แฮโลจิเนชันของสารประกอบเอ็น-เฮเทอโรแอโรแมติกไฮดรอกซีด้วยไทรเฟนิลฟอสฟีน/แฮโลจิเนทิงเอเจนต์

นางสาววรณัน กิจรุ่งไพบูลย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

HALOGENATION OF *N*-HETEROAROMATIC HYDROXY COMPOUNDS WITH PPh₃/HALOGENATING AGENT

Miss Woranun Kijrungphaiboon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Petrochemistry and Polymer Science Faculty of Science Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

Thesis Title	Halogenation of N-Heteroaromatic Hydroxy Compounds with
	PPh ₃ /Halogenating Agent
Ву	Miss Woranun Kijrungphaiboon
Field of Study	Petrochemistry and Polymer Science
Thesis Advisor	Assistant Professor Warinthorn Chavasiri, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

..... Dean of the Faculty of Science (Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

(1101035011 attarapan 1103055atakien, 111.D.)

..... Thesis Advisor

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

..... Examiner

(Associate Professor Mongkol Sukwattanasinitt, Ph.D.)

...... External Examiner

(Wanchai Pluempanupat, Ph.D.)

วรณัน กิจรุ่งไพบูลย์ : แฮโลจิเนซันของสารประกอบเอ็น-เฮเทอโรแอโรแมติกไฮดรอกซีด้วย ไทรเฟนิลฟอสฟีน/แฮโลจิเนทิงเอเจนต์ (HALOGENATION OF *N*-HETEROAROMATIC HYDROXY COMPOUNDS WITH PPh₃/HALOGENATING AGENT) อ. ที่ปรึกษา วิทยานิพนธ์หลัก: ผศ.ดร.วรินทร ชวศิริ, 63 หน้า.

ได้พัฒนาปฏิกิริยาแฮโลจิเนชันของสารประกอบเอ็น-เฮเทอโรแอโรแมติกไฮดรอกซีโดยใช้ ไทรเฟนิลฟอสฟีน/แฮโลจิเนทิงเอเจนต์ 2 วิธีคือการให้ความร้อนแบบธรรมดาและไมโครเวฟ ได้หา ภาวะที่เหมาะสมสำหรับการสังเคราะห์เอ็น-เฮเทอโรแมติกแฮไลด์ เช่น ชนิดของแฮโลจิเนทิงเอ-เจนต์ ปริมาณรีเอเจนต์ เวลาและตัวทำละลาย ในกรณีของการให้ความร้อนแบบธรรมดา ไทรคลอ-โรแอซิโทไนไทรล์ (Cl₃CCN) หรือ คาร์บอนเททระโบรไมด์ (CBr₄) กับไทรเฟนิลฟอสฟีนเป็นรีเอ-เจนต์ที่มีประสิทธิภาพสูงสำหรับการเปลี่ยนสารประกอบเอ็น-เฮเทอโรแอโรแมติกไฮดรอกซีเป็น แฮไลด์ที่อุณหภูมิรีฟลักซ์ของทอลูอีนเป็นระยะเวลา 4 ชั่วโมง ในทางกลับกันไทรคลอโรแอซิโทไน-ไทรล์ เฮกซะคลอโรแอซิโทน และ คาร์บอนเททระโบรไมด์กับไทรเฟนิลฟอสฟีนสามารถเปลี่ยน สารประกอบเอ็น-เฮเทอโรแอโรแมติกไฮดรอกซีและอนุพันธ์ของคูมารินเป็นแฮไลด์ที่ต้องการใน ปริมาณสูงที่อุณหภูมิ 150 °C 20 นาที ภายใต้สภาวะไมโครเวฟ

สาขาวิชา ปิโตร	แคมีและวิทยาศาสตร์พ	<u>อลิเมอร์</u> ลายมือชื่อนิสิต	
ปีการศึกษา	2554	ลายมือชื่อ อ. ที่ปรึกษาวิทยานิพนธ์หลัก	

5272653223: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE KEYWORDS: HALOGENATION / *N*-HETEROAROMATIC HYDROXY COMPOUND / MICROWAVE

WORANUN KIJRUNGPHAIBOON: HALOGENATION OF *N*-HETEROAROMATIC HYDROXY COMPOUNDS WITH PPh₃/HALOGENATING AGENT. ADVISOR: ASST. PROF WARINTHORN CHAVASIRI, Ph.D., 63 pp.

Two new methodologies utilizing conventional heating and microwave (MW) heating for halogenation of *N*-heteroaromatic hydroxy compounds using PPh₃ and halogenating agent have been developed. The optimal conditions for the synthesis of *N*-heteroaromatic halides including type of halogenating agent, amount of reagents, reaction time and solvent were explored. In the case of conventional heating, Cl₃CCN or CBr₄ in combination with PPh₃ approved to be a highly reactive reagent for the conversion of *N*-heteroaromatic hydroxy compounds to the corresponding halides in refluxing toluene for 4 h. On the other hand, Cl₃CCN, Cl₃CCOCCl₃ and CBr₄ with PPh₃ could convert *N*-heteroaromatic hydroxy compounds and coumarin derivatives to desired halides in high yields at 150°C for 20 min under MW irradiation.

 Field of Study: Petrochemistry and Polymer Science Student's Signature

 Academic Year:
 2011

 Advisor's Signature

ACKNOWLEDGEMENTS

The author would like to express her highest appreciation to her advisor, Assistant Professor Dr. Warinthorn Chavasiri for his valuable instructions, very kind assistance, generous guidance and encouragement throughout the course of this research. Furthermore, sincere thanks are extended to Natural Products Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, for the support of chemicals and laboratory facilities. I would like to thank the Graduate school, Chulalongkorn University, for financial support.

The greatest thanks are also extended to Professor Dr. Pattarapan Prasassarakich, Associate Professor Dr. Mongkol Sukwattanasinitt and Dr. Wanchai Pluempanupat for their suggestion, comments, correction and helps as thesis examiners.

Moreover, thanks are extended to Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, the Thailand Research Fund (TRF-MAG) and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) for granting financial support to fulfill this study and provision of experimental facilities.

Further acknowledgment is extended to her friends for friendship and helps throughout the entire of study. Especially, the author very appreciate to her family members whose names are not mentioned for their love, assistance, understanding, encouragement and social support throughout her entire education. Without them, the author would never have been able to achieve this goal.

CONTENTS

Abstract	in Thai	iv
	in English	
	ledgements	
	ables	
	igures	
	cheme	
	bbreviations	
СНАРТ		
Ι	INTRODUCTION	1
	1.1 Introduction of <i>N</i> -heteroaromatic halides	1
	1.2 Literature reviews of <i>N</i> -heteroaromatic halides from	
	<i>N</i> -heteroaromatic hydroxy compounds	2
	1.2.1 Common reagents	2
	1.2.2 Phosphorus compounds with halogenating agents	
	1.3 Literature reviews on organic transformation using PPh ₃ /haloger	nating
	agent	5
	1.3.1 Alcohol	5
	1.3.2 Carboxylic acid	6
	1.3.3 Sulfonic acid	7
	1.4 Halogenation under microwave irradiation	8
	1.5 Goal of the research	10
Π	EXPERMENTAL	11
	2.1 Instruments and equipment	11
	2.2 Chemicals	11
	2.3 Preparation of brominating agent	12
	2.4 Synthesis of <i>N</i> -heteroaromatic halides by conventional heating .	12
	2.4.1 General procedure for the synthesis	
	N-heteroaromatic chlorides	12

2.4.2 Optimum conditions for the conversion of N-heteroaromatic
hydroxy compounds to N-heteroaromatic chlorides13
2.4.2.1 Effect of type of chlorinating agents13
2.4.2.2 Effect of mole ratio of PPh_3 and chlorinating agents .13
2.4.2.3 Effect of reaction time
2.4.2.4 Effect of solvents
2.4.3 General procedure for the synthesis
<i>N</i> -heteroaromatic bromides13
2.4.4 Optimum conditions for the convension of N-heteroaromatic
hydroxy compounds to N-heteroaromatic bromides14
2.4.4.1 Effect of type of brominating agents
2.4.4.2 Effect of mole ratio of PPh ₃ and CBr ₄ 14
2.4.4.3 Effect of reaction time
2.4.5 The synthesis of <i>N</i> -heteroaromatic halides14
2.5 Synthesis of <i>N</i> -heteroaromatic halides with the aids of
MW irradiation16
MW irradiation16 2.5.1 General procedure for the synthesis
2.5.1 General procedure for the synthesis
2.5.1 General procedure for the synthesis <i>N</i> -heteroaromatic chlorides16
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides
 2.5.1 General procedure for the synthesis <i>N</i>-heteroaromatic chlorides

CHAPTER

	2.5.5 The synthesis of other <i>N</i> -heteroaromatic halides and related	
	compounds	17
III	RESULTS AND DISCUSSION	.19
	3.1 Preparation of authentic samples and reagents	19
	3.2 Synthesis of <i>N</i> -heteroaromatic halides by conventional heating	21
	3.2.1 Optimum conditions for the conversion of N-heteroaromatic	
	hydroxy compounds to N-heteroaromatic chlorides	21
	3.2.1.1 Effect of type of chlorinating agents	.24
	3.2.1.2 Effect of mole ratio of PPh ₃ and	
	chlorinating agents	.26
	3.2.1.3 Effect of reaction time	.27
	3.2.1.4 Effect of solvents	.28
	3.2.1.5 The proposed mechanism	28
	3.2.2 Optimum conditions for the convension of <i>N</i> -heteroaromatic	
	hydroxy compounds to N-heteroaromatic bromides	29
	3.2.2.1 Effect of type of brominating agents	31
	3.2.2.2 Effect of mole ratio of PPh ₃ and CBr ₄	33
	3.2.2.3 Effect of reaction time	.35
	3.2.3 The synthesis of <i>N</i> -heteroaromatic halides	36
	3.3 Synthesis of <i>N</i> -heteroaromatic halides by MW irradiation	46
	3.3.1 Optimum conditions for the conversion of <i>N</i> -heteroaromatic	
	hydroxy compounds to N-heteroaromatic chlorides using MW	7
	irradiation	46
	3.3.1.1 Effect of mole ratio of PPh ₃ /Cl ₃ CCN, reaction time	
	and temperature	.46
	3.3.1.2 Effect of type of chlorinating agents	48
	3.3.2 Optimum conditions for the conversion of <i>N</i> -heteroaromatic	
	hydroxy compounds to N-heteroaromatic bromides	.49
	3.3.2.1 Condition optimization of bromination of	
	N-heteroaromatic hydroxy compounds	.49

CHAPTER

3.3.2.2 Effect of type of brominating agents	50
3.3.3 The synthesis of <i>N</i> -heteroaromatic halides and related	
Compounds	51
3.4 A comparative study on the use of conventional heating and MW	
assisting reaction for the synthesis of haloheteroaromatics	56
IV CONCLUSION	57
REFERENCES	59
VITA	63

LIST OF TABLES

Table pa	ıge
3.1 Effects of type of chlorinating agents on the chlorination of	
2-hydroxypyridine	.24
3.2 Effects of mole ratio of PPh ₃ and chlorinating agent on the chlorination of	
2-hydroxypyridine	.26
3.3 Effects of reaction time on the chlorination of 2-hydroxypyridine	.27
3.4 Effect of solvents on the chlorination of 2-hydroxypyridine	.28
3.5 Effect of type of brominating agents on the bromination of	
2-hydroxypyridine	.31
3.6 Effect of the amount of PPh3:CBr4 on the bromination of 2-hydroxy-pyridine	.34
3.7 Effect of reaction time on the bromination of 2-hydroxypyridine	.35
3.8 The conversion of N-heteroaromatic hydroxy compounds to N-heteroaromatic	
halides using conventional heating	.37
3.9 Effect of mole ratio of PPh ₃ /Cl ₃ CCN, reaction time and temperature on the	
chlorination of 2-hydroxypyridine	.47
3.10 Effect of type of chlorinating agent on the chlorination of 2-hydroxypyridine.	.48
3.11 Effect of mole ratio of PPh_3/CBr_4 , reaction time and temperature on the	
bromination of 2-hydroxypyridine	.49
3.12 Effect of types of brominating agents	.50
3.13 The synthesis of <i>N</i> -Heteroaromatic Halides and related compounds from	
hydroxyheteroaromatic using PPh ₃ /halogenating agent with the aids of MW	
irradiation	.51
3.14 Conditions optimization for halogenations of <i>N</i> -heteroaromatic hydroxy compounds	. 56

LIST OF FIGURES

Figure	page
1.1 Conversion of <i>N</i> -heteroaromatic halides to other organic compounds	2
1.2 Surface temperature of microwave and conventional heating	8
1.3 (a) Polar molecule will follow the applied electric field (b) Dipolar molecule	S
which try to align with an oscillating electric field	8
3.1 The ¹ H NMR spectrum of Br ₃ CCO ₂ Et	20
3.2 The ¹³ C NMR spectrum of Br ₃ CCOC Br ₃	21
3.3 HPLC chromatogram of the crude mixture from the reaction between	
2-hydroxypyridine and PPh ₃ /CCl ₄	22
3.4 The calibration curve of 2-chloropyridine	23
3.5 The calibration curve of 2-hydroxypyridine	23
3.6 The ¹ H NMR spectrum of 2-chloropyridine	25
3.7 HPLC chromatogram of the reaction mixture of 2-hydroxypyridine with	
PPh ₃ /CBr ₄	30
3.8 The calibration curve of 2-bromopyridine	31
3.9 The ¹ H NMR spectrum of 2-bromopyridine	33
3.10 HPLC chromatograms (a) a combination of PPh_3 and CBr_4 (b) the reaction	
mixture using 2:1 PPh ₃ /CBr ₄ (c) using 3:1 PPh ₃ /CBr ₄	35
3.11 The ¹ H NMR spectrum of 4-chloropyridine	38
3.12 The ¹ H NMR spectrum of 2-chloroquinoline	39
3.13 The ¹ H NMR spectrum of 2-bromoquinoline	40
3.14 The ¹ H NMR spectrum of 4-chloroquinazoline	41
3.15 The ¹ H NMR spectrum of 4-bromoquinazoline	41
3.16 The ¹ H NMR spectrum of 4-chloro-6-nitroquinazoline	43
3.17 The ¹ H NMR spectrum of 4-bromo-6-nitroquinazoline	43
3.18 The ¹³ C NMR spectrum of 4-bromo-6-nitroquinazoline	44
3.19 The ¹ H NMR spectrum of 4-chloro-6,7-dimethoxyquinazoline	45
3.20 The ¹ H NMR spectrum of 4-bromo-6,7-dimethoxyquinazoline	45
3.21 The ¹³ C NMR spectrum of 4-bromo-6,7-dimethoxyquinazoline	46
3.22 The ¹ H NMR spectrum of 4-chlorocoumarin	54

LIST OF FIGURES

Figure	page
3.23 The ¹ H NMR spectrum of 4-bromocoumarin	54
3.24 The ¹ H NMR spectrum of 7-chlorocoumarin	55
3.25 The ¹ H NMR spectrum of 7-bromocoumarin	55

LIST OF SCHEME

Scheme	page
3.1 Proposed mechanism for the chlorination of <i>N</i> -heteroaromatic hydroxy	
compound using PPh ₃ /chlorinating agent	29

LIST OF ABBREVIATIONS

conc.	concentrated
d	doublet (NMR)
dd	doublet of doublet (NMR)
equiv.	equivalent
g	gram (s)
h	hour (s)
HPLC	high performance liquid chromatography
Hz	hertz
J	coupling constant (NMR)
m	multiplet (NMR)
MB	mass balance
min	minute (s)
mL	milliliter (s)
mmol	millimole (s)
μL	microliter
MW	microwave
NMR	nuclear magnetic resonance
ppm	part per million
q	quartet (NMR)
RT	room temperature
S	singlet (NMR)
TLC	thin layer chromatography
t	triplet (NMR)
td	triplet of doublet (NMR)
UV	ultraviolet
W	watt
%	percent
°C	degree Celsius
δ	chemical shift

CHAPTER I

INTRODUCTION

Heteroaromatics have been reported as versatile synthetic precursor to synthesize catalysis polymerization [1] or use as a monomer to increase average molecular weight of polymer [2]. Although heteroaromatic have many valuable structures, there are still demands of nucleophilic substitution to prepare other classes of organic compounds such as amines and ethers.

Nucleophilic substitutions of haloaromatics or haloheteroaromatics are in fact not facile comparing with those of saturated analogues. Nonetheless, those processes can be achieved by a wide range of nucleophiles *via* an addition-elimination mechanism, particularly simple in the presence of (i) electron withdrawing substituent and (ii) the good leaving group (*e.g.* halide).

N-Heteroaromatic halides are known as one of useful intermediates in organic synthesis and pharmaceutical interest [3-5], for instance, as a phase transfer agent, an important intermediate for the manufacture of pyrithione-based biocides in cosmetics and a starting material in the production of various pharmaceutical products such as antihistamine drug, phemiramine [6].

1.1 Introduction of *N*-Heteroaromatic Halides

The nucleophilic displacement of haloheteroaromatics is an important reaction resulting in the generation of many other functional groups such as *N*-heteroaromatic amines, ethers and so on (Fig 1.1).

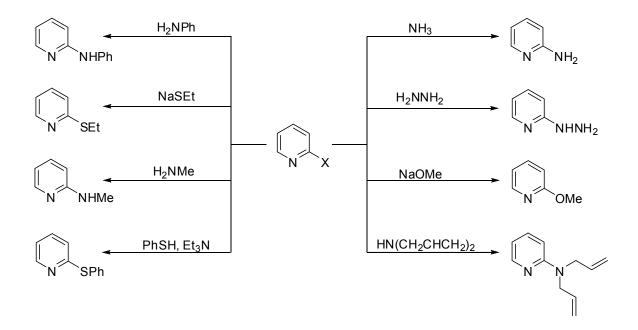
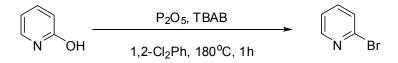


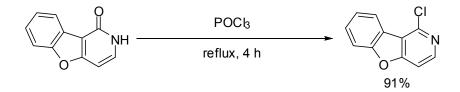
Figure 1.1 Conversion of *N*-heteroaromatic halides tother organic compounds

N-Heteroaromatic halides can be prepared by several means, for example, halogenations of *N*-heteroaromatics in the vapor phase at over 300° C [7]. The most common protocols stem from the conversion of *N*-heteroaromatic hydroxy compounds because of their commercial availability and easy transformation processes.

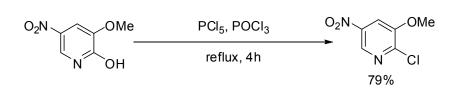

1.2 Literature Reviews of *N*-Heteroaromatic Halides from *N*-Heteroaromatic Hydroxy Compounds

The general method for the preparation of *N*-heteroaromatic halides has been addressed by the use of phosphorus oxyhalide (POX₃, X = Cl or Br), phosphorus pentachloride (PCl₅), and triphenylphosphine (PPh₃) with halogenating agent such as *N*-chlorosuccinimide (NCS).

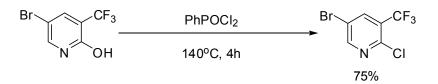
1.2.1 Common Reagents

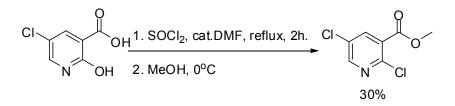

The methodologies for the preparation of *N*-heteroaromatic halides utilizing halogenating agents have been extensively investigated. For instance, Kato and co-workers [8] reported the use of P_2O_5 and a quaternary ammonium bromide for the conversion of hydroxyheteroaromatics to the corresponding bromoheteroaromatics.

Hydroxyheteroaromatics containing an electron-withdrawing group furnished high yields of bromoheteroaromatics at 100°C within 1-10 h. However, under this particular conditions studied, this method was not successful in the preparation of 2-bromopyridine. More severe conditions were required.



In 2009, O'Shea and co-workers [9] addressed the bromination of 5-bromo-3nitropyridin-2-ol using *N*-bromosuccinamide (NBS)/Ph₃P, P₂O₅/Bu₄NBr or POBr₃. Treatment of the mentioned substrate with NBS/Ph₃P or P₂O₅/Bu₄NBr did not lead to good yields of product. Interestingly, the bromination using POBr₃ provided high yield (80-92%).

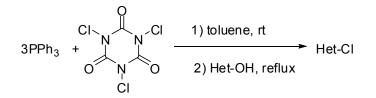

In the same year, Mojumdar and co-workers [10] converted *N*-heteroaromatic hydroxy compounds to the corresponding *N*-heteroaromatic chlorides using POCl₃ under reflux conditions for 4 h.


Later, Morgentin and co-workers [11] explored the effect of PCl₅ and POCl₃ in the nucleophilic substitution of 2-hydroxypyridine derivatives. A strong electronwithdrawing group was required at C-3 and C-5 of starting material.

In 2009, Gleave and co-workers [12] reported the use of $PhPOCl_2$ for the conversion of hydroxyl group in heteroaromatics to the corresponding chlorides.

In 2009, Vanlaer and co-workers [13] demonstrated the conversion of hydroxyl and carboxyl groups to chloride and acyl chloride, respectively using SOCl₂, with low yields.

As previous reports, brominating and chlorinating agents used are quite harmful, difficult to handle or in some cases generate by-products such as HCl or SO_2 gases during the reaction, which cause those reagents not be applicable to the acid-sensitive molecules.

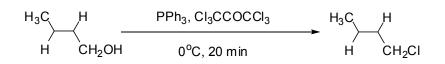

1.2.2 Phosphorus Compounds with Halogenating Agents

Although several synthetic methods for *N*-heteroaromatic halides have been developed, there remains a need for facile and general methods towards accessing *N*-heteroaromatic halides. There are a few reports describing the preparation of *N*-heteroaromatic halides from *N*-heteroaromatic hydroxy compounds using PPh_3 /halogenating agent, together with the use of *N*-halosuccinimide or trichloroisocyanuric acid (TCICA).

In 1999, Sugimoto and co-workers [14] developed the methodology to prepare *N*-heteroaromatic halide by treating *N*-heteroaromatic hydroxy compounds with PPh₃ and *N*-halosuccimide in 5:5 mole ratio (base on substrate). The corresponding *N*-heteroaromatic chloride and bromide were obtained in moderate to high yield. Later, in 2001, Sugimoto and coworkers [15] reported the optimum conditions for this reagent. Variable parameters studied were solvent, amount of reagent and reaction time using 2-hydroxyquinoline as a model compound. The developed reaction worked

well to achieve *N*-heteroaromatic halides in the range of 43-89% yield. However, 4bromoquinazoline was produced in low yield because of the instability of product.

In 2005, Sugimoto and Tenji [16] addressed the methodology for the synthesis of *N*-heteroaromatic chloride using PPh₃ and TCICA at reflux temperature of toluene. This method provided a viable procedure using low amount of reagent required. However, this method required long reaction time (23-49 h).


Despite the fact that PPh₃/*N*-halosuccinimide has been documented for the halogenations of *N*-heteroaromatic hydroxy compounds, the method still have its own disadvantage such as large amount of reagent, long reaction time, low efficiency or severe reaction conditions required.

1.3 Literature Reviews on Organic Transformation Using PPh₃/Halogenating Agent

The convenient methodology for the preparation of halides using comparatively facile under mild conditions has been constantly investigated, for example, a combination of PPh₃ and halogenating agent such as Cl_3CCN , Cl_3CCONH_2 or $Br_3CCOCBr_3$ [17-19]. These systems are attractive since the reaction can be performed under mild and acid-free conditions with good yield.

1.3.1 Alcohol

In 1977, Magid and co-workers [20] reported the use of PPh₃/Cl₃CCOCCl₃ for the transformation of allylic alcohols into chlorides. This method revealed high reactivity, regiospecificity and stereoselectivity.

In 1983, Bringmann and Schneider [21] reported the method for the preparation of alkyl chloride using phosphorus compounds and chlorinating agents. The reaction was carried out under mild and neutral conditions. This method could be employed to synthesize alkyl chlorides from alcohols using PPh₃/Cl₃CCCl₃ in high yields.

In 2006, Pluempanupat and Chavasiri [18] reported the mild and efficient procedure for the chlorination of alcohols using PPh₃/Cl₃CCONH₂. Although, this reagent is less reactive compared with Cl₃CCN, a mild and cost effective alternative of Cl₃CCONH₂ was prompted to apply this reagent to synthesize chlorides.

In 2008, Tongkate and co-workers [19] developed an alternative method for the preparation the corresponding alkyl bromides from alcohols by the combination use of PPh₃/Br₃CCOCBr₃ or PPh₃/Br₃CCOOEt. This protocol can be applied for the synthesis of all primary and secondary alkyl and cyclic alcohols.

1.3.2 Carboxylic Acid

In 1997, Villeneuve and Chan [22] addressed the method for the synthesis of acyl chloride by the reaction of carboxylic acid with PPh₃/Cl₃CCOCCl₃ at -78°C in CH₂Cl₂. The advantage for this method was high efficient protocol under very mild condition. The suitable molar ratio of PPh₃:Cl₃CCOCl₃ was 1:0.5.

In 1999, Jang and co-workers [17] described the conversion of acid chlorides from carboxylic acids with PPh₃/Cl₃CCN at RT under neutral condition. Various carboxylic acids could be transformed to the corresponding acid chlorides in high yields.

In 2009, Chaysripongkul and co-workers [23] introduced PPh₃/Cl₃CCONH₂ as another alternative reagent for the transformation of carboxylic acids to their analogous amides and esters *via* acid chlorides as reactive intermediate.

In 2009, Kang and co-workers [24] investigated the bromination of carboxylic acids using PPh₃/Br₃CCOOEt under mild conditions and acid-free conditions. Aromatic carboxylic acids gave the corresponding acid bromides in high yields. However, aliphatic acid bromides were obtained in low to moderate yields. The usefulness of this method was easy to perform and neutral reaction condition could be employed.

In the same year, Menezes and co-workers [25] demonstrated the bromination of carboxylic acid by PPh₃/Br₃CCOCBr₃. Aromatic acids were smoothly converted to the corresponding aromatic acid bromides in high yields, whereas aliphatic acids did not work well.

1.3.3 Sulfonic Acid

From the literature review, only one report using PPh₃/halogenating agent as a reagent was addressed. In 2006, Chantarasriwong and co-wokers [26] showed the facile method for the preparation of sulfonamides from various sulfonic acids *via* sulfonyl chlorides in good yield. The optimum conditions were reported. The suitable halogenated reagent was Cl₃CCN with the ratio of sulfonic acid, Cl₃CCN and PPh₃ of 1:3:3. The reaction was carried out under refluxing CH₂Cl₂ for approximately 1 h.

These aforementioned PPh₃/halogenating agent systems are attractive since the reaction can perform to produce the desired products in excellent yields under mild condition with short reaction time. The combination of PPh₃ with halogenating agents has nonetheless not been applied to *N*-heteroaromatic hydroxy compounds. Thus, to examine the scope of this developed methodology for this class of compounds should be worth considering.

1.4 Halogenation under Microwave Irradiation

Conventional heating techniques such as using oil bath, sand bath or heating mentle are commonly used in organic synthesis. This is a conventional way to have an outside heat source on transferring and conducting heat to the middle of the vessel. Microwave (MW) heating directs activation of molecules in the solution, not the reaction vessel itself (Fig 1.2) [27].

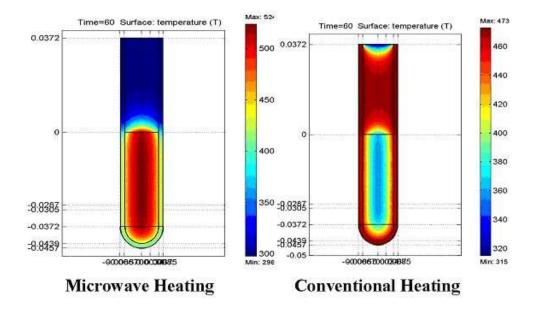


Figure 1.2 Surface temperature of microwave and conventional heating

MW heating is a type of electro-heat technique designed to heat electricallyinsulating (dielectric) materials. This energy transfer can be achieved *via* electrical conduction and dipole rotation (Fig 1.3) [28].

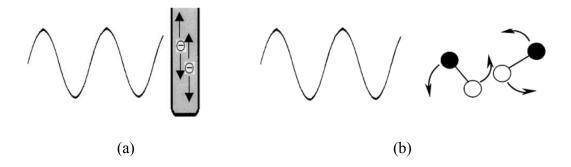
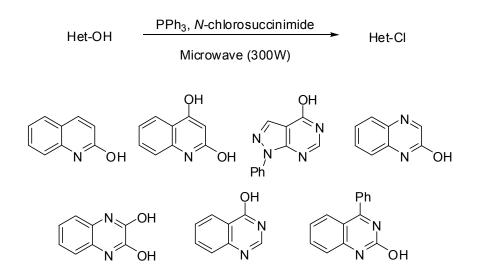



Figure 1.3 (a) Polar molecule will follow the applied electric field (b) Dipolar molecules which try to align with an oscillating electric field

In general, heating reaction with conventional energy source is a valuable technique for organic synthesis. The use of MW in organic synthesis has dramatically increased the interest in recent years. Some papers reported that the reaction time for the chlorination of *N*-heteroaromatic hydroxy compounds prepared by MW heating could dramatically decrease compared with conventional heating.

In 2005, Tenji and co-workers [29] developed an efficient method for the chlorination of *N*-heteroaromatic hydroxy compounds using PPh₃/NCS under solvent-free MW assisted conditions using only 2.5-6 min. *N*-Heteroaromatic hydroxy compounds were carried out to give the corresponding chlorides in variable yields (0-64%). Some *N*-heteroaromatic chlorides such as 2-chloro-4-phenylquinazoline were decomposed under microwave irradiation.

In 2006, Takahashi and co-workers [30] showed that PPh₃/NCS could convert *N*-heteroaromatic hydroxy compounds to *N*-heteroaromatic chlorides under solvent-free conditions by MW irradiation or conventional heating in low to high yield. The advantages of both methods were solvent-free and low amount of PPh₃ and NCS (2 or 4 equiv for conventional heating and MW irradiation, respectively). Although the advantages of the method using MW irradiation were short reaction time, this method cannot be applied to unstable substrates at higher temperature.

1.5 Goal of The Research

The objective of this research is to develop facile halogenations of *N*-heteroaromatic hydroxy compounds utilizing PPh₃/halogenating agent by varying type and amount of halogenating agents, solvent system and reaction time, and to investigate the scope and limitation of this developed method by two protocols: conventional heating method, and a MW assisted synthesis.

CHAPTER II

EXPERIMENTAL

2.1 Instruments and Equipment

Thin layer chromatography (TLC) was performed on aluminium sheets precoated with silica gel (Merck's, Kieselgel 60 PF_{254}). Column chromatography was performed on silica gel (Merck's silica gel 60 G Art 7734 (70-230 mesh)). Chromatotron (model 7924 T, Harrison Research) on silica gel plate of 1 mm thickness was used for centrifugal thin layer chromatography.

The ¹H and ¹³C NMR spectra were performed in CDCl₃ with tetramethylsilane (TMS) as an internal reference on Varian nuclear magnetic resonance spectrometer, model Mercury plus 400 NMR spectrometer which operated at 399.84 MHz for ¹H and 100.54 MHz for ¹³C nuclei. The chemical shifts (δ) are assigned by comparison with residue solvent protons.

The MW assisted reactions were conducted on CEM Discover 300W singlemode microwave instrument. The vessels used were special glass tubes with selfsealing septa to control pressure with appropriate sensors on the top.

HPLC was conducted on Waters 600 controller equipped with a waters 2996 photodiode array detector (USA). Alltima C18 4.6 x 250 mm I.D., 5 μ m column was used for separation purpose.

2.2 Chemicals

All solvents used in this research were purified prior to use by standard methodology. The reagents used for synthesis were purchased from Fluka chemical company or otherwise stated and were used without further purification.

2.3 **Preparation of Brominating Agents**

Ethyl tribromoacetate [31]

One mL of concentrated H_2SO_4 was cautiously added to the mixture of Br_3CCO_2H (11.87 g, 40 mmol, 1 equiv) and EtOH 4.5 mL. The mixture was refluxed for 6 h and then poured into 100 mL of water in a separatory funnel. The upper layer of crude ester was removed and washed with 50 mL of water, saturated aqueous NaHCO₃ and water, respectively, dried over anhydrous Na₂SO₄ and evaporated *in vacuo*.

Ethyl tribromoacetate: colorless oil (80%). ¹H NMR (CDCl₃) δ (ppm): 1.42 (3H, t, *J* = 7.1 Hz) and 4.45 (2H, q, *J* = 7.1 Hz), ¹³C NMR (CDCl₃) δ (ppm): 13.7, 29.5, 65.7 and 161.9.

Hexabromoacetone [32]

Anhydrous NaOAc 7 g was mixed with 20 mL of glacial CH_3CO_2H . The reaction mixture was stirred and heated to 60°C. Acetone 1.4 mL was added and followed by dropwise addition of Br₂ 5 mL over a 10 min period with stirring. The mixture was then heated to 95°C for 2 h. After, it was cooled to RT and mixed with 100 mL of water to precipitate the desired product as a white solid. After air drying, the pure product was obtained upon recrystallization from *n*-hexane.

Hexabromoacetone: white solid (60%), 13 C NMR (CDCl₃) δ (ppm): 24.5 and 173.5.

2.4 Synthesis of *N*-Heteroaromatic Halides by Conventional Heating

2.4.1 General Procedure for the Synthesis N-Heteroaromatic Chlorides

A stirred solution of *N*-heteroaromatic hydroxy compound 0.25 mmol (1 equiv.) and PPh₃ 0.75 mmol (0.1967 g, 3 equiv.) in toluene was successively added a selected chlorinating agent 0.375 mmol (1.5 equiv.) at reflux temperature. After stirring for 4 h, the reaction mixture was stopped. The reaction mixture was purified

by chromatotron or quantified by HPLC using isocratic water/MeOH (90:10) as mobile phase, flow rate 1.0 mL/min for 20 min, and injection volume 10 μ L.

2.4.2 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteroaromatic Chlorides

2-Hydroxypyridine was used as a model compound. Several factors including type of chlorinating agent, mole ratio of PPh₃ and chlorinating agent, reaction time and solvent were varied to explore the efficiency of the reaction.

2.4.2.1 Effect of Type of Chlorinating Agents

The conversion of 2-hydroxypyridine to 2-chloropyridine was carried out using the reaction conditions as described in the general procedure. Seven different chlorinating agents including Cl₃CCN, Cl₃CCOCCl₃, Cl₃CCO₂Et, Cl₃CCCl₃, CCl₄, Cl₃CCONH₂, and NCS were utilized.

2.4.2.2 Effect of Mole Ratio of PPh₃ and Chlorinating Agents

The ratios of PPh₃/Cl₃CCOCCl₃ and PPh₃/Cl₃CCN for the synthesis of *N*-heteroaromatic cholides were varied: 3:0, 2:2, 3:2, 3:1, 3:1.5 and 3:3. The yield of *N*-heteroaromatic chorides was determined in the crude mixture by HPLC.

2.4.2.3 Effect of Reaction Time

According to the general procedure, variation of reaction time as 1-8 h was conducted to observe the effect of reaction time.

2.4.2.4 Effect of Solvents

The general reaction was carried out using four different extra solvents (2.5 mL): CH_2Cl_2 , CH_3CN , tolune and *p*-xylene at reflux temperature for 4 h.

2.4.3 General Procedure for the Synthesis *N*-Heteroaromatic Bromides

A stirred solution of *N*-heteroaromatic hydroxy compound 0.25 mmol (1 equiv.) and PPh₃ 0.75 mmol (0.1967 g, 3 equiv.) in toluene was successively added

selected brominating agent 0.25 mmol (1 equiv.) at reflux temperature. After stirring for 8 h, the reaction mixture was stopped. The quantity of 2-bromopyridine in the crude mixture was determined by HPLC using isocratic water/methanol (90:10) as mobile phase, flow rate 1.0 mL/min for 20 min, and injection volume 10 μ L or isolated by chromatotron.

2.4.4 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteraromatic Bromides

2.4.4.1 Effect of Type of Brominating Agents

According to the general procedure, four types of brominating agents: CBr₄, Br₃CCO₂Et, Br₃CCOCBr₃ and NBS were selected to compare their effects on the reaction efficiency.

2.4.4.2 Effects of Mole Ratio of PPh₃ and CBr₄

The selected brominating agent was added to the mixture of 2-hydroxypyridine and PPh₃ in toluene. The ratio of PPh₃ and brominating agent examined were as follows: 1:1, 2:1, 2:1.5, 3:1 and 3:1.5. The quantity of 2-bromopyridine in the crude mixture was determined by HPLC.

2.4.4.2 Effects of Reaction Time

The reaction time was varied as follows: 4, 6 and 8 h. 2-bromopyridine occurred in the reaction mixture was quantified by HPLC.

2.4.5 The Synthesis of *N*-Heteroaromatic Halides

The halogenation of *N*-heteroaromatic hydroxy compounds using a suitable ratio of PPh₃ and selected halogenating agent at reflux temperature was conducted. Eight different *N*-heteroaromatic hydroxy compounds including 2-, 3-, 4-hydroxypyridines, 2- and 8-hydroxyquinolines, 4-hydroxy, 4-hydroxy-6-nitro and 4-hydroxy-6,7-dimethoxyquinazoline were examined. The quantity of *N*-heteroaromatic halides in the crude mixture was determined by HPLC or purified by chromatotron.

2-Chloropyridine: colorless oil. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.16-7.19 (1H, m), 7.28 (1H, d, J = 8.0 Hz), 7.61 (1H, td, J = 8.0 and 2.0 Hz) and 8.33-8.35 (1H, m).

2-Bromopyridine: colorless oil. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.22-7.25 (1H, m), 7.46-7.56 (2H, m) and 8.35-8.36 (1H, m).

4-Chloropyridine: colorless oil. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.29 (2H, d, J = 4.8 Hz), 8.50 (2H, d, J = 4.8 Hz).

2-Chloroquinoline: colorless oil. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.34 (1H, d, *J* = 8.6 Hz), 7.50-7.55 (1H, m), 7.68-7.73 (1H, m), 7.77 (1H, d, *J* = 8.1 Hz), 7.99 (1H, d, *J* = 8.8 Hz) and 8.06 (1H, d, *J* = 8.6 Hz).

2-Bromoquinoline: yellow oil. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.53 (1H, d, J = 8.4 Hz), 7.59 (1H, t, J = 7.5 Hz), 7.75 (1H, t J = 7.7 Hz), 7.82 (1H, d, J = 8.0 Hz), 8.00 (1H, d, J = 8.0 Hz) and 8.06 (1H, d, J = 8.5 Hz).

4-Chloroquinazoline: white solid. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.76 (1H, dd, J = 8.0 Hz), 7.99 (1H, dd, J = 8.0 Hz), 8.09 (1H, d, J = 8.0 Hz), 8.29 (1H, d, J = 8.0 Hz) and 9.06 (1H, s).

4-Bromoquinazoline: white solid. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.73 (1H, dd, J = 8.0 Hz), 7.95 (1H, dd, J = 8.0 Hz), 8.04 (1H, d, J = 8.0 Hz), 8.20 (1H, d, J = 8.0 Hz) and 8.97 (1H, s).

4-Chloro-6-nitroquinazoline: yellow solid. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.86 (1H, d, J = 8.8 Hz), 8.34 (1H, s), 8.54 (1H, dd, J = 8.8, 2.8 Hz) and 8.78 (1H, d, J = 2.8 Hz).

4-Bromo-6-nitroquinazoline: white solid. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.85 (1H, d, J = 8.8 Hz), 8.38 (1H, s), 8.53 (1H, dd, J = 8.8, 2.4 Hz) and 8.77 (1H, d, J = 2.4 Hz). ¹³C NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 122.4, 123.0, 128.9, 129.0, 145.5, 149.5, 152.5 and 160.4.

4-Chloro-6,7-dimethoxyquinazoline: white solid. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 4,05 (6H, s), 7.30 (1H, s), 7.35 (1H, s) and 8.84 (1H, s).

4-Bromo-6,7-dimethoxyquinazoline: white solid. ¹H NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 4,08 (6H, d, J = 3.6 Hz), 7.32 (1H, s), 7.36 (1H, s) and 8.80 (1H, s). ¹³C NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 56.5, 56.7, 105.0, 106.9, 122.1, 148.3, 151.6, 152.3, 153.4 and 156.8.

2.5 Synthesis of *N*-Heteroaromatic Halides with the aids of MW irradiation

2.5.1 General Procedure for the Synthesis N-Heteroaromatic Chlorides

A selected chlorinating agent 0.25 mmol (1 equiv.) in toluene 1.0 mL was added to the mixture of *N*-heteroaromatic hydroxy compound 0.25 mmol (1 equiv.) and PPh₃ 0.5 mmol (0.1311 g, 2 equiv.) in toluene 1.5 mL. The reaction mixture was heated at 150°C for 20 min in a MW reactor, cooled and diluted with MeOH. The sample solution was analyzed by HPLC using isocratic water/MeOH (90:10) as mobile phase, flow rate 1.0 mL/min for 20 min and injection volume 10 μ L or isolated by chromatotron.

2.5.2 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteroaromatic Chlorides

2-Hydroxypyridine was used as a model compound. Several parameters including mole ratio of PPh₃ and chlorinating agent, reaction time, temperature and type of chlorinating agent was investigated.

2.5.2.1 Effect of Mole Ratio of PPh₃ and Chlorinating Agents, Reaction Time and Temperature

The general synthesis procedure of 2-chloropyridine using PPh₃ and Cl₃CCN was carried out using different mole ratios (1:1, 2:1, 2:2 and 3:3), reaction time (10 and 20 min) and temperature (100, 120, 150 and 180°C).

2.5.2.2 Effect of Type of Chlorinating Agents

The conversion of 2-hydroxypyridine into 2-chloropyridine was carried out using the reaction condition descried in the general procedure using seven different chlorinating agents: Cl₃CCN, Cl₃CCOCCl₃, Cl₃CCCl₃, Cl₃CCO₂Et, Cl₃CCONH₂, CCl₄ and NCS.

2.5.3 General Procedure for the Synthesis N-Heteroaromatic Bromides

A typical procedure involved the reaction of 2-hydroxypyridine 0.25 mmol (0.238 g, 1 equiv.), PPh₃ 0.50 mmol (0.1311 g, 2 equiv.) and CBr₄ 0.25 mmol (0.0829 g, 1 equiv.) in toluene 2.5 mL at 150°C for 20 min. The product was separated by chromatotron or quantified by HPLC using isocratic water/MeOH (90:10) as mobile phase, flow rate 1.0 mL/min for 20 min, injection volume 10 μ L.

2.5.4 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteroaromatic Bromides

2.5.4.1 Condition Optimization of Bromination of *N*-Heteroaromatic Hydroxy Compounds

According to the general procedure, the variation of mole ratio of PPh₃ and brominating agent as 1:1 and 2:1, reaction time as 10 and 20 min and temperature of 110, 150 and 180°C was explored to observe those effects on the bromination of 2-hydroxyquinoline by MW assisted technique. The quantity of 2-bromopyridine in the crude mixture was determined by HPLC.

2.5.4.2 Effects of Type of Brominating Agents

The suitable condition using MW assisted heating was carried out using different brominating agents: CBr₄, Br₃CCO₂Et, Br₃CCOCBr₃ and NBS.

2.5.5 The Synthesis of Other *N*-Heteroaromatic Halides and related compounds

The reaction of PPh₃ 0.5 mmol (0.1311 g, 2 equiv.) and selected halogenating agent 0.25 mmol (1 equiv.) with various heteroaromatic hydroxy compounds (0.25 mmol, 1 equiv.): 2-, 3-, 4-hydroxypyridines, 2- and 8-hydroxyquinolines, 4-hydroxy,

4-hydroxy-6-nitro and 4-hydroxy-6,7-dimethoxyquinazoline and 2-, 7hydroxycoumarin in toluene were heated in a MW reactor. The reaction mixture was analyzed by HPLC or purified by chromatotron.

4-Chlorocoumarin: white solid. ¹H NMR (CDCl₃) δ (ppm): 6.56 (1H, s), 7.31-7.38 (2H, m), 7.57-7.61 (1H, m) and 7.83 (1H, d, J = 8.0 Hz).

4-Bromocoumarin: white solid. ¹H NMR (CDCl₃) δ (ppm): 6.81 (1H, s), 7.27-7.34 (2H, m), 7.54-7.58 (1H, m) and 7.79 (1H, d, J = 8.0 Hz).

7-Chlorocoumarin: white solid. ¹H NMR (CDCl₃) δ (ppm): 6.42 (1H, d, J = 9.6 Hz), 7.26-7.28 (1H, m), 7.35 (1H, s), 7.42 (1H, d, J = 8.0 Hz) and 7.67 (1H, d, J = 9.6 Hz).

7-Bromocoumarin: white solid. ¹H NMR (CDCl₃) δ (ppm): 6.44 (1H, d, J = 9.6 Hz), 7.34 (1H, d, J = 8.0 Hz), 7.41 (1H, d, J = 8.0 Hz), 7.51 (1H, s), and 7.66 (1H, d, J = 9.6 Hz).

CHAPTER III

RESULTS AND DISCUSSION

The conversion of *N*-heteroaromatic hydroxy compounds into *N*-heteroaromatic halides is a useful protocol since the derived products are important intermediates which can further be transformed to other more valuable compounds. For instance, (κ^2 -N,O)-salicylaldiminato nickel(II)-methyl pyridine complexes are known useful for the catalysts of polymerization of polyethylene [1-2]. The common methods have been addressed using a variety of reagents such as POCl₃, POBr₃, PCl₅ and SOCl₂ [12, 33-34]. Nevertheless, there are still several drawbacks of employing such common reagents, for instance, sensitivity to moisture, difficulty to handle and in some cases HCl or SO₂ gases generated.

The purposes of this research are to explore a new, efficient and convenient method for the chlorination and bromination of *N*-heteroaromatic hydroxy compounds using PPh₃/chlorinating or brominating agents under acid-free conditions. The general equation can be simplified as shown below.

3.1 Preparation of Authentic Samples and Reagents

Two brominating agents: Br_3CCO_2Et and $Br_3CCOCBr_3$ used in this research were synthesized. The first brominating agent can be accomplished by the esterification of Br_3CCO_2H with EtOH in the presence of conc H_2SO_4 as a catalyst affording Br_3CCO_2Et in 80%.

The ¹H NMR spectrum of Br₃CCO₂Et (Fig 3.1) revealed two peaks of a methyl group at $\delta_{\rm H}$ 1.40 (t, J = 7.2 Hz, 3H) and a methylene group at $\delta_{\rm H}$ 4.43 (q, J = 7.2 Hz, 2H).

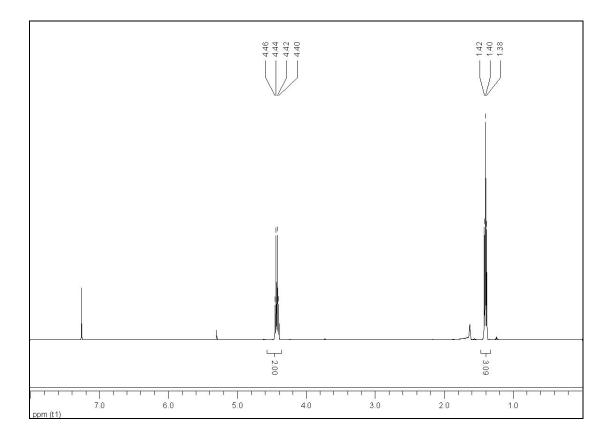
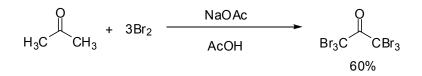



Figure 3.1 The ¹H NMR spectrum of Br₃CCO₂Et

The synthesis of Br₃CCOCBr₃ could be achieved by the reaction of acetone, Br₂ and NaOAc in glacial CH₃CO₂H as previously described [19]. The ¹³C NMR spectrum (Fig 3.2) displays a carbonyl carbon peak at $\delta_{\rm C}$ 173.5 while the peak at $\delta_{\rm C}$ 24.5 can be referred to a carbon bearing three bromine atoms.

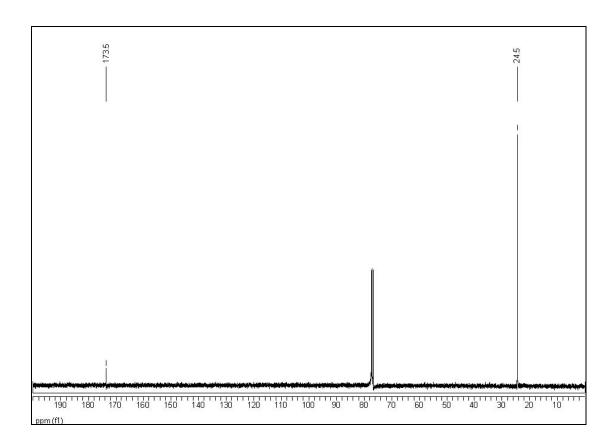
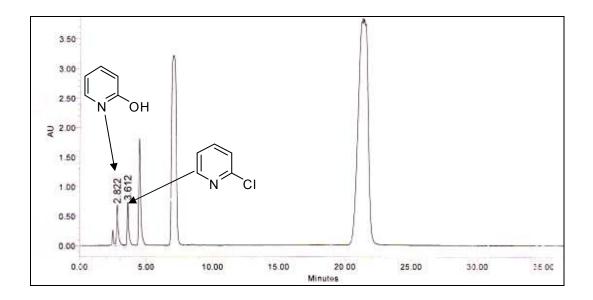



Figure 3.2 The ¹³C NMR spectrum of Br₃CCOCBr₃

3.2 Synthesis of *N*-Heteroaromatic Halides by Conventional Heating

3.2.1 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteroaromatic Chlorides

To search for optimum conditions for the chlorination of *N*-heteroaromatic hydroxy compounds, the effects of type of chlorinating agent, mole ratio of PPh₃ and chlorinating agent, reaction time and solvent were investigated. 2-Hydroxypyridine was selected as a model substrate and %yield of the target compound, 2-chloropyridine was quantified by HPLC in the crude mixture. An example of the HPLC chromatogram of the reaction mixture from the chlorination of 2-hydroxypyridine with PPh₃/CCl₄ is presented in Fig 3.3.

Figure 3.3 HPLC chromatogram of the crude mixture from the reaction between 2hydroxypyridine and PPh₃/CCl₄

From Fig 3.3, the HPLC chromatogram displays the peaks of 2hydroxypyridine and 2-chloropyridine at 2.82 and 3.61 min, respectively. The peak areas were taken to calculate for the percentage yield of product by calibration curve method. Linear calibration curves of 2-chloropyridine and 2-hydroxypyridine were constructed using five different concentrations. The calibration curves of standard compounds are shown in Figs 3.4 and 3.5.

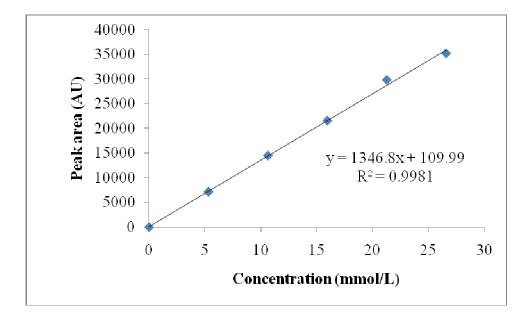


Figure 3.4 The calibration curve of 2-chloropyridine

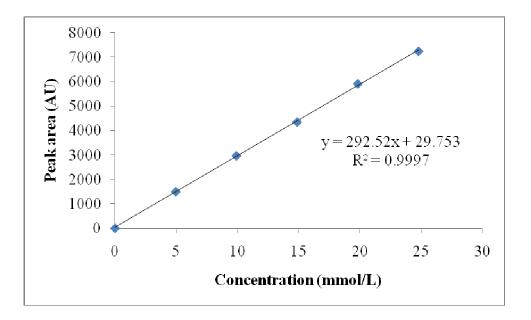


Figure 3.5 The calibration curve of 2-hydroxypyridine

Figures 3.4 and 3.5 show the correlation coefficient (R^2) value approaching 1.00 indicating very high linear relationship within this concentration range.

3.2.1.1 Effect of Type of Chlorinating Agents

According to the literature reviews, the efficiency of chlorinating agent greatly depended on type of chlorinating agent [18]. Thus, seven selected chlorinating agents (0.75 mmol) was treated with 2-hydroxypyridine (0.25 mmol) in the presence of PPh₃ (0.75 mmol) in refluxing toluene for 4 h. The results are summarized in Table 3.1.

Table 3.1 Effects of type of chlorinating agents on the chlorination of2-hydroxypyridine

	PPh ₃ 0.75	PPh ₃ 0.75 mmol, chlorinating agent 0.75 mmol						
^U N	ОН	toluene, reflux, 4h	N	N CI				
0.2	5 mmol							
	Chlorinating	%Recovery	%Yield	MB				
Entry	agent	Het-OH	Het-Cl	(%)				
1	none	100	-	100				
2	Cl ₃ CCN	-	101	101				
3	Cl ₃ CCOCCl ₃	4	99	103				
4	Cl ₃ CCO ₂ Et	31	63	94				
5	Cl ₃ CCCl ₃	58	46	104				
6	CCl ₄	80	22	102				
7	Cl ₃ CCONH ₂	95	7	102				
8	NCS	31	41	72				

When the reaction was carried out in the absence of chlorinating agent, no reaction took place (entry 1). Cl₃CCN and Cl₃CCOCCl₃, reagents bearing an electronwithdrawing group were found to be the most reactive reagents affording the corresponding chlorides in quantitative yields (entries 2 and 3). On the other hand, other chlorinating agents including Cl₃CCO₂Et, Cl₃CCCl₃, CCl₄, Cl₃CCONH₂ and NCS provided 2-chloropyridine in low to moderate yields (entries 4-8).

According to previous literature, several methods for the conversion of *N*heteroaromatic hydroxy compounds into *N*-heteroaromatic chlorides has been addressed. In the case of chlorination of 2-hydroxypyridine, the use of PPh₃ and NCS in ratio 5:5 (based on substrate) furnished 2-chloropyridine in only 43% yield. Cl_3CCN and $Cl_3CCOCCl_3$ could completely proceed for the conversion of 2-hydroxypyridine. Those reagents were commercial reagents and new chlorinating agent for chlorination of *N*-heteroaromatic hydroxy compound.

In addition, 2-hydroxypyridine reacted smoothly with PPh₃/Cl₃CCN provided 2-chloropyridine in quantitative yield (entry 2). After 4 h, the reaction mixture was purified by chromatotron eluting with hexane/EtOAc (9:1). The corresponding 2-chloropyridine was fully characterized its identity by ¹H NMR spectrum. The ¹H NMR spectrum of 2-chloropyridine (Fig 3.6) showed a multiplet signal at $\delta_{\rm H}$ 7.16-7.19 of a proton on a C-5. A doublet signal at $\delta_{\rm H}$ 7.28 (J = 8.0 Hz) was ascribed to H-3. The triplet of doublet signal (J = 8.0 and 2.0 Hz) at $\delta_{\rm H}$ 7.61 was assigned to a proton of C-4. A multiplet at $\delta_{\rm H}$ 8.33-8.35 was due to a proton on a carbon connecting with nitrogen atom.

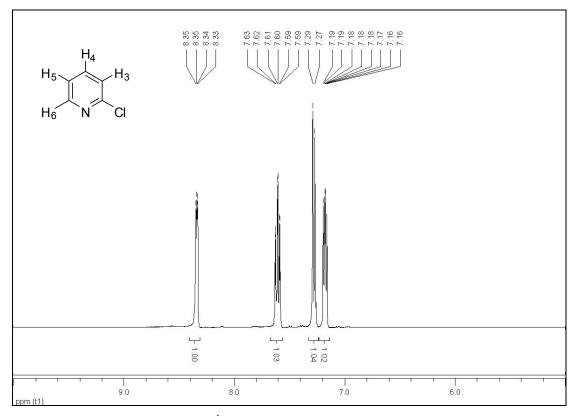


Figure 3.6 The ¹H NMR spectrum of 2-chloropyridine

3.2.1.2 Effect of Mole Ratio of PPh₃ and Chlorinating Agents

The ratios of PPh₃ and chlorinating agents were varied to search for the most suitable ratio that provided the maximum yield of 2-chloropyridine. Cl₃CCOCCl₃ and Cl₃CCN were selected as chlorinating agents and the results are demonstrated in Table 3.2.

Table 3.2 Effects of mole ratio of PPh3 and chlorinating agent on the chlorination of
2-hydroxypyridine

.

		PPh ₃ , chlorinating agent			•		
	^{IL} NOH		toluene, reflux,	4h	N C	1	
	0.25 mmol						
Entry	Chlorinating		fole ratio ^a Chlorinating	%Recovery	%Yield	MB	
	agent	11113	agent	Het-OH	Het-Cl	(%)	
1		3	0	99	NR	99	
2		2	2	47	58	105	
3	Cl ₃ CCOCCl ₃	3	2	14	89	103	
4		3	3	4	99	103	
5		1	0.5	96	5	101	
6		3	1	31 (12) ^b	60 (92) ^b	91 (104) ^b	
7	Cl ₃ CCN	3	1.5	-	99	99	
8		2	1.5	35	64	99	
9		3	3	-	101	101	

^a Based on 2-hydroxypyridine

^b 8 h was used

Table 3.2 reveals that when the reaction was performed in the absence of PPh₃, none of 2-chloropyridine was obtained (entry 1). This was clearly demonstrated that PPh₃ was important for this reaction. Using PPh₃:Cl₃CCOCCl₃ 3:3, the target compound could be achieved in almost quantitative yield (entry 4). Decreasing the ratio of PPh₃:Cl₃CCOCCl₃ to 2:2 and 3:2, the yield of the desired product was significantly decreased (entries 2 and 3). In the case of Cl₃CCN, only 3:1.5 mole ratio

of PPh₃:Cl₃CCN was enough to successfully convert 2-hydroxypyridine to 2chloropyridine quantitatively (entry 7). Decreasing the amount of PPh₃ or Cl₃CCN significantly altered the yield of desired product (entries 5, 6 and 8). Nonetheless, the use of PPh₃ and Cl₃CCN in 3:1 could eventually provided the quantitative yield of the desired product when the reaction was prolonged to 8 h (entry 6). Between these two chlorinating agents, cyano group had much more electron-withdrawing effect than chloroketo group. Thus, the amount of Cl₃CCN could be used in less than that of Cl₃CCOCCl₃.

3.2.1.3 Effect of Reaction Time

The reaction time for the chlorination of 2-hydroxypyridine was quested for the optimized conditions. The results are presented in Table 3.3.

PPh ₃ 0.75 mmol, Cl ₃ CCN 0.375 mmol								
ОН		toluene, reflux	-	N	`CI			
mmol								
Entres	Reaction	%Recovery	%Yield	MB				
Entry	time (h)	Het-OH	Het-Cl	(%)				
1	1	75	44	119				
2	3	20	91	111				
3	4	-	99	99				
4	8	-	102	102				
	mmol Entry 1 2 3	$ \begin{array}{c} \hline OH \\ \hline Mmol \\ \hline Entry \\ \hline 1 \\ 2 \\ 3 \\ 4 \\ \hline \end{array} $	$\begin{array}{c c} \hline & & & \\ OH & & & \\ \hline Mmol & & \\ \hline \\ \hline \\ Entry & \\ \hline \\ Entry & \\ \hline \\ \hline \\ 1 & 1 & \\ 75 \\ 2 & 3 & 20 \\ 3 & 4 & - \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Table 3.3 Effects of reaction time on the chlorination of 2-hydroxypyridine

From Table 3.3, increasing the reaction time from 4 to 8 h seemed not to reveal a significant effect on the yield of target molecule (entries 3 and 4). Forty-four and 91% yield of 2-chloropyridine was obtained when the reaction time was reduced to 1 and 3 h, respectively (entries 1 and 2).

3.2.1.4 Effect of Solvents

Various solvents were employed to observe their effects on the outcome of the reaction. The main criteria for the solvents selected included those that could make the reaction mixture at reflux temperature homogeneously. The results are displayed in Table 3.4.

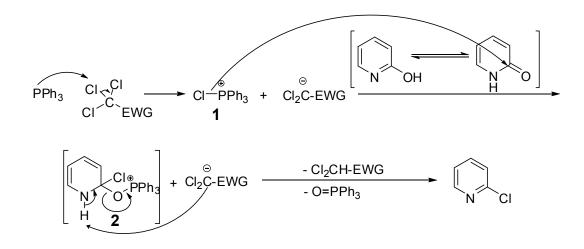

Í	<u> </u>	PPh ₃ 0.75 mmol, 0			
N OH 0.25 mmol		solvent, reflux, 1 h		N CI	
	Solvent	Boiling point	%Recovery	%Yield	MB
Entry	(2.5 mL)	(°C)	Het-OH	Het-Cl	(%)
1	CH ₂ Cl ₂	40	105	NR	105
2	CH ₃ CN	82	100	NR	100
3	toluene	110	75	44	119
4	<i>p</i> -xylene	140	-	102	102

Table 3.4 Effect of solvents on the chlorination of 2-hydroxypyridine

As the results presented in Table 3.4, no reaction occurred when CH_2Cl_2 and CH_3CN were used (entries 1 and 2). Only 44% yield of the desired product was achieved within 1 h at reflux temperature of toluene (entry 3). 2-Hydroxypyridine could be transformed to 2-chloropyridine in quantitative yield in *p*-xylene (entry 4). Because of the high boiling point of *p*-xylene, it is difficult to remove from the reaction mixture, which made the work-up process of the reaction inconvenient. After screening a number of solvents, toluene was found to suit the need for the chlorination of 2-hydroxypyridine.

3.2.1.5 The Proposed Mechanism

The mechanism for the chlorination of organic compounds such as alcohols and carboxylic acids using PPh₃/chlorinating agent has been addressed [18]. The chlorination of *N*-heteroaromatic hydroxy compounds using PPh₃/chlorinating agent was believed to operate *via* a similar mechanism (Scheme 3.1). PPh₃ reacts with Cl₃C- EWG to generate intermediate 1, which then reacts with *N*-heteroaromatic hydroxy compound to yield aryloxyphosphonium salt 2. This salt eventually decomposes to give the desired *N*-heteroaromatic halide and triphenylphosphine oxide. Thus, the reactive chlorinating agent should contain an electron-withdrawing group (EWG) connecting to $-CCl_3$ to stabilize the negative charge presented in intermediate 1.

Scheme 3.1 Proposed mechanism for the chlorination of *N*-heteroaromatic hydroxy compound using PPh₃/chlorinating agent

3.2.2 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteroaromatic Bromides

Generally, *N*-heteroaromatic bromides had a better reactivity than *N*-heteroaromatic chlorides as a result of a good leaving group of bromide ion. Various factors including type of brominating agent, mole ratio of PPh₃:brominating agent and reaction time were scrutinized to evaluate for the optimal conditions for the conversion of *N*-heteroaromatic hydroxy compounds to *N*-heteroaromatic bromides. In this study, 2-hydroxypyridine was used as a model substrate and the percentage yield of 2-bromopyridine and 2-hydroxypyridine was quantified by HPLC technique from the crude mixture.

An example of HPLC chromatogram of the crude mixture of 2hydroxypyridine with PPh₃/CBr₄ is presented in Fig 3.7.

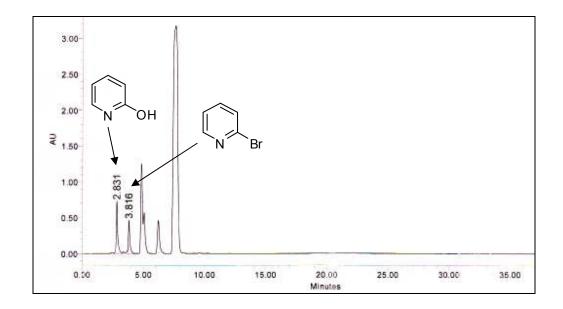


Figure 3.7 HPLC chromatogram of the reaction mixture of 2-hydroxypyridine with PPh₃/CBr₄

The HPLC chromatogram of the crude mixture displays the peak of 2hydroxypyridine and 2-bromopyridine with sufficient resolution. The peak areas at 2.83 and 3.82 min were used to determine the percentage yields of 2-hydroxypyridine and 2-bromopyridine by comparison of the integration of the peak areas in reaction mixture with linear calibration curve of standards.

2-Bromopyridine calibration curve (Fig 3.8) was constructed using five different concentrations in the range of 10-25 mmol/L. The linear plot was obtained with excellent linear coefficient (>0.9990). This relationship confident showed that the analytical procedure can be accurately determined the amount of desired product in the reaction mixture.

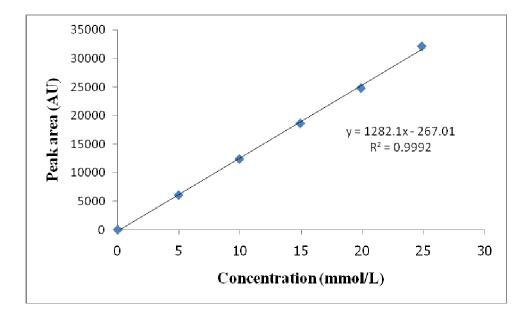


Figure 3.8 The calibration curve of 2-bromopyridine

3.2.2.1 Effect of Type of Brominating Agents

Four brominating agents: CBr₄, Br₃CCO₂Et, Br₃CCOCBr₃ and NBS were used in this research. The effects of types of brominating agents on the bromination of *N*heteroaromatic hydroxy compounds were examined and the results are presented in Table 3.5.

Table 3.5Effect of type of brominating agents on the bromination of 2-
hydroxypyridine

PPh ₃ 0.25 mmol, brominating agent 0.25 mmol							
ν N C)H to	luene, reflux, 4h	N	Br			
0.25 mmol							
	Brominating	%Recovery	%Yield	MB			
Entry	agent	Het-OH	Het-Br	(%)			
1	CBr ₄	81	15	96			
2	Br ₃ CCO ₂ Et	97	3	100			
3	Br ₃ CCOCBr ₃	14	45	59			
4	NBS	76	25	101			

From the above results, Br₃CCO₂Et provided the desired product in low yield (entry 2). CBr₄, Br₃CCOCBr₃ and NBS were three promising candidates for the preparation of *N*-heteroaromatic bromide (entries 1, 3 and 4). CBr₄ and Br₃CCOCBr₃ can be designated as new brominating agents for bromination of *N*-heteroaromatic hydroxy compounds. Although, the combination of PPh₃ and Br₃CCOCBr₃ could be smoothly converted to 2-bromopyridine in high yield, several by-products were also obtained (monitoring by TLC). On the other hand, CBr₄ gave only the desired bromide. Thus, CBr₄ was chosen for further investigation.

The reaction using CBr₄ as a brominating agent provided the desired product in 15%. 2-Bromopyridine could be separated from the crude mixture by chromatotron eluting with hexane/EtOAc (9:1). This compound was characterized its identity by ¹H NMR spectrum. ¹H NMR spectrum (Fig 3.9) clearly presented a multiplet signal of H-5 at $\delta_{\rm H}$ 7.22-7.25. The multiplet signal at $\delta_{\rm H}$ 7.46-7.56 was due to two protons of C-3 and C-4. Another proton could be identified from the presence of a multiplet signal at $\delta_{\rm H}$ 8.35.

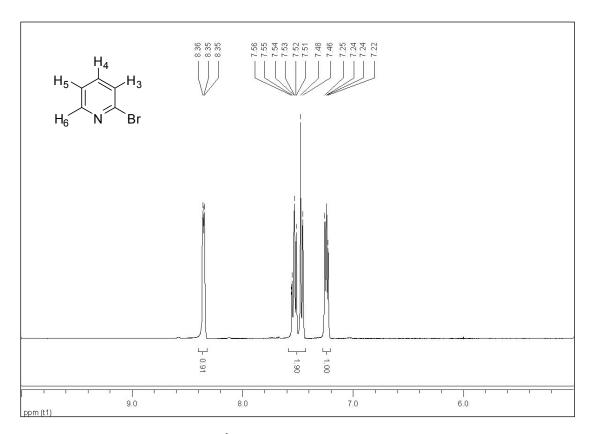


Figure 3.9 The ¹H NMR spectrum of 2-bromopyridine

3.2.2.2 Effect of Mole Ratio of PPh₃ and CBr₄

Two parameters: mole ratio of PPh_3 and brominating agents was investigated with the aim to attain the most appropriate conditions. The results are presented in Table 3.6.

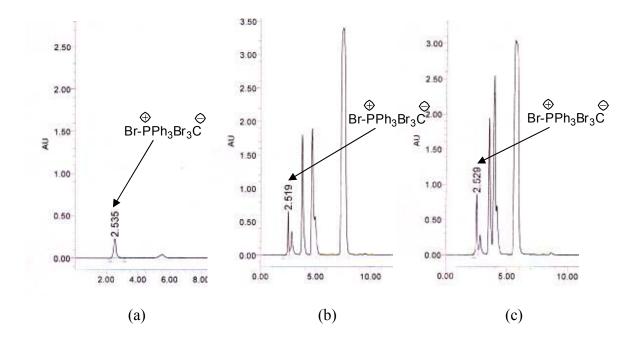

ſ	PI		PPh_3 , CBr ₄		
NOH to 0.25 mmol		tolue	ene, reflux, 4h	N	Br
		ratio ^a	%Recovery	%Yield	MB
Entry –	PPh ₃	CBr ₄	Het-OH	Het-Br	(%)
1	1	1	81	15	96
2	2	1	31	69	100
3	2	1.5	48	61	109
4	3	1	69	30	99
5	3	1.5	69	30	99

 Table 3.6
 Effect of the amount of PPh3:CBr4 on the bromination of 2-hydroxy-pyridine

^a Based on 2-hydroxypyridine

From Table 3.6, several ratios of PPh₃ and CBr₄ were examined to compare the outcome of the reaction. When the ratio of PPh₃ and CBr₄ was increased from 1:1 to 2:1 and 2:1.5, the yield of the corresponding bromide increased (entries 1-3). In contrast, the yield of the desired product decreased when the ratio of PPh₃ and CBr₄ increased to 3:1 and 3:1.5 (entries 4 and 5).

Comparing the peak integration of phosphonium salt $(BrP^+Ph_3Br_3C^-)$ in the reaction mixture using the mole ratio of PPh₃:CBr₄ 2:1 at 2.52 min with 3:1 at 2.53 min indicated that the quantity of phosphonium salt increased in the case of the mole ratio of PPh₃:CBr₄ being 3:1 (Fig 3.10, b and c). The signal of phosphonium salt was nearly corresponded to that derived from the combination of PPh₃ and CBr₄ at 2.54 min (Fig 3.8, a). From these results, the use of PPh₃:CBr₄ in the ratio of 3:1 was selected for further examination.

Figure 3.10 HPLC chromatograms (a) a combination of PPh₃ and CBr₄ (b) the reaction mixture using 2:1 PPh₃/CBr₄ (c) using 3:1 PPh₃/CBr₄

3.2.2.3 Effect of Reaction Time

The reaction time for the bromination of 2-hydroxypyridine was quested for the optimized conditions. The results are described in Table 3.7.

Table 3.7 Effect of reaction time on the bromination of 2-hydroxypyridine

PPh ₃ 0.75 mmol, CBr ₄ 0.25 mmol								
N OH		toluene, reflux		N Br				
0.25 mmol								
	Reaction time	%Recovery	%Yield	MB				
Entry	(h)	Het-OH	Het-Br	(%)				
1	4	69	30	99				
2	6	22	70	92				
3	8	-	104	104				

Table 3.7 shows that the reaction time had a profound effect on the yield of the target product. The synthesis of 2-bromopyridine could be quantitatively achieved by performing at refluxing toluene for 8 h.

3.2.3 The Synthesis of *N*-Heteroaromatic Halides

To investigate the generality and scope of this developed method, the preparation of *N*-heteroaromatic halides was carried out using a variety of *N*-heteroaromatic hydroxy compounds. The results are summarized in Table 3.8.

The conversion of N-heteroaromatic hydroxy compounds to N-Table 3.8 heteroaromatic halides using conventional heating

PPh₃ (0.75 mmol)

Het-OH \longrightarrow Het-X (0.25 mmol) Cl ₃ CCN (0.375 mmol) or CBr ₄ (0.25 mmol) (X = Cl or Br) toluene, reflux, 4h							
Entry	Substrate	Halogenating agent	Isolated yield (%)				
1		Cl ₃ CCN	99 ^a				
2	[∥] N OH	CBr ₄	104 ^a				
3	OH N	Cl ₃ CCN	NR				
4	OH	Cl ₃ CCN	94				
5	N	CBr ₄	_b				
6		Cl ₃ CCN	95				
7	[└] N OH	CBr ₄	90				
8		Cl ₃ CCN	NR				
9	ÓH OH	Cl ₃ CCN	$42(87)^{c}(75)^{e}$				
10		CBr ₄	37°				
11	OH O ₂ N	Cl ₃ CCN	$31^{c} (52)^{e} (61)^{f}$				
12		CBr ₄	$31^{d} (11)^{f}$				
13	OH MeO	Cl3CCN	84 ^e				
14	MeO	CBr ₄	61 ^e				

^a quantified by HPLC
 ^b product could not separate from reaction mixture
 ^c 20 min was used
 ^d 30 min was used
 ^e 1 h was used
 ^f 2 h was used

In the case of hydroxypyridines (entries 1-5), 2- and 4-hydroxypyridines could be converted into the corresponding halopyridines in high yield while 4bromopyridine is difficult to separate from the reaction mixture because it is quickly decomposed [35]. However, 3-hydroxypyridine was not reactive enough under this condition. This may be because the nitrogen atom could not stabilize the negative charge of aryloxyphosphonium salt. Similarly, for the quinoline derivatives (entries 6-8), the halogenations of 2-hydroxyquinoline afforded 2-haloquinoline in high yield (90-95%) while 8-haloquinoline could not be formed under this condition.

The ¹H NMR spectrum of 4-chloropyridine (Fig 3.11) presented a doublet signal (J = 4.8 Hz) of H-3 and H-5 at $\delta_{\rm H}$ 7.29 and doublet signal (J = 4.8 Hz) of H-2 and H-6 at $\delta_{\rm H}$ 8.50.

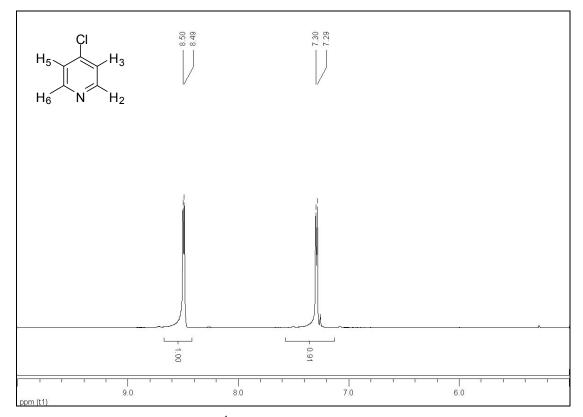


Figure 3.11 The ¹H NMR spectrum of 4-chloropyridine

The ¹H NMR spectrum of 2-chloroquinoline (Fig 3.12) displays a doublet signal (J = 8.6 Hz) of H-3 at $\delta_{\rm H}$ 7.34. The signals around $\delta_{\rm H}$ 7.50-7.55 were typical for H-5 to H-8. The doublet signal (J = 8.6 Hz) at $\delta_{\rm H}$ 8.05 was belonged to a proton of C-4. In addition, the ¹H NMR spectrum of 2-bromoquinoline (Fig 3.13) contained the doublet signal (J = 8.4 Hz) at $\delta_{\rm H}$ 7.53, which was indicative of H-3. The signals around $\delta_{\rm H}$ 7.57-8.01 were belonged to four protons at C-5 to C-8. The doublet signal (J = 8.5 Hz) at $\delta_{\rm H}$ 8.06 could be assigned for H-4.

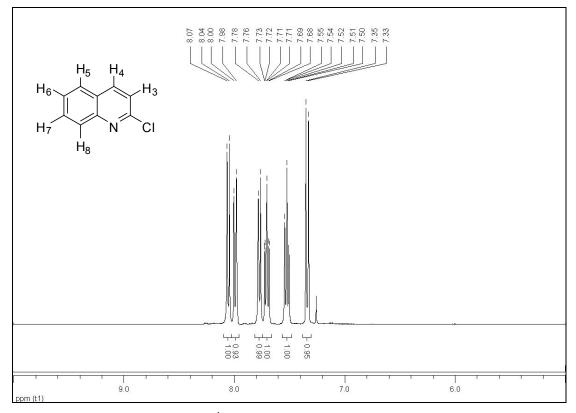


Figure 3.12 The ¹H NMR spectrum of 2-chloroquinoline

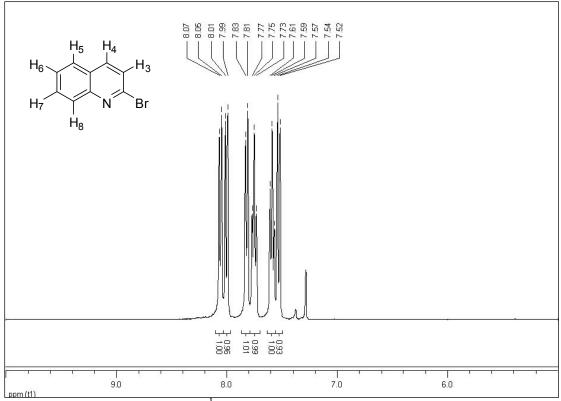


Figure 3.13 The ¹H NMR spectrum of 2-bromoquinoline

Two nitrogen atoms in heteroaromatic hydroxy compounds in the case of quinazoline derivetives were examined. At 4 h, the desired chloride was obtained in only 42%, several by-products were also obtained (monitoring by TLC). Because, more nitrogen atom at N-1 and N-4 exhibited high reactivity towords the nucleophilic substitution at C-4 [36]. Hence, decreasing reaction time from 4 h to 20 min and 1 h offering 4-chloroquinazoline in high yield (entry 9). Similarly, 4-hydroxyquinazoline proceeded to the corresponding bromide in 37% within 20 min (entry 10). The ¹H NMR spectrum of 4-chloroquinazoline (Fig 3.14) showed a pair of doublet of doublet signals (J = 8.0 Hz) at δ_{H} 7.76 and 7.99 of H-6 and H-7, respectively. Doublet signals at $\delta_{\rm H}$ 8.09 (J = 8.0 Hz) and 8.29 (J = 8.0 Hz) were due to H-5 and H-8, respectively. The proton on carbon between two nitrogen atoms was observed from a singlet signal at $\delta_{\rm H}$ 9.06. The ¹H NMR spectrum of 4-bromoquinazoline (Fig 3.15) displayed doublet of doublet signals (J = 8.0 Hz) at $\delta_{\rm H}$ 7.73 and 7.95 of H-6 and H-7, respectively. Two doublets at $\delta_{\rm H}$ 8.04 (J = 8.0 Hz) and 8.20 (J = 8.0 Hz) were assigned to H-5 and H-8, respectively. A singlet signal at $\delta_{\rm H}$ 8.97 was due to a proton of carbon connecting with two nitrogen atoms.

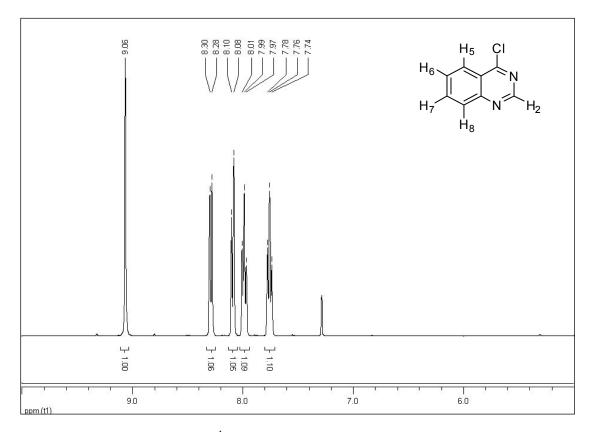


Figure 3.14 The ¹H NMR spectrum of 4-chloroquinazoline

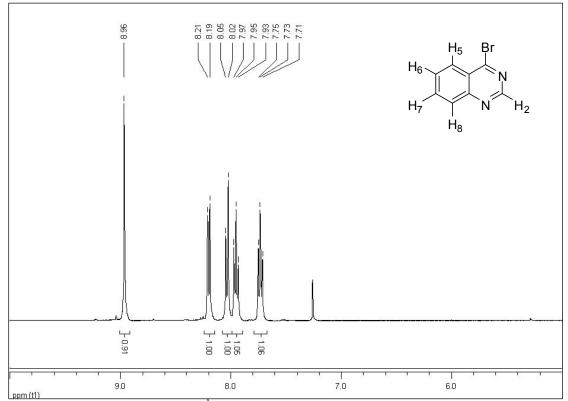


Figure 3.15 The ¹H NMR spectrum of 4-bromoquinazoline

4-Hydroxy-6-nitroquinazoline and 4-hydroxy-6,7-dimethoxyquinazoline were chosen to compare the effect of electron withdrawing group and electron donating group on quinazoline. At 1 h, the chlorination of 4-hydroxyquinazoline, 4-hydroxy-6-nitroquinazoline and 4-hydroxy-6,7-dimethoxyquinazoline gave desired chlorides in 75, 52 and 84% yield, respectively (entries 9, 11 and 13). From these results, it was clearly seen that the substrate bearing electron withdrawing group rendered the reactivity of the reaction [37].

In the case of 4-hydroxy-6-nitroquinazoline, 4-chloro-6-nitroquinazoline was obtained in 31% yield at 20 min. To prolong the reaction time to 1 and 2 h gave a desired bromide in 52 and 61%, respectively (entry 11). Bromination of 4-hydroxy-6nitroquinazoline provided 31 and 11% yield of 4-bromo-6-nitroquinazoline within 20 min and 1 h, respectively (entry 12). The ¹H NMR spectrum of 4-chloro-6nitroquinazoline (Fig 3.16) showed a doublet signal (J = 8.8 Hz) at $\delta_{\rm H}$ 7.86 of H-8. A proton on carbon between two nitrogen atoms was observed from a singlet signal at $\delta_{\rm H}$ 8.34. The doublet of doublet signal (J = 8.8 and 2.8 Hz) at $\delta_{\rm H}$ 8.54 belonged to H-7. The doublet signal (J = 2.8 Hz) at $\delta_{\text{H}} 8.78$ could be assigned to proton at 5-position. Moreover, there was no report on 4-bromo-6-nitroquinazoline, thus this compound is the new compound synthesized in haloheteroaromatic class. The ¹H NMR spectrum (Fig 3.17) of this compound presented a doublet signal (J = 8.8 Hz) at $\delta_{\rm H}$ 7.85, which was indicative of H-8. A singlet signal at $\delta_{\rm H}$ 8.38 could be assigned for a proton on carbon connecting with both nitrogen atoms. The doublet of doublet signal (J = 8.8)and 2.4 Hz) at $\delta_{\rm H}$ 8.53 was typical of H-7. The doublet signal (J = 2.4 Hz) at $\delta_{\rm H}$ 8.77 was assigned for H-5. The ¹³C NMR spectrum (Fig 3.18) contained eight signals at $\delta_{\rm C}$ 122.4, 123.0, 128.9, 129.0, 145.5, 152.5 and 160.4.

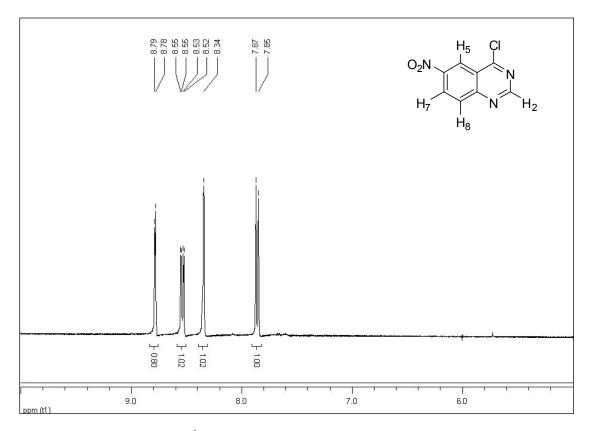


Figure 3.16 The ¹H NMR spectrum of 4-chloro-6-nitroquinazoline

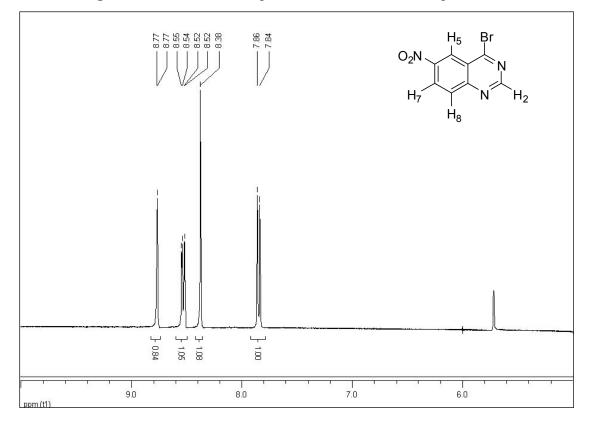


Figure 3.17 The ¹H NMR spectrum of 4-bromo-6-nitroquinazoline

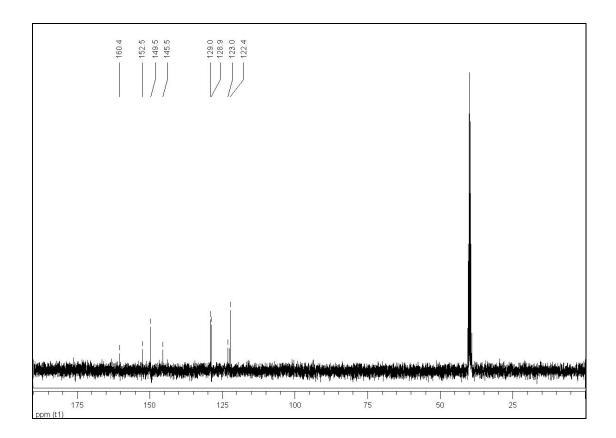


Figure 3.18 The ¹³C NMR spectrum of 4-bromo-6-nitroquinazoline

In addition, 4-halo-6,7-dimethoxyquinazoline furnished the corresponding chloride and bromide in 84 and 61% yields, respectively (entries 13-14). The ¹H NMR spectrum of 4-chloro-6,7-dimethoxyquinazoline (Fig 3.19) showed a signal of six protons of methoxy group at $\delta_{\rm H}$ 4.05. Three singlet signals of aromatic protons appeared at $\delta_{\rm H}$ 7.30, 7.35 and 8.84. The ¹H NMR spectrum of 4-bromo-6,7-dimethoxyquinazoline (Fig 3.20) exhibited a doublet signal (J = 3.6 Hz) at $\delta_{\rm H}$ 4.08, indicating the presence of six methoxy protons. Three singlet signals at $\delta_{\rm H}$ 7.32, 7.36 and 8.80 were ascribed for three aromatic protons. The ¹³C NMR spectrum of this compound (Fig 3.21) displayed two peaks at $\delta_{\rm H}$ 56.5 and 56.7, indicating the presence of methoxy carbons. The signals around $\delta_{\rm C}$ 105.0, 106.9, 122.1, 148.3, 151.6, 152.3, 153.4 and 156.8 were assigned for eight aromatic carbons.



Figure 3.19 The ¹H NMR spectrum of 4-chloro-6,7-dimethoxyquinazoline

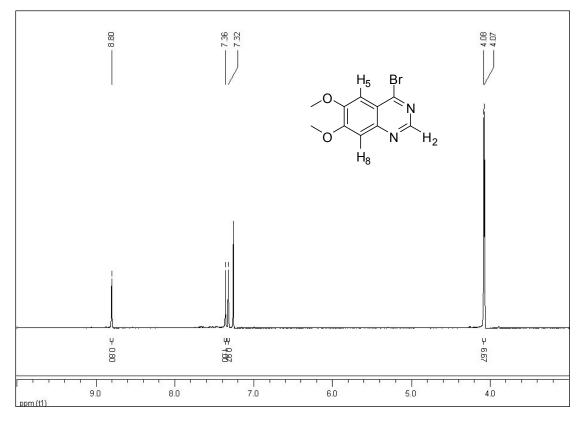


Figure 3.20 The ¹H NMR spectrum of 4-bromo-6,7-dimethoxyquinazoline

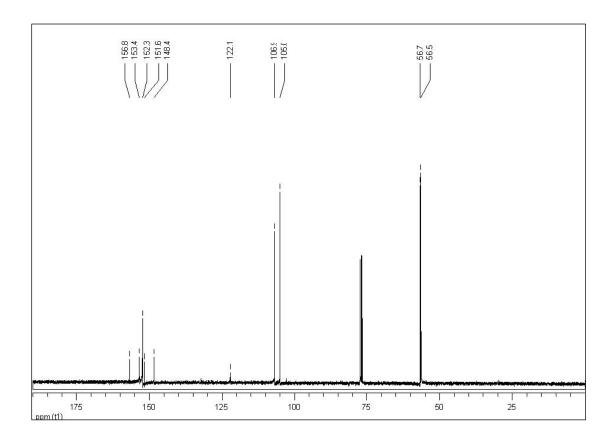


Figure 3.21 The ¹³C NMR spectrum of 4-bromo-6,7-dimethoxyquinazoline

3.3 Synthesis of *N*-Heteroaromatic Halides by MW Irradiation

3.3.1 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteroaromatic Chlorides Using MW Irradiation

In order to reach optimum conditions for the chlorination of *N*-heteroaromatic hydroxy compounds, 2-hydroxypyridine was selected as a chemical model. Various factors including type of chlorinating agent, mole ratio of PPh₃ and chlorinating agents, reaction time and temperature were scrutinized to evaluate for the optimal conditions.

3.3.1.1 Effect of Mole Ratio of PPh₃/Cl₃CCN, Reaction Time and Temperature

From the optimum conditions for the chlorination of *N*-heteroaromatic hydroxy compounds by conventional heating, a combination of PPh₃ and Cl₃CCN was an efficient reagent for the preparation of *N*-heteroaromatic chlorides. Therefore, mole

ratio of PPh₃/Cl₃CCN and various parameters including reaction time and temperature were investigated to search for a suitable condition for the preparation of 2-chloropyridine from 2-hydroxypyridine with the aids of MW irradiation. The results are presented in Table 3.9.

	<u> </u>		PPh ₃	, Cl ₃ CCN			
	^L N OF	ł	tolue	ene, MW	[∥] N	CI	
F (Temperature	Time	Мо	le ratio ^a	%Recovery	%Yield	MB
Entry	(°C)	(min)	PPh ₃	Cl ₃ CCN	Het-OH	Het-Cl	(%)
1 ^b	110		3	3	108	6	114
2	150	10	3	3	-	105	105
3	180		3	3	-	104	104
4			2	1	16	79	95
5		10	2	2	16	86	102
6	150		2	2	4	100	104
7		20	2	1	-	106	106
8			1	1	48	50	98

Table 3.9Effect of mole ratio of PPh₃/Cl₃CCN, reaction time and temperature on
the chlorination of 2-hydroxypyridine

^a based on 2-hydroxypyridine

The effect of temperature was examined to find out the most suitable ratio that produced the maximum yield of target product (entries 1-3). The temperature of 150°C was enough to furnish 2-chloropyridine in quantitative yield (entry 2). The exploration on the mole ratio of PPh₃/Cl₃CCN was performed. The yield of 2-chloropyridine was decreased when the amounts of PPh₃:Cl₃CCN were decreased to 2:1 and 2:2 at 150°C for 10 min (entries 4 and 5). Nevertheless, the complete reaction could be accomplished from prolonging the reaction to 20 min (entries 6 and 7). The yield of product was reduced when mole ratio of PPh₃:Cl₃CCN was 1:1. Therefore, 2-hydroxypyridine:PPh₃:Cl₃CCN in the ratio of 1:2:1 at 150°C for 20 min was considered as the most proper condition for the chlorination of 2-hydroxypyridine.

The effect of type of chlorinating agents (Cl_3CCN , Cl_3CCCl_3 , CCl_4 , Cl_3CCO_2Et , Cl_3CCONH_2 and $Cl_3CCOCCl_3$) was investigated. The results are reported in Table 3.10.

 Table 3.10
 Effect of type of chlorinating agent on the chlorination of 2hydroxypyridine

PPh ₃ 0.5 mmol, chlorinating agent 0.25 mmol								
NOH toluene, MW, 150°C, 20 min NCI								
0.20 m								
Entry	Chlorinating	%Recovery	%Yield	MB				
Entry	agent	Het-OH	Het-Cl	(%)				
1	Cl ₃ CCN	-	106	106				
2	Cl ₃ CCOCCl ₃	-	106	106				
3	Cl ₃ CCCl ₃	12	93	105				
4	Cl ₃ CCO ₂ Et	32	72	104				
5	Cl ₃ CCONH ₂	96	2	98				
6	CCl ₄	92	NR	92				

The efficiency of the chlorinating agent greatly depended on the type of substituent on the chlorinating agent. Under the specified conditions, reagents bearing a strong electron-withdrawing group such as Cl₃CCN, Cl₃CCOCCl₃ and Cl₃CCCl₃ gave the desired products in high yields (entries 1-3). Cl₃CCO₂Et and Cl₃CCONH₂, reagents having a weak electron-withdrawing group furnished 2-chloropyridine in low to moderate yield (entries 4 and 5). For CCl₄, none of the desired chloride was obtained (entry 6).

From the aforementioned results, Cl₃CCN and Cl₃CCOCCl₃ displayed as the highest efficient reagent to prepare 2-chloropyridine than various chlorinating agents screened. Hence, those reagents were considered as the most proper chlorinating agents for chlorination of hydroxyheteroaromatics.

3.3.2 Optimum Conditions for the Conversion of *N*-Heteroaromatic Hydroxy Compounds to *N*-Heteroaromatic Bromides

Several parameters including temperature, reaction time, the amount of PPh_3 / brominating agent and type of brominating agent were investigated to optimize the reaction conditions for the conversion of *N*-heteroaromatic hydroxy compounds to *N*heteroaromatic bromides. 2-Hydroxypyridine was selected as a model.

3.3.2.1 Condition Optimization for Bromination of *N*-Heteroaromatic Hydroxy Compounds

Several factors including temperature, reaction time and mole ratio of PPh₃/ CBr₄ were explored and the results are exhibited in Table 3.11.

Table 3.11Effect of mole ratio of PPh₃/CBr₄, reaction time and temperature on the
bromination of 2-hydroxypyridine

	<u> </u>		PPh	n ₃ , CBr ₄				
	^{II} N OF	4	toluene, MW		N N	N Br		
F (Temperature	Time	Mole	ratio ^a	%Recovery	%Yield	MB	
Entry	(°C)	(min)	PPh ₃	CBr ₄	Het-OH	Het-Br	(%)	
1	110	10	2	1	94	10	104	
2	150	10	2	1	11	94	105	
3	180	10	2	1	-	104	104	
4	150	10	1	1	43	60	103	
5	150	20	2	1	3	99	102	

^a based on 2-hydroxypyridine

Table 3.11 demonstrates that when the reaction was heated at 110° C by MW, 10% of 2-bromopyridine was obtained (entry 1). Hence, increasing the reaction temperature to 150 and 180°C, 94 and 104% of the desired product were attained (entries 2 and 3). Decreasing the mole ratio of PPh₃ and CBr₄ from 2:1 to 1:1 furnished *N*-heteroaromatic chloride in moderate yield (entry 4). At 150°C, more yield

of desired product could be lifted up from 94 to 99% when the reaction was carried out for 10 to 20 min, respectively (entry 5).

3.3.2.2 Effect of Type of Brominating Agents

A commercially available brominating agent, CBr_4 was used in this research. The other two brominating agents as mentioned above, Br_3CCO_2Et and $Br_3CCOCBr_3$ were synthesized. Furthermore, NBS has been previously utilized for the conversion of *N*-heteroaromatic hydroxy compounds into *N*-heteroaromatic bromides [29]. To explore the effect of type of brominating agents for this particular reaction, four brominating agents were selected and the results are presented in Table 3.12.

Table 3.12	Effect of types	of brom	ninating	agents

	PPh ₃ 0.5 mmol, brominating agent 0.25 mmol				
NOH toluene, MW, 150°C, 20 min NBr 0.25 mmol					
Entry	Brominating	%Recovery	%Yield	MB	
	agent	Het-OH	Het-Br	(%)	
1	CBr ₄	3	99	102	
2	Br ₃ CCO ₂ Et	8	93	101	
3	Br ₃ CCOCBr ₃	-	79	79	
4	NBS	15	70	85	

Under the specified conditions, the desired product was obtained in high yield in the case of CBr₄ and Br₃CCO₂Et (entries 1 and 2). Although, Br₃CCOCBr₃ provided alkyl bromides from alcohols in high yields at RT [19], it was unstable at high temperature. Hence, Br₃CCOCBr₃ could not completely convert 2hydroxypyridine into 2-bromopyridine at 150° C (entry 3). Using NBS, 2bromopyridine was also attained in moderate yield (entry 4). It is an interesting to mention that CBr₄ was cheaper than Br₃CCO₂Et. Therefore, CBr₄ was found to be the best choice for the preparation of bromoheteroaromatics.

3.3.3 The Synthesis of N-Heteroaromatic Halides and Related Compounds

Since the optimized conditions could be obtained as previously discussed, the application of this developed protocol to convert various *N*-heteroaromatic hydroxy compounds and related compounds into their corresponding haloheteroaromatics using the combination of PPh₃ and Cl₃CCN, Cl₃CCOCCl₃ or CBr₄ were further investigated. The results are shown in Table 3.13.

Table 3.13The synthesis of *N*-heteroaromatic halides and related compounds from
hydroxyheteroaromatic using PPh₃/halogenating agent with the aids of
MW irradiation

	Het-OH	PPh ₃ (0.5 mmol)	→ Het-X	
	(0.25 mmol) Cl ₃ CCN, C tolue			
Entry	Substrate	Halogenating agent	Isolated yield (%)	
1	^	Cl ₃ CCN	106 ^a	
2		Cl ₃ CCOCCl ₃	106 ^a	
3	`Ń `OH	CBr ₄	99 ^a	
4	OH N	Cl ₃ CCN	NR	
5	OH N	Cl ₃ CCN	38	
6		Cl ₃ CCN	83	
7		Cl ₃ CCOCCl ₃	94	
8	N OH	CBr ₄	97	
9	OH	Cl ₃ CCN	NR	

Entry	Substrate	Halogenating agent	Isolated yield (%)
10	OH	Cl ₃ CCN	7 (64) ^b
11	N	Cl ₃ CCOCCl ₃	76 ^b
12	N N	CBr ₄	38 (50) ^b
13		Cl ₃ CCN	65 ^b
14	N	CBr ₄	17 ^{b,d}
15	OH MeO	Cl ₃ CCN	37 ^b
16	MeO	CBr ₄	37 ^b
17	OH	Cl ₃ CCN	81
18		Cl ₃ CCOCCl ₃	78
19		CBr ₄	85
20		Cl ₃ CCN	$3 (42)^{c} (51)^{c,g}$
21	HOLOO	CBr ₄	$34^{c,g} (48)^{c,e} (56)^{c,f}$

Table 3.13 (continued)

The attempts to utilize this developed procedure for the synthesis of haloheteroaromatic were carried out. Under various conditions, 2-hydroxypyridine and 2-hydroxyquinazoline could be converted the corresponding to haloheteroaromatic in high to quantitative yield (entries 1-3 and 6-8). 4-Hydroxypyridine could be transformed to the corresponding desired chloride in low yield (entry 5). The conversion of 3-hydroxypyridine and 8-hydroxyquinazoline to the corresponding desired products could not be achieved because the charge in the intermediate was not rest on nitrogen (entries 4 and 9). In the case of 4hydroxyquinazoline, the corresponding chloride and bromide were afforded in 7 and 38%, respectively (entries 10 and 12). Since 4-haloquinazolines are unstable at higher temperature, the temperature of the reaction of 4-hydroxyquinazoline was decreased from 150 to 100°C with the expectation to lift up the yield of 4-haloquinazoline. The desired product was increased to 50-76% (entries 10-12). In addition, 4-hydroxy-6-

a) quantified by HPLC, b) at 100°C, c) at 180°C, d) 5 min, e) 25 min, f) 30 min, g) 40 min

nitroquinazoline and 4-hydroxy-6,7-dimethoxyquinazoline were employed, the desired halides were obtained in low to moderate yields (17-65%, entries 13-16). Moreover, this method could be applied for preparing halocoumarin. The comparative reactivity of each position of hydroxycoumarin was carried out by competing 4- and 7-hydroxycoumarins. 7-Hydroxycoumarin showed less reactivity than 4hydroxycoumarin under the developed system (81 and 3%, entries 17 and 20). In the case of 4-hydroxycoumarin, it was readily reacted to give the corresponding halocoumarin in high yields (78-85%, entries 17-19). However, in order to improve the yield of 7-chlorocoumarin, the system needed some modification such as the increment of temperature and reaction time (entry 20). For the synthesis of 7bromocoumarin (entry 21), The reaction gave 34% yield of desired bromide at 180°C for 40 min. Because of high reactivity of desired bromide, unwanted product could be formed when using long reaction time. Therefore, the reaction time was decreased to 25 and 30 min, 48 and 56% yield of 7-bromocoumarin were achieved.

The ¹H NMR spectrum of 4-chlorocoumarin (Fig 3.22) presented a single signal of the proton on a carbon connecting with carbonyl at 6.56. The multiplet signals at $\delta_{\rm H}$ 7.31-7.38 belonged to H-6 and H-8. The signal around $\delta_{\rm H}$ 7.57-7.61 could be assigned for H-7. The doublet signal (J = 8.0 Hz) at $\delta_{\rm H}$ 7.83 could be ascribed for H-5. The ¹H NMR spectrum of 4-bromocoumarin (Fig 3.23) showed a single signal of proton on carbon connecting with carbonyl at $\delta_{\rm H}$ 6.81. The multiplet signals of H-6 to H-8 were revealed at $\delta_{\rm H}$ 7.27-7.58. A signal of H-5 was observed from the presence of a doublet signal (J = 8.0 Hz) at $\delta_{\rm H}$ 7.79.

The ¹H NMR spectrum of 7-chlorocoumarin (Fig 3.24) displayed two double signals (J = 9.6 Hz) of H-3 and H-4 at $\delta_{\rm H}$ 6.42 and 7.67, respectively. The multiplet signal around $\delta_{\rm H}$ 7.26-7.28 was ascribed to H-6. A singlet signal at $\delta_{\rm H}$ 7.35 was indicated to H-8. The doublet signal (J = 8.0 Hz) around $\delta_{\rm H}$ 7.42 was typical of H-5. The ¹H NMR spectrum of 7-bromocoumarin (Fig 3.25) showed two doublet signals (J = 9.6 Hz) of H-3 and H-4 at $\delta_{\rm H}$ 6.44 and 7.66, respectively. Two doublet signals (J = 8.0 Hz) around $\delta_{\rm H}$ 7.34 and 7.41 were due to H-5 and H-6, respectively. A singlet signal at $\delta_{\rm H}$ 7.51 was ascribed to H-8.

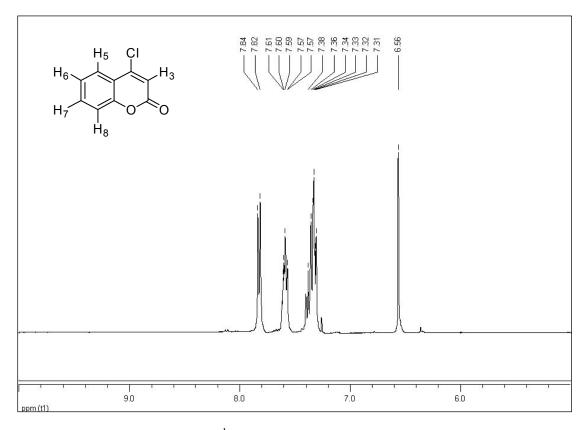


Figure 3.22 The ¹H NMR spectrum of 4-chlorocoumarin

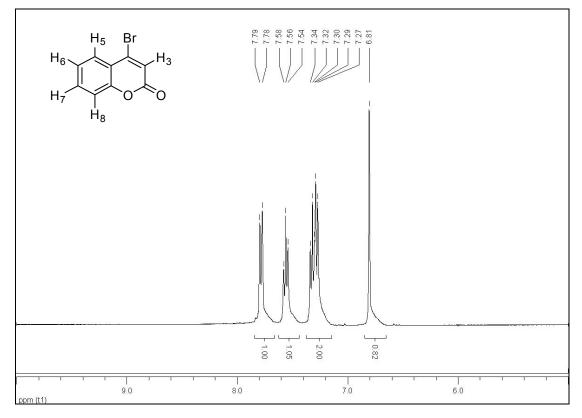


Figure 3.23 The ¹H NMR spectrum of 4-bromocoumarin

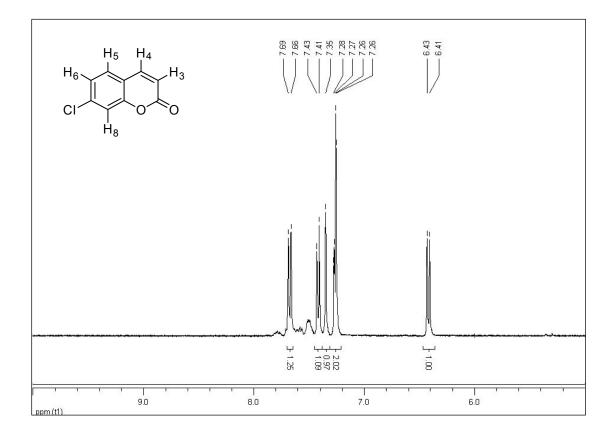


Figure 3.24 The ¹H NMR spectrum of 7-chlorocoumarin

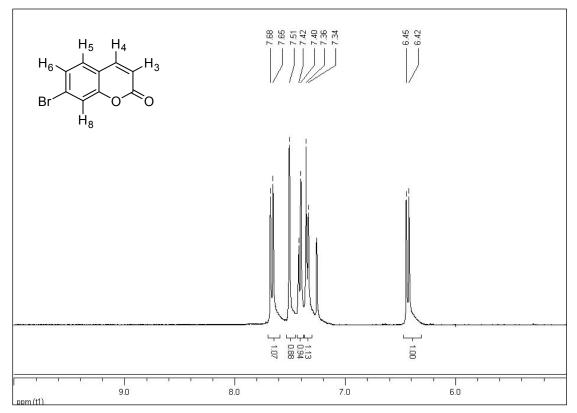


Figure 3.25 The ¹H NMR spectrum of 7-bromocoumarin

3.4 A Comparative Study on the Use of Conventional Heating and MW Assisting Reaction for the Synthesis of Haloheteroaromatic

Haloheteroaromatics were accomplishedly obtained by heating the reaction mixture of hydroxyheteroaromatics, PPh₃/halogenating agent such as Cl₃CCN and CBr₄. Two methodologies involving the use of conventional heating and microwave irradiation have been developed. To summarize, the optimized condition for halogenations of hydroxyheteroaromatics can be concluded in Table 3.14.

 Table 3.14
 Conditions optimization for halogenations of N-heteroaromatic

 hydroxy compounds
 N-heteroaromatic

Condition	Convention heating		MW Irradiation	
Condition	Chlorination	Bromination	Chlorination	Bromination
Halogenating agent	Cl ₃ CCN	CBr ₄	$Cl_{3}CCN \text{ or}$ $Cl_{3}CCOCCl_{3}$	CBr ₄
PPh ₃ :halogenating agent	3:1.5	3:1	2:1	2:1
Time	4 h	8 h	20 min	20 min
Solvent	toluene	toluene	toluene	toluene
Temperature	~110°C	~110°C	150°C	150°C

It was clearly found that MW irradiation is a convenient way to gain desired products in very short reaction time compared with conventional heating. Due to the fact that in the case of conventional heating, the energy must be conducted through the walls of vessel of reaction mixture. However, microwave radiation passes through the walls of the vessel to directly the reaction mixture. In the case of MW irradiation using closed vessels, the reaction mixture could heated above boiling point of solvent. The higher temperatures achieved in the closed system give the MW irradiation an advantage over the conventional heating under refluxing temperature.

CHAPTER IV

CONCLUSION

Two new and convenient methods for the preparation of *N*-heteroaromatic halides from *N*-heteroaromatic hydroxy compounds using PPh_3 / halogenating agent have been explored. Those include the system using conventional heating and microwave irradiation. This research is to search for optimal condition for this developed protocol which could be provided the high yields under mild conditions.

The first system, using conventional heating could be performed the chlorination of *N*-heteroaromatic hydroxy compounds utilizing the combination of PPh₃/Cl₃CCN in refluxing toluene (~110°C) within 4 h. The preparation of *N*-heteroaromatic bromides was carried out employing the same conditions as that of chlorination of *N*-heteroaromatic hydroxyl compounds but using CBr₄ instead of Cl₃CCN within 8 h. Furthermore, microwave-assisted halogenations could perfectly be exploited to prepare *N*-heteroaromatic halides using PPh₃/Cl₃CCN, Cl₃CCOCCl₃ or CBr₄ at 150°C for 20 min.

Various *N*-heteroaromatic hydroxy compounds were examined on the halogenations effect of their *N*-heteroaromatic hydroxy compounds under developed conditions. Treating of PPh₃/Cl₃CCN, Cl₃CCOCCl₃ or CBr₄ with 2-, 4- hydroxypyridines or 2-hydroxyquinoline could generate the corresponding chlorides or bromides in high yield. Unfortunately, the developed method could not convert 3- hydroxypyridine and 8-hydroxypyridine to the desired halides. The study on the effect of electron withdrawing and electron donating group substituents on 4- hydroxyquinazoline, 4-hydroxyquinazoline beared with an electron withdrawing group, the desired halides were detected in lower yield than 4-hydroxyquinazoline and 4-hydroxy-6,7-dimethoxyquinazoline. In addition, hydroxycoumarin could be efficiently reacted under the developed methodology.

A comparative study of halogenation of *N*-heteroaromatic hydroxy compounds by conventional heating and MW irradiation was conducted, it was observed that halogenation of *N*-heteroaromatic hydroxy compounds yielding *N*-heteroaromatic halides with the aids of MW irradiation took place faster than the conventional heating. However, the MW promoted reactions were not suitable for unstable compound at high temperature such as haloquinazoline derivertives.

Proposal for the Further Work

The developed methodology can be applied to prepare heteroaromatic halides. Therefore, it may be extended to prepare bromopyridine derivatives from hydroxypyridine. For instance, 2-bromo-4-methoxy-5-nitropyridine, a key intermediate for the preparation of AKT inhibitor may be synthesized by halogenation of 4-methoxy-5-nitropyridin-2-ol.

REFERENCES

- [1] Goettker S. I.; Wehrmann, P.; Roehr, C.; Mecking, S. Substituent effects in (κ²-N,O)-salicylaldiminato nickel(II)-methyl pyridine polymerization catalysts: terphenyls controlling polyethylene microstructures. <u>Organometallics</u> 26 (2007) : 2348-2362.
- [2] Pearce, C. K.; Ellison, J. E. Jr. Polymer formation in irradiated liquid pyridine. Journal of Physical Chemistry 70 (1966) : 1582-1587.
- [3] (a) Ullrich, R.; Dolge, C.; Kluge, M.; Hofrichter, M. Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. <u>FEBS Letters</u> 582 (2008) : 4100-4106. (b) Andersen, C. B.; Wan, Y.; Chang, J. W.; Riggs, B.; Lee, C.; Liu, Y.; Sessa, F.; Villa, F.; Kwiatkowski, N.; Suzuki, M.; Nallan, L.; Heald, R.; Musacchio, A.; Gray, N. S. Discovery of Selective Aminothiazole Aurora Kinase Inhibitors. <u>ACS Chemical Biology</u> 3 (2008) : 180-192. (c) am Ende, C. W.; Knudson, S. E.; Liu, N.; Childs, J.; Sullivan, T. J.; Boyne, M.; Xu, H.; Gegina, Y.; Knudson, D. L.; Johnson, F.; Peloquin, C. A.; Slayden, R. A.; Tonge, P. J. Synthesis and in vitro antimycobacterial activity of B-ring modified diaryl ether InhA inhibitors. <u>Bioorganic & Medicinal Chemistry Letters</u> 18 (2008) : 3029-3033.
- [4] Yang, J.; Dudley, G. B., [1,2]-Anionic rearrangement of 2-benzyloxypyridine and related pyridyl ethers. <u>Journal of Organic Chemistry</u> 74 (2009) : 7998-8000.
- [5] Wang, S. M.; Qi, X. X. Study on synthesis of 2-chloropyridine. <u>Yingyong</u> <u>Huagong</u> 34 (2005) : 637-639.
- [6] Kato, Y.; Okada, S.; Tomimoto, K.; Mase, T., A facile bromination of hydroxyheteroarenes. <u>Tetrahedron Letters</u> 42 (2001): 4849-4851.
- [7] O'Shea, P. D.; Gauvreau, D.; Gosselin, F.; Hughes, G.; Nadeau, C.; Roy, A.; Shultz, C. S. Practical synthesis of a potent bradykinin B1 antagonist *via* enantioselective hydrogenation of a pyridyl *N*-acyl enamide. <u>Journal of</u> <u>Organic Chemistry</u> 74 (2009) : 4547-4553.

- [8] Mojumdar, S. C.; Simon, P.; Krutosikova, A. [1]Benzofuro[3,2-c]pyridine synthesis and coordination reactions. <u>Journal of Thermal Analysis and Calorimetry</u> 96 (2009) : 103-109.
- [9] Morgentin, R.; Jung, F.; Lamorlette, M.; Maudet, M.; Menard, M.; Ple, P.; Pasquet, G.; Renaud, F. An efficient large-scale synthesis of alkyl 5-hydroxypyridin- and pyrimidin-2-yl acetate. <u>Tetrahedron</u> 65 (2009) : 757-764.
- [10] Gleave, R. J.; Beswick, P. J.; Brown, A. J.; Giblin, G. M. P.; Haslam, C. P.; Livermore, D.; Moses, A.; Nicholson, N. H.; Page, L. W.; Slingsby, B.; Swarbrick, M. E. 2-Amino-5-aryl-pyridines as selective CB2 agonists: synthesis and investigation of structure-activity relationships. <u>Bioorganic &</u> <u>Medicinal Chemistry Letters</u> 19 (2009) : 6578-6581.
- [11] Vanlaer, S.; Voet, A.; Gielens, C.; De Maeyer, M.; Compernolle, F. Bridged 5,6,7,8-tetrahydro-1,6-naphthyridines, analogues of huperzine A: synthesis, modeling studies and evaluation as inhibitors of acetylcholinesterase. European Journal of Organic Chemistry 5 (2009) : 643-654.
- [12] Sugimoto, O.; Mori, M.; Tanji, K. I. A facile halogenation of some hydroxyheterocycles using triphenylphosphine and *N*-halosuccinimide. <u>Tetrahedron Letters</u> 40 (1999) : 7477-7478.
- [13] Sugimoto, O.; Mori, M.; Moriya, K.; Tanji, K. I. Application of phosphonium salts to the reactions of various kinds of amides. <u>Helvetica Chimica Acta</u> 84 (2001): 1112-1118.
- [14] Sugimoto, O.; Tanji, K. i. An improved method for chlorination of nitrogencontaining π -deficient heteroaromatics using triphenylphosphine and trichloroisocyanuric acid. <u>Heterocycles</u> 65 (2005) : 181-185.
- [15] (a) Jang, D. O.; Park, D. J.; Kim, J. A mild and efficient procedure for the preparation of acid chlorides from carboxylic acids. <u>Tetrahedron Letters</u> 40 (1999) : 5323-5326. (b) Pluempanupat, W.; Chavasiri, W. An efficient method for chlorination of alcohols using PPh₃/Cl₃CCONH₂. <u>Tetrahedron Letters</u> 47 (2006) : 6821-6823. (c) Tongkate, P.; Pluempanupat, W.; Chavasiri, W. Hexabromoacetone and ethyl tribromoacetate: a highly efficient reagent for bromination of alcohol. <u>Tetrahedron Letters</u> 49 (2008) : 1146-1148.

- [16] Magid, R. M.; Fruchey, O. S.; Johnson, W. L. Hexachloroacetone/triphenylphosphine: a reagent for the regio- and stereoselective conversion of allylic alcohols into chlorides. <u>Tetrahedron Letters</u> 35 (1977) : 2999-3002.
- [17] Bringmann, G.; Schneider, S. Improved methods for dehydration and hydroxy/halogen exchange using novel combinations of triphenylphosphine and halogenated ethanes. <u>Synthesis</u> 2 (1983) : 139-41.
- [18] Villeneuve, G. B.; Chan, T. H. A rapid, mild and acid-free procedure for the preparation of acyl chlorides including formyl chloride. <u>Tetrahedron Letters</u> 38 (1997) : 6489-6492.
- [19] Chaysripongkul, S.; Pluempanupat, W.; Jang, D. O.; Chavasiri, W., Application of Cl₃CCONH₂/PPh₃ towards the synthesis of bioactive amides. <u>Bulletin of the Korean Chemical Society</u> 30 (2009) : 2066-2070.
- [20] Kang, D. H.; Joo, T. Y.; Lee, E. H.; Chaysripongkul, S.; Chavasiri, W.; Jang, D. O. A mild and efficient reaction for conversion of carboxylic acids into acid bromides with ethyl tribromoacetate/triphenylphosphine under acid-free conditions. <u>Tetrahedron Letters</u> 47 (2006) : 5693-5696.
- [21] Menezes, F. G.; Kolling, R.; Bortoluzzi, A. J.; Gallardo, H.; Zucco, C. Hexabromoacetone as tribromoacetylating agent of alcohols and amines and as mediator in the conversion of carboxylic acids into amides in the presence of triphenylphosphine. <u>Tetrahedron Letters</u> 50 (2009) : 2559-2561.
- [22] Chantarasriwong, O.; Jang, D. O.; Chavasiri, W. A practical and efficient method for the preparation of sulfonamides utilizing Cl₃CCN/PPh₃. <u>Tetrahedron Letters</u> 47 (2006) : 7489-7492.
- [23] Bucos, M.; Villalonga-Barber, C.; Micha-Screttas, M.; Steele, B. R.; Screttas, C. G.; Heropoulos, G. A., Microwave assisted solid additive effects in simple dry chlorination reactions with *N*-chlorosuccinimide. <u>Tetrahedron</u> 66 (2010) : 2061-2065.
- [24] Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis: a review. <u>Tetrahedron</u> 57 (2001): 9225-9283.

- [25] Tanji, K. I.; Koshio, J.; Sugimoto, O. Microwave-assisted dehydration and chlorination using phosphonium salt. <u>Synthetic Communications</u> 35 (2005) : 1983-1987.
- [26] Takahashi, T.; Sugimoto, O.; Koshio, J.; Tanji, K. I. Solvent-free reaction using phosphonium salts: Chlorination of hydroxy heteroaromatics and dehydration of primary amides. <u>Heterocycles</u> 68 (2006) : 1973-1979.
- [27] Microwave vs. conventional heating. [online] Available from: http://www.biotage.com/DynPage.aspx?id=22052. [2011.9.5].
- [28] Gilbert, E. E. Perhaloketones. XVII. Hexabromoacetone and the bromochloroperhaloacetones. <u>Tetrahedron</u> 25 (1969) : 1801-6.
- [29] (a) Roma, G.; Di Braccio, M.; Grossi, G.; Piras, D.; Ballabeni, V.; Tognolini, M.; Bertoni, S.; Barocelli, E. 1,8-Naphthyridines VIII. Novel 5-aminoimidazo[1,2-a][1,8]naphthyridine-6-carboxamide and 5-amino[1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamide derivatives showing potent analgesic or anti-inflammatory activity, respectively, and completely devoid of acute gastrolesivity. <u>European Journal of Medicinal Chemistry</u> 45 (2010) : 352-366. (b) Rouse, M. B.; Seefeld, M. A.; Leber, J. D.; McNulty, K. C.; Sun, L.; Miller, W. H.; Zhang, S. Y.; Minthorn, E. A.; Concha, N. O.; Choudhry, A. E.; Schaber, M. D.; Heerding, D. A. Aminofurazans as potent inhibitors of AKT kinase. <u>Bioorganic & Medicinal Chemistry Letters</u> 19 (2009) : 1508-1511.
- [30] Murray, A.; Langham, W. H. A synthesis of isonicotinic acid by halogen-metal exchange and its application to the preparation of isonicotinic-C14 acid hydrazide. <u>Journal of the American Chemical Society</u> 74 (1952) : 6289-6290.
- [31] Peng, Z. H.; Journet, M.; Humphrey, G. A Highly regioselective amination of 6aryl-2,4-dichloropyrimidine. <u>Organic Letters</u> 8 (2006) : 395-398.
- [32] Wan, Z. K.; Wacharasindhu, S.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. The Scope and mechanism of phosphonium-mediated S_NAr reactions in heterocyclic amides and ureas. <u>Journal of Organic Chemistry</u> 72 (2007) : 10194-10210.

VITA

Miss Woranun Kijrungphaiboon was born on December 1, 1986 in Bangkok, Thailand. She graduated with Bachelor Degree of Science in Chemistry from Chulalongkorn University in 2008. Since then, she has been a graduate student studying Petrochemistry and Polymer Science at Chulalongkorn University. She was supported by research grant for this Master Degree's thesis from Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, The Thailand Research Fund and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).

Her present address is 90-94 Songwad Road, T. Chakkawat, A. Sampantawong, Bangkok, 10100, Thailand.