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CHAPTER I

INTRODUCTION

In all that follows, N will denote the natural numbers, R will denote the real

numbers, and C will denote the complex numbers.

1.1 Functional Equations

P.K. Sahoo and Pl. Kannappan [8] have said that

“The functional equations forms a modern branch of mathematics. The origin

of functional equations came about the same time as the modern definition of

function.”

J.Aczél [1] gave the concept of functional equation and system of functional

equations in definitions 1.1 to 1.3 as follows:

Definition 1.1. [1]

(a) The independent variables x1, . . . , xk are terms.

(b) Given that A1, . . . , Am are terms and that F is a function of m variables,

then F (A1, . . . , Am) is also a term.

(c) There are no other terms.

Definition 1.2. [1] A functional equation is an equation

A1 = A2

between two terms A1 and A2, which contains k independent variables x1, . . . , xk

and n ≥ 1 unknown functions F1, . . . , Fn of j1, . . . , jn variables respectively, as

well as a finite number of known functions.
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k is the rank and n is the number of functions of the functional equation,

j = min(j1, . . . , jn) is the minimal number of the variables in the functions of the

functional equation.

The rank must be larger than the minimal number of variables in the func-

tions of the equation.

Definition 1.3. [1] A system of functional equations consists of p ≥ 2 functional

equations, which contain n ≥ 1 unknown functions altogether. p is the number

of equations, n the number of functions of the system.

P.K. Sahoo and Pl. Kannappan [8] simply explain that

“Functional equations are equations in which the unknowns are functions. To

solve a functional equation means to find the unknown function. In order to obtain

a solution, the functions must often be restricted to a specific nature (such as

analytic, bounded, continuous, convex, differentiable, measurable, and monotonic).”

Now we will show the example of functional equation in one variable.

Example 1.1. Find all functions f : R → R satisfying the functional equation

f(1 − x) + 2f(x) = x + 7 for all x ∈ R. (1.1)

Solution. Assume that there exists a function f : R → R satisfying (1.1).

Replacing x by 1 − x in (1.1), we get

f(x) + 2f(1 − x) = 8 − x. (1.2)

Solving (1.1) and (1.2), we have f(x) = x + 2 for all x ∈ R.

Conversely if a function f is given by f(x) = x + 2, then

f(1 − x) + 2f(x) = (1 − x) + 2 + 2(x + 2) = x + 7. (1.3)

Therefore, the function f defined by f(x) = x + 2 for all x ∈ R is the unique

solution of the functional equation (1.1).
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Importantly, we need return to our original equation and verify our supposed

solution by replacing it back in the original equation since there can be no solu-

tion to the original functional equation.

Example 1.2. Find all functions f : R → R satisfying the functional equation

4f(10 − x) + xf(x) = 3 for all x ∈ R. (1.4)

Solution. Assume that there exists a function f : R → R satisfying (1.4).

Substituting x = 2 in (1.4), we have

4f(8) + 2f(2) = 3. (1.5)

Substituting x = 8 in (1.4), we obtain

4f(2) + 8f(8) = 3. (1.6)

f(2) and f(8) concurrently satisfy (1.5) and (1.6), contradiction.

Thus, there is no function f : R → R satisfying the functional equation (1.4).

The functional equation in more than one variable is shown in the following

example.

Example 1.3. Find all functions f : R → R satisfying the functional equation

3f(x + 2y) = f(3x) + 6y + 6 (1.7)

for all x, y ∈ R.

Solution. Assume that there exists a function f : R → R satisfying (1.7).

Substituting x = 0 in (1.7), we have

3f(2y) = f(0) + 6y + 6. (1.8)
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So, there is a constant c such that f(x) = x + c for all x ∈ R.

Replacing f(x) = x + c in the left side of (1.7), we have

3f(x + 2y) = 3x + 6y + 3c. (1.9)

Replacing f(x) = x + c in the right side of (1.7), we have

f(3x) + 6y + 6 = 3x + c + 6y + 6. (1.10)

From (1.9) and (1.10), we obtain c = 3.

Therefore, the function f defined by f(x) = x + 3 for all x ∈ R is the unique

solution of the functional equation (1.7).

Next, we will give an example of functional equations where the function is

defined on R3 and has three variables.

Example 1.4. Find all functions f : R3 → R satisfying the functional equation

f(x, y, z) = f(x + y, 0, 0) + f(0, y + z, 0) + f(0, 0, x + z) (1.11)

for all x, y, z ∈ R.

Solution. Assume that there exists a function f : R3 → R satisfying (1.11).

Substituting y = 0 and z = 0 in (1.11), we have

f(x, 0, 0) = f(x, 0, 0) + f(0, 0, 0) + f(0, 0, x). (1.12)

That is f(0, 0, x) = −f(0, 0, 0) for all x ∈ R.

Substituting x = 0 in (1.12), we have f(0, 0, 0) = 0. So, we have f(0, 0, x) = 0.

Similarly, we get f(x, 0, 0) = 0 and f(0, x, 0) = 0 for all x ∈ R.

Hence, f(x, y, z) = f(x + y, 0, 0) + f(0, y + z, 0) + f(0, 0, x + z) = 0.

Conversely if a function f is given by f(x, y, z) = 0 for all x, y, z ∈ R, then f

satisfy (1.11). Therefore the function f defined by f(x, y, z) = 0 for all x, y, z ∈ R

is the unique solution of the functional equation (1.11).
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1.2 Motivation and Proposed Problem

Geometric functional equations have been studied by several authors. In 1968,

J. Aczél, H. Haruki, M.A. McKiernan, and G. N. Sakovic̆ [2] investigated general

solution of the functional equation

f(x + t, y + t) + f(x + t, y− t) + f(x− t, y + t) + f(x− t, y − t) = 4f(x, y) (1.13)

where f : R2 → R is a function and x, y, t ∈ R. The general solution of (1.13) is

given in terms of arbitrary symmetric multi-additive functions of four variables.

In 1969, H. Haruki [4] studied the functional equation

f(x + t, y + t, z + t) + f(x + t, y + t, z − t) + f(x + t, y − t, z + t)+

f(x + t, y − t, z − t) + f(x − t, y + t, z + t) + f(x − t, y + t, z − t)+

f(x − t, y − t, z + t) + f(x − t, y − t, z − t) = 8f(x, y, z)

(1.14)

where f : R
3 → R is a function and x, y, z, t ∈ R. The general solution of (1.14)

under a continuity condition of f is

f(x, y, z) =
∑

0≤i,j,k≤5

ci j k

∂i+j+k

∂xi∂yj∂zk
P (x, y, z),

where ci j k are real constants for 0 ≤ i, j, k ≤ 5 and P (x, y, z) = xyz(y2 − z2)(z2 −

x2)(x2 − y2).

Figure 1.1 : Square and cube



6

In accordance with Figure 1.1, (1.13) and (1.14) say that for each square

(cube) obtained from translations and dilations of a fixed square (cube), the

values of the function at its center is the arithmetic mean of its values at all

vertices. H. Haruki [4, 5] called (1.13) a “square” functional equation and (1.14)

a “cube” functional equation.

In 1974, L. Etigson [3] proved that the “rhombus” functional equation

f(x + t, y) + f(x − t, y) + f(x, y − t) + f(x, y − t) = 4f(x, y) (1.15)

is equivalent to the square functional equation and also proved that the “octahedron”

functional equation

f(x + t, y, z) + f(x − t, y, z) + f(x, y + t, z) + f(x, y − t, z)

+f(x, y, z + t) + f(x, y, z − t) = 6f(x, y, z)
(1.16)

is equivalent to the cube functional equation.

Geometrically, (1.15) and (1.16) say that for each rhombus (octahedron)

obtained from translations and dilations of a fixed rhombus (octahedron), the

values of the function at its center is the arithmetic mean of its values at all

vertices as shown in the following figure.

Figure 1.2 : Rhombus and octahedron

In 1991, L. Székelyhidi [9] investigated two geometric functional equations:

the n-dimensional octahedron functional equation

[
n∑

i=1

(τ t
i + τ−t

i )]f(x) = 2nf(x) (1.17)
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and the n-dimensional cube functional equation

[
n∏

i=1

(τ t
i + τ−t

i )]f(x) = 2nf(x) (1.18)

where t ∈ R, x ∈ Rn, f : Rn → C is a complex valued function, and τ t
i is a partial

translation operator in the ith variable on Rn as follows

τ t
i f(x1, . . . , xn) = τ t

i f(x1, . . . , xi−1, xi + t, xi+1, . . . , xn).

L. Székelyhidi proved that the continuous solutions of the n-dimensional cube

equation on Rn is a linear combination of the partial derivatives of a special

given harmonic polynomial Qn defined by, for each (x1, . . . , xn) ∈ Rn,

Qn(x1, . . . , xn) = x1x2 . . . xn

∏

i<j

(x2

i − x2

j )

as well as proved that the n-dimensional octahedron and cube equation are

equivalent.

Later in 2011, R. Kotnara [6] studied a functional equation

f(z) + f(z + λa1) + f(z + λa2) + f(z + λ(a1 + a2)) = 0 (1.19)

for fixed complex constant a1, a2 where f : C → C is a function, z ∈ C, and

λ ∈ R r {0}. The functional equation (1.19) says that, for each parallelogram

obtained from translations and dilations of an arbitrary fixed parallelogram, the

sum of the values of the function at all the vertices is equal to zero as in the

following figure.

Figure 1.3 : Parallelogram
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In this thesis,we extend (1.19) from two dimensions to any n dimensions.

Given n ∈ N, we find the general solution f : Rn → R of the functional equation

1∑

ε1,ε2,...,εn=0

f(x + tε1e1 + . . . + tεnen) = 0, (1.20)

where {e1, . . . , en} is a basis for Rn over R, x ∈ Rn and t > 0. In particular

for n = 2, the arithmetic mean of the values of f taken at the vertices of any

parallelogram obtained from translations and dilations of a fixed parallelogram

(whose sides are parallel to ei) equals zero. Similarly, for n = 3 the arithmetic

mean of the values of f taken at the vertices of any parallelepiped obtained from

translations and dilations of a fixed parallelepiped equals zero as in Figure 1.4.

According to the geometric interpretation of (1.20), we will call (1.20) a “zero-

mean” functional equation on hyper-parallelepiped.

Figure 1.4 : Parallelepiped



CHAPTER II

PRELIMINARIES

2.1 Vector Spaces and Linear Operators

Linear operators are so useful to determine the solution of zero-mean functional

equation on hyper-parallelepiped. So, we will state some definitions related to

linear operators.

Definition 2.1. A vector space V over a field F is a set V together with the

operations of addition V ×V → V and scalar multiplication F×V → V satisfying

the following properties:

(i) Commutativity: u + v = v + u for all u, v ∈ V ;

(ii) Associativity: (u+v)+w = u+(v +w) and (ab)v = a(bv) for all u, v, w ∈ V

and a, b ∈ F ;

(iii) Additive identity: There exists an element 0 ∈ V such that 0+ v = v for all

v ∈ V ;

(iv) Additive inverse: For every v ∈ V, there exists an element w ∈ V such that

v + w = 0;

(v) Multiplicative identity: 1v = v for all v ∈ V ;

(vi) Distributivity: a(u + v) = au + av and (a + b)u = au + bu for all u, v ∈ V

and a, b ∈ F .

Usually, a vector space over R is called a real vector space and a vector space

over C is called a complex vector space. The elements v ∈ V of a vector space

are called vectors.
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A linear combination of vectors x1, . . . , xm of a vector space V is an expres-

sion of the form

α1x1 + . . . + αmxm

where the coefficients α1, . . . , αm are any scalars.

Definition 2.2. [7] Linear independence and dependence of a given set M of

vectors x1, . . . , xr (r ≥ 1) in a vector space V are defined by means of equation

α1x1 + . . . + αrxr = 0, (2.1)

where α1, . . . , αr are scalars. Clearly, equation (2.1) holds for α1x1 = . . . =

αrxr = 0. if this is the only r-tuple of scalars for which (2.1) holds, the set M is

said to the linearly independent. M is said to be linearly dependent if M is not

linearly independent.

Any arbitrary subset M of V is said to the linearly independent if every

nonempty finite subset of M is linearly independent. M is said to be linearly

dependent if M is not linearly independent.

Definition 2.3. [7] A vector space V is said to the finite dimensional if there is

a positive integer n such that V contains a linearly independent set of n vectors

whereas any set of n + 1 or more vectors of V is linearly independent. n is called

the dimension of V, written n = dim V . If V is not finite dimensional, V is said

to be infinite dimensional.

Example 2.1. Rn and Cn are n-dimensional.

If dim V = n, a linearly independent n-tuple of vectors of V is called a basis

for V. If {e1, . . . , en} is a basis for V, every x ∈ V has a unique representation as

a linear combination of basis vectors:

x = α1e1 + . . . + αnen.
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In case of vector spaces, a function is called an operator.

Definition 2.4. [7] A linear operator T is an operator such that

(i) the domain D(T ) of T is a vector space and the range R(T ) lies in a vector

space over the same field,

(ii) for all x, y ∈ D(T ) and scalars α,

T (x + y) = T (x) + T (y)

T (αx) = αT (x)

Now, we will see some examples of linear operators.

Example 2.2. Let V be a vector space.

2.2.1 The identity operator I : V → V is defined by I(x) = x for all x ∈ V.

2.2.2 The zero operator 0 : V → V is defined by 0(x) = 0 for all x ∈ V.

2.2.3 A translation operator T t, t ∈ R, takes a function f on R to its translation

ft, ft(x) = f(x + t). That is T tf(x) = f(x + t).
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2.2 Notations and Definitions

Let n ∈ N. In this thesis, fix a basis {e1, . . . , en} of R
n over R. For a real-valued

function f : Rn → R, we define the following operators:

I denotes the identity operator;

For each i = 1, . . . , n, τ t
i are the translation operators defined by

τ t
i f(x) = f(x + tei)

for all x ∈ Rn and t ∈ R;

For each i = 1, . . . , n, the operators σt
i and ρt

i are defined by

σt
if(x) = (I + τ t

i )f(x)

ρt
if(x) = (I − τ t

i )f(x)

for all x ∈ Rn and t ∈ R.

To simplify the notations, we write

σt
i1,...,im

f(x) = σt
i1
σt

i2
. . . σt

im
f(x)

ρt
i1,...,im

f(x) = ρt
i1
ρt

i2
. . . ρt

im
f(x)

for all x ∈ Rn, t ∈ R, and i1, . . . , im are elements in {1, . . . , n}.

Figure 2.1 : • represents the value of f taken at the point

and ◦ represents the value of −f taken at the point.

Geometrically as in Figure 2.1, τ t
i f(x) is the value of f taken at a point x+ tei.

Moreover, σt
if(x) is the sum of the values of f taken at the vertices x and x + tei.

Similarly, ρt
if(x) is the sum of the values of f taken at the vertices x and the

values of −f taken at the vertices x + tei.
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So, we can see that

σt
1,2,3f(x) = f(x) + f(x + te1) + f(x + te2) + f(x + te3)+

f(x + te1 + te2) + f(x + te1 + te3) + f(x + te2 + te3) + f(x + te1 + te2 + te3)

is the sum of the values of f taken at all vertices of any parallelepiped whose

sides are parallel to ei (i = 1, 2, 3) as in the following figure.

Figure 2.2 : • represents the value of f taken at the point.

From definition of σt
i ’s, we can see that (1.20) is equivalent to σt

1,...,nf(x) = 0.

In addition, note that, for each i = 1, . . . , n and t ∈ R, I = τ 0
i and I, τ t

i ’s, σt
i ’s, ρt

i’s

are commutative and distributive.

Definition 2.5. For each r ∈ N, a set {1, 2, . . . , r} is called r-section of N, written

Nr.

Example 2.3. N1 = {1}. N2 = {1, 2}. N5 = {1, 2, 3, 4, 5}.

Let A be a nonempty subset of Nn where |A| = m, cardinal number of A.

Given t ∈ R, σt
A is defined by

σt
Af(x) = σt

i1,i2,...,im
f(x)

for all x ∈ Rn where i1, i2, . . . , im are distinct integers in A.

Example 2.4. Suppose n > 7. Let A = {1, 3, 7} ⊆ Nn and t ∈ R.

σt
Af(x) = σt

1,3,7f(x)

for all x ∈ Rn.



CHAPTER III

ZERO-MEAN FUNCTIONAL EQUATION ON PARALLELEPIPED

Now, we fix a basis {e1, e2, e3} for R
3 over R. Let f : R

3 → R be a real-valued

function. In this chapter, we determine the general solution f : R3 → R of the

functional equation

1∑

ε1,ε2,ε3=0

f(x + tε1e1 + tε2e2 + tε3e3) = 0 (3.1)

for all x ∈ R3 and for all t > 0. From (3.1), we observe that the arithmetic mean

of the values of f taken at the vertices of any parallelepiped, whose sides are

parallel to ei, is equal to zero. Accordingly, (3.1) will be called a “zero-mean”

functional equation on parallelepiped.

First we will prove the following useful proposition.

Proposition 3.1.

ρt
iσ

t
if(x) = ρ2t

i f(x)

for all x ∈ R
3, for all i ∈ N3, and for all t ∈ R.

Proof. Let x ∈ R3, t ∈ R, and i ∈ N3. Then,

ρt
iσ

t
if(x) = f(x) + f(x + tei) − f(x + tei) − f(x + 2tei)

= f(x) − f(x + 2tei)

= ρ2t
i f(x).



15

Lemma 3.2. If there exists y ∈ R
3 such that

f(x) + f(x + ty) = 0 (3.2)

for all x ∈ R
3 and for all t > 0, then f is identically zero.

Proof. Let x ∈ R3 and t > 0. Suppose there is y ∈ R3 such that f satisfies (3.2).

Replacing x by x + ty in (3.2), we have

f(x + ty) + f(x + 2ty) = 0. (3.3)

From (3.2) and (3.3), we have

f(x) − f(x + 2ty) = 0.

Since x and t are arbitrary, we get

f(x) − f(x + ty) = 0 (3.4)

for all x ∈ R3 and for all t > 0. Combining (3.2) with (3.4), we have f(x) = 0.

Since x is arbitrary, f(x) = 0 for all x ∈ R3.

By Lemma 3.2, we obtain the following lemma.

Lemma 3.3. If a function f satisfies, for each x ∈ R3 and for each t > 0,

σt
i,jf(x) = 0, (3.5)

where i, j are distinct integers of N3, then f is identically zero.

Proof. Let x ∈ R3 and t > 0. Suppose f satisfies (3.5). By Proposition 3.1, we get

ρ2t
i,jf(x) = ρt

i,jσ
t
i,jf(x) = 0.
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Since x and t are arbitrary,

ρt
i,jf(x) = 0 (3.6)

for all x ∈ R3 and for all t > 0. From (3.5) and (3.6), we have

2[f(x) + f(x + tei + tej)]

= f(x) + f(x + tei) + f(x + tej) + f(x + tei + tej)

+f(x) − f(x + tei) − f(x + tej) + f(x + tei + tej)

= σt
i,jf(x) + ρt

i,jf(x) = 0.

(3.7)

Therefore, for each x ∈ R3 and for each t > 0,

f(x) + f(x + t(ei + ej)) = 0.

By Lemma 3.2, f(x) = 0 for all x ∈ R3.

The following theorem is our main result in this chapter.

Theorem 3.4. A function f satisfies (3.1) if and only if f is identically zero.

Proof. Let x ∈ R3 and t > 0. Suppose f satisfies (3.1). By Proposition (3.1), we

have

ρ2t
1,2,3f(x) = ρt

1,2,3σ
t
1,2,3f(x) = 0.

Since x and t are arbitrary,

ρt
1,2,3f(x) = 0 (3.8)

for all x ∈ R3 and for all t > 0. From (3.1) and (3.8), we obtain

2[f(x) + f(x + te2 + te3) − f(x + 2te1) − f(x + 2te1 + te2 + te3)]

= 2[f(x) + f(x + te1 + te2) + f(x + te1 + te3) + f(x + te2 + te3)]

−2[f(x + 2te1) + f(x + te1 + te2) + f(x + te1 + te3) + f(x + 2te1 + te2 + te3)]

= (σt
1,2,3 + ρt

1,2,3)f(x) − (σt
1,2,3 − ρt

1,2,3)f(x + te1) = 0.

(3.9)
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And we also obtain

2[f(x + te2) + f(x + te3) − f(x + 2te1 + te2) − f(x + 2te1 + te3)]

= 2[f(x + te1) + f(x + te2) + f(x + te3) + f(x + te1 + te2 + te3)]

−2[f(x + te1) + f(x + 2te1 + te2) + f(x + 2te1 + te3) + f(x + te1 + te2 + te3)]

= (σt
1,2,3 − ρt

1,2,3)f(x) − (σt
1,2,3 + ρt

1,2,3)f(x + te1) = 0.

(3.10)

From (3.9) and (3.10), we have

f(x) + f(x + te2 + te3) − f(x + 2te1) − f(x + 2te1 + te2 + te3) = 0, (3.11)

f(x + te2) + f(x + te3) − f(x + 2te1 + te2) − f(x + 2te1 + te3) = 0, (3.12)

for all x ∈ R3 and for all t > 0.

Replacing x by x + te2 in (3.12), we have

f(x+2te2)+f(x+te2+te3)−f(x+2te1+2te2)−f(x+2te1+te2+te3) = 0. (3.13)

Subtracting (3.13) from (3.11), we get

ρ2t
1,2f(x) = f(x) − f(x + 2te1) − f(x + 2te2) + f(x + 2te1 + 2te2) = 0.

Since x and t are arbitrary, ρt
1,2f(x) = 0 for all x ∈ R

3 and for all t > 0. Hence,

2[f(x) + f(x + te1 + te2) + f(x + te3) + f(x + te1 + te2 + te3)]

= [f(x) + f(x + te1) + f(x + te2) + f(x + te1 + te2)

+f(x + te3) + f(x + te1 + te3) + f(x + te2 + te3) + f(x + te1 + te2 + te3)]

+[f(x) − f(x + te1) − f(x + te2) + f(x + te1 + te2)]

+[f(x + te3) − f(x + te1 + te3) − f(x + te2 + te3) + f(x + te1 + te2 + te3)]

= σt
1,2,3f(x) + ρt

1,2f(x) + ρt
1,2f(x + te3) = 0.
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Therefore, for each x ∈ R
3 and for each t > 0,

f(x) + f(x + te1 + te2) + f(x + te3) + f(x + te1 + te2 + te3) = 0. (3.14)

Let e′1 = e1 + e2, e
′
2 = e2, and e′3 = e3. It is easy to prove that {e′1, e

′
2, e

′
3} is a basis

for R3 over R. From (3.14) with respect to {e′1, e
′
2, e

′
3}, we have

σt
1,3f(x) = 0

for all x ∈ R3 and for all t > 0. By Lemma 3.3, f(x) = 0 for all x ∈ R3.

Conversely, it is obvious that if f is identically zero, then f satisfies (3.1).



CHAPTER IV

Zero-Mean Functional Equation on Hyper-Parallelepiped

Recall that we fix a basis {e1, . . . , en} for R
n over R. Let f : R

n → R be a real-

valued function. In this chapter, we will determine the general solution of zero-

mean functional equation on hyper-parallelepiped

1∑

ε1,ε2,...,εn=0

f(x + tε1e1 + . . . + tεnen) = 0 (1.20)

for all x ∈ Rn and for all t > 0.

first, we will consider the following proposition which is the generalized

Proposition 3.1.

Proposition 4.1.

ρt
iσ

t
if(x) = ρ2t

i f(x)

for all x ∈ Rn, for all i ∈ Nn, and for all t ∈ R.

Proof. Similar to Proposition 3.1, we can prove this proposition.

The following simple proposition is useful to obtain our main result.

Proposition 4.2.

ρt
if(x) + σt

if(x) = 2f(x)

for all x ∈ Rn, for all i ∈ Nn, and for all t ∈ R.

Proof. Let x ∈ Rn, t > 0, and i ∈ Nn. Then,

ρt
if(x) + σt

if(x) = [f(x) − f(x + tei)] + [f(x) + f(x + tei)] = 2f(x).
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Given the conditions in the following lemma, we can consider zero-mean

functional equation on hyper-parallelepiped on Rm whose basis is reduced from

Rn (m ∈ N, m < n).

Recall that σt
A is defined by

σt
Af(x) = σt

i1,i2,...,im
f(x)

for all x ∈ Rr and for all t ∈ R where A is a nonempty subset of Nn such that

|A| = m and i1, i2, . . . , im are distinct integers in A.

Lemma 4.3. Let A be a nonempty subset of Nn with |A| = m < n. Assume that a

real-valued function f satisfies (1.20) and

ρt
if(x) = 0

for all i ∈ A, for all x ∈ Rn, and for all t > 0. Then

σt
NnrAf(x) = 0

for all x ∈ Rn and for all t > 0.

Proof. Let t > 0. By assumption, let i1, . . . , in be distinct integers in Nn such that

ij ∈ A for all 0 < j ≤ m. Then, we have

σt
1,...,nf(x) = 0 and ρt

i1
f(x) = 0

for all x ∈ Rn. By Proposition 4.2, for each x ∈ Rn we get

2σt
i2,...,in

f(x) = σt
1,...,nf(x) + ρt

i1
σt

i2,...,in
f(x)

= σt
1,...,nf(x) + ρt

i1
[f(x) + . . . + f(x + tei2 + . . . + tein)]

= 0.

That is σt
i2,...,in

f(x) = 0 for all x ∈ Rn.
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Continuing this process inductively, for kth step where k ≤ m we have

σt
ik ,...,in

f(x) = 0 and ρt
ik

f(x) = 0

for all x ∈ R
n. By Proposition 4.2, for each x ∈ R

n we get

2σt
ik+1,...,in

f(x) = σt
ik ,...,in

f(x) + ρt
ik

σt
ik+1,...,in

f(x)

= σt
ik ,...,in

f(x) + ρt
ik

[f(x) + . . . + f(x + teik+1
+ . . . + tein)]

= 0.

That is σt
ik+1,...,in

f(x) = 0 for all x ∈ R
n.

Finally, for k = m we get σt
im+1,...,in

f(x) = 0 for all x ∈ Rn.

Therefore, σt
NnrAf(x) = 0 for all x ∈ Rn and for all t > 0.

Repeatedly applying Lemma 4.3, we obtain the following Lemma.

Lemma 4.4. If a real-valued function f satisfies (1.20), then

ρt
if(x) = 0

for all x ∈ R
n, for all t > 0, and for all integers i ∈ Nn.

Proof. Let x ∈ Rn. By Proposition 4.1, for each t > 0 we have

ρ2t
1,...,nf(x) = ρt

1,...,nσt
1,...,nf(x)

= σt
1,...,n[f(x) − f(x + te1) + . . . + (−1)nf(x + te1 + . . . + ten)]

= 0.

Since t is arbitrary, we obtain ρt
1,...,nf(x) = 0 for all t > 0. Now consider

σt
1,...,nρt

i1,...,in−1
f(x) = σt

1,...,n[f(x) + . . . + (−1)n−1f(x + tei1 + . . . + tein−1
)]

= 0
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for all distinct integers i1, . . . , in−1 ∈ Nn and for all t > 0. So, we have

ρt
1,...,nf(x) = 0 and σt

1,...,nρt
i1,...,in−1

f(x) = 0

for all distinct integers i1, . . . , in−1 ∈ Nn and for all t > 0.

Thus, ρt
i1,...,in−1

f satisfies (1.20) and ρt
in

ρt
i1,...,in−1

f(x) = 0. Lemma 4.3 implies

σt
i1,...,in−1

ρt
i1,...,in−1

f(x) = 0

for all distinct integers i1, . . . , in−1 ∈ Nn and for all t > 0.

By Proposition 4.1, we obtain

ρt
i1,...,in−1

f(x) = 0

for all distinct integers i1, . . . , in−1 ∈ Nn and for all t > 0.

Continuing this process inductively, for (k)th step where k < n we have

ρt
ij
ρt

i1,...,in−k
f(x) = 0 for all j > n − k, (4.1)

and σt
1,...,nρt

i1,...,in−k
f(x) = 0

for all distinct integers i1, . . . , in−k ∈ Nn and for all t > 0.

Thus, ρt
i1,...,in−k

f satisfies (1.20) and (4.1). Lemma 4.3 implies

σt
i1,...,in−k

ρt
i1,...,in−k

f(x) = 0

for all distinct integers i1, . . . , in−k ∈ Nn and for all t > 0.

By Proposition 4.1, we obtain

ρt
i1,...,in−k

f(x) = 0

for all distinct integers i1, . . . , in−k ∈ Nn and for all t > 0.

Therefore, ρt
if(x) = 0 for all x ∈ Rn, for all t > 0, and for all i ∈ Nn.
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In the following lemma, we will solve an essential functional equation to

obtain the main theorem in this chapter.

Lemma 4.5. If a real-valued function f satisfies

ρt
if(x) = 0 (4.2)

for all x ∈ R
n, for all t > 0, and for all i ∈ Nn, then f is a constant function.

Proof. Let x ∈ Rn. Then x = α1e1 + α2e2 + . . . + αnen for some α1, . . . , αn in R.

From (4.2), we have

f(x) = f(x + tei) (4.3)

for all x ∈ R
n, for all t ≥ 0, and for all integers i ∈ Nn.

Repeatedly using (4.3) by replacing t by |αi| where i = 1, . . . , n, we have

f(x) = f(x + |α1|e1 + . . . . + |αn|en)

= f((α1 + |α1|)e1 + . . . . + (αn + |αn|)en). (4.4)

For each i = 1, . . . , n, if αi ≤ 0, then αi + |αi| = 0; otherwise, αi + |αi| > 0.

Repeatedly using (4.3) in (4.4), we have f(x) = f(0).

Since x is arbitrary, we obtain f(x) = f(0) for all x ∈ Rn.

Therefore, f is a constant function.

Finally, we are ready to establish our main theorem.

Theorem 4.6. A real-valued function f satisfies (1.20) if and only if

f is identically zero.

Proof. Let x ∈ Rn and t > 0. Assume that f satisfies (1.20).

By Lemma 4.4, we have ρt
if(x) = 0 for all i ∈ Nn.

By Lemma 4.5, we obtain f is a constant function.

So, there exists c ∈ R such that f(x) = c for all x ∈ Rn. Since f satisfies (1.20),

we have 2nc = 0. That is c = 0. Hence, f(x) = 0 for all x ∈ Rn.

Conversely, it is obvious that if f is identically zero, then (1.20) holds.
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