0.0270	0.0608
0.9690	0.5126	0.5432	0.6184	0.5361	0.2610	0.2634	0.6913	0.4962	0.0917	0.1084
2.6129	0.1133	0.1342	0.1605	0.1374	0.0745	0.0252	0.2014	0.0912	Not detectable	Not detectable

Table 4.15: The list of the activity (Bq/cm²) with their energy

Energy	Flux (photons/cm ² -sec)									
(MeV)	W1a	W1b	W2a	W2b	G1a	G1b	G2a	G2b	М	Ν
0.2387	0.1128	0.1277	0.1708	0.1239	0.0807	0.0636	0.1706	0.0858	0.0100	0.0262
0.3379	0.0230	0.0274	0.0345	0.0220	0.0110	0.0097	0.0356	0.0182	Not detectable	Not detectable
0.3522	0.0004	0.0105	0.0145	0.0084	0.0122	0.0070	0.0444	0.0091	0.0080	0.0128
0.4625	0.0073	0.0174	0.0045	0.0145	0.0184	0.0087	0.0260	0.0060	Not detectable	Not detectable
0.5109	0.0348	0.0298	0.0366	0.0257	0.0259	0.0162	0.0429	0.0292	Not detectable	0.0194
0.5831	0.0531	0.0672	0.0899	0.0740	0.0519	0.0218	0.0608	0.0685	Not detectable	Not detectable
0.6093	0.0097	0.0129	0.0174	0.0041	0.0052	0.0026	0.0369	0.0204	0.0051	0.0202
0.7267	0.0247	0.0311	0.0178	0.0218	0.0045	0.0079	0.0249	0.0233	0.0047	Not detectable
0.9108	0.0854	0.0888	0.0925	0.0945	0.0712	0.0534	0.1195	0.0832	0.0071	0.0159
0.9690	0.0660	0.0699	0.0796	0.0690	0.0336	0.0339	0.0890	0.0639	0.0147	0.0173
2.6129	0.0913	0.1082	0.1294	0.1108	0.0600	0.0203	0.1624	0.0736	Not detectable	Not detectable

Table 4.16: The list of flux or intensity with their energy

Chulalongkorn University

Energy		Dose rate (mR/hr) 10^{-6} for each and summation energy (MeV)								
(MeV)	W1a	W1b	W2a	W2b	G1a	G1b	G2a	G2b	М	Ν
0.2387	48.94	55.40	74.06	53.74	35.02	27.58	74.00	37.20	4.354	11.34
0.3379	14.93	17.73	22.38	14.27	7.111	6.305	23.04	11.80	Not detectable	Not detectable
0.3522	0.2537	7.146	9.839	5.696	8.285	4.764	30.09	6.162	5.449	8.665
0.4625	6.610	15.75	4.028	13.09	16.66	7.873	23.53	5.466	Not detectable	Not detectable
0.5109	34.76	29.77	36.63	25.72	25.87	16.21	42.86	29.15	Not detectable	19.36
0.5831	60.44	76.51	102.4	84.25	59.01	24.83	69.19	77.94	Not detectable	Not detectable
0.6093	11.55	15.33	20.66	4.888	6.221	3.110	43.77	24.22	6.072	24.01
0.7267	34.55	43.36	24.84	30.48	6.278	11.06	34.77	32.52	6.620	Not detectable
0.9108	145.6	151.4	157.7	161.1	121.4	90.96	203.7	141.8	12.02	27.05
0.9690	118.5	125.6	143.0	124.0	60.36	60.90	159.9	114.7	26.35	31.13
2.6129	348.3	412.8	493.4	422.4	229.0	77.39	619.2	280.6	Not detectable	Not detectable
Summa tion mR/hr	824.5	950.8	1089	939.7	5.75.2	331.0	1324	761.5	60.86	121.6
Summ ation µSr/hr	0.0072	0.0083	0.0095	0.0082	0.0050	0.0029	0.0116	0.0067	0.0005	0.0011

Table 4.17: The list of total gamma dose rate with their energy from the measurement of all samples

4.3 In situ dose rate measurement from the ISOC software

The ISOC software is required to have the proper collimator which fixes with the end cap of the detector. Due to this issue, our measurement could not conduct with the ISOC software. Another reason is that if The ISOCS is conducted the measurement without the collimator, it is required to have the large areas for the measurement, but the area of our samples is 30 cm \times 30 cm. Therefore, the ISOCS is not practical in our measurement.

4.4 Recording of gamma-rays dose rate from survey meters

4.4.1 HDS-101-GN

The table showed the dose rate of samples W1a, W1b, W2a, W2b, G1a, G1b, G2a, and G2b which were obtained from the survey meter of HDS-101 GN and GM energy compensated. The dose rates of these samples were subtracted by the dose rate of blank, a non-radioactive paint sample.

0.002
0.003
0.003
0.005
0.004
0.002
0.001
0.005
0.003
Not detectable
Not detectable

Table 4.18: The dose rate of samples W1a, W1b, W2a, W2b, G1a, G1b, G2a, and G2b obtained from the HDS-101 GN

The dose rate from these samples, Samples M and N, are lower than the dose rate obtained from our measurement and calculation above.

4.4.2 Gamma neutron survey meter, GM energy compensated

The dose rate from this survey meter is not stable, it means that it gives the different values. Therefore, the dose rate from this GM energy compensated needs to be recorded several times in order to find the average dose.

Number of					Do	ose rate (µ	Sv/hr)				
measure ment	Blank	W1a	W1b	W2a	W2b	G1a	G1b	G2a	G2b	М	Ν
1	0.26	0.41	0.31	0.31	0.23	0.31	0.31	0.31	0.23	0.23	0.26
2	0.31	0.23	0.31	0.27	0.34	0.31	0.49	0.31	0.35	0.24	0.31
3	0.33	0.32	0.23	0.31	0.31	0.38	0.31	0.32	0.24	0.31	0.33
4	0.23	0.31	0.26	0.32	0.25	0.23	0.31	0.32	0.28	0.23	0.23
5	0.36	0.24	0.45	0.41	0.4	0.24	0.31	0.35	0.32	0.31	0.36
6	0.33	0.54	0.25	0.44	0.23	0.32	0.37	0.23	0.28	0.24	0.33
7	0.23	0.53	0.36	0.35	0.33	0.36	0.35	0.39	0.25	0.31	0.23
8	0.25	0.56	0.31	0.47	0.34	0.23	0.36	0.41	0.23	0.28	0.25
9	0.48	0.31	0.32	0.38	0.33	0.23	0.41	0.31	0.28	0.32	0.48
10	0.45	0.23	0.23	0.36	0.23	0.31	0.37	0.48	0.33	0.33	0.45
Summati on of dose rate µSv/hr	0.273	0.323	0.368	0.303	0.362	0.299	0.292	0.359	0.343	0.279	0.280
Summatic rate (sar blan	on dose mple - k)	0.050	0.095	0.030	0.089	0.026	0.019	0.086	0.070	0.006	0.007

Table 4.19: The average dose rate from the GM energy compensated gamma survey meter

4.5 Comparison the results of in situ dose rate measurement with the survey meters

Table 4.20: The dose rate $(\mu Sv/hr)$ measurement obtained from in situ dose rate measurement, dose rate calculated from known activity, and the survey meters of HDS-101 GN and GM energy compensated.

Name of					Dose r	ate (µSv/	hr)			
measurement	W1a W1b W2a W2b G1a G1b G2a G2b M 0.0189 0.0201 0.0284 0.0170 0.0167 0.0124 0.0284 0.0172 0.0018 0.0072 0.0083 0.0095 0.0082 0.0050 0.0029 0.0116 0.0067 0.0005 0.0030 0.0030 0.0050 0.0040 0.0020 0.0010 0.0050 0.0030 Not detectable 0	Ν								
Dose rate obtained from known activity	0.0189	0.0201	0.0284	0.0170	0.0167	0.0124	0.0284	0.0172	0.0018	0.0028
Dose rate obtained from in situ measurement	0.0072	0.0083	0.0095	0.0082	0.0050	0.0029	0.0116	0.0067	0.0005	0.0011
Survey meter of HDS-101 GN	0.0030	0.0030	0.0050	0.0040	0.0020	0.0010	0.0050	0.0030	Not detectable	Not detectable
Survey meter of GM energy compensated	0.050	0.095	0.030	0.089	0.026	0.019	0.086	0.070	0.006	0.007

The lowest dose rate of the measurements is from the survey meter of HdS-101 GN, while the highest dose rate is obtained from the survey meter of GM energy compensated. The dose rate obtained from the survey meter of GM energy compensated. The dose rate obtained from the in situ measurement is lower than the dose rate obtained from known activity.

Chapter 5

Conclusion and Recommendation

5.1 Conclusion

In these experiments, the lead shield was used, and the measurements were performed with an HPGe detector in order to acquire the gamma spectra for the measurement samples. The development of our simple technique for in situ measurement of the gamma-ray dose rate from planar sources using an HPGe detector for the desired coverage areas of $30 \text{ cm} \times 30 \text{ cm}$. Moreover, it is based on a collimator of lead shield of 5 cm thickness with the detector-to-source distance of 2 cm. As a result, the detectable areas of our sample are $10 \text{ cm} \times 10 \text{ cm}$. The worksheet to calibrate the energy and efficiency based on linear relations and to calculate the gamma-ray dose rate based on generally accepted formulas of this measurement can be used for the further research. These worksheets are prepared for the convenient of in situ dose rate calculation. It should be kept in mind that our method only measures the intensity of energy peaks, and it does not include the scattered peaks.

สาลงกรณ์แหาวิทยาลัย

The ISOC software is not practical in our research because lacking of the proper collimator and having the small area. The lowest dose rate of the measurements is from the survey meter of HDS-101 GN, while the highest dose rate is obtained from the survey meter of GM energy compensated. The dose rate which was calculated from the activity of uranium-238 and thorium-238 contents is higher than the dose rate calculated from measurements. This is because the calculated dose rate from our measurement is not in secular equilibrium, while the calculated dose rate from the activity of uranium-238 contents is in secular equilibrium. Furthermore, the dose rate of these two calculation is higher than the dose rate recording from the survey meter of HDS-101 GN but lower than the survey meter of GM energy compensated. Because of the very low dose rate of our samples, the survey meters which are used for this research are not suitable. Moreover, the survey meter is normally not used to analyze the

environmental samples, very low dose rate. In conclusion, the HPGe detector is the best choice for this in situ dose rate measurement. The in situ dose rate measurement using gamma-rays spectrometry of the HPGe detector of this research can use to determine the low dose rate gamma-ray. Therefore, it also can use this method to determine the high dose rate gamma-ray.

5.2 **Recommendation**

- The proper collimator is needed for the ISOC software. This is because the ISOC software needs the proper collimator which is fixed with the end cap of the detector for doing the measurement. If we want to compare, we need to procure from the manufacturer.

- It should be tested with the high activity samples. This is because the survey meters are not sensitive enough with the very low dose samples. Therefore, the high activity samples should be apply for further research.

- It should be measured with equilibrium samples. If the samples are in secular equilibrium, the dose rate can be determined by using the method of direct comparison with the equilibrium standards

REFERENCES

 Schmidt, K. (2011). Commercial radon survey report. Radon detection Sspecialists, Inc. Burr Ridge, Illinois. Searched on September 9, 2015, from http://www.d107.org/media/Administration/FOIA/2014-2015/Cooper/ES%20May%202006%20Radon%20Results.pdf

[2] EPA. (1993). Radon measurement inarch schools. United State environmental protection agency. Searched on August 10, 2015, from http://www.epa.gov/radon/pdfs/radon_measurement_in_schools.pdf

[3] Kumar, A., Kumar, M., Singh, B., & Singh, S. (2003). Natural activity of ²³⁸U, ²³²Th, and ⁴⁰K in some Indian building materials. Elsevier science Ltd. Science direct. Paper no 36. Retrieved 3 August 2015 from http://www.sciencedirect.com

[4] Brune, D. 2001. Nuclear Technology. In: Brune. D, Hellborg et al. Radiation at home, outdoors and in the workplace. Scandinavian Science Publisher, Oslo, Norway, (pp. 166-186).

[5] Pattama. P. (2009). Preliminary Monitoring of the Change of Soil Gas Radon for Earthquake Pre-warning in the Khlong Marui Fault Zone. Prince of Songkla University.

[6] Smith. R. A. Thomas. J. K et al. 2014. Journal of Environmental Protection.Vol.5 No.3 (2014), Article ID: 43366, 15 pages

[7] The National Council on Radiation Protection and Measurements (NCRP).Report No. 93, Ionizing Radiation Exposure of the Population of the United States, 1987.

[8] Lamarsh, R. J., & Baratta, J. A. (2001). Introduction to nuclear engineering, (3rd ed). Radiation protection. New Jersey, USA: Prentice-Hall.

[9] Almgren. S. Isaksson. M. Journal of Environmental Radioactivity. Volume 91, Issues 1-2, 2006, Pages 90-102

[10] Lee. S. K. Wagiran. H et al. Journal of Environmental Radioactivity.Radiological monitoring. Volume 100. Issue 5, May 2009, pages 368-374

[11] Venkataraman. V. Bronson F et al. Nuclear Instruments and Methods in Physics Research. Volume 422, Issue 1-3, 11 February 1999, Pages 450-454

[12] Andrew N. Tyler. 2008. Radioactivity in the Environment. In situ and airborne gamma-ray spectrometry.

[13] Wikimedia.org. (2011). Diagram showing the different stages of thorium decay. Retrieved 10 November 2015, from: https://commons.wikimedia.org/wiki/File:Decay_Chain_of_Thorium.svg

[14] Wikipedia.org. (2008). Decay chain 4n+2, Uranium series. Retrieved 10 November 2015, from:

https://en.wikipedia.org/wiki/File:Decay_chain%284n%2B2,_Uranium_series%2 9.PNG

[15] Knoll. G. F. (2000). Radiation detection and measurement, (3rd ed). Counting statistics and error prediction. John Wily and Sons. New York. USA: Quebecor Printing.

[16] Luca. C. Andrea. M et al. 2006. Gamma Spectroscopy.

[17] Edward. L Alphen. (1998). Radiation Biophysics (2nd). Academic Press Limited, London.

[18] Ahmad, N., Matiullah & Hussein, A. J. A. (1997). Natural radioactivity in Jordanian soil and building materials and the associated radiation hazards. Elsevier science Ltd. Science direct. 39. Paper no 1. Retrieved 10 August, 2015 from http://www.sciencedirect.com

[19] De Corte, F., Umans, H. De Wispelaere, A. D., & Van den haute. P. (2005). Direct gamma-spectrometric measurement of the ²²⁶Ra 186.2 keV line for detecting ²³⁸U/²²⁶Ra disequilibrium in determining the environmental dose rate for the luminescence dating of sediment. Elsevier science Ltd. Science direct. Paper no 63. Retrieved 10 August, 2015 from http://www.sciencedirect.com

[20] Canberra Industries, Inc. 2002. Measurement Solution for Safety and Security. Model S573/S574. ISOCS/LabSOCS. Validation & Verification Maual. V4.0 9231205E.

[21] Canberra Industries, Inc. 2012. Measurement Solutions for Safety and Security. Model S573 ISOCS Calibration Software V4.3 9231013F. Technical Reference Manual

[22] MIRION TECHNOLOGIES. (2003). Hand-held gamma and Neutron Search Instrument HDS-101 GN. Operating Manual. Health Physics Division.

[23] MIRION TECHNOLOGIES. (2014). HDS-101 GN User's Training. Health Physics Division.

APPENDIXES

Appendix A

1. The work sheet for energy calibration by the point standard sources of $^{152}\text{Eu},\,^{137}\text{Cs},$

and ⁶⁰Co

Appendix B

2. The worksheet for efficiency using the standard point sources of 152 Eu and 137 Cs

X	5 d - ,	Worksheet for efficiency.xlsx - Microsoft Excel	T TOOLS	1								? 🗄	- 8	Х
FILE	HOME INSERT	PAGE LAYOUT FORMULAS DATA REVIEW VIEW DESIGN	FORMAT									∭ ŀ/	eng tan 🔹	1
Paste	K Cut Copy → Format Painter Clipboard 5	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ I & \underline{U} & \cdot & \underline{\Delta} & \cdot & \\ \hline & & & \\ \hline Font & & & \\ \hline & & & \\ \hline \end{array} \xrightarrow{\begin{tabular}{c} & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \xrightarrow{\begin{tabular}{c} & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline \hline & & & \\ \hline \hline \hline \hline$	General \$ = % * Numbe	, (+0_00 (+0_00)	Condi	tional Format tting • Table Styles	as Cell ' Styles '	tinsert ▼	Delete Format	∑ Auto ↓ Fill + ℓ Clean	Sum - A _r Z Sort Editing	8. Find & rr Select *		^
Char	t5 * : X	√ fr												A
4	A	В	C	D	E	F	G	Н	I J	K	L	М	N	
1 E	nergy (keV) of standards	Efficiency of Standard Point Sources at 2 cm from the center of the detect	or			Efficiency Cu	rve of diff	èrent ene	rgy (keV)		+			
2	121.78	0.0473					F	/	- <u>D</u> / ()		Ľ			
3	244.7	0.0208			1.0000 0-		Energy	(KeV) 0			1			
4	344.28	0.0141		ard		10	:	100	1000	10000	μ_			
5	662	0.0061		and	0 1000	V = 6	7X-1.036				Y			
6	778.9	0.0061		f st		R ² =	0.98	L.						
7	964.08	0.0049		t so				1		Ĭ				
8	1085.9	0.0055		ienc	0.0000				×.					
9	1408	0.0036		8	'				'					
10			_	щ	0.0010 []			0	at Area	_0				
11		Correction factor=0.74	_											
13 Er	ergy (keV) of samples	Calculated efficiency using the equation Y = 6.27X ^{-1.06}												
14	238.7	0.016												
15	337.9	0.0111												
16	352.2	0.0107												
17	462.5	0.008												
18	510.9	0.0073												
19	583.1	0.0063	_											
20	609.3	0.006	_											-
21	726.7	0.005	_											
22	910.8	0.004	_											
23	969	0.0037	_											
24	2612.9	0.0013												
	> Worksheet f	or efficiency				:								Þ
READY											1 🛛 -	-+-	-+	86%
\mathbb{T}		0 🔒 🖡 😺 🎽	0	X					^		•	(1) 🖥 B	IG 9:52	PM 2015

Appendix C

1. The worksheet for dose rate calculation from planar sources at 2 cm away from the center of the detector with the area of $30 \text{ cm} \times 30 \text{ cm}$

X) Fili	HOME INSERT I	PAGE LAYOUT FOR	RMULAS DATA REVI	Worksheet.xls EW VIEW	x - Microsoft Excel		? 🗈 – 🗗 X lyheng tan • 🙎
Paste	Cut Cut Copy * Format Painter Clipboard	lew Roma × 12 × A U × ⊞ × ∆ × Font		Wrap Text Numb Image & Center \$ • nament 5	er % , to as a continual formatas Cell Insert formating* Table* Styles*	Cells Clarr Fitte	R Find & r' Select *
F14	▼ : X √	fx =F13*10^3*	¹ 0.00875				٧
	A	В	С	D	E	F	G H≛
1	Energy (MeV)	Efficiency	Net area W1a	(μ/ρ) air (cm^2/g)	Intensity I = (S/4)×In[1+(R^2/X^2)]	Dose rate (mR/hr) W1a	
2	0.2387	0.0160	0.2211	0.0276	0.1128	4.89E-05	
3	0.3379	0.0111	0.0315	0.0291	0.0230	1.49E-05	
4	0.3522	0.0107	0.0005	0.0292	0.0004	2.54E-07	
5	0.4625	0.0080	0.0072	0.0297	0.0073	6.61E-06	
6	0.5109	0.0073	0.031	0.0297	0.0348	3.48E-05	
7	0.5831	0.0063	0.0413	0.0296	0.0531	6.04E-05	
8	0.6093	0.0060	0.0072	0.0296	0.0097	1.16E-05	
9	0.7267	0.0050	0.0153	0.0292	0.0247	3.45E-05	
10	0.9108	0.0040	0.0418	0.0284	0.0854	1.46E-04	
11	0.969	0.0037	0.0303	0.0281	0.0660	1.19E-04	
12	2.6129	0.0013	0.015	0.0221	0.0913	3.48E-04	
13					Summation dose rate (mR/hr)	8.24E-04	
14					Summation dose rate (µSv/hr)	0.0072	
15							
16							
(Worksheet for a	dose rate Sheet2	\oplus		1		Þ
READ						▦ ▣ ╜	+ 136%
E			0	🔋 🕡 🎽 🏮	wi XII 📔	^ ∭ ∰ ⊞ ⊟ @	(1)

Appendix D

2. Certificate of specifications for an HPGe detector with 10% relative efficiency

· · · · · · · · ·	001000							
Model	GC1020	Serial	Number	590231	8			
The purchase s	specifications and	therefore the v	varranted perf	ormance	of this dete	ctor are as f	follows:	
Active volum Resolution	$\frac{2}{2}$ koV (1)	EW/LIM) at 1.77	elficiency	%				
Resolution	KeV (1	FWTM) at 1.33	MeV					
	1.0 keV ()	FWHM) at 1	22 keV					
	keV (1	FWTM) at						
Peak/Compto	on <u>34</u> :1	Cryostat	well diameter		mm '	Well depth	mn	n
Cryostat desc	ription or Drawin	ng Number if sp	ecial	7935-7	(Big Ma	c)		
hysical Chara	cteristics	•						
Geometry		Closed-	end coaxia	1				
Diameter	43	mm	Active volu	me	56.9	cc		
Length	41.	5mm	Well depth			mm		
Distance from	window	5 mm	Well diame	ter		mm		
lectrical Chara	acteristics							
Depletion volt	tage (+)4500	V dc						
Depletion volt Recommende	tage <u>(+)4500</u> d bias voltage V	V dc dc _ (+) 4500) V dc					
Depletion volt Recommende Leakage curre	tage (+) 4500 d bias voltage V ent at recommend	V dc dc(+) 4500 ded bias0	0_Vdc 0.07 nA					
Depletion volt Recommende Leakage curre Preamplifier to	tage (+) 4500 d bias voltage V ent at recommendest point voltage	V dc dc (+) 4500 ded bias () at recommend	0V dc 0-07nA ed voltage	(-)1.	52V dc	4		
Depletion volt Recommende Leakage curre Preamplifier to Capacitance a	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended l	V dc dc (+) 4500 ded bias () at recommend bias () 16	DV dc D nA ed voltage pF	(-)1.	52_Vdc	4		
Depletion volt Recommende Leakage curre Preamplifier to Capacitance a	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I	V dc dc (+) 4500 ded bias () at recommend bias ~ 16	0 V dc 0-07 nA ed voltage pF	(-)1.	52V dc	4		
Depletion volt Recommende Leakage curre Preamplifier to Capacitance a esolution and With amp time of	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	V dc dc (+) 4500 ded bias () at recommend bias ~ 16 4 us	D V dc D-07 nA ed voltage _ pF	(-)1.	52_Vdc			
Depletion volt Recommende Leakage curre Preamplifier to Capacitance a esolution and With amp time o	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	V dc dc (+) 4500 ded bias (-) at recommendod $bias (-) 164 - \mu s$	D_V dc D.07_nA ed voltage pF	(-)1.	52 V dc		•	
Depletion volt Recommende Leakage curre Preamplifier t Capacitance a esolution and With amp time o	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	$\frac{1}{4} V dc$ $\frac{dc}{ded} = \frac{(+) 4500}{4}$ $\frac{ded}{ded} = \frac{(-)}{4}$ $\frac{(+) 4500}{4}$ $\frac{(+) 4500}{4}$ $\frac{(+) 4500}{4}$ $\frac{(+) 4500}{4}$	0 V dc 0-07 nA ed voltage pF	(-)1.	52_Vdc		• • •	
Depletion volt Recommende Leakage curre Preamplifier to Capacitance a esolution and With amp time of sotope	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	$\frac{V dc}{dc (+) 4500}$ $\frac{dc dbias}{dc} (-)$ $\frac{dc}{dc} bias (-)$ $\frac{16}{4}$ $\frac{4}{4}$ $\frac{60}{Co}$ $\frac{60}{Co}$ $\frac{1332}{2}$	0V dc 0.07nA ed voltage pF	(-)1.	52_V dc		•	
Depletion volt Recommende Leakage curre Preamplifier tr Capacitance a esolution and With amp time of sotope Energy (keV)	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	$\frac{V dc}{dc} (+) 4500$ $\frac{dc}{ded bias} (-)$ $\frac{ded bias}{max} (-)$ $\frac{16}{2}$ $\frac{4}{\mu s}$ $\frac{60}{Co}$ 1332 1.77	0_V dc 0-07_πA ed voltage _ pF	(-)1.	52_Vdc		•	
Depletion volt Recommende Leakage curre Preamplifier to Capacitance a esolution and With amp time of sotope Energy (keV) WHM (keV)	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	V dc (+) 4500 ded bias (-) at recommend- bias (-) 16 4	0V dc 0.07nA ed voltage pF	(-)1.	52_V dc	л	· · · · · · · · · · · · · · · · · · ·	
Depletion volt Recommende Leakage curre Preamplifier tr Capacitance a esolution and With amp time of sotope Energy (keV) WHM (keV) WHM (keV) Peak/Compton	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	V dc (+) 4500 ded bias (-) (4) 4500 ded bias (-) (6) (100) (1	0V dc 0.07пА ed voltage pF	(-)1.	52_Vdc		•	
Depletion volt Recommende Leakage curre Preamplifier tr Capacitance a esolution and With amp time of sotope Energy (keV) WHM (keV) WHM (keV) eak/Compton cel. Efficiency	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	V dc dc (+) 4500 ded bias (-)	D_V dc D-07_nA ed voltage pF	(-)1.	52_Vdc			
Depletion volt Recommende Leakage curre Preamplifier tr Capacitance a esolution and With amp time of sotope Energy (keV) WHM (keV) WHM (keV) Peak/Compton Eel Efficiency	tage $(+)4500$ d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of		0V dc 0.07αA ed voltage pF	(-)1.	52_V dc			
Depletion volt Recommende Leakage curre Preamplifier tr Capacitance a esolution and With amp time of sotope Energy (keV) WHM (keV) WHM (keV) Pak/Compton Rel. Efficiency Tested by:	tage (+) 4500 d bias voltage V ent at recommende est point voltage t recommended I Efficiency constant of	$ V dc dc (+) 4500 ded bias (-) at recommendation bias \sim 16 4 \mus 60Co 1332 1.77 3.29 43.0:1 12.9 $	D V dc D 07 nA ed voltage pF	(-)1. Jun	52_Vdc			

S. Same

Appendix E

5. Certificate of specification for an HPGe detector with 30% relative efficiency

Specifications Mod.4 dC3091 The p - have specification Active volume Resolution 2.1 I.1 Peak/Compton 52 Cryostat description or D Physical Characteristics Geometry Diameter Length Distance from window Electrical Characteristics Depletion voltage (+) Recommended bias volta Leakage current at recomposition Preamplifier test point voltage Capacitance at recommended With amp time constant of	Serial N a and therefore the way Net Relative eff keV (FWHM) at 1.33 M keV (FWTM) at 1.33 M keV (FWTM) at keV (FWTM) at table (FWTM) at	Number 890 Arranted perform Theieney 30 MeV 22 keV 22 keV 22 keV 22 keV 22 keV 23 keV 24 keV 25 keV 26 keV 26 keV 27 keV 28 keV 29 keV 20 keV	139.3	Well depth	allawa, ananya managana ananya managana ananya managana ananya managana ananya managana ananya managana ana ana ananya managana ana ananya managana ana ana ana ana ana ana ana ana
Specifications Mod-4 GC 302 1 The point specification Active volume Resolution 2.1 Peak/Compton 52 Cryostat description or D Physical Characteristics Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+ Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient	Serial N A and therefore the way Net Relative eff keV (FWHM) at 1.33 M keV (FWHM) at 1.33 M keV (FWHM) at 12 keV (FWHM) at 1.33 M keV (FWHM) at 1.34 M keV (FWHM	Number 890 Branted perform Meieney 30 MeV 22 keV rell diameter scial ax1a1 Active volume Well depth Well diameter	1825 ance of this da % 7500 139.3	Well depth	
Model GC3021 The point specification Active volume Resolution 2.1 1.1 Peak/Compton 52 Cryostat description or D Physical Characteristics Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient	Serial N A and therefore the way ce Relative eff keV (FWHM) at 1.33 N keV (FWTM) at 1.33 N keV (FWTM) at 1.2 keV (FWTM) at 12 keV (FWTM) at 1.33 N keV (FWTM) at 1.34 N keV	Number 890 Arranted perform Meleney 30 MeV 22 keV rell diameter retial ax1a1 Active volume Well depth Well diameter	1823 ance of this de "% 7500	Well depth	allaywa, Bitanawaya a mm
The public base specification Active volume Resolution 2.1 Peak/Compton 52 Cryostat description or E Physical Characteristics Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+ Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient	A and therefore the way cell Relative eff keV (FWHM) at 1.33 M keV (FWHM) at 1.33 M keV (FWHM) at 1.2 keV (FWHM) at 1.33 M keV (FWHM) at 1.2 keV (FWHM) at 1.2 keV (FWHM) at 1.3 keV (FWHM) at 1.2 keV (FWHM) at 1.3 keV (FWHM) at 1.3	Aumitar Brianted perform Meleney 30 MeV 22 keV rell diameter ax1a1 Active volume Well depth Well diameter	ance of this de "%" 7500	Well depth	annanusere ar mm
Active volume Resolution 2.1 1.1 Peak/Compton 52 Cryostat description or D Physical Characteristic: Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recommended Resolution and Efficient	Relative eff keV (FWHM) at 1.33 M keV (FWHM) at 1.33 M keV (FWHM) at 1.33 M keV (FWHM) at 1.2 keV (FWHM) at 12 keV (FWTM) at 1.33 M keV (FWTM) at 1.2 keV (F	MeV MeV MeV 22 keV rell diameter retial ax1a1 Active volume Well depth Well diameter	mm 7500	Well depth	allowa, annousers, mm
Resolution 2.1 1.1 1.1 Peak/Compton 52 Cryostat description or E Physical Characteristics Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recomposition Preamplifier test point voltage Capacitance at recommended With amp time constant of	keV (FWHM) at 1.33 N keV (FWHM) at 1.33 N keV (FWHM) at keV (FWHM) at table (FWHM) at table (FWTM) at table (FWTM) at table (FWTM) at table (FWTM) at table (FWTM) at table (FWHM) attable (FWHM) at table (FWHM) attable (FWHM) attable	MeV MeV 22 keV rell diameter ax1a1 Active volume Well depth Well diameter		Well depth	Entransissippi san IIIO Entransis konseta konseta ' ' ' '
1.1 Peak/Compton 52 Cryostat description or E Physical Characteristic: Geometry Diameter Length Distance from window Electrical Characteristic: Depletion voltage (+) Recommended bias volta Leakage current at recomp Preamplifier test point voltage Capacitance at recomme Resolution and Efficient With amp time constant of	keV (FWTM) at 1.33 M keV (FWHM) at 12 keV (FWTM) at 12 keV (FWTM) at 12 keV (FWTM) at 12 closed-end coal 55 mm 5 mm 5 mm 5 mm 5 mm 5 mm	MeV 22 keV rell diameter scial ax 1a 1 Active volume Well depth Well diameter	тт 7500 139.3	Well depth	Bitterplangen og MM som som som som som som som som som som
Peak/Compton 52 Cryostat description or E Physical Characteristics Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+ Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient	keV (FWHM) at keV (FWTM) at i 1 Cryostat we brawing Number if spece Closed-end coal 55 mm 5 mm 5 mm 5 mm 5 mm	22 keV rell diameter ax1a1 Active volume Well depth Well diameter	шля 7500 139.3	Well depth	" Bitterson and the set of the set of the set of the set of the set of the set of the set of the se
Peak/Compton 52 Cryostat description or E Physical Characteristics Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient	keV (FWTM) at 1 Cryostat we rawing Number if spece 5 Closed-end coal 55 mm 65 mm 5 mm 5 mm 5 mm 5 mm 5 mm	rell diameter	139.3	Well depth	Bitterplangen of IKM
Peak/Compton Cryostat description or E Physical Characteristic: Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient With amp time constant of	closed-end coal closed-end closed-end coal closed-end closed-end coal closed-end closed-end coal closed-end closed-end clos	ax 1a l Active volume Well depth Well diameter	тт 7500 139.3	Well depth	¹ Bittersongen (* MM Grugesongen (* ander songen * *
Cryostat description or E Physical Characteristic: Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	Closed-end coal 55 mm 65 mm 5 mm 5 mm 5 mm 5 mm 5 mm 5 mm 5 mm 5 mm	axial Active volume Well depth Well diameter	7500		
Physical Characteristic: Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+ Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient With amp time constant of	S Closed-end coa 55 mm 65 mm 5 mm 5 mm 34000 V dc ar V dc (+) 4000	ax 1a 1 Active volume Well depth Well diameter	139.3	CC managementer ma	
Geometry Diameter Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	Closed-end coa 55 mm 65 mm 5 mm 5 mm 34000 V dc cr V dc cr V dc (+) 4000	Active volume Well depth Well diameter	139.3	сс тт тт	
Diameter Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient With amp time constant of	55 mm 65 mm 5 mm 5 mm 34000 V dc m V dc (+) 4000	Active volume Well depth Well diameter	139.3	сторонически страници, страници, страници, страници, страници, страници, страници, страници, страници, страници, политически страници, страници, страници, страници, страници, страници, страници, страници, страници, страници, политически страници, страници, страници, страници, страници, страници, страници, страници, страници, страници, политически страници, страници, страници, страници, страници, страници, страници, страници, страници, страници, политически страници, страници, страници, страници, страници, страници, страници, страници, страници, страници, политически страници, страници, страници, страници, стр	
Length Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	65 mm 5 mm 35 mm 34000 V dc cm V dc (+) 4000	Well depth Well diameter	Administrative and a second se	01m mm	
Distance from window Electrical Characteristic Depletion voltage (+) Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficient With amp time constant of	5 mm $3 \frac{1}{1000} V dc$ m V dc m V dc m V dc	Well diameter	1979-1979 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970	mm	
Electrical Characteristic Depletion voltage (+ Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	V dc				
Depletion voltage (+ Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	V dc				
Recommended bias volta Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	- V da (+)4000				
Leakage current at recom Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	Re A de	V dc			
Preamplifier test point vo Capacitance at recomme Resolution and Efficien With amp time constant of	amended bias0.	.01 aA			
Capacitance at recomme Resolution and Efficien With amp time constant of	ltage at recommended	d voltage $(-)1$.62V de	c	
Resolution and Efficien With amp time constant of	nded bias 28	pF			
With amp time constant of	cy				
	4 μs	÷	-		the further that the state of the
Isotope 57Co	60Co				nan yaka singa minja yakan singa si wangangan
Energy (keV) 122	1332		1	<u> </u>	water casto anon and density of
FWHM (keV) 1.10	1.98				adination underland an inglise carbon and an inglise
FWTM (keV) 2.05	3.70				
Peak/Compton	55.7:1				ALC: NO TO
Rel Efficiency	31.7	1			
Tested by: Rold (Approved by: Dama	Finder Angenet	Date: Au Date: Au	gust 27. gust 27,	1990 1990	

Appendix F

6. Certificate of testing some sources to measure dose rate using HDS-101 GN

PES #	133950 L	•	Source	Reference	Distance/cm)	Calculated dose rate/USv/h) HDS value(uSv/h)	Net response (ratio)	Acceptance range	
Operator name	Bombardier		Am 241	TP 816	10	2100	1.897	0.882	0.7 -1.3	
			Cs 137	07 820	10	2.967	2.646	0.877	0.7 -1.3	
Device #	13009125		Co 60	UT 117	10	11.441	10.754	0.936	0.7 -1.3	
Date-Time	9/10/2014 13:45:20		Cs137	OZ 819	4,1	191.312	174.682	0.913	0.7 - 1.3	
Comments	143993/F		1 Lineicia	m						
Functional tests :	COMPLIANT	۲	Neutron sens	stivity						-
Final result :	COMPLIANT	¥	Source	Reference	Distance(cm)	Calculated flux(n/s/cm2)	HDS value(cp/s) Se	ensitivity ((cp/s)/(n/s/cm	2)) Acceptance rang	e
Next Check.	10/09/2016		Background	X	X	X	0.00	0.00	HDS value < 0.2cp	ds
recommended Date Visa	BOF		(1257 (.19 . 170		37 97	0.00	0.00	Sensitivity > 0.07	?
Checking Settings Discriminator thres Low fast (mV) Low slow (mV) Medium (mV) High (mV) OEM KI P 24 St Gamma Rate Coeff. 1.0	hold 20 ↓ Cu 20 ↓ Cu 104 ↓ 120 ↓ Spe 200 ↓ Ce 4.00 ↓ Ce 17 ↓ P 000 ↓ Re dure	iaize rsor ntroid rint set ation	1e+3 1e+2 1e+1 1e+0 1e-1	5	⁷ ₩₩ _₩ ₩₩₩ 0 100	150 200	250 Channel	00 350	400 450	
Preset Value 63 leading 83	14 × 3 ×	ad	Centroid Channel (+/-	5% 109.4	Res	olution (<10%) 7.8	ТС 21.0	Acquisition time Acquisition time	: (\$)15	
Read	irite San	e	Curseur Curs. 1	channel n* 6	30.0 Curs	. 2 channel n*140.0	Gain (keV/chan	nel) : 6.0622	Offset (keV) : 0	

88

Appendix G

7. Certificate of ⁶⁰Co, gamma standard source, by British Calibration Service

	Amersham international pic Amersham UK		B
			BRITISH CALIBRATION SERVICE
na da tara da			Approvariate of the
Description	Principal radionuclide: Cobalt-60		Product code: CKR.151
			Source number: 211386
; t Measurement	Reference time.	1200 GMT	on 1 December 1987
		11.20	n langeur lag
	lotal activity of cobait-ou:	11,20	
	which is equivalent to:	417	kilobecquerels
	Recommended half life:	5.27	years
-	Method of measurement: The source was measured using equipment o prepared from a series of absolutely star	calibrated di ndardized sol	rectly or indirectly with similar sources utions.
Accuracy	The OVERALL UNCERTAINTY in the activity of	quoted above	for the principal radionuclide was ± 1.9 \$
	The limits of uncertainty were taken as random variations, calculated at the 99. uncertainties in the measurement.	the arithmeti 7% confidence	ic sum of the uncertainty due to elevel, and the estimated systematic
Radionuclidic Purity	The estimated activities of any radioact are listed below expressed as percentage	ive impuritie s of the prin	as found by high resolution gamma spectrometry neipal radionuclide at the reference time.
Remarks	Tests for leakage and surface contaminat	ion have been	n carried out with satisfactory results.
	Further information about this source in data sheet accompanying the source.	cluding deta	ils of its construction is given in the
		•	
	This product mosts the quality assurance	. requirement	s of NRC Regulatory Guide 4 15 for
	achieving implicit NBS traceability as o	defined in NC	RP 58 (1985).
Approved Signatory			
	$\leq \cap$		
	T) wit		Amorehan
	A G Tuck	Page 1	
	N.O. 1 Gen		

Amersham International pic Amersham UK RITISH CALIBRATION SERVICE Approval No. 0146 Principal radionuclide: Caesium-137 Product code: CDR.121 Description Source number: 75690 1200 GMT on 1 September 1987 Reference time: Measurement Total activity of caesium-137: 1.136 microcuries which is equivalent to: 42.0 kilobecquerels ÷., Recommended half life: 30.17 years Method of measurement: The source was measured using equipment calibrated directly or indirectly with similar sources prepared from a series of absolutely standardized solutions. The OVERALL UNCERTAINTY in the activity quoted above for the principal radionuclide was ± 6.0 % Accuracy The limits of uncertainty were taken as the arithmetic sum of the uncertainty due to random variations, calculated at the 99.7% confidence level, and the estimated systematic uncertainties in the measurement. Radionuclidic The estimated activities of any radioactive impurities found by high resolution gamma spectrometry are listed below expressed as percentages of the principal radionuclide at the reference time. Purity Tests for leakage and surface contamination have been carried out with satisfactory results. Remarks Further information about this source including details of its construction is given in the data sheet accompanying the source. This product meets the quality assurance requirements of NRC Regulatory Guide 4.15 for achieving, implicit NBS traceability as defined in NCRP 58 (1985). i .! Approved Signatory Amersham A.G. Tuck Page 1 of 1 This certificate is issued in accordance with the conditions of approval granted by the British Calibration Service which has verified the measurement capability of the laboratory and its traceability to United Kingdom national standards and to the units of measurements realized at the National Physical Laboratory. Coveright of this certificate is owned contribution to Crown and the issuing laboratory and use not be reproduced interview of the certificate is owned contribution to the Corown and the issuing laboratory use not be reproduced interview of the process of the Superinter of the Superinter of the superinterview of the

8. Certificate of ¹³⁷Cs, gamma standard source, by British Calibration Service

Appendix I

9. Certificate of ¹⁵²Eu, gamma standard source, by Isotope Products Laboratories California

Appendix J

10. Certificate of IAEA RGK-1, Potassium Sulfate

Home R	leference Products	Reference Mate	nial Online Catalog	Radionuclides	IAEA-RGK-1				
Referenc	te Freducia	IAEA-R	GK-1 . P	otassiur	n Sulfate			🐙 My Shopping Cart	
About IAE Materials	EA Reference	Inorganic , Ol	es					Total	•
Reference	e Material Online	• Unit	Size: 500g					white shopping va	11
Catalog		 Price 	per Unit: 60 EU	2					
Radionuc	lides	 Repo 	ort: IAEA/AL/148					Your Account	
reading		 Date 	of Release: 198	7-01-01				Edit My Profile	
Trace Ek Mercury	ements & Methyl	 Prod 	ucing Laboratory	email				View My Orders	
Organic (Contaminants	Certi	ficate of Irradiatio	n: Certificate_o	of_Irradiation_IAEA-RGK-1			Help and Service	
Stable Is	otopes	The IAEA-RG	K-1 material is pr	oduced from hi	gh purity (99.8%) potassium s	ulphate suppl	ied by the	Terms of Service	
Ordering	Information	Merck Compa	ny. The potassiu	m property valu	ue and its uncertainty were ob	tained from re	peated	Contact Us	
ordering		measurement	s performed at th	e IAEA Labora	tories Seibersdorf and the res	ults confirmed	the value		
Miscellan Documer	neous nts	certified by Me IAEA Laborat	erck. The upper li tories Seibersdor	mits for the ura f using fluorime	nium and thorium property va etry and activation analysis, re	lues were esti spectively.	mated by the		
How to c	ontact us								
News an	d	Analyte	Value	Unit	95% C.I.	N	R/I/C		
Announce	ements	40K	14000?	Bq/kg	13600 - 14400	20	R		
Publicatio	ons	к	448000	mg/kg	445000 - 451000	20	R		
Links		Th	< 0.01	mg/kg	-	20	T		
Events		U	< 0.001	ma/ka		20	h		
ALMERA		1 a - 14	and and an a						
40+ Year Quality to	s Delivering abs Worldwide	(Value) Concent (N) Number of a information	ration calculated a ccepted laboratory values and their	as a mean of the means which are respective config	accepted laboratory means used to calculate the recommende dence intervals	d or			
Nuclear I	Instrumentation	(R/I/C) Classif (?) Natural rad	ication assigned to ionuclide activity	concentrations	alue for analyte (Recommended/Inf derived from the elemental concen	ormation/Certif	ied) is of isotopic a	bundance and half-life data	
Analytica	Methods	The values lis	ted above were e	established on	the basis of a gravimetric dilut	tion of materia	ls with known		
. enary acta		uranium, thori	um and potassiu	m composition	. The details concerning the c	riteria for quali	fication as a		
Interlahor	ratory Studies								

92

.

Appendix K

11. Certificate of analysis for IAEA RGK-1

COMPONENT	CONCENTRATION*	CONFIDENCE INTERVAL**
Potassium	44.8 %	± 0.3 %
Uranium	less than 0.001 µg/g	
Thorium	less than 0.01 µg/g	

*At a significance level of 0.05

DESCRIPTION OF MATERIAL

RGU-1, RGTh-1 and RGK-1 are intended for use in calibrating laboratory gamma-ray spectrometers for the determination of U, Th and K in geological materials. RGK-1 is intended for use in calibrating laboratory gamma-ray spectrometers for the determination of U, Th and K in geological materials. The material is extra pure (99.8%) potassium sulphate supplied by Merck Company. The potassium value and its uncertainty were obtained from repeated measurements by atomic absorption spectrometry in the IAEA Laboratory which confirmed the potassium sulphate value certified by Merck. The upper limits of the uranium and thorium values were estimated by the IABA Laboratory using fluorimetry and activation analysis, respectively. A complete description of RGK-1 may be found in the reference.

REFERENCE

Preparation of Gamma-ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1 Report - IAEA/RL/148, Vienna, 1987

> This report may be obtained from: INTERNATIONAL ATOMIC ENERGY AGENCY Agency's Laboratories Analytical Quality Control Services P.O.Box 100 A-1400 Vienna, AUSTRIA

93

Appendix L

12. Certificate of IAEA RGU-1, Uranium Ore

ن ^{ر ، ع}	Home Reference Products	Reference Mat	erial Online Catalog	Radionucides	IAEA-RGU-1				
	Perference Products	IAEA-F	RGU-1 . U	ranium	Ore				
	About IAEA Reference Materials	Inorganic , C	res					IAEA-RGU-1 Uranium Ore diluted,	
	Reference Material Online Catalog	 Unit Price 	Size: 500g e per Unit: 60 EUF	2				500g €60/Unit	
	Radionuclides	∘ Rep	ort: IAEA/RL/148					Ownerth	
	Traco Elemente 8 Mathur	 Date 	of Release: 198	7-01-01				Quantity:	
	Mercury	 Proc 	lucing Laboratory	: email				Add to Sasket	
	Organic Contaminants	 Cert 	ificate of Irradiatio	n: Certificate_c	f_Irradiation_IAEA-RGL	I-1			
	Stable Isotopes	Both, IAEA-R	GU-1 and IAEA-R	GTh-1 reference	e materials were propa	ed on bobalf of #	na fatomatica - I	Y My Shopping Cart	
	Ordering Information	Atomic Energ	y Agency by the C	Canada Centre	for Mineral and Energy	Technology by di	ilution of a	Total	1
	Miscellaneous Documents	of similar grai	3L-5 (7.09% U) ar n size distribution	id a thorium ore , respectively. I	e OKA-2 (2.89% Th, 219 No evidence for betweer	µg U/g) with floa 1-bottles inhomog	ted silica powder geneity was	Ge to Shopping Carl	
	How to contact us	detected after it is in radioad	mixing and bottlin tive equilibrium, 1	ng. BL-5 has be The agreement	en certified for uranium	, ²²⁶ Ra and ²¹⁰ P d chemical mean	b confirming that	Your Account	
	News and Announcements	thorium and u	ranium in OKA-2	shows both ser	ies to be in radioactive e	equilibrium.	arements of	Edit My Profile View My Orders	
	Publications	Analyte	Value	Unit	95% C.I.	Ν	R/I/C		
	Links	232Th	< 4?	Bq/kg	-	None	1	Help and Service	
	Events	235U	228?	Bq/kg	226 - 230	None	R	Contact Us	
	ALMERA	238U	4940?	Bq/kg	4910 - 4970	None	R		
	40+ Years Delivering Quality to abs Worldwide	40K	< 0.63?	Bq/kg	· · · · · · · · · ·	None	· · · · · · · · · · · · · · · · · · ·		
	Nuclear Instrumentation	к	< 20	mg/kg	-	None	1		
	Analytical Methods	Th	< 1	mg/kg	-	None	1		
	Interlaboratory Studies	U	400	mg/kg	398 - 402	None	R		
		(Value) Concentr (N) Number of ac information valu (R/I/C) Classifi	ation calculated as cepted laboratory m mes and their respec cation assigned to	a mean of the a eans which are u tive confidence the property val	ccepted laboratory means sed to calculate the recom intervals up for analyte (Recommende	mended or d/Information/Certi	(fied)		

recommended or information value can be found in the respective report (attached).

Appendix M

13. Certificate of analysis for IAEA RGU-1

 Thorium
 less than 1 µg/g
 --

 Potassium
 less than 20 µg/g
 --

 *Expressed on dry weight basis (constant weight at 130°C)
 **At a significance level of 0.05

DESCRIPTION OF MATERIAL

RGU-1, RGTh-1 and RGK-1 are intended for use in calibrating laboratory gamma-ray spectrometers for the determination of U, Th and K in geological materials. RGU-1 was prepared by the Canada Centre for Mineral and Energy Technology (CANMET) under a contract with the International Atomic Energy Agency. The material was prepared by dilution of Canada Certified Reference Material Project (CCRMP) uranium ore BL-5 (7.09% U) with a floated silica powder of similar grain

size distribution. BL-5 has been certified for uranium, ²²⁶Ra and ²¹⁰Pb confirming that it is in radioactive equilibrium. The complete description of the preparation and certification of RGU-1 may be found in the reference.

REFERENCE

Preparation of Gamma-ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1 Report - IAEA/RL/148, Vienna, 1987

> This report may be obtained from: INTERNATIONAL ATOMIC ENERGY AGENCY Agency's Laboratories Analytical Quality Control Services P.O.Box 100 A-1400 Vienna, AUSTRIA
Appendix N

14. Certificate of IAEA RGTh-1, Thorium Ore

Parstence Producia	IAEA-R	GTh-1, 1	horium	Ore			
About IAEA Reference Materials	litorganic , Or	es					Thorium Ore diluted,
Reference Material Online Catalog	 Unit : Price 	Size: 500g per Unit: 60 EUF	2				€60/Unit
Radionuclides	 Report Date 	of Release: 198	7-01-01				Quantity:
Trace Elements & Methyl Mercury	 Produ 	ucing Laboratory	Add to Decisot				
Organic Contaminants	Certificate of Irradiation: Certificate_of_Irradiation_IAEA-RGTh-1					💓 My Shopping Cart Total	
Stable Isotopes	Both, IAEA-RGU-1 and IAEA-RGTh-1 reference materials were prepared on behalf of the International						
Ordering Information	Atomic Energy Agency by the Canada Centre for Mineral and Energy Technology by dilution of a uranium ore BL-5 (7.09% U) and a thorium ore OKA-2 (2.89% Th, 219 µg U/g) with floated silica powder of similar grain size distribution, respectively. No evidence for between-bottles inhomogeneity was						
Miscellaneous Documents							
How to contact us	detected after it is in radioact	mixing and bottli ive equilibrium.	ng. BL-5 has be The agreement	en certified for uranium, between radiometric and	²²⁶ Ra and ²¹⁰ F chemical measure	b confirming that	Your Account
News and Announcements	thorium and uranium in OKA-2 shows both series to be in radioactive equilibrium.						Edit My Profile View My Orders
Publications	Analyte	Value	Unit	95% C.I.	N	R/I/C	
Links	232Th	3250?	Bq/kg	3160 - 3340	155	R	Help and Service
Events	235U	3.6?	Bq/kg	3.3 - 3.9	145	R	Terms of Service Contact Us
ALMERA	238U	78?	Bq/kg	72 - 84	145	R	
40+ Years Delivering Quality to abs Worldwide	40K	6.3?	Bq/kg	3.1 - 9.5	45	1	
Nuclear Instrumentation	к	200	mg/kg	100 - 300	45	1	
Analytical Methods	Th	800	mg/kg	784 - 816	155	R	

(Value) Concentration calculated as a mean of the accepted laboratory means
 (0) humber of accepted laboratory means which are used to calculate the recommended or information values and their respective confidence intervals
 (0) Autural readonuclide to the property value for analyte (Recommended/Information/Certified)
 (1) Natural readonuclide activity concentrations derived from the elemental concentrations on basis of isotopic abundance and half-life data The values listed above were established on the basis of a gravimetric dilution of materials with known uranium, thorium and polassium composition. The details concerning the criteria for qualification as a recommended or information value can be found in the respective report (attached).

Appendix O

15. Certificate of analysis IAEA RGTh-1

 Potassium
 0.02%
 ± 0.01%

 *Expressed on dry weight basis (constant weight at 130°C)

 **At a significance level of 0.05

DESCRIPTION OF MATERIAL

RGU-1, RGTh-1 and RGK-1 are intended for use in calibrating laboratory gamma-ray spectrometers for the determination of U, Th and K in geological materials. RGTh-1 was prepared by the Canada Centre for Mineral and Energy Technology (CANMET) under a contract with the International Atomic Energy Agency. The material was prepared by dilution of Canada Certified Reference Material Project (CCRMP) thorium ore OKA-2 (2.89% Th, 219 $\mu_{\rm E}/g$ U) with a floated silica powder of similar grain size distribution. The agreement between radiometric and chemical measurements of thorium and uranium in OKA-2 shows both series to be in radioactive equilibrium. The complete description of the preparation and certification of RGTh-1 may be found in the reference.

REFERENCE

Preparation of Gamma-ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1 Report - IAEA/RL/148, Vienna, 1987

> This report may be obtained from: INTERNATIONAL ATOMIC ENERGY AGENCY Agency's Laboratories Analytical Quality Control Services P.O.Box 100 A-1400 Vienna, AUSTRIA

Appendix P

16. Gamma and neutron survey meter, GM energy compensated

Specifications

Ranges: four linear range multiples of $\times 0.1$, $\times 1$, $\times 10$, and $\times 100$; used in combination with the 0-10 mrem/hr meter dial, providing an overall range of 0-1000 mrem/hr

Gamma Energy Range: 60 keV to 3 MeV

Gamma Energy Response: ≤ 15%

Sensitivity: Gamma is approximately 1000 cpm/mR/hr (internal detector. Neutron is approximately 350 cpm/mrem/hr (with Model 42-41L).

Thresholds: Gamma threshold is fixed at 50 millivolts (mV). Neutron threshold is adjustable from 5 to 100 mV.

Neutron High Voltage: internally adjustable from 500 to 1500 Vdc

Gamma High Voltage: fixed at 550 Vdc

Linearity: within 10% of true value for the analog rate meter; 2% for the LCD

Response Time: $\times 0.1$ range multiplier = 7 seconds, $\times 1 = 7$ seconds, $\times 10 = 2$ seconds, $\times 100 = 2$ seconds; all response times measured from 10-90% of full scale

Audio: dual- or single-tone click-per-event through a built-in speaker with an adjustable volume control located on the front panel; headset jack located on the instrument can

VITA

Mr. Lyheng Tan is from Siem Reap province, Cambodia. He was born in 1991. From 2009-2103, He went to study the Bachelor of Science in Chemistry at Royal University of Phnom Penh, Phnom Penh, Cambodia. From 2013-2015, He continued his study for the Master of Science and Technology in Nuclear Security and Safeguards (NSS) at Chulalongkorn University, Bangkok, Thailand.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University