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CHAPTER 1

Introduction

1.1 Epitaxial growth

Epitaxial growth is an important process to fabricate high quality thin films. This
process occurs during the deposition of new material to form a crystalline over-
layer on a crystalline substrate. The overlayer, which is called an epitaxial film
or epitaxial layer, prefers specific orientations with respect to the crystalline sub-
strate. The history of epitaxial growth dates back in the 1920s after Louis Royer
carried out an extensive study and discovered a new systematic way of growing
epitaxial films [I]. The word “epitaxy”, which means “upon order”, was termed to
distinguish epitaxial growth from polycrystalline and amorphous growth [[]. The
most powerful application of epitaxy is the semiconductor devices—for example

transistors, lasers, and solar cells—which are found in everyday life.

Well-known techniques for epitaxial growth are molecular-beam epitaxy
(MBE) and metal-organic vapor-phase epitaxy (MOVPE). For the MBE tech-
nique, epitaxial growth consists of three processes [2]. In the first process, the
deposition process, atoms or simple molecules are evaporated from heated sources
known as the Knudsen effusion cells. The “beam” of particles is then collimated
and directed toward the heated substrate. The mean free path of the particles is
very long so that the particles do not interact with each other until they reach
the substrate. The second process is the diffusion of mobile atoms (adatoms) on
the film surface. The last process is the desorption process, which is a rare pro-

cess and not desired in most epitaxial growth. To achieve an epitaxial film with a



preferred crystalline structure, the growth must be carried out in an extreme envi-
ronment: ultra-high vacuum (pressure &~ 1071 torr), high purity, and low growth
rate (= 1 monolayer/s) [3]. The low growth rate leads to what is commonly known
as the layer-by-layer growth modell, Growth conditions, e.g. the deposition flux

and substrate temperature, can be varied during the growth process.

Characterization tools such as the reflection high-energy electron diffraction
(RHEED), scanning tunneling microscopy (STM), and atomic force microscopy
(AFM) have been used to study the grown films. The RHEED is suitable for
monitoring the real-time growth because it can observe in situ under normal
growth conditions without interference the growth process, providing precisely

identification of surface morphologies and crystalline structures.

Epitaxy can be categorized into two types according to growth materials.

For homoepitaxial growth, the film and substrate are of the same material. In

contrast, for heteroepitaxial growth, the film and substrate are of the different

materials. In the latter case, lattice spacings of film and substrate atoms at the

film-substrate interface do not match, and it is called the lattice mismatch or misfit
(€):

e = (ay —as)/ay, (1.1)

where ay and a, are lattice constants of the film and substrate, respectively.

Heteroepitaxy has attracted much interest from researchers because of a
rich variety of surface morphologies and its potential applications [ll, 4, b]. The
well-known examples are the growth of Ge/Si with ~ 4.0% lattice mismatch [6, [7,
8, 0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and the growth of InAs/GaAs with ~
7.0% lattice mismatch [18, 20, 21, 22, 23, 24, 25]. Because of the incompatibility at
the film-substrate interface, the film experiences strain which normally introduces
defects, e.g. dislocations and stacking faults, to the film layer. As a result, the
quality of the film is reduced. However, a novel surface morphology cannot be
achieved without a contribution of strain. A good example is the fabrication

of self-assembled, strained islands, which are approximately in order of 10-100

!Growth modes depend on interface free energies and will be discussed in the next section.



nanometers in size [0, 11, 12, 16, 21, 26] and commonly known as the quantum

dots (QDs).

Fig. @(a) shows a three-dimensional (3D) AFM image of Ge/Si QDs grown
by the MBE technique [17]. Quantum dots have intriguing electronic and optical
properties. According to dimensionality, carriers in (QDs are spatially confined in
all directions, and energy levels are quantized [4]. The density of state (DOS)
of a single dot (sometime called an artificial atom) is described by Dirac delta
function [21]. For an array of QDs, however, the DOS exhibits a broad peak
depending on the distribution of the quantum dots. The energy spectra of QDs

can be measured by using the photoluminescence (PL) [21].

Nowadays, many studies have been focused on how to fabricate uniformly
distributed QDs in a large scale [6, 27, 28, 29]. This feature is important for
many applications such as tunable wavelength lasers and other optoelectronic
devices. In the recent development of laser technology, devices consisting of QDs
exhibit superior properties: excellent temperature stability, low threshold current
density, and large radiation resistance [4]. Fig. @(b) shows one of the commercial
applications of quantum dots used in light emitting devices [30]. Extensive reviews

of QDs and their applications can be found in Refs. [5, 6, B1, B2, B3, B4, B5].

(b)

Figure 1.1: (a) A three-dimensional AFM image of Ge/Si quantum dots [17] and

(b) an application of quantum dots used in light emitting devices [30].



1.2 Growth modes

Epitaxial growth can be categorized to one of the three growth modes depending
on interface free energies: vacuum-film free energy (7,y), film-substrate free energy
(7¢s), and vacuum-substrate free energy (v,s) [L, B6]. Fig. (a) shows the Frank-
van der Merwe (FM) or layer-by-layer growth mode. The vacuum-substrate free
energy is higher than the combination of the film-substrate free energy and the
vacuum-film free energy, v,s > 7fs + Yof, so the film will “wet” the substrate. In
this growth, adatoms tend to complete a film layer underneath before a new layer
is created. The film is flat and consists of a single crystalline structure. Indeed,
layer-by-layer growth is the ideal growth which is hardly seen, in a long-time scale
of growth, in experiments. In early stages of the growth, however, it is observed
in several heteroepitaxial systems with small lattice mismatches (e < 2%). The
film is considered to be in an unstable state against stress suppression. Up to a
certain thickness, misfit dislocations, stacking faults, surface deformations etc. are
introduced to the film to relieve strain, and the growth is no longer the layer-by-

layer growth.

In contrast, the Volmer-Weber (VW) growth mode [see Fig. (b)] prefers
the vacuum-substrate interface. The combination of the film-substrate free energy
and the vacuum-film free energy is too large, v¢s + Yus > s, for the film to wet
the substrate. In this growth, adatoms form 3D islands directly on top of the
substrate without a prior completed layer. Islands are stable because the film
avoids touching the substrate. This type of growth is normally found in early
stages of heteroepitaxial growth with large lattice mismatches. The phenomenon
is similar to a liquid drop on a flat substrate. In the thermodynamic equilibrium,
it is characterized by a contact angle which depends on their surface tensions (or

interface energies) [36].

Due to the fact that the film-substrate interface is stable if its energy is low
enough, and the film-substrate free energy generally depends on the film thickness

(h) for lattice-mismatched systems; ;s = 7¢s(h), the Stranski-Krastanov (SK)
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(a) Layer—by—layer mode (b) VW mode (c) SK mode

Figure 1.2: Schematic representation of three growth modes: (a) Layer-by-layer

mode, (b) VW mode, and (c¢) SK mode.

growth mode [see Fig. @(c)] can be described as follows. In early stages of
growth (h < h. where h, is a critical thickness), the growth is layer-by-layer, i.e.
Yof + Vrs(h) < s Adatoms form a 2D flat layer called a wetting layer. The
film-substrate free energy increases with the film thickness, and the layer-by-layer
growth becomes energetically unfavorable. At a critical thickness (h = h.), the
relation does not hold, and it is no longer benefit to complete the wetting layer.
In later stages (h > he); Yo +7s(h) > 7us, 3D islands begin to nucleate on top of
the wetting layer. If the film thickness is increased further, the vacuum-substrate
free energy (7,s) dominates the interface free energies, and the 3D islands become
stable. This type of growth is found in a moderate lattice mismatch regime,

although exact values of the lattice mismatch vary from substance to substance.

Strain is considered to be a major factor responsible for the increasing of
the film-substrate free energy vss(h). Generally, the elastic energy resulting from
an accumulation of strain at the film-substrate interface increases with the film
thickness and then changes the balance of the interface free energies. If the elas-
tic energy is high enough, the film surface is deformed. At a critical thickness,
adatoms begin to nucleate on top of the 2D wetting layer to form 3D islands,
leading to a 2D-3D transition. The formation of 3D islands is one of the strain-
relieved mechanisms found at a relatively small thickness before misfit dislocations
are normally introduced at a larger thickness. The formation of 3D islands with-

out dislocations known as the dislocation-free or coherent QDs, however, is more



attractive because of desirable properties of the films for many applications men-
tioned previously. The underlying mechanism of the 2D-3D transition and the
role of the wetting layer are under discussion, and the study in this area is still

widely open.

1.3 Previous work

In the theory of island formation known as the Asaro-Tiller-Grinfeld (ATG) in-
stability (elastically driven instability) [36, B7], a flat, strained surface is unstable
with respect to the suppression of an external force produced by the substrate.
The mass transport driven by the instability along the film surface creates sinu-
soidal modulation [36]. The unstable surface remains flat unless a perturbation
wavelength () is sufficiently longer than a critical wavelength (A.), A > A.. In
this case, the modulation gradually develops into steeper islands, and the film-
substrate free energy 7y4(h) is consequently reduced. The formation of 3D islands
through the ATG instability provides a strain-relieved mechanism which does not
require misfit dislocations to occur. The critical wavelength depends on the elastic

property of the growth materials and the lattice mismatch (€) as
e (1.2)

It is also proportional to island size [, providing direct control of the island size

(QDs size) through the lattice mismatch
Ae o< [ oc e 2. (1.3)

Because effects of the arriving flux are not considered, the ATG instability theory
is suitable for annealing films at high temperatures, where the mass transport
is supported by adatom diffusion. For a growing film, the theory is still valid;
however, the adatom diffusion process is interrupted by deposited atoms, and the
power law relation in Eq. (@) is modified accordingly [12]. For the Si;_,Ge,/Si

system, where x is the Ge concentrationa, it was found that [12, 13] 3D islands

2For the Si;_,Ge,/Si system, € = 0.04x.



gradually develop from ripple-like patterns at high temperature (7" =~ 950 K) and
small lattice mismatches (0.56% < e < 2.4%). Islands are steeper and bound by
the (105) facets. The result is more consistent with the ATG instability, but the
dependence of critical wavelength on the lattice mismatch is weaker; \. oc e L.
This is due to effects of the deposition flux, which stabilizes the film surface and
makes the critical wavelength A, longer [12]. For large mismatches (¢ > 2.4%) [13],
the formation of conventional 3D islands was observed directly on the substrate,
suggesting another strain-relieved mechanism: the island nucleation [8]. Whereas
the ATG instability seems to be sensible for high temperature and small lattice

mismatch growth, it is less sensible for low temperature and large lattice mismatch

growth.

It is shown that [8] once an island (or pit) reaches a critical size, its associated
energy is reduced. To form such a stable island, it must firstly overcome an energy
barrier. The formation of 3D islands involving an energy barrier is known as
the island nucleation [§]. The lattice mismatch (e) lowers the energy barrier FEj,
E, o< ¢, and increases the island nucleation at a rate Ry.q o< exp(—FE,/kgT),
where kg is the Boltzmann constant. Islands can then easily nucleate on top of
the substrate before the film surface has time to develop into a ripple-like pattern.
In the growth of pure Ge on Si(001) substrate (e ~ 4.0%) at low temperature
(T =575 K) [L1], the formation of (105) faceted Ge islands (so-called hut clusters)

can be understood in a context of the island nucleation.

From the above explanations, it is clear that growth conditions obviously
play a crucial role whether the island formation is proceeded with the nucleation or
instability [19]. In kinetic Monte Carlo (kMC) simulations, such nucleation [38, B9,

40] and instability [38] can be observed if the growth parameters are set properly.

As described earlier, heteroepitaxial growth has been extensively studied not
only in experiments and theories but also in computer simulations. The density
functional theory (DFT) is one of the most accurate approaches to be used in
computer simulations. It provides useful microscopic details including equilibrium

shapes and stability [41, 42], binding energies [43], and the 2D-3D transition [44].



However, using the DFT method is mostly impossible when the system size (or
time scale) is very large. By coarse-graining lattice sites, continuum models can
bypass the problem. The study of the morphological evolution [45, 16, 47, U8,
19, 50, 51] and island ordering [52, b3] is then possible. Nevertheless, microscopic
processes and the island formation, which are sometimes more interesting than
the morphological evolution itself, cannot be observed in the continuum models.
In kMC simulations, discrete, solid-on-solid (SOS) growth models are widely used
to study epitaxial growth [2]. A ball and spring model is particularly successful in
describing the heteroepitaxial growth [54, 55, 56, b7, b8, b9]. The model was used
earlier by Orr et al. [60], later by Barabasi [61, 62], and Khor and Das Sarma [63,
64] to investigate the island formation. Various aspects of heteroepitaxial systems
were studied, for example faceted islands [65], the wetting layer [66], and film
intermixing or film alloying [59, 67, 68, 69]. An off-lattice model with the Lennard-
Jones (LJ) potential was also implemented [0, [71] to study dislocations and the
critical thickness (h.) [72, 73, 74]. The studies were extended to 3D growth with
small coverages and small substrate sizes [39, 40, b5, 66, 67, 68, 75, 76, 77, 78, 79,
30, 81].

One outstanding issue when discrete models are implemented is the long
range nature of elasticity [36]. The (weak) long range interaction is a “global”
characteristic which effects the results if the system size is too small. Since both
accuracy and efficiency must be taken into account in order to capture relevant
behavior of the strain, some approximation techniques have been used. Examples
of these techniques are the Green’s function approach with coarse-grained atom
displacements [57], an energy cut-off [73], an expanding box method and upper
bound rates [pg], and the Fourier-multigrid method [82]. The larger the system

size, the more sophisticated approximation method the models need.

According to previous experimental results [12, 13, [19], it is clear that the
critical thickness h. and island size | decrease with the lattice mismatch e. How-
ever, the quantities are affected by the deposition flux as well [12]. The effects of

growth conditions are not completely understood, e.g. the power law relation in



Eq. (@) is observed differently [12, 13, 19, B7, B8, 73]. Although the island size
[ and its uniformity in 3D submonolayer growth were studied [7§], the substrate
size is still small, and the film thickness & is less than 1 monolayer (ML). Effects of
the deposition flux on the critical thickness h. and island density were also inves-
tigated with a 2D off-lattice model [73]. Nevertheless, a complete study of island
size [, island density, and critical thickness h. dependence on the growth temper-
ature is not available. The temperature and deposition flux are important factors

because the parameters indicate whether the growth is mobility limited [19].

1.4 Objectives of this work

The scope of this work covers the following objectives. We investigate the island
nucleation of the heteroepitaxial system on flat substrates. The effects of lattice
mismatch, deposition flux and growth temperature on surface morphology and
properties of the system such as the critical thickness, island size and number
of islands are studied in detail. Statistical quantities are calculated and used to

quantify the heteroepitaxial system.

In addition, we also use a roughness exponent method of a solid-on-solid
growth model to determine critical temperature and critical exponents of the frus-

trated antiferromagnetic XY spin model.

1.5 The dissertation outline

In this chapter, we give an introduction of epitaxial growth. Growth techniques
as well as characterization tools are also mentioned. The types of epitaxial growth
are explained in a context of interface free energies. We then discuss previous
work which focuses mainly on the heteroepitaxial systems. Detailed studies in
theories, experiments, and computer simulations are provided. We also point out

some effects of growth conditions on heteroepitaxial films which are not completely
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understood, such as the growth temperature. Finally, we draw our objectives of

this work.

In chapter II, Theory and Model, we provide most aspects of the theoretical
background and computer modeling of the heteroepitaxial systems needed for
performing simulations. A two-dimensional ball and spring model representing
the heteroepitaxial system is described in detail. From equilibrium consideration,
we outline the calculation of atom displacements and the elastic energy of the

system.

In chapter I1I, Computer Simulations, we provide detailed simulations used
in this work. Firstly, we describe microscopic processes of interest. We then
provide an algorithm to solve a system of linear equations. Next, we discuss
an energy localization and local approximation of the elastic energy used here.
Finally, we present the kinetic Monte Carlo simulation method and the n-fold way

algorithm.

In chapter IV, Results and Discussions, we present our numerical results of
films grown on flat substrates at different lattice mismatches, deposition fluxes,
and temperatures. The dependence of island size, number of islands, and critical
thickness on the growth conditions are discussed in detail. We also compare our
results with theoretical, experimental, and computational results presented in the

literature.

In chapter V, An Application of Roughness Exponent Method in a Frus-
trated Spin System, we apply a roughness exponent method used in a solid-
on-solid growth model to a spin model, the frustrated antiferromagnetic XY
(FAXY) model, and show that the critical temperature and critical exponent of
the spin model can be determined from the roughness exponent method. Firstly,
we provide a literature review which focuses on the method for determining critical
properties of seemingly different models including the spin models. We then in-
troduce the FAXY model on a two-dimensional triangular lattice and the method
used to determine critical properties of the FAXY model. Next, we present our

numerical results obtained from the roughness exponent method and compare the
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results with those obtained from conventional spin methods.

In chapter VI, Conclusions, we draw the conclusions of our work. The

suggestions and future work are also mentioned.



CHAPTER II

Theory and Model

Historically, theoretical findings in physics were tested solely by experiments. Af-
ter the computer invention, scientists can put a theoretical model to a computer,
find a link between theories and experiments, and discover new models that de-
scribe many aspects of nature [2, 83]. The Eden model—which describes bacterial
colonies—and the Ising model-—which describes magnetic materials—are just a
few examples. Models of interest are not only those motivated by nature. Mod-
els which are purely mathematical objects such as a cellular automaton and a
fractal are studied for fundamental interest. Surprisingly and unexpectedly, a
model intended for a particular system can also describe a phenomenon found in

a seemingly different system [84].

Thin film physics becomes a popular subject after the MBE technique was
introduced to grow high quality thin films [, B6]. The study of kinetic roughening
film surfaces is important because of their potential applications in industries and
novel behavior found in a variety of thin film growth systems. To gain insight
into the “real” MBE growth with many complex processes, simple models with
a “minimal” set of rules are introduced. The models fill the gap between theory
believed to govern the system and experimental results. Early models were used
to describe the MBE growth which is generally far-from-equilibrium, relatively low
temperature, layer-by-layer growth. The random deposition (RD) [2], Das Sarma-
Tamborenea (DT) [84, 85], and Wolf-Villain (WV) [84, 86] models are examples of
the so-called nonequilibrium, limited mobility, SOS growth models. These models

are bound to specific rules of microscopic processes which are necessary for pro-
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ducing films of interest. Non-MBE growth models such as the ballistic deposition
(BD) [2] and the Family [84, 87] models are those of fundamental interest, which

usually come together with the MBE growth models.

2.1 A two-dimensional ball and spring model

The formation of QDs in heteroepitaxial systems is an interesting phenomenon
and is currently studied for various aspects. In the systems, the difference in the
lattice constants of the film and substrate produces forces which act on film atoms
and compress the atoms (for compressive strain) to take the natural lattice spacing
of the substrate. The lattice spacing of the film atoms is gradually changed from
the film-substrate interface to the topmost layer; therefore the film is said to be a

commensurate structure [36].

In this study, we use a model which treats the heteroepitaxial system as
a classical object: a discrete ball and spring model [88, B8, 60]. The model
[see Fig. @(a)] consists of film and substrate atoms with the same elastic property.
Here, we restrict ourselves to 2D, SOS growth. The substrate has a simple cubic
(SC) structure with four nearest neighbors (NN) and four next-nearest neighbors
(NNN). The NN and NNN are connected by springs with spring constants kyy
and kyyy, respectively. The interaction beyond NNN is considered very weak
and is thus ignored. Note that bondings between film-film, substrate-substrate,
and film-substrate atoms are the same. The natural lattice constant of the film
is ay, and the natural lattice constant of the substrate is a,. In an equilibrium
[see Fig. @(b)], the lattice constant of the film is forced to take on the value of

the lattice constant of the substrate in the horizontal direction and expand to a
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Figure 2.1: Schematic representations: (a) A ball and spring model and (b) film

under compression.

distance a; in the vertical direction. Forces acting on a topmost atom are

4 1
F1=kNN(af—as) g )

_ | [ cosH
F2 7 9
sinf

- 0 (2.1)
Fs =kny(ap— ay) )]
= — —cost
F4 == 5

sinf
e

F

= )ﬂ‘ = knnN (\/ﬁaf — /a2 —i—a?), and tan 0 = a;/a;. We assume
that the configuration is infinitesimally distorted. Hence, to the first-order, cos 6 ~

sin 0 =~ v/2/2, and /a2 + a? ~ v/2/2(a; — aje + a;). In an equilibrium, forces are

balanced in all directions. In the vertical direction,

Here

kNNN(af—I—afe—al) —l{?NN(CLl —af) :O (22)
The result yields
kNNN
ap = ay + ayf€ <m) . (23)
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An unstrained atom is located at a lattice point denoted by an index (i, j )E The
model is subjected to the periodic boundary conditions in x direction; that is
(t+ L,j) = (i,7), where L is the substrate size. For convenience, we change the
coordinates (i,7) = (¢), (i +1,7) = (i +1), (i,j+1) = (i + L), and so on. The

model is now transformed into a 1D problem.

2.2 Elasticity

When an atom located at lattice point ¢ is under compressive strain (or tensile
strain), it is displaced from the lattice point. A displacement (i) = u, ()T +u,(7)y
measured from the lattice point is then non-zero. The energy stored in each spring

is proportional to the square of the relative displacement (Aw)?2.

2.2.1 The elastic energy

The total elastic energy of the system (£) is the sum of all energies stored in the

springs connected to film and substrate atoms,
1 .
E= Z E@)

1 | | | (2.4)
=5 Z (B (i) 4 By (1) + 2E,,(1)] -

The components E,,(i), Ey,(i), and E,,(i) are given by [5§]
B (i) = % {601 [ua(i + 1) — uy (i) — di]”

+ 51’,1‘71 [%c(l - 1) - Um(z) + d1]2}

knnw
4

+6iim1-p [ug(t — 1 — L) —ug(2) + d1]2

{5i,i+1+L [ua(i+ 1+ L) — ug(i) — di] (2.5)

=+ 51'71'_,_1_[/ [ux(z + 1-— L) — U,x(’&) — d1]2

+ 51‘7@_1_;,_[1 [UI(Z -1 + L) — Ux(l) + dl]Q} s

!The variables 4, j, and k denote a discrete space, while the variables x,y, and z denote a

continuous space.
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By (3) = " 6,y i 4 L) — () — o

+ i [uy(i — L) — uy (i) + d2]2}

k : '
NIN {5i,i+1+L [y (0 41+ L) = uy () — d2]2 (2.6)

+ 51'71'_1_[/ [Uy(’l —1- L) — Uy(Z) + d2]2

+ 0iipar [uy(i +1 = L) — uy(i) + dy)”

+ 5i,i71+L [uy(z —1 + L) - uy(z) — d2]2} s
and

Eﬂﬁy (l) = iy

iVN {85511 [ug(i — 1 — L) — uy(i) + dy

X [uy(i —1 = L) — u, (i) + do

+ iiprer [us (0 + 14+ L) — u, (i) — di]
X [uy(i+14 L) — uy (i) — do]

— Oii1-r [ug (1 + 1 — L) — uy (i) — dy]
X [uy(i +1— L) —u,(3) + do]

— Oiim1tr (e (1 — 1+ L) — uy (i) + dy]
X [uy(t — 1+ L) — uy(i) — do]}.

An interaction with a neighboring site does not exist if the site lacks an atom,

thus

1 if both site ¢« and site j contain atoms,
0ij = (2.8)
0 otherwise.

A film atom, which is forced to match the natural lattice constant of the substrate,
will adapt its lattice spacing with amounts d; in x direction and ds in y direction,

where d; and ds are
.

ay — as for film-film and film-substrate bonds,
dy = (2.9)
0 for substrate-substrate bonds,

and

ar —a; for film-film and film-substrate bonds,
dy = (2.10)
0 for substrate-substrate bonds.
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The variables d; and d, vanish if the film and substrate atoms are of the same kind.
Note that the elastic energies in = and y directions can be treated independently

if the term E,, in Eq. (@) is not present.

2.2.2 Equilibrium constraints

Equilibrium configurations can be found if net forces acting on every atom are

Z€ro,

oE , oE

G = P =0 g = Bl =0 (2.11)

These constraints lead to a system of linear equations:

ZK(m,n)u(n) = f(m); m,n=123.,N (2.12)

or

—

K.-i=f. (2.13)

The dimensions (/N x N) of the matrix K account for the two components (uy, u,)
of the displacements of L atoms, where N = 2L. For homoepitaxial systems, € = 0,
the RHS of Eq. () is zero, giving a trivial solution: @ = 0. If f# 0, Eq. ()
can be solved by using the inverse of the matrix, K™*. The displacement vector
() is simply @ = K- f Finding K" is, however, not practical, especially when
N is huge. Using a numerical method is more suitable, and a routine to solve the
Eq. () will be discussed in the next chapter. The components K(m,n), f(n),

and useful implementation are discussed in more detail in appendix C.



CHAPTER 111

Computer Simulations

Computer algorithms are a set of instructions which describe how atoms in the
models interact with the environment and evolve in time. The simplest instruc-
tions are of the RD model; atoms just randomly fall on the substrate, stick to the
first lattice site they arrive, and do not move afterward. For more complicated
models [2, B4], adatoms also interact with other atoms and hop to other sites.
The crucial thing is that the instructions or rules must reflect the system being
studied. In this chapter, we discuss instructions for simulating the heteroepitaxial

system. The strain relaxation is also included.

3.1 Microscopic processes

Apart from the deposition process, microscopic processes during the real MBE
growth are plenty and complex. The surface diffusion—terrace diffusion, edge
diffusion, corner diffusion, dimer diffusion etc.—is thermally activated [88, 89]. To
change a system state, atomic process ¢ must overcome an energy barrier called

the activation energy F,, giving a transition rate [2, 36, 90, 91]
v; = voiexp(—E,/kgT). (3.1)

The activation energy F, = Fgaqdie — Fmin, Where Egqqie and Ey, are the energies
at the saddle and minimum points, and the prefactor vy (attempt frequency)
can be calculated from the transition state theory. For the sake of simplicity, we
consider only a rate of an individual atom and ignore other rare processes, e.g.

the dimer diffusion and exchange mechanism [90].
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3.1.1 Deposition

The first process is the deposition process labeled by process (a) in Fig. @
Particles from heated sources are evaporated and directed toward the substrate.
The particles, carrying some kinetic energy, arrive on the film surface at random
sites. In kMC simulations, a deposited atom arrives on the film surface at a given
rate [H§]

Ry = [(Smax + 1)(28max + 1) F'L] /6, (3.2)

where F' is the deposition flux measured in the unit of monolayer per second (ML -
s71). The maximum hopping distance (syax) corresponds to randomly distributed
distance s in the horizontal direction [38], s = 1,2,3, -+, Smax. The deposited

atom sticks to the first site it arrives on.

3.1.2 Desorption

The desorption process labeled by process (b) in Fig. @ is the opposite process
competing with the deposition process. When the thermal energy, compared to the
activation energy FE,, is high enough, surface atoms have some chances to detach
from the surface, leaving the sites unoccupy. Generally, the energy required to
detach an atom from the surface depends on growth materials and the local surface
at which the atom is bound. For example, an atom with a smaller coordinating
number of NN and NNN has more probability to desorb, and vice versa. The
desorption time—the average time for a desorption event—is proportional to the
average time (7) spent by an atom from the deposition to desorption. It depends

on the growth temperature and obeys the Arrhenius law [2, B6] as
T = 10exp(Ey/kpT). (3.3)

The characteristic desorption time (7p) and desorption energy (F4) can be deter-
mined from experimental results. For Ga on GaAs(111) substrate at substrate

temperature 7" = 860 — 960K [2], the values are approximately 75 ~ 107 s and
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Figure 3.1: Microscopic processes: (a) deposition, (b) desorption, and (c) diffusion.

E; ~ 2.5 ¢V. The desorption energy (Fy) is much higher than the activation en-
ergy (F,); E, is less than 1 ¢V for most materials [, @] Thus, one can expect
that the process is not activated under MBE growth conditions. In this work, the

growth is under low temperature, and the desorption is neglected.

3.1.3 Diffusion

If deposited atoms arriving on the film surface have more excess kinetic energy,
they may travel on the surface and stick to stable positions. Even the atoms
already bound with neighboring sites, having the thermal energy from the heated
substrate, can break the bonds and search for more stable sites. This process
is called the surface diffusion and labeled by process (c¢) in Fig. Ell An atom
searching for energetically more favorable sites must firstly overcome the activation
energy F,. The activation energy F, depends on materials being used and the local
surface. To determine the energy, the average number of jumps of surface atoms
is counted in a unit time interval. The number also gives the diffusion length,
an average distance an atom travels on the surface, and it decays exponentially

with the growth temperature. It is conceivable that for an atom detaching from
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an edge [see process (c) in Fig. @], it must overcome the activation energy (FE,),
plus extra energy FE,, for breaking its lateral bond. For kink sites, the detachment
is harder, making the probability very low. It is also easier for an atom to move
along the edge rather than move away from the edge. The diffusion probability or

diffusion rate of atom i obeys the Arrhenius form [2, 91] as
Ri = Roexp [—(Ea -+ En)/kBT] s (34)

where Ry is in the order of the Debye frequency (=~ 103 s71). The rate R; depends
strongly on E,, and growth temperature 7. For 7' = 600 K and E,, = 1 €V, the
rate is 10% times smaller than the rate of an atom on the terrace. Once an atom
sticks to the edge or kink site, it will stay there for a long time before hopping to
other sites. Under most MBE growth conditions, atoms attaching to islands are

nearly immobile, making the island growth an irreversible process.

The adatom diffusion is also affected by the anisotropy of the system—mov-
ing along one direction is energetically more favorable than moving along another
direction [2, B6]. Moreover, an adatom on the edge of an island jumping down
needs an additional energy to cross an barrier called the Schwoebel barrier [2]. It
is more probable for the adatom to bounce back when it meets the edge, and the

process is known as the diffusion bias.

In the heteroepitaxial system, the adatoms experience another bias: the
strain from the film surface. The gradient of strain drives the adatoms with
additional elastic energy difference AFE. Taking the energy into account, the total
energy required for an adatom to break its lateral bonds and hop to neighboring
sites is F,, + Ey — AFE. In this work, E,, = nFE,, and the diffusion rate of the
adatom ¢ follows the form [B8, 58]

Ri = Roexp [_<anb + EO — AEI)/]{ZBT] s (35)

where Ry = 12D/ [a?(Smax + 1)(28max + 1)] is a characteristic vibrational fre-
quency, Fj is the binding energy with NN and NNN per bound, and Ej is the sur-
face binding energy. The values of the constants are chosen so that they are appro-

priate for Ge/Si system (see appendix B). The bindings with NN and NNN are the
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same that is n; = the number of NN + NNN, and AFE; = F(with the adatom i) —
E(without the adatom i) is the elastic energy difference when site ¢ is occupied
versus unoccupied. The probability that adatom i is likely to hop is associated
with the diffusion rate R;. In this work, the system is isotropic, and the Schwoebel
barrier is not included to make sure that island formation is not caused by the

diffusion bias.

3.2 Strain relaxation

The elastic energy in Eq. (@) and energy difference in Eq. (@) can be calculated
if the displacements in Eq. () are known. The displacement vector @ can
be obtained in both exact and numerical solutions. In most cases including in
this work, numerical methods seem to have more advantages, especially when the
number of unknown variables is very large. But the numerical method has its own
problem, for example the roundoff errors that may affect true solutions. Some
methods that have been used to solve a system of linear equations are the Gauss-
Jordan elimination, LU decomposition, and conjugate gradient (CG) methods [92].
A routine of the methods is quite general and can be found elsewherell. We use
a variant of the CG method, the biconjugate gradient stabilized (Bi-CGSTAB)
method [93], to solve Eq. () The details, including an algorithm of the Bi-
CGSTAB method, energy localization, and local relaxation, will be given in this

section.

3.2.1 Solving a system of linear equations

The CG method is a routine for solving a system of linear equations. This
method has successfully been applied to the iterative technique and capable of

solving large sparse systems which are not suitable for the direct methods such

I'BLAS (Basic Linear Algebra Subroutine) and other variants, LAPACK and LINPACK, are

standard libraries for performing linear algebra operations.
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as the Gauss-Jordan elimination. The original CG method requires symmetric
(AT = A), positive-definite (7 - A - & > 0 for all non-zero vector & in R") n-
by-n matrix A, where 7 denotes the transpose of Z. The biconjugate gradient
(Bi-CG) method is more generalized to non-symmetric matrices; but, the Bi-CG
method is less stable than the Bi-CGSTAB method. The Bi-CGSTAB method is
a simple, but powerful, algorithm that combines two important parts: the fast,
converging Bi-CG and stabilizing effect. The Bi-CGSTAB method was developed
by Henk A. van der Vorst [93].

From Eq. (), K - @ = f, an algorithm of the Bi-CGSTAB method can
be illustrated as follows [93]:
1) Set initial values for i = 0

1.1) Guess u;, e.g. U; = Uoq

2.1) pi =1 - 7y

2.2) Bi = (pi/ pi-1)(@i-1/wi-1)

2.3) pi = Tic1 + BilPi-1 — Wim1¥i-1)
2.4) v; = K- p;

2.5) oy = p;/ (1 - ;)

2.6) §; =Ti1 — qT;

2N ;=K -5

2.8) w; = (t; - 5)/(t; - i)

2.9) U; = U;—1 + a;P; + w;S;

2.10) If @; is accurate enough then exit 2)

—

2.11) Otherwise 7; = §; — w;t;

2.12) Go to 2) after one step

—

A residual error relative to vector f is defined as
(7 7)
(f-

=y

R:

(3.6)

\/l



24

In step 2.10), the recurrent loop i exits 2) if R < Ry, where Ry, is a tolerance.
The accuracy of @ depends on the choice of the tolerance Ri,. Accounting for the

accuracy and efficiency, Ry, = 1072 is enough [5§].

3.2.2 An approximation of the elastic energy

We can see that in Eq. (@), the elastic energy difference (AE;) is calculated
twice for each adatom i. There must be at least L times for calculating AFE; for
each time step. The calculation is the bottleneck of the simulations, consuming
most of the computational time. This is the global effect in which all atoms are
involved when adatom ¢ is removed or added. The effect is strong near the site
and small far away from the site. In other words, when atom ¢ is removed (or
added), neighboring atoms notice the change while other atoms, being far from
the site, will be little affected. The elastic energy difference AF; can be, therefore,
approximated as a “local” effect. We note that the elastic energy in Eq. (@) can

be written as

1
e > e, (3.7)

where e; is the energy stored in the springs connected to adatom . We assume
AE; to be dependent on a local variable [57, B8] as
AEZ = C(TLZ', hz)el = 0(62) —+ ..
(3.8)
~ c(ni, hz)e,

The local variable ¢(n;, h;) depends on the number of NN + NNN, 7n;, and height
of adatom ¢ (h;). Moreover, when the adatom is far away from the substrate, the
influence from the substrate is small. In this work, c(n;, h;) is given by

(

0 for n; <2,

0(6, hl) for n; > 6,

c(ni, hl> for hl S 3,

\c(ni,?)) for h; > 3.
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The values (see Table @) of ¢(n;, h;) are calculated from the true AFE; with the
full relaxation; AEM! = ¢(n;, h;)e;, and averaged over & 4,000-100,000 samplings
depending on its occurrence. In some cases, the probability of finding adatoms
with n; at the height h; is too low to calculate c(n;, h;). These situations are
denoted by the sign (*) in Table @ and the values of ¢(n;, h;) are taken from
calculation using smaller h; (listed in the higher rows in the table) instead. The
elastic energy difference profiles of surface atoms in Fig. @ are calculated using

the approximation versus full relaxation and are shown in Fig. @

The solid and dotted lines represent AFE; obtained from the full relaxation
with the tolerances Ry = 107¢ and Ry = 1072, respectively. For the full re-
laxation, the results are nearly the same for both tolerances. In the remainder
of this work, Ry, = 1072 is used in the Bi-CGSTAB algorithm. The dashed line
represents AE; obtained from Eq. (@) with R = 1072. The result indicates
that AFE; can be approximated locally. The remaining variables which must be
sufficiently accurate are the energies e;. In an equilibrium, the energy e; is stored
in the springs connected to adatom 7. When the adatom i is removed, one ex-
pects that the elastic energy difference AFE; would be proportional to e;. Since
before hopping or depositing an atom, the film configuration is in an equilibrium
state, the energy e; is therefore available for AFE;. The full relaxation required
to update the energy e; is only one time instead of L times for each time step.

The relaxation for updating the energies e; is done after hopping an adatom to a

0] 1.51 1.63 2.16 1.72
1 * 1.58 1.81 1.75
2 * 1.57 1.85 *
3 * 1.47 1.80 *

Table 3.1: The values of local variable ¢(n;, h;). The sign (*) denotes situations
when ¢(n;, h;) cannot be calculated and the values of ¢ should be taken from

calculations with smaller h; (listed in the higher rows).
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neighboring site, depositing an atom on the film surface, and/or changing the con-
figuration of surface atoms. The approximation reduces the computational time
considerably. A careful selection of whether the hopping atom is rejected or not
can further increases the accuracy of the approximation. However, the rejection

rate is very small, and does not really alter the final results [5§].

3.2.3 Local relaxation

The approximation would be enough for a small system with submonolayer growth.
For a larger system, the growth is still difficult to simulate. However, we can
further reduce computational time by using local relaxation. Although the full
relaxation is required to correct the configuration of surface atoms and update the
energies e¢; when an event (diffusion or deposition) is completed, for large L, the
process occurs in a small area relative to the system size and can be considered
as a local event. The local relaxation allows atoms in a certain area to relax and

rearrange their positions, while atoms outside are not affected.

Fig. @ shows a schematic representation of the local relaxation. Atoms in
a box, whose width is denoted by W and whose height is denoted by H, centered
at the blue atom are allowed to relax, while atoms outside are not affected. The
effect of the local relaxation for different sizes of the box is shown in Fig. @
The energy e; is obtained from adding atom ¢ to the film surface in Fig. @ and
relaxing surface atoms in the box centered at the atom i. The solid line represents
the energy profile obtained from the full relaxation. For W = 75 and H = 7
(dotted line), the energy profile is identical with that of the full relaxation. The
sharp changes relative to the energy profile of the full relaxation are found when
W = 25 and H = 5 (dashed line). The local relaxation becomes unreliable when
W = 15 and H = 5 (dotted dashed line). It is clear that the size of the box used
in the local relaxation strongly effect the displacements and hence the energies e;
unless the local relaxation area is large. In this work, the box with W = 25 and
H = 5 is used for the local relaxation. After every 100 time steps, atoms in the

five rows measured from the topmost atom are relaxed to minimize local residues.
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Figure 3.4: A schematic representation of the local relaxation. Atoms in a box,
whose width is denoted by W and whose height is denoted by H, centered at the

blue atom are allowed to relax.
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We also investigate the effects of the local relaxation on film surfaces and found
that the final results are independent of the local relaxation areas. The details

will be discussed in the next chapter.

3.3 Kinetic Monte Carlo simulations

The Monte Carlo (MC) method is a well-known method used in various branches of
science [83, 91]. The MC method is generally referred to computational algorithms
that use random numbers (so-called quasi-random numbers) to solve problems.
Historically the method is used to estimate integrals in high-dimensional spaces

or other poorly-behaved integrals that cannot be solved by ordinary methods.

In statistical physics, we need to calculate the partition function of a sys-
tem [83, 91, 94],
Z =Y exp(—E,/ksT), (3.10)
o

where E, is the energy of the system in state p. The summation runs over all

possible states of the system. The probability that the system is in the state u is

1
P Zexp(—EM/k‘BT). (3.11)

The average of thermodynamic parameter A is the sum of all possible values A,

and weighted according to its probabilities P, as
1
(4) = - > Auexp(—E,/kpT) = P,A,. (3.12)
p 1

Unfortunately, the calculation of (A) in Eq. () is possible only when the system
is small. For the Ising model on N lattice sites, there are 2V possible configura-
tions, and the configurations increase quickly with N. To overcome this problem,
the MC method is used to generate n independent states. The parameter A is

then averaged over the states,

(A), == A, (3.13)
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If these states are mostly distributed in the system, in the limit of n — oo, each

—E/kpT

state is weighted by its Boltzmann factor, e . The average converges to the

thermodynamic average as

(A) = (A) +O(n~Y?). (3.14)

n

Mostly the MC algorithms focus on how to generate such states whose its distri-
bution obeys the Boltzmann distribution. Any transition rate which satisfies the
detailed balance of the master equation is acceptable [83]. The Markov chain of
states is widely used to generate transition rates [83, 91]. The well-known algo-
rithm that uses the Markov chain of states to generate independent states is the
Metropolis algorithm [83, 91]. The problem of the MC method with time-driven
algorithms is that the acceptance ratio of the transition rates is very small at low
temperatures. Once the system is trapped in a ground state at low temperatures
it will spend a long time in the state. Many transition rates end up with rejection,

wasting computational time before a new state is made.

The kinetic Monte Carlo (kMC) also called the continuous time Monte Carlo
method with event-driven algorithms [83, 01| accepts a state at each step and
calculates back how much time to produce such the state to occur, and the system
advances according to the time. The acceptance ratio of the transition rates is
always one, which speeds up the simulations. In the MC method, we can define a
simulation time as the Monte Carlo step per site (MCS/site) [83]. But when the
system reaches an equilibrium, there is no connection between the simulation time
and physical time. Since in the equilibrium, the system is independent of time. In

order to state how fast the system evolve, the physical time must be interpreted.

3.3.1 A definition of physical time

From Eq. (@) and Eq. (@), the total rate per unit time is

L
R=> Ry (3.15)
k=0
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where Ry = Ry is the deposition rate, and Rjy are the diffusion rates. The
probability that any event is not observed in the time interval (o = 0,¢) [83, 91, 95]
is

P(t) = exp(—Rt). (3.16)
This equation is also known as the survival probability. The exponential decay law
is found in many systems in nature such as the radioactive decay. The probability
that any event is observed in the interval (¢,¢ + dt) is p(t)dt. Thus

t

/ p(H)dt =1 P(t) (3.17)
to=0

is the probability that any event is observed in the time interval (ty = 0,¢). One
finds that p(t) = —dP(t)/dt = Rexp(—Rt). The waiting time between any two

events is given by
T 1
7 / tp(t)dt = =. (3.18)
0 R
An event occurs, on average, after the waiting time 7. The total rate R will not

be a constant during the simulations. Instead, the waiting time 7 is drawn from

a Poisson distribution [83, 95] as

(3.19)

where p; is a random number uniformly distributed in the interval (0,1). The

physical time advanced in a single step is then ¢t — ¢ + 7.
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3.3.2 The n-fold way algorithm

The n-fold way algorithm is an event-driven algorithm introduced by Bortz, Kalos,
and Lebowitz in 1975 [96] for Ising spin systems. The idea of the algorithm is to
avoid rejected events during the simulations. An accepted event is then found at
each step. In general, the algorithm has a following routine to select an event.
Firstly, the rates R; and the total rate R = ZiL:O R; are calculated. Then the
cumulative rates Z?:o R; (see Fig.@) are drawn. Next, an event k is selected
such that Zf:o R; > poR > Zf:_ol R;, where ps is a random number uniformly
distributed in the interval (0,1). Finally, the event k is executed and time ¢ is
updated, t — t+7. KMC simulations with the n-fold way algorithm are illustrated
as a flowchart in Fig. @

3.4 Quantities of interest

When we study the roughening of film surfaces, the first thing we might need
to know is the surface morphology of the grown films. The surface morphology
tells us qualitatively about the film roughness and film pattern. However, the
roughness may be interpreted differently. In fact, the roughness depends on the
scale of the system we observe. Moreover, to extract a characteristic feature of

the films, statistical quantities must be measured.

The critical thickness h. is one of the statistical quantities we are interested
in. It is defined as a thickness at which the transition from a 2D flat layer to 3D

islands firstly occurs. The strain is partially relieved after the formation of 3D

p2R

0 Ry Ro+ Ry S LR SR R

Figure 3.6: A schematic representation of an event selection.
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islands. The elastic energy is then decreased after the critical thickness. In this
work, the critical thickness is calculated from an average thickness () at which

the elastic energy per atom (E/0L) reaches its maximum value.

To study the film surfaces quantitatively, an island size (I) and a number
of islands (n) are measured. Islands which have a thickness greater than 2 ML
(h > 2ML) are counted, and the island base size is measured. The island size and

number of islands characterize the film surfaces.

Finally, all statistical quantities presented here are averaged over 20 inde-

pendent runs.



CHAPTER 1V

Results and Discussions

In this chapter, we discuss our numerical results of films grown on flat substrates
at different lattice mismatches, deposition fluxes, and growth temperatures. The
main goal is to investigate effects of the growth conditions on the surface mor-
phology, island size, number of islands, and critical thickness. we also compare

our results with theoretical, experimental, and other computational results.

4.1 Introduction

Firstly, we begin this chapter with an introduction, which explains how the strain
can bias the adatom diffusion. We then discuss some results normally observed in
heteroepitaxial systems. This will help us understand results in the next sections.
The effects of the local relaxation are also mentioned. Finally, we summarize the

results of this section.

4.1.1 Strained films

To understand how the strain bias the adatom diffusion, we firstly look at an
equilibrium configuration of strained films. Fig. El! shows a strained film (green)
and substrate (red) before the full relaxation. The film is under compressive
strain; ay > as. We only want to see where the stain is mostly contributed to.
The strain distribution in the film and substrate is the same for all values of the

lattice mismatch, but the strength of the strain depends on the lattice mismatch.
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Figure 4.1: An equilibrium configuration of the strained film (green) and substrate

(red) before the full relaxation.

Fig. @ shows the same configuration as in Fig. @ after the full relaxation.
The displacements in the - and y-direction can be seen more clearly in Fig. @
and Fig. @ In the z-direction, it is not surprising that the displacements are
symmetric around the center of the structure because of the periodic boundary
conditions. Film atoms in the vicinity of the film-substrate interface are bound
with the substrate atoms and do not move much. The upper atoms, however,
are free to expand outward and the displacements reach maximum values at the
topmost layer. The values are particularly large compared to the lattice constant
of the film. In the y-direction, the displacements are small. Atoms change their
positions slightly in order to compensate the displacements in the x-direction so
that the forces acting on the atoms in both directions are zero. Notice that the
substrate atoms also move from the lattice points because two topmost layers of
the substrate are allowed to relax. The calculated displacements can only describe
relative displacements of atoms, but cannot tell us completely about the strain in
the system. For Hookean springs, the relative displacements indicate the elastic

energy associated with the springs.

Fig. @ shows the density of the energies e,— the energies stored in the
springs connected to film and substrate atoms. Although the displacements are
large at the upper layers, the energies contributed to the area are quite low. For
adatoms, the upper area is energetically more preferable. In contrast, the energy
density is high at the film-substrate interface, especially at the kink sites. The
result comes from the fact that, at the interface, the film is forced to take the lat-

tice constant of the substrate. The area is energetically undesirable for adatoms.
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Figure 4.2: The same configuration as in Fig. @ after the full relaxation.

Figure 4.3: The displacements of film and substrate atoms in x-direction. The

colors indicate values of the displacements.

Figure 4.4: The displacements of film and substrate atoms in y-direction. The

colors indicate values of the displacements.

Figure 4.5: The density of the energies e;. The colors indicate values of the

energies.
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The energies, e.g. ~ 1.5 eV, compared with the binding energies, are quite signif-
icant and can effect the adatom diffusion. Adatoms at the kink sites are highly
active and have more chance to hop to neighboring sites. The diffusion current
of adatoms is driven toward the topmost layer. This current promotes the island

formation [64].

4.1.2 Homoepitaxy vs. heteroepitaxy

We now consider the morphological evolution of homoepitaxial films versus het-
eroepitaxial films. The objective is to show that islands come purely from the
influence of the strain in the system and not from statistically rough surfaces.
The system size is set to L = 1000 sites unless specified otherwise. Film surfaces
are observed every 1 ML until the coverage () is equal to # = 10 ML. The tem-
perature (T') and deposition flux (F') are set to be T'= 600 K and F' = 1.0 ML-s !,

respectively.

Film surfaces at various 6 for the homoepitaxial growth with ¢ = 0.0% are
shown in Fig. @(bottom). There is no strain in the system. As we expected, the
film surfaces are statistically flat from the beginning to the end of growth, indi-
cating the layer-by-layer growth mode. The results show that the selected growth
conditions are appropriate for homoepitaxial systems to grow flat surfaces. If the
surface morphology of heteroepitaxial films, using the same growth conditions, is

different from the result, it will be caused by the strain in the systems.

Fig. @(top) shows film surfaces at various 6 for the heteroepitaxial growth
with € = 4.0%. It is clear that the surface morphology is very different from the
one observed in the homoepitaxial system. In early stages of the growth, the film
surfaces are rather flat, then 2D islands form at 8 ~ 4 ML. The island size slightly

increases with the coverage, while the number of islands remains the same.

It should be noted here that the island size and number of islands are mea-
sured directly from the film surfaces in Fig. @(top). The critical thickness (h.),

however, cannot be measured directly from the film surfaces. Generally, film sur-
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Figure 4.6: Homoepitaxial films (bottom) with € = 0.0% versus heteroepitaxial
films (top) with € = 4.0% at T = 600 K and F' = 1.0 ML-s~!. The coverage (f) is
6 =1 — 10 ML and increases every 1 ML.

faces become rough when the transition from a 2D flat layer to 3D islands takes
place at a critical thickness. One can, therefore, define the critical thickness as a
thickness where the film surfaces become rough (or deviate from the flat surface).
But the “rough” films may be interpreted differently and vary from one to an-
other. As we mentioned earlier, the critical thickness in this work is defined from
a thickness where the total elastic energy per atom (F/0L) reaches its maximum

value.

Fig. @ shows the total elastic energy per atom versus the coverage for the
heteroepitaxial growth shown in Fig. @(top). The energy increases rapidly in the
early stages and reaches its maximum value at § ~ 5.5 ML (an average thickness),
in which we define the critical thickness (h.). After the critical thickness, 2D
islands are more clearly seen. It is important to mention here that the total
elastic energy per atom does not always reach its maximum value. With some
growth conditions, the total elastic energy per atom never decreases (at least up

to # = 10 ML). In these cases, critical thickness h. cannot be identified.

The island formation can be described in a context of the total elastic energy
per atom. In early stages of the growth, strain accumulates as the thickness
increases. The strained surface is still flat against stress suppression. When the

strain increases further, the flat surface becomes energetically undesirable at a
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Figure 4.7: The total elastic energy per atom (E/OL) versus the coverage () of
films grown at the same conditions as the films in Fig. @(top).
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critical thickness. From previous results, adatoms at kink sits are highly active
and can hop easily to upper layers. The adatom diffusion promotes the island
formation in this stage [64]. Since the upper layers are more preferable for adatoms,
the total elastic energy is decreased after the islands are formed [8, 40, 41]. The
surface configuration is stable, and the growth process is almost irreversible. The
island formation is more consistent with the island nucleation theory [8], which is
observed at low temperatures and large lattice mismatches [[11, B8], than the ATG
instability [37] observed at high temperatures and small lattice mismatches [12,

13, 15, 38.

4.1.3 Local relaxation bias

We have shown some preliminary results of the homoepitaxial growth versus the
heteroepitaxial growth. But for the heteroepitaxial growth, how do we know that
the results are not affected by the local relaxation? In some cases, the local
relaxation is not appropriate for a local width (W) and a local height (H) (see
Fig. @) In this subsection, we discuss effects of the size (W and H) used in local
relaxation and show that our final results do not depend on the value of W and
H. The growth conditions are still 77 = 600 K, ' = 1.0 ML-s™!, and ¢ = 4.0%.
We believe that our conclusions also holds for other growth conditions as well.
Fig. @ shows film surfaces of the heteroepitaxial growth for various values of
local width W and local height H. The surface morphologies are nearly identical.

This is the first sign indicating that effects of the size of local relaxation is weak.

To better quantify our results, we consider the total elastic energy per atom
(E/0L) as a function of the coverage (#) shown in Fig. @ The results (except for
W = 125, H = 7) are independent of the values of W and H. For W = 125 and H
= 7, the strain relaxation seems to be more efficient, i.e. the total elastic energy of
the system is lower. However, the critical thicknesses (h.) are approximately equal
for all values of W and H. The thicknesses are estimated to be h, = 5.7£0.1 ML (W
=15 H=5), h, =544+0.1 ML (W =25 H=5), h, =52+0.1 ML (W = 75,
H =5), and h, = 5.4+ 0.1 ML (W = 125, H = 7).



42

Figure 4.8: Film surfaces at T = 600 K, ¢ = 4.0% and, ' = 1.0 ML-s~! for
different local relaxation areas: (a) W = 15, H = 5, (b) W = 25, H = 5, (c)
W =75 H=5and (d) W=125 H="17.
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Fig. and Fig. show the island size (/) and number of island (n)

as a function of the coverage (6). The island size increases with the coverage
and saturates after 6 ~ 6 ML. The saturation values are approximately the same,
e.g. | ~ 46 sites at § = 10 ML. The number of islands increases rapidly with
the coverage and then decreases abruptly after § ~ 2 ML. At § ~ 2 — 5 ML, the
effect of the local relaxation size is visible. The number of islands saturates after

6 ~ 6 ML with n ~ 18 islands at 8 = 10 ML for all values of W and H.

Although here we emphasize on effects of the local relaxation, it is worth
noting that the growth can be divided into three regimes. At 6 ~ 0 — 2 ML,
adatoms just attach to neighboring sits to form “small” islands. The islands spread
throughout the substrate as 6 increases. The number of islands then increases
quickly, while the island size slightly increases. At § ~ 2 — 5 ML, small islands
begin to merge together. After that the number of islands decreases, and the
island size increases accordingly. The islands are not fully formed in this regime
because the elastic energy is still increasing. At 6 ~ 5 — 10 ML, the islands reach
stable sizes and become fully formed. The island size and number of islands do
not change further. In this regime, adatoms hop to upper layers where the strain
is small. The total elastic energy per atom (E/0L) as a function of coverage 6 is

then decreased.

As we mentioned, islands are unstable at the intermediate regime (6 ~
2 —5 ML). The fluctuation of the island size is then high, which can be seen from
the standard deviation of mean (oy = 0/4/20) in the inset of Fig. . When
islands reach stable sizes, this quantity become smaller. We can also determine the
critical thickness from the thickness at which the fluctuation reaches its maximum

value.

In conclusion, the local relaxation seems to slightly affect the results in the
early and intermediate regimes (6 ~ 0 — 5 ML) where islands have not been fully
formed and hence are not of our interest. In the saturation regime (¢ ~ 5—10 ML),
however, we conclude that the size of the local relaxation does not have any effect

on our final results. At # = 10 ML, the critical thickness, island size, and number
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of islands are independent of the values of W and H.

4.1.4 Summary

Results in this section are summarized as follows. Firstly, the diffusion of adatoms
in the vicinity of kink sites is strongly biased by the strain. Secondly, the island
formation is a result of relieving strain in the heteroepitaxial system. Finally,
effects of the size of local relaxation on our final results are weak and can be

neglected.

4.2 Effects of growth conditions

We have so far shown our numerical results which reveal some aspects of the
strain in the heteroepitaxial system. In this section, we will show further that
controlling the critical thickness (h.), island size (1), and number of islands (n)
with the growth conditions is possible. The values of the growth conditions are
chosen so that we will observe almost the features of films we have studied. Before
going into detail, we note that all results of the critical thickness h,, island size [,
and number of islands n are reported at § = 10 ML. Since the system is in the

saturation regime, and the quantities are independent of the local relaxation.

4.2.1 Deposition flux

We begin this part with the effects of the deposition flux F' on the heteroepitaxial
films. The deposition flux is one of the important factors in the real MBE growth
and can be adjusted during the growth process. To produce high quality thin films,
the deposition flux is needed to be particularly low (~ 1 ML-s™!) [3] compared with
other growth techniques. Growth conditions with the low deposition flux lead to
the layer-by-layer growth mode in the homoepitaxial systems or heteroepitaxial

systems with small lattice mismatches. In large lattice mismatch systems, the
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picture is not true because a flat surface is energetically undesirable. In this work,
we not only simulate the heteroepitaxial growth at low deposition fluxes but also at
high deposition fluxes. The case in which the deposition rate is too fast compared
to the diffusion rate is ignored due to the fact that islands cannot form on the film
surface, so the film surface is statistically flat. In this subsection, we report that,
at high deposition fluxes, islands (occurred from the pit formation) are essentially

a result of limited mobility growth observed in experiments.

We begin with the morphological evolution of heteroepitaxial thin films
grown at 7' = 600 K and ¢ = 4.0% for various values of the deposition flux (F)
shown in Figs. (a)—(c). For F = 0.5 ML-s™! and F' = 1.0 ML-s™!, the surface
morphologies are not much different from each other. Islands seem to grow from
normal island formation, i.e. islands grown at the beginning of the growth process
capture nearby atoms to increase their sizes. For F' = 2.0 ML-s™! [Fig. (a)],
however, islands seem to occur from the introducing of pits (or groves). Film sur-
faces are rather flat in early stages of the growth, then pits develop at 6 ~ 6 ML.
The pits are randomly formed and become deeper as the coverage increases. As
a result, islands bound by the pits are more apparent. The island size (in fact
the distance between the centers of the pits) is relatively large. The uniformity
of the island size is also reduced since the pits are not uniformly distributed over
the film surface. The results show clearly that the heteroepitaxial films possess
different surface morphologies depending on whether the film surfaces have pits

or islands.

The critical thickness h. is shown at T = 650 K instead of T' = 600 K
because we can measure h. in a broader range. As we mentioned earlier, with
some growth conditions (e.g. 7' = 600 K and high deposition fluxes), the elastic
energy per atom (E/0L) never decreases. Hence the critical thickness is greater
than 10 ML, which is of course beyond our scope. Fig. shows the critical
thickness versus the deposition flux at T' = 650 K for various values of the lattice
mismatch. The results show that larger deposition flux leads to the shift of the

critical thickness to higher values. The critical thickness, which increases about
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Figure 4.12: The morphological evolution of heteroepitaxial thin films at T =
600 K and € = 4.0% for (a) FF' = 2.0 ML-s™!, (b) FF = 1.0 ML-s™!, and (c)
F = 0.5 ML-s™!. The film thickness increases every 6 = 1 ML.
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Figure 4.13: The critical thickness (h.) at T = 650 K as a function of the deposition
flux (F) for different values of the lattice mismatch (e).
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~ 1 ML, is less affected by the deposition flux at large lattice mismatches (e.g. at
e =5.0%).

Fig. and Fig. show the relative island size and the number of
islands versus the deposition flux at 7' = 650 K for various values of the lattice
mismatch. At e = 4.5 and 5.0%, the island size decreases with increasing F' while
the number of islands increases accordingly. At ¢ = 4.0% with high deposition
rate ' = 5.0 ML - s™, /L increases and becomes less uniform as can be seen
from the large deviation of [/L. We have found that if F is increased further to
F =10.0 ML - s7!, pit formation occurs.

4.2.2 Lattice mismatch

We next investigate the effects of the lattice mismatch e on the heteroepitaxial
films. The growth temperature 7" and deposition flux F' are fixed at T' = 600 K
and F' = 1.0 ML-s~!. The morphological evolution of film surfaces for various
lattice mismatches is shown in Figs. (a)—(c). The island size is qualitatively
smaller as the lattice mismatch increases. In Figs. (b)—(c), small islands are
unstable in the early stages of the growth, and some dissolve due to high stress

suppression.

Fig. shows the critical thickness h. as a function of the lattice mis-
match e for various values of the deposition flux F'. We can see that the critical
thickness becomes smaller with the increase in lattice mismatch for all values of
F. From the surface morphology, we found that island formation is observed at
small h.. Deposition flux I’ has a minor effect on critical thickness h. at lattice
mismatch € > 4.5%, while the effect becomes stronger when € < 4.5%. The critical
thickness can be adjusted from h. ~ 7 ML to h. ~ 3 ML depending on the values
of e and F.

The solid, dashed, and dotted lines in Fig. show the relation h,

E—a

0.25 (solid), 2.26 £ 0.29 (dashed), and 2.80 + 0.42 (dotted). Our results agree

, where a being a constant. The values of a are estimated to be a = 1.84 +
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Figure 4.14: The relative island size (I/L) at T = 650 K as a function of the
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Figure 4.16: The morphological evolution of heteroepitaxial thin films at T =
600 K and F = 1.0 ML-s™! for (a) € = 4.0%, (b) € = 4.5%, and (c) € = 5.0%. The

film thickness increases every 8 = 1 ML.
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well with this equation at deposition fluxes ' = 0.5 and 1.0 ML -s™!. At F =
2.0 ML-s™!, however, the relation does not fit well with our results, suggesting that
the relation may not be valid for high deposition growth regime. In addition, our
results are comparable with an experiment that obtained a = 1 [13], simulations

with a = 1.5 [72, [74], and theoretical prediction of a = 2 [37].

The relative island size (I/L) and number of islands (n) are shown in Fig.
and Fig. , respectively. It is clear that island size [ also decreases with increas-
ing lattice mismatch €, regardless of the deposition flux F'. At F' = 2.0 ML-s™!, we
found both pit formation (at € < 4.125%) and island formation (at € > 4.125%).
At € < 4.125%, in which the pit formation is observed, island size is consider-
ably large and less uniform, as can be seen from the deviation of [/L. As island
size | decreases, number of islands n increases and reaches a saturation value of
n ~ 26 islands at € = 5.5%. At lower F' = 0.5 and 1.0 ML - s™!, we observe only
island formation in the range of ¢ = 4.0 — 5.5%. Number of islands n increases
slightly with increasing lattice mismatch e from € = 4.0% to a particular value of
€ where n reaches its saturation value. If lattice mismatch € is increased further,
both number of islands and island size decrease. At large € = 5.5%, island density

observed here is lower than the island density observed at F' = 2.0 ML - s~ 1.

The solid, dashed, and dotted lines in Fig. show the relation [ oc €7?,
where b being a constant. The values of b are estimated to be b = 0.45+0.05 (solid),
0.94 £ 0.19 (dashed), and 1.26 £ 0.23 (4.25% < € < 5.5%) (dotted). For F =
2.0 ML-s7! and ¢ < 4.25%, we observe pits rather than the islands, and the
relation may not hold in the pit formation regime. It is clear that the exponent b
is affected by the deposition flux. Our values of b are closer to the values of grown
films in experiments with b = 0.9 — 1.1 [[13, 12, [73] than those of annealed films in
simulations with b = 1.8 [B8] and theoretical prediction with b =2 [37].
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Figure 4.18: The relative island size (I/L) at T' = 600 K as a function of the lattice
mismatch (e) for different values of the deposition flux (F'). Solid, dashed, and

dotted lines illustrate a power law relation, [ o< €=, where b being a constant.
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4.2.3 Growth temperature

The growth temperature obviously controls the diffusion rate of adatoms as can
be seen from Eq. (@) Generally, the diffusion length (an average distance used
by adatoms to travel on the film surface) increases exponentially with the tem-
perature [90]. Thus a small variation in the growth temperature can lead to

significantly different surface morphologies.

In this subsection, we present the results of the heteroepitaxial films grown at
various values of the growth temperature (T'). The results show strong dependence
of the surface morphology, island size, and number of islands on the temperature.
The morphological evolution of heteroepitaxial films grown at € = 4.0% and F =
1.0 ML-s™! for various values of the temperatures T is shown in Figs. (a)—(c).
The surface morphologies are obviously different from each other. At T'= 550 K
[Fig. (a)], the layer-by-layer growth is observed in the early stages of growth,
small pits then develop nearly the end of the growth. At a higher temperature
(T =650 K) in Fig. (c), islands occur from the island formation. In addition,
some small islands disappear at the end of growth (Ostwald ripening) [39].

Fig. shows the critical thickness as a function of the growth temperature
for various values of the deposition flux. Again we show the critical thickness of
the heteroepitaxial thin films at ¢ = 5.0% because, at low temperatures, the
critical thickness cannot be observed. We can see that growth temperature T
also influences critical thickness h. as well as deposition flux F—increasing 7" and
decreasing F lead to similar kinetically effects. Both cause h. to become smaller
as can be seen in Fig. and Fig. . The critical thickness can be adjusted
from h. ~ 5 ML to h. ~ 2 ML by varying the deposition flux and temperature.

The relative island size and number of islands versus the temperature at
e = 5.0% for various values of the deposition flux are shown in Fig. and
Fig. , respectively. At I = 0.5 and 1.0 ML - s7!, island size [ increases with
growth temperature 7" and decreases with increasing deposition flux F. Number

of islands n drops according to the increasing of island size [. At higher F' =
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Figure 4.20: The morphological evolution of heteroepitaxial thin films at F =
1.0 ML-s™! and € = 4.0% for (a) T'= 550 K, (b) T = 600 K, and (c) T = 650 K.
The film thickness increases every § = 1 ML.
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Figure 4.21: The critical thickness (h.) at € = 5.0% as a function of the growth
temperature (7') for different values of the deposition flux (F).
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2.0 ML -s™!, however, we observe pits at 7" = 550 K and islands at higher T". Our
result suggests that, as well as by varying F, pits and islands can be found by
varying T. These results agree with previous work [19, [18]. In addition, island
size [ is less uniform when growth temperature 7" increases to 7' = 650 K which

can be seen from the deviation of [/ L.

Here, we discuss our numerical results of this section. According to the pit
and island formation mechanisms and available data points for various growth
conditions, we plot qualitatively a diagram in Fig. . All points (e) below the
surface denote pits and all points (e) above the surface denote islands. The surface
cutting is draw by the points (@) which denotes the transition regime. We note
that although the formation of pits and islands is not obvious at the interface and
in the area nearby, all data points that are far from this area i.e. deeply below
the surface and highly above the surface show clearly the pit and island formation
respectively. For example, at 7' = 600 K and F' = 0.5 ML - s~} we observe only
islands at € > 4.0%.

We have found that the trend of critical thickness h. is related to pit and
island formation regions. For example in Fig. when F increases, h. increases
accordingly and the system moves deeply in the pit regime according to the di-
agram in Fig. . This result is also consistent with the experimental result
shown in Fig. at T'= 550 °C. The morphological evolution changes from the
formation of islands at deposition rate Rgep, = 0.015 nm - s7! to the formation of

pits at Rgep = 0.09 nm - s71

In this region deposited atoms interrupt adatoms
from hopping to energetically more preferable sites (at upper layers or on top of
existing islands). Adatoms are buried before they reach existing islands. As a
result, it takes longer time for islands to form, and the critical thickness is then

larger.

Similarly in Fig. when 7' increases, h. decreases accordingly and the
system moves deeply in the island region according to the diagram in Fig. .
This result agrees with the experimental result shown in Fig. at Raep =

0.09 nm - s~!. The morphological evolution changes from the formation of pits at
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Figure 4.24: F-e¢-T diagram. Points (e) below the surface denote pits and points
(e) above the surface denote islands. The surface cutting the points (@) and area

nearby the surface denote the transition regime.
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T = 550 °C to the formation of islands at 7" = 750 °C. In this region the growth

temperature enhances the adatom diffusion, so islands form early. Hence h,. is low.

In general, the formation of pits observed in our simulations is consistent
with that in limited mobility growth regime at high deposition flux and low growth
temperature [19, B§]. This regime is at the far back corner of the diagram (point
T =550 K, F =10 ML - s7! and € = 3.5%) which is deeply below the cutting
surface. In limited mobility growth, the formation of pits is more preferable for
strain relief [19, B8, B9]. When surface diffusion process becomes significant, at
high growth temperature and low deposition flux, island formation is preferable g,
38]. This regime is at the near front corner of the diagram (point 7" = 650 K,
F = 1.0 ML - s7! and € = 5.5%) which is high above the cutting surface. The
transition from island to pit formation indicates the onset of a limited mobility

growth regime.

Moreover, the trend of our results quite agrees with experimental results [1§]

and the picture of morphological evolution shown in Fig. .

4.2.4 Summary

Results in this section, Effects of growth conditions, are listed in Table [1! and
summarized as follows. The pit formation, resulting from the limited mobility

growth, is observed at low lattice mismatches, high deposition fluxes, and/or

et F 1 T1
Properties
(at T'=600 K) | (at T'=650 K) | (at € = 5.0%)
he | L (heoce) t |
l L (loce™®) l )
1 (at high F
n - 1 )
1 (at low F)

Table 4.1: Relevant properties of heteroepitaxial thin films in the island formation

regime. For example, h. decreases when ¢ increases at T' = 600 K.
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low temperatures. And the heteroepitaxial films possess different morphologies

depending on whether the film surfaces have pits (groves) or islands.



CHAPTER V

An Application of Roughness
Exponent Method in a Frustrated

Spin System

In this chapter, we discuss the possibility of using the global roughness (W), also
known as the interface width, and its exponents of a modified SOS growth model
to determine a critical temperature and critical exponent v of a frustrated spin
model. The exponents of the SOS growth model: growth exponent (3, roughness
exponent «, and dynamical exponent z, are calculated by means of the scaling
concept and data collapse. The global roughness W and roughness exponent «
are sensitive enough to detect a critical temperature of the spin model. Moreover,
the exponents of both models are also connected with some relation, which can

be used to verify the universality class of the spin model.

We arrange this chapter as follows: firstly, we provide a brief introduction
to the previous studies using the SOS growth method to determine behavior of
various spin models. We then introduce a frustrated spin model, to which the
SOS growth method is adopted. In the next section, we present the frustrated
spin model and method to determine the critical temperature and exponents.
We discuss our numerical results in section @ In this section, we compare our
results with those results obtained from conventional spin methods. Finally, we

summarize the results of this chapter in section @
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5.1 Introduction

In the past decades, kinetic roughening of film surfaces generated by growth models
has been one of the most attractive subjects studied in computational, theoretical,
and also experimental statistical physics [2, 97, 98, 99, 100, 101, [102]. Tts behavior
seems to occur in a wide range of physical systems, which reflects its universality.
In order to study physical properties of the systems, some parameters must be
introduced. The standard tools used in growth models are the roughness (W)
and its exponents: growth exponent (/3), roughness exponent (a) and dynamical
exponent (z) [2, 84]. Once the exponents are determined, the universality of the

systems is classified.

It had been shown [[103, 104, 105] that ¥/, Bwﬁl and « obtained from mapping
spin configurations to rough surfaces of a solid-on-solid (SOS) growth model can
be used to detect transition points of spin models. In addition, the exponents
can also be used to verify the validity of its universality classes by considering
scaling relations between growth and spin models. This approach was introduced
by de Sales et al [106, 107]. They considered cellular automata (CA) and then
mapped the CA configurations to surfaces of a SOS model. By using the roughness
exponent method, the CA universality classes can be classified more precisely.
Later, Atman et al. [108, 109] showed that 5, can be used not only to detect
the Domany—Kinzel cellular automaton (DKCA) phases, but also to test scaling
relations of critical exponents between growth and DKCA models. In spin models,
Redinz and Martins [103] studied the g-state (with ¢ =2, 3, and 7) Potts and
p =10 clock models. The results showed that o and €* (characteristic length)
sharply change near critical points. For the clock model, the intermediate phase
or spin-wave phase was also found [104, [105]. Furthermore, Brito et al. [110]
studied the Ising chain with long-range interactions and found the value of « to
peak near critical points, resulting in super-roughening. The detailed study was
extended to ¢-state Potts, spin-1 Blume-Capel (BC) models, and two-dimensional
XY models [[104, [105].

!The subscript w denotes a quantity that is of the SOS growth model.
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In studies of spin systems, frustrated spin models have received much atten-
tion. It describes an array of Josephson junctions under an external field [111].
Some of the interesting models investigated via the simulation methods are the
fully frustrated XY model [112, 113, 114, 115], the frustrated antiferromagnetic
XY (FAXY) model [116, 117, 118] and the frustrated antiferromagnetic six-state
clock model [119, 120]. These models have a rotational U(1) symmetry and an ad-
ditional reflection Zs symmetry or chiral symmetry that can be broken at critical
temperatures through the Kosterlitz—Thouless and an Ising-like transition tem-
peratures, Txr and 17, respectively. Since systems with the U(1) symmetry are
expected to belong to the KT universality class [83, 94|, therefore the Zy sym-
metry has been the subject of interest in these models. It has been found that
the Zy symmetry (with the critical exponent, v < 1) may not belong to the Ising
universality class [113, 114, 116, 117, 118, 120]. Other [115, [119] argue that it
is the finite size effect and v = 1 in the limit of L — 00, so the results are still

controversial.

We, therefore, investigate the FAXY model on a two-dimensional triangular
lattice. The chiral configurations are mapped (like a walk process) to rough sur-
faces of a SOS growth model, for which the roughness exponent method will be
used. As discussed earlier, the aims of this study are to study the chiral symmetry
breaking of FAXY model and to provide simulation details of this model, since

frustrated models have not been much studied using this method.

5.2 Models and Methods

The Hamiltonian of the lattice spin model is given by
H=-J)Y S;-Sj=—J> cos(t; —0;), (5.1)
(ig) (ig)

where (ij) denotes a sum over all neighbor spin pairs, J is a coupling constant,
S; is a spin variable with [S;| = 1, and 6; is an angle of S; with respected to an

arbitrary direction. In the FAXY model, the chirality at each elementary triangle
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is defined as

2
kn, o, = ——=|sin(#,, — ;) + sin(0,, — 6,,,) + sin(0;, — 0,,)]|, 5.2
i = ol = 00+ (0, —0,) 450 —6,) (52)

where A; and s7; denote up- and down-triangle i, respectively (see Fig. @) The
staggered chirality which plays a role of spin-like variable of the Zy symmetry is
given by

1
Ki = §<KA1' - HV@')' (53)

According to the method [[106, [107], a positive-state of k; at site ¢ and at
time ¢’ is equivalent to deposition of an atom on the film surface while a negative-
state leads to an evaporation of an atom. Local hight at site ¢ and at time ¢, then,

is the accumulation of atoms on the surface from ¢ to t as

t

hi(t) = > ki) (5.4)

t'=0

The global roughness, also known as the interface width, defined from fluctuation

(O A sublattice
@ B sublattice

@ C sublattice

f+\
NN

Figure 5.1: The FAXY model with N = 6 x 6 sites. The circles refer to spins

in A, B and C sublattices, the + signs denote the chirality at each elementary

triangle, and the shaded triangles refer to up- and down-triangle 7, respectively.
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relation of h; is given by [2]

W(L,t) = V{(h(t) = (h(t)))*)r, (5.5)

where (...);, denotes an average overall substrate of size L. At early time, W
increases with increasing t as W (t) ~ t%» when f3, is the growth exponent, and
saturates after a crossover time t,. When t > t,, W is independent of ¢, but
W depends on the substrate size L as W(L) ~ L% where « is the roughness

exponent. The scaling form of W can be written as [121]

WNLJ)Nlﬂf(L;), (5.6)

where f(u) is a scaling function, f(u) ~ uP* for t < t, and f(u) = const. for
t > ty. The crossover time grows as a function of L, t, ~ L**, so z, = a/f3,,. For
a random deposition (RD) process, W increases indefinitely with time as W ~ t#»
with 8, = 1/2 because the correlation length is zero at all time. For correlated
systems, the correlation length increases with time and saturates at ty, so [,
should deviate from 1/2 at t < . In the case of a persistent correlation process,
Bw > 1/2 while in the case of the anticorrelation function process, 3, < 1/2. It has
been shown that the Monte Carlo simulations add an intrinsic noise to the SOS
model [104, [105]. At high temperatures, spins are uncorrelated, then W increases
definitely with ¢ as a RD process. This noise still exists even when the system is
in a critical state. The Family-Vicsek scaling in Eq. (@), therefore, does not hold
in this model because o — oco. In order to remove the effect, the factor t=/2 is

introduced to W [[104, 105]. The noise-reduced roughness is then given by
W*(L,t) =t Y2W(L,t). (5.7)

The new relations become 5 = 3, — 0.5, 2 = 2, and o = 2, (S, — 0.5).

In simulations, we use linear size N = L x L with L = 24 to 120 sites, and we
average all results over 25 to 200 independent runs depending on L. The maximum
simulation time is up to 5 x 10> Monte Carlo steps (MCS). The Monte Carlo
algorithm, together with Metropolis method, are used to update spin states [83, 91,

94]. The system is initially set in high temperature states. The temperature is then
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decreased and the systems are allowed to relax to equilibrium states. Likewise, h;
is set to be zero at initial states (flat substrates), although W only depends on

the fluctuation of the surfaces.

5.3 Results and discussions

In our work, temperature is measured via the dimensionless quantity 7' = kp7/|J|,
where kp is the Boltzmann constant, 7 is the temperature and J is the coupling
constant in Eq. (@) Fig. @ shows the film surfaces taken at ¢ > ¢, and
different temperatures. For T' > T} [Fig. @(a)] and T < Ty [Fig. @(C)], the film
surfaces are rough in a short scale while the film surface is rough in a large scale
at T~ Ty [Fig. @(b)] This is due to the fact that fluctuations are maximum at

the transition point.

In order to quantify the film roughness, the noise-reduced roughness, W*, is
studied. In Fig. @, W* is plotted versus ¢ at different T" for L = 120 sites. In the
early time, W* increases with increasing t as W*(t) ~ t%» with 3% = 0.513,0.423
and 0.256 for T = 0.540,0.515 and 0.500, respectively. We can see that W, is

sa

maximum at 1" = 0.515 which is near 77.

In Fig. @, we consider W* as a function of ¢ at T' = 0.520 for L =
24,48,72,96 and 120 sites. It can be seen that W* increases with ¢, and satu-
rates after ¢.. The inset shows that W, grows as W7, (L) ~ L* . The solid line

shows the power law of W7 . with o* = 1.03 when T" = 0.520.

sat

The process is then repeated for different values of 7. In Fig. @, W= at
the saturated time (W7

sat

) is plotted versus temperature 7. Starting from the high

temperature phase T > T;(L), W, increases as the temperature is decreased.

The temperature at which W

. reaches the maximum value is called T7(L) where

T;(L) represents the critical temperature of a system with finite size L. When

the temperature is decreased further to the 7' < Tj(L) range, W, decreases

sat

with 7". In addition, Fig. @ shows that the substrate size dependence of W7, is

S

particularly strong near the transition point, in which all atoms are correlated. It
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(C) T <Ty

Figure 5.2: The film surfaces of a system with L = 120 sites at a saturated time;

(a) T > T[, (b) T ~ T], and (C) T < Tj.
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Figure 5.3: W™ as a function of ¢ for L = 120 sites at different T'. The power law
of W* in the early ¢ is indicated by S} .
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Figure 5.4: The evolution of W* as a function of t at T' = 0.520 for L = 24,
48, 72, 96 and 120 sites (from the bottom to the top). The solid line in the inset

shows the power law of W7 . with a* = 1.03.
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is seen that when L is increased, the peak becomes narrow and shifts toward the
low temperature region. The value of T7(L) also shows strong dependence on L.
To obtain the “real” critical temperature, we need to find 77 in the thermodynamic
limit [105], 77 = T7(L — oo). To this end, T7(L) is plotted versus 1/L as shown
in the inset. The graph is then fitted with an equation T7(L) = Ty + C(1/L)*
where C' and \ are nonuniversal constants. The result yields 77 = 0.515 4 0.002,
C = 3.694 and A = 1.554, which is the same as those results (marked by the arrow)
obtained from conventional statistical methods. The results are 77 = 0.513(1)
using L = 12 to 102 from Ref. [117] and 77 = 0.512(1) using L = 500 to 2000 from
Ref. [118].

The value of a*, obtained via the W, vs L plot as shown in the inset of
Fig. @, can also be used to identify 7. Fig. @ shows a plot of a* as a function
of T'. One can see that o increases with decreasing temperature to the maximum
value at T' ~ T marked by the arrow, and decreases to zero after T" < T;. This

result shows that W}

a.

. is independent of L (a* =0) for T' < T7.

It is known that [83, 91, 94, [122] in spin systems, the correlation length
(€) is finite when the temperature is far from the critical temperature. Spins
are correlated in a small regime only and the spin fluctuations are low. However,
when the temperature reaches the critical temperature, £ diverges to imﬁnityE [83].
The spins are entirely correlated and the spin fluctuations are at the maximum
value. When spin configurations are mapped to film surfaces of SOS growth model,
the roughness of the surfaces represents the spin fluctuations. Fig. (a) and
Fig. @(C) show the film surfaces when ¢ is small, while Fig. @(b) shows the film

surface when £ ~ L. The maximum value of £ at T' = T7(L) is clearly seen in
Fig. @

In order to determine the exponent v of the correlation length (£ ~ ¢;”) in

the spin model, W7, is written in a scaling form [83, 122], W7, = L f(¢t; L"),

a

where t; = |(T'—T7)/T7| is a reduced temperature. Fig. @ shows the data collapse
of W7,/L® as a function of t;L'¥. The result yields a* = 0.963, v = 0.81,

sa

2Note that & ~ L for a finite system size.
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and 77 = 0.513. The critical exponent v agrees with v = 0.83 (Ref. [117]) and
v = 0.84 (Ref. [118]) obtained from conventional methods. At 7" = T}, the growth

exponent [3,, relates to the exponents of the spin model through [[109]

ﬁwzl—ﬁ (L — o), (5.8)

vz

where 3 and z are the order parameter and dynamical exponents of the spin model.
Taking § = 0.106, v = 0.84, and z = 2.52 from Ref. [118], §,, is estimated to be
Bw = 0.95. From Fig. @, Bw = B +0.5 =0.923. It can be seen that /3, obtained
from the two methods are comparable. However, the smaller value may be caused
by the finite size effect [104, 105]. For o* = 0.963 and S} = 0.423, the dynamical
exponent z, is calculated from z, = a*/B% = 2.28 compared with those value

obtained from conventional spin method which is z = 2.52 [11§].

5.4 Summary

Results in this chapter, An Application of Roughness Exponent Method in a Frus-
trated Spin System, are summarized as follows. Firstly, the film roughness reaches
its maximum value at a critical temperature. Secondly, the critical exponent v of
the correlation length in spin systems can be obtained from the roughness expo-
nent method. Next, the exponents of the SOS growth model and FAXY model
are connected through the scaling relation. Finally, our results are comparable

with those results obtained from conventional spin methods.



CHAPTER VI

Conclusions

Heteroepitaxial growth is truly a large subject studied in thin film physics. Micro-
scopic processes which occur during the real MBE growth are far more complex
than those of any existing models we investigated. Even with the same heteroepi-
taxial systems, one cloud not expect to have the same experimental results, since
growth conditions, growth preparations etc. seem to involve in the growth process.
Nevertheless, it is found that some phenomena have been observed in a large class
among the heteroepitaxial systems, sharing the same underlying principle. The
formation of self-assembled, strained islands also called the quantum dots is one
of the phenomena found in many heteroepitaxial systems. Therefore, the main
objective of this work is to investigate the formation of the islands and pits by
using computer modelling. A two-dimensional discrete ball and spring model is
chosen to simulate an heteroepitaxial system. The dynamics of the system are
controlled by the kinetic Monte Carlo simulations. Within the scope of this work,
our numerical results show that the ball and spring model is indeed a suitable

model to study heteroepitaxial systems.

We conclude that the island (pit) formation is purely a result of relieving
strain in the system. The island formation is supported by the diffusion bias at
the film-substrate interface, especially at the kink sites, where the strain is mostly
registered to. The lattice mismatch, deposition flux, and growth temperature are
equally important factors which specify the film surface morphologies. According
to our extensive results, the relevant properties of heteroepitaxial thin films, i.e.

the critical thickness, island size, and number of islands, in the island formation
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regime are summarized in Table EI Here, we note that the formation of pits in
the limited mobility growth regime is another strain-relieved mechanism found in

the system.

We also investigate surface roughening of a modified SOS growth model to
determine critical properties of a seemingly different model, the frustrated an-
tiferromagnetic XY spin model. The film roughness achieved by mapping spin
configurations to film surfaces of the SOS growth model is proved to be able to
identify the critical temperature in the spin model with accurate figures. The
scaling hypothesis and relation between exponents in both models are useful tools
for verifying the universality class of the spin model. According to our work and
previous work in the literature reviews, we believe that the roughness exponent

method can be applied to other physical systems as well.

Finally, we recommend that for further investigation, the heteroepitaxial
growth should be extended to three-dimensional simulations. Due to many aspects
of the heteroepitaxial growth, we draw here some possible studies in this area.
Influence of crystalline substrates on the island shape is a promising topic to be
investigated. Off-lattice models are other candidates which can be used to study
dislocations, wetting layers etc. and are suitable for highly strained heteroepitaxial
systems. We believe that the growth process which allows the film annealing and/

or alloying would provide another strain-relieved mechanism.
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APPENDIX A

List of Notations

Symbol Definition

ay, G lattice constant

ATG Asaro-Tiller-Grinfeld
Bi-CGSTAB biconjugate gradient stabilized
D dimensional

DFT density functional theory

DOS density of state

€; energy stored in springs connected to atom ¢
E total elastic energy

Ey surface binding energy

E, activation energy

E, binding energy

F deposition flux

FAXY frustrated antiferromagnetic XY
FM Frank-van der Merwe

h film thickness

he critical thickness

H local height

kg Boltzmann constant

kMC kinetic Monte Carlo

knn, ENnN spring strength

l island size

L substrate size

98

|
S
bl oo B e B R B R amamm Bl e §



Symbol
MBE
ML
NN
NNN

Smax

SK
SOS

tx

17

VW

AFE;

a?/B7Z7V

Ne}
Ne}

Definition

molecular-beam epitaxy
monolayer

nearest neighbors
next-nearest neighbors
quantum dots
characteristic vibrational frequency
deposition rate

diffusion rate

random deposition
maximum hopping distance
Stranski-Krastanov
solid-on-solid

time

crossover time

temperature

critical temperature
Volmer-Weber

local width

interface width or roughness

~
ISl g g e — o o N = 1 ek | ol

elastic energy difference

[E]
E] E] = [E]

exponent
lattice mismatch or misfit
coverage or average thickness

correlation length
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APPENDIX B

List of Constants

Symbol Value Page
s 2.715 A
c(ng, h;) see Table @ @
Dy 3.83 x 1013 A2 g1 b1
Ey —0.25 eV b
E, 0.30 6V b
H J sites @
ki 20.73 ¢V /a2 = 2.81 V-4
knwn kv
Riol 1072 b4
Smax 8 sites
W 25 sites @
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APPENDIX C

System of Linear Equations

Recall Eq. (),

—

K- i=f. (C.1)

The components K (i, j), u(i), and f(i) are given by

K*(1,1) K*(1,2) K*(L,3) ... K*(1,N) ua(1) (1)
K¥(1,1) K¥(1,2) K¥(1,3) ... KY(1,N) uy (1) £,(1)
K*(2,1) K*(2,2) K*(2,3) ... K*(2.N) a(2) £.(2)
K¥(2,1) K¥(2,2) KY(2,3) ... KY2,N) w@ | =1 £©
K*(5,1) K*(3.,2) K°(5.3) E*(5,N) || u(3) fo(5)
K¥(§,1) K¥(%,2) KY(%,3) KO (S 0V) uy(5) fy(3)
(C.2)

where N = 2L. The components K*(i,j) and K¥(i,j) relate to the forces acting

on atom ¢ in x and y directions as,
Fu(i) = K*(i,)ulj) - fo(i) = 0, (C.3)
J

and

Fy(i) = Z KY(i,j)u(j) — f,(i) = 0. (C.4)

For more convenience, we map the data of the (N x N) matrix K to a 1D array
whose size is N?. The components f,(i) and f,(i) are stored in variable f specified
by index 7 as,

fo(i) = 20 = 1], (i) = f12i]. (C.5)
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The components K*(i,j) and K¥(i,7) are given by

K[2(i — 1)N + (2 —1)] if j = odd,

K*(i,7) = (C.6)
K[2(i — 1)N + 2j] if j = even,
and
K2(:—1) N+ N+ (25 —1)] if 7 =odd,
PG LG (2~ 1)] o
K[2(i —1)N + N + 2j] if j = even.

An atom interacting with the atom ¢ is now represented by index j. For the atom
i (see Fig. @), the interaction is in the range of NN and NNN. Thus, the index
jrunsonlyover NN=i¢+1,¢—L,i—1, i+ Land NNN=¢+1—-L,1—1—L,
i1—14+ L, i+ 14 L. The directions of NN and NNN respected to the atom 7 are
labeled with (1), (2), (3), and (4). In z direction, the values of the arrays f and

@ i- 1@ ——C 8-~ Q@i+1
o @ O ® o
i—1-L i— L i+1-L
(2

Figure C.1: The nearest neighbors (NN) and next-nearest neighbors (NNN) of
atom ¢. The sign (...) labels the directions of NN and NNN respected to the atom

i.



K are
fl2i — 1) = knwnOiim1-r(dy + d2) — knnnOiir1-r(dy + da)
+ 2knnOii—1dy — 2knNOiir1ds
+ EnnnOiic14n(dy + da) — EnnnOiipi+1(dy + da).
Forj=1—1—-1L,
K[2(i —1)N 4 2j] = —knnNOii—1-L-
For j =1 — L,
K[2(i—1)N +(2j — 1)] =0,
K[2(i—1)N +2j] = 0.
For j=i14+1—-1L,
K[Z(Z 7 1)N + (2] o7 1)] == _kNNNéi,i+1fL7
K[2(i = 1)N + 2j] = Ennn0iiy1-L-
For j =1—1,
K[2(i —1)N +2j] = 0.
For j =1,
+ knanOiici—1 + ENNNOiit14L
+ EnnNOiic1+rn + ENNNOiit1—L,
K[2(i — 1)N + 2j] = knnnOiit1+n + ENNNOiim1-L
— knNNOii—141 — KNNNOGit1—L-
For j =141,
KQ2(i = 1)N + (2j — 1)] = —2knn0ii41,

K[2(i — 1)N +2j] = 0.
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(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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Forj=i—1+1L,

K[2(i —1)N + (2§ — 1)] = —knnnOii—1+L,

(C.15)
K[2(i = 1)N + 2j] = kynnOii-14L-
For j =14+ L,
K[2(i — DN + (2 — 1)] =0,
(C.16)
K[2(i — 1)N +2j] = 0.
For j =14+ 1+ L,
K2(i —1)N+(2) — 1)] = —=knnNNOiit1+Ls
2(i — )N + ( )] NNNOLi+14L ©.17)
K[2(i = 1)N 4 2j] = —knnNGijit14L-
In y direction, the values of the arrays f and K are
f12t] = knwndiic1—r(di + da) + knnniiv1—1(dq + da)
+ 2knNOii—rdy — 2kNN0; 4 1.d2 (C.18)
— knnnOii—14n(di + do) — knvnGiiv1+n(di + da).
Forj=1—1—-1L,
K[Q(Z P 1)N + N+ (2] = 1)] = _kNNNéi,if _L,
' (C.19)
K[2(i = 1)N + N + 2j] = —knnNGii1-L-
For j=i1— L,
K[2(i —=1)N+ N+ (25 —1)] =0,
(C.20)
For j—i+1—1L,
K[2(i — )N + N + (2j — 1)] = knanOiir1-z,
NNNOii+1-1L (C.21)
K[2(i —1)N + N +2j] = —knnNOiit1-L-
For j=1—1,
K[2(i— )N + N + (2j — 1)] = 0,
(C.22)

K[2(i — 1)N + N + 2] = 0.
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For j =1,

K2(i —1)N+ N +(2j = 1)] = knnnbii—1-1 + EnvnOiiti4L
— knNNNOii—14 — KNNNOiiv1-L,
K[2(i = 1)N 4+ N + 2j] = 2kyn0ii—1 + 2knNOsivr (C.23)
+ ENNNOiiv1+n + ENNNOii—1—L

+ knnnOii—14+n + ENNNOiit1—L-

For j =i+ 1,
K[2(i —1)N + N+ (2j — 1)] =0,
20— 1) ( -
K[2(i — )N + N +2j] = 0.
Forj=i—1+1L,
KQ2(i —1)N+ N+ (2j —1)] = knnndiio14L,
[ ) ( | = knnndii-14 (C.25)
K[2(i —1)N + N + 2j] = —knnNOii—1+L-
For j =14+ L,
K[2(i —1)N + N + (2j — 1)] =0,
(C.26)
Forj=i+1+L,
K[2(i = 1)N + N + (2§ — 1)] = —kynn0iit1+L,
[2( ) ( )l NNNOii+1+L (C.27)

K[2(: = 1)N + N + 2j] = ~knynnGiiy14L-

It is important to note that the NN and NNN of the atom ¢ must be subjected to

the periodic boundary conditions in x direction.
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