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For a set X, let P(X), T(X) and I(X) denote respectively the partial transformation
semigroup on X, the full transformation semigroup on X and the one-to-one partial
transformation semigroup on X. Also, let AP(X) = { & € P(X) | « is almost identical }
and define AT(X) and AI(X) similarly. Then AP(X), AT(X) and Al(X) are subsemigrou-
ps of P(X), T(X) and I(X), respectively. We generalize a transformation semigroup on
X (‘a subsemigroup of P(X) ) to be a semigroup ( S(X), &) where S(X) is a transforma-
tion semigroup on X, @€ S*(X) and ( S(X), @) = ( S(X), *) where a * = adp for all
a, f € S(X).

For a poset X, let Pre(X) = { a € P(X) | « is regressive }, and Tre(X), Ire(X),
APRre(X), ATre(X) and Alge(X) are defined similarly. Then Pre(X), Tre(X), Ire(X),
APgre(X), ATre(X) and Alre(X) are respectively subsemigroups of P(X), T(X), 1(X),
AP(X), AT(X) and Al(X). The following facts are known. If S(X) is Pre(X), lre(X),
APRre(X) or Alge(X), then S(X) is regular if and only if X is isolated. If S(X) is Tre(X) or
ATgre(X), then S(X) is regular if and only if |C| < 2 for every chain C of X. If S(X) is
Pre(X), Tre(X) or Ire(X), S(X) is eventually regular if and only if there is a positive
integer n such that |C| < n for every chain C of X. Moreover, every regressive almost
identical transformation semigroup on X ( every subsemigroup of APge(X) ) is eventu-
ally regular.

The purpose of this research is to generalize all the above known results by con-
sidering those on the semigroup ( S(X), @) with @ € S*(X) where S(X) is a regressive
transformation semigroup on X of our purpose.

In addition, some isomorphism theorems on regressive generalized transformat-
ion semigroups are provided.
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CHAPTER 1

INTRODUCTION AND PRELIMINARY

For a set X, let | X | denote the cardinality of X . The set of positive integers, the
set of integers and the set of real numbers are denoted by N, Z and R, respectively.
An element a of a semigroup S is called an idempotent of S if a®> = a. For a

semigroup S, let £(S) be the set of all idempotents of S, that is,
ElS)={acS|a’=a}.

If a € S and k € N are such that a* = a**1, it is clearly seen that a* = a** which

implies that a* € E(S). Hence
{d"|a€ S keNandd =d"™ } C E(S).

An element a of a semigroup S is said to be regular if a = aba for some b € 5,
and S is called a regular semigroup if every element of S is a regular element of
S. The set of all regular elements of a semigroup S will be denoted by RegS, that
is,
RegS ={a€ S|a=aba for some b e S }.

Consequently, F(S) C RegS. By an_eventually regular element of a semigroup S
we mean an element a of S such that a* € RegS for some k € N. If every element
of S is eventually regular, we call S an eventually reqular semigroup. Therefore a
regular semigroup is eventually regular.

For an element a of a semigroup S, let <a> denote the subsemigroup of S
generated by a, that is,

<a>={a"|neN}



We call S a periodic semigroup if <a > is finite for every a € S. It is known that
for a € S, if <a> is finite, then a* € F(S) for some k € N. Since F(S) C RegsS for
every semigroup S, it follows that every periodic semigroup is eventually regular.
In particular, every finite semigroup is eventually regular. Therefore we have that
if a semigroup S is regular or periodic, then S is eventually regular. In fact, ifa € S
and a* € E(S) for some k € N, then < a > is a finite subsemigroup of S. To see this,
let n € N be such that n > k. Then there exist m € Nand r € { 0,1,...,k—1}
such that n = mk + 7. Thus a* = o™ = (a*)™a". Since a* € E(S), (a*)™ = d*
so @ = a"7. This implies that < a > = { a,d?,...,d" " ... a® 1} We
therefore conclude that for a € S, <a> is finite if and only if a* € E(S) for some

k € N. Hence we obtain the following proposition.

Proposition 1.1. Let S be a semigroup. If ReqgS = E(S), then S is eventually

reqular if and only iof S is periodic.

For semigroup S, let S' = S if S has an identity, otherwise, let S! be the
semigroup S with the identity 1 adjoined. For the later case, S' = S U {1} and
1 ¢ S and extend the operation in S to 1 in S'U {1} by defining la = al = a for
every a € SU{1}.

A partial transformation of a set' X is a map from a subset of X into X. The
empty transformation 0 is the partial transformation with empty domain. Let

P(X) be the set of all partial transformations of X, that is,
PX)={a:A—-X|ACX }.

Then 0 € P(X). The identity map on a nonempty set A is denoted by 14. Then
14 € P(X) for every nonempty subset A of X. In particular, 1x € P(X). We
denote the domain and the image of & € P(X) by dom « and im «, respectively.

Also, for a € P(X) and x € dom «, the image of = under « is written by xa. The



composition aff of «a, B € P(X), is defined as follows: a5 = 0 if ima Ndom f =
&, otherwise o is the usual composition of the functions o |(imand0m B)a-1 and
B |(imandomp)- Then under this composition, P(X) is a semigroup having 0 and

1x as its zero and identity, respectively. Observe that for «, § € P(X),
dom(af) = (ima N dompB)a™! C doma,
im(ag) = (ima NdompB)f C imf,
r € dom(af) <= € doma and za € domf.
The semigroup P(X) is called the partial transformation semigroup on X. By a
transformation semigroup on X we mean a subsemigroup of P(X).
By a transformation of X we mean a map of X into itself. Let T'(X) be the
set of all transformagions of X. Then
T(X)={acP(X)|doma=X }

which is a subsemigroup of P(X) containing 1x and it is called the full transfor-
mation semigroup on X.

Let I(X) denote the set of all 1-1 partial transformations of X, that is,
I(X)={aecPX)|ais 1-1 }.

Then I(X) is-a subsemigroup of P(X) containing 0-and-1 x-and it is called the 1-1
partial transformation semigroup of X or the symmetric inverse semigroup on X.
It.is 'well-known that all P(X), 7(X) and I(X) are regular ([1], page 4) and
for a € P(X), o®> = a (o € E(P(X))) if and only if ima C doma and za = x
for all x € im a.
For a nonempty subset A of X and x € X, let A, be the element of P(X)
with domain A and image {z}.

The shift of a € P(X) is defined to be the set

S(a)={xedoma | za#z },



and we call a almost identical if S(«) is finite (|S(a)| < o0). Next, let

AP(X) = {ae€ P(X)| «ais almost identical },
AT(X) = {aeT(X)]| «ais almost identical },

AI(X) = {ae€l(X) |aisalmost identical }.

Then 0 and 1x belong to AP(X) and A/(X) and 1x € AT(X). Let a, 8 € P(X)
and z € S(af). Then z € dom(af) C doma and zaf # z. If x ¢ S(«), then
ra = x € dom 3, so 13 = xaf # x which implies that = € S(3). This shows
that S(afB) C S(a) US(F). It follows that if |S(a)| < oo and |S(5)| < oo then
|S(aB)| < oo. Hence AP(X), AT(X) and AI(X) are respectively subsemigroups
of P(X),T(X) and I(X). The proofs of regularity of P(X),T(X) and I(X) show
that AP(X), AT(X) and AI(X) are also regular. Note that if X is finite, then
AP(X)=P(X),AT(X) =T(X) and AI(X) = I(X).

If S(X) is a transformation semigroup on X and 6 € S'(X), let (S(X),0)

denote the semigroup (S(X), *) where the operation * is defined by
ax 3 =ap for all a, f € S(X).

We call such a semigroup (S(X), ) a generalized transformation semigroup on
X. Note that S(X) = (S(X), 1) where 1 is the identity of S*(X). To distinguish
between o in the semigroup S(X)and the product o * ... a(n times) in the
semigroup (S(X),*) = (S(X),0) where oo € S(X) and n is a positive integer,
we shall use (o, )" to denote the later product. For examples, (a, #)? and (a, 6)*

denote afa and afababa, respectively. Observe that (a, 0)" = (af)" o if n > 1.

Example 1.2. Let X be a nonempty set and a € X. Then (T(X), X,) is the

semigroup 7'(X) with the operation * defined as follows:

axf=aX,0 =X, forall a,peT(X).



Also, (P(X), X,) is the semigroup P(X) with the operation o defined by

(doma),s if a#0and a € domf,
aoff=aX,f=

0 otherwise.

Moreover, (I(X),{a}s) = (1(X), e) where

{aa™ s ifa € imanNdomf
aef=ofal.f =

0 otherwise.

Next, let X be a partially ordered set (a poset). An element a € X is called

an isolated point if
forxe X, t<aorx>a=— xr=a,

and we call X isolated if every element of X is an isolated point of X. By a chain
of X we mean a chain Y such that ¥ C X and the partial order of Y is the partial
order of X restricted to Y-

For a € P(X), e is said to be regressive if
rza < z for all x € dom a.

A transformation semigroup on X is said to be regressive-if-all of its elements are

regressive. Let

Pre(X) =-"{a€P(X)|aisregressive },

APrp(X) = {a€ AP(X) | « is regressive }.

Then 0 and 1x belong to both Prg(X) and APrg(X) and both Prg(X) and
APgp(X) are subsemigroups of P(X) and APrg(X) C Prge(X). The notations
Tre(X), ATrp(X), Irp(X) and Algrp(X) are defined analogously. Thus 1y €

ATRE(X) g TRE<X),O, 1X € A[RE(X) Q [RE(X)a TRE‘(X) and ATRE(X) are



subsemigroups of T'(X) and Igp(X) and Algrg(X) are subsemigroups of I(X).

Observe that

APrp(X) = {a€ P(X)| ais regressive and |S(a)| < oo },
ATrp(X) = {aeT(X)| aisregressive and |S(a)| < 00 },

Algp(X) = {ael(X)| aisregressive and |S(a)| < 0o }.

By a regressive transformation semigroup on X and a regressive almost identical
transformation semigroup on X we mean a subsemigroup of Prgp(X) and a sub-
semigroup of APgg(X), respectively.

A.Umar [4] proved that if X is a finite chain, then the subsemigroup
S={aecTprp(X)||mal <|X]|}

of Tre(X) is generated by F(S) and S is not regular if | X| > 3.
It was shown in [2] that Reg(S(X)) and E(S(X)) coincide for every regressive

transformation semigroup S(X) on any poset X.

Proposition 1.3. If X is a poset and S(X) is a regressive transformation semi-

group on X, then Reg(S(X)) = E(S(X)).

Using Proposition 1.3' as a lemma, the above six regressive transformation

semigroups on a poset were considered when they are regular as follows:

Theorem 1.4. [2] Let X be a poset'and let S(X) be Prp(X), Irp(X), APrg(X)

or Algp(X). Then the semigroup S(X) is reqular if and only if X is isolated.

Theorem 1.5. [2] Let X be a poset and let S(X) be Trp(X) or ATrp(X). Then

the semigroup S(X) is regular if and only if |C| < 2 for every chain C' of X.

In [2], some interesting results relating to eventually regular regressive trans-

formation semigroups were provided as follows:



Theorem 1.6. [2] Let X be a poset and let S(X) be Prp(X), Tre(X) or Igp(X).
Then the semigroup S(X) is eventually reqular if and only if there exists a positive

integer n such that |C| < n for every chain C of X.

Theorem 1.7. [2] FEvery regressive almost identical transformation semigroup on

any poset 1s eventually reqular.

A significant isomorphism theorem on full regressive transformation semi-
groups was given by A.Umar in [5] as follows: For chains X and Y, Trg(X) and
Tre(Y) are isomorphic if and only if X and Y are order-isomorphic. Moreover,
in [3], T. Saito, K. Aoki and K. Kajitori gave necessary and sufficient conditions
for posets X and ¥ so that Tre(X) and Tre(Y') are isomorphic, and A. Umar’s
theorem mentioned above becomes their special case.

By a regressive gemeralized transformation semigroup on a poset X we mean
a semigroup (S(X),6) where S(X) is a subsemigroup of Prp(X) and 6 € S1(X).
A regressive almost identical generalized transformation semigroup on a poset is a
semigroup (S(X),0) where S(X) is a subsemigroup of APrg(X) and 6 € S1(X).

In Chapter II, we show that Proposition 1.3 holds for any regressive generalized
transformation semigroups. Moreover, we generalize Theorem 1.4 and Theorem
1.5 to their regressive generalized transformation semigroups.

In Chapter III, we generalize Theorem 1.6 .and Theorem 1.7 by considering
regressive generalized transformation semigroups: Beside Theorem 1.6 and Theo-
rem 1.7, some interesting consequences of our results are also provided.

The purpose of Chapter IV is to give some isomorphism theorems on regressive

generalized transformation semigroups for some certain poset X and 6.



CHAPTER II
REGULAR REGRESSIVE GENERALIZED

TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to determine when (S(X),0) is a regular semi-
group where X is any poset, ¢ € S(X) and S(X) is any of Pre(X), Tre(X),
Inp(X), APrp(X)s ATgs(X) and Alps(X).

We begin this chapter by showing that every regular element of a regressive
generalized transformation semigroup (S(X), ) with § € S'(X) must be an idem-

potent of (S(X),0).

Proposition 2.1. If S(X) is a regressive transformation semigroup on a poset

X, then Reg(S(X),0) = E(S(X),0) for every 0 € S*(X).

Proof. Let @ € S*(X)and a € Reg(S(X),0). Then o = af0a for some 3 € S(X).

Thus
for v € doma, xa = ‘xalfba = (xabf)0a
< zabp = (za)lf < za
which implies that
ra = zaff for every x € domav. (1)
But a = affba, so from (1),

for z € doma, za = zalfba = (xaldf)bo

= zafa = x(a,0)>. (2)



It then follows from (2) that
dom a C dom (a, #)? and za = x(a,§)? for every x € doma. (3)

But dom (a, 0)? = dom (afa) C doma, so (3) yields a = (o, 0)? € E(S(X),0).

Consequently, Reg(S(X),0) = E(S(X),0), as required. O

In Proposition 2.1, S(X) = (S(X), 1) where 1 is the identity of S*(X). Hence

Proposition 1.3 becomes a consequence of Proposition 2.1.

Corollary 2.2. If S(X) is a regressive transformation semigroup on a poset X,

then Reg(S(X)) = FE(S(X)).

The regressive transformation semigroup S(X) on a poset X may not contain
an identity. It is natural to ask whether there is a regressive transformation semi-
group S(X) on a poset X such that S(X) is not isomorphic to (S(X), 8) for every

6 € S(X). An existence of such a semigroup is given by the following example.

Example 2.3. For each n € N, let a,,: Z — Z be defined by
ra, =x—mn forall x € Z.

Then with the natural order on Z, o, € Trp(Z) for everyn € N and o; # «; for
distinct ¢ # j in N. Let

S(Z) =4 Wy i e NI X

Clearly, o,y = Qi for all n,m € N. We therefore conclude that S(Z) is a sub-
semigroup of Trr(Z) and S(Z) has no identity. We claim that S(Z) 2 (S(Z), a,)
for every n € N. Suppose that S(Z) = (S(Z),ay) for some k € N. Let ¢ be

an isomorphism from S(Z) onto (S(Z),ay). Then there exists ¢ € N such that

QP = ag.



10
Case1l: t>1.Thent—1€N, so

a1 =
= (w101)yp
= (1p)ar(aryp)
= a0, for some s,r € N.
= Ogsiktr

which is a contradiction since s + k + 7 > 1.

Case 2: t=1. Then ayp = ay, so

o = (o )p = (04190)%(04190) = Q1001 = Qpyo.

To show that a,, = a(y— 1)y for all n € N with n > 1, suppose that [ € N,/ > 1

and oy = -1k Thus

ap = (an)y
= _{aup)ar(aro)
= (a(l—l)k+l)aka1
= Ok—k+i+k+1
= Ogr(+1)-
This proves thatim o= { - 1)k4n [0 EN Y s0imp ={ @1, @i, Gokrs, O3kta, - . }
which 'does not contain ay. This is contrary to that ¢ is onto.

Theorem 1.4 and Theorem 1.5 provide respectively the next two theorems

easily.

Theorem 2.4. Let X be a poset and let S(X) be Prp(X), Irp(X), APgrg(X) or
Algp(X) and 6 € S(X). Then the semigroup (S(X),0) is reqular if and only if

0 =1x and X is isolated.
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Proof. Assume that (S(X),0) is regular. By Proposition 2.1, we know that
Reg(S(X),0) = E(S(X), ). Then by assumption, we get (S(X),0) = E(S(X),0).
Since 1x € S(X), 1x is an idempotent of (S(X), ), so 1x = 1x01x = 6. This
shows that (S(X),0) = S(X). It follows from Theorem 1.4 that X is isolated.

The converse follows directly from Theorem 1.4. O]

Theorem 2.5. Let X be a poset and let S(X) be Trp(X) or ATrr(X) and 6 €
S(X). Then the semigroup (S(X),8) is reqular if and only if 6 = 1x and |C| < 2

for every chain C' of X.

Proof. Using Proposition 2.1 and Theorem 1.5, the proof of the theorem can be

given similarly to that of Theorem 2.4. m

Example 2.6. Let S(N) be one of Prp(N), Trr(N), Irp(N), APrp(N), ATpp(N)
or Alpg(N) under the natural order on N. We then have by Theorem 2.4 amd 2.5
that the semigroup (S(N), ) is not regular for every 6 € S(N).
Next, let
C(N) = {A|1e ACN}
Recall that A; is an element of P(N) with domain A and image {1}. Then C(N)
is an infinite subset-of Prp(N) and for- 1€ A € Nand 1-€ B C N, A1 B; = A;.

This implies that C'(N) is an infinite regular subsemigroup of Prgp(N). Also, for

any 0. C'(N), (C'(N), 0) is an infinite regular subsemigroup of ( Pz (N), 6).
y ) g group



CHAPTER III
EVENTUALLY REGULAR REGRESSIVE

GENERALIZED TRANSFORMATION SEMIGROUPS

Our purpose of this chapter is to generalize Theorem 1.6 and 1.7. We first
provide necessary and sufficient conditions for X and 6 so that the semigroup
(S(X),0) is eventually regular where X is any poset, S(X) is Pre(X), Tre(X)
or Igp(X) and 6 € S(X). Next, we show that for every subsemigroup S(X) of
APrgp(X), (S(X),0) with 6 € S'(X) is an eventually regular semigroup.

To obtain the first main result, the following series of lemmas is required.

Lemma 3.1. Let X be any poset and let 0 € Prp(X). If there exists a positive

integer n such that every chain of X of the form
T 2> 210 > 39 > 90 > 13 > 730 > ...

with x; € dom0 has length at most n, then for every a € Prp(X), (a,0)"*? €

E(Prp(X),0).
Proof. Let-a. € Prp(X) and z € dom(af)™"!. By assumption, the chain
ra > zaf > z(af)a > x(ad)? > ... > z(ab)"a > x(af)
has length at most n, so its subchain
raf > z(abf)? > ... > z(ah)" ! (1)

has length at most n. If z(af)’ > z(af) for every i € {1,2,...,n}, then the

chain (1) has length n + 1, a contradiction. Thus x(af)’ = z(af)*** for some
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i€{1,2,...,n}. Since x € dom ()"}, x(ah)’ € dom (ah)"~*. We then deduce
that
x(ae)n—&-l — x(ae)i(ae)n+l—i — x(ae)i“(a&)”“_i — $(a9)"+2. (2)

It follows from (2) that

dom ()" C dom (af)"*? and z(af)" ™ = z(af)"*? (3)
for every x € dom(af)"*!.
But dom (af)"*? C dom (af)" ", so (3) yields (af)"*! = (af)"*2. This implies
that
(o, 0)"2 = (af) "o = (ad)" o = (o, §)" 3.

Consequently, (o, 0)"t? € E(Pgp(X),0) (see Chapter I, page 1). O

By the definition of regressive generalized transformation semigroups, the fol-

lowing lemma is a direct consequence of Lemma 3.1.

Lemma 3.2. Let S(X) be a regressive transformation semigroup on any poset X
and 0 € SN (X). If there exists-a- positive-integer-n-such that every chain of X of
the form

T1 > 110 > 29 > 200 > 13 > 230 > ...

with x; € dom@ has length at most n, then the semigroup (S(X),0) is eventually

reqular.
The following corollary follows directly from Lemma 3.2.

Corollary 3.3. If S(X) is a regressive transformation semigroup on a poset X
and 6 € SYX) with |imf| < oo, then the semigroup (S(X),0) is eventually

reqular.

Moreover, Proposition 1.1, Proposition 2.1, Lemma 3.2 and Corollary 3.3 yield

the following fact.
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Corollary 3.4. Let S(X) be a regressive transformation semigroup on a poset X
and 0 € SY(X). If there exists a positive integer n such that every chain of X of
the form

T1 > 110 > 29 > 200 > 13 > w30 > ...

with x; € dom@ has length at most n, then the semigroup (S(X),0) is periodic. In

particular, if |im6| < oo, then the semigroup (S(X),6) is a periodic semigroup.

Lemma 3.5. Let X be a poset and let S(X) be Prp(X), Tre(X), or Izrp(X) and
0 € S(X). If X contains a sequence of pairewise disjoint finite chains Cy,C,Cs, . ..

such that each C; is of the form

Ty > 10 > 29 > 390 > .. > @y, > 74,0
and ky < ke < k3 < ..., then the semigroup (S(X),0) is not eventually regular.
Proof. For each i € N, let

Ci = { 21, 210, Tip, Tin0, . .. oL }
where Ti1 = $i18 > T > l‘ige > > T, > xzkﬁ
We may assume that ki > 2, otherwise we consider the sequence Cs, C3, Cly, . ..

instead. To show, that (S(X),€) is not eventually regular, define o from the set

Ufil{ 10,2490, . . . 7.Ti,ki-19 } onto the set Ufil{ Ti2, L3y + -y Lik, } by
(xije)oz:m,jﬂ forieNandje{1,2,...,k—1}.

The map « is well-defined because C, Cy, Cj, ... are pairwise disjoint. Because of
the form of each C;, we have that « is 1-1 and regressive. Then a € Irg(X) C

Pre(X). Let n € N. Since the sequence ky, ko, ks, . .. of positive integers is strictly
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increasing, there exists m € N such that k,,, > 2n. We then deduce that

(2n10)(a, )" = (2,10) ()"

> xm,2n+1

= (@,00)(a,0)*.

This proves that (a, 0)" # (e, 0)*" for every n € N. Thus (o, 0)" ¢ E(Prg(X),0)
for every n € N. By Proposition 2.1, « is not an eventually regular element of the
semigroup (S(X),0) if S(X) is Pre(X) or Ipp(X).

Next, assume that S(X) = Tre(X). Then 0 € Trr(X) C Prp(X). Let

G: X — X be defined by

ra if x € dom
xf =

T if x € X ~ dom a.

Then f € Tgrp(X). If n € N, from the above proof; there exists an element
y € doma such that y(a,0)" > y(a,0)*", that is, y(ad)" ta > y(ab)? la.

Consequently,

y(BO) 168 = y(ad)" o > ylad)" la = y(86) '3

which implies that (3,60)" # (3, 0)**. We therefore have from Proposition 2.1 that
£ is not an eventually regular element. of the semigroup (Trg(X),0).

Hence the lemma is completely proved. O
An interesting consequence of Lemma 3.5 is as follow :

Corollary 3.6. Let X be any poset and let S(X) be Prp(X), Tre(X) or Izrp(X).
If X does not have a minimal element, then the semigroup (S(X),0) is not even-

tually regular for every 6 € S(X) with domf = X.
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Proof. Let x1 € X. Thus x; > x16. By assumption, x16 is not a minimal element,
so 110 > x9 for some x9 € X. Then xy > 210 > x9 > x960. By this process, we

obtain a sequence
$1Z$10>$22$29>$32$39>...

Let (k,) be a strictly increasing sequence of positive integers such that k; > 1 and

let [; = k1 + ko +-- -+ k; for all 7 € N. Define the chains C; for 7« € N as follows :

Cl ~— {.’L’h 2719, W% ,xll,.rll@}
CZ F {xll—‘rh 'rll-i-lea ce s Ly, .’L‘l20}

Cg = {$12+1, (L’12+10, L\ " ,ZL’IS, (13139}

Then each Cj is a finite chain of X', C;NC; = @ if i # j and each C; is of the form
y1 > 10 > yo > ya > o0 >y >y 0. Also, ky < ky < kg < ... . Therefore we

have from Lemma 3.5 that (S(X),#) is not an eventually regular semigroup. [

As was mentioned previously, we have that eventual regularity and periodicity

of regressive generalized transformation semigroups are identical. Then we have

Corollary 3.7. Let X be a posct and let S(X) be Prp(X), Tre(X) or Irp(X).
If X does not have a minimal element, then the semigroup (S(X),0) is not a

periodic semigroup for every 0 € S(X) with domf = X.
Now we are ready to give the first main result.

Theorem 3.8. Let X be a poset and let S(X) be Prp(X), Tre(X) or Irg(X)
and 0 € S(X). Then the semigroup (S(X),0) is eventually reqular if and only if

there exists a positive integer n such that every chain of X of the form

Ty 2> 210 > 19 > 290 > 13 > 130 > ...
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with x; € dom8@ has length at most n.

Proof. 1f there is an element n € N such that every chain of X of the form
$12$192$221’2825L’32I302... (1)

with z; € dom @ has length at most n, then by Lemma 3.2, (S(X),0) is an even-
tually regular semigroup.

To prove necessity by contrapositive, assume that for every positive integer n,
there exists a chain of X of the form (1) of length greater than n.

For better understanding in counting, the chain (1) can be revised as follows : If
there is i € N such that @; = ;0 = ;4 in (1), then we can replace z; = ;0 = z;1,
by x;+1 and the revised chain is still of the form (1). Also, if there is i € N such
that z;60 = x;1.1 = z;110, then this can be replaced by x;6 and the revised chain is

still of the form (1). Because of these facts, (1) can be considered as
I12$192$22I292$32I392... (2)
with x; € dom# and any three consecutive
terms not identical.
In the remainder of this proof, elements z;, 2}, z;; which we use always belong to
dom 6. Then by the above assumption, we have that every positive integer n, there
exists a chain of X of the form (2) of length greater than n. If there is no chain

of X of the form

x1 > 110 > 19 > 290, (3)
then any chain of X of the form (2) has length not more than the chain
T > 110 = 2] > 216

(because if we can add > y > yf# with y € dom @ after 26, we obtain a chain of

the form (3)), so every chain of X of the form (2) has length at most 3 which is
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contrary to the assumption. Then there is a chain

Cy = { @11, 2110, 212, 1120 } with

r11 > 2110 > 12 > T120.
If there is no chain of the form (2) of the subposet X ~\ C; of the form
Ty > 110 > 29 > 1'20 > x3 > 1'38, (4)

then any chain of X'~ (' of the form (2) has length not more than the length of
the chain

Ty > 110 = 2y > 210 > 10 > 190 = 1), > 150

(because if we can add > y > y0 with y € dom 6 after x.0, we obtain a chain of
the form (4)), so every chain of X of the form (2) has length at most |C| + 6, a

contradiction. Let Cy be a chain of X ~ C; such that

Cy = { @a1, 210, Taa, T228, a3, 230 } with

To1 > X910 > Tog = Toal > Taz > wosb.

Thus C; N Cy = @. Again, if the subposet X \ (C; UC%) of X does not contain a

chain of the form
T, > 110 > To > 1'29 > x3 > 1’30 > x4 > 1’49, (5)

then any chain of X ~\ (C; U Cy) of the form (2) has length not more than the

length of the chain
Ty > 210 = 2] > 210 > 19 > 190 = 1 > 100 > 13 > 130 = x5 > 740

(because we will obtain a chain of the form (5) if we can add > y > y# with

y € dom@ after x}0), which implies that every chain of X of the form (2) has
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length at most |Cy|+ |Cy| + 9, a contradiction. Let C3 be a chain of X \ (C; UCy)

such that

Cs = { 231, 1310, 13, T320, 733, 2330, T34, 1340 } With

T31 > X310 > T3 > X390 > w33 > 1330 > 234 > T340.

Then C5N C7; = @ and C3 N Cy; = &. By this process, we obtain a sequence of

pairwise disjoint finite chains C, C5,C3, ... of X such that each i € N,

Ci ={ @i, 10,2, 020, ..., % 41,2410 } with

Tin 2 Tl > Tjp 2> Tinl > ... > T4 > Tii0.

We therefore deduce from Lemma 3.5 that the semigroup (S(X),#) is not even-
tually regular.

Hence the theorem is completely proved. O

Also, from Proposition 1.1, Proposition 2.1 and Theorem 3.8, the following

corollary is directly obtained.

Corollary 3.9. Let X be a poset and let S(X) be Prp(X), Tre(X) or Irp(X)
and 0 € S(X). Then the semigroup (S(X),0) is periodic if and only if there exists

a positive integer n such that every chain: of X of the form
T1 > 110 > 25 > 200 > 13> 230 > ...
with x; € dom@ has length at most n.

It is easily seen that the following two statements on X are equivalent.

(1) There is a positive integer n such that every chain of the form z; > xo >
x3 > ... has length at most n.

(2) There is a positive integer n such that |C| < n for every chain C of X.

Hence the following result given in [2] becomes our special case.
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Corollary 3.10. Let X be any poset and let S(X) be Prp(X), Tre(X) or Irp(X).
Then the semigroup S(X) is eventually reqular if and only if there is a positive

integer n such that |C| < n for every chain C of X.

Example 3.11. Under the natural order on R, let S(R) be Prg(R),Tre(R) or
Irp(R). If # € S(R) with dom# = R, then by Corollary 3.6, (S(R),#) is not an

eventually regular semigroup.

Let n € N and define 6, € P(R) and 6/, € I(R) by
domd,, = [0, 0),
n,00)0, =n, In—1,n)6,=n—1,..., [0,1)§, =0,
domb, ={n+1,nn—1,....,1},

(n+1)0, =n,nb,=n—1,...,16, = 0.

Then Qn S PRE(R), 9/

n

€ Igp(R), imb, = { n,n—1,...,1,0 } = imé/,. We
therefore deduce from Corollary 3.3 that (Prg(R),6,) and (Igg(R),0!) are both

eventually regular.
Example 3.12. Define ¢;: N — N by

r—1 if ze N~ {1},
1'91 = and 92 = 91|N\{1}-
1 it x=1
Then 6, € Trp(N) C Prg(N) and 6y € Ipp(N) C Prg(N). Moreover, for every

n €N,
2n > (2n)6; > (2n)07 > ... > (2n)6:" ' and
2n > (2n)6, > (2n)05 > ... > (2n)05" "
and both chains have length 2n > n. Then by Theorem 3.8, all of the semigroups

(Pre(N),01), (Tre(N),01), (Pre(N),02), and (Irp(N),6) are not eventually reg-

ular.
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In fact, for n € N and for i € { 1,2 }, we have

4n(91, 61)271 = 4”6?”71 =1

<2n+1=4n6""" = 4n(6;,0,)",

Hence (61,0;)" is not an idempotent of (Prp(N), 6;) and (Tre(N), 6;) and (6, 62)"
is not an idempotent of (Prg(N),0s) and (Irg(N), 0,) for every n € N. By Propo-
sition 2.1, #; is not an eventually regular element of (Prg(N), 6,) and (Trr(N), 0;)
and 605 is not an eventually regular element of (Prg(N), 6;) and (Igp(N),02).

The last theorem is the second main result of this chapter.

Theorem 3.13. For any poset X, if S(X) is a regressive almost identical trans-
formation semigroup on X, then the semigroup (S(X),0) is eventually reqular for

every 0 € S1(X).

Proof. Let 0 € SY(X) and a € S(X). Then af € S(X), so S(af) is finite, say

|S(af)| = n. Let € dom (af)" 2. Then
r(cd) > z(cd)> > > z(cd)™ 2.

If z(af) > z(ab)? > ... > z(ah)"? then { z(ab),z(ab)? ..., x(ad)"" } C
S(af) and | { z(ab),z(ad)?, .coyx(af)™ } "= n + 1, a contradiction. Thus
z(af)’ = z(af) for some i€ {1,2,...,n+1 }:Since z €dom (af)" 2, z(ab)’ €

dom (af)"T2=%. Then we deduce that
z(af)"? = 2(ab) ()" 7" = () (af)" T2 = 2(ab)".
This shows that
for each x € dom (af)" ™2, z(af)"* = ()"t

It then follows from this fact that dom (af)"™ C dom (af)"™ and z(af)"™? =

z(af)" "3 for every x € dom(ad)" 2. But dom ()" C dom (af)"*2, so we have
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(af)"™2 = ()" 3. Hence (a, 0)" ™ = (ab)" o = (af)"Pa = (o, §)"™, and thus
(@, 0)"+ € B(S(X),0).

Therefore the proof is complete. O

AOUUINBUINT )
ANRINTUNINEAE



CHAPTER IV

ISOMORPHISM THEOREMS

In this chapter, some isomorphism theorems on regressive generalized trans-
formation semigroups are provided. The purpose is to show that for some posets

X, some regressive transformation semigroups S(X) on X and certain 61,6, €

S(X), (S(X),0;) = (S(X),0s) if and only if 6, = 0s.

Theorem 4.1. Let S(X) be a regressive transformation semigroup on a poset X

containing an identity n. Then for 6 € S(X),
(S(X),0) = S(X) < 0=n.

Proof. Note that S(X) = (S(X),n). Assume that (S(X),0) = S(X). Since S(X)

has an identity, (S(X), ) has an identity, say p, that is,
abp = pba = a for every a € S(X).

In particular; nfp = pbn = n since 1 € S(X). But since ¢ € S(X) and 7 is the

identity of S(X), we have 6n = nf.= 6. Now, we have
Op = pb =mnand On =nb = 0.

Then domn = dom(fu) € dom# and dom# = dom(nf) C dommn, so domf =

dom 7. Also, for x € dom 0(= domn)

x = xznb = (zn)0 < xn,

xn = x0p = (x0)pu < x6.
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Consequently, dom # = domn and z6 = xn for every x € dom#, so 6 = .

The converse is trivial. O
The following is an immediate consequence of Theorem 4.1.

Corollary 4.2. Let X be a poset and let S(X) be Prp(X), Tre(X) or Igp(X).

Then for 6 € S(X),

(S(X),0) 2 S(X) — 6= 1yx.

Theorem 4.3. Let S(X) be a transformation semigroup on a set X containing

an identity and a zero &. Then for 6 € S(X),

Proof. Let n be the identity of S(X). First, assume that (S(X),0) = (S(X),€).
Since ¢ is the zero of S(X), it follows that a&f = ¢ for all a, § € S(X), that is,
(S(X),¢) is a zero semigroup. Consequently, (S(X),0) is a zero semigroup. But
abé = 0o = £ for all a € S(X), so £ is the zero of (S(X),0). In particular,
nfn = £. Since 7 is the identity of S(X), we have that 6 = €.

The converse is immediate. O

Corollary 4.4. Let X be a poset and S(X) be Prp(X) or Igp(X). Then for

6 e S(X),

Proof. Tt follows directly from Theorem 4.3 since 1x,0 € S(X). O

If @ is the minimum element of a poset X, then X, is the zero of Trr(X).

That is because aa = a for all a € Trr(X), which implies that

aX, =X, = X,a for every a € Trp(X).
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Hence the following theorem is obtained directly from Theorem 4.3 and that

lx € Tre(X) for every poset X.

Corollary 4.5. Let X be a poset containing a minimum element a. Then for
0 € Trp(X),
(Tre(X),0) = (Trp(X), X,) <= 0= X,.
For a poset X containing a minimum element a, X, € Prp(X) but not a zero

of Prp(X) because 0 is the zero of Prp(X). However, Corollary 4.5 remains valid
if Tre(X) is replaced by Prp(X).
Theorem 4.6. Let X be a poset containing a minimum element a. Then for
0 € Pre(X),

(Pre(X),0) = (Pre(X), X,) < 0= X,.
Proof. First we note that {z}, € Prp(X) for all z,y € X with y < z. Assume
that (Pgre(X),0) = (Pre(X), X,). Since X, is not the zero of (Prg(X), X,), it
follows from Corollary 4.4 that 6 # 0. Let ¢ be an isomorphism of (Prg(X),6)
onto (Prr(X),X,). Since 0-is the zero of both (Pre(X),0) and (Pre(X),X,), for
a € Prp(X),ap =0 if and only if @ = 0. Since « is the minimum element of X,
we deduce that

for'a € Prp(X),a € doma = aa =a. (1)

Pick b € dom 6. Then {b},01x = {b},0 # 0 which implies that

({0}01x)p = ({b}s)pXa(lxp) # 0,

and hence
a € dom(1x¢). (2)
To show that dom 6 = X, let € X. Then {x}.p # 0,50 ({z}.p) X, = (dom({z}.¥))a.

Hence by (2), ({z}.)pXa(1x¢) # 0. Consequently,

0 # ({w}xQD)Xa(lXSO) = ({x}xelX%O = <{x}x‘9)§0
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which implies that € dom . This proves that dom@ = X. By (1), a € im6. To
show that im # = {a}, suppose not. Then there is ¢ € im0 \ {a}. Then ¢ > a and

df = c for some d € X. But 6 is regressive, so d > ¢. Hence

0 # {d}ep = ({d}ab{c})p  since dd = c

= ({d}ap) Xa({c}cp)
which implies that
a € dom({c}.p). (3)
It then follows that

0 7é ({C}CSO>X0L({C}C§0) Y ({C}CQ{C}C)LP-

Thus ¢ € dom @ and cf = c. But

0 # {c}ap = ({c}b{c}.)e since cf = ¢
= ({c}c@)Xa({c}a@)
= (dom({c}c))a because of (1) and (3),

SO

0 # (dom({c}ep))a = (dom({e}etp))aXa(dom({c}ew))a - from (1) and (3)
= {clapXa{clap
= ({c}ab{cta)e

= 0¢p since afl = a < ¢

This is a contradiction. Thus 6 = X, as required.

The converse is trivial. O
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From Corollary 4.2, Corollary 4.4, Corollary 4.5 and Theorem 4.6, it is natural
to ask whether the following question is true. If X is a poset and S(X) is Prg(X),

Tre(X) or Igrp(X), and 60,6, € S(X), is it true that

(S(X),0) = (S(X),00) <= 0 =07

The following example gives a negative answer.

Example 4.7. Let X = {a, b, ¢} with a partial order defined by the following

Hasse diagram.

(1) Define 6;,605: X — X by

a91 — b, b91 — b, 601 = C,

aby =c, by = b, cly = c.

Then Tre(X) ={ 1x,0:1,05 } and 0 # 6. It is clearly seen that 6,0, = 6; = 6,0,
and 02601 = 0y = 6,05. From this fact, it is easy to see that the map ¢: Trp(X) —
Tre(X) defined by

Ixp =1x;61p =05 and Oy = 6,
is an isomorphism of (Trg(X),01) onto (Tre(X),02).
(2) We have that {b}, and {c}. are distinct elements of Irg(X)(C Prge(X)). We

claim that

(S(X),{b}s) = (S(X),{c}.) where S(X) is Pre(X) or Igg(X).



28

For convenience, let (b, c) denote the element of T'(X) defined by

(
c if x=0b,

z(b, c) = b if x=c,

x otherwise.

Note that (b,c) € I(X). First, we shall show that for a € S(X), (b, c)a(b,c) €
S(X). Let a € S(X) and x € dom(b,c)a(b, ¢). Since b and ¢ are minimal elements
of X and « is regressive, we have bav = b if b € dom « and ca = ¢ if ¢ € dom av.
Case 1 : z = a. Then a(b, ¢)a(b, ¢) < a since a is the maximum element of X.
Case 2 : x =b. Then b(b,c)a(b,c) = ca(b,¢) = ¢(b,c) = b.

Case 3 : x = c. Then ¢(b,c)a(b, c) = ba(b, ¢) = b(b, c) = c.

Thus (b, c)a(b, ¢) is regressive. If av € I(X), then so is (b, c)a(b, c) since (b,c) €
I(X). This shows that (b, c)a(b,c) € S(X). Define U: S(X) — S(X) by a¥ =
(b,c)a(b,c) for all a € S(X). If a,5 € S(X) are such that a¥ = GV, then
(b, c)a(b,c) = (bye)B(b,c), so a = 3 since (b,¢)(b,c) = 1x. Hence VU is 1-1. But

S(X) is finite, so ¥ is onto. If «, § € S(X), then

({b}s0)¥ = (b, ¢)(a{b}p0)(b; )
= (b, a(b;e))((b;){b36 (b, 0))((b;¢) 5 (b, )
since (b, c)(b,c) = 1x
= (@) {c}e(BY),

0,V is a homomorphism of (S(X), {b},) into (S(X), {c}.). This proves that ¥ is

an isomorphism of (S(X), {b}) onto (S(X), {c}e).

Example 4.7(2) shows that if X is a poset and S(X) is Prp(X) or Igp(X), it
is not generally true that for a,b € X, (S(X),{a}.) = (S(X), {b}y) implies a = b.

However, the next theorem shows that this is true if X is a finite chain.
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Lemma 4.8. Let X be a chain anda € X. For o € Prp(X),a € E(Prp(X),{a}.)
if and only if either o =0 or a = A, for some AC{z € X |z >a} witha € A.

In particular, E(Irp(X),{a}.) ={ 0,{a}. }.

Proof. Assume that a € E(Prg(X),{a},) and a # 0. Since 0 # a = a{a}«, we
have a € doma and so aa = aa{a},a which implies that e = a. If x € dom ¢,
then za = zaf{a},a, 80 a = ra < x. Henceow = A, forsome AC {z e X |z >a}
with a € A. If « is also 1-1, then a = {a},.

The converse is obvious. Hence the lemma is proved. O

Theorem 4.9. Let X be a finite chain and a,b € X. If S(X) is Prp(X) or
[RE<X>7 then

(S(X)7 {a}a) = (S(X>’ {b}b) ~— a=b.

Proof. We may assume that a < b since X is a chain. By Lemma 4.8,
E(Prp(X),{a}s) ={ (AU{a})a | AC{z € X |2 >a} } U{0},
E(Pre(X),{b}s) = { (AU{b})y | AC {z € X [a >0} } U{0},

E(Irp(X),{a}ta) = { 0,{a}a },
E(IRE(X)7 {b}b) = { 0, {b}b }

Suppose that (S(X); {a}.) = (S(X), {b}s). Let ¢ be anisomorphism from (S(X), {a},)

Ve

onto (S(X), {b}s), so |[E(S(X), {a}a)| = [E(S(X), {0}s)].

Case 1: S(X) = Prp(X). Since |E(Pre(X),{a}t.)| = |E(Pre(X),{b}s)|, from
(1),

[ {A|AC{zeX|z>a}}| = |[{A|AC{zeX |xz>0b}}].
But X is a finite chain, so a = b.

Case 2: S(X) = Igrp(X). Let ¢ be an isomorphism of (Igp(X),{a},) onto
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(Irp(X),{b}s). By (1), {a}sp = {b}s. Let ¢ € X be such that ¢ > a. Then

0 7é {C}GSO = ({C}a{a}a{a}a)SO

= {ctap{b}e{b}s since {a}a = {b}s
= ({cha){b}e
= {d}y for some d € X withd >0

since S(X) = Irp(X).
This shows that

{{clap|lc€ Xandc>a } C{ {d}yp|de X andd >}

Hence
|{ceX|c>a}| = |[{{clup|ce Xandec>a}| sincepisl—1
< | {{d}y|de€X and d > b} |
= | {deX|d=b} |
< |{ceX|c>a}| since a < b,
so|{ceX|c>a}|=|{de X |d=>b} | Since X is a finite chain, we deduce
that a = b.
Hence the theorem is completely proved. ]

Theorem 4.9 need not be true if X is an infinite chain. It is shown by the
next theorem. Moreover, this theorem also shows that if X is an infinite chain

order-isomorphic to Z and S(X) is Pgrr(X) or Igrg(X), then for all a,b € X,
(5(X), {a}a) = (S(X), {b}s)-
Theorem 4.10. Let S(Z) be Prp(Z) or Irp(Z) under the natural order. Then
for all a,b € Z,

(5(2),{a}ta) = (5(2),{b}s).
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Proof. For a subset A of Z and k € Z, let
A+k={z+k|zec A}
Let a,b € Z be such that a < b. For each o € P(Z), define o/ € P(Z) by

doma’ = doma + (b—a) and

zo/ = (z — (b—a))a+ (b—a) for every x € domc’.
It is clear that if « is regressive, then so is o/, and if « is 1-1, then so is o/. Hence

{ o |a€ Pre(Z) } C Pre(Z),

{ o | (RS ]RE(Z) } € IRE(Z)

Define ¢: S(Z) — S(Z) by ap = o for all a € S(Z). First, to show ¢ is 1-1, let

a,f € S(Z) be such that o' = . Then

doma+ (b—a) = doma' = domp = domf+ (b—a) and

za/ =z forall z € doma/(=domg).
This implies that dom o = dom ( and for every x € dom «,
ra=(v+ (b—a)d —(b=a)=(z+b—=a)d =(b—a)= a0

Hence xza = 2.

To show ¢ is onto, let' 3 € S(Z). Define a € P(Z) by

doma =domf — (b—a) and

za=(x+(b—a))f—(b—a) forall z € domua.
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Then we have similarly that « € S(Z) and also

doma’ = doma + (b— a)
= domf — (b—a) + (b—a)
— domf and
za' = (z —(b—a))a 4 (b= a)
—(@—(b—a)+(b=a)B~(b—a)+ (b—a)
— 8.
Hence ap = of = £.
To show that ¢ is a homomorphism, it is equivalent to show (a{a}.3) =
o/{b}pf for all o, 5 € S(7Z). Let o, B € S(Z) be arbitrary fixed. Then for z € Z,
z € dom(a{a}eB) <= @ = (b—a) € dom(a{a}.f)
& v- (b—a)edoma,(z— (b—a))a=a
and a € dom (3
— € domalandae{=(2 2~ (b— a))a+ (b—a)
—a+b—a)=bandb=a+ (b—a) € domp
= z.c dom(a/{b},3).
Therefore dom(a{a},8) = dom(@/{b},8") and for = € dom(a{a}.5),
v(afa}ald) = (v~ (0—a))(@{a}.f) +(b—a)
—af+ (b—a) since (z — (b— a))a = a
=b-(0b-0a)f+(b-a)
= b3

= z(a'{b}0) since zo = (x — (b—a))a+ (b—a) =b.

Hence the theorem is proved, as required. O
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