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For a set X, let P(X), T(X) and I(X) denote respectively the partial transformation 
semigroup on X, the full transformation semigroup on X and the one-to-one partial 
transformation semigroup on X. Also, let AP(X) = { α ∈ P(X) | α is almost identical } 
and define AT(X) and AI(X) similarly. Then AP(X), AT(X) and AI(X) are subsemigrou-
ps of P(X), T(X) and I(X), respectively. We generalize a transformation semigroup on  
X ( a subsemigroup of P(X) ) to be a semigroup ( S(X), θ ) where  S(X) is a transforma-
tion semigroup on X, θ ∈ S1(X) and ( S(X), θ ) = ( S(X), ∗ )  where α ∗ β = αθβ  for all 
α, β ∈ S(X). 

For a poset X, let PRE(X) = { α ∈ P(X) | α  is regressive }, and TRE(X), IRE(X), 
APRE(X), ATRE(X) and AIRE(X) are defined similarly. Then PRE(X), TRE(X), IRE(X), 
APRE(X), ATRE(X) and AIRE(X) are respectively subsemigroups of P(X), T(X), I(X), 
AP(X), AT(X) and AI(X). The following facts are known. If S(X) is PRE(X), IRE(X),  
APRE(X) or AIRE(X), then S(X) is regular if and only if X is isolated. If S(X) is TRE(X) or 
ATRE(X), then S(X) is regular if and only if  |C| ≤ 2 for every chain C of X. If S(X) is 
PRE(X), TRE(X) or IRE(X), S(X) is eventually regular if and only if there is a positive 
integer n such that |C| ≤ n for every chain C of  X. Moreover, every regressive almost 
identical transformation semigroup on X ( every subsemigroup of APRE(X) ) is eventu-
ally regular.    
 The purpose of this research is to generalize all the above known results by con-
sidering those on the semigroup ( S(X), θ ) with θ ∈ S1(X) where S(X) is a regressive 
transformation semigroup on X of our purpose.  

 In addition, some isomorphism theorems on regressive generalized transformat-
ion semigroups are provided.  
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CHAPTER I

INTRODUCTION AND PRELIMINARY

For a set X, let |X| denote the cardinality of X. The set of positive integers, the

set of integers and the set of real numbers are denoted by N, Z and R, respectively.

An element a of a semigroup S is called an idempotent of S if a2 = a. For a

semigroup S, let E(S) be the set of all idempotents of S, that is,

E(S) = { a ∈ S | a2 = a }.

If a ∈ S and k ∈ N are such that ak = ak+1, it is clearly seen that ak = a2k which

implies that ak ∈ E(S). Hence

{ ak | a ∈ S, k ∈ N and ak = ak+1 } ⊆ E(S).

An element a of a semigroup S is said to be regular if a = aba for some b ∈ S,

and S is called a regular semigroup if every element of S is a regular element of

S. The set of all regular elements of a semigroup S will be denoted by RegS, that

is,

RegS = { a ∈ S | a = aba for some b ∈ S }.

Consequently, E(S) ⊆ RegS. By an eventually regular element of a semigroup S

we mean an element a of S such that ak ∈ RegS for some k ∈ N. If every element

of S is eventually regular, we call S an eventually regular semigroup. Therefore a

regular semigroup is eventually regular.

For an element a of a semigroup S, let <a> denote the subsemigroup of S

generated by a, that is,

<a> = { an | n ∈ N }.
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We call S a periodic semigroup if <a> is finite for every a ∈ S. It is known that

for a ∈ S, if <a> is finite, then ak ∈ E(S) for some k ∈ N. Since E(S) ⊆ RegS for

every semigroup S, it follows that every periodic semigroup is eventually regular.

In particular, every finite semigroup is eventually regular. Therefore we have that

if a semigroup S is regular or periodic, then S is eventually regular. In fact, if a ∈ S

and ak ∈ E(S) for some k ∈ N, then <a> is a finite subsemigroup of S. To see this,

let n ∈ N be such that n ≥ k. Then there exist m ∈ N and r ∈ { 0, 1, . . . , k − 1 }

such that n = mk + r. Thus an = amk+r = (ak)mar. Since ak ∈ E(S), (ak)m = ak

so an = ak+r. This implies that < a > = { a, a2, . . . , ak, ak+1, . . . , a2k−1 }. We

therefore conclude that for a ∈ S, <a> is finite if and only if ak ∈ E(S) for some

k ∈ N. Hence we obtain the following proposition.

Proposition 1.1. Let S be a semigroup. If Reg S = E(S), then S is eventually

regular if and only if S is periodic.

For semigroup S, let S 1 = S if S has an identity, otherwise, let S 1 be the

semigroup S with the identity 1 adjoined. For the later case, S 1 = S ∪ {1} and

1 /∈ S and extend the operation in S to 1 in S ∪ {1} by defining 1a = a1 = a for

every a ∈ S ∪ {1}.

A partial transformation of a set X is a map from a subset of X into X. The

empty transformation 0 is the partial transformation with empty domain. Let

P (X) be the set of all partial transformations of X, that is,

P (X) = { α : A → X | A ⊆ X }.

Then 0 ∈ P (X). The identity map on a nonempty set A is denoted by 1A. Then

1A ∈ P (X) for every nonempty subset A of X. In particular, 1X ∈ P (X). We

denote the domain and the image of α ∈ P (X) by domα and imα, respectively.

Also, for α ∈ P (X) and x ∈ dom α, the image of x under α is written by xα. The
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composition αβ of α, β ∈ P (X), is defined as follows : αβ = 0 if im α ∩ dom β =

∅, otherwise αβ is the usual composition of the functions α |(im α∩ dom β)α−1 and

β |(im α∩ dom β). Then under this composition, P (X) is a semigroup having 0 and

1X as its zero and identity, respectively. Observe that for α, β ∈ P (X),

dom(αβ) = (im α ∩ dom β)α−1 ⊆ dom α,

im(αβ) = (im α ∩ dom β)β ⊆ im β,

x ∈ dom(αβ) ⇐⇒ x ∈ dom α and xα ∈ dom β.

The semigroup P (X) is called the partial transformation semigroup on X. By a

transformation semigroup on X we mean a subsemigroup of P (X).

By a transformation of X we mean a map of X into itself. Let T (X) be the

set of all transformations of X. Then

T (X) = { α ∈ P (X) | dom α = X }

which is a subsemigroup of P (X) containing 1X and it is called the full transfor-

mation semigroup on X.

Let I(X) denote the set of all 1-1 partial transformations of X, that is,

I(X) = { α ∈ P (X) | α is 1-1 }.

Then I(X) is a subsemigroup of P (X) containing 0 and 1X and it is called the 1-1

partial transformation semigroup of X or the symmetric inverse semigroup on X.

It is well-known that all P (X), T (X) and I(X) are regular ([1], page 4) and

for α ∈ P (X), α2 = α (α ∈ E(P (X))) if and only if imα ⊆ domα and xα = x

for all x ∈ im α.

For a nonempty subset A of X and x ∈ X, let Ax be the element of P (X)

with domain A and image {x}.

The shift of α ∈ P (X) is defined to be the set

S(α) = { x ∈ dom α | xα 6= x },
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and we call α almost identical if S(α) is finite (|S(α)| < ∞). Next, let

AP (X) = { α ∈ P (X) | α is almost identical },

AT (X) = { α ∈ T (X) | α is almost identical },

AI(X) = { α ∈ I(X) | α is almost identical }.

Then 0 and 1X belong to AP (X) and AI(X) and 1X ∈ AT (X). Let α, β ∈ P (X)

and x ∈ S(αβ). Then x ∈ dom(αβ) ⊆ dom α and xαβ 6= x. If x /∈ S(α), then

xα = x ∈ dom β, so xβ = xαβ 6= x which implies that x ∈ S(β). This shows

that S(αβ) ⊆ S(α) ∪ S(β). It follows that if |S(α)| < ∞ and |S(β)| < ∞ then

|S(αβ)| < ∞. Hence AP (X), AT (X) and AI(X) are respectively subsemigroups

of P (X), T (X) and I(X). The proofs of regularity of P (X), T (X) and I(X) show

that AP (X), AT (X) and AI(X) are also regular. Note that if X is finite, then

AP (X) = P (X), AT (X) = T (X) and AI(X) = I(X).

If S(X) is a transformation semigroup on X and θ ∈ S1(X), let (S(X), θ)

denote the semigroup (S(X), ∗) where the operation ∗ is defined by

α ∗ β = αθβ for all α, β ∈ S(X).

We call such a semigroup (S(X), θ) a generalized transformation semigroup on

X. Note that S(X) = (S(X), 1) where 1 is the identity of S1(X). To distinguish

between αn in the semigroup S(X) and the product α ∗ α . . . ∗ α (n times) in the

semigroup (S(X), ∗) = (S(X), θ) where α ∈ S(X) and n is a positive integer,

we shall use (α, θ)n to denote the later product. For examples, (α, θ)2 and (α, θ)4

denote αθα and αθαθαθα, respectively. Observe that (α, θ)n = (αθ)n−1α if n > 1.

Example 1.2. Let X be a nonempty set and a ∈ X. Then (T (X), Xa) is the

semigroup T (X) with the operation ∗ defined as follows :

α ∗ β = αXaβ = Xaβ for all α, β ∈ T (X).
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Also, (P (X), Xa) is the semigroup P (X) with the operation ◦ defined by

α ◦ β = αXaβ =


(dom α)aβ if α 6= 0 and a ∈ dom β ,

0 otherwise.

Moreover, (I(X), {a}a) = (I(X), •) where

α • β = α{a}aβ =


{aα−1}aβ if a ∈ im α ∩ dom β ,

0 otherwise.

Next, let X be a partially ordered set (a poset). An element a ∈ X is called

an isolated point if

for x ∈ X, x ≤ a or x ≥ a =⇒ x = a,

and we call X isolated if every element of X is an isolated point of X. By a chain

of X we mean a chain Y such that Y ⊆ X and the partial order of Y is the partial

order of X restricted to Y .

For α ∈ P (X), α is said to be regressive if

xα ≤ x for all x ∈ domα.

A transformation semigroup on X is said to be regressive if all of its elements are

regressive. Let

PRE(X) = { α ∈ P (X) | α is regressive },

APRE(X) = { α ∈ AP (X) | α is regressive }.

Then 0 and 1X belong to both PRE(X) and APRE(X) and both PRE(X) and

APRE(X) are subsemigroups of P (X) and APRE(X) ⊆ PRE(X). The notations

TRE(X), ATRE(X), IRE(X) and AIRE(X) are defined analogously. Thus 1X ∈

ATRE(X) ⊆ TRE(X), 0, 1X ∈ AIRE(X) ⊆ IRE(X), TRE(X) and ATRE(X) are
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subsemigroups of T (X) and IRE(X) and AIRE(X) are subsemigroups of I(X).

Observe that

APRE(X) = { α ∈ P (X) | α is regressive and |S(α)| < ∞ },

ATRE(X) = { α ∈ T (X) | α is regressive and |S(α)| < ∞ },

AIRE(X) = { α ∈ I(X) | α is regressive and |S(α)| < ∞ }.

By a regressive transformation semigroup on X and a regressive almost identical

transformation semigroup on X we mean a subsemigroup of PRE(X) and a sub-

semigroup of APRE(X), respectively.

A.Umar [4] proved that if X is a finite chain, then the subsemigroup

S = { α ∈ TRE(X) | |im α| < |X| }

of TRE(X) is generated by E(S) and S is not regular if |X| ≥ 3.

It was shown in [2] that Reg(S(X)) and E(S(X)) coincide for every regressive

transformation semigroup S(X) on any poset X.

Proposition 1.3. If X is a poset and S(X) is a regressive transformation semi-

group on X, then Reg(S(X)) = E(S(X)).

Using Proposition 1.3 as a lemma, the above six regressive transformation

semigroups on a poset were considered when they are regular as follows :

Theorem 1.4. [2] Let X be a poset and let S(X) be PRE(X), IRE(X), APRE(X)

or AIRE(X). Then the semigroup S(X) is regular if and only if X is isolated.

Theorem 1.5. [2] Let X be a poset and let S(X) be TRE(X) or ATRE(X). Then

the semigroup S(X) is regular if and only if |C| ≤ 2 for every chain C of X.

In [2], some interesting results relating to eventually regular regressive trans-

formation semigroups were provided as follows :
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Theorem 1.6. [2] Let X be a poset and let S(X) be PRE(X), TRE(X) or IRE(X).

Then the semigroup S(X) is eventually regular if and only if there exists a positive

integer n such that |C| ≤ n for every chain C of X.

Theorem 1.7. [2] Every regressive almost identical transformation semigroup on

any poset is eventually regular.

A significant isomorphism theorem on full regressive transformation semi-

groups was given by A.Umar in [5] as follows : For chains X and Y , TRE(X) and

TRE(Y ) are isomorphic if and only if X and Y are order-isomorphic. Moreover,

in [3], T. Saitô, K. Aoki and K. Kajitori gave necessary and sufficient conditions

for posets X and Y so that TRE(X) and TRE(Y ) are isomorphic, and A. Umar’s

theorem mentioned above becomes their special case.

By a regressive generalized transformation semigroup on a poset X we mean

a semigroup (S(X), θ) where S(X) is a subsemigroup of PRE(X) and θ ∈ S 1(X).

A regressive almost identical generalized transformation semigroup on a poset is a

semigroup (S(X), θ) where S(X) is a subsemigroup of APRE(X) and θ ∈ S 1(X).

In Chapter II, we show that Proposition 1.3 holds for any regressive generalized

transformation semigroups. Moreover, we generalize Theorem 1.4 and Theorem

1.5 to their regressive generalized transformation semigroups.

In Chapter III, we generalize Theorem 1.6 and Theorem 1.7 by considering

regressive generalized transformation semigroups. Beside Theorem 1.6 and Theo-

rem 1.7, some interesting consequences of our results are also provided.

The purpose of Chapter IV is to give some isomorphism theorems on regressive

generalized transformation semigroups for some certain poset X and θ.



CHAPTER II

REGULAR REGRESSIVE GENERALIZED

TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to determine when (S(X), θ) is a regular semi-

group where X is any poset, θ ∈ S(X) and S(X) is any of PRE(X), TRE(X),

IRE(X), APRE(X), ATRE(X) and AIRE(X).

We begin this chapter by showing that every regular element of a regressive

generalized transformation semigroup (S(X), θ) with θ ∈ S1(X) must be an idem-

potent of (S(X), θ).

Proposition 2.1. If S(X) is a regressive transformation semigroup on a poset

X, then Reg(S(X), θ) = E(S(X), θ) for every θ ∈ S1(X).

Proof. Let θ ∈ S1(X) and α ∈ Reg(S(X), θ). Then α = αθβθα for some β ∈ S(X).

Thus

for x ∈ dom α, xα = xαθβθα = (xαθβ)θα

≤ xαθβ = (xα)θβ ≤ xα

which implies that

xα = xαθβ for every x ∈ dom α. (1)

But α = αθβθα, so from (1),

for x ∈ dom α, xα = xαθβθα = (xαθβ)θα

= xαθα = x(α, θ)2. (2)
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It then follows from (2) that

dom α ⊆ dom (α, θ)2 and xα = x(α, θ)2 for every x ∈ dom α. (3)

But dom (α, θ)2 = dom (αθα) ⊆ dom α, so (3) yields α = (α, θ)2 ∈ E(S(X), θ).

Consequently, Reg(S(X), θ) = E(S(X), θ), as required.

In Proposition 2.1, S(X) = (S(X), 1) where 1 is the identity of S 1(X). Hence

Proposition 1.3 becomes a consequence of Proposition 2.1.

Corollary 2.2. If S(X) is a regressive transformation semigroup on a poset X,

then Reg(S(X)) = E(S(X)).

The regressive transformation semigroup S(X) on a poset X may not contain

an identity. It is natural to ask whether there is a regressive transformation semi-

group S(X) on a poset X such that S(X) is not isomorphic to (S(X), θ) for every

θ ∈ S(X). An existence of such a semigroup is given by the following example.

Example 2.3. For each n ∈ N, let αn : Z → Z be defined by

xαn = x− n for all x ∈ Z.

Then with the natural order on Z, αn ∈ TRE(Z) for every n ∈ N and αi 6= αj for

distinct i 6= j in N. Let

S(Z) = { αn | n ∈ N }.

Clearly, αnαm = αn+m for all n, m ∈ N. We therefore conclude that S(Z) is a sub-

semigroup of TRE(Z) and S(Z) has no identity. We claim that S(Z) � (S(Z), αn)

for every n ∈ N. Suppose that S(Z) ∼= (S(Z), αk) for some k ∈ N. Let ϕ be

an isomorphism from S(Z) onto (S(Z), αk). Then there exists t ∈ N such that

αtϕ = α1.
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Case 1 : t > 1. Then t− 1 ∈ N, so

α1 = αtϕ

= (αt−1α1)ϕ

= (αt−1ϕ)αk(α1ϕ)

= αsαkαr for some s, r ∈ N.

= αs+k+r

which is a contradiction since s + k + r > 1.

Case 2 : t = 1. Then α1ϕ = α1, so

α2ϕ = (α1α1)ϕ = (α1ϕ)αk(α1ϕ) = α1αkα1 = αk+2.

To show that αnϕ = α(n−1)k+n for all n ∈ N with n > 1, suppose that l ∈ N, l > 1

and αlϕ = α(l−1)k+l. Thus

αl+1ϕ = (αlα1)ϕ

= (αlϕ)αk(α1ϕ)

= (α(l−1)k+l)αkα1

= αlk−k+l+k+1

= αlk+(l+1).

This proves that imϕ = { α(n−1)k+n | n ∈ N }, so imϕ = { α1, αk+2, α2k+3, α3k+4, . . . }

which does not contain α2. This is contrary to that ϕ is onto.

Theorem 1.4 and Theorem 1.5 provide respectively the next two theorems

easily.

Theorem 2.4. Let X be a poset and let S(X) be PRE(X), IRE(X), APRE(X) or

AIRE(X) and θ ∈ S(X). Then the semigroup (S(X), θ) is regular if and only if

θ = 1X and X is isolated.
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Proof. Assume that (S(X), θ) is regular. By Proposition 2.1, we know that

Reg(S(X), θ) = E(S(X), θ). Then by assumption, we get (S(X), θ) = E(S(X), θ).

Since 1X ∈ S(X), 1X is an idempotent of (S(X), θ), so 1X = 1Xθ1X = θ. This

shows that (S(X), θ) = S(X). It follows from Theorem 1.4 that X is isolated.

The converse follows directly from Theorem 1.4.

Theorem 2.5. Let X be a poset and let S(X) be TRE(X) or ATRE(X) and θ ∈

S(X). Then the semigroup (S(X), θ) is regular if and only if θ = 1X and |C| ≤ 2

for every chain C of X.

Proof. Using Proposition 2.1 and Theorem 1.5, the proof of the theorem can be

given similarly to that of Theorem 2.4.

Example 2.6. Let S(N) be one of PRE(N), TRE(N), IRE(N), APRE(N), ATRE(N)

or AIRE(N) under the natural order on N. We then have by Theorem 2.4 amd 2.5

that the semigroup (S(N), θ) is not regular for every θ ∈ S(N).

Next, let

C(N) = { A1 | 1 ∈ A ⊆ N }.

Recall that A1 is an element of P (N) with domain A and image {1}. Then C(N)

is an infinite subset of PRE(N) and for 1 ∈ A ⊆ N and 1 ∈ B ⊆ N, A1B1 = A1.

This implies that C(N) is an infinite regular subsemigroup of PRE(N). Also, for

any θ ∈ C1(N), (C(N), θ) is an infinite regular subsemigroup of (PRE(N), θ).



CHAPTER III

EVENTUALLY REGULAR REGRESSIVE

GENERALIZED TRANSFORMATION SEMIGROUPS

Our purpose of this chapter is to generalize Theorem 1.6 and 1.7. We first

provide necessary and sufficient conditions for X and θ so that the semigroup

(S(X), θ) is eventually regular where X is any poset, S(X) is PRE(X), TRE(X)

or IRE(X) and θ ∈ S(X). Next, we show that for every subsemigroup S(X) of

APRE(X), (S(X), θ) with θ ∈ S 1(X) is an eventually regular semigroup.

To obtain the first main result, the following series of lemmas is required.

Lemma 3.1. Let X be any poset and let θ ∈ PRE(X). If there exists a positive

integer n such that every chain of X of the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ . . .

with xi ∈ dom θ has length at most n, then for every α ∈ PRE(X), (α, θ)n+2 ∈

E(PRE(X), θ).

Proof. Let α ∈ PRE(X) and x ∈ dom(αθ)n+1. By assumption, the chain

xα ≥ xαθ ≥ x(αθ)α ≥ x(αθ)2 ≥ . . . ≥ x(αθ)nα ≥ x(αθ)n+1

has length at most n, so its subchain

xαθ ≥ x(αθ)2 ≥ . . . ≥ x(αθ)n+1 (1)

has length at most n. If x(αθ)i > x(αθ)i+1 for every i ∈ {1, 2, . . . , n}, then the

chain (1) has length n + 1, a contradiction. Thus x(αθ)i = x(αθ)i+1 for some
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i ∈ {1, 2, . . . , n}. Since x ∈ dom (αθ)n+1, x(αθ)i ∈ dom (αθ)n+1−i. We then deduce

that

x(αθ)n+1 = x(αθ)i(αθ)n+1−i = x(αθ)i+1(αθ)n+1−i = x(αθ)n+2. (2)

It follows from (2) that

dom (αθ)n+1 ⊆ dom (αθ)n+2 and x(αθ)n+1 = x(αθ)n+2 (3)

for every x ∈ dom(αθ)n+1.

But dom (αθ)n+2 ⊆ dom (αθ)n+1, so (3) yields (αθ)n+1 = (αθ)n+2. This implies

that

(α, θ)n+2 = (αθ)n+1α = (αθ)n+2α = (α, θ)n+3.

Consequently, (α, θ)n+2 ∈ E(PRE(X), θ) (see Chapter I, page 1).

By the definition of regressive generalized transformation semigroups, the fol-

lowing lemma is a direct consequence of Lemma 3.1.

Lemma 3.2. Let S(X) be a regressive transformation semigroup on any poset X

and θ ∈ S1(X). If there exists a positive integer n such that every chain of X of

the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ . . .

with xi ∈ dom θ has length at most n, then the semigroup (S(X), θ) is eventually

regular.

The following corollary follows directly from Lemma 3.2.

Corollary 3.3. If S(X) is a regressive transformation semigroup on a poset X

and θ ∈ S 1(X) with |im θ| < ∞, then the semigroup (S(X), θ) is eventually

regular.

Moreover, Proposition 1.1, Proposition 2.1, Lemma 3.2 and Corollary 3.3 yield

the following fact.
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Corollary 3.4. Let S(X) be a regressive transformation semigroup on a poset X

and θ ∈ S1(X). If there exists a positive integer n such that every chain of X of

the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ . . .

with xi ∈ dom θ has length at most n, then the semigroup (S(X), θ) is periodic. In

particular, if |im θ| < ∞, then the semigroup (S(X), θ) is a periodic semigroup.

Lemma 3.5. Let X be a poset and let S(X) be PRE(X), TRE(X), or IRE(X) and

θ ∈ S(X). If X contains a sequence of pairewise disjoint finite chains C1, C2, C3, . . .

such that each Ci is of the form

x1 ≥ x1θ > x2 ≥ x2θ > . . . > xki
≥ xki

θ

and k1 < k2 < k3 < . . ., then the semigroup (S(X), θ) is not eventually regular.

Proof. For each i ∈ N, let

Ci = { xi1, xi1θ, xi2, xi2θ, . . . , xiki
, xiki

θ }

where xi1 ≥ xi1θ > xi2 ≥ xi2θ > . . . > xiki
≥ xiki

θ.

We may assume that k1 ≥ 2, otherwise we consider the sequence C2, C3, C4, . . .

instead. To show that (S(X), θ) is not eventually regular, define α from the set⋃∞
i=1{ xi1θ, xi2θ, . . . , xi,ki−1θ } onto the set

⋃∞
i=1{ xi2, xi3, . . . , xiki

} by

(xijθ)α = xi,j+1 for i ∈ N and j ∈ { 1, 2, . . . , ki − 1 }.

The map α is well-defined because C1, C2, C3, . . . are pairwise disjoint. Because of

the form of each Ci, we have that α is 1-1 and regressive. Then α ∈ IRE(X) ⊆

PRE(X). Let n ∈ N. Since the sequence k1, k2, k3, . . . of positive integers is strictly
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increasing, there exists m ∈ N such that km > 2n. We then deduce that

(xm1θ)(α, θ)n = (xm1θ)(αθ)n−1α

= xm,n+1

> xm,2n+1

= (xm1θ)(α, θ)2n.

This proves that (α, θ)n 6= (α, θ)2n for every n ∈ N. Thus (α, θ)n /∈ E(PRE(X), θ)

for every n ∈ N. By Proposition 2.1, α is not an eventually regular element of the

semigroup (S(X), θ) if S(X) is PRE(X) or IRE(X).

Next, assume that S(X) = TRE(X). Then θ ∈ TRE(X) ⊆ PRE(X). Let

β : X → X be defined by

xβ =


xα if x ∈ dom α,

x if x ∈ X r dom α.

Then β ∈ TRE(X). If n ∈ N, from the above proof, there exists an element

y ∈ dom α such that y(α, θ)n > y(α, θ)2n, that is, y(αθ)n−1α > y(αθ)2n−1α.

Consequently,

y(βθ)n−1β = y(αθ)n−1α > y(αθ)2n−1α = y(βθ)2n−1β

which implies that (β, θ)n 6= (β, θ)2n. We therefore have from Proposition 2.1 that

β is not an eventually regular element of the semigroup (TRE(X), θ).

Hence the lemma is completely proved.

An interesting consequence of Lemma 3.5 is as follow :

Corollary 3.6. Let X be any poset and let S(X) be PRE(X), TRE(X) or IRE(X).

If X does not have a minimal element, then the semigroup (S(X), θ) is not even-

tually regular for every θ ∈ S(X) with dom θ = X.
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Proof. Let x1 ∈ X. Thus x1 ≥ x1θ. By assumption, x1θ is not a minimal element,

so x1θ > x2 for some x2 ∈ X. Then x1 ≥ x1θ > x2 ≥ x2θ. By this process, we

obtain a sequence

x1 ≥ x1θ > x2 ≥ x2θ > x3 ≥ x3θ > . . . .

Let (kn) be a strictly increasing sequence of positive integers such that k1 > 1 and

let li = k1 + k2 + · · ·+ ki for all i ∈ N. Define the chains Ci for i ∈ N as follows :

C1 = {x1, x1θ, . . . , xl1 , xl1θ}

C2 = {xl1+1, xl1+1θ, . . . , xl2 , xl2θ}

C3 = {xl2+1, xl2+1θ, . . . , xl3 , xl3θ}

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Then each Ci is a finite chain of X, Ci∩Cj = ∅ if i 6= j and each Ci is of the form

y1 ≥ y1θ > y2 ≥ y2θ > . . . > yki
≥ yki

θ. Also, k1 < k2 < k3 < . . . . Therefore we

have from Lemma 3.5 that (S(X), θ) is not an eventually regular semigroup.

As was mentioned previously, we have that eventual regularity and periodicity

of regressive generalized transformation semigroups are identical. Then we have

Corollary 3.7. Let X be a poset and let S(X) be PRE(X), TRE(X) or IRE(X).

If X does not have a minimal element, then the semigroup (S(X), θ) is not a

periodic semigroup for every θ ∈ S(X) with dom θ = X.

Now we are ready to give the first main result.

Theorem 3.8. Let X be a poset and let S(X) be PRE(X), TRE(X) or IRE(X)

and θ ∈ S(X). Then the semigroup (S(X), θ) is eventually regular if and only if

there exists a positive integer n such that every chain of X of the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ . . .
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with xi ∈ dom θ has length at most n.

Proof. If there is an element n ∈ N such that every chain of X of the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ . . . (1)

with xi ∈ dom θ has length at most n, then by Lemma 3.2, (S(X), θ) is an even-

tually regular semigroup.

To prove necessity by contrapositive, assume that for every positive integer n,

there exists a chain of X of the form (1) of length greater than n.

For better understanding in counting, the chain (1) can be revised as follows : If

there is i ∈ N such that xi = xiθ = xi+1 in (1), then we can replace xi = xiθ = xi+1

by xi+1 and the revised chain is still of the form (1). Also, if there is i ∈ N such

that xiθ = xi+1 = xi+1θ, then this can be replaced by xiθ and the revised chain is

still of the form (1). Because of these facts, (1) can be considered as

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ . . . (2)

with xi ∈ dom θ and any three consecutive

terms not identical.

In the remainder of this proof, elements xi, x
′
i, xij which we use always belong to

dom θ. Then by the above assumption, we have that every positive integer n, there

exists a chain of X of the form (2) of length greater than n. If there is no chain

of X of the form

x1 ≥ x1θ > x2 ≥ x2θ, (3)

then any chain of X of the form (2) has length not more than the chain

x1 > x1θ = x′1 > x′1θ

(because if we can add ≥ y ≥ yθ with y ∈ dom θ after x′1θ, we obtain a chain of

the form (3)), so every chain of X of the form (2) has length at most 3 which is
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contrary to the assumption. Then there is a chain

C1 = { x11, x11θ, x12, x12θ } with

x11 ≥ x11θ > x12 ≥ x12θ.

If there is no chain of the form (2) of the subposet X r C1 of the form

x1 ≥ x1θ > x2 ≥ x2θ > x3 ≥ x3θ, (4)

then any chain of X r C1 of the form (2) has length not more than the length of

the chain

x1 > x1θ = x′1 > x′1θ > x2 > x2θ = x′2 > x′2θ

(because if we can add ≥ y ≥ yθ with y ∈ dom θ after x′iθ, we obtain a chain of

the form (4)), so every chain of X of the form (2) has length at most |C1| + 6, a

contradiction. Let C2 be a chain of X r C1 such that

C2 = { x21, x21θ, x22, x22θ, x23, x23θ } with

x21 ≥ x21θ > x22 ≥ x22θ > x23 ≥ x23θ.

Thus C1 ∩C2 = ∅. Again, if the subposet X r (C1 ∪C2) of X does not contain a

chain of the form

x1 ≥ x1θ > x2 ≥ x2θ > x3 ≥ x3θ > x4 ≥ x4θ, (5)

then any chain of X r (C1 ∪ C2) of the form (2) has length not more than the

length of the chain

x1 > x1θ = x′1 > x′1θ > x2 > x2θ = x′2 > x′2θ > x3 > x3θ = x′3 > x′3θ

(because we will obtain a chain of the form (5) if we can add ≥ y ≥ yθ with

y ∈ dom θ after x′iθ), which implies that every chain of X of the form (2) has
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length at most |C1|+ |C2|+9, a contradiction. Let C3 be a chain of X r (C1∪C2)

such that

C3 = { x31, x31θ, x32, x32θ, x33, x33θ, x34, x34θ } with

x31 ≥ x31θ > x32 ≥ x32θ > x33 ≥ x33θ > x34 ≥ x34θ.

Then C3 ∩ C1 = ∅ and C3 ∩ C2 = ∅. By this process, we obtain a sequence of

pairwise disjoint finite chains C1, C2, C3, . . . of X such that each i ∈ N,

Ci = { xi1, xi1θ, xi2, xi2θ, . . . , xi,i+1, xi,i+1θ } with

xi1 ≥ xi1θ > xi2 ≥ xi2θ > . . . > xi,i+1 ≥ xi,i+1θ.

We therefore deduce from Lemma 3.5 that the semigroup (S(X), θ) is not even-

tually regular.

Hence the theorem is completely proved.

Also, from Proposition 1.1, Proposition 2.1 and Theorem 3.8, the following

corollary is directly obtained.

Corollary 3.9. Let X be a poset and let S(X) be PRE(X), TRE(X) or IRE(X)

and θ ∈ S(X). Then the semigroup (S(X), θ) is periodic if and only if there exists

a positive integer n such that every chain of X of the form

x1 ≥ x1θ ≥ x2 ≥ x2θ ≥ x3 ≥ x3θ ≥ . . .

with xi ∈ dom θ has length at most n.

It is easily seen that the following two statements on X are equivalent.

(1) There is a positive integer n such that every chain of the form x1 ≥ x2 ≥

x3 ≥ . . . has length at most n.

(2) There is a positive integer n such that |C| ≤ n for every chain C of X.

Hence the following result given in [2] becomes our special case.



20

Corollary 3.10. Let X be any poset and let S(X) be PRE(X), TRE(X) or IRE(X).

Then the semigroup S(X) is eventually regular if and only if there is a positive

integer n such that |C| ≤ n for every chain C of X.

Example 3.11. Under the natural order on R, let S(R) be PRE(R), TRE(R) or

IRE(R). If θ ∈ S(R) with dom θ = R, then by Corollary 3.6, (S(R), θ) is not an

eventually regular semigroup.

Let n ∈ N and define θn ∈ P (R) and θ′n ∈ I(R) by

dom θn = [0,∞),

[n,∞)θn = n, [n− 1, n)θn = n− 1, . . . , [0, 1)θn = 0,

dom θ′n = { n + 1, n, n− 1, . . . , 1 },

(n + 1)θ′n = n, nθ′n = n− 1, . . . , 1θ′n = 0.

Then θn ∈ PRE(R), θ′n ∈ IRE(R), im θn = { n, n − 1, . . . , 1, 0 } = im θ′n. We

therefore deduce from Corollary 3.3 that (PRE(R), θn) and (IRE(R), θ′n) are both

eventually regular.

Example 3.12. Define θ1 : N → N by

xθ1 =


x− 1 if x ∈ N r {1},

1 if x = 1

and θ2 = θ1|Nr{1}.

Then θ1 ∈ TRE(N) ⊆ PRE(N) and θ2 ∈ IRE(N) ⊆ PRE(N). Moreover, for every

n ∈ N,

2n > (2n)θ1 > (2n)θ2
1 > . . . > (2n)θ2n−1

1 and

2n > (2n)θ2 > (2n)θ2
2 > . . . > (2n)θ2n−1

2

and both chains have length 2n > n. Then by Theorem 3.8, all of the semigroups

(PRE(N), θ1), (TRE(N), θ1), (PRE(N), θ2), and (IRE(N), θ2) are not eventually reg-

ular.
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In fact, for n ∈ N and for i ∈ { 1, 2 }, we have

4n(θi, θi)
2n = 4nθ4n−1

i = 1

< 2n + 1 = 4nθ2n−1
i = 4n(θi, θi)

n,

Hence (θ1, θ1)
n is not an idempotent of (PRE(N), θ1) and (TRE(N), θ1) and (θ2, θ2)

n

is not an idempotent of (PRE(N), θ2) and (IRE(N), θ2) for every n ∈ N. By Propo-

sition 2.1, θ1 is not an eventually regular element of (PRE(N), θ1) and (TRE(N), θ1)

and θ2 is not an eventually regular element of (PRE(N), θ2) and (IRE(N), θ2).

The last theorem is the second main result of this chapter.

Theorem 3.13. For any poset X, if S(X) is a regressive almost identical trans-

formation semigroup on X, then the semigroup (S(X), θ) is eventually regular for

every θ ∈ S 1(X).

Proof. Let θ ∈ S 1(X) and α ∈ S(X). Then αθ ∈ S(X), so S(αθ) is finite, say

|S(αθ)| = n. Let x ∈ dom (αθ)n+2. Then

x(αθ) ≥ x(αθ)2 ≥ . . . ≥ x(αθ)n+2.

If x(αθ) > x(αθ)2 > . . . > x(αθ)n+2, then { x(αθ), x(αθ)2, . . . , x(αθ)n+1 } ⊆

S(αθ) and | { x(αθ), x(αθ)2, . . . , x(αθ)n+1 } | = n + 1, a contradiction. Thus

x(αθ)i = x(αθ)i+1 for some i ∈ { 1, 2, . . . , n+1 }. Since x ∈ dom (αθ)n+2, x(αθ)i ∈

dom (αθ)n+2−i. Then we deduce that

x(αθ)n+2 = x(αθ)i(αθ)n+2−i = x(αθ)i+1(αθ)n+2−i = x(αθ)n+3.

This shows that

for each x ∈ dom (αθ)n+2, x(αθ)n+2 = x(αθ)n+3.

It then follows from this fact that dom (αθ)n+2 ⊆ dom (αθ)n+3 and x(αθ)n+2 =

x(αθ)n+3 for every x ∈ dom(αθ)n+2. But dom (αθ)n+3 ⊆ dom (αθ)n+2, so we have
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(αθ)n+2 = (αθ)n+3. Hence (α, θ)n+3 = (αθ)n+2α = (αθ)n+3α = (α, θ)n+4, and thus

(α, θ)n+3 ∈ E(S(X), θ).

Therefore the proof is complete.



CHAPTER IV

ISOMORPHISM THEOREMS

In this chapter, some isomorphism theorems on regressive generalized trans-

formation semigroups are provided. The purpose is to show that for some posets

X, some regressive transformation semigroups S(X) on X and certain θ1, θ2 ∈

S(X), (S(X), θ1) ∼= (S(X), θ2) if and only if θ1 = θ2.

Theorem 4.1. Let S(X) be a regressive transformation semigroup on a poset X

containing an identity η. Then for θ ∈ S(X),

(S(X), θ) ∼= S(X) ⇐⇒ θ = η.

Proof. Note that S(X) = (S(X), η). Assume that (S(X), θ) ∼= S(X). Since S(X)

has an identity, (S(X), θ) has an identity, say µ, that is,

αθµ = µθα = α for every α ∈ S(X).

In particular, ηθµ = µθη = η since η ∈ S(X). But since θ ∈ S(X) and η is the

identity of S(X), we have θη = ηθ = θ. Now, we have

θµ = µθ = η and θη = ηθ = θ.

Then dom η = dom(θµ) ⊆ dom θ and dom θ = dom(ηθ) ⊆ dom η, so dom θ =

dom η. Also, for x ∈ dom θ(= dom η)

xθ = xηθ = (xη)θ ≤ xη,

xη = xθµ = (xθ)µ ≤ xθ.
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Consequently, dom θ = dom η and xθ = xη for every x ∈ dom θ, so θ = η.

The converse is trivial.

The following is an immediate consequence of Theorem 4.1.

Corollary 4.2. Let X be a poset and let S(X) be PRE(X), TRE(X) or IRE(X).

Then for θ ∈ S(X),

(S(X), θ) ∼= S(X) ⇐⇒ θ = 1X .

Theorem 4.3. Let S(X) be a transformation semigroup on a set X containing

an identity and a zero ξ. Then for θ ∈ S(X),

(S(X), θ) ∼= (S(X), ξ) ⇐⇒ θ = ξ.

Proof. Let η be the identity of S(X). First, assume that (S(X), θ) ∼= (S(X), ξ).

Since ξ is the zero of S(X), it follows that αξβ = ξ for all α, β ∈ S(X), that is,

(S(X), ξ) is a zero semigroup. Consequently, (S(X), θ) is a zero semigroup. But

αθξ = ξθα = ξ for all α ∈ S(X), so ξ is the zero of (S(X), θ). In particular,

ηθη = ξ. Since η is the identity of S(X), we have that θ = ξ.

The converse is immediate.

Corollary 4.4. Let X be a poset and S(X) be PRE(X) or IRE(X). Then for

θ ∈ S(X),

(S(X), θ) ∼= (S(X), 0) ⇐⇒ θ = 0.

Proof. It follows directly from Theorem 4.3 since 1X , 0 ∈ S(X).

If a is the minimum element of a poset X, then Xa is the zero of TRE(X).

That is because aα = a for all α ∈ TRE(X), which implies that

αXa = Xa = Xaα for every α ∈ TRE(X).
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Hence the following theorem is obtained directly from Theorem 4.3 and that

1X ∈ TRE(X) for every poset X.

Corollary 4.5. Let X be a poset containing a minimum element a. Then for

θ ∈ TRE(X),

(TRE(X), θ) ∼= (TRE(X), Xa) ⇐⇒ θ = Xa.

For a poset X containing a minimum element a, Xa ∈ PRE(X) but not a zero

of PRE(X) because 0 is the zero of PRE(X). However, Corollary 4.5 remains valid

if TRE(X) is replaced by PRE(X).

Theorem 4.6. Let X be a poset containing a minimum element a. Then for

θ ∈ PRE(X),

(PRE(X), θ) ∼= (PRE(X), Xa) ⇐⇒ θ = Xa.

Proof. First we note that {x}y ∈ PRE(X) for all x, y ∈ X with y ≤ x. Assume

that (PRE(X), θ) ∼= (PRE(X), Xa). Since Xa is not the zero of (PRE(X), Xa), it

follows from Corollary 4.4 that θ 6= 0. Let ϕ be an isomorphism of (PRE(X), θ)

onto (PRE(X),Xa). Since 0 is the zero of both (PRE(X), θ) and (PRE(X),Xa), for

α ∈ PRE(X), αϕ = 0 if and only if α = 0. Since a is the minimum element of X,

we deduce that

for α ∈ PRE(X), a ∈ dom α =⇒ aα = a. (1)

Pick b ∈ dom θ. Then {b}bθ1X = {b}bθ 6= 0 which implies that

({b}bθ1X)ϕ = ({b}b)ϕXa(1Xϕ) 6= 0,

and hence

a ∈ dom(1Xϕ). (2)

To show that dom θ = X, let x ∈ X. Then {x}xϕ 6= 0, so ({x}xϕ)Xa = (dom({x}xϕ))a.

Hence by (2), ({x}x)ϕXa(1Xϕ) 6= 0. Consequently,

0 6= ({x}xϕ)Xa(1Xϕ) = ({x}xθ1X)ϕ = ({x}xθ)ϕ
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which implies that x ∈ dom θ. This proves that dom θ = X. By (1), a ∈ im θ. To

show that im θ = {a}, suppose not. Then there is c ∈ im θ r {a}. Then c > a and

dθ = c for some d ∈ X. But θ is regressive, so d ≥ c. Hence

0 6= {d}cϕ = ({d}dθ{c}c)ϕ since dθ = c

= ({d}dϕ)Xa({c}cϕ)

which implies that

a ∈ dom({c}cϕ). (3)

It then follows that

0 6= ({c}cϕ)Xa({c}cϕ) = ({c}cθ{c}c)ϕ.

Thus c ∈ dom θ and cθ = c. But

0 6= {c}aϕ = ({c}cθ{c}a)ϕ since cθ = c

= ({c}cϕ)Xa({c}aϕ)

= (dom({c}cϕ))a because of (1) and (3),

so

0 6= (dom({c}cϕ))a = (dom({c}cϕ))aXa(dom({c}cϕ))a from (1) and (3)

= {c}aϕXa{c}aϕ

= ({c}aθ{c}a)ϕ

= 0ϕ since aθ = a < c

= 0.

This is a contradiction. Thus θ = Xa, as required.

The converse is trivial.
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From Corollary 4.2, Corollary 4.4, Corollary 4.5 and Theorem 4.6, it is natural

to ask whether the following question is true. If X is a poset and S(X) is PRE(X),

TRE(X) or IRE(X), and θ1, θ2 ∈ S(X), is it true that

(S(X), θ1) ∼= (S(X), θ2) ⇐⇒ θ1 = θ2 ?

The following example gives a negative answer.

Example 4.7. Let X = {a, b, c} with a partial order defined by the following

Hasse diagram.

s s

s

b c

a

X :

�
�

�
�

�
�

S
S

S
S

S
S

(1) Define θ1, θ2 : X → X by

aθ1 = b, bθ1 = b, cθ1 = c,

aθ2 = c, bθ2 = b, cθ2 = c.

Then TRE(X) = { 1X , θ1, θ2 } and θ1 6= θ2. It is clearly seen that θ1θ2 = θ1 = θ1θ1

and θ2θ1 = θ2 = θ2θ2. From this fact, it is easy to see that the map ϕ : TRE(X) →

TRE(X) defined by

1Xϕ = 1X , θ1ϕ = θ2 and θ2ϕ = θ1

is an isomorphism of (TRE(X), θ1) onto (TRE(X), θ2).

(2) We have that {b}b and {c}c are distinct elements of IRE(X)(⊆ PRE(X)). We

claim that

(S(X), {b}b) ∼= (S(X), {c}c) where S(X) is PRE(X) or IRE(X).
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For convenience, let (b, c) denote the element of T (X) defined by

x(b, c) =



c if x = b,

b if x = c,

x otherwise.

Note that (b, c) ∈ I(X). First, we shall show that for α ∈ S(X), (b, c)α(b, c) ∈

S(X). Let α ∈ S(X) and x ∈ dom(b, c)α(b, c). Since b and c are minimal elements

of X and α is regressive, we have bα = b if b ∈ domα and cα = c if c ∈ domα.

Case 1 : x = a. Then a(b, c)α(b, c) ≤ a since a is the maximum element of X.

Case 2 : x = b. Then b(b, c)α(b, c) = cα(b, c) = c(b, c) = b.

Case 3 : x = c. Then c(b, c)α(b, c) = bα(b, c) = b(b, c) = c.

Thus (b, c)α(b, c) is regressive. If α ∈ I(X), then so is (b, c)α(b, c) since (b, c) ∈

I(X). This shows that (b, c)α(b, c) ∈ S(X). Define Ψ: S(X) → S(X) by αΨ =

(b, c)α(b, c) for all α ∈ S(X). If α, β ∈ S(X) are such that αΨ = βΨ, then

(b, c)α(b, c) = (b, c)β(b, c), so α = β since (b, c)(b, c) = 1X . Hence Ψ is 1-1. But

S(X) is finite, so Ψ is onto. If α, β ∈ S(X), then

(α{b}bβ)Ψ = (b, c)(α{b}bβ)(b, c)

= ((b, c)α(b, c))((b, c){b}b(b, c))((b, c)β(b, c))

since (b, c)(b, c) = 1X

= (αΨ){c}c(βΨ),

so,Ψ is a homomorphism of (S(X), {b}b) into (S(X), {c}c). This proves that Ψ is

an isomorphism of (S(X), {b}b) onto (S(X), {c}c).

Example 4.7(2) shows that if X is a poset and S(X) is PRE(X) or IRE(X), it

is not generally true that for a, b ∈ X, (S(X), {a}a) ∼= (S(X), {b}b) implies a = b.

However, the next theorem shows that this is true if X is a finite chain.
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Lemma 4.8. Let X be a chain and a ∈ X. For α ∈ PRE(X), α ∈ E(PRE(X), {a}a)

if and only if either α = 0 or α = Aa for some A ⊆ { x ∈ X | x ≥ a } with a ∈ A.

In particular, E(IRE(X), {a}a) = { 0, {a}a }.

Proof. Assume that α ∈ E(PRE(X), {a}a) and α 6= 0. Since 0 6= α = α{a}aα, we

have a ∈ domα and so aα = aα{a}aα which implies that aα = a. If x ∈ domα,

then xα = xα{a}aα, so a = xα ≤ x. Hence α = Aa for some A ⊆ { x ∈ X | x ≥ a }

with a ∈ A. If α is also 1-1, then α = {a}a.

The converse is obvious. Hence the lemma is proved.

Theorem 4.9. Let X be a finite chain and a, b ∈ X. If S(X) is PRE(X) or

IRE(X), then

(S(X), {a}a) ∼= (S(X), {b}b) ⇐⇒ a = b.

Proof. We may assume that a ≤ b since X is a chain. By Lemma 4.8,

E(PRE(X), {a}a) = { (A ∪ {a})a | A ⊆ {x ∈ X | x > a} } ∪ {0},

E(PRE(X), {b}b) = { (A ∪ {b})b | A ⊆ {x ∈ X | x > b} } ∪ {0},

E(IRE(X), {a}a) = { 0, {a}a },

E(IRE(X), {b}b) = { 0, {b}b }.


(1)

Suppose that (S(X), {a}a)∼= (S(X), {b}b). Let ϕ be an isomorphism from (S(X), {a}a)

onto (S(X), {b}b), so |E(S(X), {a}a)| = |E(S(X), {b}b)|.

Case 1 : S(X) = PRE(X). Since |E(PRE(X), {a}a)| = |E(PRE(X), {b}b)| , from

(1),

| { A | A ⊆ {x ∈ X | x > a} } | = | { A | A ⊆ {x ∈ X | x > b} } | .

But X is a finite chain, so a = b.

Case 2 : S(X) = IRE(X). Let ϕ be an isomorphism of (IRE(X), {a}a) onto
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(IRE(X), {b}b). By (1), {a}aϕ = {b}b. Let c ∈ X be such that c ≥ a. Then

0 6= {c}aϕ = ({c}a{a}a{a}a)ϕ

= {c}aϕ{b}b{b}b since {a}aϕ = {b}b

= ({c}aϕ){b}b

= {d}b for some d ∈ X with d ≥ b

since S(X) = IRE(X).

This shows that

{ {c}aϕ | c ∈ X and c ≥ a } ⊆ { {d}bϕ | d ∈ X and d ≥ b }

Hence

| {c ∈ X | c ≥ a} | = | { {c}aϕ | c ∈ X and c ≥ a } | since ϕ is 1− 1

≤ | { {d}b | d ∈ X and d ≥ b} |

= | {d ∈ X | d ≥ b} |

≤ | {c ∈ X | c ≥ a} | since a ≤ b,

so | {c ∈ X | c ≥ a} | = | {d ∈ X | d ≥ b} |. Since X is a finite chain, we deduce

that a = b.

Hence the theorem is completely proved.

Theorem 4.9 need not be true if X is an infinite chain. It is shown by the

next theorem. Moreover, this theorem also shows that if X is an infinite chain

order-isomorphic to Z and S(X) is PRE(X) or IRE(X), then for all a, b ∈ X,

(S(X), {a}a) ∼= (S(X), {b}b).

Theorem 4.10. Let S(Z) be PRE(Z) or IRE(Z) under the natural order. Then

for all a, b ∈ Z,

(S(Z), {a}a) ∼= (S(Z), {b}b).
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Proof. For a subset A of Z and k ∈ Z, let

A + k = { x + k | x ∈ A }.

Let a, b ∈ Z be such that a < b. For each α ∈ P (Z), define α′ ∈ P (Z) by

dom α′ = dom α + (b− a) and

xα′ = (x− (b− a))α + (b− a) for every x ∈ dom α′.

It is clear that if α is regressive, then so is α′, and if α is 1-1, then so is α′. Hence

{ α′ | α ∈ PRE(Z) } ⊆ PRE(Z),

{ α′ | α ∈ IRE(Z) } ⊆ IRE(Z).

Define ϕ : S(Z) → S(Z) by αϕ = α′ for all α ∈ S(Z). First, to show ϕ is 1-1, let

α, β ∈ S(Z) be such that α′ = β′. Then

dom α + (b− a) = dom α′ = dom β′ = dom β + (b− a) and

xα′ = xβ′ for all x ∈ dom α′(= dom β′).

This implies that domα = domβ and for every x ∈ domα,

xα = (x + (b− a))α′ − (b− a) = (x + (b− a))β′ − (b− a) = xβ.

Hence xα = xβ.

To show ϕ is onto, let β ∈ S(Z). Define α ∈ P (Z) by

dom α = dom β − (b− a) and

xα = (x + (b− a))β − (b− a) for all x ∈ dom α.
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Then we have similarly that α ∈ S(Z) and also

dom α′ = dom α + (b− a)

= dom β − (b− a) + (b− a)

= dom β and

xα′ = (x− (b− a))α + (b− a)

= (x− (b− a) + (b− a))β − (b− a) + (b− a)

= xβ.

Hence αϕ = α′ = β.

To show that ϕ is a homomorphism, it is equivalent to show (α{a}aβ)′ =

α′{b}bβ
′ for all α, β ∈ S(Z). Let α, β ∈ S(Z) be arbitrary fixed. Then for x ∈ Z,

x ∈ dom(α{a}aβ)′ ⇐⇒ x− (b− a) ∈ dom(α{a}aβ)

⇐⇒ x− (b− a) ∈ dom α, (x− (b− a))α = a

and a ∈ dom β

⇐⇒ x ∈ dom α′ and xα′(= (x− (b− a))α + (b− a)

= a + b− a) = b and b = a + (b− a) ∈ dom β′

⇐⇒ x ∈ dom(α′{b}bβ
′).

Therefore dom(α{a}aβ)′ = dom(α′{b}bβ
′) and for x ∈ dom(α{a}aβ)′,

x(α{a}aβ)′ = (x− (b− a))(α{a}aβ) + (b− a)

= aβ + (b− a) since (x− (b− a))α = a

= (b− (b− a))β + (b− a)

= bβ′

= x(α′{b}bβ
′) since xα′ = (x− (b− a))α + (b− a) = b.

Hence the theorem is proved, as required.
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