
ผลของความเครียดในการปลูกฟลมบางแบบเฮเทอโรเอพิแทกเซียล: แบบจำลองบอล-สปริง

นายมาณิต แกลวทนงค

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต
สาขาวิชาฟสิกส ภาควิชาฟสิกส

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2556

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัยบทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)  

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั  

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) 

are the thesis authors' files submitted through the Graduate School. 



EFFECTS OF STRAIN IN HETEROEPITAXIAL THIN FILM GROWTH: A

BALL-SPRING MODEL

Mr. Manit Klawtanong

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Physics

Department of Physics

Faculty of Science

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University



Thesis Title EFFECTS OF STRAIN IN HETEROEPITAXIAL THIN

FILM GROWTH: A BALL-SPRING MODEL

By Mr. Manit Klawtanong

Field of Study Physics

Thesis Advisor Chatchai Srinitiwarawong, Ph.D.

Thesis Co-Advisor Assistant Professor Patcha Chatraphorn, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Professor Supot Hannongbua, Dr.rer.nat.)

Dean of the Faculty of Science

THESIS COMMITTEE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Assistant Professor Nuttakorn Thubthong, Ph.D.)

Chairman

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Chatchai Srinitiwarawong, Ph.D.)

Thesis Advisor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Assistant Professor Patcha Chatraphorn, Ph.D.)

Thesis Co-Advisor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Assistant Professor Sakuntam Sanorpim, Ph.D.)

Examiner

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Orapin Wannadelok, Ph.D.)

Examiner

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Soontorn Chanyawadee, Ph.D.)

External Examiner



iv

มาณิต แกลวทนงค : ผลของความเครียดในการปลูกฟลมบางแบบเฮเทอโรเอพิแทก
เซียล: แบบจำลองบอล-สปริง. (EFFECTS OF STRAIN IN HETEROEPITAXIAL
THIN FILM GROWTH: A BALL-SPRING MODEL) อ.ที่ปรึกษาวิทยานิพนธหลัก :
ดร.ฉัตรชัย ศรีนิติวรวงศ, อ.ที่ปรึกษาวิทยานิพนธรวม : ผศ.ดร.ปจฉา ฉัตราภรณ,
108 หนา.

การสรางชั้นเฮเทอโรเอพิแทกซีเปนอีกหนึ่งหัวขอสำคัญในการศึกษาฟสิกสฟลมบาง
โดยคาดหวังวาเกาะเครียดประกอบเองที่ เกิดขึ้นระหวางกระบวนการเติบโตของฟลมจะมี
สมบัติที่นาสนใจและสามารถนำไปใชในอุปกรณเชิงแสงและอิเล็กทรอนิกส ดังนั้นการควบคุม
สมบัติของเกาะเชนเดียวกับปรับปรุงเอกรูปและลำดับจึงมีความสำคัญมาก ในวิทยานิพนธ
นี้เราศึกษาระบบเฮเทอโรเอพิแทกซีผานแบบจำลองคอมพิวเตอร แบบจำลองบอล-สปริง
ไมตอเนื่องกันสองมิติถูกใชในการจำลองมอนติคารโลจลน ผลลัพธของเราแสดงใหเห็นวา
ความเครียดที่ผิวรวมฟลม-ซับสเตรตไบแอสกระบวนการแพรอะตอมผิวฟลมซึ่งสงเสริมการ
กอเกิดเกาะและหลุม การกอเกิดหลุมในกรอบการเติบโตจำกัดเชิงจลนเปนอีกหนึ่งกลไก
เพื่อผอนคลายความเครียดในระบบ ความหนาวิกฤต ขนาดเกาะและจำนวนเกาะถูกพบ
วาขึ้นอยูกับเงื่อนไขการเติบโต นอกจากนี้เรายังใชระเบียบวิธีเลขชี้กำลังความขรุขระซึ่งใช
ทั่วไปในการศึกษาการเติบโตของผิวฟลมเพื่อมาประยุกตใชในแบบจำลองฟรัสเทรตแอนติ
เฟรโรแมกเนติกเอกซวายสปน โดยการแปลงโครงแบบสปนไปยังผิวฟลมของแบบจำลอง
การเติบโตเอสโอเอสที่ดัดแปรเราแสดงใหเห็นวาความขรุขระและเลขชี้กำลังความขรุขระ
ประสบความสำเร็จในการหาคาอุณหภูมิวิกฤติและเลขชี้กำลังวิกฤติสำหรับการเปลี่ยนสถานะ
ที่สูญเสียสมมาตรไคแรลในแบบจำลองสปน

ภาควิชา. . . . . .ฟสิกส . . . . . . . . . . . . . . ลายมือชื่อนิสิต. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

สาขาวิชา . . . . . .ฟสิกส . . . . . . . . . . . . . ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธหลัก. . . . . . . . . . . . . . . . .

ปการศึกษา . . . . .2556. . . . . . . . . . . . ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธรวม . . . . . . . . . . . . . . . . .



v

## 5273840423 : MAJOR PHYSICS

KEYWORDS : HETEROEPITAXY / STRAINED ISLANDS / MONTE CARLO

/ FAXY MODEL

MANIT KLAWTANONG : EFFECTS OF STRAIN IN HETEROEPI-

TAXIAL THIN FILM GROWTH: A BALL-SPRING MODEL.

ADVISOR : CHATCHAI SRINITIWARAWONG, Ph.D., CO-ADVISOR :

ASST. PROF. PATCHA CHATRAPHORN, Ph.D., 108 pp.

Heteroepitaxial growth is one of the promising topics studied in thin film

physics. The self-assembled strain islands formed during the growth process are

expected to have interesting properties that can be used in optoelectronic devices.

Controlling island properties as well as improving island uniformity and ordering

are therefore crucial. In this dissertation, we investigate a heteroepitaxial system

via computer modeling. A two-dimensional discrete ball and spring model is used

in the kinetic Monte Carlo simulations. Our results show that strain at the film-

substrate interface creates a bias in the adatom diffusion process which promotes

island and pit formations. The pit formation in a limited mobility growth regime

is another mechanism to relieve strain in the system. The critical thickness, island

size, and number of islands are found to depend on the values of growth conditions.

Furthermore, we apply a roughness exponent method normally used in surface

growth study to the frustrated antiferromagnetic XY spin model. By mapping spin

configurations to film surfaces of a modified SOS growth model, we show that the

film roughness and its exponents successfully determine the critical temperature

and critical exponents for the chiral symmetry breaking transition in the spin

model.

Department : . . . . . . . .Physics. . . . . . . . . . . . Student’s Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Field of Study :. . . . . . . . .Physics . . . . . . . . .Advisor’s Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Academic Year :. . . . . .2013 . . . . . . . . . . .Co-Advisor’s Signature . . . . . . . . . . . . . . . . . . . . . . . . . . .



vi

Acknowledgements
I would like to express my sincere gratitude to my thesis advisor, Dr. Chatchai

Srinitiwarawong, and my thesis co-advisor, Asst. Prof. Dr. Patcha Chatraphorn,

from whom I have learned a lot and without whose guidance and suggestions the

work presented here would not have been possible. I greatly appreciate that they

are always willing to give me advice throughout my study.

I would like to thank the dissertation committee, Asst. Prof. Dr. Nuttakorn

Thubthong, Asst. Prof. Dr. Sakuntam Sanorpim, Dr. Orapin Wannadelok, and

Dr. Soontorn Chanyawadee, for valuable comments and suggestions.

I would like to thank Asst. Prof. Dr. Kajornyod Yoodee, Asst. Prof.

Dr. Surachate Limkumnerd, for helpful discussions and suggestions during this

work, and especially Asst. Prof. Dr. Sojiphong Chatraphorn, for providing and

maintaining high-efficiency computer facilities.

I would like to acknowledge Thailand Center of Excellence in Physics (ThEP

Center) for financial support. This work was partially supported by Research

Funds from the Faculty of Science, Chulalongkorn University and also the Special

Task Force for Activating Research (STAR), Ratchadaphiseksomphot Endowment

Fund, Chulalongkorn University through the Energy Materials Physics Research

Group.

A lot of thanks go to all my friends and people at the Department of

Physics, particularly my friends in the Semiconductor Physics Research Labo-

ratory (SPRL), Aj. R. Chanphana, S. Piankoranee, J. Disrattakit, P. Disrattakit,

C. Chaiyasorn, W. Kanjanaput, C. Chomngam, J. Yaemwong, S. Potepanit, and

the SPRL’s members whose names are not mentioned here, who have shared warm

friendships and helped me by any means.

Last but not least, I would like to thank my parents, my brother, and my

sister, who always support and understand me during my difficult times. I cannot

give enough thanks for everything they have done for me.



Contents
page

Abstract (Thai) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Epitaxial growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Growth modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 The dissertation outline . . . . . . . . . . . . . . . . . . . . . . . 9

II Theory and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 A two-dimensional ball and spring model . . . . . . . . . . . . . . 13

2.2 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The elastic energy . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Equilibrium constraints . . . . . . . . . . . . . . . . . . . 17

III Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



viii

Chapter page

3.1 Microscopic processes . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Desorption . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Strain relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Solving a system of linear equations . . . . . . . . . . . . 22

3.2.2 An approximation of the elastic energy . . . . . . . . . . . 24

3.2.3 Local relaxation . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Kinetic Monte Carlo simulations . . . . . . . . . . . . . . . . . . 29

3.3.1 A definition of physical time . . . . . . . . . . . . . . . . . 30

3.3.2 The n-fold way algorithm . . . . . . . . . . . . . . . . . . 32

3.4 Quantities of interest . . . . . . . . . . . . . . . . . . . . . . . . . 32

IV Results and Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Strained films . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Homoepitaxy vs. heteroepitaxy . . . . . . . . . . . . . . . 38

4.1.3 Local relaxation bias . . . . . . . . . . . . . . . . . . . . . 41

4.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Effects of growth conditions . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Deposition flux . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Lattice mismatch . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Growth temperature . . . . . . . . . . . . . . . . . . . . . 59



ix

Chapter page

4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

V An Application of Roughness Exponent Method in a Frustrated

Spin System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VI Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix A List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Appendix B List of Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Appendix C System of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . .101

Appendix D Publications and Presentations . . . . . . . . . . . . . . . . . . . .106

Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108



x

List of Tables
Table page

3.1 The values of local variable c(ni, hi). The sign (*) denotes situations

when c(ni, hi) cannot be calculated and the values of c should be

taken from calculations with smaller hi (listed in the higher rows). 25

4.1 Relevant properties of heteroepitaxial thin films in the island forma-

tion regime. For example, hc decreases when ϵ increases at T = 600 K. 67



xi

List of Figures
Figure page

1.1 (a) A three-dimensional AFM image of Ge/Si quantum dots [17]

and (b) an application of quantum dots used in light emitting de-

vices [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Schematic representation of three growth modes: (a) Layer-by-layer

mode, (b) VW mode, and (c) SK mode. . . . . . . . . . . . . . . 5

2.1 Schematic representations: (a) A ball and spring model and (b)

film under compression. . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Microscopic processes: (a) deposition, (b) desorption, and (c) dif-

fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 A typical configuration of surface atoms. . . . . . . . . . . . . . . 26

3.3 The elastic energy difference profiles of surface atoms in Fig. 3.2. 26

3.4 A schematic representation of the local relaxation. Atoms in a box,

whose width is denoted by W and whose height is denoted by H,

centered at the blue atom are allowed to relax. . . . . . . . . . . . 28

3.5 The energy profiles obtained from relaxing surface atoms in Fig. 3.2

for various local relaxation areas. . . . . . . . . . . . . . . . . . . 28

3.6 A schematic representation of an event selection. . . . . . . . . . 32

3.7 A flowchart of kMC simulations with the n-fold way algorithm. . 33

4.1 An equilibrium configuration of the strained film (green) and sub-

strate (red) before the full relaxation. . . . . . . . . . . . . . . . . 36

4.2 The same configuration as in Fig. 4.1 after the full relaxation. . . 37

4.3 The displacements of film and substrate atoms in x-direction. The

colors indicate values of the displacements. . . . . . . . . . . . . . 37



xii

Figure page

4.4 The displacements of film and substrate atoms in y-direction. The

colors indicate values of the displacements. . . . . . . . . . . . . . 37

4.5 The density of the energies ei. The colors indicate values of the

energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Homoepitaxial films (bottom) with ϵ = 0.0% versus heteroepitaxial

films (top) with ϵ = 4.0% at T = 600 K and F = 1.0 ML·s−1. The

coverage (θ) is θ = 1− 10 ML and increases every 1 ML. . . . . . 39

4.7 The total elastic energy per atom (E/θL) versus the coverage (θ)

of films grown at the same conditions as the films in Fig. 4.6(top). 40

4.8 Film surfaces at T = 600 K, ϵ = 4.0% and, F = 1.0 ML·s−1 for

different local relaxation areas: (a) W = 15, H = 5, (b) W = 25,

H = 5, (c) W = 75, H = 5, and (d) W = 125, H = 7. . . . . . . . 42

4.9 The elastic energy per atom (E/θL) as a function of the coverage

(θ) from heteroepitaxial growth with various local relaxation areas. 43

4.10 The island size (l) as a function of the coverage (θ) from heteroepi-

taxial growth with various local relaxation areas. Inset: the stan-

dard deviation of mean of island size l as a function of coverage

θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.11 The number of islands (n) as a function of the coverage (θ) from

heteroepitaxial growth with various local relaxation areas. . . . . 46

4.12 The morphological evolution of heteroepitaxial thin films at T =

600 K and ϵ = 4.0% for (a) F = 2.0 ML·s−1, (b) F = 1.0 ML·s−1,

and (c) F = 0.5ML·s−1. The film thickness increases every θ = 1ML. 49

4.13 The critical thickness (hc) at T = 650 K as a function of the depo-

sition flux (F ) for different values of the lattice mismatch (ϵ). . . 50

4.14 The relative island size (l/L) at T = 650 K as a function of the

deposition flux (F ) for different values of the lattice mismatch (ϵ). 52



xiii

Figure page

4.15 The number of islands (n) at T = 650 K as a function of the

deposition flux (F ) for different values of the lattice mismatch (ϵ). 53

4.16 The morphological evolution of heteroepitaxial thin films at T =

600 K and F = 1.0 ML·s−1 for (a) ϵ = 4.0%, (b) ϵ = 4.5%, and (c)

ϵ = 5.0%. The film thickness increases every θ = 1 ML. . . . . . . 54

4.17 The critical thickness (hc) at T = 600 K as a function of the lattice

mismatch (ϵ) for different values of the deposition flux (F ). Solid,

dashed, and dotted lines illustrate a power law relation, hc ∝ ϵ−a,

where a being a constant. . . . . . . . . . . . . . . . . . . . . . . 55

4.18 The relative island size (l/L) at T = 600 K as a function of the

lattice mismatch (ϵ) for different values of the deposition flux (F ).

Solid, dashed, and dotted lines illustrate a power law relation, l ∝

ϵ−b, where b being a constant. . . . . . . . . . . . . . . . . . . . . 57

4.19 The number of islands (n) at T = 600 K as a function of the lattice

mismatch (ϵ) for different values of the deposition flux (F ). . . . . 58

4.20 The morphological evolution of heteroepitaxial thin films at F =

1.0 ML·s−1 and ϵ = 4.0% for (a) T = 550 K, (b) T = 600 K, and

(c) T = 650 K. The film thickness increases every θ = 1 ML. . . . 60

4.21 The critical thickness (hc) at ϵ = 5.0% as a function of the growth

temperature (T ) for different values of the deposition flux (F ). . . 61

4.22 The relative island size (l/L) at ϵ = 5.0% as a function of the

growth temperature (T ) for different values of the deposition flux

(F ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.23 The number of islands (l/L) at ϵ = 5.0% as a function of the growth

temperature (T ) for different values of the deposition flux (F ). . . 63

4.24 F -ϵ-T diagram. Points ( .) below the surface denote pits and points

( .) above the surface denote islands. The surface cutting the points

( .) and area nearby the surface denote the transition regime. . . 65



xiv

Figure page

4.25 Morphological evolution of GeSi/Si (001) thin films during MBE

growth with ϵ ≈ 1.2% [19]. . . . . . . . . . . . . . . . . . . . . . . 66

5.1 The FAXY model with N = 6 × 6 sites. The circles refer to spins

in A, B and C sublattices, the ± signs denote the chirality at

each elementary triangle, and the shaded triangles refer to up- and

down-triangle i, respectively. . . . . . . . . . . . . . . . . . . . . . 72

5.2 The film surfaces of a system with L = 120 sites at a saturated

time; (a) T > TI , (b) T ≃ TI , and (c) T < TI . . . . . . . . . . . . 75

5.3 W ∗ as a function of t for L = 120 sites at different T . The power

law of W ∗ in the early t is indicated by β∗
w. . . . . . . . . . . . . . 76

5.4 The evolution of W ∗ as a function of t at T = 0.520 for L = 24, 48,

72, 96 and 120 sites (from the bottom to the top). The solid line

in the inset shows the power law of W ∗
sat with α∗ = 1.03. . . . . . 77

5.5 The temperature dependent of W ∗
sat at t ≫ t× with different L.

The arrow marks TI ≃ 0.513 and the inset shows the best fit of

TI(L) as a function of 1/L. . . . . . . . . . . . . . . . . . . . . . . 78

5.6 The temperature dependent of α∗, the arrow marks TI ≃ 0.513. . 80

5.7 Log-log plot of the data collapse of W ∗
sat/L

α∗ as a function of tIL1/ν . 81

C.1 The nearest neighbors (NN) and next-nearest neighbors (NNN) of

atom i. The sign (...) labels the directions of NN and NNN re-

spected to the atom i. . . . . . . . . . . . . . . . . . . . . . . . . 102



CHAPTER I

Introduction

1.1 Epitaxial growth

Epitaxial growth is an important process to fabricate high quality thin films. This

process occurs during the deposition of new material to form a crystalline over-

layer on a crystalline substrate. The overlayer, which is called an epitaxial film

or epitaxial layer, prefers specific orientations with respect to the crystalline sub-

strate. The history of epitaxial growth dates back in the 1920s after Louis Royer

carried out an extensive study and discovered a new systematic way of growing

epitaxial films [1]. The word “epitaxy”, which means “upon order”, was termed to

distinguish epitaxial growth from polycrystalline and amorphous growth [1]. The

most powerful application of epitaxy is the semiconductor devices—for example

transistors, lasers, and solar cells—which are found in everyday life.

Well-known techniques for epitaxial growth are molecular-beam epitaxy

(MBE) and metal-organic vapor-phase epitaxy (MOVPE). For the MBE tech-

nique, epitaxial growth consists of three processes [2]. In the first process, the

deposition process, atoms or simple molecules are evaporated from heated sources

known as the Knudsen effusion cells. The “beam” of particles is then collimated

and directed toward the heated substrate. The mean free path of the particles is

very long so that the particles do not interact with each other until they reach

the substrate. The second process is the diffusion of mobile atoms (adatoms) on

the film surface. The last process is the desorption process, which is a rare pro-

cess and not desired in most epitaxial growth. To achieve an epitaxial film with a
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preferred crystalline structure, the growth must be carried out in an extreme envi-

ronment: ultra-high vacuum (pressure ≈ 10−10 torr), high purity, and low growth

rate (≈ 1 monolayer/s) [3]. The low growth rate leads to what is commonly known

as the layer-by-layer growth mode1. Growth conditions, e.g. the deposition flux

and substrate temperature, can be varied during the growth process.

Characterization tools such as the reflection high-energy electron diffraction

(RHEED), scanning tunneling microscopy (STM), and atomic force microscopy

(AFM) have been used to study the grown films. The RHEED is suitable for

monitoring the real-time growth because it can observe in situ under normal

growth conditions without interference the growth process, providing precisely

identification of surface morphologies and crystalline structures.

Epitaxy can be categorized into two types according to growth materials.

For homoepitaxial growth, the film and substrate are of the same material. In

contrast, for heteroepitaxial growth, the film and substrate are of the different

materials. In the latter case, lattice spacings of film and substrate atoms at the

film-substrate interface do not match, and it is called the lattice mismatch or misfit

(ϵ):

ϵ = (af − as)/af , (1.1)

where af and as are lattice constants of the film and substrate, respectively.

Heteroepitaxy has attracted much interest from researchers because of a

rich variety of surface morphologies and its potential applications [1, 4, 5]. The

well-known examples are the growth of Ge/Si with ∼ 4.0% lattice mismatch [6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and the growth of InAs/GaAs with ∼

7.0% lattice mismatch [18, 20, 21, 22, 23, 24, 25]. Because of the incompatibility at

the film-substrate interface, the film experiences strain which normally introduces

defects, e.g. dislocations and stacking faults, to the film layer. As a result, the

quality of the film is reduced. However, a novel surface morphology cannot be

achieved without a contribution of strain. A good example is the fabrication

of self-assembled, strained islands, which are approximately in order of 10-100
1Growth modes depend on interface free energies and will be discussed in the next section.
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nanometers in size [6, 11, 12, 16, 21, 26] and commonly known as the quantum

dots (QDs).

Fig. 1.1(a) shows a three-dimensional (3D) AFM image of Ge/Si QDs grown

by the MBE technique [17]. Quantum dots have intriguing electronic and optical

properties. According to dimensionality, carriers in QDs are spatially confined in

all directions, and energy levels are quantized [4]. The density of state (DOS)

of a single dot (sometime called an artificial atom) is described by Dirac delta

function [21]. For an array of QDs, however, the DOS exhibits a broad peak

depending on the distribution of the quantum dots. The energy spectra of QDs

can be measured by using the photoluminescence (PL) [21].

Nowadays, many studies have been focused on how to fabricate uniformly

distributed QDs in a large scale [6, 27, 28, 29]. This feature is important for

many applications such as tunable wavelength lasers and other optoelectronic

devices. In the recent development of laser technology, devices consisting of QDs

exhibit superior properties: excellent temperature stability, low threshold current

density, and large radiation resistance [4]. Fig. 1.1(b) shows one of the commercial

applications of quantum dots used in light emitting devices [30]. Extensive reviews

of QDs and their applications can be found in Refs. [5, 6, 31, 32, 33, 34, 35].

Figure 1.1: (a) A three-dimensional AFM image of Ge/Si quantum dots [17] and

(b) an application of quantum dots used in light emitting devices [30].
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1.2 Growth modes

Epitaxial growth can be categorized to one of the three growth modes depending

on interface free energies: vacuum-film free energy (γvf ), film-substrate free energy

(γfs), and vacuum-substrate free energy (γvs) [1, 36]. Fig. 1.2(a) shows the Frank-

van der Merwe (FM) or layer-by-layer growth mode. The vacuum-substrate free

energy is higher than the combination of the film-substrate free energy and the

vacuum-film free energy, γvs > γfs + γvf , so the film will “wet” the substrate. In

this growth, adatoms tend to complete a film layer underneath before a new layer

is created. The film is flat and consists of a single crystalline structure. Indeed,

layer-by-layer growth is the ideal growth which is hardly seen, in a long-time scale

of growth, in experiments. In early stages of the growth, however, it is observed

in several heteroepitaxial systems with small lattice mismatches (ϵ < 2%). The

film is considered to be in an unstable state against stress suppression. Up to a

certain thickness, misfit dislocations, stacking faults, surface deformations etc. are

introduced to the film to relieve strain, and the growth is no longer the layer-by-

layer growth.

In contrast, the Volmer-Weber (VW) growth mode [see Fig. 1.2(b)] prefers

the vacuum-substrate interface. The combination of the film-substrate free energy

and the vacuum-film free energy is too large, γfs + γvf > γvs, for the film to wet

the substrate. In this growth, adatoms form 3D islands directly on top of the

substrate without a prior completed layer. Islands are stable because the film

avoids touching the substrate. This type of growth is normally found in early

stages of heteroepitaxial growth with large lattice mismatches. The phenomenon

is similar to a liquid drop on a flat substrate. In the thermodynamic equilibrium,

it is characterized by a contact angle which depends on their surface tensions (or

interface energies) [36].

Due to the fact that the film-substrate interface is stable if its energy is low

enough, and the film-substrate free energy generally depends on the film thickness

(h) for lattice-mismatched systems; γfs = γfs(h), the Stranski-Krastanov (SK)
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HaL Layer-by-layer mode

Substrate

Film

Vacuum

Γvf + Γ fs< Γvs

HbL VW mode

Γvf + Γ fs> Γvs

HcL SK mode

Figure 1.2: Schematic representation of three growth modes: (a) Layer-by-layer

mode, (b) VW mode, and (c) SK mode.

growth mode [see Fig. 1.2(c)] can be described as follows. In early stages of

growth (h < hc where hc is a critical thickness), the growth is layer-by-layer, i.e.

γvf + γfs(h) < γvs. Adatoms form a 2D flat layer called a wetting layer. The

film-substrate free energy increases with the film thickness, and the layer-by-layer

growth becomes energetically unfavorable. At a critical thickness (h = hc), the

relation does not hold, and it is no longer benefit to complete the wetting layer.

In later stages (h > hc); γvf + γfs(h) > γvs, 3D islands begin to nucleate on top of

the wetting layer. If the film thickness is increased further, the vacuum-substrate

free energy (γvs) dominates the interface free energies, and the 3D islands become

stable. This type of growth is found in a moderate lattice mismatch regime,

although exact values of the lattice mismatch vary from substance to substance.

Strain is considered to be a major factor responsible for the increasing of

the film-substrate free energy γfs(h). Generally, the elastic energy resulting from

an accumulation of strain at the film-substrate interface increases with the film

thickness and then changes the balance of the interface free energies. If the elas-

tic energy is high enough, the film surface is deformed. At a critical thickness,

adatoms begin to nucleate on top of the 2D wetting layer to form 3D islands,

leading to a 2D-3D transition. The formation of 3D islands is one of the strain-

relieved mechanisms found at a relatively small thickness before misfit dislocations

are normally introduced at a larger thickness. The formation of 3D islands with-

out dislocations known as the dislocation-free or coherent QDs, however, is more
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attractive because of desirable properties of the films for many applications men-

tioned previously. The underlying mechanism of the 2D-3D transition and the

role of the wetting layer are under discussion, and the study in this area is still

widely open.

1.3 Previous work

In the theory of island formation known as the Asaro-Tiller-Grinfeld (ATG) in-

stability (elastically driven instability) [36, 37], a flat, strained surface is unstable

with respect to the suppression of an external force produced by the substrate.

The mass transport driven by the instability along the film surface creates sinu-

soidal modulation [36]. The unstable surface remains flat unless a perturbation

wavelength (λ) is sufficiently longer than a critical wavelength (λc), λ > λc. In

this case, the modulation gradually develops into steeper islands, and the film-

substrate free energy γfs(h) is consequently reduced. The formation of 3D islands

through the ATG instability provides a strain-relieved mechanism which does not

require misfit dislocations to occur. The critical wavelength depends on the elastic

property of the growth materials and the lattice mismatch (ϵ) as

λc ∝ ϵ−2. (1.2)

It is also proportional to island size l, providing direct control of the island size

(QDs size) through the lattice mismatch

λc ∝ l ∝ ϵ−2. (1.3)

Because effects of the arriving flux are not considered, the ATG instability theory

is suitable for annealing films at high temperatures, where the mass transport

is supported by adatom diffusion. For a growing film, the theory is still valid;

however, the adatom diffusion process is interrupted by deposited atoms, and the

power law relation in Eq. (1.3) is modified accordingly [12]. For the Si1−xGex/Si

system, where x is the Ge concentration2, it was found that [12, 13] 3D islands
2For the Si1−xGex/Si system, ϵ = 0.04x.
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gradually develop from ripple-like patterns at high temperature (T ≈ 950 K) and

small lattice mismatches (0.56% ≤ ϵ ≤ 2.4%). Islands are steeper and bound by

the (105) facets. The result is more consistent with the ATG instability, but the

dependence of critical wavelength on the lattice mismatch is weaker; λc ∝ ϵ−1.

This is due to effects of the deposition flux, which stabilizes the film surface and

makes the critical wavelength λc longer [12]. For large mismatches (ϵ > 2.4%) [13],

the formation of conventional 3D islands was observed directly on the substrate,

suggesting another strain-relieved mechanism: the island nucleation [8]. Whereas

the ATG instability seems to be sensible for high temperature and small lattice

mismatch growth, it is less sensible for low temperature and large lattice mismatch

growth.

It is shown that [8] once an island (or pit) reaches a critical size, its associated

energy is reduced. To form such a stable island, it must firstly overcome an energy

barrier. The formation of 3D islands involving an energy barrier is known as

the island nucleation [8]. The lattice mismatch (ϵ) lowers the energy barrier Es,

Es ∝ ϵ−4, and increases the island nucleation at a rate Rnucl ∝ exp(−Es/kBT ),

where kB is the Boltzmann constant. Islands can then easily nucleate on top of

the substrate before the film surface has time to develop into a ripple-like pattern.

In the growth of pure Ge on Si(001) substrate (ϵ ≈ 4.0%) at low temperature

(T = 575 K) [11], the formation of (105) faceted Ge islands (so-called hut clusters)

can be understood in a context of the island nucleation.

From the above explanations, it is clear that growth conditions obviously

play a crucial role whether the island formation is proceeded with the nucleation or

instability [19]. In kinetic Monte Carlo (kMC) simulations, such nucleation [38, 39,

40] and instability [38] can be observed if the growth parameters are set properly.

As described earlier, heteroepitaxial growth has been extensively studied not

only in experiments and theories but also in computer simulations. The density

functional theory (DFT) is one of the most accurate approaches to be used in

computer simulations. It provides useful microscopic details including equilibrium

shapes and stability [41, 42], binding energies [43], and the 2D-3D transition [44].
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However, using the DFT method is mostly impossible when the system size (or

time scale) is very large. By coarse-graining lattice sites, continuum models can

bypass the problem. The study of the morphological evolution [45, 46, 47, 48,

49, 50, 51] and island ordering [52, 53] is then possible. Nevertheless, microscopic

processes and the island formation, which are sometimes more interesting than

the morphological evolution itself, cannot be observed in the continuum models.

In kMC simulations, discrete, solid-on-solid (SOS) growth models are widely used

to study epitaxial growth [2]. A ball and spring model is particularly successful in

describing the heteroepitaxial growth [54, 55, 56, 57, 58, 59]. The model was used

earlier by Orr et al. [60], later by Barabási [61, 62], and Khor and Das Sarma [63,

64] to investigate the island formation. Various aspects of heteroepitaxial systems

were studied, for example faceted islands [65], the wetting layer [66], and film

intermixing or film alloying [59, 67, 68, 69]. An off-lattice model with the Lennard-

Jones (LJ) potential was also implemented [70, 71] to study dislocations and the

critical thickness (hc) [72, 73, 74]. The studies were extended to 3D growth with

small coverages and small substrate sizes [39, 40, 55, 66, 67, 68, 75, 76, 77, 78, 79,

80, 81].

One outstanding issue when discrete models are implemented is the long

range nature of elasticity [36]. The (weak) long range interaction is a “global”

characteristic which effects the results if the system size is too small. Since both

accuracy and efficiency must be taken into account in order to capture relevant

behavior of the strain, some approximation techniques have been used. Examples

of these techniques are the Green’s function approach with coarse-grained atom

displacements [57], an energy cut-off [73], an expanding box method and upper

bound rates [58], and the Fourier-multigrid method [82]. The larger the system

size, the more sophisticated approximation method the models need.

According to previous experimental results [12, 13, 19], it is clear that the

critical thickness hc and island size l decrease with the lattice mismatch ϵ. How-

ever, the quantities are affected by the deposition flux as well [12]. The effects of

growth conditions are not completely understood, e.g. the power law relation in
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Eq. (1.3) is observed differently [12, 13, 19, 37, 38, 73]. Although the island size

l and its uniformity in 3D submonolayer growth were studied [78], the substrate

size is still small, and the film thickness h is less than 1 monolayer (ML). Effects of

the deposition flux on the critical thickness hc and island density were also inves-

tigated with a 2D off-lattice model [73]. Nevertheless, a complete study of island

size l, island density, and critical thickness hc dependence on the growth temper-

ature is not available. The temperature and deposition flux are important factors

because the parameters indicate whether the growth is mobility limited [19].

1.4 Objectives of this work

The scope of this work covers the following objectives. We investigate the island

nucleation of the heteroepitaxial system on flat substrates. The effects of lattice

mismatch, deposition flux and growth temperature on surface morphology and

properties of the system such as the critical thickness, island size and number

of islands are studied in detail. Statistical quantities are calculated and used to

quantify the heteroepitaxial system.

In addition, we also use a roughness exponent method of a solid-on-solid

growth model to determine critical temperature and critical exponents of the frus-

trated antiferromagnetic XY spin model.

1.5 The dissertation outline

In this chapter, we give an introduction of epitaxial growth. Growth techniques

as well as characterization tools are also mentioned. The types of epitaxial growth

are explained in a context of interface free energies. We then discuss previous

work which focuses mainly on the heteroepitaxial systems. Detailed studies in

theories, experiments, and computer simulations are provided. We also point out

some effects of growth conditions on heteroepitaxial films which are not completely
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understood, such as the growth temperature. Finally, we draw our objectives of

this work.

In chapter II, Theory and Model, we provide most aspects of the theoretical

background and computer modeling of the heteroepitaxial systems needed for

performing simulations. A two-dimensional ball and spring model representing

the heteroepitaxial system is described in detail. From equilibrium consideration,

we outline the calculation of atom displacements and the elastic energy of the

system.

In chapter III, Computer Simulations, we provide detailed simulations used

in this work. Firstly, we describe microscopic processes of interest. We then

provide an algorithm to solve a system of linear equations. Next, we discuss

an energy localization and local approximation of the elastic energy used here.

Finally, we present the kinetic Monte Carlo simulation method and the n-fold way

algorithm.

In chapter IV, Results and Discussions, we present our numerical results of

films grown on flat substrates at different lattice mismatches, deposition fluxes,

and temperatures. The dependence of island size, number of islands, and critical

thickness on the growth conditions are discussed in detail. We also compare our

results with theoretical, experimental, and computational results presented in the

literature.

In chapter V, An Application of Roughness Exponent Method in a Frus-

trated Spin System, we apply a roughness exponent method used in a solid-

on-solid growth model to a spin model, the frustrated antiferromagnetic XY

(FAXY) model, and show that the critical temperature and critical exponent of

the spin model can be determined from the roughness exponent method. Firstly,

we provide a literature review which focuses on the method for determining critical

properties of seemingly different models including the spin models. We then in-

troduce the FAXY model on a two-dimensional triangular lattice and the method

used to determine critical properties of the FAXY model. Next, we present our

numerical results obtained from the roughness exponent method and compare the
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results with those obtained from conventional spin methods.

In chapter VI, Conclusions, we draw the conclusions of our work. The

suggestions and future work are also mentioned.



CHAPTER II

Theory and Model

Historically, theoretical findings in physics were tested solely by experiments. Af-

ter the computer invention, scientists can put a theoretical model to a computer,

find a link between theories and experiments, and discover new models that de-

scribe many aspects of nature [2, 83]. The Eden model—which describes bacterial

colonies—and the Ising model—which describes magnetic materials—are just a

few examples. Models of interest are not only those motivated by nature. Mod-

els which are purely mathematical objects such as a cellular automaton and a

fractal are studied for fundamental interest. Surprisingly and unexpectedly, a

model intended for a particular system can also describe a phenomenon found in

a seemingly different system [84].

Thin film physics becomes a popular subject after the MBE technique was

introduced to grow high quality thin films [1, 36]. The study of kinetic roughening

film surfaces is important because of their potential applications in industries and

novel behavior found in a variety of thin film growth systems. To gain insight

into the “real” MBE growth with many complex processes, simple models with

a “minimal” set of rules are introduced. The models fill the gap between theory

believed to govern the system and experimental results. Early models were used

to describe the MBE growth which is generally far-from-equilibrium, relatively low

temperature, layer-by-layer growth. The random deposition (RD) [2], Das Sarma-

Tamborenea (DT) [84, 85], and Wolf-Villain (WV) [84, 86] models are examples of

the so-called nonequilibrium, limited mobility, SOS growth models. These models

are bound to specific rules of microscopic processes which are necessary for pro-
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ducing films of interest. Non-MBE growth models such as the ballistic deposition

(BD) [2] and the Family [84, 87] models are those of fundamental interest, which

usually come together with the MBE growth models.

2.1 A two-dimensional ball and spring model

The formation of QDs in heteroepitaxial systems is an interesting phenomenon

and is currently studied for various aspects. In the systems, the difference in the

lattice constants of the film and substrate produces forces which act on film atoms

and compress the atoms (for compressive strain) to take the natural lattice spacing

of the substrate. The lattice spacing of the film atoms is gradually changed from

the film-substrate interface to the topmost layer; therefore the film is said to be a

commensurate structure [36].

In this study, we use a model which treats the heteroepitaxial system as

a classical object: a discrete ball and spring model [38, 58, 60]. The model

[see Fig. 2.1(a)] consists of film and substrate atoms with the same elastic property.

Here, we restrict ourselves to 2D, SOS growth. The substrate has a simple cubic

(SC) structure with four nearest neighbors (NN) and four next-nearest neighbors

(NNN). The NN and NNN are connected by springs with spring constants kNN

and kNNN , respectively. The interaction beyond NNN is considered very weak

and is thus ignored. Note that bondings between film-film, substrate-substrate,

and film-substrate atoms are the same. The natural lattice constant of the film

is af , and the natural lattice constant of the substrate is as. In an equilibrium

[see Fig. 2.1(b)], the lattice constant of the film is forced to take on the value of

the lattice constant of the substrate in the horizontal direction and expand to a
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Figure 2.1: Schematic representations: (a) A ball and spring model and (b) film

under compression.

distance al in the vertical direction. Forces acting on a topmost atom are

F⃗1 = kNN(af − as)

1

0

 ,

F⃗2 =
∣∣∣F⃗2

∣∣∣
cosθ

sinθ

 ,

F⃗3 = kNN(al − af )

 0

−1

 ,

F⃗4 =
∣∣∣F⃗4

∣∣∣
−cosθ

sinθ

 ,

F⃗5 = −F⃗1.

(2.1)

Here
∣∣∣F⃗2

∣∣∣ = ∣∣∣F⃗4

∣∣∣ = kNNN

(√
2af −

√
a2s + a2l

)
, and tan θ = al/as. We assume

that the configuration is infinitesimally distorted. Hence, to the first-order, cos θ ≈

sin θ ≈
√
2/2, and

√
a2s + a2l ≈

√
2/2(af − afϵ+ al). In an equilibrium, forces are

balanced in all directions. In the vertical direction,

kNNN(af + afϵ− al)− kNN(al − af ) = 0. (2.2)

The result yields

al = af + afϵ

(
kNNN

kNN + kNNN

)
. (2.3)
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An unstrained atom is located at a lattice point denoted by an index (i, j)1. The

model is subjected to the periodic boundary conditions in x direction; that is

(i + L, j) ≡ (i, j), where L is the substrate size. For convenience, we change the

coordinates (i, j) → (i), (i + 1, j) → (i + 1), (i, j + 1) → (i + L), and so on. The

model is now transformed into a 1D problem.

2.2 Elasticity

When an atom located at lattice point i is under compressive strain (or tensile

strain), it is displaced from the lattice point. A displacement u⃗(i) = ux(i)x̂+uy(i)ŷ

measured from the lattice point is then non-zero. The energy stored in each spring

is proportional to the square of the relative displacement (∆u⃗)2.

2.2.1 The elastic energy

The total elastic energy of the system (E) is the sum of all energies stored in the

springs connected to film and substrate atoms,

E =
1

2

∑
i

E(i)

=
1

2

∑
i

[Exx(i) + Eyy(i) + 2Exy(i)] .
(2.4)

The components Exx(i), Eyy(i), and Exy(i) are given by [58]

Exx(i) =
kNN

2

{
δi,i+1 [ux(i+ 1)− ux(i)− d1]

2

+ δi,i−1 [ux(i− 1)− ux(i) + d1]
2}

+
kNNN

4

{
δi,i+1+L [ux(i+ 1 + L)− ux(i)− d1]

2

+ δi,i−1−L [ux(i− 1− L)− ux(i) + d1]
2

+ δi,i+1−L [ux(i+ 1− L)− ux(i)− d1]
2

+ δi,i−1+L [ux(i− 1 + L)− ux(i) + d1]
2} ,

(2.5)

1The variables i, j, and k denote a discrete space, while the variables x, y, and z denote a

continuous space.
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Eyy(i) =
kNN

2

{
δi,i+L [uy(i+ L)− uy(i)− d2]

2

+ δi,i−L [uy(i− L)− uy(i) + d2]
2}

+
kNNN

4

{
δi,i+1+L [uy(i+ 1 + L)− uy(i)− d2]

2

+ δi,i−1−L [uy(i− 1− L)− uy(i) + d2]
2

+ δi,i+1−L [uy(i+ 1− L)− uy(i) + d2]
2

+ δi,i−1+L [uy(i− 1 + L)− uy(i)− d2]
2} ,

(2.6)

and

Exy(i) =
kNNN

4
{δi,i−1−L [ux(i− 1− L)− ux(i) + d1]

× [uy(i− 1− L)− uy(i) + d2]

+ δi,i+1+L [ux(i+ 1 + L)− ux(i)− d1]

× [uy(i+ 1 + L)− uy(i)− d2]

− δi,i+1−L [ux(i+ 1− L)− ux(i)− d1]

× [uy(i+ 1− L)− uy(i) + d2]

− δi,i−1+L [ux(i− 1 + L)− ux(i) + d1]

× [uy(i− 1 + L)− uy(i)− d2]} .

(2.7)

An interaction with a neighboring site does not exist if the site lacks an atom,

thus

δi,j =

1 if both site i and site j contain atoms,

0 otherwise.
(2.8)

A film atom, which is forced to match the natural lattice constant of the substrate,

will adapt its lattice spacing with amounts d1 in x direction and d2 in y direction,

where d1 and d2 are

d1 =

af − as for film-film and film-substrate bonds,

0 for substrate-substrate bonds,
(2.9)

and

d2 =

af − al for film-film and film-substrate bonds,

0 for substrate-substrate bonds.
(2.10)
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The variables d1 and d2 vanish if the film and substrate atoms are of the same kind.

Note that the elastic energies in x and y directions can be treated independently

if the term Exy in Eq. (2.4) is not present.

2.2.2 Equilibrium constraints

Equilibrium configurations can be found if net forces acting on every atom are

zero,
∂E

∂ux(i)
= Fx(i) = 0,

∂E

∂uy(i)
= Fy(i) = 0. (2.11)

These constraints lead to a system of linear equations:∑
n

K(m,n)u(n) = f(m); m,n = 1, 2, 3, ..., N (2.12)

or

K · u⃗ = f⃗ . (2.13)

The dimensions (N×N) of the matrix K account for the two components (ux, uy)

of the displacements of L atoms, whereN = 2L. For homoepitaxial systems, ϵ = 0,

the RHS of Eq. (2.13) is zero, giving a trivial solution: u⃗ = 0. If f⃗ ̸= 0, Eq. (2.13)

can be solved by using the inverse of the matrix, K−1. The displacement vector

(u⃗) is simply u⃗ = K−1 · f⃗ . Finding K−1 is, however, not practical, especially when

N is huge. Using a numerical method is more suitable, and a routine to solve the

Eq. (2.13) will be discussed in the next chapter. The components K(m,n), f(n),

and useful implementation are discussed in more detail in appendix C.



CHAPTER III

Computer Simulations

Computer algorithms are a set of instructions which describe how atoms in the

models interact with the environment and evolve in time. The simplest instruc-

tions are of the RD model; atoms just randomly fall on the substrate, stick to the

first lattice site they arrive, and do not move afterward. For more complicated

models [2, 84], adatoms also interact with other atoms and hop to other sites.

The crucial thing is that the instructions or rules must reflect the system being

studied. In this chapter, we discuss instructions for simulating the heteroepitaxial

system. The strain relaxation is also included.

3.1 Microscopic processes

Apart from the deposition process, microscopic processes during the real MBE

growth are plenty and complex. The surface diffusion—terrace diffusion, edge

diffusion, corner diffusion, dimer diffusion etc.—is thermally activated [88, 89]. To

change a system state, atomic process i must overcome an energy barrier called

the activation energy Ea, giving a transition rate [2, 36, 90, 91]

νi = ν0iexp(−Ea/kBT ). (3.1)

The activation energy Ea = Esaddle −Emin, where Esaddle and Emin are the energies

at the saddle and minimum points, and the prefactor ν0i (attempt frequency)

can be calculated from the transition state theory. For the sake of simplicity, we

consider only a rate of an individual atom and ignore other rare processes, e.g.

the dimer diffusion and exchange mechanism [90].
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3.1.1 Deposition

The first process is the deposition process labeled by process (a) in Fig. 3.1.

Particles from heated sources are evaporated and directed toward the substrate.

The particles, carrying some kinetic energy, arrive on the film surface at random

sites. In kMC simulations, a deposited atom arrives on the film surface at a given

rate [58]

Rd = [(smax + 1)(2smax + 1)FL] /6, (3.2)

where F is the deposition flux measured in the unit of monolayer per second (ML ·

s−1). The maximum hopping distance (smax) corresponds to randomly distributed

distance s in the horizontal direction [38], s = 1, 2, 3, · · · , smax. The deposited

atom sticks to the first site it arrives on.

3.1.2 Desorption

The desorption process labeled by process (b) in Fig. 3.1 is the opposite process

competing with the deposition process. When the thermal energy, compared to the

activation energy Ea, is high enough, surface atoms have some chances to detach

from the surface, leaving the sites unoccupy. Generally, the energy required to

detach an atom from the surface depends on growth materials and the local surface

at which the atom is bound. For example, an atom with a smaller coordinating

number of NN and NNN has more probability to desorb, and vice versa. The

desorption time—the average time for a desorption event—is proportional to the

average time (τ) spent by an atom from the deposition to desorption. It depends

on the growth temperature and obeys the Arrhenius law [2, 36] as

τ = τ0exp(Ed/kBT ). (3.3)

The characteristic desorption time (τ0) and desorption energy (Ed) can be deter-

mined from experimental results. For Ga on GaAs(111) substrate at substrate

temperature T = 860 − 960K [2], the values are approximately τ0 ≈ 10−14 s and
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Figure 3.1: Microscopic processes: (a) deposition, (b) desorption, and (c) diffusion.

Ed ≈ 2.5 eV. The desorption energy (Ed) is much higher than the activation en-

ergy (Ea); Ea is less than 1 eV for most materials [2, 36]. Thus, one can expect

that the process is not activated under MBE growth conditions. In this work, the

growth is under low temperature, and the desorption is neglected.

3.1.3 Diffusion

If deposited atoms arriving on the film surface have more excess kinetic energy,

they may travel on the surface and stick to stable positions. Even the atoms

already bound with neighboring sites, having the thermal energy from the heated

substrate, can break the bonds and search for more stable sites. This process

is called the surface diffusion and labeled by process (c) in Fig. 3.1. An atom

searching for energetically more favorable sites must firstly overcome the activation

energy Ea. The activation energy Ea depends on materials being used and the local

surface. To determine the energy, the average number of jumps of surface atoms

is counted in a unit time interval. The number also gives the diffusion length,

an average distance an atom travels on the surface, and it decays exponentially

with the growth temperature. It is conceivable that for an atom detaching from
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an edge [see process (c) in Fig. 3.1], it must overcome the activation energy (Ea),

plus extra energy En for breaking its lateral bond. For kink sites, the detachment

is harder, making the probability very low. It is also easier for an atom to move

along the edge rather than move away from the edge. The diffusion probability or

diffusion rate of atom i obeys the Arrhenius form [2, 91] as

Ri = R0exp [−(Ea + En)/kBT ] , (3.4)

where R0 is in the order of the Debye frequency (≈ 1013 s−1). The rate Ri depends

strongly on En and growth temperature T . For T = 600 K and En = 1 eV, the

rate is 108 times smaller than the rate of an atom on the terrace. Once an atom

sticks to the edge or kink site, it will stay there for a long time before hopping to

other sites. Under most MBE growth conditions, atoms attaching to islands are

nearly immobile, making the island growth an irreversible process.

The adatom diffusion is also affected by the anisotropy of the system—mov-

ing along one direction is energetically more favorable than moving along another

direction [2, 36]. Moreover, an adatom on the edge of an island jumping down

needs an additional energy to cross an barrier called the Schwoebel barrier [2]. It

is more probable for the adatom to bounce back when it meets the edge, and the

process is known as the diffusion bias.

In the heteroepitaxial system, the adatoms experience another bias: the

strain from the film surface. The gradient of strain drives the adatoms with

additional elastic energy difference ∆E. Taking the energy into account, the total

energy required for an adatom to break its lateral bonds and hop to neighboring

sites is En + E0 − ∆E. In this work, En = nEb, and the diffusion rate of the

adatom i follows the form [38, 58]

Ri = R0exp [−(niEb + E0 −∆Ei)/kBT ] , (3.5)

where R0 = 12D0/ [a
2
s(smax + 1)(2smax + 1)] is a characteristic vibrational fre-

quency, Eb is the binding energy with NN and NNN per bound, and E0 is the sur-

face binding energy. The values of the constants are chosen so that they are appro-

priate for Ge/Si system (see appendix B). The bindings with NN and NNN are the
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same that is ni = the number of NN + NNN, and ∆Ei = E(with the adatom i)−

E(without the adatom i) is the elastic energy difference when site i is occupied

versus unoccupied. The probability that adatom i is likely to hop is associated

with the diffusion rate Ri. In this work, the system is isotropic, and the Schwoebel

barrier is not included to make sure that island formation is not caused by the

diffusion bias.

3.2 Strain relaxation

The elastic energy in Eq. (2.4) and energy difference in Eq. (3.5) can be calculated

if the displacements in Eq. (2.13) are known. The displacement vector u⃗ can

be obtained in both exact and numerical solutions. In most cases including in

this work, numerical methods seem to have more advantages, especially when the

number of unknown variables is very large. But the numerical method has its own

problem, for example the roundoff errors that may affect true solutions. Some

methods that have been used to solve a system of linear equations are the Gauss-

Jordan elimination, LU decomposition, and conjugate gradient (CG) methods [92].

A routine of the methods is quite general and can be found elsewhere1. We use

a variant of the CG method, the biconjugate gradient stabilized (Bi-CGSTAB)

method [93], to solve Eq. (2.13). The details, including an algorithm of the Bi-

CGSTAB method, energy localization, and local relaxation, will be given in this

section.

3.2.1 Solving a system of linear equations

The CG method is a routine for solving a system of linear equations. This

method has successfully been applied to the iterative technique and capable of

solving large sparse systems which are not suitable for the direct methods such
1BLAS (Basic Linear Algebra Subroutine) and other variants, LAPACK and LINPACK, are

standard libraries for performing linear algebra operations.
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as the Gauss-Jordan elimination. The original CG method requires symmetric

(AT = A), positive-definite (x⃗T · A · x⃗ > 0 for all non-zero vector x⃗ in Rn) n-

by-n matrix A, where x⃗T denotes the transpose of x⃗. The biconjugate gradient

(Bi-CG) method is more generalized to non-symmetric matrices; but, the Bi-CG

method is less stable than the Bi-CGSTAB method. The Bi-CGSTAB method is

a simple, but powerful, algorithm that combines two important parts: the fast,

converging Bi-CG and stabilizing effect. The Bi-CGSTAB method was developed

by Henk A. van der Vorst [93].

From Eq. (2.13), K · u⃗ = f⃗ , an algorithm of the Bi-CGSTAB method can

be illustrated as follows [93]:

1) Set initial values for i = 0

1.1) Guess u⃗i, e.g. u⃗i = u⃗old

1.2) r⃗′ = r⃗i = f⃗ − K · u⃗i

1.3) ρi = αi = βi = ωi = 1

1.4) v⃗i = p⃗i = s⃗i = t⃗i = 0

2) For i = 1, 2, 3, ...

2.1) ρi = r⃗′ · r⃗i−1

2.2) βi = (ρi/ρi−1)(αi−1/ωi−1)

2.3) p⃗i = r⃗i−1 + βi(p⃗i−1 − ωi−1v⃗i−1)

2.4) v⃗i = K · p⃗i
2.5) αi = ρi/(r⃗′ · v⃗i)

2.6) s⃗i = r⃗i−1 − αiv⃗i

2.7) t⃗i = K · s⃗i
2.8) ωi = (⃗ti · s⃗i)/(⃗ti · t⃗i)

2.9) u⃗i = u⃗i−1 + αip⃗i + ωis⃗i

2.10) If u⃗i is accurate enough then exit 2)

2.11) Otherwise r⃗i = s⃗i − ωit⃗i

2.12) Go to 2) after one step

A residual error relative to vector f⃗ is defined as

R =
(r⃗ · r⃗)
(f⃗ · f⃗)

. (3.6)
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In step 2.10), the recurrent loop i exits 2) if R ≤ Rtol, where Rtol is a tolerance.

The accuracy of u⃗ depends on the choice of the tolerance Rtol. Accounting for the

accuracy and efficiency, Rtol = 10−2 is enough [58].

3.2.2 An approximation of the elastic energy

We can see that in Eq. (3.5), the elastic energy difference (∆Ei) is calculated

twice for each adatom i. There must be at least L times for calculating ∆Ei for

each time step. The calculation is the bottleneck of the simulations, consuming

most of the computational time. This is the global effect in which all atoms are

involved when adatom i is removed or added. The effect is strong near the site

and small far away from the site. In other words, when atom i is removed (or

added), neighboring atoms notice the change while other atoms, being far from

the site, will be little affected. The elastic energy difference ∆Ei can be, therefore,

approximated as a “local” effect. We note that the elastic energy in Eq. (2.4) can

be written as

E =
1

2

∑
i

ei, (3.7)

where ei is the energy stored in the springs connected to adatom i. We assume

∆Ei to be dependent on a local variable [57, 58] as

∆Ei = c(ni, hi)ei +O(e2) + · · ·

≈ c(ni, hi)ei.
(3.8)

The local variable c(ni, hi) depends on the number of NN + NNN, ni, and height

of adatom i (hi). Moreover, when the adatom is far away from the substrate, the

influence from the substrate is small. In this work, c(ni, hi) is given by

c(ni, hi) =



0 for ni ≤ 2,

c(6, hi) for ni > 6,

c(ni, hi) for hi ≤ 3,

c(ni, 3) for hi > 3.

(3.9)
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The values (see Table 3.1) of c(ni, hi) are calculated from the true ∆Ei with the

full relaxation; ∆Efull
i = c(ni, hi)ei, and averaged over ≈ 4,000-100,000 samplings

depending on its occurrence. In some cases, the probability of finding adatoms

with ni at the height hi is too low to calculate c(ni, hi). These situations are

denoted by the sign (*) in Table 3.1 and the values of c(ni, hi) are taken from

calculation using smaller hi (listed in the higher rows in the table) instead. The

elastic energy difference profiles of surface atoms in Fig. 3.2 are calculated using

the approximation versus full relaxation and are shown in Fig. 3.3.

The solid and dotted lines represent ∆Ei obtained from the full relaxation

with the tolerances Rtol = 10−6 and Rtol = 10−2, respectively. For the full re-

laxation, the results are nearly the same for both tolerances. In the remainder

of this work, Rtol = 10−2 is used in the Bi-CGSTAB algorithm. The dashed line

represents ∆Ei obtained from Eq. (3.8) with Rtol = 10−2. The result indicates

that ∆Ei can be approximated locally. The remaining variables which must be

sufficiently accurate are the energies ei. In an equilibrium, the energy ei is stored

in the springs connected to adatom i. When the adatom i is removed, one ex-

pects that the elastic energy difference ∆Ei would be proportional to ei. Since

before hopping or depositing an atom, the film configuration is in an equilibrium

state, the energy ei is therefore available for ∆Ei. The full relaxation required

to update the energy ei is only one time instead of L times for each time step.

The relaxation for updating the energies ei is done after hopping an adatom to a

hi ni = 3 ni = 4 ni = 5 ni = 6

0 1.51 1.63 2.16 1.72

1 * 1.58 1.81 1.75

2 * 1.57 1.85 *

3 * 1.47 1.80 *

Table 3.1: The values of local variable c(ni, hi). The sign (*) denotes situations

when c(ni, hi) cannot be calculated and the values of c should be taken from

calculations with smaller hi (listed in the higher rows).
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Figure 3.2: A typical configuration of surface atoms.
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Figure 3.3: The elastic energy difference profiles of surface atoms in Fig. 3.2.
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neighboring site, depositing an atom on the film surface, and/or changing the con-

figuration of surface atoms. The approximation reduces the computational time

considerably. A careful selection of whether the hopping atom is rejected or not

can further increases the accuracy of the approximation. However, the rejection

rate is very small, and does not really alter the final results [58].

3.2.3 Local relaxation

The approximation would be enough for a small system with submonolayer growth.

For a larger system, the growth is still difficult to simulate. However, we can

further reduce computational time by using local relaxation. Although the full

relaxation is required to correct the configuration of surface atoms and update the

energies ei when an event (diffusion or deposition) is completed, for large L, the

process occurs in a small area relative to the system size and can be considered

as a local event. The local relaxation allows atoms in a certain area to relax and

rearrange their positions, while atoms outside are not affected.

Fig. 3.4 shows a schematic representation of the local relaxation. Atoms in

a box, whose width is denoted by W and whose height is denoted by H, centered

at the blue atom are allowed to relax, while atoms outside are not affected. The

effect of the local relaxation for different sizes of the box is shown in Fig. 3.5.

The energy ei is obtained from adding atom i to the film surface in Fig. 3.2 and

relaxing surface atoms in the box centered at the atom i. The solid line represents

the energy profile obtained from the full relaxation. For W = 75 and H = 7

(dotted line), the energy profile is identical with that of the full relaxation. The

sharp changes relative to the energy profile of the full relaxation are found when

W = 25 and H = 5 (dashed line). The local relaxation becomes unreliable when

W = 15 and H = 5 (dotted dashed line). It is clear that the size of the box used

in the local relaxation strongly effect the displacements and hence the energies ei
unless the local relaxation area is large. In this work, the box with W = 25 and

H = 5 is used for the local relaxation. After every 100 time steps, atoms in the

five rows measured from the topmost atom are relaxed to minimize local residues.
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Figure 3.4: A schematic representation of the local relaxation. Atoms in a box,

whose width is denoted by W and whose height is denoted by H, centered at the

blue atom are allowed to relax.
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Figure 3.5: The energy profiles obtained from relaxing surface atoms in Fig. 3.2

for various local relaxation areas.
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We also investigate the effects of the local relaxation on film surfaces and found

that the final results are independent of the local relaxation areas. The details

will be discussed in the next chapter.

3.3 Kinetic Monte Carlo simulations

The Monte Carlo (MC) method is a well-known method used in various branches of

science [83, 91]. The MC method is generally referred to computational algorithms

that use random numbers (so-called quasi-random numbers) to solve problems.

Historically the method is used to estimate integrals in high-dimensional spaces

or other poorly-behaved integrals that cannot be solved by ordinary methods.

In statistical physics, we need to calculate the partition function of a sys-

tem [83, 91, 94],

Z =
∑
µ

exp(−Eµ/kBT ), (3.10)

where Eµ is the energy of the system in state µ. The summation runs over all

possible states of the system. The probability that the system is in the state µ is

Pµ =
1

Z
exp(−Eµ/kBT ). (3.11)

The average of thermodynamic parameter A is the sum of all possible values Aµ

and weighted according to its probabilities Pµ as

⟨A⟩ = 1

Z

∑
µ

Aµexp(−Eµ/kBT ) =
∑
µ

PµAµ. (3.12)

Unfortunately, the calculation of ⟨A⟩ in Eq. (3.12) is possible only when the system

is small. For the Ising model on N lattice sites, there are 2N possible configura-

tions, and the configurations increase quickly with N . To overcome this problem,

the MC method is used to generate n independent states. The parameter A is

then averaged over the states,

⟨A⟩n =
1

n

n∑
i=1

Ai. (3.13)
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If these states are mostly distributed in the system, in the limit of n → ∞, each

state is weighted by its Boltzmann factor, e−E/kBT . The average converges to the

thermodynamic average as

⟨A⟩n = ⟨A⟩+O(n−1/2). (3.14)

Mostly the MC algorithms focus on how to generate such states whose its distri-

bution obeys the Boltzmann distribution. Any transition rate which satisfies the

detailed balance of the master equation is acceptable [83]. The Markov chain of

states is widely used to generate transition rates [83, 91]. The well-known algo-

rithm that uses the Markov chain of states to generate independent states is the

Metropolis algorithm [83, 91]. The problem of the MC method with time-driven

algorithms is that the acceptance ratio of the transition rates is very small at low

temperatures. Once the system is trapped in a ground state at low temperatures

it will spend a long time in the state. Many transition rates end up with rejection,

wasting computational time before a new state is made.

The kinetic Monte Carlo (kMC) also called the continuous time Monte Carlo

method with event-driven algorithms [83, 91] accepts a state at each step and

calculates back how much time to produce such the state to occur, and the system

advances according to the time. The acceptance ratio of the transition rates is

always one, which speeds up the simulations. In the MC method, we can define a

simulation time as the Monte Carlo step per site (MCS/site) [83]. But when the

system reaches an equilibrium, there is no connection between the simulation time

and physical time. Since in the equilibrium, the system is independent of time. In

order to state how fast the system evolve, the physical time must be interpreted.

3.3.1 A definition of physical time

From Eq. (3.2) and Eq. (3.5), the total rate per unit time is

R =
L∑

k=0

Rk, (3.15)
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where R0 = Rd is the deposition rate, and Rk ̸=0 are the diffusion rates. The

probability that any event is not observed in the time interval (t0 = 0, t) [83, 91, 95]

is

P (t) = exp(−Rt). (3.16)

This equation is also known as the survival probability. The exponential decay law

is found in many systems in nature such as the radioactive decay. The probability

that any event is observed in the interval (t, t+ dt) is p(t)dt. Thus∫ t

t0=0

p(t)dt = 1− P (t) (3.17)

is the probability that any event is observed in the time interval (t0 = 0, t). One

finds that p(t) = −dP (t)/dt = Rexp(−Rt). The waiting time between any two

events is given by

τ =

∫ ∞

0

tp(t)dt =
1

R
. (3.18)

An event occurs, on average, after the waiting time τ . The total rate R will not

be a constant during the simulations. Instead, the waiting time τ is drawn from

a Poisson distribution [83, 95] as

τ = − ln(ρ1)
R

, (3.19)

where ρ1 is a random number uniformly distributed in the interval (0, 1). The

physical time advanced in a single step is then t → t+ τ .
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3.3.2 The n-fold way algorithm

The n-fold way algorithm is an event-driven algorithm introduced by Bortz, Kalos,

and Lebowitz in 1975 [96] for Ising spin systems. The idea of the algorithm is to

avoid rejected events during the simulations. An accepted event is then found at

each step. In general, the algorithm has a following routine to select an event.

Firstly, the rates Ri and the total rate R =
∑L

i=0Ri are calculated. Then the

cumulative rates
∑k

i=0Ri (see Fig.3.6) are drawn. Next, an event k is selected

such that
∑k

i=0Ri ≥ ρ2R >
∑k−1

i=0 Ri, where ρ2 is a random number uniformly

distributed in the interval (0,1). Finally, the event k is executed and time t is

updated, t → t+τ . KMC simulations with the n-fold way algorithm are illustrated

as a flowchart in Fig. 3.7.

3.4 Quantities of interest

When we study the roughening of film surfaces, the first thing we might need

to know is the surface morphology of the grown films. The surface morphology

tells us qualitatively about the film roughness and film pattern. However, the

roughness may be interpreted differently. In fact, the roughness depends on the

scale of the system we observe. Moreover, to extract a characteristic feature of

the films, statistical quantities must be measured.

The critical thickness hc is one of the statistical quantities we are interested

in. It is defined as a thickness at which the transition from a 2D flat layer to 3D

islands firstly occurs. The strain is partially relieved after the formation of 3D

0 R0 R0 +R1

∑k−1
i=0 Ri

?

ρ2R ∑k
i=0Ri R· · ·

Figure 3.6: A schematic representation of an event selection.
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and calculate rates Ri
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∑k−1
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..
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.
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.
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.

End

.
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.
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Figure 3.7: A flowchart of kMC simulations with the n-fold way algorithm.
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islands. The elastic energy is then decreased after the critical thickness. In this

work, the critical thickness is calculated from an average thickness (θ) at which

the elastic energy per atom (E/θL) reaches its maximum value.

To study the film surfaces quantitatively, an island size (l) and a number

of islands (n) are measured. Islands which have a thickness greater than 2 ML

(h > 2ML) are counted, and the island base size is measured. The island size and

number of islands characterize the film surfaces.

Finally, all statistical quantities presented here are averaged over 20 inde-

pendent runs.



CHAPTER IV

Results and Discussions

In this chapter, we discuss our numerical results of films grown on flat substrates

at different lattice mismatches, deposition fluxes, and growth temperatures. The

main goal is to investigate effects of the growth conditions on the surface mor-

phology, island size, number of islands, and critical thickness. we also compare

our results with theoretical, experimental, and other computational results.

4.1 Introduction

Firstly, we begin this chapter with an introduction, which explains how the strain

can bias the adatom diffusion. We then discuss some results normally observed in

heteroepitaxial systems. This will help us understand results in the next sections.

The effects of the local relaxation are also mentioned. Finally, we summarize the

results of this section.

4.1.1 Strained films

To understand how the strain bias the adatom diffusion, we firstly look at an

equilibrium configuration of strained films. Fig. 4.1 shows a strained film (green)

and substrate (red) before the full relaxation. The film is under compressive

strain; af > as. We only want to see where the stain is mostly contributed to.

The strain distribution in the film and substrate is the same for all values of the

lattice mismatch, but the strength of the strain depends on the lattice mismatch.
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Figure 4.1: An equilibrium configuration of the strained film (green) and substrate

(red) before the full relaxation.

Fig. 4.2 shows the same configuration as in Fig. 4.1 after the full relaxation.

The displacements in the x- and y-direction can be seen more clearly in Fig. 4.3

and Fig. 4.4. In the x-direction, it is not surprising that the displacements are

symmetric around the center of the structure because of the periodic boundary

conditions. Film atoms in the vicinity of the film-substrate interface are bound

with the substrate atoms and do not move much. The upper atoms, however,

are free to expand outward and the displacements reach maximum values at the

topmost layer. The values are particularly large compared to the lattice constant

of the film. In the y-direction, the displacements are small. Atoms change their

positions slightly in order to compensate the displacements in the x-direction so

that the forces acting on the atoms in both directions are zero. Notice that the

substrate atoms also move from the lattice points because two topmost layers of

the substrate are allowed to relax. The calculated displacements can only describe

relative displacements of atoms, but cannot tell us completely about the strain in

the system. For Hookean springs, the relative displacements indicate the elastic

energy associated with the springs.

Fig. 4.5 shows the density of the energies ei— the energies stored in the

springs connected to film and substrate atoms. Although the displacements are

large at the upper layers, the energies contributed to the area are quite low. For

adatoms, the upper area is energetically more preferable. In contrast, the energy

density is high at the film-substrate interface, especially at the kink sites. The

result comes from the fact that, at the interface, the film is forced to take the lat-

tice constant of the substrate. The area is energetically undesirable for adatoms.
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Figure 4.2: The same configuration as in Fig. 4.1 after the full relaxation.

Figure 4.3: The displacements of film and substrate atoms in x-direction. The

colors indicate values of the displacements.

Figure 4.4: The displacements of film and substrate atoms in y-direction. The

colors indicate values of the displacements.

Figure 4.5: The density of the energies ei. The colors indicate values of the

energies.
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The energies, e.g. ∼ 1.5 eV, compared with the binding energies, are quite signif-

icant and can effect the adatom diffusion. Adatoms at the kink sites are highly

active and have more chance to hop to neighboring sites. The diffusion current

of adatoms is driven toward the topmost layer. This current promotes the island

formation [64].

4.1.2 Homoepitaxy vs. heteroepitaxy

We now consider the morphological evolution of homoepitaxial films versus het-

eroepitaxial films. The objective is to show that islands come purely from the

influence of the strain in the system and not from statistically rough surfaces.

The system size is set to L = 1000 sites unless specified otherwise. Film surfaces

are observed every 1 ML until the coverage (θ) is equal to θ = 10 ML. The tem-

perature (T ) and deposition flux (F ) are set to be T = 600 K and F = 1.0 ML·s−1,

respectively.

Film surfaces at various θ for the homoepitaxial growth with ϵ = 0.0% are

shown in Fig. 4.6(bottom). There is no strain in the system. As we expected, the

film surfaces are statistically flat from the beginning to the end of growth, indi-

cating the layer-by-layer growth mode. The results show that the selected growth

conditions are appropriate for homoepitaxial systems to grow flat surfaces. If the

surface morphology of heteroepitaxial films, using the same growth conditions, is

different from the result, it will be caused by the strain in the systems.

Fig. 4.6(top) shows film surfaces at various θ for the heteroepitaxial growth

with ϵ = 4.0%. It is clear that the surface morphology is very different from the

one observed in the homoepitaxial system. In early stages of the growth, the film

surfaces are rather flat, then 2D islands form at θ ∼ 4 ML. The island size slightly

increases with the coverage, while the number of islands remains the same.

It should be noted here that the island size and number of islands are mea-

sured directly from the film surfaces in Fig. 4.6(top). The critical thickness (hc),

however, cannot be measured directly from the film surfaces. Generally, film sur-
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Figure 4.6: Homoepitaxial films (bottom) with ϵ = 0.0% versus heteroepitaxial

films (top) with ϵ = 4.0% at T = 600 K and F = 1.0 ML·s−1. The coverage (θ) is

θ = 1− 10 ML and increases every 1 ML.

faces become rough when the transition from a 2D flat layer to 3D islands takes

place at a critical thickness. One can, therefore, define the critical thickness as a

thickness where the film surfaces become rough (or deviate from the flat surface).

But the “rough” films may be interpreted differently and vary from one to an-

other. As we mentioned earlier, the critical thickness in this work is defined from

a thickness where the total elastic energy per atom (E/θL) reaches its maximum

value.

Fig. 4.7 shows the total elastic energy per atom versus the coverage for the

heteroepitaxial growth shown in Fig. 4.6(top). The energy increases rapidly in the

early stages and reaches its maximum value at θ ∼ 5.5 ML (an average thickness),

in which we define the critical thickness (hc). After the critical thickness, 2D

islands are more clearly seen. It is important to mention here that the total

elastic energy per atom does not always reach its maximum value. With some

growth conditions, the total elastic energy per atom never decreases (at least up

to θ = 10 ML). In these cases, critical thickness hc cannot be identified.

The island formation can be described in a context of the total elastic energy

per atom. In early stages of the growth, strain accumulates as the thickness

increases. The strained surface is still flat against stress suppression. When the

strain increases further, the flat surface becomes energetically undesirable at a
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Figure 4.7: The total elastic energy per atom (E/θL) versus the coverage (θ) of

films grown at the same conditions as the films in Fig. 4.6(top).
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critical thickness. From previous results, adatoms at kink sits are highly active

and can hop easily to upper layers. The adatom diffusion promotes the island

formation in this stage [64]. Since the upper layers are more preferable for adatoms,

the total elastic energy is decreased after the islands are formed [8, 40, 41]. The

surface configuration is stable, and the growth process is almost irreversible. The

island formation is more consistent with the island nucleation theory [8], which is

observed at low temperatures and large lattice mismatches [11, 38], than the ATG

instability [37] observed at high temperatures and small lattice mismatches [12,

13, 15, 38].

4.1.3 Local relaxation bias

We have shown some preliminary results of the homoepitaxial growth versus the

heteroepitaxial growth. But for the heteroepitaxial growth, how do we know that

the results are not affected by the local relaxation? In some cases, the local

relaxation is not appropriate for a local width (W) and a local height (H) (see

Fig. 3.5). In this subsection, we discuss effects of the size (W and H) used in local

relaxation and show that our final results do not depend on the value of W and

H. The growth conditions are still T = 600 K, F = 1.0 ML·s−1, and ϵ = 4.0%.

We believe that our conclusions also holds for other growth conditions as well.

Fig. 4.8 shows film surfaces of the heteroepitaxial growth for various values of

local width W and local height H. The surface morphologies are nearly identical.

This is the first sign indicating that effects of the size of local relaxation is weak.

To better quantify our results, we consider the total elastic energy per atom

(E/θL) as a function of the coverage (θ) shown in Fig. 4.9. The results (except for

W = 125, H = 7) are independent of the values of W and H. For W = 125 and H

= 7, the strain relaxation seems to be more efficient, i.e. the total elastic energy of

the system is lower. However, the critical thicknesses (hc) are approximately equal

for all values of W and H. The thicknesses are estimated to be hc = 5.7±0.1ML (W

= 15, H = 5), hc = 5.4± 0.1 ML (W = 25, H = 5), hc = 5.2± 0.1 ML (W = 75,

H = 5), and hc = 5.4± 0.1 ML (W = 125, H = 7).
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Figure 4.8: Film surfaces at T = 600 K, ϵ = 4.0% and, F = 1.0 ML·s−1 for

different local relaxation areas: (a) W = 15, H = 5, (b) W = 25, H = 5, (c)

W = 75, H = 5, and (d) W = 125, H = 7.
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Figure 4.9: The elastic energy per atom (E/θL) as a function of the coverage (θ)

from heteroepitaxial growth with various local relaxation areas.
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Fig. 4.10 and Fig. 4.11 show the island size (l) and number of island (n)

as a function of the coverage (θ). The island size increases with the coverage

and saturates after θ ∼ 6 ML. The saturation values are approximately the same,

e.g. l ∼ 46 sites at θ = 10 ML. The number of islands increases rapidly with

the coverage and then decreases abruptly after θ ∼ 2 ML. At θ ∼ 2 − 5 ML, the

effect of the local relaxation size is visible. The number of islands saturates after

θ ∼ 6 ML with n ∼ 18 islands at θ = 10 ML for all values of W and H.

Although here we emphasize on effects of the local relaxation, it is worth

noting that the growth can be divided into three regimes. At θ ∼ 0 − 2 ML,

adatoms just attach to neighboring sits to form “small” islands. The islands spread

throughout the substrate as θ increases. The number of islands then increases

quickly, while the island size slightly increases. At θ ∼ 2 − 5 ML, small islands

begin to merge together. After that the number of islands decreases, and the

island size increases accordingly. The islands are not fully formed in this regime

because the elastic energy is still increasing. At θ ∼ 5− 10 ML, the islands reach

stable sizes and become fully formed. The island size and number of islands do

not change further. In this regime, adatoms hop to upper layers where the strain

is small. The total elastic energy per atom (E/θL) as a function of coverage θ is

then decreased.

As we mentioned, islands are unstable at the intermediate regime (θ ∼

2− 5 ML). The fluctuation of the island size is then high, which can be seen from

the standard deviation of mean (σN = σ/
√
20) in the inset of Fig. 4.10. When

islands reach stable sizes, this quantity become smaller. We can also determine the

critical thickness from the thickness at which the fluctuation reaches its maximum

value.

In conclusion, the local relaxation seems to slightly affect the results in the

early and intermediate regimes (θ ∼ 0− 5 ML) where islands have not been fully

formed and hence are not of our interest. In the saturation regime (θ ∼ 5−10ML),

however, we conclude that the size of the local relaxation does not have any effect

on our final results. At θ = 10 ML, the critical thickness, island size, and number
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Figure 4.10: The island size (l) as a function of the coverage (θ) from heteroepi-

taxial growth with various local relaxation areas. Inset: the standard deviation of

mean of island size l as a function of coverage θ.
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Figure 4.11: The number of islands (n) as a function of the coverage (θ) from

heteroepitaxial growth with various local relaxation areas.
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of islands are independent of the values of W and H.

4.1.4 Summary

Results in this section are summarized as follows. Firstly, the diffusion of adatoms

in the vicinity of kink sites is strongly biased by the strain. Secondly, the island

formation is a result of relieving strain in the heteroepitaxial system. Finally,

effects of the size of local relaxation on our final results are weak and can be

neglected.

4.2 Effects of growth conditions

We have so far shown our numerical results which reveal some aspects of the

strain in the heteroepitaxial system. In this section, we will show further that

controlling the critical thickness (hc), island size (l), and number of islands (n)

with the growth conditions is possible. The values of the growth conditions are

chosen so that we will observe almost the features of films we have studied. Before

going into detail, we note that all results of the critical thickness hc, island size l,

and number of islands n are reported at θ = 10 ML. Since the system is in the

saturation regime, and the quantities are independent of the local relaxation.

4.2.1 Deposition flux

We begin this part with the effects of the deposition flux F on the heteroepitaxial

films. The deposition flux is one of the important factors in the real MBE growth

and can be adjusted during the growth process. To produce high quality thin films,

the deposition flux is needed to be particularly low (∼ 1ML·s−1) [3] compared with

other growth techniques. Growth conditions with the low deposition flux lead to

the layer-by-layer growth mode in the homoepitaxial systems or heteroepitaxial

systems with small lattice mismatches. In large lattice mismatch systems, the



48

picture is not true because a flat surface is energetically undesirable. In this work,

we not only simulate the heteroepitaxial growth at low deposition fluxes but also at

high deposition fluxes. The case in which the deposition rate is too fast compared

to the diffusion rate is ignored due to the fact that islands cannot form on the film

surface, so the film surface is statistically flat. In this subsection, we report that,

at high deposition fluxes, islands (occurred from the pit formation) are essentially

a result of limited mobility growth observed in experiments.

We begin with the morphological evolution of heteroepitaxial thin films

grown at T = 600 K and ϵ = 4.0% for various values of the deposition flux (F )

shown in Figs. 4.12(a)-(c). For F = 0.5 ML·s−1 and F = 1.0 ML·s−1, the surface

morphologies are not much different from each other. Islands seem to grow from

normal island formation, i.e. islands grown at the beginning of the growth process

capture nearby atoms to increase their sizes. For F = 2.0 ML·s−1 [Fig. 4.12(a)],

however, islands seem to occur from the introducing of pits (or groves). Film sur-

faces are rather flat in early stages of the growth, then pits develop at θ ∼ 6 ML.

The pits are randomly formed and become deeper as the coverage increases. As

a result, islands bound by the pits are more apparent. The island size (in fact

the distance between the centers of the pits) is relatively large. The uniformity

of the island size is also reduced since the pits are not uniformly distributed over

the film surface. The results show clearly that the heteroepitaxial films possess

different surface morphologies depending on whether the film surfaces have pits

or islands.

The critical thickness hc is shown at T = 650 K instead of T = 600 K

because we can measure hc in a broader range. As we mentioned earlier, with

some growth conditions (e.g. T = 600 K and high deposition fluxes), the elastic

energy per atom (E/θL) never decreases. Hence the critical thickness is greater

than 10 ML, which is of course beyond our scope. Fig. 4.13 shows the critical

thickness versus the deposition flux at T = 650 K for various values of the lattice

mismatch. The results show that larger deposition flux leads to the shift of the

critical thickness to higher values. The critical thickness, which increases about
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Figure 4.12: The morphological evolution of heteroepitaxial thin films at T =

600 K and ϵ = 4.0% for (a) F = 2.0 ML·s−1, (b) F = 1.0 ML·s−1, and (c)

F = 0.5 ML·s−1. The film thickness increases every θ = 1 ML.
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Figure 4.13: The critical thickness (hc) at T = 650K as a function of the deposition

flux (F ) for different values of the lattice mismatch (ϵ).
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∼ 1 ML, is less affected by the deposition flux at large lattice mismatches (e.g. at

ϵ = 5.0%).

Fig. 4.14 and Fig. 4.15 show the relative island size and the number of

islands versus the deposition flux at T = 650 K for various values of the lattice

mismatch. At ε = 4.5 and 5.0%, the island size decreases with increasing F while

the number of islands increases accordingly. At ε = 4.0% with high deposition

rate F = 5.0 ML · s−1, l/L increases and becomes less uniform as can be seen

from the large deviation of l/L. We have found that if F is increased further to

F = 10.0 ML · s−1, pit formation occurs.

4.2.2 Lattice mismatch

We next investigate the effects of the lattice mismatch ϵ on the heteroepitaxial

films. The growth temperature T and deposition flux F are fixed at T = 600 K

and F = 1.0 ML·s−1. The morphological evolution of film surfaces for various

lattice mismatches is shown in Figs. 4.16(a)-(c). The island size is qualitatively

smaller as the lattice mismatch increases. In Figs. 4.16(b)-(c), small islands are

unstable in the early stages of the growth, and some dissolve due to high stress

suppression.

Fig. 4.17 shows the critical thickness hc as a function of the lattice mis-

match ϵ for various values of the deposition flux F . We can see that the critical

thickness becomes smaller with the increase in lattice mismatch for all values of

F . From the surface morphology, we found that island formation is observed at

small hc. Deposition flux F has a minor effect on critical thickness hc at lattice

mismatch ϵ > 4.5%, while the effect becomes stronger when ϵ ≤ 4.5%. The critical

thickness can be adjusted from hc ∼ 7 ML to hc ∼ 3 ML depending on the values

of ϵ and F .

The solid, dashed, and dotted lines in Fig. 4.17 show the relation hc ∝

ϵ−a, where a being a constant. The values of a are estimated to be a = 1.84 ±

0.25 (solid), 2.26 ± 0.29 (dashed), and 2.80 ± 0.42 (dotted). Our results agree
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Figure 4.14: The relative island size (l/L) at T = 650 K as a function of the

deposition flux (F ) for different values of the lattice mismatch (ϵ).
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Figure 4.16: The morphological evolution of heteroepitaxial thin films at T =

600 K and F = 1.0 ML·s−1 for (a) ϵ = 4.0%, (b) ϵ = 4.5%, and (c) ϵ = 5.0%. The

film thickness increases every θ = 1 ML.
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Figure 4.17: The critical thickness (hc) at T = 600 K as a function of the lattice

mismatch (ϵ) for different values of the deposition flux (F ). Solid, dashed, and

dotted lines illustrate a power law relation, hc ∝ ϵ−a, where a being a constant.
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well with this equation at deposition fluxes F = 0.5 and 1.0 ML · s−1. At F =

2.0ML·s−1, however, the relation does not fit well with our results, suggesting that

the relation may not be valid for high deposition growth regime. In addition, our

results are comparable with an experiment that obtained a = 1 [13], simulations

with a = 1.5 [72, 74], and theoretical prediction of a = 2 [37].

The relative island size (l/L) and number of islands (n) are shown in Fig. 4.18

and Fig. 4.19, respectively. It is clear that island size l also decreases with increas-

ing lattice mismatch ϵ, regardless of the deposition flux F . At F = 2.0 ML·s−1, we

found both pit formation (at ϵ < 4.125%) and island formation (at ϵ > 4.125%).

At ϵ < 4.125%, in which the pit formation is observed, island size is consider-

ably large and less uniform, as can be seen from the deviation of l/L. As island

size l decreases, number of islands n increases and reaches a saturation value of

n ∼ 26 islands at ϵ = 5.5%. At lower F = 0.5 and 1.0 ML · s−1, we observe only

island formation in the range of ϵ = 4.0 − 5.5%. Number of islands n increases

slightly with increasing lattice mismatch ϵ from ϵ = 4.0% to a particular value of

ϵ where n reaches its saturation value. If lattice mismatch ϵ is increased further,

both number of islands and island size decrease. At large ϵ = 5.5%, island density

observed here is lower than the island density observed at F = 2.0 ML · s−1.

The solid, dashed, and dotted lines in Fig. 4.18 show the relation l ∝ ϵ−b,

where b being a constant. The values of b are estimated to be b = 0.45±0.05 (solid),

0.94 ± 0.19 (dashed), and 1.26 ± 0.23 (4.25% ≤ ϵ ≤ 5.5%) (dotted). For F =

2.0 ML·s−1 and ϵ < 4.25%, we observe pits rather than the islands, and the

relation may not hold in the pit formation regime. It is clear that the exponent b

is affected by the deposition flux. Our values of b are closer to the values of grown

films in experiments with b = 0.9− 1.1 [13, 12, 73] than those of annealed films in

simulations with b = 1.8 [38] and theoretical prediction with b = 2 [37].
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Figure 4.18: The relative island size (l/L) at T = 600 K as a function of the lattice

mismatch (ϵ) for different values of the deposition flux (F ). Solid, dashed, and

dotted lines illustrate a power law relation, l ∝ ϵ−b, where b being a constant.
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Figure 4.19: The number of islands (n) at T = 600 K as a function of the lattice

mismatch (ϵ) for different values of the deposition flux (F ).
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4.2.3 Growth temperature

The growth temperature obviously controls the diffusion rate of adatoms as can

be seen from Eq. (3.5). Generally, the diffusion length (an average distance used

by adatoms to travel on the film surface) increases exponentially with the tem-

perature [90]. Thus a small variation in the growth temperature can lead to

significantly different surface morphologies.

In this subsection, we present the results of the heteroepitaxial films grown at

various values of the growth temperature (T ). The results show strong dependence

of the surface morphology, island size, and number of islands on the temperature.

The morphological evolution of heteroepitaxial films grown at ϵ = 4.0% and F =

1.0 ML·s−1 for various values of the temperatures T is shown in Figs. 4.20(a)-(c).

The surface morphologies are obviously different from each other. At T = 550 K

[Fig. 4.20(a)], the layer-by-layer growth is observed in the early stages of growth,

small pits then develop nearly the end of the growth. At a higher temperature

(T = 650 K) in Fig. 4.20(c), islands occur from the island formation. In addition,

some small islands disappear at the end of growth (Ostwald ripening) [39].

Fig. 4.21 shows the critical thickness as a function of the growth temperature

for various values of the deposition flux. Again we show the critical thickness of

the heteroepitaxial thin films at ϵ = 5.0% because, at low temperatures, the

critical thickness cannot be observed. We can see that growth temperature T

also influences critical thickness hc as well as deposition flux F—increasing T and

decreasing F lead to similar kinetically effects. Both cause hc to become smaller

as can be seen in Fig. 4.13 and Fig. 4.21. The critical thickness can be adjusted

from hc ∼ 5 ML to hc ∼ 2 ML by varying the deposition flux and temperature.

The relative island size and number of islands versus the temperature at

ϵ = 5.0% for various values of the deposition flux are shown in Fig. 4.22 and

Fig. 4.23, respectively. At F = 0.5 and 1.0 ML · s−1, island size l increases with

growth temperature T and decreases with increasing deposition flux F . Number

of islands n drops according to the increasing of island size l. At higher F =
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Figure 4.20: The morphological evolution of heteroepitaxial thin films at F =

1.0 ML·s−1 and ϵ = 4.0% for (a) T = 550 K, (b) T = 600 K, and (c) T = 650 K.

The film thickness increases every θ = 1 ML.
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Figure 4.21: The critical thickness (hc) at ϵ = 5.0% as a function of the growth

temperature (T ) for different values of the deposition flux (F ).
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Figure 4.22: The relative island size (l/L) at ϵ = 5.0% as a function of the growth

temperature (T ) for different values of the deposition flux (F ).
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Figure 4.23: The number of islands (l/L) at ϵ = 5.0% as a function of the growth

temperature (T ) for different values of the deposition flux (F ).
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2.0 ML · s−1, however, we observe pits at T = 550 K and islands at higher T . Our

result suggests that, as well as by varying F , pits and islands can be found by

varying T . These results agree with previous work [19, 18]. In addition, island

size l is less uniform when growth temperature T increases to T = 650 K which

can be seen from the deviation of l/L.

Here, we discuss our numerical results of this section. According to the pit

and island formation mechanisms and available data points for various growth

conditions, we plot qualitatively a diagram in Fig. 4.24. All points ( .) below the

surface denote pits and all points ( .) above the surface denote islands. The surface

cutting is draw by the points ( .) which denotes the transition regime. We note

that although the formation of pits and islands is not obvious at the interface and

in the area nearby, all data points that are far from this area i.e. deeply below

the surface and highly above the surface show clearly the pit and island formation

respectively. For example, at T = 600 K and F = 0.5 ML · s−1 we observe only

islands at ϵ > 4.0%.

We have found that the trend of critical thickness hc is related to pit and

island formation regions. For example in Fig. 4.13 when F increases, hc increases

accordingly and the system moves deeply in the pit regime according to the di-

agram in Fig. 4.24. This result is also consistent with the experimental result

shown in Fig. 4.25 at T = 550 ◦C. The morphological evolution changes from the

formation of islands at deposition rate Rdep = 0.015 nm · s−1 to the formation of

pits at Rdep = 0.09 nm · s−1. In this region deposited atoms interrupt adatoms

from hopping to energetically more preferable sites (at upper layers or on top of

existing islands). Adatoms are buried before they reach existing islands. As a

result, it takes longer time for islands to form, and the critical thickness is then

larger.

Similarly in Fig. 4.21 when T increases, hc decreases accordingly and the

system moves deeply in the island region according to the diagram in Fig. 4.24.

This result agrees with the experimental result shown in Fig. 4.25 at Rdep =

0.09 nm · s−1. The morphological evolution changes from the formation of pits at
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Figure 4.24: F -ϵ-T diagram. Points ( .) below the surface denote pits and points

( .) above the surface denote islands. The surface cutting the points ( .) and area

nearby the surface denote the transition regime.
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Figure 4.25: Morphological evolution of GeSi/Si (001) thin films during MBE

growth with ϵ ≈ 1.2% [19].
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T = 550 ◦C to the formation of islands at T = 750 ◦C. In this region the growth

temperature enhances the adatom diffusion, so islands form early. Hence hc is low.

In general, the formation of pits observed in our simulations is consistent

with that in limited mobility growth regime at high deposition flux and low growth

temperature [19, 38]. This regime is at the far back corner of the diagram (point

T = 550 K, F = 10 ML · s−1 and ϵ = 3.5%) which is deeply below the cutting

surface. In limited mobility growth, the formation of pits is more preferable for

strain relief [19, 38, 39]. When surface diffusion process becomes significant, at

high growth temperature and low deposition flux, island formation is preferable [8,

38]. This regime is at the near front corner of the diagram (point T = 650 K,

F = 1.0 ML · s−1 and ϵ = 5.5%) which is high above the cutting surface. The

transition from island to pit formation indicates the onset of a limited mobility

growth regime.

Moreover, the trend of our results quite agrees with experimental results [18]

and the picture of morphological evolution shown in Fig. 4.25.

4.2.4 Summary

Results in this section, Effects of growth conditions, are listed in Table 4.1 and

summarized as follows. The pit formation, resulting from the limited mobility

growth, is observed at low lattice mismatches, high deposition fluxes, and/or

Properties
ϵ ↑ F ↑ T ↑

(at T = 600 K) (at T = 650 K) (at ϵ = 5.0%)

hc ↓ (hc ∝ ϵ−a) ↑ ↓

l ↓ (l ∝ ϵ−b) ↓ ↑

n
↑ (at high F )

↑ ↓
↓ (at low F )

Table 4.1: Relevant properties of heteroepitaxial thin films in the island formation

regime. For example, hc decreases when ϵ increases at T = 600 K.
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low temperatures. And the heteroepitaxial films possess different morphologies

depending on whether the film surfaces have pits (groves) or islands.



CHAPTER V

An Application of Roughness

Exponent Method in a Frustrated

Spin System

In this chapter, we discuss the possibility of using the global roughness (W ), also

known as the interface width, and its exponents of a modified SOS growth model

to determine a critical temperature and critical exponent ν of a frustrated spin

model. The exponents of the SOS growth model: growth exponent β, roughness

exponent α, and dynamical exponent z, are calculated by means of the scaling

concept and data collapse. The global roughness W and roughness exponent α

are sensitive enough to detect a critical temperature of the spin model. Moreover,

the exponents of both models are also connected with some relation, which can

be used to verify the universality class of the spin model.

We arrange this chapter as follows: firstly, we provide a brief introduction

to the previous studies using the SOS growth method to determine behavior of

various spin models. We then introduce a frustrated spin model, to which the

SOS growth method is adopted. In the next section, we present the frustrated

spin model and method to determine the critical temperature and exponents.

We discuss our numerical results in section 5.3. In this section, we compare our

results with those results obtained from conventional spin methods. Finally, we

summarize the results of this chapter in section 5.4.
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5.1 Introduction

In the past decades, kinetic roughening of film surfaces generated by growth models

has been one of the most attractive subjects studied in computational, theoretical,

and also experimental statistical physics [2, 97, 98, 99, 100, 101, 102]. Its behavior

seems to occur in a wide range of physical systems, which reflects its universality.

In order to study physical properties of the systems, some parameters must be

introduced. The standard tools used in growth models are the roughness (W )

and its exponents: growth exponent (β), roughness exponent (α) and dynamical

exponent (z) [2, 84]. Once the exponents are determined, the universality of the

systems is classified.

It had been shown [103, 104, 105] that W , βw
1 and α obtained from mapping

spin configurations to rough surfaces of a solid-on-solid (SOS) growth model can

be used to detect transition points of spin models. In addition, the exponents

can also be used to verify the validity of its universality classes by considering

scaling relations between growth and spin models. This approach was introduced

by de Sales et al [106, 107]. They considered cellular automata (CA) and then

mapped the CA configurations to surfaces of a SOS model. By using the roughness

exponent method, the CA universality classes can be classified more precisely.

Later, Atman et al. [108, 109] showed that βw can be used not only to detect

the Domany–Kinzel cellular automaton (DKCA) phases, but also to test scaling

relations of critical exponents between growth and DKCA models. In spin models,

Redinz and Martins [103] studied the q-state (with q =2, 3, and 7) Potts and

p =10 clock models. The results showed that α and ϵ∗ (characteristic length)

sharply change near critical points. For the clock model, the intermediate phase

or spin-wave phase was also found [104, 105]. Furthermore, Brito et al. [110]

studied the Ising chain with long-range interactions and found the value of α to

peak near critical points, resulting in super-roughening. The detailed study was

extended to q-state Potts, spin-1 Blume-Capel (BC) models, and two-dimensional

XY models [104, 105].
1The subscript w denotes a quantity that is of the SOS growth model.



71

In studies of spin systems, frustrated spin models have received much atten-

tion. It describes an array of Josephson junctions under an external field [111].

Some of the interesting models investigated via the simulation methods are the

fully frustrated XY model [112, 113, 114, 115], the frustrated antiferromagnetic

XY (FAXY) model [116, 117, 118] and the frustrated antiferromagnetic six-state

clock model [119, 120]. These models have a rotational U(1) symmetry and an ad-

ditional reflection Z2 symmetry or chiral symmetry that can be broken at critical

temperatures through the Kosterlitz–Thouless and an Ising-like transition tem-

peratures, TKT and TI , respectively. Since systems with the U(1) symmetry are

expected to belong to the KT universality class [83, 94], therefore the Z2 sym-

metry has been the subject of interest in these models. It has been found that

the Z2 symmetry (with the critical exponent, ν < 1) may not belong to the Ising

universality class [113, 114, 116, 117, 118, 120]. Other [115, 119] argue that it

is the finite size effect and ν = 1 in the limit of L → ∞, so the results are still

controversial.

We, therefore, investigate the FAXY model on a two-dimensional triangular

lattice. The chiral configurations are mapped (like a walk process) to rough sur-

faces of a SOS growth model, for which the roughness exponent method will be

used. As discussed earlier, the aims of this study are to study the chiral symmetry

breaking of FAXY model and to provide simulation details of this model, since

frustrated models have not been much studied using this method.

5.2 Models and Methods

The Hamiltonian of the lattice spin model is given by

H = −J
∑
⟨ij⟩

Si · Sj = −J
∑
⟨ij⟩

cos(θi − θj), (5.1)

where ⟨ij⟩ denotes a sum over all neighbor spin pairs, J is a coupling constant,

Si is a spin variable with |Si| = 1, and θi is an angle of Si with respected to an

arbitrary direction. In the FAXY model, the chirality at each elementary triangle
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is defined as

κ△i,▽i
=

2

3
√
3
[sin(θm − θl) + sin(θn − θm) + sin(θl − θn)], (5.2)

where △i and ▽i denote up- and down-triangle i, respectively (see Fig. 5.1). The

staggered chirality which plays a role of spin-like variable of the Z2 symmetry is

given by

κi =
1

2
(κ△i

− κ▽i
). (5.3)

According to the method [106, 107], a positive-state of κi at site i and at

time t′ is equivalent to deposition of an atom on the film surface while a negative-

state leads to an evaporation of an atom. Local hight at site i and at time t, then,

is the accumulation of atoms on the surface from t′ to t as

hi(t) =
t∑

t′=0

κi(t
′). (5.4)

The global roughness, also known as the interface width, defined from fluctuation

Figure 5.1: The FAXY model with N = 6 × 6 sites. The circles refer to spins

in A, B and C sublattices, the ± signs denote the chirality at each elementary

triangle, and the shaded triangles refer to up- and down-triangle i, respectively.



73

relation of hi is given by [2]

W (L, t) =
√
⟨(hi(t)− ⟨h(t)⟩L)2⟩L, (5.5)

where ⟨. . .⟩L denotes an average overall substrate of size L. At early time, W

increases with increasing t as W (t) ∼ tβw when βw is the growth exponent, and

saturates after a crossover time t×. When t > t×, W is independent of t, but

W depends on the substrate size L as W (L) ∼ Lα, where α is the roughness

exponent. The scaling form of W can be written as [121]

W (L, t) ∼ Lαf

(
t

Lzw

)
, (5.6)

where f(u) is a scaling function, f(u) ∼ uβw for t ≪ t× and f(u) = const. for

t ≫ t×. The crossover time grows as a function of L, t× ∼ Lzw , so zw = α/βw. For

a random deposition (RD) process, W increases indefinitely with time as W ∼ tβw

with βw = 1/2 because the correlation length is zero at all time. For correlated

systems, the correlation length increases with time and saturates at t×, so βw

should deviate from 1/2 at t < t×. In the case of a persistent correlation process,

βw > 1/2 while in the case of the anticorrelation function process, βw < 1/2. It has

been shown that the Monte Carlo simulations add an intrinsic noise to the SOS

model [104, 105]. At high temperatures, spins are uncorrelated, then W increases

definitely with t as a RD process. This noise still exists even when the system is

in a critical state. The Family-Vicsek scaling in Eq. (5.6), therefore, does not hold

in this model because α → ∞. In order to remove the effect, the factor t−1/2 is

introduced to W [104, 105]. The noise-reduced roughness is then given by

W ∗(L, t) = t−1/2W (L, t). (5.7)

The new relations become β∗
w = βw − 0.5, z∗w = zw, and α∗ = zw(βw − 0.5).

In simulations, we use linear size N = L×L with L = 24 to 120 sites, and we

average all results over 25 to 200 independent runs depending on L. The maximum

simulation time is up to 5 × 105 Monte Carlo steps (MCS). The Monte Carlo

algorithm, together with Metropolis method, are used to update spin states [83, 91,

94]. The system is initially set in high temperature states. The temperature is then
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decreased and the systems are allowed to relax to equilibrium states. Likewise, hi

is set to be zero at initial states (flat substrates), although W only depends on

the fluctuation of the surfaces.

5.3 Results and discussions

In our work, temperature is measured via the dimensionless quantity T ≡ kBτ/|J |,

where kB is the Boltzmann constant, τ is the temperature and J is the coupling

constant in Eq. (5.1). Fig. 5.2 shows the film surfaces taken at t ≫ t× and

different temperatures. For T > TI [Fig. 5.2(a)] and T < TI [Fig. 5.2(c)], the film

surfaces are rough in a short scale while the film surface is rough in a large scale

at T ≃ TI [Fig. 5.2(b)]. This is due to the fact that fluctuations are maximum at

the transition point.

In order to quantify the film roughness, the noise-reduced roughness, W ∗, is

studied. In Fig. 5.3, W ∗ is plotted versus t at different T for L = 120 sites. In the

early time, W ∗ increases with increasing t as W ∗(t) ∼ tβ
∗
w with β∗

w = 0.513, 0.423

and 0.256 for T = 0.540, 0.515 and 0.500, respectively. We can see that W ∗
sat is

maximum at T = 0.515 which is near TI .

In Fig. 5.4, we consider W ∗ as a function of t at T = 0.520 for L =

24, 48, 72, 96 and 120 sites. It can be seen that W ∗ increases with t, and satu-

rates after t×. The inset shows that W ∗
sat grows as W ∗

sat(L) ∼ Lα∗ . The solid line

shows the power law of W ∗
sat with α∗ = 1.03 when T = 0.520.

The process is then repeated for different values of T . In Fig. 5.5, W ∗ at

the saturated time (W ∗
sat) is plotted versus temperature T . Starting from the high

temperature phase T > TI(L), W ∗
sat increases as the temperature is decreased.

The temperature at which W ∗
sat reaches the maximum value is called TI(L) where

TI(L) represents the critical temperature of a system with finite size L. When

the temperature is decreased further to the T < TI(L) range, W ∗
sat decreases

with T . In addition, Fig. 5.5 shows that the substrate size dependence of W ∗
sat is

particularly strong near the transition point, in which all atoms are correlated. It
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(a) T > TI

(b) T ≃ TI

(c) T < TI

Figure 5.2: The film surfaces of a system with L = 120 sites at a saturated time;

(a) T > TI , (b) T ≃ TI , and (c) T < TI .
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w.
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Figure 5.4: The evolution of W ∗ as a function of t at T = 0.520 for L = 24,

48, 72, 96 and 120 sites (from the bottom to the top). The solid line in the inset

shows the power law of W ∗
sat with α∗ = 1.03.
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is seen that when L is increased, the peak becomes narrow and shifts toward the

low temperature region. The value of TI(L) also shows strong dependence on L.

To obtain the “real” critical temperature, we need to find TI in the thermodynamic

limit [105], TI = TI(L → ∞). To this end, TI(L) is plotted versus 1/L as shown

in the inset. The graph is then fitted with an equation TI(L) = TI + C(1/L)λ

where C and λ are nonuniversal constants. The result yields TI = 0.515± 0.002,

C = 3.694 and λ = 1.554, which is the same as those results (marked by the arrow)

obtained from conventional statistical methods. The results are TI = 0.513(1)

using L = 12 to 102 from Ref. [117] and TI = 0.512(1) using L = 500 to 2000 from

Ref. [118].

The value of α∗, obtained via the W ∗
sat vs L plot as shown in the inset of

Fig. 5.4, can also be used to identify TI . Fig. 5.6 shows a plot of α∗ as a function

of T . One can see that α∗ increases with decreasing temperature to the maximum

value at T ≃ TI marked by the arrow, and decreases to zero after T < TI . This

result shows that W ∗
sat is independent of L (α∗ = 0) for T < TI .

It is known that [83, 91, 94, 122] in spin systems, the correlation length

(ξ) is finite when the temperature is far from the critical temperature. Spins

are correlated in a small regime only and the spin fluctuations are low. However,

when the temperature reaches the critical temperature, ξ diverges to infinity2 [83].

The spins are entirely correlated and the spin fluctuations are at the maximum

value. When spin configurations are mapped to film surfaces of SOS growth model,

the roughness of the surfaces represents the spin fluctuations. Fig. 5.2(a) and

Fig. 5.2(c) show the film surfaces when ξ is small, while Fig. 5.2(b) shows the film

surface when ξ ∼ L. The maximum value of ξ at T = TI(L) is clearly seen in

Fig. 5.5.

In order to determine the exponent ν of the correlation length (ξ ∼ t−ν
I ) in

the spin model, W ∗
sat is written in a scaling form [83, 122], W ∗

sat = Lα∗
f(tIL

1/ν),

where tI = |(T−TI)/TI | is a reduced temperature. Fig. 5.7 shows the data collapse

of W ∗
sat/L

α∗ as a function of tIL
1/ν . The result yields α∗ = 0.963, ν = 0.81,

2Note that ξ ∼ L for a finite system size.
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and TI = 0.513. The critical exponent ν agrees with ν = 0.83 (Ref. [117]) and

ν = 0.84 (Ref. [118]) obtained from conventional methods. At T = TI , the growth

exponent βw relates to the exponents of the spin model through [109]

βw = 1− β

νz
(L → ∞), (5.8)

where β and z are the order parameter and dynamical exponents of the spin model.

Taking β = 0.106, ν = 0.84, and z = 2.52 from Ref. [118], βw is estimated to be

βw = 0.95. From Fig. 5.3, βw = β∗
w +0.5 = 0.923. It can be seen that βw obtained

from the two methods are comparable. However, the smaller value may be caused

by the finite size effect [104, 105]. For α∗ = 0.963 and β∗
w = 0.423, the dynamical

exponent zw is calculated from zw = α∗/β∗
w = 2.28 compared with those value

obtained from conventional spin method which is z = 2.52 [118].

5.4 Summary

Results in this chapter, An Application of Roughness Exponent Method in a Frus-

trated Spin System, are summarized as follows. Firstly, the film roughness reaches

its maximum value at a critical temperature. Secondly, the critical exponent ν of

the correlation length in spin systems can be obtained from the roughness expo-

nent method. Next, the exponents of the SOS growth model and FAXY model

are connected through the scaling relation. Finally, our results are comparable

with those results obtained from conventional spin methods.
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Conclusions

Heteroepitaxial growth is truly a large subject studied in thin film physics. Micro-

scopic processes which occur during the real MBE growth are far more complex

than those of any existing models we investigated. Even with the same heteroepi-

taxial systems, one cloud not expect to have the same experimental results, since

growth conditions, growth preparations etc. seem to involve in the growth process.

Nevertheless, it is found that some phenomena have been observed in a large class

among the heteroepitaxial systems, sharing the same underlying principle. The

formation of self-assembled, strained islands also called the quantum dots is one

of the phenomena found in many heteroepitaxial systems. Therefore, the main

objective of this work is to investigate the formation of the islands and pits by

using computer modelling. A two-dimensional discrete ball and spring model is

chosen to simulate an heteroepitaxial system. The dynamics of the system are

controlled by the kinetic Monte Carlo simulations. Within the scope of this work,

our numerical results show that the ball and spring model is indeed a suitable

model to study heteroepitaxial systems.

We conclude that the island (pit) formation is purely a result of relieving

strain in the system. The island formation is supported by the diffusion bias at

the film-substrate interface, especially at the kink sites, where the strain is mostly

registered to. The lattice mismatch, deposition flux, and growth temperature are

equally important factors which specify the film surface morphologies. According

to our extensive results, the relevant properties of heteroepitaxial thin films, i.e.

the critical thickness, island size, and number of islands, in the island formation



84

regime are summarized in Table 4.1. Here, we note that the formation of pits in

the limited mobility growth regime is another strain-relieved mechanism found in

the system.

We also investigate surface roughening of a modified SOS growth model to

determine critical properties of a seemingly different model, the frustrated an-

tiferromagnetic XY spin model. The film roughness achieved by mapping spin

configurations to film surfaces of the SOS growth model is proved to be able to

identify the critical temperature in the spin model with accurate figures. The

scaling hypothesis and relation between exponents in both models are useful tools

for verifying the universality class of the spin model. According to our work and

previous work in the literature reviews, we believe that the roughness exponent

method can be applied to other physical systems as well.

Finally, we recommend that for further investigation, the heteroepitaxial

growth should be extended to three-dimensional simulations. Due to many aspects

of the heteroepitaxial growth, we draw here some possible studies in this area.

Influence of crystalline substrates on the island shape is a promising topic to be

investigated. Off-lattice models are other candidates which can be used to study

dislocations, wetting layers etc. and are suitable for highly strained heteroepitaxial

systems. We believe that the growth process which allows the film annealing and/

or alloying would provide another strain-relieved mechanism.
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APPENDIX A

List of Notations

Symbol Definition Page

af , as lattice constant 2

ATG Asaro-Tiller-Grinfeld 6

Bi-CGSTAB biconjugate gradient stabilized 22

D dimensional 3

DFT density functional theory 7

DOS density of state 3

ei energy stored in springs connected to atom i 24

E total elastic energy 15

E0 surface binding energy 21

Ea activation energy 18

Eb binding energy 21

F deposition flux 19

FAXY frustrated antiferromagnetic XY 10

FM Frank-van der Merwe 4

h film thickness 4

hc critical thickness 5

H local height 27

kB Boltzmann constant 7

kMC kinetic Monte Carlo 7

kNN , kNNN spring strength 13

l island size 6

L substrate size 15
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Symbol Definition Page

MBE molecular-beam epitaxy 1

ML monolayer 9

NN nearest neighbors 13

NNN next-nearest neighbors 13

QDs quantum dots 3

R0 characteristic vibrational frequency 21

Rd deposition rate 19

Ri diffusion rate 21

RD random deposition 12

smax maximum hopping distance 19

SK Stranski-Krastanov 4

SOS solid-on-solid 8

t time 72

t× crossover time 73

T temperature 7

TI critical temperature 71

VW Volmer-Weber 4

W local width 27

W interface width or roughness 69

∆Ei elastic energy difference 22

α, β, z, ν exponent 69, 82

ϵ lattice mismatch or misfit 2

θ coverage or average thickness 34

ξ correlation length 79
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APPENDIX B

List of Constants

Symbol Value Page

as 2.715 Å 13

c(ni, hi) see Table 3.1 25

D0 3.83× 1013 Å2 · s−1 21

E0 −0.25 eV 21

Eb 0.30 eV 21

H 5 sites 27

kNN 20.73 eV/a2s = 2.81 eV·Å−2 13

kNNN kNN 13

Rtol 10−2 24

smax 8 sites 19

W 25 sites 27
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APPENDIX C

System of Linear Equations

Recall Eq. (2.13),

K · u⃗ = f⃗ . (C.1)

The components K(i, j), u(i), and f(i) are given by

Kx(1, 1) Kx(1, 2) Kx(1, 3) . . . Kx(1, N)

Ky(1, 1) Ky(1, 2) Ky(1, 3) . . . Ky(1, N)

Kx(2, 1) Kx(2, 2) Kx(2, 3) . . . Kx(2, N)

Ky(2, 1) Ky(2, 2) Ky(2, 3) . . . Ky(2, N)
... ... ... . . . ...

Kx(N
2
, 1) Kx(N

2
, 2) Kx(N

2
, 3) . . . Kx(N

2
, N)

Ky(N
2
, 1) Ky(N

2
, 2) Ky(N

2
, 3) . . . Ky(N

2
, N)





ux(1)

uy(1)

ux(2)

uy(2)
...

ux(
N
2
)

uy(
N
2
)


=



fx(1)

fy(1)

fx(2)

fy(2)
...

fx(
N
2
)

fy(
N
2
)


,

(C.2)

where N = 2L. The components Kx(i, j) and Ky(i, j) relate to the forces acting

on atom i in x and y directions as,

Fx(i) =
∑
j

Kx(i, j)u(j)− fx(i) = 0, (C.3)

and

Fy(i) =
∑
j

Ky(i, j)u(j)− fy(i) = 0. (C.4)

For more convenience, we map the data of the (N ×N) matrix K to a 1D array

whose size is N2. The components fx(i) and fy(i) are stored in variable f specified

by index i as,

fx(i) ⇒ f [2i− 1], fy(i) ⇒ f [2i]. (C.5)
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The components Kx(i, j) and Ky(i, j) are given by

Kx(i, j) ⇒

K[2(i− 1)N + (2j − 1)] if j = odd,

K[2(i− 1)N + 2j] if j = even,
(C.6)

and

Ky(i, j) ⇒

K[2(i− 1)N +N + (2j − 1)] if j = odd,

K[2(i− 1)N +N + 2j] if j = even.
(C.7)

An atom interacting with the atom i is now represented by index j. For the atom

i (see Fig. C.1), the interaction is in the range of NN and NNN. Thus, the index

j runs only over NN = i+ 1, i− L, i− 1, i+ L and NNN = i+ 1− L, i− 1− L,

i− 1 + L, i+ 1 + L. The directions of NN and NNN respected to the atom i are

labeled with (1), (2), (3), and (4). In x direction, the values of the arrays f and

i - 1 + L i + L i + 1 + L

H3L

H4L

H4L

i - 1 - L i - L i + 1 - L

H2L

H2L

H1L

i - 1 i i + 1H3L H1L

Figure C.1: The nearest neighbors (NN) and next-nearest neighbors (NNN) of

atom i. The sign (...) labels the directions of NN and NNN respected to the atom

i.
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K are

f [2i− 1] = kNNNδi,i−1−L(d1 + d2)− kNNNδi,i+1−L(d1 + d2)

+ 2kNNδi,i−1d1 − 2kNNδi,i+1d1

+ kNNNδi,i−1+L(d1 + d2)− kNNNδi,i+1+L(d1 + d2).

(C.8)

For j = i− 1− L,

K[2(i− 1)N + (2j − 1)] = −kNNNδi,i−1−L,

K[2(i− 1)N + 2j] = −kNNNδi,i−1−L.
(C.9)

For j = i− L,

K[2(i− 1)N + (2j − 1)] = 0,

K[2(i− 1)N + 2j] = 0.
(C.10)

For j = i+ 1− L,

K[2(i− 1)N + (2j − 1)] = −kNNNδi,i+1−L,

K[2(i− 1)N + 2j] = kNNNδi,i+1−L.
(C.11)

For j = i− 1,

K[2(i− 1)N + (2j − 1)] = −2kNNδi,i−1,

K[2(i− 1)N + 2j] = 0.
(C.12)

For j = i,

K[2(i− 1)N + (2j − 1)] = 2kNNδi,i−1 + 2kNNδi,i+1

+ kNNNδi,i−1−L + kNNNδi,i+1+L

+ kNNNδi,i−1+L + kNNNδi,i+1−L,

K[2(i− 1)N + 2j] = kNNNδi,i+1+L + kNNNδi,i−1−L

− kNNNδi,i−1+L − kNNNδi,i+1−L.

(C.13)

For j = i+ 1,

K[2(i− 1)N + (2j − 1)] = −2kNNδi,i+1,

K[2(i− 1)N + 2j] = 0.
(C.14)
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For j = i− 1 + L,

K[2(i− 1)N + (2j − 1)] = −kNNNδi,i−1+L,

K[2(i− 1)N + 2j] = kNNNδi,i−1+L.
(C.15)

For j = i+ L,

K[2(i− 1)N + (2j − 1)] = 0,

K[2(i− 1)N + 2j] = 0.
(C.16)

For j = i+ 1 + L,

K[2(i− 1)N + (2j − 1)] = −kNNNδi,i+1+L,

K[2(i− 1)N + 2j] = −kNNNδi,i+1+L.
(C.17)

In y direction, the values of the arrays f and K are

f [2i] = kNNNδi,i−1−L(d1 + d2) + kNNNδi,i+1−L(d1 + d2)

+ 2kNNδi,i−Ld2 − 2kNNδi,i+Ld2

− kNNNδi,i−1+L(d1 + d2)− kNNNδi,i+1+L(d1 + d2).

(C.18)

For j = i− 1− L,

K[2(i− 1)N +N + (2j − 1)] = −kNNNδi,i−1−L,

K[2(i− 1)N +N + 2j] = −kNNNδi,i−1−L.
(C.19)

For j = i− L,

K[2(i− 1)N +N + (2j − 1)] = 0,

K[2(i− 1)N +N + 2j] = −2kNNδi,i−L.
(C.20)

For j = i+ 1− L,

K[2(i− 1)N +N + (2j − 1)] = kNNNδi,i+1−L,

K[2(i− 1)N +N + 2j] = −kNNNδi,i+1−L.
(C.21)

For j = i− 1,

K[2(i− 1)N +N + (2j − 1)] = 0,

K[2(i− 1)N +N + 2j] = 0.
(C.22)
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For j = i,

K[2(i− 1)N +N + (2j − 1)] = kNNNδi,i−1−L + kNNNδi,i+1+L

− kNNNδi,i−1+L − kNNNδi,i+1−L,

K[2(i− 1)N +N + 2j] = 2kNNδi,i−L + 2kNNδi,i+L

+ kNNNδi,i+1+L + kNNNδi,i−1−L

+ kNNNδi,i−1+L + kNNNδi,i+1−L.

(C.23)

For j = i+ 1,

K[2(i− 1)N +N + (2j − 1)] = 0,

K[2(i− 1)N +N + 2j] = 0.
(C.24)

For j = i− 1 + L,

K[2(i− 1)N +N + (2j − 1)] = kNNNδi,i−1+L,

K[2(i− 1)N +N + 2j] = −kNNNδi,i−1+L.
(C.25)

For j = i+ L,

K[2(i− 1)N +N + (2j − 1)] = 0,

K[2(i− 1)N +N + 2j] = −2kNNδi,i+L.
(C.26)

For j = i+ 1 + L,

K[2(i− 1)N +N + (2j − 1)] = −kNNNδi,i+1+L,

K[2(i− 1)N +N + 2j] = −kNNNδi,i+1+L.
(C.27)

It is important to note that the NN and NNN of the atom i must be subjected to

the periodic boundary conditions in x direction.
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