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CHAPTER 1: Introduction 

 

1.1 Background and Significance of the Problem 

Quantile-based risk assessment, with particular reference to “Value-at-Risk 

(VaR)”, is of paramount importance in market risk management. Internal-model 

approach for regulatory capital reserve have been based on VaR ever since the 1996 

Market Risk Amendment to the Basel Accord. In general, VaR tells us the potential 

maximum loss expected to incur on a portfolio given a degree of statistical confidence 

and forecast horizon. For instance, 1-day 99% VaR of $1M means that over a day we 

are 99% confident that portfolio loss will not higher than $1M. Due to its prevalence, 

substantial literature of VaR modeling and its financial applications have been 

documented overtime.  

However, the experience from 2008 financial crisis have questioned the VaR 

accuracy as it played a negative role by distorting the true level of risk. A key reason is 

that risk models are subject to model risks, e.g. estimation risk and misspecification 

risk. While there is no unique definition of model risk, it typically occurred when we 

do not know true data generating process (DGP). As a consequence, if model risk is 

highly present, VaR tend to be incapable of predicting change in risk dynamics, i.e., 

underestimating risk in period before the crisis and overestimating risk post-crisis.  

Regarding this concern, a number of literature that deals explicitly with VaR 

model risk have been proposed (see e.g., Bao and Ullah, 2004; Christoffersen and 

Goncalves, 2005; Kerkhof et al., 2010; Alexander and Sarabia, 2012; Boucher and 

Mailet, 2013; Boucher et al., 2014). Of particular interest, Boucher et al. (2014) provide 
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a remedy for VaR model risk by proposing a general framework for model risk by 

allowing models to learn from its past errors dynamically through backtesting process.  

In general, backtest is a statistical procedure to evaluate accuracy of VaR 

models by simulating rolling-window VaR forecasts on past data, (250 days is usually 

applied in regulatory framework). Then, the process goes through comparing VaR 

forecasts and realized return over a given backtest horizon. For any day (i.e. in daily 

basis), if negative returns exceed VaR, in other words, VaR cannot cover the losses, it 

is called “violation”. Next, sequence of violations are to be examined whether or not 

the VaR model represents risk appropriately using statistical inference. Roughly 

speaking, accurate VaR models should meet three desirable (violation) properties: (i) 

Unconditional coverage (UC) - the probability of realizing violations should be 

precisely α x 100%; (ii) Independence (IND) - violations should be independent; and 

(iii) Magnitude (MG) - magnitude of VaR violations should be appropriate, not too 

small or too large. In addition, when both unconditional coverage and independence 

properties are combined to be a joint hypothesis, it is known as Conditional coverage 

(CC) property (See e.g., Campbell, 2005; Haas, 2001; for a review of backtests).  

More precisely, the aim of the Boucher et al. (2014)’s framework is to 

approximately quantify VaR model risk and add that amount into VaR forecasts to 

obtain risk measures that are robust to model risk, called “Model-risk-adjusted VaR 

(RaVaR)”. In particular, if VaR model doesn’t pass (accept the null hypothesis) all 

given backtests criteria, the correction amount is the minimal constant that, when added 

to all recent 250 daily-VaR observations, make it passes all chosen backtests. That 

correction amount indicate the proxy of model risk’s magnitude. But if the model 

already passes all chosen backtests, no correction would be required. For the sake of 



 

 

 

3 

simplicity, Boucher et al. (2014) used three basic backtests as the adjustment criteria, 

one accounts for each violation property, namely Kupiec (1995) likelihood ratio test for 

unconditional coverage property (UC), Christoffersen (1998) first-order Markov test 

for independence property (IND), and Berkowitz (2001) test for magnitude property 

(MG).  

In my point of view, the general framework of Boucher et al. (2014) provides 

an effective guideline for model risk quantification and correction calibrated using 

general backtest procedure. However, it should be noted that the estimated magnitude 

of model risk in Boucher’s framework could be varied with different sets of (backtest) 

criteria. For instance, to test null hypothesis of a particular VaR-violation property (UC, 

IND, CC or MG), there are several backtest methods that can be used, especially for 

IND and CC tests which have been given increased significance over time. 

Although Kupiec (1995) UC test and Christoffersen (1998) IND test (used in 

Boucher’s framework) are commonly applied in practical applications, they're well 

known of its drawback. The most obvious example is that Christoffersen (1998) (first-

order) Markov test cannot detect more than one-day (two-consecutive-day violations) 

independence. Indeed, in financial data, it could be that probability of having violations 

today is dependent on whether or not there is violation in one week ago, one month ago, 

and so on. Hence, many backtest methods have been proposed to overcome this 

limitation, including duration-based test (Christoffersen and Pelletier, 2004), GMM 

duration based-test (Candelon et al., 2011) dynamic quantile test (Engle and 

Manganelli, 2004), and Monte Carlo based-test (Ziggel et al., 2014).  
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For Kupiec (1995) UC test, it has been shown in some papers that its statistical 

power in detecting inaccurate models is quite low1 and is outperformed by some UC 

tests, i.e., GMM duration based-test (Candelon et al., 2011) and Monte Carlo based-test 

(Ziggel et al., 2014). In addition, since violation clustering (dependence) seems to be 

more severe in financial data, CC tests tend to be superior to UC tests and are main 

focuses of recent literature (e.g., Engle and Manganelli, 2004; Candelon et al., 2011; 

Berkowitz et al., 2011; Ziggel et al., 2014). 

These drawbacks on backtesting framework provide a motivation of my thesis. 

To fill this gap, I apply other backtest methods in literature into Boucher’s model risk 

correction framework aiming to make the outcome of risk forecasts more accurate. In 

order to evaluate performance of different (backtest) criteria sets, my study also 

contribute to the literature by providing a two simple ex post validation methods, 

namely, out-of-sample backtest which based on general backtest procedures, and risk 

ratio analysis (Danielsson et al., 2014) which is another way to gauge model risk. In ex 

post validation process, using SET index data, series of RaVaR generated from each 

criteria set will be examined  

 

                                                 
1 In backtesting literature, simulation experiment is generally used to show that when testing an 

exactly inaccurate model, backtests that have “more statistical power” in detecting inaccurate model 

are backtests that have “greater chance to reject the null hypothesis (infer that the model is 

inaccurate). See, for instance, Campbell (2005), Christoffersen and Pelletier (2004), Candelon et al. 

(2011), etc.  
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1.2 Research Questions 

First of all, three backtest criteria (namely Kupiec (1995), Christoffersen 

(1998), and Berkowitz (2001)) used in Boucher et al. (2014)’s leaves an extension on 

trying other backtest methods. By focusing mainly on the drawbacks of Kupiec (1995), 

Christoffersen (1998) tests, the main research question is: Do criteria sets that contain 

higher-statistical-power backtests provide better performance in ex post analysis? 

Also, to adjust model risk explicitly for model risk, it is worth considering whether to 

adjust or not the model-risk-adjusted VaR (RaVaR) series outperform the original VaR 

series (estimated VaR or EVaR) in expost validation analysis? Lastly, following 

Boucher (2014) that model risk consists of estimation and misspecification risk, which 

the second part is generally much larger. By accepting that we never know the true data 

generating process (DGP) of market indexes, an additional question is: Does amount of 

model risk generated from the correction framework depend on which methods 

(models) used to compute VaR?  

  

1.3 Objective and Contributions 

The primary objective of this thesis is to strengthen importance of model risk 

on quantile modeling. According to Kerkhof et al. (2010), Boucher and Maillet (2013), 

and Boucher et al. (2014), appropriated risk measures that are in particular robust to 

statistical model risks is of key importance for enhancing market risk management. 

Although in Basel 3.5 discussion (BCBS, 2013) the regulators indicate that banks assess 

model risk, there is no explicit guideline. In this regard, I will put forward the Boucher 

et al. (2014) model risk correction framework by applying a range of other VaR backtest 
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methods in literature, for each particular violation property, that is, Unconditional 

Coverage (UC) test, Independence (IND) test, and Conditional Coverage (CC) tests. 

  

As an extension of Boucher et al. (2014)’s framework, this thesis contributes to 

a way to make model risk quantification more precise and obtain safer buffer on VaR 

forecasts explicitly account for model risk. The experience from global financial crisis 

as well as other meltdowns have questioned to academics and practitioners on VaR’s 

capability of indicating risks. Although dealing explicitly with model risk will not 

overcome all VaR drawbacks, it could help solve the problem. By adjusting VaR 

estimates, hopefully they would be better to absorb changes in market conditions, 

especially at the turning point of change in market conditions i.e., calm-to-turbulent 

period, and vice versa.   

This study also contributes to the literature by providing two simple ex-post 

validation methods. The first method called “out-of-sample backtest” use general 

backtest procedures to evaluate series of model-risk-adjusted VaR (RaVaR). The 

second method applies the idea of Risk-ratio analysis proposed by Danielsson et al. 

(2014) as an alternative approach to measure VaR-model risk. Lastly, regarding the 

amount of model risk (qt
∗), with more accurate model risk quantification, ones can be 

benefited from comparing various data generating models more effectively using the 

idea that the lower the model risk, the better the model. 
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1.4 Research Hypotheses 

To answer the main research question, explaining how higher-statistical-power 

backtests can affect the model risk quantification and correction may be needed. First 

of all, backtests that have higher-statistical power means that it has greater chance to 

reject an inaccurate VaR-model, thus having low probability of incurring Type II error 

– falsely rejecting the model when the model is inaccurate (or rejecting null hypothesis 

when the alternative is true). Although backtesting also involve probability of rejecting 

an accurate VaR-model or Type I error, Gaglianone et al., (2011) and Jorion, (2001) 

said that in risk management, it is much more costly if the tests have low power to reject 

inaccurate model. Recall that model risk correction framework is based on idea that, 

for any time t, if VaR-model already pass all given backtests in a criteria set, there is 

no model risk and hence no correction will be added, and the opposite is true when 

there is at least one backtest rejecting the model. Let us consider the case that all chosen 

backtests in a criteria set are of very low-statistical power. In the presence of inaccurate 

VaR-model and thus some adjustment (explicitly account for model risk) is needed, but 

all backtests in the criteria set is so ineffective that they’re falsely accepting the 

inaccurate model (and no correction is added). That is a sup-optimal outcome that we 

should intensely be avoided. Because, for example, if the (optimal) correction amount 

is negative value, meaning that VaR should be more negative (or more conservative) to 

address model risk, but we potentially ignore, then the resulting VaR will be too low, 

and vice versa. Hence, the first hypothesis can be written as 

Hypothesis 1: "Criteria sets that contain higher statistical-power backtests will 

outperform in ex post validation". (Details are given in methodology section.) 
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 Apart from three violation-property tests, unconditional coverage (UC), 

independence (IND), and magnitude (MG) tests which were focused in Boucher’s 

(three-backtest) criteria set, there is another violation-property type that can be 

backtested called conditional coverage (CC) test. It is a test that jointly detect both UC 

property and IND property at the same time. In this case ones may wonder how CC 

tests are different from two separate tests (UC and IND tests) in statistical power aspect. 

The answer is it depends. 

According to (Røynstrand et al., 2012) and Campbell (2005), four possible outcomes 

can appear in financial data regarding UC and IND properties:  

1. At a particular time, if VaR-model violate both UC and IND property2, then a 

joint or conditional coverage (CC) test have more statistical power (less chance 

of incurring type II error) to detect this inaccurate model than either UC or IND 

test alone.  

2. At a particular time, if VaR-model violate UC property but not violate IND 

property, then IND test alone have more statistical power to detect this 

inaccurate model than conditional coverage (CC) test.  

3. At a particular time, if VaR-model violate IND property but not violate UC 

property, then UC test alone have more statistical power to detect this inaccurate 

model than conditional coverage (CC) test.  

4. At a particular time, if both UC and IND properties are not violated, then the 

problem will be about type I error instead, which is of much less concerns. 

                                                 
2
 "Violate" here means that VaR model is inaccurate in term of particular property (UC, IND, or both 

UC and IND) which appropriate backtest methods should reject the model. Please do not be confused 

about the word "violations", which is the days that VaR cannot cover the loss). 
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Although we do not know for sure whether one of these situations are going to happen, 

in practice, violations clustering seems to appear overtime, and so does the “first 

outcome”. Thus, to strengthen the buffer on VaR forecast in model risk correction 

framework, I also hypothesize that adding a CC test in a criteria set may improve the 

performance of risk forecasts in ex post validation.  

Hypothesis 2: "Adding CC test in a criteria set will improve performance in ex post 

validation". (Details are given in methodology section.) 

 

1.5 Organization of the Paper 

 In the following: Chapter 2 gives an review of VaR model risk, relevant 

sesearch, the original quantile correction framework, and other backtest methods 

proposed in the literature. Chapter 3 illustrates the data used in this study as well as the 

methodology how I apply other backtest criteria to the original framework. Chapter 4 

shows the results of model risk correction and ex post validation. Then, Chapter 5 

finally concludes. 
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CHAPTER 2: Literature Review 

 

2.1 Value-at-Risk  

Value at Risk (VaR) has become a standard risk measure since 1996, when 

financial institutions are allowed to use it as internal-model approach for capital reserve 

computation under the first Basel Accord (BCBS, 1996). People are well-known of its 

main advantages that it is easily to understand. Although it has some criticisms, people 

are still working with VaR models until now.  

 

2.1.1 Definition  

VaR’s mathematical definition can be expressed as α-level quantile of profit and 

loss (P&L)’s distribution: 

            VaRt(α)  =  inf {x ∈ R ∶ Pr(X ≤   x) > α}                (1) 

For instance, 99%VaR is an amount of capital required to cover the loss in 99% 

of the time. In other words, it is 99% sure that returns won’t be less than the over a 

given horizon. Apart from model specifications, there components are to be assumed 

for VaR𝛼  computation, which are confidence level, forecast horizon (also called 

liquidity horizon), and estimation period (generally regulators require at least 1-year 

trading days data).  

 

2.1.2 Model Classes  

Basically there are three main methods for VaR calculation (Jorion, 2001; 

Alexander, 2008; Hull, 2012), namely Gaussian parametric (or variance-covariance) 
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approach, historical simulation, and Monte Carlo simulation. Over the century, there 

have been a number of VaR modelling methodologies proposed. However, in my study, 

model choice is restricted on ones that commonly used in practice, including: 1) 

Gaussian parametric approach, 2) Historical simulation (HS), 3) RiskMetrics, 4) 

GARCH(1,1)-N and 5) GARCH(1,1)-t. Descriptions for each model are given below: 

Gaussian parametric approach (or Normal VaR method): Given daily time-series data, 

to forecast VaRt+1 at time t, the first and simplest way is by assuming the logarithmic 

returns are normally distributed. Then VaR is calculated by: 

             VaRt+1(α) = μt − zα ∙ σ,               (2) 

where, zα is one-sided critical value for standard normal distribution, σ is historical 

volatility.  Note that generally we assume μt= 0 for daily returns. 

Historical simulation: Another simplest way is using non-parametric empirical 

distribution as usually applied in financial institutions (Berkowitz, et al. 2011). Having 

sort historical return in specified period i.e., 250 observations, the unconditional 

quantile is: 

                                     VaRt+1(α) = percentile({rτ}τ=t−250+1
t , α)                          (3) 

For RiskMetrics and GARCH(1,1)-N approaches general mean equation and error term 

specification are:  

              rt = μt + 𝑢𝑡 ,        𝑢𝑡 = √htεt,   εt ~  D(0, 1),                         (4) 

where rt is return, εt is error term that is identically independently distributed (i.i.d.) 

with specified distribution D, which is usually normalized to have zero mean and unit 

variance.  

RiskMetrics: Instead of applying equal weight for whole historical sample which may 

not effectively reflect current conditions, the method of exponentially weighted moving 
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average (EWMA) which places more weight on recent observations can be another 

choice. Its variance equation is defined as:    

                ht = γht−1 + (1 − γ)𝑢t−1
2 ,               (5) 

The Lambda (γ) is decay factor describing how fast the weights on recent observations 

are reduced when moving back through earlier observations. I follow a well-known 

EWMA methodology of RiskMetricsTM, launched by J.P. Morgan which suggested γ = 

0.94 for daily volatility model. The error term distribution is specified as D(0, 1) =

N(0, 1). 

GARCH(1,1)-N: Standard or symmetric GARCH model is the generalization of 

Engle’s ARCH model introduced by Bollerslev (1986). The variance equation is: 

                                      ht = α0 +∑ αi
p
i=1 𝑢t−i

2 + ∑ βjht−j
  q

j=1               (6) 

where p = q = 1 and D(0, 1) = N(0, 1).  

GARCH(1,1)-t: Using the same specification as previous model but this time, the 

probability density function of student-t distribution; or D(0,1) = t(0,1,υ), is applied:  

                            𝑓(εt) =
Г
(υ+1)

2

√π(υ−2)Г(
υ

2
)
(1 +

εt
2

υ−2
)
−
υ+1

2
 , 2 < υ < ∞            (7) 

Thus, one-day-ahead VaR are given by:  

                                                 VaRt+1(α) =  μt + zα ∙ ht 

                     VaRt+1(α) =  μt + tα(υ)√
υ−2

υ
∙ ht                               (8) 

For normality and student-t assumption, respectively. 
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2.1.3 Critique 

The widespread of using VaR bring forth heavy discussions of its accuracy (see, 

e.g.  Berkowitz, 2002; Escanciano and Pei, 2012; Danielsson et al., 2014). For instance, 

VaR has been criticized for capability of forecasting risk when severe outcome occurs. 

Also, it does not say anything about the potential size of loss when exceeds VaR. 

Moreover, it is widely known that VaR are not meeting one of the requirements of a 

proper risk measures, that is, sub-additivity (Jorion, 2001; BCBS, 2013; Ziggel, 2014).  

By acknowledging these concerns, new statistical modelling approach as well 

as its evaluation technique have been increasingly improved. Focusing on the latter 

improvement, literature have also considered model risk as another problem. Generally 

speaking, there are two main validation processes dealing with model uncertainty. The 

first and most common way is to backtest, which dealing with model risk indirectly 

using statistical inference to detect inaccurate model. Another way is model risk 

quantification dealing straightly with VaR model risk. Details on these model 

evaluation will be described next. 

 

2.2 Quantile Model Risk 

Model risks, in general, refer to an imprecision of model’s estimation compared 

to a true value of interested variable. Similarly, quantile model risk is occurred when 

estimating quantile with statistical models. Generally, there is no unique definition of 

model risk but it most happens when we do not know the true data generating process 

(DGP), resulting in making assumptions (Alexander and Sarabia, 2012).  
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2.2.1 Definition  

For mathematical definition of quantile model risk, following Alexander and 

Sarabia (2012), the α quantile of a continuous distribution F of random variable X 

where X ∈ R is denoted by: 

                           qα
F  =  F−1(α),      (9) 

where α is a predetermined coverage rate, i.e. 1% for 99%VaR models, and F 

is assumed true distribution. With statistical models, estimated quantile is based on 

estimated distribution F̂:  

                  qα
F̂  =  F̂−1(α)                         (10) 

Here, quantile model risk originated from the fact that F̂ ≠ F, and hence qα
F̂  ≠ qα

F . 

As a consequence, the model’s α quantile qα
F̂  is at a different quantile of α under F−1(·) 

and we can use α̂ for this new quantile, that is, qα
F̂ = qα̂ 

F . Then, reversing the quantile 

function, we can obtain the α̂ as 

                                                  α̂  =  F[F̂−1(α)]              (11) 

The process when α shifted to α̂ under the true distribution F−1(·) is called “probability 

shifting” (Boucher and Mailet, 2013; Boucher et al., 2014). To amplify model risk, one 

way is to measure the deviation of α̂ from α, or “quantile probability errors”:  

              e(α|F, F̂) =  α̂ − α             (12) 

Another way to compute a magnitude of model risk is via the difference of 

quantile value correspond to the true distribution, or “quantile errors”: 

                       e(qα
F |F, F̂) =   qα

F − qα̂
F              (13) 
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In the same analogy, Boucher et al. (2014) define model risk as a bias function 

bias(ө0, ө,̂ α,) (or economic value of model risk) that’s make the Theoretical VaR 

(ThVaR) and estimated VaR (EVaR) equal: 

            ThVaR(ө0, α)   =  EVaR(ө̂, α)  +  bias(ө0, ө̂, α)           (14) 

 

2.2.2 Relevant Researches 

Of course, quantifying amount of true model risk as above can be done only in 

simulation experiment where true DGP is known. In real situation, however, risk model 

risks have been approaches in two different ways. The first way is done using a 

benchmark model. For example, Alexander (2012) proposed to quantify and adjust 

model risk to regulatory capital using maximum entropy distribution as a benchmark. 

The second way is examining all feasible models, then evaluating discrepancy of the 

results. For instance, Bao and llah (2004) studied the bias occur when forecasting VaR 

via ARCH(1) specification. Christoffersen and Goncalves (2005) quantified ex ante 

model estimation risk by constructing confidence interval and suggested a resampling 

technique. Kerkhof et al. (2010) is who first proposed to adjust regulatory market 

capital charge explicitly for model risk using backtest. Boucher et al. (2014) and its 

initial version (Boucher and Mailet, 2013) complement Kerkhof et al. (2010)’s 

approach and generalizing the backtests used for cushion on estimated VaR series. 

Generally, there is no unique definition of model risk and various sources could 

be involved, including misspecification error (or wrong model choice), estimation error 

(including sampling and parameterization error), and identification error. The first two 

sources are most heavily documented in literature. For example, Christoffersen and 
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Goncalves (2005) focus only on estimation risk. Similarly, Kerkhof et al. (2010) 

calculated estimation error as the difference between upper confidence interval and 

point estimate. Bao and llah (2004), Alexander and Sarabia (2012), Boucher and Maillet 

(2013), and Boucher et al. (2014) are those who defined model risk as a combination 

of misspecification and estimation error. Kerkhof et al. (2010) added identification risk 

as another source accounting for uncertainty on analyzing subjective approach. Other 

sources can be liquidity risk, granularity risk, and data contamination (see, Boucher et 

al., 2014).  

 

2.3 Model risk correction via Backtesting Framework 

Boucher et al. (2014) recently proposed to approximate model risk ultimately 

for the adjustment that make VaR forecasts more robust to model risk. Their approach 

complements the Kerkhof et al. (2010) who first proposed a procedure to incorporate 

model risk into the calculation of regulatory capital reserves using backtests. Actually, 

its simple version has been initially documented by Boucher and Maillet (2013) where 

there is one backtest criterion for model risk adjustment - Kupiec (1995) unconditional 

coverage test. Thus far, in regulatory framework there is no explicit guideline for model 

risk, but as Kerkhof et al. (2010) pointed out, the multiplication factor for capital reserve 

computation is deemed partly to account for model risk. Nevertheless, regulatory 

framework regards only unconditional coverage property which may not be enough. 

Other violation properties that should be also considered in model risk evaluation will 

be described next.  
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2.3.1 Fundamental of Backtests  

Backtest is an ex post process in the sense that it compare VaR forecasts to 

realized returns to examine whether the model represent amount of risks properly or 

not. Specifically, given a notation of “hit” function as follows: 

            It(α) =  {
1  if rt  ≤  −VaRt(α)
0  if rt  >  −VaRt(α)

             (15) 

Where rt is the profit and loss return at time t, {t = -1, -2, -3, …, -250}, i.e., 

backtest period is over the past one-year trading days). If realized losses exceed 

VaRt(α) the function value is 1, this is called VaR violations, meaning that VaR cannot 

cover the loss on that day. Otherwise the function value is zero.   

Figure 1. SET Daily Negative Returns and Daily 95% VaR Computed by EWMA Model 

 

To backtest a sequence of VaR violations Campbell (2005) and Haas (2001) 

suggest three properties to be concerned. The first property is unconditional coverage 

(hereafter UC). Sometimes it’s also called frequency or hit test. Consider Figure 1, 

shows SET negative return (dots) and daily 95% VaR computed by EMWA (line). The 

negative return that exceeds VaR forecast on that day (dots that located below the line) 

are called “violations”. The idea of UC test is that proportion of violations 
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(
No.  Violation

No.  Observations (250)
) should be close to Coverage rate (α) or 5% for 95% confidence 

level of VaR. If the proportion is too high (low), the model underestimate 

(overestimate) true level of risk. Thus, “in general UC term”, the model is said to 

possess UC property when: 

                        E[It(α)]  =  α,   ∀t ∈ {0,1,2, …T}            (16) 

For instance, 1% daily VaR with 250 backtkest periods should have 250*0.01 

= 2.5 days of violation. In other words, the VaR expected to violate one percent of the 

time. UC is the most basic violation property and it has been applied with the regulatory 

traffic light test. 

The second property is independence (hereafter IND), which places more 

restriction on violations behavior. Specifically, violation sequence should not be 

dependent or appeared clusterings unless the model is said to be incapable of predicting 

change in risk dynamics. For example, in Figure 2, around the 1997’s crisis, violations 

frequently failed to capture downside risk as highlighted by dashed circle.  

 

Figure 2. SET Daily Negative Returns and Daily 95% VaR Computed by 

EWMA Model with Highlighted Violation Clustering 
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We can expressed the definition of independence property:  

                                   H0,cc: It(α)~i. i. d. Bernoulli(α̂)                                         (17) 

hit function have i.i.d. Bernoulli distribution with unspecified parameter denoted by α̂, 

which is probability of observing violations. 

If unconditional coverage and independence properties are combined to be a 

joint test, it is called conditional coverage (hereafter CC) property. Null hypothesis 

can be expressed as:  

                             H0,cc: It(α)~i. i. d. Bernoulli(α)            (18) 

Normally the null of CC hypothesis is similar to IND hypothesis except it 

require another condition, that is, parameter of Bernoulli for example is equal to α (e.g., 

5% for 95% VaR). As Campbell (2005) elucidated, if the previous-day violation 

(positively) is correlated with current violation, then given that violation occurred 

yesterday, the probability of observing violation today will be higher than α, which 

violate CC property. 

The last property is magnitude of exceptions (hereafter MG) which is less 

popular than the former two properties until recent decades. It is worth noting that 

severity of loss is the real concern not exception per se. especially in capital reserve 

computation, and/or margin buffer (Colletaz et al., 2013). For example, given a 

sequence of violations, Lopez (1998) measure the magnitude of violation using a 

quadratic score function as: 

        L(VaRt(α), rt)  =  {
 1 + (rt − VaRt(α))

2
   if rt  ≤  −VaRt(α) 

 0                                       if rt  >  −VaRt(α) 
          (19) 



 

 

 

20 

which tells how much predicted losses when negative P&L exceeds VaR will be. 

 

2.3.2 The Original Approach of Boucher et al. (2014) 

 Model risk correction framework via backtests proposed by Boucher et al. 

(2014) is based on three-backtesting criteria set. Each test separately accounts for each 

property, including Kupiec (1995) unconditional coverage test, Christoffersen (1998) 

Markov (independence) test, and Berkowitz (2001) magnitude test. Basically, for any 

backtest, whether the null hypothesis (or the model) is accepted is based on test statistic. 

Kupiec (1995) test: One of the earliest backtests is Kupiec (1995) which focus 

exclusively on unconditional coverage property. Proportion of failures (POF) is used to 

examine how many violations occur over a given timeframe. Using the sample of 

observations of T, Kupiec’s test statistic is a likelihood ratio (LR) which is 

asymptotically chi-square distributed with one degree of freedom takes the form of:  

                                  LRuc
k = −2ln ((

1−α̂

1−α
)
T0
(
α̂

α
)
T1
)     

𝑑
→χ2(1) ,                       (20) 

where,  α̂ =  
1

T
T1 ,    T1 = ∑ It

T
t=1 (α),    T0 =  T − T1   

Christoffersen (1998) Markov test: This test account for independence property defined 

as a first-order Markov chain. It is also one of the most frequently referred tests 

dominated in literature. This means that if the risk model is accurate, any VaR violation 

should not depend on whether or not there is violation the day before. The null of H0,ind 

is Pr(It = 1|Ωt−1) =  Pr(It+1 = 1|Ωt) where Ωt−1 is past information, 

The test statistic is a LR which is asymptotically chi-square distributed with one degree 

of freedom:  
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                     LRind
c = −2ln [

(1−π)T00+T10  πT01+T11

(1−π0)
T00π0

T01(1−π1)
T10π1

T11
]       

𝑑
→χ2(1) ,           (21) 

where, π0 =  
𝑇01

𝑇00+𝑇01
 ,  π1 =  

T11

T10+T11
 ,  π =  

T01+T11

T00+T01+T10+T11
 , Tij is defined as the 

number of days when i occur today conditional on j occurred the day before, with i and 

j can be 0 (no violation) or 1 (violation occurred). For example, T01is the number of 

days of no violation given that there is violation on the previous day, and  T11 is the 

number of days of violation given that there is also violation on the previous day. Thus, 

πi is a binary Markov chain reflecting one-day dependence by the probability of 

realizing violation today given the condition i on the previous day. π is unconditional 

probability of realizing violation today. 

Berkowitz (2001) Magnitude Test: The last test in original criteria set focuses large 

losses incurred when realized P&L exceeds VaR. Berkowitz (2001) proposed LR test 

based on a censored normal likelihood. Consider the left tail of the distribution that is 

predefined by users, i.e., loss larger than 5% VaR in this case. So it focus only 

observation (violations) in the tailed part, others are truncated. Then a new variable for 

large violation is redefined as: 

                                       rt
∗ = {

 rt                      if rt  < −VaR
VaR                   if rt  ≥ −VaR

             (22) 

VaR is the tailed threshold, rt is ex post return at time t. Then the LR test statistic is 

based on the constrained (null hypothesis: μ = 0, 𝜎2 = 1) and unconstrained 

(alternative hypothesis) conditions: 

                                    LRmg
b = −2[L(0,1) − L(μ̂, 𝜎̂2)]          

𝑑
→χ2(2),                   (23) 

where the log-likelihood function for estimation of μ̂ and σ̂ is: 
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L(μ, σ |r∗) =∑ (−
1

2
ln(2πσ2) −

1

2σ2
(rt
∗ − μ2))

 

rt
∗<VaR

+∑ (1 − ϕ(
VaR−μ

σ
))

 

rt
∗=VaR

   (24) 

The null will be rejected if large losses are significantly higher or lower than expected 

losses.   

Figure 3. Boucher et al. (2014)’s Conceptual Framework 

 

 Then, three criteria in Boucher’s Criteria Set are used in the backtesting 

procedure as shown by Figure 3. Starting with one data generating model (DGM) to fit 

the historical data (i.e., DJIA daily index returns), then they estimated daily VaR series 

denoted by EVaRt using rolling estimation window of 1,040 daily returns. Next, in the 

backtesting procedure, if at least one criterion in the criteria set reject the model, modek 

risk coorection is done by finding the new risk forecast series called model-risk-

adjusted VaR: RaVaRt = EVaRt + qt
∗, where qt

∗ is regarded as a proxy of model risk’s 

magnitude. But if all criteria accept the model, no correction will be required (qt
∗ = 0). 
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Figure 4. Methods to Find 𝒒𝒕
∗ 

 

 Specifically, qt
∗ it is the minimal amount that when added to all observations 

in a given backtest period, i.e. recent 250 daily Estimated VaR (EVaR) series 

{VaRt−1 , … , VaRt−250}, make it passes to all criteria (when at first at least one criterion 

reject the model). For an illustration, Figure 4 show how to find qt
∗ in daily basis using 

rolling window technique. Suppose we are at time t, given then series of daily 95% 

VaR-EWMA (line) does not pass all criteria in the criteria set, then Boucher et al. 

(2014) do a parallel shift from the original series incrementally to obtain a new series 

that all criteria accept the model. Note that this is the situation when model risk 

correction qt
∗ is negative (downward parallel shift), however, it can be a case of positive 

qt
∗ (upward parallel shift) as well, i.e., when the initial VaR series is too much negative 

(number of violations is too low).  

 

 Boucher et al. (2014)’s quantile correction framework provides very effective 

guideline for model risk correction using backtests. In their research, 9 famous models 
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(including Gaussian parametric approach, student-t, historical simulation, RiskMetrics, 

CAViaR, GARCH(1,1), Cournish-Fisher, generalized extreme value, and generalized 

Pareto distribution) were applied and found to be significantly improved on capturing 

market conditions after empirically adjusting model uncertainty.  

 However, one should notice that the approximated magnitude of model risk 

could be varied with different criteria sets. Further, currently apart from three backtests 

used in the original framework, there have been a number of backtests proposed which 

many of them have been appropriately validated to have more statistical power than 

those in the original set. The most obvious example is the extension of Christoffersen 

(1998) IND test as the first-order Markov chain is known of the limitation to detect 

more than one-day dependence (two-consecutive-day clustering) (Campbell, 2005; 

Christoffersen and Pelletier, 2004; Engle and Manganelli, etc.). Those outperformed 

tests that are capable of detecting more than one-day dependence include duration-

based test (Christoffersen and Pelletier, 2004), dynamic quantile test (Engle and 

Manganelli, 2004), and Monte Carlo test (Ziggel et al., 2014). 

 In addition, IND and especially CC tests tend to be superior to UC tests and 

are main focuses of many literature as violation clustering (dependence) seems to be 

mostly severe in financial data (e.g., Engle and Manganelli, 2004; Candelon et al., 2011; 

Berkowitz et al., 2011; Ziggel et al., 2014). This leaves me a way to put forward the 

Boucher’s framework. By aiming to improve the accuracy of quantile model risk 

quantification and correction, I will extend the backtesting framework and find optimal 

criteria sets.  
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2.4 Other Backtesting Methods for the Criteria 

 Having gathered a range of backtesting methods, they are then categorized into 

four groups corresponding to their property detection, including (i) UC test, (ii) IND 

test, (ii) CC test, and (iv) MG test. Generally, backtests proposed by individual papers 

could be adapted to test more than one property, whether another separate test or joint 

test. Some methods could even test for three hypotheses (UC, IND, and CC).  

 

2.4.1 Unconditional Coverage Test (UC) 

 With regard to UC property, Kupiec (1995) is among the most common 

backtests applied heavily in risk management researches and it is also the main backtest 

for regulatory framework and financial institution. Due to the knowledge that UC 

property solely is not enough to detect bad models, more researching effort were placed 

on studying other tests especially IND and CC. However, there are still some improved 

methodologies on UC hypothesis.  

 Engle and Manganelli (2004) adopted backtest methods called CaViaR (or 

Dynamic Quantile (DQ)) using linear regression based on independent variable in 

information set. Although, their tests focus mainly on IND and CC test, it could be 

applied to test for UC property. Consider the following equation: 

                                  It −  α = ω +∑β1,iIt−i

n

i=1

+∑β2,jVaRt−j

m

i=1

+ εt                            (25) 

where α is a quantile level of VaR,  εt is an error term, β1,i and β2,j are regression 

coefficients of Violations and VaR sequences in the past, respectively. The reasoning 

is that if the null of UC is true, probability of having violation predicted by the model 
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will be closed to α. In this setting, I use n = m =3 (lagged up to 3 period). For test 

statistic, they use the following Wald statistic:  

          DQuc =
𝛃̂′𝐑′(𝐑[𝐗′𝐗]𝐑′)−𝟏𝐑𝛃̂

α(1−α)
             (26) 

where 𝛃̂ =  (ω̂, β̂1,1, β̂1,2, β̂1,3,, β̂2,1, β̂2,2, β̂2,3)
′
, 𝐑 is the 1 x (3+3+1) matrix (1, 0, …,0), 

and X is a matrix that contain ones in the first column, and lagged hit functions in the 

next three column, and lagged VaR in the last three column. And the null hypothesis is 

H0,uc: ω = 0. 

 In addition, Candelon et al. (2011) framework applied the concept of GMM 

duration using orthonormal polynomials. Although their main focus are IND and CC 

tests, they also conduct UC test. To illustrate, first, denoted by di, the duration or 

number of days between two consecutive violations which di = ti − ti−1, where ti is 

the day of ith violation (Christoffersen and Pelletier, 2004). Under CC hypothesis the 

duration {di} have a geometric distribution with parameter α. So Candelon et al. (2011) 

initially introduced the recursive equation as follows: 

(27) 

which M−1(d; β) = 0 and M0(d; β) = 1. Hence the null hypothesis of CC is:  

               H0,cc ∶ E[Mj(di; α)] = 0,   j =  {1, … , p},               (28) 

where p is number of moment conditions. And the null hypothesis of UC is when the 

average of duration is equal to 1/α, which can be derived as: 

                                    H0,uc ∶ E[M1(di; α)] = 0,                (29) 

The null of IND test, when di is geometric distribution, is also shown as: 

                                     H0,ind ∶ E[Mj(di; β)] = 0,   j =  {1, … , p},               (30) 

Mj+1(d; β) =
(1 − β)(2j + 1) + β(j − d + 1)

(j + 1)√1 − β
Mj(d; β) − (

j

j + 1
)Mj−1(d; β) 
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They used Monte Carlo study and showed that the GMMcc dominates some existing 

LRcc methods, but didn’t compare the performance of GMMuc with any other UC test.  

 However, Ziggel et al. (2014) recently noted that the UC tests of GMM and 

Kupiec (1995) have drawbacks on realized small sample and inappropriate definition 

of UC hypothesis. To deal with, they first claim that the UC hypothesis: E[It(α)]  =  α, 

which require to test the expected coverage equal to α for all t, is imprecise. Even 

though It(α) sequence has expected coverage varies overtime it still possess UC if its 

average over backtest horizon is α. Thus, they redefined it to E [
1

n
∑ It(α)
n

t=1
] = α and 

proposed a Monte Carlo simulation (MCS) based test, MCSuc, which rely on a new way 

to compute critical value via MCS rather than using asymptotic distribution as: 

                                                 MCSuc =∑ It(α)
n

t=1
+ ϵ ,               (31) 

where ϵ~0.001 ∙ N(0,1) is a continuous random variable for ensuring that two test 

statistics from sample and from MCS could not be the same (tiebreaking procedure).  

 

2.4.2 Independence Test (IND) 

 IND test is most documented in literature as well as CC. According to the failure 

of Christoffersen (1998)’s first-order Markov test mentioned before, many tests has 

been proposed. One of the early introduced ones was the duration-based test of 

Christoffersen and Pelletier (2004). It is more flexible and effective in that it can detect 

exception clustering more than two-day-consecutive violations (one-day dependence). 

By introducing the concept of (no-hit) duration, di as the number of days between two 

violations (mentioned before), IND hypothesis is detected when there is excessive 

number of short and long durations. More specifically, in the absence of violation 
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dependence, durations should have exponential distribution, to represent memoryless 

property (independence) of duration variable. It could be expressed as: 

     𝑓exp(d; α) = αexp (−αd)               (32) 

 In order to find test statistic, Christoffersen and Pelletier (2004) use the 

Weibull distribution as its hazard function has close-from representation, which 

become the exponential distribution when b = 1, or a flat hazard case: 

       𝑓W(d; a; b) = a
bbdb−1exp (−(ad)𝑏)                                         (33) 

 Thus, IND null hypothesis is H0,ind: b = 1 and corresponding likelihood ratio 

(LR) test statistic could be calculated. In addition, the CC version of this is added simply 

as H0,cc: b = 1, a = α. The second duration-based methodology is the GMM test of 

Candelon et al. (2011) claiming to overcome the LR Markov-chain of Christoffersen 

(1998) and Christoffersen and Pelletier (2004)’s duration-based framework in realized 

small backtesting size. Its IND hypothesis was stated in equation (30). 

 Another test is the conditional autoregressive VaR (CaViaR) suggested by 

Engle and Manganelli (2004). As said before in UC test the CaViaR is mainly for 

IND/CC test that account for nth-order auto-regression. Using the same linear 

regression as in equation (25):  It −  α = ω + ∑ β1,iIt−i
n
i=1 + ∑ β2,jVaRt−j

m
i=1 + εt.  the 

Wald statistic for independent test can be explained by: 

           DQind =
𝛃̂′𝐏′(𝐏[𝐗′𝐗]𝐏′)−𝟏𝐑𝐏

α(1−α)
             (34) 

where 𝜷̂ =  (ω̂, 𝛽̂1,1, 𝛽̂1,2, 𝛽̂1,3,, 𝛽̂2,1, 𝛽̂2,2, 𝛽̂2,3)
′
, 𝑷 is the 1 x (3+3+1) matrix (0, 1, …,1) 

, and X is a matrix that contain ones in the first columns, and lagged hit functions in the 
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next three column, and lagged VaR in the last three columns. The null is H0,ind: β1,i =

 0, and β2,i =  0.   

 As well as for the UC hypothesis test, Ziggel et al. (2014) argued that 

traditional IND tests which supposed to detect non-i.i.d VaR violations were focus 

around auto-regression and thus are not be able to classify inaccurate VaR models 

during the joint of calm and volatile market period. Consequently, they propose a new 

IND (MCSind) test for new i.i.d. property as: 

                                 MCSind = t1
2 + (n − tm)

2 +∑(ti − ti−1)
2

m

i=2

+ 𝜖,                         (35) 

where the sum represent squared duration between two violations. In presence of 

violations clustering is, the test statistic will be large, so they conduct one-sided test 

using MCS technique.   

2.4.3 Conditional Coverage Test (CC) 

 Many independence tests have their joint version, for the earliest case, 

Chrisoffersen (1998) extend his IND test to CC test by using the null hypothesis of 

H0,ind: Pr(It = 1|Ωt−1) =  α, for all t. Then the test statistic is computed by:   

                LRcc = LRuc + LRind       
𝑑
→χ2(2)                        (36) 

 Another CC test is the conditional autoregressive VaR (CaViaR) or Dynamic 

Quantile tests (Engle and Manganelli 2004). Recall the equation (25):   It −  α = ω +

∑ β1,iIt−i
n
i=1 + ∑ β2,jVaRt−j

m
i=1 + εt   the Wald test statistic of this regression-based test 

will be: 
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                  DQcc =
𝛃̂′𝐗′𝐗𝛃̂

α(1−α)
                                (37) 

All parameters definition are still the same as in DQuc  and DQind tests. The null of CC 

hypothesis is H0,cc: ω = 0, β1,i =  0, and β2,i =  0.   

 Ziggel et al. (2014) also conduct CC test (MCScc), as a combination of MCSuc 

and MCSiid and showed that their proposed backtests outperform existing IND and CC 

test including Markov-based, duration-based and GMM-based. Specifically, they 

introduced the combined test of CC in that users are allowed to weight UC and IND (or 

i.i.d. in this case) components which make it more flexible to different risk perspectives. 

The test statistic was described in the form:  

  MCScc = a ∙ 𝑓(MCSuc) + (1 − a) ∙ g(MCSiid),    0 ≤ a ≤ 1,           (38) 

where a is weight of the combined tests, and I set a = 0.5,  

                   𝑓(MCSuc) = |

(MCSuc)
n − α

α
| = |

(ϵ + ∑ It
n
t=1 )
n − α

α
| , and                         

                                          g(MCSiid) =  
MCSiid − r̂

r̂
∙ 𝑙{MCSiid≥r̂}                                       (39) 

 The first component is percentage difference between the coverage rate (α) 

and observed proportion of violations. It makes UC and IND tests comparable via 

standardization. The second component measures the percentage deviation between the 

expected sum of square durations under the null hypothesis 

(r̂ 𝑜𝑟 an estimator for E(MCSiid|H0))
3 and corresponding observed value. As their 

                                                 
3 r̂ is calculated in simulation process, few steps before finding critical value.  



 

 

 

31 

UC and IND tests introduced before, they obtain the test statistic by using Monte Carlo 

simulation.  

 

2.4.4 Magnitude Test (MG) 

 This property had gained less interest relative to other hypothesis, perhaps 

because traditional regulatory framework focused only on unconditional property 

(Berkowitz, 2001). Currently, the supervisor have concerned much about magnitude of 

large losses and introduced stressed VaR in the Basel 3 and point out in the Basel 3.5 

proposal to take account for size of backtesting exception or change to use alternative 

risk measure, expected shortfall (BCBS, 2013). However, the clear-cut process is still 

ongoing (Embrechts et al., 2014). 

 In MG hypothesis framework, apart from the Berkowitz’s magnitude test, loss 

function-based procedure has been early introduced by Lopez (1998). Recall quadratic 

loss function:  

                  L(VaRt(α), rt)  =  {
 1 + (rt − VaRt(α))

2
   if rt  ≤  −VaRt(α) 

 0                                       if rt  ≤  −VaRt(α) 
           (40) 

 One way to compare VaR models is simply examining which models minimize 

loss function. Consider the average score function (L̂) for the whole period (T): 

                                                 L̂ =
1

T
∑ L(VaRt(α), rt)
T
t=1                                (41) 

 Then, we can rank the candidate models using the idea that model that provide 

smaller L̂ is better. Note two ways above are not on test-statistic basis, but comparative 

analysis. It could be adapted to such a test assuming the specified model is correct under 
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H0, then computing the associated critical value. However, Piontek (2013) found that 

its power is quite unstable and choosing the benchmark is very subjective. 

 Another recent methodology was proposed by Colletaz et al. (2013) called a 

double-threshold or risk map approach. In their validation framework, in addition to 

exception they conducted a new variable called super exception It(α′) defined as the 

same analogy as hit function It(α) in equation (15) as  

            It(α′) =  {
1  if rt  ≤  −VaRt(α′)

0  if rt  >  −VaRt(α′)
            (42) 

Then the joint null hypothesis is H0,MG: E[It(α)]  =  α  and E[It(α′)]  =  α′. The only 

difference here is the coverage rage (α′) that is predetermined and usually very small 

to represent extreme tails. This test could be also viewed as a multivariate unconditional 

coverage (MUC) with 2 coverage levels. Thus likelihood ratio statistic of MUC could 

be used. I will refer this test as LRMG. 

 

2.5 Finite Sample Inference 

 It is worth mentioning that while the look-back period sample is large, i.e. 250 

days, the number of violations to be found can be very small, particularly for 5% or 

even 1% coverage rate. This scarcity of violations make inference that due to a well-

known asymptotic distribution of critical value (i.e., Chi-square distribution) 

ineffective. Thus, in backtest literature, it is common to implement the Monte Carlo 

technique proposed by Dufour (2006) in order to make rejection or acceptance more 

correct in order to gauge empirical size and statistical power of any backtest method 

(see, e.g.; Christoffersen and Pelletier, 2004; Candelon et al., 2011; and Ziggel et al., 

2014). Basically, Dufour (2006)’s technique use Monte Carlo simulation to 
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approximate unknown distribution under the null hypothesis. For this reason, in my 

study I will apply of Dufour (2006)’s testing technique to make an inference from all 

backtests methods except the three backtests from MCS-based tests (Ziggel et al., 

2014), which already account for small sample bias. Details on computation are 

described in the following. 

 Denote by S, the test statistic calculated from any backtest. I first simulate N 

sequence of violations that have i.i.d. Bernoulli distribution with the parameter equal to 

coverage rate (α), which all the sequence are according with the null hypothesis that 

the model is correct. Then, for each violation sequence, compute test statistic and get 

Si, … , SN. Then, generally we can calculate S0 from empirical data and compare it to 

the simulated test statistic. However, when working with binary sequence, there is a 

probability of observing ties between test statistics calculated from empirical data (S0) 

and simulated data (Si). Thus, tiebreaking procedure is needed. Following 

Christoffersen and Pelletier (2004), when calculating each simulated test statistic, Si, I 

draw independent realization of a uniform distribution [0,1], denoted by Ui, i = 1,… , N. 

And the Monte-Carlo p-value is calculated by:  

                                  (43) 

Where  GN̂(LR0) = 1-
1

N
∑ I(Si ≤ S0)
N
i=1 +

1

N
∑ I(Si = S0)
N
i=1 ∙ I(Ui ≥ U0), and 

indicator I(∙) means that if the condition hold, I(∙) = 1.  Otherwise, I(∙) = 0. 

 

 

 

 

pN (S
0
) = 

NĜ(S0) + 1

N + 1
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CHAPTER 3: Data and Methodology 

 

3.1 Data  

 In empirical implementation, SET index daily return will be used as actual 

P&L in this study. Sample will be collected from the 2nd Jan, 1990 to the 30th December, 

2014 for total 6,126 observations. This include the period of 1997 Asian financial crisis 

and 2008 Global financial crisis. To judge between range of criteria sets in ex post 

validation, the outcome period between 3rd April, 1995 to the 30th December, 2014 

(full-sample period), for total 4,836 observations will be used for RaVaR backtests. 

 

3.2. Methodology 

3.2.1 Criteria sets Construction 

 Individual backtests criteria that will be used in this are assigned into four 

groups characterized by VaR-violation property shown in Figure 5. There are totally 

15 (individual) backtests, including two backtests that were used in Boucher et al. 

(2014), namely, Kupiec (1995) - Unconditional Coverage (UC) test [1], 

Christoffersen, (1998) - First-order Markov (ind) test [5]4.   

 

                                                 
4

 For magnitude (MG) test, I choose Double-threshold test instead of the Berkowitz (2001) 

magnitude test used in Boucher (2014) due to the convergent problem. The idea of these two tests 

are the same. 
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Figure 5. Backtest Methods for Model Risk Correction framework. 

Backtest methods for model risk correction framework 

(i) Unconditional Coverage Test [UC] 

[1]  An Unconditional Coverage Test (Kupiec, 1995) - (hereafter LRUC) 

[2]  A GMM Duration-based (UC) Test (Candelon et al., 2011) - (hereafter GMMUC) 

[3]  A Dynamic Quantile (UC) Test (Engle and Manganelli, 2004) - (hereafter DQCC) 

[4]  A MCS (UC) Test (Ziggel et al., 2014) - (hereafter MCSUC) 

(ii) Independence Test [IND] 

[5]  A First-order Markov (IND)  Test (Christoffersen, 1998) – (hereafter LRIND) 

[6]  A Duration-based (IND) Test (Christoffersen and Pelletier, 2004) - (DURIND) 

[7]  A GMM Duration-based (IND) Test  (Candelon et al., 2011) - (GMMIND) 

[8]  A Dynamic Quantile (IND) Test (Engle and Manganelli, 2004) - (DQIND) 

[9]  A MCS (IND) Test (Ziggel et al., 2014) - (hereafter MCSIND) 

(iii) Conditional Coverage Test [CC] 

[10] A First-order Markov (CC) Test (Christoffersen, 1998) - (LRCC) 

[11] A Duration-based (CC) Test (Christoffersen and Pelletier, 2004) - (DURCC) 

[12] A GMM Duration-based (CC) Test (Candelon et al., 2011) - (GMMCC) 

[13] A Dynamic Quantile (CC) Test (Engle and Manganelli, 2004) - (DQCC) 

[14] A MCS (CC) Test (Ziggel et al., 2014) - (MCSCC) 

 (iv) Magnitude Test [MG] 

[15] A Double-threshold Test (Colletaz et al., 2013) – (LRMG) 

 
 

 All IND tests have a joint version (CC tests) proposed by the same authors. 

Most authors proposed many (individual) backtests, for example Christoffersen (1998) 

proposed two Markov tests, which are IND test and CC test. Candelon et al. (2011) and 

Ziggel et al. (2014) even proposed three (individual) backtests. This can strengthen the 

fact that both IND and CC tests are the main focus of literature. For magnitude (MG) 
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property test, however, is less popular than others. Therefore, I restrict the extension of 

backtesting framework mainly on UC, IND, and CC tests. 

 Regarding the two hypotheses, the constructed set of new criteria sets are 

shown in Table 1. All criteria sets are divided into three groups, A, B, and C. For each 

criteria set in Group A (a1, a2, a3, a4, a5), there are three individual backtests, each 

backtest account for one type of violation-property (UC, IND, and MG). To test 

hypothesis 2 (“Adding CC test in a criteria set will improve performance in ex post 

validation”), for each criteria set in a1, a2, a3, a4, a5, I include another backtest (a CC 

test of the same methods) with MCScc, GMMcc, DQcc, DURcc, and LRcc, 

respectively and get resulting five criteria set in Group B, which are b1, b2, b3, b4, and 

b5, respectively. Thus, each criteria set in Group B include four individual backtests, 

one accounts for particular type of violation-property (UC, IND, CC, and MG). To 

compare between the two separate tests (UC and IND), with the joint test (CC), another 

five criteria sets are also constructed in Group C, by replacing UC and IND tests in 

each criteria set in Group A with a CC test. 

 Regarding the “Class (Methods of test statistic computation)” of criteria set, I 

have divided all backtests into 5 classes, namely Monte Carlo (MCS) based-test (for 

criteria set a1/b1), GMM duration-based test (for criteria set a2/b2), dynamic quantile 

(DQ)-based test (for criteria set a3/b3), duration-based test (for criteria set a4/b4), and 

simple likelihood ratio (LR)-based test (for criteria set a5/b). Note that class represent 

specific characteristics for all type of backtest methods except MG test. For MG test, I 

restrict to use Colletaz et al. (2013) for all criteria set. Note also that duration-based test 

(for criteria set a4/b4), the authors only proposed “two” backtests (namely IND and 

CC). Hence, UC test for criteria sets a4/b4 will be the LRUC of Kupiec (1995) instead. 
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 Specifically, to test hypothesis 1: “criteria sets that contain higher statistical-

power backtests will outperform in ex post validation”, based on literature, statistical 

power of the proposed backtests claimed by authors and the following sub-hypothesis 

are shown in Table 2. Generally, MCS-based test which is the most recent methodology 

(compared with others) are claim to outperform existing methods especially in small 

finite sample case, i.e. backtest period of 250 days. And Simple LR tests (criteria set 

a5/b5), are among the worst in term of statistical performance. Finally, the following 

sub-hypothesis are provided in Table 2.  

 For hypothesis 2: "Adding CC test in a criteria set will improve performance 

in ex post validation"), the sub-hypothesis are as follows: 

 Criteria set b1 ≻ a1 

 Criteria set b2 ≻ a2 

 Criteria set b3 ≻ a3 

 Criteria set b4 ≻ a4 

 Criteria set b5 ≻ a5 

Where preference sign “≻” means “outperform” 
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Table 1. Set of New Criteria Sets Constructed For Hypothesis 1-2. 

Group A: UC+IND+MG 

Criteria set’s name set a1 set a2 set a3 set a4 set a5 

Criteria for each set 

1.MCSUC 1.GMMUC 1. DQUC 1. LRUC 1.LRUC 

2.MCSIND 2.GMMIND 2.DQIND 2.DURIND 2.LRIND 

3.LRMG 3.LRMG 3.LRMG 3.LRMG 3.LRMG 
   

Group B: UC+IND+CC+MG 

Criteria set’s name set b1 set b2 set b3 set b4 set b5 

Criteria for each set 

1. MCSUC 1.GMMUC 1. DQUC 1.LRUC 1. LRUC 

2.MCSIND 2.GMMIND 2.DQIND 2.DURIND 2.LRIND 

3.MCSCC 3.GMMCC 3.DQCC 3.DURCC 3.LRCC 

4.LRMG 4.LRMG 4.LRMG 4.LRMG 4.LRMG 
\ 

Group C: CC+MG 

Criteria set’s name set c1 set c2 set c3 set c4 set c5 

Criteria for each set 
1.MCSCC 1.GMMCC 1. DQCC 1. LRCC 1.LRCC 

2.LRMG 2.LRMG 2.LRMG 2.LRMG 2.LRMG 

Criteria sets in Group A include three violation-property tests, namely UC, IND, and MG tests. 

To test Hypothesis 2, each criteria sets in Group B I include another violation-property 

component, CC test. Lastly, to compare between the two separate tests (UC and IND), with the 

joint test (CC), another five criteria sets are also constructed in Group C. For each set in Group 

A, B and C, there are five criteria sets, chosen for specified class of backtests. For instance, 

Monte Carlo (MCS)-based tests for set a1 and b1, GMM duration based-test for set a2 and b2, 

Dynamic quantile (DQ) based-test for set a3 and b3, Duration-based tests in set b4 and b4, and 

(simple) Likelihood Ratio based-tests in set a5 and b5. For each set, (individual) backtests are 

shown by their condensed name. For set a4 and b4, there is no Duration (DUR) method for UC 

test, thus the UC test of LRUC is used.  
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Table 2. Statistical Power of the Proposed Backtests Claimed by Authors 

Authors Claim Sub-Hypothesis 1  

Monte Carlo based-tests 

(Ziggel et al. 2014): 

MCSUC > GMMUC, LRUC 
3.1: “a1 ≻ a2, a4, a5” 

“b1≻ b2, b4, b5” 

and “c1≻ c2, c4, c5” 

MCSIND > GMMIND, DURIND, LRIND  

MCSCC > GMMCC, DURCC, LRCC 

GMM duration based-tests 

(Candelon et al. 2011): 

GMMIND > DURIND, LRIND 3.2: “a2 ≻ a4, a5” 

  “b2≻ b4, b5” and 

 “c2≻ c4, c5” GMMCC > DURCC, LRCC 

Duration based-tests 

(Christoffersen and 

Pelletier 2004): 

DURIND > LRIND 
3.3: “a4 ≻ a5”  

“b4 ≻ b5” and  

“c4 ≻ c5” DURCC > LRCC 

Dynamic quantile based-

tests (Engle and 

Manganelli 2004): 

DQIND > LRIND 3.4: “a3 ≻ a5”  

“b3 ≻ b5” and  

“c3 ≻ c5” DQCC > LRCC 

The sign “greater than” OR “ > ” means “higher statistical power” in detecting inaccurate model. 

For example “MCSCC > GMMCC, DURCC, LRCC” means that MCSCC test have greater chance 

to reject the inaccurate model (with respective to CC hypothesis) than GMMCC test, DURCC test, 

and LRCC test. The last column shown the corresponding sub-hypothesis of Hypothesis 1. The 

sign “preference” OR “≻” means outperform in ex post validation. Note that all papers above 

applied Dufour (2006)’s Monte Carlo method to indicate statistical power of their backtests. 
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3.2.2 Ex Post Validation 

 Ex post validation will be based on two discretions. The first discretion is out-

of-sample backtest using general backtest procedures to evaluate series of RaVaR. 

Performance of criteria sets will be based on acceptance frequency ratio (AFR) based 

on 5% significance level. The second ex post validation method is risk ratio analysis 

(Danielsson et al., 2014). Roughly speaking, given a set of risk model’s forecasts, risk 

ratio is calculated by the highest risk forecasts divided by the lowest risk forecasts. In 

the absence of model risk, the ratio should be very close to 1. Other numbers from 1 

represent the degree of dispersion (and hence degree of model risk) among the models. 

To judge, criteria sets  that provide less model risk on RaVaR series (lower risk ratio) 

are considered more robust. The steps are as follows: 

3.2.2.1 Forecast EVaRt: Using SET index daily return, for each model (including 

Normal, historical simulation, RiskMetrics, GARCH(1,1)-N and 

GARCH(1,1)-t), calculate daily 95% estimated VaR (EVaR) with rolling 

(estimation) window of 1,040 observations starting from the 28th March, 1994 

to the 30th December, 2014 and obtain 5,086 daily forecasts. 

3.2.2.2 Find 𝐪𝐭
∗: For each of the 15 criteria sets and each of the 5 models, find the 

optimal adjustment qt
∗, for any time t, with rolling backtest window (daily) 

until the last observation. The method for finding qt
∗ is the numerical search 

algorithm with step size of 0.1% multiplied by EVaRt.  

3.2.2.3 Compute RaVaRt: add qt
∗ to EVaRt to get “Model-Risk-Adjusted VaR” 

( RaVaRt) series from the 3rd April, 1995 to the 30th December, 2014 (4,836 
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observations). For 15 criteria sets and 5 data generating models, I therefore 

obtain 75 (15x5) RaVaRt series. 

3.2.2.4 RaVaR backtesting: For each RaVaRt series, backtest them for full-sample 

4,586 (i.e. 4,836 - 250) observations. This means that for each RaVaRt series, 

I backtest it “4,586” times with rolling backtest window (daily) until the last 

observation. Eight backtests are used in this process, namely5 

1. GMM Duration-based (UC) Test  (Candelon et al., 2011) 

2. GMM Duration-based (IND) Test  (Candelon et al., 2011) 

3. GMM Duration-based (CC) Test  (Candelon et al., 2011) 

4. MCS (UC) Test (Ziggel et al., 2014) 

5. MCS (IND) Test (Ziggel et al., 2014) 

6. MCS (CC) Test (Ziggel et al., 2014) 

7. Double-threshold Test (Colletaz et al., 2013) 

 

The performance of criteria sets will be based on “acceptance frequency 

ratio (𝐀𝐅𝐑𝐢)”. For each of 7 backtests above, acceptance frequency ratio 

(AFR) is computed by: 

            AFRi =
No. of acceptance

No. of  observations
  ,                        (44) 

where i = 1, 2, 3, …, 7, No. of observations is 4,586, and No. of acceptance is 

times that a particular backtest (at any time t) “accept” the model (infer that 

the model is acceptably accurate). Thus, I‘ll get 7 acceptance frequency ratios 

for each 𝑅𝑎𝑉𝑎𝑅𝑡 series. Then average it and get: 

                                                 
5

 The choice is based on the backtest methods that were recently proposed and shown to 

outperform many existing ones in realistic small sample size, i.e., 250 backtest period.  
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                         AFR̅̅ ̅̅ ̅̅ =  
1

7
∑AFRi

7

i=1

                                          (45) 

Which criteria sets provide RaVaR backtests that have higher AFR̅̅ ̅̅ ̅̅  are 

considered outperforming. In addition, two sub sample cases will be applied. 

The first sub-sample includes 500 days around the 1997’s crisis (27th June, 

1996 – 13th July, 1998), whereas the second sub-sample includes around the 

2008 crisis (11th September, 2007 – 25th September, 2009). 

3.2.2.5 Risk ratio analysis6 (Danielsson et al. 2014): For each criteria sets, given 5-

model-RaVaR forecasts, the estimated risk ratio is given by: 

              R̂ =
1

T
∑ (

LowerboundRaVaRt

UpperboundRaVaRt
)

T

t=1
              (46) 

Where LowerboundRaVaRt is the highest risk forecast (in absolute value), 

UpperboundRaVaRt is the lowest risk forecast (in absolute value), and T is 

4,836. In the absence of model risk the ratio should be close to 1. Criteria sets 

that provide less model risk (the ratio is closer to 1) are considered better. 

Finally, two sub-sample analyses of the 1997’s crisis and 2008’s crisis will 

also be applied. 

 

 

 

                                                 
6
 Note that risk ratio analysis entails employing all models (once for each criteria set) to see 

inconsistency among risk forecasts, whereas RaVaR backtesting employs once for individual model 

(and once for each criteria set). Thus, they are of different dimensions. 
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CHAPTER 4: Empirical Result 

 

 This chapter describes the results from model risk quantification and 

correction, which are divided into three sections. The first section is the implementation 

of the model risk correction framework quantified by each individual (backtest) 

criterion, i.e. require each EVaR to pass each baktest alone for adjusting risk. The 

second section describe the main results from each criteria set, i.e. require each EVaR 

to pass all backtest in criteria set. The last section will be ex post validation.  

 

4.1 Model risk Calibrated by Individual (Backtest) Criterion 

 Generally, the adjustment amount of model risk are of equal sign, meaning 

that at particular time t, if initial VaR models are strongly overestimating risk (more 

negative), qt
∗ are generally positive to make the risk forecasts acceptable with regards 

to particular criteria. Similarly, if our models are strongly underestimating risk (less 

negative), qt
∗ are generally negative. In few situations where our model are neither 

heavily overestimating nor underestimating, that is, the number of violations stays in 

acceptable range (around 8-17 times from the mean of 12.5 times (250 x 5% coverage 

rate), sign’s disagreement of model risk occurred in independence (IND) and (CC) tests 

due to the fact that violations clustering is quite complicated that criteria for IND and 

CC property are turned from reject to accept the null in different ways (e.g., one case 

can be done by adding positive qt
∗, and another case require negative qt

∗). However, it 

is of no concern because in main study I use criteria set to adjust EVaR for model risk, 

making all criteria in a particular set to accept null hypothesis, not individual criteria 
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alone, and even though it sill occurred, those sign’s disagreements are not a problem by 

themselves.  

 Consider first the results from adjusting each of the five EVaR series to pass 

each individual criteria alone. Table 3 show the mean of model risk adjustment (qt
∗), 

including positive adjustment and negative adjustment. The unit is presented in 

percentage of EVaR. When looking across the property-type test, including 

Unconditional Coverage (UC) Independence (IND), Conditional Coverage (CC) and 

Magnitude test (MG). UC tests for all methods/classes of backtest criteria (LR-based, 

GMM-based, DUR-based, and MCS-based) are required less amount level than IND 

and CC tests to pass the 5% significance level. This come from the fact that, normally 

the problem of unconditional coverage (too high/low violations) is much less severe 

than dependence in violation sequences (violation clusterings) as it means that our risk 

models is too naive to predict dynamics in financial risks. In fact, frequently unexpected 

losses may result in even more serious problem to financial institution, i.e. bankruptcy 

(See, e.g., Campbell, 2005; Christoffersen and Pelletier, 2004).  
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Table 3. Mean of Positive and Negative 𝒒𝒕
∗ Relative to 95% VaR using  

Individual Criterion 

Individual 

Criterion 

GARCH GARCH-t EWMA HS Normal 

q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) 

LRuc -1.15% 1.37% -0.30% 1.50% -0.47% 1.26% -1.89% 1.78% -1.49% 1.92% 

LRind -1.19% 1.78% -0.56% 1.41% -1.24% 1.63% -3.48% 2.39% -3.64% 2.59% 

LRcc -1.47% 1.48% -0.39% 1.44% -0.95% 1.19% -1.80% 1.92% -1.47% 2.02% 

LRmg -1.16% 1.47% -0.37% 1.27% -0.92% 0.98% -1.86% 1.40% -1.62% 1.60% 

GMMuc -1.14% 1.37% NA 1.50% -0.45% 1.26% -1.88% 1.84% -1.48% 1.98% 

GMMind -1.65% 0.89% NA 1.35% -1.37% 1.34% -1.95% 1.50% -2.26% 1.74% 

GMMcc -1.28% 1.35% NA 1.51% -0.85% 1.23% -1.77% 2.09% -1.64% 2.13% 

DURind -1.10% 1.13% NA 1.31% NA 0.60% -1.78% 1.20% -1.65% 1.63% 

DURcc -1.20% 1.34% NA 1.38% -0.45% 1.08% -1.90% 1.69% -1.55% 1.88% 

DQuc -1.12% 1.48% NA 1.60% -0.49% 0.91% -1.83% 1.54% -1.51% 1.56% 

DQind -1.52% 1.78% -2.11% 1.36% -1.77% 1.59% -2.87% 2.26% -2.83% 2.40% 

DQcc -1.68% 1.61% -0.82% 1.24% -1.41% 1.42% -2.59% 1.80% -2.47% 1.92% 

MCSuc -1.14% 1.08% -0.23% 1.33% -0.47% 1.07% -1.85% 1.66% -1.54% 1.82% 

MCSind -2.06% 0.98% -0.93% 1.21% -1.85% 1.61% -2.38% 1.42% -2.35% 1.55% 

MCScc -1.30% 1.46% -0.30% 1.29% -0.51% 0.61% -1.57% 1.34% -1.25% 1.38% 

Datasource: Bloomberg. SET index daily data from the 2nd Jan, 1990 to the 30th December, 2014. EVaR 

series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are calculated by 

rolling window of 1040 daily returns. qt
∗ are calculared using 250 backtest period from 3rd April 1995 

to the 30th December, 2014 (4,836 observations). The unit is present in percentage of EVaR. NA means 

non-existent value. For example, if q*(-) does not exist, it means that there is no negative adjustment for 

that criterion (row) when using particular model (column).  

 

 According to one research question that focus on whether amount of model 

risk depend on which methods (data generating models (DGM)) I used to compute VaR, 

it can be seen that amount of model risks quantified by all individual criteria are 

relatively high for static VaR methods (namely, HS, and Normal) and relatively low for 

dynamic VaR methods (namely EWMA, GARCH-N, and GARCH-t. The result does 

support for both negative and positive qt
∗’s mean. In almost all cases, HS and Normal 

are the models that provide the largest and the second largest average of model risks, 
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respectively. Compare within dynamic VaR method, GARCH-t gave have higher 

model risk than GARCH-N and EWMA. The higher positive means for GARCH-t in 

some cases may indicate that sometimes this model is quite overestimating risk.  

 

4.2 Model risk Calibrated by Criteria Sets 

 I now discuss the main results of quantile model risk correction using 

(backtest) criteria sets. Table 4 shows the average of positive and negative model risks 

relative 95% to EVaRt. Not only the results from individual criterion shown in Table 3 

that amount of model risks are be model-dependent, the same applied here. In case of 

negative qt
∗’s mean, HS and Normal still provide the largest and the second largest 

amount of model risks, respectively, in all cases except some cases, where GARCH-t 

become the first rank. Mean of positive qt
∗’s is also in line with the model-dependence. 

The support of hypothesis 1 also verifies, to some degree, robustness of this model risk 

correction framework as the estimated magnitude of VaR-model risk are harmonious 

with its definition. In addition, although between criteria sets the average amount of 

model risk does not vary much, but when it does, outcome could be different. 

 Next, maximum of negative and positive model risk adjustment are shown in 

Table 5. Most of the negative adjustments were happened in stressed period, such as in 

the 1997’s and the 2008’s crises, and other volatile markets. The most negative and 

maximum adjustment happened in criteria set b3, -5.40% (EWMA), and 4.60% 

(Normal), respectively. In fact, the maximum adjustment for a3 and b3 is the same. 

This means that adding CC test (or in particular, DQCC) to criteria set a3 does not matter 
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in extreme model risk. The lowest maximum negative (positive) adjustment is -2.10% 

in EWMA (1.60% in GARCH-t) for criteria set a1. 

   

Table 4. Mean of Positive and Negative 𝒒𝒕
∗ Relative to 95% VaR using  

Criteria Set 

Criteria 

Sets 

GARCH GARCH-t EWMA HS Normal 

q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) 

a1 -1.34% 1.08% -0.93% 1.28% -1.34% 1.29% -2.03% 1.85% -1.84% 1.94% 

a2 -1.44% 1.29% -0.82% 1.49% -1.23% 1.30% -2.13% 2.09% -1.82% 2.17% 

a3 -1.45% 1.57% -1.83% 1.53% -1.52% 1.43% -2.25% 2.01% -1.91% 1.91% 

a4 -1.19% 1.37% -0.38% 1.50% -0.89% 1.24% -1.90% 1.84% -1.64% 1.99% 

a5 -1.40% 1.53% -0.56% 1.51% -1.14% 1.52% -2.18% 2.17% -1.83% 2.21% 

b1 -1.33% 1.09% -0.93% 1.29% -1.34% 1.29% -2.03% 1.86% -1.83% 1.96% 

b2 -1.41% 1.34% -0.82% 1.52% -1.21% 1.36% -2.13% 2.22% -1.82% 2.25% 

b3 -1.55% 1.69% -1.61% 1.46% -1.64% 1.54% -2.22% 2.06% -1.99% 1.95% 

b4 -1.19% 1.38% -0.35% 1.50% -0.89% 1.22% -1.90% 1.84% -1.64% 1.99% 

b5 -1.43% 1.53% -0.55% 1.51% -1.12% 1.52% -2.17% 2.17% -1.82% 2.22% 

c1 -1.18% 1.48% -0.34% 1.30% -0.92% 0.98% -1.86% 1.45% -1.59% 1.65% 

c2 -1.29% 1.35% -0.47% 1.51% -0.96% 1.32% -1.67% 2.20% -1.51% 2.23% 

c3 -1.43% 1.57% -0.78% 1.31% -1.44% 1.35% -1.95% 1.87% -1.88% 1.99% 

c4 -1.16% 1.41% -0.38% 1.45% -0.92% 1.12% -1.86% 1.73% -1.60% 1.95% 

c5 -1.47% 1.48% -0.40% 1.44% -0.95% 1.17% -1.64% 1.96% -1.48% 2.08% 

Datasource: Bloomberg. SET index daily data from the 2nd Jan, 1990 to the 30th December, 2014. EVaR 

series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are calculated by 

rolling window of 1040 daily returns. qt
∗ are calculated using 250 backtest period from 3rd April 1995 

to the 30th December, 2014 (4,836 observations). The unit is present in percentage of EVaR 
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Table 5. Maximum of Positive and Negative 𝒒𝒕
∗ Relative to 95% VaR using 

Criteria Set 

Criteria 

Set 

GARCH GARCH-t EWMA HS Normal 

q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) 

a1 -2.30% 3.60% -3.10% 1.60% -2.10% 3.60% -3.50% 4.40% -3.60% 3.30% 

a2 -3.52% 5.15% -3.00% 1.80% -2.10% 3.60% -3.50% 4.20% -3.60% 3.30% 

a3 -3.40% 4.20% -3.20% 3.40% -5.40% 4.40% -3.30% 4.40% -3.50% 4.60% 

a4 -2.40% 2.20% -3.00% 0.60% -2.10% 2.50% -3.40% 3.90% -3.60% 3.00% 

a5 -3.20% 2.90% -3.00% 1.10% -2.90% 3.50% -3.30% 4.10% -3.50% 3.30% 

b1 -2.40% 3.60% -3.10% 1.60% -2.00% 3.60% -3.50% 4.40% -3.60% 3.30% 

b2 -2.40% 3.30% -3.00% 1.80% -2.70% 3.60% -3.50% 4.20% -3.60% 3.30% 

b3 -3.40% 4.40% -3.20% 3.40% -5.40% 4.40% -3.30% 4.40% -3.50% 4.60% 

b4 -2.40% 2.20% -3.00% 0.50% -2.10% 2.50% -3.40% 3.90% -3.60% 3.00% 

b5 -3.20% 2.90% -3.00% 1.10% -2.90% 3.50% -3.30% 4.10% -3.50% 3.30% 

c1 -2.20% 2.20% -0.60% 2.90% -1.60% 2.00% -3.20% 3.22% -2.60% 3.20% 

c2 -3.48% 2.30% -1.40% 3.00% -2.61% 2.20% -3.20% 3.22% -2.60% 3.33% 

c3 -2.80% 3.18% -2.20% 3.00% -4.62% 2.34% -4.00% 3.36% -3.20% 3.35% 

c4 -2.20% 2.30% -0.60% 3.00% -1.60% 2.00% -3.20% 3.30% -2.60% 3.30% 

c5 -2.80% 3.00% -0.60% 3.00% -2.20% 2.10% -2.80% 3.00% -2.30% 3.20% 

Datasource: Bloomberg. SET index daily data from the 2nd Jan, 1990 to the 30th December, 2014. EVaR 

series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are calculated by 

rolling window of 1040 daily returns. qt
∗ from 3rd April 1995 to the 30th December, 2014 (4,836 

observations) are calculated using rolling window (250 backtest period). The unit is present in 

percentage of EVaR 

  

 To illustrate more about qt
∗ series, Figure 6-10 show time-varying model risk 

adjustment through the timeline of the 3rd April, 1995 to the 30th December, 2014 

calibrated by criteria sets a1-a5, respectively
7
. The left panel of each figure represent  

qt
∗ series from two dynamic GARCH models, while the right panel represent qt

∗ series 

                                                 
7

  For criteria set in Group B (b1, b2, b3, b4, b5) the results are similar to Group A (a1, a2, a3, a4, 

a5), respectively. For criteria set in Group C (c1, c2, c3, c4, c5), q* are relatively low compared 

with others. See Appendix B. 
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from others. As expected GARCH and GARCH-t have less frequency of adjustments 

than other models, in other words, they have higher non-adjustment (zero qt
∗). This zero 

adjustment means no backtest criteria reject the models at particular day and thus, their 

risk estimates are effective than others. Nevertheless, two GARCH models still can’t 

capture dynamics of SET index expressed by series of adjustment. When it comes to 

model risk adjustment (i.e., if one of criteria reject the model), the magnitude of 

adjustment (qt
∗) in GARCH-N and GARCH-t are lower than other models.   

 

 

Figure 6. 𝒒𝒕
∗ for Criteria Set a1 Relative to 95% EVaR 

 

 

 

Figure 7. 𝒒𝒕
∗ for Criteria Set a2 Relative to 95% EVaR 
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Figure 8. 𝒒𝒕
∗ for Criteria Set a3 Relative to 95% EVaR 

 

 

Figure 9. 𝒒𝒕
∗ for Criteria Set a4 Relative to 95% EVaR 

 

 

Figure 10. 𝒒𝒕
∗ for Criteria Set a5 Relative to 95% EVaR 

 

   

 

 However, in stressed periods, for example, around the Asian financial crisis 

(July 1997) and the Subprime crisis (August 2008), model risk correction still lags 

behind the events. For example, Figure 11 show the result model risk outcome when 

using criteria set a1 compared with SET index. Specifically, when SET index 

drastically fell and VaR should be much more negative, the quantile correction 
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framework did not adjust VaR immediately since it required some times to recognize 

model risks via outcome of backtesting.  

 

Figure 11. 𝒒𝒕
∗ for Criteria Set a1 Relative to 95% EVaR with SET index 

 

Series of SET index, and 𝑞𝑡
∗  generated from five data generating models include: the 3rd 

April, 1995 to the 30th December, 2014. The first vertical axis represent amount of model 

risk in percentage of EVaR, while the secon vertical axis represent point of SET index.  
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4.3 Ex Post Validation 

4.3.1 Out-of-Sample Backtest 

 There are two sections for out-of-sample backtest. First, the results generated 

by 250 days of backtest period will be discussed. However, when using overlapping 

backtest period the problem could occur on comparing Acceptance Frequency Ratio 

(AFR̅̅ ̅̅ ̅̅ ) between criteria sets. Hence, results when using non-overlapping period of 

backtest are also performed. But in order to keep amount of sample for doing the t-test, 

backtest periods’s size is reduced to 100 days.   

 

4.3.1.1 Overlapping 250-day Backtest Period  

 Figure 12 shows the acceptance frequency ratio (AFR̅̅ ̅̅ ̅̅ ) for all RaVaR series 

generated from all 15 criteria sets as well as for the original VaR series (EVaR). The 

criteria sets include criteria set a1-a5, b1-b5, and c1-c5. Recall that for the out-of-

sample backtest, higher AFR̅̅ ̅̅ ̅̅   is better. Interestingly, in many cases of criteria sets 

applied, adjusting EVaR to lessen model risk effects make RaVaR series more reliable 

by the increased number of acceptance AFR̅̅ ̅̅ ̅̅  with statistical significance at 5% level, 

especially in HS. For the risk ratio analysis, all RaVaR series outperform EVaR with 

statistical significance at 5% level. Also, how large the AFR can be improved depends 

on methods to calculate VaR. To be more specific, HS and Normal is the first and 

second rank for having the highest difference between maximum AFR (from RaVaR) 

and minimum AFR (from EVaR), respectively. However, between each model the ratio 

does not vary much. 
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Figure 12. Acceptance Frequency Ratio for all criteria sets and EVaR 

(Overlapping) 

 

“The arrow” means AFR̅̅ ̅̅ ̅̅  of RaVaR that outperform (higher than) EVaR’s  

              at 5% significance level 

 

 For hypothesis 1, “Criteria sets that contain higher statistical-power backtests 

will outperform in ex post validation”, Table 6 shows that sub-hypothesis is true mostly 

in static VaR methods and EWMA, especially for HS which hold for all sub-hypothesis, 

and EWMA. However, most of them are not statistically significance, except in HS 

VaR method. Again, this also support the idea that data generating models have effects 

on this quantile correction framework. Turning to analyse hypothesis 2. "Adding CC 

test in a criteria set will improve performance in ex post validation". Table 7 shows 

that although there are many cases that the sub-hypothesis hold, there are not 

statistically significant. Hence, this hypothesis is inconclusive.  
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Table 6. Ex Post Validation Results for Hypothesis 1 (Overlapping) 

 
 

Table 7. Ex Post Validation Results for Hypothesis 2 (Overlapping) 

 
 

 “ /  ” means the sub-hypothesis is true 

 “ > ” means outperform  

 “ * ” means significance at 10% level 

 “ *** ” means significance at 1% level 
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4.3.1.2 Non-Overlapping 100-day Backtest Period  

Figure 13. Acceptance Frequency Ratio for all criteria sets and EVaR  

(Non-overlapping) 

 

“The arrow” means AFR̅̅ ̅̅ ̅̅  of RaVaR that outperform (higher than) EVaR’s  

              at 10% significance level 

 

 Figure 13 shows the acceptance frequency ratio (AFR̅̅ ̅̅ ̅̅ ) for all RaVaR series 

generated from all 15 criteria sets as well as for the original VaR series (EVaR) when 

using 100 days of non-overlapping backtest period. Obviously, RaVaR series are more 

robust than EVaR series when using static volatility models, HS and Normal 

distribution with significance at 10% level. But for other DGMs, almost all cases 

appeared no significant improvement.  
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Table 8. Ex Post Validation Results for Hypothesis 1 (Non-overlapping) 

 

 

Table 9. Ex Post Validation Results for Hypothesis 2 (Non-overlapping) 

 

 “ /  ” means the sub-hypothesis is true 

 “ > ” means outperform  

 “ * ” means significance at 10% level 
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 About hypothesis 1 and 2, Table 8 and Table 9 show Ex Post Validation 

Results when using non-overlapping backtest period for hypothesis 1 and 2, 

respectively. The results for Hypothesis 1 are similar to those when using overlapping 

backtest period in that, almost no sub-hypothesis is true for dynamic DGMs. But for 

static DGMs, the sub-hypothesis hold but only for Normal VaR method that 

significance level appeared. For, hypothesis 2, the results is also conclusive as in the 

overlapping period case. 

 

Figure 14. Risk Ratio of all criteria sets (RaVaR) and EVaR 

 

Risk Ratio of all RaVaR series are lower than the ratio of EVaR with 5% significance level 

 

4.3.2 Risk Ratio Analysis 

 Figure 14 shows risk ratio for all RaVaR series generated by 15 criteria sets 

and for original VaR series (EVaR). As can be seen that risk ratio generated from all 

criteria sets outperform EVaR by giving the lower risk ratio, which the lowest one 

belongs to set b2. This means that all RaVaR series have lower inconsistency between 
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risk models. However, hypothesis 1 and 2 does not hold with significance level for risk 

ratio analysis 

 Overall, results out-of-sample backtest for both overlapping and non-

overlapping cases shows that level of statistical power of backtest matter when use 

static volatility models. For two GARCH models and EWMA, criteria sets seems to be 

ignorable. Between criteria sets in Group A, B, and C, ex post validation results no 

obvious difference. Comparing the performance of criteria sets in Group C (include 

only joint test, CC) and criteria sets in Group A (include only two separate tests, UC 

nad IND), although criteria sets in Group C provide slightly higher risk ratio, results 

from AFR are very similar. 
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CHAPTER 5: Conclusion 

 

 I extend Boucher et al. (2014)’s model risk correction framework by focusing 

on statistical power to reject inappropriate risk models. I apply other backtest methods 

in literature to be criteria for model risk adjustment. Regarding the robustness, I use 

Dufour (2006)’s Monte Carlo testing technique to obtain reliable inference from 

backtests in realistic sample size. Apart from extension of criteria sets, another 

contribution of my study is to provide two ex-post validation methods to evaluate series 

of model-risk-adjusted forecasts (RaVaR). The first validation method is out-of-sample 

backtest. In risk management, it is vital to backtest EVaR to decide whether the EVaR 

number and the models used to calculate EVaR is sound or not. Similarly, it is also of 

great importance to gauge the soundness of RaVaR before using it, as their usefulness 

are the same, e.g., for indicating risk of a given portfolio and making management 

decision. Another validation technique is risk ratio analysis which is an alternative 

measurement of model risk by examining inconsistency between range of risk models. 

 According to the result, five standard risk models, especially sophisticated 

ones (GARCH-N and GARCH-t) still cannot capture the structure of SET index as 

backtest criteria reject the models many times especially in volatile periods. Therefore, 

amount of correction is required. In some ways, the quantile correction framework does 

make sense in that estimated magnitude of model risk is harmonious with 

misspecification risk. But as an enhancement in out-of-sample backtest and risk ratio is 

quite small, model risk still exists. Nevertheless, static VaR methods especially for HS, 
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are highly recommended to apply the model risk correction approach as room for 

improvement is strongly high. Also, even though choosing criteria sets does not matter 

for dynamic models, higher-statistical backtests do make interesting results when static 

methods are used for both overlapping and non-overlapping backtest periods.  

 Indeed, statistical power of backtests to reject inappropriate models claimed 

by authors were done in simulation experiment, where series of dynamic returns (e.g., 

GARCH(1,1)-t) were simulated and simple VaR models (e.g., HS and Normal) were 

used to investigate. In the same analogy, this study use series of market index returns 

which its distribution is unknown but have been suggested to have some complicated 

forms. That is the reason why level of statistical power does matter when using static 

models.
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APPENDIX A: TABLES 

 

      Table A1. Maximum of Positive and Negative 𝐪𝐭
∗ Relative to 95% VaR using Individual Criterion 

Individual 

Criterion 

GARCH GARCH.t EWMA HS Normal 

q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) 

LRuc -2.20% 2.40% -0.30% 3.00% -1.00% 2.10% -2.90% 2.60% -2.30% 2.90% 

LRind -2.70% 3.10% -1.10% 3.00% -4.20% 2.90% -7.20% 3.30% -6.30% 3.60% 

LRcc -2.80% 3.00% -0.50% 3.00% -2.20% 2.10% -2.80% 3.00% -2.30% 3.20% 

LRmuc -2.20% 2.20% -0.60% 2.90% -1.60% 2.00% -2.80% 2.40% -2.30% 2.80% 

GMMuc -2.40% 2.40% 0.00% 3.00% -1.00% 2.10% -2.90% 2.70% -2.40% 3.00% 

GMMind -6.10% 2.70% -1.80% 2.30% -4.70% 2.10% -6.60% 3.20% -6.20% 3.10% 

GMMcc -2.70% 2.30% -1.40% 3.00% -2.40% 2.20% -3.20% 3.20% -2.60% 3.30% 

DURind -2.00% 2.00% 0.00% 2.10% 0.00% 0.60% -2.70% 3.00% -6.20% 2.90% 

DURcc -1.80% 2.30% 0.00% 3.00% -0.80% 2.00% -3.60% 3.30% -3.10% 3.30% 

DQuc -2.40% 2.40% 0.00% 2.90% -1.00% 1.70% -2.80% 2.50% -2.20% 2.80% 

DQind -4.40% 3.60% -3.90% 2.70% -5.50% 3.30% -7.10% 3.30% -6.40% 3.40% 

DQcc -5.70% 3.00% -2.30% 3.00% -4.50% 2.40% -7.20% 3.10% -6.40% 3.30% 

MCSuc -2.40% 2.40% -0.30% 3.00% -1.10% 2.10% -2.90% 2.70% -2.40% 3.00% 

MCSind -6.80% 2.20% -1.60% 3.10% -4.90% 2.00% -6.90% 3.10% -6.30% 2.80% 

MCScc -2.00% 2.00% -0.30% 2.60% -0.80% 0.70% -3.20% 3.20% -2.70% 2.50% 

Datasource: Bloomberg. SET index daily data from the 2nd Jan, 1990 to the 30th December, 2014. EVaR 

series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are calculated by 

rolling window of 1040 daily returns. qt
∗ are calculared using 250 backtest period from 3rd April 1995 

to the 30th December, 2014 (4,836 observations).  The unit is present in percentage of EVaR.NA means 

non-existent value. For example, if q*(-) does not exist, it means no negative adjustment for that 

criterion (row) when using particular model (column)  
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Table A2. Mean of Positive and Negative 𝐪𝐭
∗ Relative to 95% VaR using Criteria Set (sub-sample 

1: 1997’s crisis)  

Criteria 

Set 

GARCH-N GARCH-t EWMA HS Normal 

q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) 

a1 1.80% NA 0.50% 0.74% 0.20% NA NA 2.11% NA 1.85% 

a2 1.96% NA 0.57% 0.87% 0.20% NA NA 1.78% NA 2.29% 

a3 NA NA 0.81% 0.82% NA 1.38% NA 1.33% NA 1.39% 

a4 -0.79% NA NA 1.00% -0.45% NA -1.98% 1.36% -1.77% 1.78% 

a5 -0.90% NA -0.41% 0.97% -0.49% 1.40% -1.87% 1.39% -1.67% 1.88% 

b1 -1.03% NA NA 0.73% -0.67% NA -2.27% 2.10% -1.91% 1.90% 

b2 -0.77% NA NA 0.87% -0.42% NA -1.83% 1.93% -1.64% 2.41% 

b3 -1.16% NA NA 0.82% -0.75% 1.60% -1.87% 1.25% -1.68% 1.95% 

b4 -0.79% NA NA 1.07% -0.45% NA -1.97% 1.36% -1.76% 1.78% 

b5 -0.88% NA -0.41% 0.97% -0.49% 1.40% -1.88% 1.39% -1.67% 1.88% 

c1 -0.65% NA NA 0.62% -0.36% NA -1.86% 0.90% -1.60% 1.32% 

c2 -0.69% NA NA 0.80% -0.38% NA -1.78% 1.71% -1.60% 2.32% 

c3 -1.13% NA NA 0.62% -0.63% 0.75% -2.08% 1.02% -1.83% 1.90% 

c4 -0.65% NA NA 1.05% -0.35% NA -1.86% 1.04% -1.60% 1.87% 

c5 -1.13% NA NA 0.81% -0.64% 1.00% -1.92% 1.17% -1.69% 1.67% 

EVaR series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are calculated 

by rolling window of 1040 daily returns. RaVaR series from 3rd April 1995 to the 30th December, 2014 

(4,836 observations). The number of out-of-sample backtest is 500 times (from the 27th June, 1996 to 

the 13th July, 1998) for EVaR and RaVaR to observe Acceptance Frequency Ratio (AFR̅̅ ̅̅ ̅̅ ). The 

underlined numbers are the most outperforming criteria sets. The unit is present in percentage of EVaR. 

NA means non-existent value. For example, if q*(-) does not exist, it means that there is no negative 

adjustment for that criteria set (row) when using particular model (column). 
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Table A3. Mean of Positive and Negative 𝐪𝐭
∗ Relative to 95% VaR using Criteria Set (sub-sample 2: 

2008’s crisis)  

Criteria 

Set 

GARCH-N GARCH-t EWMA HS Normal 

q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) q*(-) q*(+) 

a1 -1.97% 1.80% -0.93% 0.50% -1.81% 0.20% -2.77% NA -2.33% NA 

a2 -1.87% 1.96% -0.85% 0.57% -1.93% 0.20% -3.07% NA -2.44% NA 

a3 -1.83% NA -1.82% 0.81% -1.99% NA -3.34% NA -2.64% NA 

a4 -1.67% 0.90% -0.38% 0.58% -1.24% 0.20% -2.71% NA -2.34% NA 

a5 -1.91% NA -0.56% 0.58% -1.72% NA -3.68% NA -2.93% 0.31% 

b1 -1.97% 1.80% -0.93% 0.52% -1.81% 0.20% -2.75% NA -2.33% NA 

b2 -1.84% 2.00% -0.84% 0.57% -1.90% 0.20% -3.14% 1.40% -2.50% 1.83% 

b3 -1.89% NA -1.70% 0.82% -1.99% NA -3.34% NA -2.64% NA 

b4 -1.67% 0.90% -0.35% 0.58% -1.24% 0.20% -2.71% NA -2.34% NA 

b5 -1.97% NA -0.55% 0.58% -1.71% NA -3.63% NA -2.82% 0.32% 

c1 -1.67% NA -0.34% NA -1.12% 0.20% -2.51% NA -2.15% NA 

c2 -1.72% 1.53% -0.47% 0.57% -1.35% 0.20% -2.21% 2.22% -2.11% 2.55% 

c3 -1.67% NA -0.72% 0.65% -1.47% 1.30% -2.87% NA -2.34% NA 

c4 -1.66% NA -0.38% 0.59% -1.12% 0.20% -2.64% NA -2.14% NA 

c5 -1.95% NA -0.40% 0.59% -1.62% 0.80% -1.39% NA -1.98% NA 

EVaR series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are calculated 

by rolling window of 1040 daily returns. RaVaR series from 3rd April 1995 to the 30th December, 2014 

(4,836 observations). The number of out-of-sample backtest is 500 times (from the 11th September, 

2007 to 25th September, 2009) for EVaR and RaVaR to observe Acceptance Frequency Ratio (AFR̅̅ ̅̅ ̅̅ ). 

The unit is present in percentage of EVaR. The unit is present in percentage of EVaR. NA means non-

existent value. For example, if q*(-) does not exist, it means that there is no negative adjustment for that 

criteria set (row) when using particular model (column). 
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Table A4. Ex post validation of RaVaR/EVaR series for 95% VaR on SET index (full sample) 

EVaR / RaVaR (criteria set) 
Acceptance Frequency Ratio (𝐀𝐅𝐑̅̅ ̅̅ ̅̅ )  

Risk Ratio  
GARCH GARCH-t EWMA HS** Normal 

EVaR  0.7738 0.7402 0.8697 0.5352 0.5552 1.6311 

a1 (MCS-based set) 0.7727 0.7462 0.8733 0.5549 0.5570 1.6119 

a2 (GMM-based set) 0.7743 0.7508 0.8737 0.5548 0.5559 1.6105 

a3 (DQ-based set) 0.7629 0.7465 0.8667 0.5487 0.5541 1.6133 

a4 (DUR-based set) 0.7727 0.7455 0.8702 0.5488 0.5539 1.6136 

a5 (LR-based set) 0.7745 0.7511 0.8687 0.5483 0.5540 1.6118 

b1 (MCS-based set) 0.7736 0.7465 0.8739 0.5545 0.5572 1.6119 

b2 (GMM-based set) 0.7745 0.7503 0.8734 0.5541 0.5565 1.6089 

b3 (DQ-based set) 0.7676 0.7511 0.8673 0.5491 0.5544 1.6134 

b4 (DUR-based set) 0.7730 0.7446 0.8695 0.5484 0.5542 1.6136 

b5 (LR-based set) 0.7755 0.7508 0.8686 0.5489 0.5542 1.6118 

c1 (MCS-based set) 0.7738 0.7410 0.8697 0.5464 0.5521 1.6195 

c2 (GMM-based set) 0.7727 0.7505 0.8703 0.5495 0.5516 1.6137 

c3 (DQ-based set) 0.7749 0.7510 0.8673 0.5473 0.5580 1.6167 

c4 (DUR-based set) 0.7743 0.7405 0.8699 0.5481 0.5521 1.6156 

c5 (LR-based set) 0.7744 0.7505 0.8697 0.5489 0.5578 1.6147 

Datasource: Bloomberg. EVaR series from the 28th March, 1994 to the 30th December, 2014 (5086 

daily returns) are calculated by rolling window of 1040 daily returns. RaVaR series from 3rd April 1995 

to the 30th December, 2014 (4,836 observations). The underlined numbers are ratio of RaVaR that are 

outperform EVaR (Higher AFR̅̅ ̅̅ ̅̅   / lower Risk ratio) with 5% significance level.  
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Table A5. Ex post validation of RaVaR/EVaR series for 95% VaR on SET index (sub-sample 

1: the 1997’s crisis)  

EVaR/ RaVaR (Criteria sets) 

Acceptance Frequency Ratio (𝐀𝐅𝐑̅̅ ̅̅ ̅̅ ) 

Risk Ratio 

GARCH GARCH-t EWMA HS Normal 

EVaR (original VaR) 0.6517 0.8449 0.8654 0.2954 0.3883 1.6956 

a1 (MCS-based set) 0.6583 0.8449 0.8651 0.3140 0.4157 1.6659 

a2 (GMM-based set) 1.5827 1.5745 1.5748 1.5802 1.5767 1.6677 

a3 (DQ-based set) 0.6580 0.8463 0.8657 0.3137 0.4154 1.6639 

a4 (DUR-based set) 0.6597 0.8449 0.8663 0.3134 0.4151 1.6694 

a5 (LR-based set) 0.6560 0.8466 0.8660 0.3137 0.4146 1.6690 

b1 (MCS-based set) 0.6606 0.8466 0.8654 0.3134 0.4146 1.6660 

b2 (GMM-based set) 0.6583 0.8426 0.8649 0.3134 0.4160 1.6676 

b3 (DQ-based set) 0.6586 0.8457 0.8654 0.3140 0.4166 1.6639 

b4 (DUR-based set) 0.6614 0.8437 0.8649 0.3134 0.4151 1.6692 

b5 (LR-based set) 0.6583 0.8449 0.8651 0.3140 0.4157 1.6688 

c1 (MCS-based set) 0.6577 0.8483 0.8660 0.3131 0.4166 1.6723 

c2 (GMM-based set) 0.6566 0.8431 0.8657 0.3134 0.3989 1.6730 

c3 (DQ-based set) 0.6574 0.8471 0.8657 0.3137 0.4149 1.6666 

c4 (DUR-based set) 0.6580 0.8429 0.8657 0.3137 0.4151 1.6726 

c5 (LR-based set) 0.6589 0.8429 0.8657 0.3134 0.4166 1.6706 

EVaR series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are 

calculated by rolling window of 1040 daily returns. RaVaR series from 3rd April 1995 to the 30th 

December, 2014 (4,836 observations). The number of out-of-sample backtest is 500 times from 

the 27th June, 1996 to the 13th July, 1998 for EVaR and RaVaR to observe Acceptance Frequency 

Ratio (AFR̅̅ ̅̅ ̅̅ ). The unit is present in percentage of EVaR 
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Table A6. Ex post validation of RaVaR/EVaR series for 95% VaR on SET index (sub-sample 

2: 2008’s crisis  

EVaR/ RaVaR (Criteria Set) 

Acceptance Frequency Ratio (𝐀𝐅𝐑̅̅ ̅̅ ̅̅ ) 

Risk Ratio 

GARCH GARCH-t EWMA HS Normal 

EVaR (original VaR) 0.6057 0.7903 0.8323 0.5091 0.5497 1.5952 

a1 (MCS-based set) 0.6009 0.7923 0.8317 0.5226 0.4977 1.5827 

a2 (GMM-based set) 0.6051 0.8071 0.8311 0.5231 0.4971 1.5745 

a3 (DQ-based set) 0.6051 0.7929 0.8017 0.5226 0.4969 1.5748 

a4 (DUR-based set) 0.6006 0.8063 0.8337 0.5229 0.4977 1.5802 

a5 (LR-based set) 0.6054 0.8057 0.8329 0.5226 0.4969 1.5767 

b1 (MCS-based set) 0.6014 0.7937 0.8320 0.5234 0.4969 1.5821 

b2 (GMM-based set) 0.6054 0.8063 0.8317 0.5226 0.4974 1.5710 

b3 (DQ-based set) 0.6051 0.8060 0.8020 0.5237 0.4980 1.5748 

b4 (DUR-based set) 0.6011 0.8060 0.8320 0.5229 0.4971 1.5801 

b5 (LR-based set) 0.6051 0.8049 0.8320 0.5229 0.4977 1.5762 

c1 (MCS-based set) 0.6057 0.7940 0.8346 0.5234 0.4974 1.5805 

c2 (GMM-based set) 0.6006 0.8043 0.8331 0.5231 0.4920 1.5844 

c3 (DQ-based set) 0.6051 0.8034 0.8029 0.5097 0.5497 1.5912 

c4 (DUR-based set) 0.6051 0.7923 0.8309 0.5229 0.4974 1.5823 

c5 (LR-based set) 0.6057 0.8037 0.8320 0.5234 0.5500 1.5890 

EVaR series from the 28th March, 1994 to the 30th December, 2014 (5086 daily returns) are 

calculated by rolling window of 1040 daily returns. RaVaR series from 3rd April 1995 to the 30th 

December, 2014 (4,836 observations). The number of out-of-sample backtest is 500 times (from 

the 11th September, 2007 to 25th September, 2009) for EVaR and RaVaR to observe Acceptance 

Frequency Ratio (AFR̅̅ ̅̅ ̅̅ ).  
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APPENDIX B: FIGURES  

 

Figure B1. 𝒒𝒕
∗ for Criteria Set b1 Relative to 95% EVaR 

 

 

 

Figure B2. 𝒒𝒕
∗ for Criteria Set b2 Relative to 95% EVaR 

 

 

 

Figure B3. 𝒒𝒕
∗ for Criteria Set b3 Relative to 95% EVaR 
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Figure B4. 𝒒𝒕
∗ for Criteria Set b4 Relative to 95% EVaR 

 

 

 

Figure B5. 𝒒𝒕
∗ for Criteria Set b5 Relative to 95% EVaR 

 

 

 

 

Figure B6. 𝒒𝒕
∗ for Criteria Set c1 Relative to 95% EVaR 
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Figure B7. 𝒒𝒕
∗ for Criteria Set c2 Relative to 95% EVaR 

 

 

 

Figure B8. 𝒒𝒕
∗ for Criteria Set c3 Relative to 95% EVaR 

 

 

  

Figure B9. 𝒒𝒕
∗ for Criteria Set c4 Relative to 95% EVaR 
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Figure B10. 𝒒𝒕
∗ for Criteria Set c5 Relative to 95% EVaR 
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