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A skew-semimodule M over a semiring S is an additive monoid M with a left
action S x M — M, defined by (s,m)— sm, such that for all r,s € S and m,n € M
(i) (r+sym=rm-+sm, (ii) s(m+n)=sm+sn, (iii) (rs)m =r(sm) and (iv) s0=0
where 0 is the identity of M .

A non-empty subset A of a skew-semimodule M over a semiring S is said to
be an ideal of M if A4+ M, M 4+ A and S*A are subsets of A where S* =S5\ {0}.
Moreover, given an ideal A of M, the Rees congruence on M generated by A is the
congruence relation Ry = {(m,n) € M x M ’ m=n or m,n€A}.

Let M and N be skew-semimodules over a semiring S. A mapping ¢ : M — N
is called a homomorphism if (1) @(m +mn) = @(m) + p(n), (i) ¢(sm) = sp(m) and
(iii) ¢(0) =0 for all m,n € M and s € S. The set of m € M such that ¢(m) =0 is
called the zero set of ¢, denoted by Zsp. In addition, the kernel of ¢ is the relation
Kerp = {(m,n) € M x M |@(m) =p(n)}.

Let , N and P be groups and skew-semimodules over a semiring S. A
sequence M — N 2o P of skew-semimodules and homomorphisms is said to be ezact
at N if Imf = Zsg.

A chain A C Ay C--. or A3 D A9 D --- of subsets of a skew-semimodule M
over a semiring S is said to be an ideal series of M if A; is an ideal of M for all
positive integers 7.

The main purpose of this research is to generalize of Isomorphism Theorems,
the universal mapping properties of direct products, direct sums and free modules,
some theorems of exact sequences and Artinian and Noetherian modules to those of
skew-semimodules.
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INTRODUCTION

A very important algebraic structure is that of a module over a ring. In addition,
there are generalizations of some theorems in module theory to those in skewmodules
over skewrings and in semimodules over semirings which were introduced in [2] and
[5], respectively.

Recall that a module M over a ring S is an abelian group M with a left action

S x M — M defined by (s,m)+ sm such that for all m,n € M and r,s € S,

(i) (r+ s)m =rm+sm,
(ii) s(m+n) = sm + sn, and

(iii) (rs)m =r(sm).

In [2], a structure (S,+,-) is a skewring if (S5, +) is a group, (S,-) is a semi-
group and the operation - is distributive over +:; moreover, a skewmodule M over a
skewring S is a group with a left action S x M — M defined similarly to a module
over a ring. Also, in [5], a semimodule M over a semiring S is defined analogously
where (M,+) is a commutative monoid and (5,4, ) is a semiring, i.e., (S,+) is a
commutative monoid, ((S;+) is a monoid and the operation - is distributive over +.
For our research, we are interested in a more general structure.

We define a skew-semimodule M over a semiring S analogously to those struc-
tures, i.e., (M,+) is a monoid and (5,4, ) is a semiring which (S,+) and (S,-) are
semigroups and the operation - is distributive over +. Notice that a semiring S in this
research is given differently from the mentioned above. Moreover, we study which the-
orems in module theory can be generalized to ones in skew-semimodules. However, our

concern goes to skew-subsemimodules, homomorphisms, quotient skew-semimodules,
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direct products, direct sums, free skew-semimodules and exact sequences. Further-
more, we investigate concept of ideals of skew-semimodules and introduce idea of
Artinian and Noetherian skew-semimodules.

There are four chapters in this thesis. In Chapter 1, we give definitions and prove
some theorems regarding skew-semimodules, skew-subsemimodules, ideals, homomor-
phisms, congruence relations and quotient skew-semimodules.

In Chapter 2, we study direct products and direct sums of families of skew-
semimodules. Moreover, a free skew-semimodule is defined in this chapter and some
theorems involving this are proved such as the Universal Mapping Property of Free
Skew-semimodules.

In Chapter 3, we consider particular skew-semimodules which are also groups.
Doing this lead us to define an exact sequence and prove theorems parallel to those
of exact sequences in module theory.

Finally, in Chapter 4, we define an ideal series of skew-semimodules. Moreover,

we prove some elementary theorems of Artinian and Noetherian skew-semimodules.



CHAPTER 1

SKEW-SEMIMODULES OVER SEMIRINGS

This chapter covers basic results about skew-semimodules and is divided into
two sections. In section 1.1, we introduce skew-semimodules, skew-subsemimodules,
ideals and homomorphisms. In section 1.2, we discuss congruence relations on skew-
semimodules and quotient skew-semimodules. Many results in this chapter play im-

portant roles in order to study other topics in this thesis.

1.1. Skew-semimodules and Homomorphisms

This section gives basic definitions and theorems concerning skew-semimodules
including skew-subsemimodules, ideals and homomorphisms. The concepts of ideals

of skew-semimodules are not found in the theory of semimodules over semirings.

Definition 1.1.1. A triple (S, +,-) is a semiring if

(i) (S,4+) is a semigroup,
(ii) (.S,-) is a semigroup, and

(i) r- (s t)y=r-s+r:tand(s+t)r =s-7v+t:rforal rsteSs.

A semiring S has the zero if there exists an element 0 € S such that 0+s=s = 540
and 0-s =0 = s:0 for all s € S. Also, S has the identity if there exists an
element 1 € S such that 1-s=s=s-1forall s € S. If S is a semiring with zero

(and identity), then we write that S is a semiring with 0 (and 1).

Example 1.1.2. The set N of all natural numbers with the usual addition and

multiplication is a semiring with 1. For each n € N, given [n] = {m € N|m > n}.
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Then for all n € N, we also obtain that [n] with the usual addition and multiplication

on N is a semiring without 0 and 1.

Definition 1.1.3. Let S be a semiring. A (left) skew-semimodule M over S or
S -skew-semimodule is an additive monoid M with a left action S x M — M, called
a scalar multiplication, given by (s, m) +— sm which satisfies the following condition:

for all r,s € S and all m,n € M,

A (right) skew-semimodule M over S is defined in a similar way by replacing the
left action by the right action with corresponding properties.
If S is a semiring with 0 and 1 such that 0 # 1 and M is a skew-semimodule

over S satisfying

(%) Om =0 and Im=m for all m € M,

then we say that M is a skew-semimodule over S satisfying (x) or an S*-skew-

semimodule.
In this research, we study on left skew-semimodules over semirings only.
Example 1.1.4. If S"is a semiring with 0, then S is a skew-semimodule over itself.

Example 1.1.5. Let S be a semiring and M a monoid. Define sm = 0 for all s € S

and m € M. Hence it is easy to see that M is a skew-semimodule over S.

Example 1.1.6. Let X be the right zero semigroup, i.e., v +y =y for all z,y € X.

Given X? = X U {0} where z+0=2=0+2 and 0+ 0 =0 for all # € X. Then
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X0 is a monoid. Let n € NU {0} which is a semiring with 0 and 1. Define nz = x

for all # € X°. Therefore, X" is a skew-semimodule over N U {0}.

We can see that the skew-semimodule X° in Example 1.1.6 does not satisfy (%)

but the following example gives an S*-skew-semimodule.

Example 1.1.7. Let X be a monoid and n € NU {0}. We define a scalar multipli-
cation by

x, ifneN,
AL =

0, otherwise.

for all x € X. Hence it is easy to see that X is an skew-semimodule over N U {0}

satisfying ().

Definition 1.1.8. Let M be an S-skew-semimodule and N a non-empty subset
of M. Then N is a skew-subsemimodule of M if

(i) N is a monoid under the same operation with the same identity as M, and

(ii) sn € N forall s€ S and ne N.

Remark 1.1.9. Let M be an S-skew-semimodule.

(i) If N is a skew-subsemimodule of M, then N is a submonoid of M with
the same identity and is an S-skew-semimodule.
(i) Trivial skew-subsemimodules of M ‘are M and {0}.
(iii) If P and @ are skew-subsemimodules of M such that P4+ = @)+ P, then

P 4+ (@) is a skew-subsemimodule of M .

Proposition 1.1.10. Let (N;);er be a family of skew-subsemimodules of an S -skew-

semimodule M. Then (\,c; N; is a skew-subsemimodule of M .

Proof. Since N; is a submonoid of M with the same identity for all i € I, it follows

that 0 € N; for all ¢ € I, where 0 is the identity of M, so that 0 € [),c; NV;. Let
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n,n' € ey Ni and s € S. Then n,n’ € N; so n+n',sn € N; since N; is a skew-

subsemimodule of M for all i € I. Hence n+n',sn € (),c; V;. That is (), V; is a

el

skew-subsemimodule of M . O

The previous proposition suggests the following definition.

Definition 1.1.11. Let N be a subset of an S-skew-semimodule M. Then the
skew-subsemimodule of M generated by N, denoted by [N], is the intersection of
all skew-subsemimodules of M containing N. If [N] = M, then we say that N
generates M .

Moreover, M is finitely generated if there exists a finite subset N of M such that

N generates M.

Remark 1.1.12. Let M be an S-skew-semimodule and N C M. Then [N] is
the smallest skew-subsemimodule of M containing N. Moreover, [#] = {0} and

(M] = M.

If S is a semiring with 0 and 1 such that 0 # 1 and N is a non-empty subset of

an S*-skew-semimodule M, then we can describe elements of [N] explicitly.

Proposition 1.1.13. Let .S be a semiring with 0 and 1 such that 0 # 1 and N a

non-empty subset of an S*-skew-semimodule M . Then

[N} = {Zsznz

i=1

mGNandsiGS,niGNforalli:1,2,...,m}.

Proof. Given

P = {i S;M;

=1

mENandsiES,niENforalli:1,2,...,m}.

Since N C [N] which is a skew-subsemimodule of M, it follows that P C [N].
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It is clear that P is a skew-subsemimodule of M since 0 € P. Moreover, N C P

because 1 € S. Hence [N] C P by Remark 1.1.12. Therefore, [N] = P. O

Proposition 1.1.13 is very useful in proving theorems about free skew-semimodules.

The purpose of the following definition is replacing a normal subskewmodule in [2].

Definition 1.1.14. Let A be a non-empty subset of an S-skew-semimodule M.
Then A is an ideal of M if A+ M C A, M+AC A and S*A C A where S* = S\ {0}

if S has the zero and S* = S otherwise.

Remark 1.1.15. Let M be an S-skew-semimodule.
(i) M is an ideal of M.
(ii) If A isaproperideal of M, then 0 ¢ A so that A is not a skew-subsemimodule
of M.

(iii) If A is an ideal of M, then A% := AU{0} is a skew-subsemimodule of M.

The following two propositions are very important basic results which will be

referred later.

Proposition 1.1.16. Let (A;);c; be a family of ideals of an S -skew-semimodule M .
(1) If Nicr Ai # 0, then (,c; Ai is an ideal of M.
(ii) U,es Ai is an ideal of M.

Proof. Let M be an S-skew-semimodule and (A;);c; be a family of ideals of M .

(i) ‘Assume that ():.;4; % 0. Let m € ‘M;s &€ S* and a € (;.; Ai. Then

el el

a+m,m+a,sa € A; since A; is an ideal of M for all ¢ € I. Thus a+m,m+a, sa €

Mics Ai- Hence (,c; A; is an ideal of M.

(ii) Let m € M,s € S* and a € |J,.; Ai. Then a € A; for some i € I, say A;,, so

iel
that a+m, m+a, sa € A;, since A;, is anideal of M. Thus a+m,m+a,sa € | J;c; A;.

Hence J;c; A; is an ideal of M. O
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Proposition 1.1.17. Let M be an S-skew-semimodule, N a skew-subsemimodule
of M, A and B ideals of M .
(i) If AC N, then A is an ideal of N.
(i) If ANN #0, then AN N is an ideal of N .
(iii) A+ B is an ideal of M.
(iv) N + AY is a skew-subsemimodule of M .

Proof. Let N be a skew-subsemimodule of an S-skew-semimodule M, A and B
ideals of M.

(i) This is obvious.

(i) Assume that ANN # (. Let n € N,s € S* and a € AN N. Then

a-+n,n+a,sa € N since a,n € N which is a skew-subsemimodule of M. Moreover,
a € A which is an ideal of M so that a+n,n+a,sa € A. Thus a+n,n+a,sa € ANN.
Therefore, AN N is an ideal of N.

(iii) Note that A and B are ideals of M. Thus
(A+B)+M=A+(B+M)C A+ B,
M+ (A+B)=(M+A)+BC A+ B, and
S*(A+B)=S"A+S"BC A+ B.
Therefore, A+ B is an ideal of M.
(iv) Clearly that 0 € N + A% Let m+a,n 4+b € N + A” where m,n € N and

a,be A°. If a =0, then (m+a)+(n+b)=(m+n)+beN+ A% If a # 0, then

since A-isan ideal of M, we obtain that

(m+a)+(n+b)=d+n+b forsomead € A
=b+0 for some b’ € A
=0+c¢ for some c€ A

e N+ A°



Hence N + A° is a monoid having the same identity as M.
Next, let m € M,a € A” and s € S. Then s(m+a) = sm + sa € N + A°.

Therefore, N + A° is a skew-subsemimodule of M . O

The rest of this section will be about homomorphisms.

Definition 1.1.18. Let M and N be S-skew-semimodules. Then ¢ : M — N is an

S -homomorphism if for each s € S and m,n € M,

(i) p(m+n) = p(m)+ e(n),
(i) ¢(sm) = sp(m), and
(iii) (0) = 0.
The set of all elements m in M such that ¢(m) = 0 is call the zero set of o,

denoted by Zsp, i.e., Zsp = {m eM ‘ p(m) = 0}.

Proposition 1.1.19. Let M and N be S-skew-semimodules and ¢ : M — N an

S -homomorphism.

(i) If L is a skew-subsemimodule of M., then ¢[L] is a skew-subsemimodule
of N. In particular, Imy is a skew-subsemimodule of N .
(i) If P is a skew-subsemimodule of N, then @~ [P] is a skew-subsemimodule
of M. In particular, Zsp is a skew-subsemimodule of M .
(iii) If B is an ideal of N, then ¢~1[B] is an-ideal of M.

(iv) If A is an ideal of M and ¢ is surjective, then @[A] is an ideal of N .

Proof. Let M and N be S-skew-semimodules and ¢ : M — N an S-homomorphism.

(i) Assume that L is a skew-subsemimodule of M. Then 0 € L and 0 = ¢(0) €
o[L]. Let k,l € L and s € S. Then k+1, sl € L so that o(k)+¢(l) = @(k+1) € p[L],
and sp(l) = ¢(sl) € p[L]. Note also that ¢[L] C N. Therefore, ¢[L] is a skew-
subsemimodule of N.

In particular, I'my = p[M] is a skew-subsemimodule of N.
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(ii) Assume that P is a skew-subsemimodule of N. Then 0 € P, s0 ¢(0) =0¢€ P
implies that 0 € ¢ '[P]. Let m,n € ¢~ }[P] and s € S. Then ¢(m),p(n) € P. Thus
e(m+n)=p(m)+p(n) € P and p(sm) = sp(m) € P. Hence m+n,sm € o~ 1[P].
Recall that ¢ '[P] C M. Therefore, ¢ '[P] is a skew-subsemimodule of M.
In particular, ¢ 1[{0}] = Zsy is a skew-subsemimodule of M .
(iii) Assume that B is an ideal of N. Then @) # ¢~ '[B] C M. Thus

@[M + ¢ '[B]] = ¢[M] + ¢[e '[B]] € ¢[M]+BC N+ BC B,

el ' [B]+ M| =¢le '[B]] +¢[M] € B+¢[M] C B+ N C B, and

Hence M + ¢~ Y[B], o7 Y[B] + M and S*p '[B] are subsets of ¢~ 1[B].
Therefore, ¢~ ![B] is an ideal of M.

(iv) Assume that A is an ideal of M and ¢ is surjective. Then @) # ¢[A] C N

and
plA]+ N = oAl + p[M] = plA + M] C ¢[A],
N + p[A]l = p[M]+ p[A] = p[M + A] C ¢[A], and
S"plA] = ¢[S"A] C ¢[A].
Therefore, p[A] is an ideal of N. O

Definition 1.1.20. An S-homomorphism ¢ : M+ — N is called an epimorphism
if ¢ is surjective; ¢ is called a monomorphism if ¢ is injective; and ¢ is called
an isomorphism if  is bijective, in this case, we say that M is isomorphic to N,

denoted by M = N.

Remark 1.1.21. If ¢ : M — N is a monomorphism, then ¢! : Imyp — M is
also a monomorphism. In particular, ¢! is an isomorphism if and only if ¢ is an

isomorphism.
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Lemma 1.1.22. Let N be a skew-subsemimodule of an S -skew-semimodule M . Then

the inclusion map 1y : N — M is a monomorphism.

1.2. Quotient Skew-semimodules over Semirings

In this section, we define a congruence relation on a skew-semimodule, a quotient
skew-semimodule and the kernel of a homomorphism similarly to those objects of
semimodules over semirings defined in [5]. Although almost of results are analogous
concepts appeared in [5], results about ideals are excluded. Moreover, we give the
definition of the Rees congruence in the same way found in [3] which will play a major

part in the proof of the Isomorphism Theorems and most of results in Chapter 4.

Definition 1.2.1. Let M be a skew-semimodule over a semiring S. An equivalence
relation p on M is called a congruence relation on M if for any m,n € M such that
(m,n) € p implies (m+1,n+1) € p,(l+m,l+n) € p and (sm,sn) € p forall [ € M

and s € S.

Remark 1.2.2. Let M be a skew-semimodule over a semiring S. Then M x M
and {(m, m) ‘ me M } are the largest and the smallest congruence relations on M,

respectively.

Definition 1.2.3. Let ¢ : M — N be an S-homomorphism. Then the kernel of ¢,

denoted by Kery, is the relation {{m,n).€ Mx M| p(m) = p(n)}.

Lemma 1.2.4. Let ¢ : M — N be an S-homomorphism. Then

(i) Kery is a congruence relation on M , and
(i) Kere = {(m,m) |m € M} if and only if ¢ is injective, i.e., Kery is the

smallest congruence relation on M if and only if @ is injective.

Proof. Let ¢ : M — N be an S-homomorphism.
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(i) Clearly, Kere is an equivalence relation on M. Let m,n € M be such that

o(m) =¢(n). Let [ € M and s € S. Then
p(m +1) = p(m) + () = p(n) + () = p(n +1),
p(l+m) = () +p(m) = o) +(n) = p(l+n), and

p(sm) = sp(m) = sp(n) = p(sn).

Therefore, Kerp is a congruence relation on M .

(ii) First, assume that Kerp = {(m,m) |m € M} Let p,q € M be such that
o(p) = ¢(q). Thus (p,q) € Kerp, hence p = q. Therefore, ¢ is injective.

Conversely, assume that ¢ is injective. Note that {(m,m) ‘ m € M}Q Kerp.
It remains to show only that Kere € {(m.m)|m € M}. Let (p,q) € Kerep.
Then ¢(p) = ¢(q) which implies that p = ¢ since ¢ is injective. Hence (p,q) €
{(m,m)|m €M}.

Therefore, {(m,m)|m € M}= Kere. O

Lemma 1.2.5. Let A be an ideal of an S-skew-semimodule M . Define a relation R
on M by (m,n) € Ry if and only if m =n or m,n € A for all m,n € M. Then

R, is a congruence relation on M .

Proof. Clearly, Ra-is an equivalence relation on M . Tet (m;n) € R4, then m =n
ormn€A. Let e M and s€ S. If m=n, then m+Il=n+4+1[, l+m=1+n
and sm = sn. Now, assume that m,n € A. Then m+1, n+1, [+ m, [+ n, sm and
sn belong to A since A is an ideal of M. Hence (m +I,n+1),(Il +m,l +n) and

(sm, sn) are in R4. Therefore, R4 is a congruence relation on M . O

The previous lemma suggests the following important definition, the Rees congru-

ence relation.
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Definition 1.2.6. Let A be an ideal of an S-skew-semimodule M. Then the rela-
tion R4 on M defined in Lemma 1.2.5 is called the Rees congruence relation generated

by A.

Proposition 1.2.7. Let p be a congruence relation on an S -skew-semimodule M .
For each m € M, recall that [m], = {n € M| (m,n) € p} is the equivalence class
of m, and M/p = {[m],|m € M}. Define an addition and a scalar multiplication
on M/p by [m],+ [n], = [m +nl|, and sim|, = [sm], for all m,n € M and s € S,

respectively. Then M/p is an S-skew-semimodule.

Proof. Let m,m/,n,n’ € M and s € S. Assume that [m], = [m/], and [n], = [n/],.
Then (m,m’),(n,n’) € p so that (m + n,m' + n),(m' +n,m' +n'), (sm,sm’) € p
since p is a congruence relation. Thus (m+mn, m'+n') € p because of the transitivity
of p. Hence [m+n], = [m' +n'], and [sm], = [sm'],. Hence the addition and scalar
multiplication are well-defined.

We claim that [0], is the identity of M/p. Let m € M. Then [0], + [m], =
0+ m], = [m], = [m+ 0], = [m], + [0],. Moreover, it is easy to verify that M/p
satisfies the associative rule. Hence M/p is a monoid.

Next, we will show that the scalar multiplication satisfies the S-skew-semimodule

conditions. Let r,s € S and [m],, [n], € M/p. Then

() (r 4 )lml, = [ ¥ syml= [rm + smlg= [rm], + [sm], = r[m], + sm],
(i) s(mlpt fl,) = s(met nl,) = [s(mi 40, = [sm + snl, = s, + sln,
(i) (r)fml, = [(vs)m] = [r(sim)] , = elsmly =1 (slm],)., and
(iv) s{0], = [s0], = [0],

Therefore, M/p is an S-skew-semimodule. U

Definition 1.2.8. An S-skew-semimodule N is called a quotient skew-semimodule
of an S-skew-semimodule M if there exists a congruence relation p on M such that

N = M/p with the addition and scalar multiplication defined in Proposition 1.2.7.
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Note that if A is an ideal of an S-skew-semimodule M, then M/R,4 is a quotient

skew-semimodule of M.

Proposition 1.2.9. Let M be an S-skew-semimodule and p a congruence relation
on M. Then the mapping ©: M — M/p, defined by m(m) = [m], for all m € M is

an epimorphism with Kerm = p.

Proof. Clearly, « is surjective. To show that 7 is an S-homomorphism, let m,n € M

and s € S. Then

m(m +n)=m+nl, = [m], + [0l = 7 (m) + 7(n),

Hence 7 is an epimorphism.
Finally, let m,n € M. Then
(m,n) € Kern & w(m) = n(n) & [m], = [n], & (m,n) € p.

This shows that Kerm = p. 0

Definition 1.2.10. Let p be a congruence relation on an S-skew-semimodule M .
The epimorphism 7 defined in Proposition 1.2.9 is called the natural or canonical

surjection of M onto M/p.

Proposition 1.2.11. Let M be an S -skew-semimodule and A a non-singleton ideal

of M. Then, for each m € M,
(1) [m]gr, = A if and only if m € A, and
(ii) [m]r, = {m} if and only if m ¢ A.
Proof. Let m € M.

(i) Obviously, if [m]gr, = A, then m € A. Thus, assume that m € A. Let

n € [mlg,. Then (m,n) € Ry that is m = n or m,n € A. Thus n € A so that
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m|lr, € A. Next, let n € A. Then (m,n) € Ra so that n € [m]g,. Therefore,

Y-
[m]RA =A.
(ii) Assume that [m]g, = {m}. Suppose that m € A. By (i), we obtain that

A = [m|g, = {m} which is singleton. This leads to a contradiction. Therefore,
mé¢ A.
Conversely, assume that m ¢ A. Clearly, {m} C [m|g,. Let n € [m]g,. Then

(m,n) € Ry so that m =n since m ¢ A. Hence [m]g, = {m}. O

Remark 1.2.12. If a singleton set A is an ideal of an S-skew-semimodule M, then

m|r, = {m} for all m € M.

We can classify the quotient skew-semimodule M /R 4 of an S-skew-semimodule M

where A is an ideal of M .

Corollary 1.2.13. Let A be an ideal of an S -skew-semimodule M . Then

M/Rya={Ayu | | {{m}}

meM\A

Now, we are ready to-study Isomorphism Theorems.

Theorem 1.2.14. First Isomorphism Theorem

Let ¢ : M — N be an S-homomorphism. Then M/Kery = Imy.

Proof. Recall from Lemma 1.2.4 that Kery is a congrunce relation on M so that

M/Keryp exists. Define ¢ : M/Kerg — Img by
U([m]gery) = ¢(m) forall me M.
Note that, for each m,n € M, we obtain that

(M| Kkery = [N Kerp & (M,n) € Kergp < o(m) = ¢(n).
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Hence v is well-defined and injective. Clearly, v is onto. It remains to show only
that 1 is an S-homomorphism. Let m,n € M and s € S. Then
Y([m]kery + NKerp) = ¥ ([m + n]kery) = ©(m +n)
= p(m) +¢(n) =¥ ([m]xery) + ¥ ([NlKere)
Q/J(S[W]Kew) = w([sm]Kerap) = p(sm) = sp(m) = sw([m]Kw), and
¥ ([0)kerg) = (0) = 0.

Therefore, 1 is an isomorphism, i.e., M/Kerp = Imyp. O

The analogous First Isomorphism Theorem is found in [1], [2], [4] and [5]. More-
over, the following statements in this section are parallel to the statements in [1], [2]

and [5] by using concepts of ideals and the Rees congruences.

Corollary 1.2.15. Let M and N be S -skew-semimodules and A an ideal of N. If

¢ : M — N is an epimorphism and Keryp C R,-114), then M/R,14 = N/R4.

Proof. Assume that ¢ : M — N is an epimorphism and Kery C R,-14. Define
¥ : M — N/Ra by

P(m) = [gp(m)]RA for all m e M.

Then 1 is well-defined.

Next, we show that ¢ is an epimorphism. Let m,n € M and s € S. Then

Y(m+n) = [ap(m T n)]RA vV [(p(m) + w(n)}RA

Hence v is an S-homomorphism.
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Let [x]r, € N/Ra where x € N. Then there exists m € M such that ¢(m) =z
since ¢ is surjective. Thus ¥(m) = [gp(m)]RA = [z]g,. This shows that ¢ is

surjective. Hence v is an epimorphism.

To show that Kery = Ry,-141, first, let (m,n) € Kery. Then

[p(m)], = 6(m) = (n) = [p()] ..
Thus (p(m),(n)) € Ra, ie., o(m) = @(n) or o(m),¢(n) € A. If ¢(m),p(n) € A,
then m,n € ¢~ '[A] so that (m,n) € R,-1pa. lip(m) = ¢(n), then (m,n) € Kere C
R,-114). Hence Kery C Ry-1q4)-

Next, let (m,n) € Ry-14). Then m = n or m,n € ¢ '[A]. If m = n, then
o(m) = ¢(n) so that (m,n) &€ Kerp. If myn € ¢ '[A], then p(m),po(n) € A,
SO [(p(m)]RA = [gp(n)}RA that is ¢¥(m) = ¥(n). Thus (m,n) € Kery. Hence
Ry-114 € Kery. Asaresult, Kert = R,-1p4.

Therefore, by the First Isomorphism Theorem, M/R,-114 = N/R4. U

Theorem 1.2.16. Second Isomorphism Theorem

Let N be a skew-subsemimodule of an S -skew-semimodule M and A an ideal

of M. If NN A#D, then N/Ryoa = (N + A% /Ry

Proof. Let a € A. Then a = 0+4a so that A € N+ A% which is a skew-subsemimodule
of M by Proposition 1.1.17 (iv). Moreover, A is an ideal of N + A° from Proposi-

tion 1.1.17 (i). Define ¢ : N — (N + A%) /R by
o(n)=[n]g, forall ne N.

Then ¢ is well-defined. To show that ¢ is an S-homomorphism; let m,n € N and

s € S. Then

p(m+n) =[m+nlr, = [mlr, + [n]r, = ©(m) +o(n),
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Hence ¢ is an S-homomorphism.

Let [m|g, € (N + A")/Rs where m € N + A°. Then m = n+ a for some n € N
and a € A. If a = 0, then m = n that is p(n) = [n]g, = [m|g,. Next, assume
that @ € A which is an ideal of M. Then m = n+a € A so that [m]g, = A by
Corollary 1.2.13. Since N N A # (), there exists pe€ NN A. Then pe N and pe A
so that ¢(p) = [plr, = A = [m|g,. This shows that ¢ is surjective.

Finally, we show that Kere = Ryna. Note from Proposition 1.1.17 (ii) that
NNA is an ideal of N so that Ryna C N x N. Let (m,n) € Kery. Then m,n € N
and p(m) = ¢(n) so that [m|g, = [n]g, which implies that (m,n) € Ra. Thus
m=mnorm,né€A. Ifm=n, then (m,n) € Ryaa. lf m,n € A, then mne NNA
so (m,n) € Ryna. Hence Kerg C Ryna. On the other hand, let (m,n) € Ryna-
Then m =n or m,n € NOA. If m=n, then o(m) = ¢(n) so that (m,n) € Kery.
If m,n € A, then o(m) = [m|g, = A= [n]r, = @(n) that is (m,n) € Kery. Hence
Rynna € Kery. This shows that Kerp = Ryna.-

Therefore, N/Ryna = (N + A%) /R4 by the First Isomorphism Theorem. O

Lemma 1.2.17. Let A and B be ideals of an S-skew-semimodule M such that
A C B. Define a relation py on B by ps = {(a,b) € BxBla=borabe A}.

Then

(i) pa is a congruence relation on B so that-B/pa exists. Moreover, ps C Ra
and [bl,, = [blr, for all b€ B,
(ii) B/pa is an ideal of M/R4, and

(iii) “if [m|r, € B/pa, then m € B.

Proof. (i) Standard.
(ii) It is clear from (i) that B/pa € M/Ra. Let [b],, € B/pa, [mlr, € M/Rx
and s € S where b€ B and m € M. Thus b+ m,m + b,sb € B since B is an ideal

of M. Moreover, [b],, = [blr, € M/R4. Then
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[Blos + (2L, = B, + [mla, = b+ mlr, = b+, € B/pa,
(mlr, + 0oy = lmlr, + [blry = [m +br, = [m+0],, € B/pa, and
S[blps = 5[E]1s = [y = [sblps € B/pa.
Therefore, B/pa is an ideal of M/R,.
(iii) Assume that [m|g, € B/pa. Then there exists b € B such that [m]g, = [b],, -
Thus [m|g, = [bJr, from (i) so that (m.,b) € R4. As a result, m = b € B or

m,be AC B. O

Theorem 1.2.18. Third Isomorphism Theorem

Let A and B be ideals of an S -skew-semimodule M such that A C B. Then
M/R4

M/Rp =
/R Rpypa)

where pa is defined tn Lemma 1.2.17.

Proof. Define ¢ : M/R4 — M/Rp by
@([m]RA) = |m|g, forall me M.

Let m,n € M be such that [m]z, = [n|g,. Then (m,n) € Ry. Since A C B,

73
it follows that R4 C Rp. Thus (m,n) € Rp so that [m|g, = [n]r,. Hence ¢ is
well-defined. Moreover, it is obvious that ¢ is surjective.
To show that ¢ 1s an 'S-homomorphism, let m;n € M and s € S. Then
p([mlrs + [lra) = ¢([m +nlry) = [m+ g,
= [mlas + [nlrs =@([mlry) +0([n]R, ), and
p(slmlr,) = (lsmlr,) = [smlr, = slm]r, = s¢([m]r.)-
Clearly, ¢([0]r,) = [0]r, . Hence ¢ is an S-homomorphism.

By Lemma 1.2.17, it follows that B/p,4 is an ideal of M/R,. Recall that

Rojon = { ()nas [1ln,) € M/RaxM/Ra | [, = [nlr, or [l (o], € Bfpa}
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Next, we will show that Kery = R(g,,). Let ¢([m]r,) = ¢([n]r,) where m,n € M.

Then [m]r, = [n]r, which implies that (m,n) € Rg. Thus m =n or m,n € B. If

5
m = n, then [m]g, = [n]g, sothat ((m]g,, [n|r,) € Ris/p,) . Assume that m,n € B,
then [m]r, = [ml,,, [nlr, = [n],, € B/pa so that ([m]g,,[nlr,) € R/, . Hence
Kerg C Rpjp)-

Suppose that ([m]g,,[n]r,) € Rwjps). Then [mlr, = [n]g, or [mlg,, [n]r, €
B/pa. If [m]r, = [n]r,, then we are done. Assume that [m|g,, [n|r, € B/pa. From
Lemma 1.2.17 (iii), we obtain that m,n € B which is an ideal of M, so (m,n) € Rp.

Thus [m]gr, = [n]gr, thatis o([m]r,) = ¢([n]r,). Hence R/, C Kery. Thus

B

Kergo = R(B/pA)-
M/Ry4

Therefore, by the First Isomorphism Theorem, M/Rp = :
R(B/pa)

The next theorem leads to the Universal Mapping Property of Quotients.

Theorem 1.2.19. Let ¢ : M — N and ¥ : M — P be S-homomorphisms. If ¢ s

surjective and Kery C Kery, then

(i) there exists a unique S-homomorphism p: P — N such that ¢ = po1,

i.e., the following diagram commutes:

(ii). Zsp=1[Zsp] and Imp = Imu, and

(iii) “p is injective if and only if Kery = Keri.

Proof. Assume that 1 is surjective and Kery C Kery.
(i) Since v is surjective, for each p € P there exists m, € M such that ¢(m,,) = p.
Define p: P — N by

wu(p) = p(m,) forall pe P.
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Let p € P and my,my € M be such that ¢¥(my) = ¥(ms) = p. Then (my,my) €
Keryp C Kerp. Thus ¢(my) = ¢(ms). Hence p is well-defined. Moreover, p o 1(m) =
1(¥(m)) = ¢(m) for all m € M. Thus pot = ¢.
Next, we will show that p is an S-homomorphism. Let p;,ps € P and s € S.

Then ¢(my) = p; and ¥ (msg) = py for some my, mg € M. Then

(p1 + p2) = p(¥(ma) + ¥(ma)) = p((my+ msa)) = p(my 4+ mo)
= p(mq) + plma) = p(V(m1)) +p((msa)) = w(pr) + 1(ps2),

p(spr) = p(sv(ma)) = pu(ib(smy)) = @(smy) = sp(my) = sp(¢¥(my)), and

Hence g is an S-homomorphism. Since ¢ is surjective, p is unique.

Therefore, there exists a unique S-homomorphism g : P — N such that ¢ = poy.

(ii) First, let p € Zspu. Then p(p) = 0 and there exists m, € M such that
¢(m,) = p. Thus ¢(m,) = pu(blm,)) = p(p) = 0. This shows that m, € Zsp.
Hence p € ¢[Zsp]. Next, let g € ¢[Zsp]. Then there exists m, € M such that
Y(my) = q and p(mg) = 0. Thus p(q) = p(v(mg)) = ¢(m,) = 0. Hence q € Zsp.
Therefore, Zsu = [Zsp].

In addition, pu[P] = p[[M]] = ¢[M] since ¢ is surjective. Hence Imu = Imep.

(iii) First, assume that p is an injection. It is enough to shew that Kerp C Keri.
Let (mi,ms) € Kerp. Then o(my) = ¢(ms). Thus p(v(mi)) = p(v(ms)), so
(¥(ma);8(ms)) € Kerp. By Lemma 1.2.4 (ii) and g is injective, @(my) = 1(m2) so
(my, my) € Kerty. Therefore, Kerp = Keri.

Conversely, assume that Kerp = Kerty. We will show that p is injective. Let
mi,my € M be such that p(¥(mi)) = p(¢(ms)). Then ¢(mi) = (ms), so

(my,my) € Kerp = Kerty. Thus ¥(my) = 1(ms). Hence pu is injective. O
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Corollary 1.2.20. The Universal Mapping Property of Quotients
Let o : M — N be an S-homomorphism and p a congruence relation on M such
that p C Kerp. Then there exists a unique S-homomorphism ¢ : M/p — N such
that ¢ = 1 o 7w, where 7 is the canonical surjection of M onto M/p. Moreover,

Imyp = Imayp. Equivalently, the following diagram commutes:

MEL . N

X

M/p

Proof. Recall from Proposition 1.2.9 that 7 is an epimorphism and Kerm = p. Hence

the result follows immediately from Theorem 1.2.19. U

Theorem 1.2.21. Let ¢ : M — N and ¢ : P — N be S-homomorphisms. If ¢ is

ingective and Imp C Imap, then

(i) there exists a unique S-homomorphism p: M — P such that ¢ = ¢ o pu,

i.e., the following diagram commutes:

M —2+ N

g
\

P

(i) Zsp =Zsp and v Imp| = Imu, and

(iil) p is injective if and only if ¢ is injective.

Proof. Assume that 1 is injective and Ime C Imap. Then ¢~! : Imip — P is a
monomorphism.

(i) First, we claim that for each m € M there exists a unique p,, € P such
that ¥ (pm) = @(m). Let m € M. Then ¢(m) € Imp C Imi. Thus there is

pm € P such that ¥(p,,) = ¢p(m). Suppose that ¥ (q) = ¢(m) for some ¢ € P. Then
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»(pm) = ¥(q) so that p,, = ¢ since v is injective. Hence the claim is proved. Define
w: M — P by

p(m) =9~ (o(m)) forall m e M.

Then g is well-defined from the above claim.

To show that y is an S-homomorphism, let m;,ms € M and s € S. Then
plma +ma) =97 (p(ma +ma)) = &7 (0(ma) + p(my))
=97 (plm)) + ¢ (p(ma)) = pu(m1) + p(ms),
p(sma) =~ (plsmy)) =" (sp(my)) = s (p(m1)) = sp(ma), and

p(0) = 0.

Hence p is an S-homomerphism. Sinee % is an injection, ou(m) = tporp~! (go(m)) =
w(m) for all m € M. This shows that ¢ = ¥ o u. Next, suppose that v: M — P
is an S-homomorphism such that ) oy = ¢. Then Yoy = ¢ = o u. Since ¢ is
injective, v = pu.

Therefore, there exists a unique S-homomorphism g : M — P such that ¢ = ¢ o pu.

(ii) If m € Zsp, then p(m) =0, so @(m) = ¥ (u(m)) = ¢(0) = 0 which implies
that m € Zsp. This shows that Zsu C Zse. Conversely, let m € Zsp. Then
Y(p(m)) = @(m) = 0. Since ¢ is injective, p(m) = 0 so that m € Zsu. Hence
Zsp C Zsu. As aresult, Zsu = Zsp.

Since ¢ [u[M]] = ¢[M] and ¥ is injective, u[M] = ¢~ '[p[M]]. Hence Imu =
7 [Imep].

(iii) First, assume that g is an injection. Note that 1 is injective and ¢ = o pu
from (i). Hence ¢ is injective.

Next, assume that ¢ is an injection. Let mj,mo € M be such that u(m;) =
p(ms). Then ¢~ (p(m1)) = ¢~ (p(ms)). Since ¥~ and ¢ are injections, my = ms.

Hence p is injective. O



CHAPTER 11

DIRECT PRODUCTS, DIRECT SUMS AND FREE

SKEW-SEMIMODULES

This chapter, we discuss direct products and direct sums of skew-semimodules
over semirings. Moreover, if a semiring has 0 and 1, then we can define a free skew-
semimodule over such a semiring similarly to a free module over a ring. In addition,

most of parallel basic properties still hold.

2.1. Direct Products and Direct Sums

In this section, we define a direct product, a direct sum of skew-semimodules over
semirings and the canonical mappings. Besides, the universal mapping properties of
direct products and direct sums are satisfied for the case of skew-semimodules. Fur-

thermore, the results in this section are important for the next section and Chapter 3.

Proposition 2.1.1. Let (M;);e; be a family of S-skew-semimodules. Then the set

M = 1_[]\/[z 15 an S-skew-semimodule under the additive and scalar multiplication
iel

defined by

(mi)ier + (i)icr = (M +14)icr,

s(mi)ier = (5My)ier,
for all (m;)icr, (ni)icr € M and s € S.

Proof. 1t is easy to see that M is a monoid with (0);c; := (0;);c; as the identity

where 0; is the identity of M; for all 1 € I.
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Let (m;)ier, (n;)icr € M and r,s € S. Then

(r+8)(ma)ier = ((r + s)ma),c; = (rmi + smy)ier
= (rmy)ier + (smi)ier = r(mi)ier + s(Mi)ier,
s((miier + (nier) = s(mi +n2)ier = (s(my +n2)),, = (smi+ sniies
= (sma)ier + (sni)ier = s(mi)ier + s(ni)icr,
(rs)(mi)ier = ((rs)(mi)), ., = (r(sma)),.; = r(smi)ier, and

s(0)ier = (s0)ier = (0)ier-
Therefore, M is an S-skew-semimodule. 0J

Definition 2.1.2. Let (M,;);c; be a family of S-skew-semimodules. The S-skew-
semimodule M = HMZ defined in Proposition 2.1.1 is called the direct product

il

of (M;)ier-

Definition 2.1.3. Let M = HML- be the direct product of a family (M;);e; of
S-skew-semimodules. For eacﬁelio € I, the mapping 7, : M — M,, defined by
Tig ((mi)ig) = my, for all (m;)ie; € M is called the natural or canonical projection
of M onto M;,.

For each jo €1, the mapping A, : M;, — M defined by \; (m) = (m;);es for all
m € M,,, where m; = 0 forall © # j, and m;, = m is called the natural or canonical
injection of M;, into M .
Remark 2.1.4. Let M = H M; be the direct product of a family (M;);c; of S-skew-
semimodules. Then the Céenlonical projection is an epimorphism and the canonical

injection is a monomorphism. Moreover, for all 7,5 € I, with ¢ # j, m 0\ = 1y,

and 7Tio>\j =0.
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Proposition 2.1.5. The Universal Mapping Property of Direct Products
Let M = H M; be the direct product of a family (M;)er of S -skew-semimodules
and w; @ M ZS M; be the canonical projection for all i € I. If Nis an S-skew-
semimodule and ; : N — M; is an S-homomorphism for all i € I, then there exists
a unique S-homomorphism ¢ : N — M such that 1; = m; 0 for all v € I, i.e., the

following diagram commutes for all i € I.

Proof. Define ¢ : N — M by

w(n) = (wi(n))ie[ for all n € N.

It is clear that ¢ is well-defined since ; is well-defined for all s € I. Let m,n € N

and s € S. Then

p(m+n) = (¥i(m+n)),
= (Wi(m) o, + (8:(n) o,
= p(m) +p(n),
p(sm) = (dilsm)) e, = (svilm)).,
= 5(u(m)) ., = se(m), and

p(0) = (¥1(0)) ,¢; = (0)ier-

Hence ¢ is an S-homomorphism.
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Let n € N. For each ¢ € I, we can see that

70 p(n) = mi(io(n)) = mi(((0) e, ) = iln).

Thus ¢, = mop; forall 1 € I.

To verify the uniqueness of ¢, suppose that p : N — M such that m; o p = ¥,
for all i € 1. Let n € N. Then pu(n) = (n;);er for some (n;);e; € M. Thus ¢;(n) =
i o p(n) = m;((n;)jer) = ny for all i € I. Hence p(n) = (n;)ier = (wi(n))iel = p(n)

so that ¢ = u. O

Definition 2.1.6. If B is a set, then we say that a particular property holds for
almost all elements in B if there is a finite subset F' of B such that the property

holds for every element in B \ F.

Definition 2.1.7. Let (M;);c; be a family of S-skew-semimodules. Then the subset

Z M; = {(mi)iel € H M;

m; = 0 for almost all indices i € }
icl i€l

of H M; is called the direct suwim-of (M;)ier-

iel
Proposition 2.1.8. Let (M;);er be a family of S -skew-semimodules. Then the direct
sum Z M; is a skew-subsemimodule of the direct product HM’
iel icl
Proof. Note that for each (m;);e; € ZM“ there exist only finite ¢ € I such that

il

m; # 0. The result follows. OJ
Proposition 2.1.9. The Universal Mapping Property of Direct Sums
Let M = Z M; be the direct sum of a family (M;);er of S -skew-semimodules and
iel
A M; — M be the canonical injection for all i € I. If N is an S -skew-semimodule

and @; : M; — N is an S-homomorphism for all v € I, then there exists a unique
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S-homomorphism ¢ : M — N such that p; = o \; for all i € I, i.e., the following

diagram commutes for all © € I.

M:ZMZ-

el

Proof. Remark here that for each (m;);c; € M, there are exactly finite ¢ € I such

that m; # 0. Define ¢ : M — N by
(ma)ier)= Y ¢ <7Tk ((m ze])) for all (m;)ier € M.
kel

Then v is well-defined since ;. is well-defined for all £ € I and the sum is finite.

Let (m;)ier, (n;)icr € M and s € S. Then

¢((mi)ief + (ni)iel) = ¢<(mz +ny) zeI Z SOk T (m; + nz)zEI)

2 Z op(mg + ng) = Z or(my) + Z oi (1)
o Z or (T (ma)ier) + Z ok (me(ni)ier)

= l/)((mi)iel) + w((ni)iel)a
1/)(3(77%')@'61) I sz zeI Z% 7Tk smy ze])

= pulsmi) ="s > pr(my)
=35 Z or(mr(mi)ier) = s¢((mi)ier), and

¥((0)ser) = 0.

Hence v is an S-homomorphism.
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For each ¢,j € I, with i # j, note that m;o0\; = 1), and m;0\; = 0. Fix i € I and
let m; € M;. Then \;(m;) € M so that w ngk <7Tk )) = @;(my).
Hence p;, =9 o \; forall i € I. re!

Finally, suppose that there exists y: M — N such that ¢; = puo\; forall i € I.
Let (m;)ier € M. If (m;)icr = (0);er, then it is clear that ¥ ((m;)icr) = p((ms)ier)-
Assume that (m;)ier # (0)ier. Then there exist n € N and m;, € M;, such that
m;, # 0 forall k =1,2,...,n. Thus \;, <7Tik ((mz)zg)> = N, (my,) = (pi)ier where

= 0 for all ¢ # ix and p;, = my, forall & = 1,2,...,n . Then (m;)ier =

i iy (7% ((mz)zel>> <SS
pl(maier) = p <i Ay (Wik ((mz)161)>>

E=—¥

- Sl (i)
2 Z oin (i (mi)ier))
=2 alalm)<)

= $((maier)-

Hence v = pu. 0

Remark 2.1.10. Let (1f;);er be-a family of skew-semimodules over a semiring S.

Then Z M, = H M; if and only if I is finite.

1€l el
2.2. Free Skew-semimodules over Semirings

In this section, we assume that each semiring has 0 and 1 such that 0 # 1 and
each skew-semimodule over a semiring satisfies (x) given in Definition 1.1.3. The
notion of free skew-semimodules over semirings is slightly different from the one of

free modules over rings and free semimodules over semirings.



30
Proposition 2.2.1. Let M be an S*-skew-semimodule and B a non-empty subset
of M such that for each m € M, there ezists a unique family (sp)pep of elements

of S such that s, =0 almost all b€ B and m = Z spb. Define an addition & and

beB
a scalar multiplication by

mén= Z(Sb +ty)b, and

beB

sm = Z:(ssb)b7

beB

forallm,n € M and s € S where (s,)pep and (ty)pep are unique families of elements

of S such that s, = 0 and t,y = 0 almost all b,b" € B and m = Zsbb and
beB
n= thb. Then the monoid (M,@®) is an S*-skew-semimodule.
beB

Proof. 1t is clear that (M, @) is a monoid. Next, we will show that M is an S*-skew-

semimodule. Let r,s € § and m,n € M be such that m = Zsbb and n = thb

bEB beB
where (sp)pep and (tp)pep are unique families of elements of S such that s, =0 and

ty = 0 almost all b,/ € B. Then
(i) (r+s)m = Z((T + 8)sp)b = Z(st SR 1 — Z((rsb)b + (ssp)b)

b bep b
= beB(rsb)b @ ;(ssb)b = rm @ sm,

(ii) s(m @ n) = <Z(sb - tb)b> = (s(syte))b= Y | (555 + stu)b
= beZBliiisb)b + (sty)b) f;(ssb)b &) bezB@Z’fb = smdsn,

(iti) (rs)m = bEZB(<rs>sb)b = ;(r(ssw)b = (;@sb)b) = r(sm),

(x) 0m =Y (0s)b=0, and Im=> (Is)b= > sb=m.
beB beB beB
Hence the monoid (M, ®) is an S*-skew-semimodule. O
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Definition 2.2.2. Let M be an S*-skew-semimodule and B a non-empty subset

of M such that for each m € M, there exists a unique family (s;)pep of elements

of S such that s, = 0 almost all b € B and m = Zsbb. Then the monoid M
beB

under @ and the scalar multiplication defined in Proposition 2.2.1 is called a free

S* -skew-semimodule with a basis B.

Proposition 2.2.3. The Universal Mapping Property of Free Skew-semimo-
dules

If M s a free S*-skew-semimodule with a basis B and f: B — N is a map-
ping into an S*-skew-semimodule N , then there erists a unique S-homomorphism

@ : M — N which extends f, i.e., the following diagram commutes:

B—f>N

R

iB,M
i
where ip ar 15 the inclusion map of B into M.
Proof. Let M be a free S*-skew-semimodule with a basis B and f: B — N a map-
ping into an S*-skew-semimodule N . Recall that for each m € M, there exists
a unique family (sp)sep of elements of S such that s, = 0 almost all b € B and
m:Zsbb. Define ¢ : M — N by

beB

w(m) = Zsbf(b) forall m € M.

beB

Since (sp)pep 1s the unique family of elements'of S such that s, =0 almost all b € B
and f is a function, ¢ is well-defined.

To show that ¢ is an S-homomorphism, let m,n € M and s € S. Then there
exist unique families (sp)pep and (tp)pep of elements of S such that s, = 0 and

ty = 0 almost all b,b' € B, m = Zsbb and n = thb. Then

beB beB
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p(m+n) = <Z<3b + L‘b)b> = Z(Sb + 1) f(b) = Z(Sbf(b) +tf (D))

beB beB beB

= Z sp.f(b) + thf(b) = p(m) + p(n),

beB beB

p(sm) = ¢ (Z(Ssb)b> =D (ss0)f(b) = s Y () f(b) = sp(m), and

beB beB beB

2(0) = p(0m) = Y _(0sy) f(b) =0.

beB

Hence ¢ is an S-homomorphism.

Next, let a € B. Then a = Zsbb where s, = 0 for all b # a and s, = 1. Then
beB
poigy(a)=pla)= Z spf(b) = f(a). This shows that ¢ is an extension of f.

beB
Suppose that there is an S-homoemorphism p : M — N such that p extends f.

Let m € M. Then there exists a unique family (sp)pecp of elements of S such that

sy = 0 almost all b e B and m = Z spb. Then

beB

ulm) = pu (Z sbb> = Zsbu(b) = Z spf(b) = (Z sbb) = p(m).

beB beB beB beB

Hence p = . 0J

Proposition 2.2.4. Let S be a semiring with 0 and 1 such that 0 # 1, B be a non-

empty set and M, = S for all b € B. Then ZMb 15 a free S*-skew-semimodule.

beB
Moreover, for each b € B, let f, € ZMb be defined by
beB
1, if Y =0b,
fot) =

0, ifb #£b.
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Then {fb | b e B} s a basis of ZM;, and the map b — f, is a bijection from B
beB

onto {fb’bEB}.

Proof. Since S has 0 and 1, we obtain that ZM;, is an S*-skew-semimodule. Let
beB
(mp)pen € ZMb. Then there are n € N and by, bs,...,b, € B such that m;, # 0

beB
and mp, =0 for all b#b; and i =1,2,...,n. Then

(mp)oes = Y M for =Y 0 fy.
i=1

beB

Suppose that there exists a family (s,)pcp of elements of S such that s, = 0 almost

all b€ B and (my)pep = Z spfp which is a finite sum. Then for each b € B,
beB

my = Tp (Z mb’fb’) = Ty (Z Sb’fb’) = Sp.

b'eB b'eB

Hence (mp)pes = (Sp)pen. By Proposition 2.2.1, Z M, is a free S*-skew-semimodule
beB

with a basis {fb | be B}.
Finally, it is easy to verify that the map b — f, is a bijection from B onto

{f,|be B}. O

Proposition 2.2.5. Let F' be a free S* -skew-semimodule with a basis B. For each

be B, let My, =S Theny My=F.

beB

Proof. We obtain from Proposition 2.2.4 that Z M, is a free S*-skew-semimodule
beB
with a basis B* = { fo ‘ be B } . Moreover, there exists a bijection between B and B*.

By The Universal Mapping Property of Free Skew-semimodules, there exist S-
homomorphisms ¢ : F — ZMb and 1) : ZMb — F such that ¢(b) = f, and

beB beB

Y(fy) =0 forall b e B.
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Now we have ¢ o ¢ : FF — F such that 1 o ¢(b) = b for all b € B, then by
the uniqueness part of The Universal Mapping Property of Free Skew-semimodules,
Yo = 1p. Similarly, ¢ o¢p = 15>, . Therefore, ¢ is an isomorphism, ie.,

ZMbgF. n

beB
Proposition 2.2.6. Let M be an S*-skew-semimodule. Then there exist a free S*-
skew-semimodule F' over S and an epimorphism ¢ : F — M.

Moreover, if M 1is finitely generated, it is possible to choose F with a finite basis.

Proof. Let X generate M. Note that X # (). For each z € X, let M, = S.

Then F = Z M, is a free S*-skew-semimodule with a basis { [z | re X } defined

zeX
in Proposition 2.2.4, and the map f, — « is a bijection. By The Universal Map-

ping Property of Free Skew-semimodules, there exists a unique S-homomorphism

¢ : F'— M such that ¢(f,) =« forall z € X. Let m € M. By Proposition 1.1.13,
k

we can write m:Zrixi where k € N, r; € Sand x; € X forall i € {1,2,... k}.

i=1

k

Then m = Zﬁ'l‘i = st:c where s, = 0 if x # z; for all i € {1,2,...,k} and
i=1 zeX

s, = r; otherwise. Thus

zeX zeX reX

Hence ¢ is surjective. Moreover, it-is clear that { felr € X } is finite if X is finite. [
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EXACT SEQUENCES

In this chapter, we consider a particular skew-semimodule which is also a group.
Doing this leads us to define an exact sequence of skew-semimodules over semirings

and homomorphisms.

3.1. Definitions and The Four Lemma

From now on, only this chapter, we assume that each S-skew-semimodule is
not only a monoid but also a group. Recall that the zero set of a homomorphism
@ : M — N of skew-semimodules is {m e M ‘ o(m) = 0}. Moreover, we can see
that the zero set of a homomorphism of skew-semimodules over semirings is defined
in the same way as the kernel of a homomorphism of modules over rings. An in-
teresting property is that for a given homomorphism ¢ of modules, ¢ is injective if
and only if the kernel of ¢ is {0}. However, the analogous property does not hold
for the case of a homomorphism of skew-semimodules. Nevertheless, assuming that

skew-semimodules M and N are groups gives the same nice result.

Proposition 3.1.1. Let ¢ : M — N be an S-homomorphism. Then ¢ is a

monomorphism if and only if Zsp ={0}.

Proof. It remains to verify the necessary part. Assume that Zsp = {0}. Let
m,n € M be such that ¢(m) = @(n). Then ¢(m —n) = p(m) — ¢(n) = 0, so
m —n € Zsp = {0} that is m —n = 0 which implies that m = n. Hence ¢ is a

monomorphism. O]
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Definition 3.1.2. A sequence M EN N % P of S-skew-semimodules and S-
homomorphisms is said to be ezxact at N provided Imf = Zsg. A finite sequence
My i My ELY My EL R M, of S-skew-semimodules and S-homomorphisms is

exact provided Imf; = Zsf;yq for i =1,2,... ,n—1.

Remark 3.1.3. If a sequence M SN 4op of S-skew-semimodules and S-

homomorphisms is exact, then go f = 0.

Notation 3.1.4. From now on, the zero skew-semimodule will be denoted by 0.
Moreover, 0 — M and M — 0 stand for the inclusion map and the zero map,

respectively.

Proposition 3.1.5. Let f : M — N be an S-homomorphism. Then the following
statements hold:

(i) f is a monomorphism if and only if 0 — M JoN s exact,

(ii) f is an epimorphism if and only if M LN 0is exact,

(iii) f is an isomorphism if and only if 0. — M JON v 0 is exact.

Proof. Obvious. O

Definition 3.1.6. Let M, N and P be S-skew-semimodules. The exact sequence

of the form 0 — M I, N2 P.— 0 is called a-short exact sequence.

Theorem 3.1.7. Given the diagram of S -skew-semimodules and S -homomorphisms

in which the row is exact and goh = 0. Then there exists a unique S-homomorphism

@ :Q — M such that the complete diagram is commutative, i.e., fop =h.



37
Proof. Since goh = 0 and the row is exact at N, it follows that Imh C Zsg = Imf.
Then for each ¢ € @ there exists m, € M such that f(m,) = h(g). Thus we define
¢:Q— M by

o(q) =m, forall g€ Q.

Let ¢1,¢2 € @ be such that ¢; = ¢». Then h(q1) = h(¢2) and there exist mg,, m,, € M
such that f(mg) = h(q:) and f(mg,) = h(gs) so f(mg,) = f(m,,). By the exactness
at M, we obtain that f is injective which implies that m, = m,. Thus ¢ is

well-defined.

To show that foy = h,let ¢ € Q. Then f(m,) = h(q) for some m, € M. Hence
fowla) = flmg) = hlq)

Next, we will show that ¢ is an S-homomorphism. Let ¢;,¢qo € @ and s € S.

Then

fle(m+ @) = g+ @) = h(q) +lg) = fela)) + fela) = fle(n) + ()

and

f(olsq)) = h(sq) = shlq) = sf(elq)) = f(selq)).

Thus

olq1 + @) = o(q1) + ©(q2), (sq1) = sp(q1) and (0) =0

since f is injective. Therefore, ¢ is an S-homomorphism.

Finally, the uniqueness of ¢ is immediate from the injectivity of f. OJ

We can state and prove The Four Lemma and its corollaries in the same way as

those in module theory.
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Theorem 3.1.8. The Four Lemma

Suppose that the following diagram of S -skew-semimodules and S -homomorphisms

M-t N-—L.p " .g
\a \B v la
M/ f, » N/ g/ > P/ hl Ql

15 commutative and has exact rows. Then
(i) if o,y are epimorphisms and § is a monomorphism, then (3 is an epimor-
phism,
(i) if « is an epimorphism and (3,0 are monomorphisms, then ~y is a monomor-

phism.

Proof. (i) Assume that @ and « are epimorphisms and ¢ is a monomorphism. Let
n’ € N'. Then ¢'(n’) € P'. Since 7 is an epimorphism, there exists p € P such that

v(p) = ¢'(n’). By the commutativity of the right-square, we have

5(h(p)) =W (v(p)) = h'(g'(n)) =0,

since h' o ¢’ = 0. Then h(p) € Zsé so that h(p) = 0 since J is a monomorphism.
Thus p € Zsh = Img because of the exactness at P. Hence there is n € N such

that g(n) = p. By the.commutativity of the middle square,

Then ¢'(n' — 3(n)) = ¢'(n') — ¢ (B(n)) = 0. Thus n' — B(n) € Zsg’ = Imf’. Then
there exists m’ € M’ such that f'(m’) = n’ — (n). Since « is an epimorphism,

a(m) =m' for some m € M. By the commutativity of the left-square,
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Hence n' = 3(f(m)) + B(n) = B(f(m) + n) where f(m)+n € N.
Therefore, 3 is an epimorphism.
(ii) Assume that « is an epimorphism and 3, are monomorphisms. Let p € Zs7.

By the commutativity of the right-square,

5(h(p)) =K' (v(p)) = W' (0) =0,

so that h(p) = 0 since 0 is a monomorphism. Then p € Zsh = I'mg because of
the exactness at P. Hence g(n) = p for some n € N. By the commutativity of the

middle square,

which implies that 5(n) € Zsg’ = Imf" which is obtained from the exactness at N'.
Then there exists m’ € M’ such that f'(m') = §(n). Since « is an epimorphism,

a(m) =m' for some m € M. By the commutativity of the left-square,

This shows that f(m) = n since (5 is a monomorphism. Hence p = g(n) = g(f(m)) =0
because of the exactness at N.

Therefore, v is a monomorphism. U

Corollary 3.1.9. The Five Lemma

Suppose that the following diagram of S -skew-semimodules-and S -homomorphisms

K f1 M f2 N f3 p fa Q
\ aq \ a9 \ as oy | as

! ! / / /

K' == M = N P @

1s commutative and has exact rows. If aq, as, oy, a5 are isomorphisms, then so is as.
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Proof. Applying The Four Lemma (i) to the right-hand three squares, we obtain that
ag is an epimorphism. Again applying The Four Lemma (ii) to the left-hand three

squares, we see that g is a monomorphism. Therefore, ag is an isomorphism. [

Corollary 3.1.10. The Short Five Lemma

Suppose that the following diagram of S -skew-semimodules and S -homomorphisms

0 — /LS 0
0 =l A4 W =P 0
f g

1s commutative and has exact rows. If a and v are isomorphisms, then so is 3.

Proof. Obvious. O

3.2. Isomorphic Short Exact Sequences

We investigate when given two short exact sequences are isomorphic.

Definition 3.2.1. Given two short exact sequences 0-— M I, N-% P —0and

g/

0 — M LN S p s 0. Then they are said to be isomorphic if there is a

commutative diagram

0O ——— M N - P 0
0 — M — N’ — P’ 0
f g

such that «, 3 and ~ are isomorphisms.
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Remark 3.2.2. From the definition of isomorphic short exact sequences, it is easy

to see that the diagram

0o— M 1o N2 .p 0

-}

0 ——= M —— N —— P

f! g

0

is also commutative.

The statements and proofs of the following results are similar to those in module
theory.
Let M and N be S-skew-semimodules. Then we denote the direct sum of M

and N by M & N.

Theorem 3.2.3. Let M and N be S -skew-semimodules. Then the sequence
0—~M>MaN">N —0

15 exact, where X and w are canonical injection and projection, respectively.

Moreover, the given sequence is called the direct sum short exact sequence.

Proof. It remains to show that the sequence is exact at M@N. Note that A(m) = (m,0)
and 7(m,n) =n for all m € M land n € N. Then
ImX = {(m,0) | me M} = Zsm.

Hence the sequence. is exact. 0

Theorem 3.2.4. Let 0 — M, ER N % My — 0 be a short exact sequence

of S-skew-semimodules and S-homomorphisms. Then the following conditions are

equivalent.

(i) There is an S-homomorphism h : My — N with go h = 1y,.
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(ii) There is an S-homomorphism k : N — My with ko f = 1y .

(iii) The given sequence is isomorphic to the direct sum short exact sequence

O_’Mlil’Ml@MQﬂMQ_’O

Proof. First of all, note that
0= My &Myt My — O
is exact from Theorem 3.2.3.

()= (iil) Assume that (1) holds. Now, we obtain that f : M; — N and h : My — N
are S-homomorphisms. Thus by The Universal Mapping Property of Direct Sums,
there exists an S-homomorphism ¢ : M; & My — N, given by

w(my,mg) = f(my) + h(ms) for all (my,ms) € My & Ms.
We will show that the following diagram

A1 ™2

0 M, M, @ M, M, 0
\ 1y \ ® \ 1o,
0 M, 7 N p My - 0

is commutative. We can see that

e(A(m1)) = @((m1,0)) = f(mr) + h(0) = f(m1) = f(1m, (m1))

for all my; € M;, and since go h = 1, , it follows that
9(90((7711, m2))> = g(f(ml) + h(mz)) = g(f(ml)) + g(h(mg)) =0+ my

=M = 7r2((m1, m2)) = 1, <7T2((m1,m2)))
for all (my, my) € My @ Ms. This shows that the above diagram is commutative.
By The Short Five Lemma, ¢ is an isomorphism. Therefore, the two sequences

are isomorphic.
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(ii) = (iii) Assume that (ii) holds. Now, we obtain that k : N — M; and g : N — M,
are S-homomorphisms. Thus by The Universal Mapping Property of Direct Prod-

ucts, there exists an S-homomorphism ¢ : N — M; x My = M; & M,, given by
¥(n) = (k(n),g(n)) forallne N.

We will show that the following diagram

0 M J N = M, 0

o T

My T M, & My — M,

2

is commutative. Since ko f = 1), we can see that

G (fma)) = (k) 5o (Fm0)) = (ma,0) = da(ma) = A (Las, ()

for all m; € My, and

o (¥ (n)) =72 (k(n), g(n)) = g(n) = 1, (9(n))

for all n € N. This shows that the above diagram is commutative. By The Short
Five Lemma, v is an isomorphism.

Therefore, the two sequences are isomorphic.

(ili) = (1)&(ii) Given a commutative diagram with exact rows and an isomor-

phism «

A ™2

0 My——— M, & My~——= M, 0
T 9
1ar e 1y
0 My— N 7 M 0
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Define h: My — N and k: N — M; by

h(mgy) = O{()\Q(mQ)) for all my € M,, and
k(n) =m(a"'(n)) forallne N.

Since o, ™!, Ay and 7 are S-homomorphisms, h and k are also S-homomorphisms.

Let my € My and m; € M. Then
g(h(m2)) = g(oz()\Q(mg))) = g(a((O,mg))) = 1, <7T2((0,m2))> = my, and
k(f(m)) = m (ofl(f(ml))> 2 (A1(1M1<m1))) —

Therefore, goh =1y, and ko f =1, . O



CHAPTER IV

INTRODUCTION TO ARTINIAN AND NOETHERIAN

SKEW-SEMIMODULES

The concepts of Artinian and Noetherian modules over rings have been found
in module theory. Moreover, Artinian and Noetherian skewmodules over skewrings
have been introduced in [2]. These were studied regarding chains of submodules
and of normal subskewmodules, respectively. In this chapter, we define Artinian
and Noetherian skew-semimodules over semirings involving chains of ideals of skew-

semimodules. We can also prove some basic theorems.

4.1. Artinian and Noetherian Skew-semimodules

Definition 4.1.1. Let M be an S-skew-semimodule. A chain A; € Ay C --- or
A D Ay D --- of subsets of M is said to be an ideal series of M if A; is an ideal

of M for all 7 € N.

Definition 4.1.2. An S-skew-semimodule M is said to be Artinian if every decreas-
ing ideal series A; O Ay D --- of M, there exists n € N such that A; = A,, for all
integers 7 > n.

An S-skew-semimodule M is said to be Noetherian if every inereasing ideal series

Ay C Ay C -+ of M, there exists n € N such that A; = A, for all integers i > n.

Theorem 4.1.3. Let M be an S -skew-semimodule. Then M is Artinian if and only

if for every non-empty collection of ideals of M has a minimal element.

Proof. Assume that M is Artinian. Let Y be a non-empty collection of ideals of M .

Then we choose A; € Y. If A; is not minimal, then there exists A, € Y such that
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Ay © Ay, If we choose A; € Y which is not minimal, then there exists A;1; € Y
such that A;;1 € A;. After a finite step, we obtain a minimal element of Y. If not,
then we would have an infinite chain of ideals of M such that A; 2 Ay D --- which
contradicts the assumption that M is Artinian.
Conversely, assume that every non-empty collection of ideals of M has a minimal
element. Let A; D Ay DO --- be a decreasing ideal series of M. Then the set
{A;, Ay, ...} has a minimal element, say A, . Hence A, = A,; for all i € N.

Therefore, M is Artinian. 0

Theorem 4.1.4. Let M be an S -skew-semimodule. Then M s Noetherian if and

only if for every non-empty collection of ideals of M has a maximal element.
Proof. This can be verified similarly to the proof of Theorem 4.1.3. U

Theorem 4.1.5. Let M be an S-skew-semimodule. If every skew-subsemimodule

of M is finitely generated, then M is Noetherian.

Proof. Let C : Ay C Ay C --- be an increasing ideals series of M. By Proposi-
tion 1.1.16 (ii), we obtain that |J,.y A; is an ideal of M. Let A = |J;cy Ai- Then
A° is a skew-subsemimodule of M. By assumption, A% = [B], where B is a finite
subset of M, so A? is the smallest skew-subsemimodule of M containing B. Given
B = {by,by,...,by}. Thenfor each j € {1,2, ..., k}, there is A;; € C such that
b; € A;;. Hence there exists n € N such that b; € 4, for all j € {1,2,...,k} so that
B C A, C A% Then A° C AY thatis AC A, CA. Hence 4, = A= Uien 4i- 1t

follows that A, = A; for all integers 7 > n. Therefore, M is Noetherian. O

Theorem 4.1.6. Correspondence Theorem
Let A be an ideal of an S-skew-semimodule M . Then there is an inclusion-
preserving bijection between the collection of ideals of M /R4 and the collection of

ideals of M containing A.
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Proof. Let X and Y be the collection of all ideals of M containing A and the
collection of all ideals of M/R,4, respectively. By Lemma 1.2.17, for each B € X, we
obtain that B/pa is an ideal of M/R, where ps = {(a,b) € Bx Bla=bora,be
A}. Define ¢ : X — Y by

©(B)=B/pa for all B e X.

Then ¢ is well-defined and it is easy to verify that ¢ is inclusion-preserving.

Next, we will show that ¢ is injective. Let B;, By € X be such that p(B;) =
©(By). Then By/pa = By/pa. Let b € By. Then [b],, € Bi/pa = By/pa so that
b € By. This shows that By € By. Similarly, we can show that By C B;. Hence
By, = By which implies that ¢ is injective.

It remains to show that ¢ is surjective. Let D € Y. Then it is clear that
A € D. Moreover, we obtain from Proposition 1.1.19 (iii) that #—!'[D] is an ideal
of M where m: M — M/R, is the canonical surjection. Let a € A. Then by
Proposition 1.2.11 w(a) = [a]g, = A € D. Thus a € 7 !'[D]. This shows that
A C 77'[D]. Hence 77'[D] € X. We claim that 7[D]/pa = ¢(77'[D]) = D.
First, let [d],, € 7 '[D]/pa where d € 7= *[D], so [d],, = [d|r, = 7(d) € D. Next,
let [c]r, € D. Then w(c)="c|p, € D so c€w *[D] which implies that

lc]r, =[]y, € 7 [D]/pa. This shows that ¢ is surjective. O

Theorem 4.1.7. Let A be an ideal of an Artinian. S -skew-semimodule M . Then,
(i) for every chain Ay D Ay D -+ of ideals of A° such that A; is an ideal
of M _for.all i.€ N, there exists n € N such that A, = A; for all integers
1>n,

(ii) M/R4 is Artinian.

Proof. Let A be an ideal of an Artinian S-skew-semimodule M .
(i) Note that such a decreasing chain of ideals of A° is a decreasing ideals series

of M. The result follows immediately.
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(ii) Let Ay D Ay D --- be any decreasing ideal series of M/R4. By the Cor-
respondence Theorem, for each ¢ € N there exists an ideal B; of M containing A
such that B;/pa = A;. Moreover, we obtain that By O By O -+ is a decreasing
ideal series of M. Since M is Artinian, there exists n € N such that B, = B; for
all integers ¢ > n. It follows that A, = B, /pa = Bi/pa = A; for all integers i > n.

Therefore, M/R, is Artinian. O

Theorem 4.1.8. Let A be an ideal of a Noetherian S -skew-semimodule M . Then,

(i) for every chain Ay C Ay C --- of ideals of A° such that A; is an ideal
of M for all i € N, there exvists n € N such that A, = A; for all integers
1>n,

(i) M/Ry4 is Noetherian.

Proof. This can be verified similarly to the proof of Theorem 4.1.7. 0J
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