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CHAPTER 1
INTRODUCTION

In all that follows, N will denote the natural numbers, R will denote the real

numbers, and C will denote the complex numbers.

1.1 Functional Equations

P.K. Sahoo and Pl. Kannappan [8] have said that

“The functional equations forms a modern branch of mathematics. The origin
of functional equations came about the same time as the modern definition of
function.”

J.Aczél [1] gave the concept of functional equation and system of functional

equations in definitions 1.1 to 1.3 as follows:
Definition 1.1. [1]
(a) The independent variables x4, ..., x; are terms.

(b) Given that A,,..., A,, are terms and that F' is a function of m variables,

then F'(A,,..., A,,) is also a term.
(c) There are no other terms.

Definition 1.2. [1] A functional equation is an equation

Al - AQ
between two terms A; and A,, which contains k independent variables x4, . . ., z;
and n > 1 unknown functions Fi,..., F, of j;,...,J, variables respectively, as

well as a finite number of known functions.



k is the rank and n is the number of functions of the functional equation,
j =min(jy,. .., j,) is the minimal number of the variables in the functions of the
functional equation.

The rank must be larger than the minimal number of variables in the func-

tions of the equation.

Definition 1.3. [1] A system of functional equations consists of p > 2 functional
equations, which contain n > 1 unknown functions altogether. p is the number

of equations, n the number of functions of the system.

P.K. Sahoo and PIl. Kannappan [8] simply explain that

“Functional equations are equations in which the unknowns are functions. To
solve a functional equation means to find the unknown function. In order to obtain
a solution, the functions must often be restricted to a specific nature (such as
analytic, bounded, continuous, convex, differentiable, measurable, and monotonic).”

Now we will show the example of functional equation in one variable.

Example 1.1. Find all functions f : R — R satisfying the functional equation

fl=a)+2f(x) =2 +7 foral zcR. (1.1)

Solution. Assume that there exists a function f : R — R satisfying (1.1).

Replacing = by 1 — z in (1.1), we get

flz)+2f(1—2)=8—u=. (1.2)

Solving (1.1) and (1.2), we have f(x) =z + 2 forall z € R.

Conversely if a function f is given by f(x) = = + 2, then

fAd—z)+2f(z)=1—2)+2+2x+2)=a+7T. (1.3)

Therefore, the function f defined by f(z) = = + 2 for all + € R is the unique

solution of the functional equation (1.1). O



Importantly, we need return to our original equation and verify our supposed
solution by replacing it back in the original equation since there can be no solu-

tion to the original functional equation.

Example 1.2. Find all functions f : R — R satisfying the functional equation

4f(10 —z) + xf(z) =3 forall x € R. (1.4

Solution. Assume that there exists a function f : R — R satisfying (1.4).

Substituting x = 2 in (1.4), we have

4F(8) +2f(2) = 3. (1.5)

Substituting x = 8 in (1.4), we obtain

A£(2) + 8(8) = 3. (1.6)

f(2) and f(8) concurrently satisfy (1.5) and (1.6), contradiction.

Thus, there is no function f : R — R satisfying the functional equation (1.4). O

The functional equation in more than one variable is shown in the following

example.

Example 1.3. Find all functions [ : R — R satisfying the functional equation

3f(x+2y) = f(3z) + 6y +6 (1.7)

forall x,y € R.

Solution. Assume that there exists a function f : R — R satisfying (1.7).

Substituting x = 0 in (1.7), we have

3f(2y) = f(0) + 6y + 6. (1.8)



So, there is a constant ¢ such that f(z) =z + cfor all z € R.

Replacing f(z) = = + c in the left side of (1.7), we have

3f(x +2y) = 3x + 6y + 3c. (1.9)

Replacing f(z) = = + c in the right side of (1.7), we have

f(3x) 4+ 6y + 6 =3z + c+ 6y + 6. (1.10)

From (1.9) and (1.10), we obtain ¢ = 3.
Therefore, the function f defined by f(z) = = + 3 for all z € R is the unique

solution of the functional equation (1.7). O

Next, we will give an example of functional equations where the function is

defined on R? and has three variables.

Example 1.4. Find all functions f : R? — R satisfying the functional equation

flx,y,2) = f(x+v,0,0) + f(0,y +2,0) + f(0,0,2 + ) (1.11)

forall x,y,z € R.

Solution. Assume that there exists a function f : R® — R satisfying (1.11).

Substituting y = 0 and z = 0 in (1.11), we have

f(2,0,0) = f(x,0,0) + £(0,0,0) + £(0,0,z). (1.12)

That is f(0,0,2) = —f(0,0,0) for all z € R.

Substituting x = 0 in (1.12), we have f(0,0,0) = 0. So, we have f(0,0,z) = 0.
Similarly, we get f(z,0,0) = 0 and f(0,z,0) =0 for all z € R.

Hence, f(z,y,2) = f(x +4,0,0) + f(0,y + 2,0) + f(0,0,z + 2) = 0.

Conversely if a function f is given by f(x,y,z) = 0 for all x,y,z € R, then f
satisfy (1.11). Therefore the function f defined by f(z,y,2) =0forall z,y,z € R

is the unique solution of the functional equation (1.11). O



1.2 Motivation and Proposed Problem

Geometric functional equations have been studied by several authors. In 1968,
J. Aczél, H. Haruki, M.A. McKiernan, and G. N. Sakovi¢ [2] investigated general

solution of the functional equation

where f : R? — R is a function and z,y,t € R. The general solution of (1.13) is
given in terms of arbitrary symmetric multi-additive functions of four variables.

In 1969, H. Haruki [4] studied the functional equation

fle+t,y+t,z+t)+ fle+t,y+t,z—t)+ fle+t,y—t,z+1t)+
fle+ty—t,z—t)+fla—t,y+t,z+t)+flx—t,y+t,z—t)+ (1.14)

flx—ty—t,z+t)+ fz—t,y—t,z—1t) =8f(x,y, 2)

where f : R® — R is a function and z,y, z,t € R. The general solution of (1.14)
under a continuity condition of f is

oititk

f(z,y,2) = Z Cz‘jkmp(%%z),

0<i,j,k<5
where ¢; ;. are real constants for 0 < i, j,k < 5 and P(z,vy, z) = zyz(y* — 2*)(2* —
2?)(@® = y?).

(z +t,y +t, 2 +1)

(z+ty+1)

(z-t,y -t,z -t)

Figure 1.1 : Square and cube



In accordance with Figure 1.1, (1.13) and (1.14) say that for each square
(cube) obtained from translations and dilations of a fixed square (cube), the
values of the function at its center is the arithmetic mean of its values at all
vertices. H. Haruki [4, 5] called (1.13) a “square” functional equation and (1.14)
a “cube” functional equation.

In 1974, L. Etigson [3] proved that the “rhombus” functional equation

f([L‘—I—t,y)—I—f(IL‘—t,y)—l—f(lL‘,y—t)—I—f(IL‘,y—t) =4f(:7c,y) (115)

is equivalent to the square functional equation and also proved that the “octahedron”

functional equation

fle+ty,2)+ flx -ty 2) + e,y +42) + flr,y —t,2)

+f(ZL‘,y,Z+t)+f(ZL‘,y,Z—t) :6f(x,y,z)

(1.16)

is equivalent to the cube functional equation.

Geometrically, (1.15) and (1.16) say that for each rhombus (octahedron)
obtained from translations and dilations of a fixed rhombus (octahedron), the
values of the function at its center is the arithmetic mean of its values at all

vertices as shown in the following figure.

(x,y,2 +1)

(z,y,2—t)

Figure 1.2 : Rhombus and octahedron

In 1991, L. Székelyhidi [9] investigated two geometric functional equations:

the n-dimensional octahedron functional equation

n

D G+ 770 f () = 2nf (x) (1.17)

i=1



and the n-dimensional cube functional equation

LG+ 7701 @) =27 f () (1.18)
=1
where t € R, z € R", f : R" — C is a complex valued function, and 7/} is a partial

translation operator in the i** variable on R as follows
t t
Tif(@, ) =T (@ T, T L T, X))

L. Székelyhidi proved that the continuous solutions of the n-dimensional cube
equation on R” is a linear combination of the partial derivatives of a special

given harmonic polynomial (),, defined by, for each (z4,...,z,) € R,

2 2
Qn(zy, ... x,) = 1125 ... T, H(xl )
i<j
as well as proved that the n-dimensional octahedron and cube equation are
equivalent.

Later in 2011, R. Kotnara [6] studied a functional equation
f(2)+ fz+Aa1) + f(z+Xag) + f(z+ AMNar +az)) =0 (1.19)

for fixed complex constant a;,a; where f : C — C is a function, z € C, and
A € R~ {0}. The functional equation (1.19) says that, for each parallelogram
obtained from translations and dilations of an arbitrary fixed parallelogram, the
sum of the values of the function at all the vertices is equal to zero as in the

following figure.

N Z2+ Ay 2+ Mar + ar)

an

Figure 1.3 : Parallelogram

“ Z+ Aas



In this thesis,we extend (1.19) from two dimensions to any n dimensions.

Given n € N, we find the general solution f : R” — R of the functional equation

i flz +terer + ... +teye,) =0, (1.20)
€1,6250,En=0

where {e;,...,e,} is a basis for R” over R, z € R" and ¢ > 0. In particular
for n = 2, the arithmetic mean of the values of f taken at the vertices of any
parallelogram obtained from translations and dilations of a fixed parallelogram
(whose sides are parallel to ¢;) equals zero. Similarly, for n = 3 the arithmetic
mean of the values of f taken at the vertices of any parallelepiped obtained from
translations and dilations of a fixed parallelepiped equals zero as in Figure 1.4.
According to the geometric interpretation of (1.20), we will call (1.20) a “zero-

mean” functional equation on hyper-parallelepiped.

T+ te) + tey + teg

Figure 1.4 : Parallelepiped



CHAPTER II
PRELIMINARIES

2.1 Vector Spaces and Linear Operators

Linear operators are so useful to determine the solution of zero-mean functional
equation on hyper-parallelepiped. So, we will state some definitions related to

linear operators.

Definition 2.1. A vector space V over a field F' is a set V' together with the
operations of addition V' x V' — V and scalar multiplication F'xV — V satisfying

the following properties:
(i) Commutativity: v+ v =v + u for all u,v € V;

(ii) Associativity: (u+v)+w = u+ (v+w) and (ab)v = a(bv) for all u,v,w € V
and a,b € F;

(iii) Additive identity: There exists an element 0 € V' such that 0 + v = v for all

veV;

(iv) Additive inverse: For every v € V, there exists an element w € V such that

v+ w = 0;
(v) Multiplicative identity: 1v = v forallv € V;

(vi) Distributivity: a(u + v) = au + av and (a + b)u = au + bu for all u,v € V
and a,b € F.

Usually, a vector space over R is called a real vector space and a vector space
over C is called a complex vector space. The elements v € V' of a vector space

are called vectors.
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A linear combination of vectors x1, ..., x,, of a vector space V' is an expres-
sion of the form

1]+ ...+ Ty,
where the coefficients aq, . .., o, are any scalars.

Definition 2.2. [7] Linear independence and dependence of a given set M of

vectors z1,...,z, (r > 1) in a vector space V are defined by means of equation
oarxy + ...+ oz, =0, 2.1
where ay,...,«, are scalars. Clearly, equation (2.1) holds for ayz; = ... =

a,x, = 0. if this is the only r-tuple of scalars for which (2.1) holds, the set M is
said to the linearly independent. ) is said to be linearly dependent if M is not
linearly independent.

Any arbitrary subset M of V is said to the linearly independent if every
nonempty finite subset of M is linearly independent. M is said to be linearly

dependent if M is not linearly independent.

Definition 2.3. [7] A vector space V' is said to the finite dimensional if there is
a positive integer n such that V' contains a linearly independent set of n vectors
whereas any set of n + 1 or more vectors of V' is linearly independent. n is called
the dimension of V, written n = dim V. If V is not finite dimensional, V' is said

to be infinite dimensional.
Example 2.1. R" and C" are n-dimensional.

If dim V' = n, a linearly independent n-tuple of vectors of V' is called a basis
for V. If {ey,...,e,} is a basis for V| every € V has a unique representation as

a linear combination of basis vectors:

r=qo1e] + ...+ a,e,.
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In case of vector spaces, a function is called an operator.
Definition 2.4. [7] A linear operator T is an operator such that

(i) the domain ©(7") of T is a vector space and the range 9R(7") lies in a vector

space over the same field,
(ii) forall z,y € ®(T") and scalars «,
T(x+y)=T(x)+T(y)
T(ax) = oT(x)
Now, we will see some examples of linear operators.

Example 2.2. Let V be a vector space.

2.2.1 The identity operator [ : V — V is defined by I(x) = x forall x € V.
2.2.2 The zero operator 0 : V' — V is defined by 0(x) = 0 forall x € V.

2.2.3 A translation operator T",t € R, takes a function f on R to its translation

ft, fi(x) = f(z+t). Thatis T" f(x) = f(x + ).
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2.2 Notations and Definitions

Let n € N. In this thesis, fix a basis {ey,...,e,} of R" over R. For a real-valued
function f : R" — R, we define the following operators:

I denotes the identity operator;
For each i =1,...,n, 7} are the translation operators defined by

7 f(x) = f(z +te;)

forallz € R" and ¢ € R;

For each i = 1,...,n, the operators ¢! and p! are defined by

oif(x) = (I+7)f(2)
pif(@) = (I —7)f(x)

forall x € R* and t € R.

To simplify the notations, we write

aflsz(x) = aflafg...afm (x)

P4k (@) = phph, gl f(x)

forallz e R" ¢t € R, and iy, ...,i,, are elements in {1, ..., n}.
-
—_—1—
. ______
T T + te; T T +te; T T+ te;
7 f () ot f(x) pif ()

Figure 2.1 : e represents the value of f taken at the point

and o represents the value of — f taken at the point.

Geometrically as in Figure 2.1, 7/ f(x) is the value of f taken at a point x +te;.
Moreover, o} f(z) is the sum of the values of f taken at the vertices x and = + te;.
Similarly, pff(z) is the sum of the values of f taken at the vertices x and the

values of —f taken at the vertices x + te;.
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So, we can see that

0103f () = f(x) + f(x +ter) + fx +tex) + f(x + tes)+

f(x +ter +tes) + f(x +tey +tes) + f(x + tes + tes) + f(x + teg + teg + teg)

is the sum of the values of f taken at all vertices of any parallelepiped whose

sides are parallel to e; (i = 1,2, 3) as in the following figure.

Figure 2.2 : e represents the value of f taken at the point.

From definition of ¢!’s, we can see that (1.20) is equivalent to o

(@) =o.

In addition, note that, foreachi =1,...,nandt € R, [ = 70 and I, 7’s, o!’s, p’s

.....

are commutative and distributive.

Definition 2.5. For each » € N, a set {1,2,...,r} is called r-section of N, written

N,.
Example 2.3. N; = {1}. N, = {1,2}. N; = {1,2,3,4,5}.

Let A be a nonempty subset of N,, where |A| = m, cardinal number of A.

Givent € R, o', is defined by

UZf(OE) = af1,i2 ..... me(x)

for all z € R™ where iy, 1o, . ..,1,, are distinct integers in A.

Example 2.4. Suppose n > 7.Let A={1,3,7} CN, and t € R.

Uf4f(ff) = Ui,3,7f(95)

forall x € R™.



CHAPTER III
ZERO-MEAN FUNCTIONAL EQUATION ON PARALLELEPIPED

Now, we fix a basis {e;, e5, e} for R® over R. Let f : R> — R be a real-valued
function. In this chapter, we determine the general solution f : R® — R of the

functional equation

1
Z f(ZL’ + terey 4 teges + t€3€3) =0 (31)

€1,£2,63=0

for all x € R? and for all ¢ > 0. From (3.1), we observe that the arithmetic mean
of the values of f taken at the vertices of any parallelepiped, whose sides are
parallel to ¢;, is equal to zero. Accordingly, (3.1) will be called a “zero-mean”
functional equation on parallelepiped.

First we will prove the following useful proposition.

Proposition 3.1.

pioi f(x) = pi' f(x)
forall z € R?, for all i € N3, and for all t € R.
Proof Letz € R® t € R, and i € N5. Then,
pioif(x) = flx)+ f(z+te) — flx+te;) — f(x+ 2tey)

= f(z) = f(x+ 2te;)
= 0'f(2).
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Lemma 3.2. If there exists y € R3 such that

f@)+ flz+ty) =0 (3.2)

for all x € R?® and for all t > 0, then f is identically zero.

Proof. Let z € R? and ¢t > 0. Suppose there is y € R? such that f satisfies (3.2).
Replacing = by = + ty in (3.2), we have

flz+ty)+ f(x + 2ty) = 0. (3.3)
From (3.2) and (3.3), we have
f(x) = f(z+2ty) = 0.
Since = and ¢ are arbitrary, we get
flx) = flz+ty) =0 (3.4)

for all z € R? and for all ¢ > 0. Combining (3.2) with (3.4), we have f(x) = 0.
Since z is arbitrary, f(z) = 0 for all z € R3. O

By Lemma 3.2, we obtain the following lemma.

Lemma 3.3. If a function f satisfies, for each x € R? and for each t > 0,

ol f(z) =0, (3.5)

Z?J

where i, j are distinct integers of N3, then f is identically zero.

Proof Letx € R® andt > 0. Suppose f satisfies (3.5). By Proposition 3.1, we get

piif (@) = pijoi 1 f(x) = 0.
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Since = and ¢ are arbitrary,

Pfjf(w) =0 (3.6)

for all x € R? and for all ¢ > 0. From (3.5) and (3.6), we have

2[f(x) + f(x + te; + te;)]
= f(z)+ f(x+te;) + f(z+tej) + f(x + te; + tej)

(3.7)
+f(x) = [z +te) — flx+te;) + [z +tei + le;)
= ol f(x) + ol f(x) =0
Therefore, for each x € R? and for each ¢ > 0,
f(l') + f(l’ + t(ei + 6]')) = 0
By Lemma 3.2, f(z) = 0 for all z € R. O

The following theorem is our main result in this chapter.
Theorem 3.4. A function f satisfies (3.1) if and only if [ is identically zero.

Proof. Let x € R® and t > 0. Suppose [ satisfies (3.1). By Proposition (3.1), we

have

P%fz,:«; (z) = 03,2,3‘75,2,3“95) ~0.

Since = and ¢ are arbitrary,

Pi,z,:«zf(x) =0 (3.8)

for all z € R? and for all t > 0. From (3.1) and (3.8), we obtain

2[f(x) + f(x +teg + tes) — f(x + 2ter) — f(x + 2tey + teg + tes)]
= 2[f(x) + f(x +tes +tea) + f(x + tey + tes) + f(x + teg + tes)]
=2[f(z + 2ter) + f(x + tey + teax) + f(x + teg + teg) + f(x + 2tey + teg + tes)]

= (05,2,3 + P§,2,3)f($) - (05,2,3 - P§,2,3)f($ +tei) = 0.
(3.9
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And we also obtain

2[f(z +tex) + f(x +tes) — f(x + 2tey + teg) — f(x + 2te; + tes)]
= 2[f(z +ter) + f(x +tez) + f(x + tes) + f(x + teg + teg + tes)]
=2[f(z +ter) + f(x + 2tey + tea) + f(x + 2tey + teg) + f(x + tey + teg + tes)]

= (05,2,3 - P§,2,3)f($) - (05,2,3 + P§,2,3)f($ +tei) = 0.

(3.10)
From (3.9) and (3.10), we have

f(z)+ f(z +tea +tes) — f(z + 2ter) — f(x + 2te; +tea +tes) = 0, (3.11)

flz+tex) + f(x+tes) — fz+ 2tey +te) — f(x + 2te; +tes) = 0, (3.12)

for all x € R? and for all ¢ > 0.

Replacing x by x + te; in (3.12), we have

f(xz+2tes)+ f(x+tea+tes) — f(w+2tey +2tes) — f (x4 2tey +teg+tes) = 0. (3.13)
Subtracting (3.13) from (3.11), we get
piof(x) = f(x) — f(z+ 2ter) — f(x + 2tex) + f(z + 2tey + 2tey) = 0.
Since x and ¢ are arbitrary, p{ , f(z) = 0 for all z € R* and for all ¢ > 0. Hence,

2[f(z) + f(z + teg + tes) + f(x + tes) + f(x + tey + tes + tes)]
= [f(x)+ f(z +ter) + f(z + tea) + f(x + teg + tea)
+f(x +tes) + f(x + tey + teg) + f(x + teg + teg) + f(x + teg + tesy + tes)]
+[f(x) — f(z+tey) — fx+tes) + f(x + tey + tey)]
+[f(x+tes) — f(x +tey +tes) — f(x + teg + tes) + f(x + tey + tex + tes)]
= 0193f(x) + piof(x) + Pl f (x +tes) = 0.



18
Therefore, for each € R? and for each ¢ > 0,
f(x) + f(z+teg +tes) + f(x +tes) + f(x + teg + teg + tesz) = 0. (3.14)

Let €] = e + eg, €}, = ey, and ¢ = e3. It is easy to prove that {¢], €}, €4} is a basis

for R? over R. From (3.14) with respect to {¢}, €}, €5}, we have

Ui,gf(x) =0

for all x € R? and for all ¢ > 0. By Lemma 3.3, f(z) = 0 for all z € R3.

Conversely, it is obvious that if f is identically zero, then f satisfies (3.1). O



CHAPTER IV

Zero-Mean Functional Equation on Hyper-Parallelepiped

Recall that we fix a basis {ey,...,e,} for R" over R. Let f : R” — R be a real-
valued function. In this chapter, we will determine the general solution of zero-

mean functional equation on hyper-parallelepiped

1

Z flx+tejer + ... +tepe,) =0 (1.20)

€1,E2,..,n=0

for all z € R™ and for all £ > 0.
first, we will consider the following proposition which is the generalized

Proposition 3.1.

Proposition 4.1.
piotf(z) = pi"f(z)

forall x € R™, for all i € N,,, and for all t € R.
Proof Similar to Proposition 3.1, we can prove this proposition. O
The following simple proposition is useful to obtain our main result.

Proposition 4.2.

pif(@) +0if(z) = 2f(x)
forall x € R™, for alli € N,,, and for all t € R.

Proof Letx € R",t>0,and i € N,,. Then,

pif (z) +oif(x) = [f(z) — flz+te)] + [f(2) + f(z + te;)] = 2f().
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Given the conditions in the following lemma, we can consider zero-mean
functional equation on hyper-parallelepiped on R™ whose basis is reduced from
R” (m € N;m < n).

Recall that o7, is defined by

UZf(OE) = af1,i2 ..... me(x)

for all x € R" and for all ¢t € R where A is a nonempty subset of N,, such that

|A| = m and iy, s, . . ., i,, are distinct integers in A.

Lemma 4.3. Let A be a nonempty subset of N,, with |A| = m < n. Assume that a
real-valued function f satisfies (1.20) and

pif(z) =0
foralli € A, for all z € R™, and for all t > 0. Then
O—It\Tn\Af(‘/L.) = O

for all x € R" and for all t > 0.

Proof. Lett > 0. By assumption, let iy, ..., 14, be distinct integers in N,, such that
i; € Aforall 0 < j < m. Then, we have

01...nf(¥) =0 and pf f(z) =0

.....

...............

= ot nf(x)+p§1[f(x)+...+f(x+tei2 + ...+ te,)]

.....

.....
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Continuing this process inductively, for k' step where k < m we have

.....

...............

Thatis o;, , , f(z)=0forallz € R
i f(@)=0forall z € R™.

Therefore, of; 4 f(x) = 0 forall + € R" and for all ¢ > 0. O

.....

Finally, for k = m we get o} |

Repeatedly applying Lemma 4.3, we obtain the following Lemma.

Lemma 4.4. If a real-valued function f satisfies (1.20), then
pif(z) =0

for all x € R™, for all t > 0, and for all integers i € N,,.

Proof. Let x € R™. By Proposition 4.1, for each ¢ > 0 we have

---------

.....

.f(x) =0forallt > 0. Now consider

.....

O by J@) = ot Lf@) 4.+ (1) (e, 4+ e, )]

.....
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for all distinct integers i, ...,i,_1 € N,, and for all ¢ > 0. So, we have

pi nf(l‘) = O and O-i npil ..... in_lf(x) = 0

..........

for all distinct integers i, ...,i, 1 € N,, and for all ¢ > 0.

Thus, pj, ;[ satisfies (1.20) and p} p, ,  f(z)=0.Lemma 4.3 implies

0-1?1 ----- in—lpfl ..... in,lf(l‘) =0

for all distinct integers i, ...,7, 1 € N,, and for all ¢ > 0.

By Proposition 4.1, we obtain

pgl ..... ’inflf(]’? N 0

for all distinct integers iy, ...,7,_; € N,, and for all ¢ > 0.

Continuing this process inductively, for (k)" step where k < n we have

pﬁjpﬁl ..... o Jlr)=0 forall j >n—Fk, 4.1)
and O-i ..... nplz‘/l ..... (2% kf(x) o 0
for all distinct integers i, ...,7, 1 € N,, and for all ¢ > 0.
Thus, pj, ,; [ satisfies (1.20) and (4.1). Lemma 4.3 implies

0-51 ..... in,kpg ..... zn,kf<x) = 0

for all distinct integers i, ...,7,_r € N,, and for all ¢ > 0.

By Proposition 4.1, we obtain
pgl ..... Zn_kf(x) =0

for all distinct integers i, ...,7,_r € N,, and for all ¢ > 0.

Therefore, plf(z) =0 for all z € R™, for all ¢ > 0, and for all i € N,,. O
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In the following lemma, we will solve an essential functional equation to

obtain the main theorem in this chapter.

Lemma 4.5. If a real-valued function f satisfies

pif(r) =0 (4.2)

forall x € R", for allt > 0, and for all i € N,,, then f is a constant function.

Proof Let x € R™. Then x = aye; + ases + ... + aye, for some ay, ..., a, in R.
From (4.2), we have

flz) = [z +te;) (4.3)

for all z € R™, for all ¢ > 0, and for all integers i € N,,.

Repeatedly using (4.3) by replacing ¢ by |a;| where i = 1,...,n, we have

flx) = flx+aler+....+ |anlen)

= f((oq+ |ag])er + . ... + (ap + ) en)- 4.4)

Foreachi=1,...,n,if a; <0, then a; + |a;| = 0; otherwise, o; + |o;| > 0.
Repeatedly using (4.3) in (4.4), we have f(z) = f(0).
Since x is arbitrary, we obtain f(z) = f(0) for all x € R™.

Therefore, f is a constant function. O

Finally, we are ready to establish our main theorem.

Theorem 4.6. A real-valued function f satisfies (1.20) if and only if

f is identically zero.

Proof. Let x € R™ and t > 0. Assume that f satisfies (1.20).

By Lemma 4.4, we have p! f(z) = 0 foralli € N,,.

By Lemma 4.5, we obtain f is a constant function.

So, there exists ¢ € R such that f(z) = ¢ for all x € R™. Since f satisfies (1.20),
we have 2"c¢ = 0. That is ¢ = 0. Hence, f(z) = 0 for all z € R".

Conversely, it is obvious that if f is identically zero, then (1.20) holds. O
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