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CHAPTER I

INTRODUCTION

In [3], Sirichan Pahupongsab studied and generalized theorems in vector spaces

over fields to those in vector spaces over semifields satisfying a certain property.

Moreover, she considered linear transformations of vector spaces over semifields.

In this research, we carry on investigating and generalizing some other theorems in

vector spaces over semifields with the same property. In addition, we study modules

over any semifields and obtain similar theorems in ring modules. Furthermore, we

explore tensor products of modules over semifields and tensor products of vector

spaces over semifields.

This thesis contains 4 chapters. Chapter I is an introduction.

In Chapter II, we introduce some notation, definitions, theorems, corollaries and

examples which are required in the following chapters.

In Chapter III, we study modules over semifields, homomorphisms of modules

over semifields, tensor products of modules over semifields and multilinear maps. We

also give examples in each topic.

In Chapter IV, we extend our work from [3] in order to obtain more theorems

in vector spaces over semifields. Moreover, we discuss deeply in tensor products of

vector spaces over semifields.

In this thesis references are denoted by square brackets [ ] and equations by round

brackets ( ), for example, (1.2.3) denotes the equation 3 in Section 2 of Chapter I.



CHAPTER II

PRELIMINARIES

In this chapter, we present some notation, known definitions and theorems which

will be referred later in this thesis.

2.1. Notation

We summarize standard notation being used throughtout this thesis.

Z is the set of all integers.

Z+ is the set of all positive integers.

Q is the set of all rational numbers.

Q+ is the set of all positive rational numbers.

Q+
0 = Q+ ∪ {0}.

R is the set of all real numbers.

R+ is the set of all positive real numbers.

R+
0 = R+ ∪ {0}.

ℵ0 is the cardinal number of Z.

2.2. Known Definitions and Theorems

In this section, we require the following definitions, theorems and examples that

will be used in Chapter III and Chapter IV.

First, we follow notion of semifields given in [3] and [5].

Definition 2.2.1. [3] A system (K,+, ·) is said to be a semifield if

(i) (K,+) is a commutative semigroup with identity 0,

(ii) (K\{0}, ·) is an abelian group and k · 0 = 0 · k = 0 for all k ∈ K and
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(iii) x · (y + z) = x · y + x · z for all x, y, z ∈ K .

We always denote the identity of the group (K\{0}, ·) by 1K and x · y by xy for all

x, y ∈ K . Moreover, we call an element of K is a scalar.

Definition 2.2.2. [3] Let K be a semifield. A nonempty subset L of K is said to

be a subsemifield of K if

(i) 0 ∈ L and L 6= {0} ,

(ii) for all x, y ∈ L , with y 6= 0, implies xy−1 ∈ L , and

(iii) for all x, y ∈ L, x+ y ∈ L .

Example 2.2.3. [3]

(i) Every field is a semifield.

(ii)
(
Q+

0 ,+, ·
)

and
(
R+

0 ,+, ·
)

are semifields which are not fields.

(iii) If we define the binary operation ∗ on Q+
0 by x ∗ y = max{x, y} for all

x, y ∈ Q+
0 , then

(
Q+

0 , ∗, ·
)

is a semifield but not a field.

(iv) If we define two binary operations ⊕ and � on Z ∪ {ε} , where ε is a new

symbol which is not an integer, by x ⊕ y = max{x, y}, x ⊕ ε = ε ⊕ x = x

and ε⊕ε = ε and x�y = x+y, x�ε = ε�x = ε, ε�ε = ε for all x, y ∈ Z .

Then (Z ∪ {ε},⊕,�) is a semifield but not a field. Moreover, this example

is still true if Z is replaced by Q .

(v) (Q+ ×Q+ ∪ {(0, 0)},+, ·) is a semifield.

Later, we will deal with infinite sets so that we need the followings which are

standard.

Definition 2.2.4. [2] Let α and β be cardinal numbers, A and B be disjoint sets

such that |A| = α and |B| = β . The sum α+β is defined to be the cardinal number

|A ∪B| . The product αβ is defined to be the cardinal number |A×B| .
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Theorem 2.2.5. [2] Schroeder-Bernstein

If A and B are sets such that |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Theorem 2.2.6. [2] If α and β are cardinal numbers such that 0 6= β ≤ α and α

is infinite, then αβ = α; in particular, αℵ0 = α and if β is finite ℵ0β = ℵ0 .

Corollary 2.2.7. [2] If A is an infinite set and P(A) the set of all finite subsets

of A, then |P(A)| = |A|.

The following familiar definitions and theorems regarding notion of free abelian

groups are needed to define tensor products of modules over semifields in Section 3.3.

Theorem 2.2.8. Let X be a nonempty set and let

FA(X) =
{
f : X → Z | ∃F ⊆ X such that |F | <∞ and f(x) = 0 for all x ∈ X\F

}
.

Define + on FA(X) by for any f, g ∈ FA(X),

(f + g)(x) = f(x) + g(x) for all x ∈ X.

Then (FA(X),+) is an abelian group.

Definition 2.2.9. Let X be a nonempty set. For any x ∈ X , define fx : X → Z by

fx(y) = δxy =


1, if y = x,

0, otherwise.

We can see that for each nonempty set X , fx ∈ FA(X) for all x ∈ X .

Definition 2.2.10. Let X be a nonempty set. We define a function τ from X into

FA(X) by τ(x) = fx for all x ∈ X . We usually denote τ(x) by x for any x ∈ X

since τ is injective.
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Proposition 2.2.11. Let X be a nonempty set and f ∈ FA(X). Then either f ≡ 0

(the zero function) or f =
∑
x∈F

f(x)fx where ∅ 6= F ⊆ X, |F | <∞ and f(x) = 0 for

all x ∈ X \ F .

Lemma 2.2.12. For any g ∈ FA(X)\{0}, there exist unique distinct x1, . . . , xn ∈ X

and unique non-zero integers α1, . . . , αn such that

g = α1x1 + · · ·+ αnxn =
∑

x∈{x1,...,xn}

g(x)fx .

Definition 2.2.13. A group A is a free abelian group on a nonempty set X if

(i) A is an abelian group and

(ii) ∀g ∈ A \ {0} ∃! distinct x1, . . . , xn ∈ X ∃!α1, . . . , αn ∈ Z \ {0},

g = α1x1 + · · ·+ αnxn .

We sometimes call X a basis for the free abelian group A .

Note 2.2.14. Let X be a nonempty set. Then (FA(X),+) is a free abelian group

on τ(X). Sometimes, we say, instead that FA(X) is a free abelian group on X .

Proposition 2.2.15. Let A be an (additive) abelian group, X a nonempty set and

φ : X → A a function. Then there exists a unique φ̃ : FA(X) → A such that φ̃ is a

group homomorphism and φ̃ ◦ τ = φ, i.e., the following diagram commutes:

X FA(X)

A

-τ

?

φ

ppppppppppp	 ∃!φ̃



CHAPTER III

MODULES OVER SEMIFIELDS

In this chapter, we investigate modules over semifields in various aspects. Defi-

nitions and theorems of modules over semifields are given in Section 3.1. Then, in

Section 3.2, we study homomorphisms of modules over semifields. We discuss tensor

products of modules over semifields in Section 3.3. Finally, we introduce and study

multilinear maps of modules over semifields in Section 3.4.

3.1. Modules over Semifields

Roughly speaking, we can see from Definition 2.2.1 that the definition of a semifield

is similar to the one of a commutative ring by interchanging roles between addition

and multiplication. For this reason, we define modules over semifields in the same

way as modules over rings.

Definition 3.1.1. Let K be a semifield. A left K -module or left module over K is

an additive abelian group M together with a function K ×M → M (the image of

(k,m) being denoted by km) such that for all m,m1,m2 ∈M and k, k1, k2 ∈ K ,

(i) k (m1 +m2 )= km1 + km2 ,

(ii) (k1 + k2 )m = k1m+ k2m and

(iii) (k1k2 )m = k1 (k2m).

Moreover, if 1Km = m for all m ∈ M where 1K is the identity of
(
K\{0}, ·

)
, then

M is said to be a left vector space over K or unitary left K -module.

A right K -module is defined similarly via a function M ×K →M (the image of

(m, k) being denoted by mk ) and satisfies the obvious analogues of (i)–(iii). Besides,
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M is a right vector space over K or unitary right K -module if it is a right K -module

and m1K = m for all m ∈M .

Note 3.1.2. Let K be a semifield. Then

M is a left K -module if and only if M is a right K -module

with mk = km for all k ∈ K and m ∈M .

Proof. Assume that M is a left K -module. Let k, k1, k2 ∈ K and m,m1,m2 ∈ M .

Thus

(m1 +m2)k = k(m1 +m2) = km1 + km2 = m1k +m2k,

m(k1 + k2) = (k1 + k2)m = k1m+ k2m = mk1 +mk2 and

m(k1k2) = (k1k2)m = (k2k1)m = k2(k1m) = (k1m)k2 = (mk1)k2.

Therefore M is a right K -module.

Conversely, if M is a right K -module, then M is also a left K -module by the

similar way. �

Example 3.1.3.

(i) Qn is both a left and a right module over Q+
0 and also both a left and a

right vector space over Q+
0 for all n ∈ N .

(ii) Rn is both a left and a right module over R+
0 and also both a left and a

right vector space over R+
0 for all n ∈ N .

(iii) Q × R is both a left and a right module over Q+
0 and also both a left and

a right vector space over Q+
0 .

(iv) If n ∈ N and M1, . . . ,Mn are modules over a semifield K , then M1×· · ·×Mn

is a module over K under usual addition and scalar multiplication.
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Definition 3.1.4. Let K and S be semifields. An abelian group (M,+) is a K − S

bimodule provided that M is both a left K -module and a right S -module and

k(ms) = (km)s for all k ∈ K, s ∈ S and m ∈M .

We sometimes write KMS to indicate the fact that M is a K -S bimodule. Sim-

ilary, KM indicates a left K -module M and MS a right S -module M . Sometimes,

we simply write KM as “M is a left K -module”. From now on, unless specified

otherwise, “K -module”means “left K -module”. Moreover, if M is a vectore space

over K , then “vector space ”means “left vector space ”.

Example 3.1.5.

(i) If K is a semifield and M is a K -module, then M is a K -K bimoddule.

(ii) Rn is an Q+
0 -R+

0 bimodule.

Proposition 3.1.6. If M is a module over a semifield K , then the following state-

ments hold:

(i) 0m = 0 for all m ∈M ,

(ii) k0 = 0 for all k ∈ K ,

(iii) −(km) = k(−m) for all k ∈ K and m ∈M and

(iv) −(k(−m)) = km for all k ∈ K and m ∈M .

Proof. This is straightforward. �

From now on, if M is a module over a semifield K , then we write −km instead

of −(km) for all k ∈ K and m ∈M .

Definition 3.1.7. Let M be a module over a semifield K . A submodule of M

is a subset of M which is, itself, a module over K with the addition and scalar

multiplication of M . A submodule of a vector space over a semifield K is called a

subspace.
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Theorem 3.1.8. Let N be a nonempty subset of a module M over a semifield K .

Then N is a submodule of M if and only if n1 − n2, kn ∈ N for all n, n1, n2 ∈ N

and k ∈ K .

Proof. This is straightforward. �

Theorem 3.1.9. [3] Let W be a nonempty subset of a vector space V over a semi-

field K . Then the following statements are equivalent.

(i) W is a subspace of V .

(ii) If w,w1, w2 ∈ W and k ∈ K , then w1 − w2, kw ∈ W .

(iii) If w1, w2 ∈ W and k1, k2 ∈ K , then k1w1 − k2w2 ∈ W .

Example 3.1.10.

(i) Qn is a submodule of Rn over Q+
0 and also a subspace of Rn over Q+

0 .

(ii) Q×R is a submodule of R×R over Q+
0 and also a subspace R×R over Q+

0 .

Theorem 3.1.11. The intersection of any collections of submodules of a module M

over a semifield is also a submodule of M .

Proof. Let M be a module over a semifield K and {Ni | i ∈ I} be any collections of

submodules M . Let n1, n2 ∈
⋂
i∈I

Ni and α, β ∈ K . Then n1, n2, n ∈ Ni for all i .

For each i ∈ I , since Ni is a submodule of M , we have n1 − n2, αn ∈ Ni . Thus

n1 − n2, αn ∈
⋂
i∈I

Ni . Therefore
⋂
i∈I

Ni is a submodule of M . �

Corollary 3.1.12. The intersection of any collections of subspaces of a vector space V

over a semifield is also a subspace of V .

Proposition 3.1.13. Let M be a module over a semifield and X a subset of M .

Moreover, let {Ni | i ∈ I} be the family of all submodules of M containing X , then⋂
i∈I

Ni is the smallest submodule of M containing X .
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Moreover, if M is a vector space over a semifield, then
⋂
i∈I

Ni is the smallest

subspace of M containing X .

Proof. By Theorem 3.1.11,
⋂
i∈I

Ni is a submodule of M . Since X ⊆ Ni for all i ,

we have
⋂
i∈I

Ni is a submodule of M containing X . Let W be a submodule of M

containing X . Then W ∈ {Ni | i ∈ I} . Thus
⋂
i∈I

Ni ⊆ W . Therefore
⋂
i∈I

Ni is the

smallest submodule of M containing X . �

Definition 3.1.14. If X is a subset of a module M over a semifield, then the

intersection of all submodules of M containing X is called the submodule of M

generated by X .

In particular, if M is a vector space over a semifield, then the intersection of all

subspaces of M containing X is called the subspace of M generated by X .

Definition 3.1.15. Let M be a module over a semifield K and X a subset of M . De-

fine 〈X〉 to be the smallest subgroup of M containing KX = {kx | k ∈ K andx ∈ X} .

Moreover, if X = ∅ , then 〈X〉 = {0} .

Note 3.1.16. Let M be a module over a semifield K and X a nonempty subset

of M . Since KX is a subset of M , the subgroup of M generated by KX is, in fact,

〈X〉 = {α1x1 + · · ·+ αnxn + β1(−x́1) + · · ·+ βm(−x́m) |m,n ∈ N, xi, x́i ∈ X and

αi, βi ∈ K} .

Theorem 3.1.17. Let V be a vector space over a semifield and X a subset of V .

Then 〈X〉 is a subspace of V generated by X .

Proof. Let V be a vector space over a semifield K . If X = ∅ , then 〈X〉 = {0}

so that 〈X〉 is a subspace of V generated by ∅ . Thus we assume that X 6= ∅ .

First, we show that 〈X〉 is a subspace of V containing X . Let α ∈ K and

v, v′ ∈ 〈X〉 . Then v − v′ ∈ 〈X〉 since 〈X〉 is a subgroup of V . Since v ∈ V ,
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there exist α1, . . . , αn, ά1, . . . , άm ∈ K and x1, . . . , xn, x́1, . . . , x́m ∈ X such that

v = α1x1 + · · ·+ αnxn + ά1(−x́1) + · · ·+ άm(−x́m). Then

αv = α (α1x1 + · · ·+ αnxn + ά1(−x́1) + · · ·+ άm(−x́m))

= (αα1)x1 + · · ·+ (ααn)xn + (αά1)(−x́1) + · · ·+ (αάm)(−x́m).

Hence αv ∈ 〈X〉 . Thus 〈X〉 is a subspace of V . Since 1K ∈ K , we obtain that

X ⊆ KX ⊆ 〈X〉 . Therefore 〈X〉 is a subspace of V containing X . Let W be

a subspace of V containing X . Thus KX ⊆ KW ⊆ W . Since W is a subspace

of V and KX ⊆ W , we obtain that W is a subgroup of V containing KX . Then

〈X〉 ⊆ W . Therefore 〈X〉 is the smallest subspace of V containing X , i.e., 〈X〉 is a

subspace of V generated by X . �

If V is a vector space over a semifield and X is a subset of V , then we can char-

acterize the smallest subspace W of V generated by X according to Theorem 3.1.17,

i.e., W = 〈X〉 = {α1x1 + · · ·+αnxn+β1(−x́1)+ · · ·+βm(−x́m) |m,n ∈ N, xi, x́i ∈ X

and αi, βi ∈ K} .

On the other hand, if V is a module over a semifield but not a vector space and

X is a subset of V , we know only that the smallest submodule of V generated by X

is just simply the intersection of all submodules of M containing X .

Notation 3.1.18. [3] Let V be a vector space over a semifield and X a subset

of V . If X = {x1, . . . , xn} , let 〈x1, . . . , xn〉 denote
〈
{x1, . . . , xn}

〉
and simply call

〈x1, . . . , xn〉 the subspace of V generated by x1, . . . , xn . We denote the cardinality

of X by |X| .

Definition 3.1.19. Let V be a vector space over a semifield and X a subset of V .

If 〈X〉 = V , then we say that X spans V or V is a vector space generated by X .
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Example 3.1.20. Let e1, . . . , en ∈ Qn be defined by

e1 = (1, 0, . . . , 0, 0), e2 = (0, 1, 0 . . . , 0, 0), . . . , en = (0, 0, . . . , 0, 1).

(i) In Example 3.1.10 (i), Qn is a subspace of Rn over Q+
0 and Qn = 〈e1, . . . , en〉 .

(ii) Rn is a vector space over R+
0 and Rn = 〈e1, . . . , en〉 .

Definition 3.1.21. [3] A subset X of a vector space V over a semifield K is linearly

independent if it satisfies one of the following conditions:

(i) X = ∅ ,

(ii) |X| = 1 and X 6= {0} , or

(iii) |X| > 1 and x /∈
〈
X\{x}

〉
for all x ∈ X .

Moreover, X is said to be a linearly dependent set if X is not linearly independent.

Remark 3.1.22. [3] If X is a subset of a vector space V containing 0, then X is

always linearly dependent.

Definition 3.1.23. [3] Let X be a subset of a vector space V over a semifield. Then

X is a basis of V if X is a linearly independent set which spans V .

Note 3.1.24. If V = {0} , then ∅ is the only basis of V .

Example 3.1.25.

(i) In Example 3.1.20 (i), Qn is a vector space over Q+
0 and {e1, . . . , en} is a

basis of Qn .

(ii) In Example 3.1.20 (ii), Rn is a vector space over R+
0 and {e1, . . . , en} is a

basis of Rn .

3.2. Homomorphisms

In this section, we are interested in studying homomorphisms of modules over

semifields which, again, are analogous to those of modules over rings.
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Definition 3.2.1. Let M and N be modules over a semifield K and T a mapping

from M into N . Then T is said to be a (left)K -module homomorphism if for all

α ∈ K and m,m1,m2 ∈ M ,

T (m1 +m2) = T (m1) + T (m2) and T (αm) = αT (m).

If a (left) K -module homomorphism T is injective, then we say that T is a

(left)K -module monomorphism.

If a (left)K -module homomorphism T is surjective, then we say that T is a

(left)K -module epimorphism.

If a (left)K -module homomorphism T is bijective, then we say that T is a (left)K -

module isomorphism.

Moreover, we say that M is isomorphic to N , denoted by M ∼= N , if there exists

a (left)K -module isomorphism from M into N .

Furthermore, T is said to be a (right)K -module homomorphism if MK and NK

are modules over K and for all α ∈ K and m,m1,m2 ∈M ,

T (m1 +m2) = T (m1) + T (m2) and T (mα) = T (m)α .

Definition 3.2.2. Let V and W be vector spaces over a semifield K . Then a

K -linear transformation is a left K -module homomorphism from V into W .

If a K -linear transformation T is injective, then we say that T is a monomorphism

(over K ).

If a K -linear transformation T is surjective, then we say that T is an epimorphism

(over K ).

If a K -linear transformation is bijective, then we say that T is an isomorphism

(over K ).
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Example 3.2.3.

(i) Let n and m be positive integers with m > n and let Rm,Rn be vector

spaces over R+
0 . Then the function T : Rm → Rn defined by T (x1, . . . , xm) =

(x1, . . . , xn) for all (x1, . . . , xm) ∈ Rm is an R+
0 -linear transformation.

(ii) Let n be a positive integer and Rn be a vector space over Q+
0 . Then the

function T : Rn → Rn defined by T (x1, . . . , xn) = (0, x1, . . . , xn−1) for all

(x1, . . . , xn) ∈ Rn is a Q+
0 -linear transformation.

(iii) Let n be a positive integer and Rn be a vector space over Q+
0 . Then the

function T : Rn → Rn defined by T (x1, . . . , xn) = (xn, x1, . . . , xn−1) for all

(x1, . . . , xn) ∈ Rn is a Q+
0 -linear transformation.

Lemma 3.2.4. Let M and N be modules over a semifield K and T be a K -module

homomorphism of M into N . Then

T (0) = 0 and T (−m) = −T (m) for all m ∈M .

Proof. This is obvious. �

Proposition 3.2.5. Let V and W be vector spaces over a semifield K and T : V → W .

Then the following statements are equivalent:

(i) T is a K -linear transformation.

(ii) For all v1, v2 ∈ V and α, β ∈ K , T (αv1 + βv2) = αT (v1) + βT (v2).

(iii) For all v1, v2 ∈ V and α ∈ K , T (αv1 + v2) = αT (v1) + T (v2).

Proof. This is straightforward. �

Definition 3.2.6. Let M and N be modules over a semifield K and T a K -module

homomorphism of M into N . We define the kernel of T , denoted by kerT , and
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image of T , denoted by imT , as follows:

kerT = {m ∈M | T (m) = 0} = T−1 ({0}) and

im T = {T (m) | m ∈M} = T (M) .

Example 3.2.7.

(i) From Example 3.2.3 (i), kerT = {(0, . . . , 0, xn+1, . . . , xm) | xi ∈ R for i =

n+ 1, . . . ,m} and im T = Rn .

(ii) From Example 3.2.3 (ii), kerT = {(0, . . . , 0, xn) | xn ∈ R} and im T =

{(0, x1, . . . , xn−1) | xi ∈ R for i = 1, . . . , n− 1} = {0} × Rn−1 .

(iii) From Example 3.2.3 (iii), kerT = {(0, . . . , 0)} and im T = Rn .

Proposition 3.2.8. Let M and N be modules over a semifield K and T : M → N

a K -module homomorphism. Then the following statements hold.

(i) T is injective if and only if T (m) = 0 implies that m = 0 for all m ∈M .

(ii) If M ′ is a submodule of M , then T (M ′) is a submodule of N . In particular,

im T is a submodule of N .

(iii) If N ′ is a submodule of N , then T−1 (N ′) is a submodule of M . In partic-

ular, kerT is a submodule of M .

Proof. This is straightforward. �

Corollary 3.2.9. If T : M → N is a K -module homomorphism, then

T is injective if and only if kerT = {0}.

Proposition 3.2.10. Let M,N and W be modules over a semifield K . Then the

following statements hold.

(i) If T1 : M → N and T2 : N → W are K -module homomorphisms, then

T2 ◦ T1 : M → W is also a K -module homomorphism.
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(ii) If T is a K -module isomorphism from M onto N , then T−1 is a K -module

isomorphism from N onto M .

(iii) If T1 : M → N and T2 : N → W are K -module isomorphisms, then

T2 ◦ T1 : M → W is also a K -module isomorphism.

Proof. This is obvious. �

3.3. Tensor Products of Modules over Semifields

This section devotes to tensor products of modules over semifields. For given

modules M and N over a semifield K , we know from Example 4.1.3 (iv) that M×N

is a module over K . We would like to find another module over K arising from M

and N which is different from M ×N .

We come across that the tensor product of M and N is the case. Moreover,

the notion of free abelian groups (summarized in Section 2.2) plays a major role for

construction the tensor product of modules over a semifield.

Definition 3.3.1. Let MK and KN be modules over a semifield K and let F be the

free abelian group FA(M ×N) on M ×N . Let L be the subgroup of F generated

by all elements of the following forms (where α ∈ K,m,m′ ∈M and n, n′ ∈ N ):

(i) fm+m′,n−fm,n−fm′,n , which is the same as τ(m+m′, n)−τ(m,n)−τ(m′, n),

(ii) fm,n+n′−fm,n−fm,n′ , which is the same as τ(m,n+n′)−τ(m,n)−τ(m,n′),

(iii) fmα,n − fm,αn , which is the same as τ(mα, n)− τ(m,αn).

Since L is the subgroup of the abelian group F , we obtain that the quotient group

F/L exists. We call F/L the tensor product of M and N , and denoted by M⊗KN .

Note 3.3.2. If MK and KN are modules over a semifield K , then (M ⊗K N,+) is

an abelian group.
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Definition 3.3.3. Let MK and KN be modules over a semifield K . For each m ∈M

and n ∈ N define a function f(m,n) : M ×N → Z by

f(m,n)(x, y) =


1, if (x, y) = (m,n),

0, otherwise,

for all x ∈M and y ∈ N .

Note 3.3.4. If MK and KN are modules over a semifield K , then it is easy to see

that f(m,n) ∈ F for all m ∈M and n ∈ N .

Recall that F/L = {f + L | f ∈ F} and F = FA(M × N). For any m ∈ M

and n ∈ N , we write m⊗ n for f(m,n) +L = τ(m,n) +L . Moreover, we can see that

F/L is generated by {m⊗ n | m ∈M and n ∈ N} as a ring-module over Z , i.e.,

∀f + L ∈ F/L, f + L =
∑

(m,n)∈F⊆M×N

α(m,n)(m⊗ n), where α(m,n) ∈ Z and |F | <∞ ,

and we simply write f+L as

p∑
i=1

α(mi,ni)(mi⊗ni) or

p∑
i=1

αi(mi⊗ni) where α(mi,ni) =

αi ∈ Z,mi ∈M and ni ∈ N .

Proposition 3.3.5. Let MK and KN be modules over a semifield K . Then, for

each α ∈ K,m,m′ ∈ M and n, n′ ∈ N ,

(i) (m+m′)⊗ n = m⊗ n+m′ ⊗ n,

(ii) m⊗ (n+ n′) = m⊗ n+m⊗ n′ and

(iii) mα⊗ n = m⊗ αn.

Proof. Let α ∈ K,m,m′ ∈ M and n, n′ ∈ N . Recall that τ(m +m′, n)− τ(m,n)−

τ(m′, n) ∈ L . Thus, τ(m+m′, n)−(τ(m,n) + τ(m′, n)) ∈ L . Then τ(m+m′, n)+L =

(τ(m,n) + τ(m′, n)) + L = (τ(m,n) + L) + (τ(m′, n) + L). That is (m +m′)⊗ n =

m⊗ n+m′ ⊗ n .

The other results are obtained by similar agument. �



18

Remark 3.3.6. Let MK and KN be modules over a semifield K . Then

(i) m⊗ 0 = 0⊗ n = 0⊗ 0 = 0 for all m ∈M and n ∈ N ,

(ii) (−m)⊗ n = −(m⊗ n) = m⊗ (−n) for all m ∈M and n ∈ N , and

(iii) am⊗ n = a(m⊗ n) = m⊗ an for all m ∈M,n ∈ N and a ∈ Z .

Proof. The proofs of (i) and (ii) are obvious. We abtain (iii) by applying (ii) and

induction. �

From Remark 3.3.6, we simply write

p∑
i=1

ai(mi⊗ni) as

p∑
i=1

m′
i⊗ni or

p∑
i=1

mi⊗n′i

where ai ∈ Z , mi,∈ M , ni ∈ N and m′
i = aimi , n

′
i = aini . Consequently, if

x ∈M⊗KN , then there exist p ∈ N,mi ∈M and ni ∈ N such that x =

p∑
i=1

mi⊗ni .

Now, we are ready to define a scalar multiplication on the tensor product of M

and N where MK and KN are modules over a semifield K . Recall that M ⊗K N =

FA(M × N)/L where L is defined in Definition 3.3.1 and FA(M × N) is a free

abelian group on a basis τ(M ×N). Thus, we will define a scalar multiplication on

τ(M ×N) first, and then extend linearly in order to obtain a scalar muliplication on

M ⊗K N .

Definition 3.3.7. Let MK and KN be modules over a semifield K . For each α ∈ K ,

m ∈M and n ∈ N , we define a scalar multiplication on a basis τ(M×N) as follows:

α(m⊗ n) = mα⊗ n = m⊗ αn .

Extend the definition linearly, we obtain that

α

(
p∑
i=1

(mi ⊗ ni)

)
=

p∑
i=1

α(mi ⊗ ni)

for all

p∑
i=1

(mi ⊗ ni) ∈M ⊗K N .

Proposition 3.3.8. Let MK and KN be modules over a semifield K . Then M⊗KN

is a K -module. Moreover, if MK and KN are vector spaces over a semifield K , then

M ⊗K N is a vector space over K .
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Proof. This is straightforward. �

Example 3.3.9.

(i) Recall that QQ+
0

and Q+
0
R are vector spaces over Q+

0 . Then the tensor

product Q⊗Q+
0

R is a vector space over Q+
0 .

(ii) Let n,m ∈ N . Since Qn
Q+

0

and Q+
0
Rm are vector spaces over Q+

0 , the tensor

product Qn ⊗Q+
0

Rm is a vector space over Q+
0 .

A very important tool for studying tensor products of modules over rings is the

universal mapping property of tensor products. How so?

For given modules M,N and A over a ring R , in order to define an R-module

homomorphism from the tensor product M ⊗R N into A , it is enough to define a

bilinear map from the product M ×N into A .

This inspires us to achieve the version of the universal mapping property for tensor

products of modules over semifields.

Definition 3.3.10. If MK and KN are modules over a semifield K and A is an

(additive) abelian group, then a middle linear map (over K ) from M ×N to A is a

function T : M ×N → A such that for all m,m′ ∈M,n, n′ ∈ N , and α ∈ K ,

(i) T (m+m′, n) = T (m,n) + T (m′, n),

(ii) T (m,n+ n′) = T (m,n) + T (m,n′) and

(iii) T (mα, n) = T (m,αn).

Example 3.3.11. Given modules MK and KN over a semifield K , the mapping

B : M ×N →M ⊗K N given by (m,n) 7→ m⊗ n is a middle linear map.

Proof. Let m,m′ ∈M,n, n′ ∈ N , and α ∈ K . Then

B(m+m′, n) = (m+m′)⊗ n = m⊗ n+m′ ⊗ n = B(m,n) +B(m′, n),
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B(m,n+ n′) = m⊗ (n+ n′) = m⊗ n+m⊗ n′ = B(m,n) +B(m,n′) and

B(mα, n) = mα⊗ n = m⊗ αn = B(m,αn).

Thus B is a middle linear map. �

Definition 3.3.12. The middle linear map B defined in Example 3.3.11 is called the

canonical middle linear map.

Theorem 3.3.13. Let MK and KN be modules over a semifield K . Then a function

π : FA(M ×N) → FA(M ×N)/L defined by π(x) = x+L for all x ∈ FA(M ×N)

is an epimorphism of groups.

Proof. This is straightforward. �

Definition 3.3.14. The function π in Theorem 3.3.13 is called the canonical projec-

tion.

Lemma 3.3.15. [2] Let A and B be additive abelian group. If f : A → B is a

group homomorphism and C is a subgroup of ker f , then there is a unique group

homomorphism f̂ : A/C → B such that f̂(a+ C) = f(a) for all a ∈ A, im f̂ = imf

and ker f̂ = ker f/C . Moreover, f̂ is an group isomorphism if and only if f is a

group epimorphism and C = ker f . In particular A/ ker f ∼= imf .

Theorem 3.3.16. Let MK and KN be modules over a semifield K and B : M×N →

M ⊗K N the canonical middle linear map. For any module A over K and any

middle linear map β : M × N → A, there exists a unique group homomorphism

β̃ : M ⊗K N → A such that β = β̃ ◦B , i.e., the following diagram commutes:

M ×N M ⊗K N

A

-B

?

β

pppppppppppppp+ ∃!β̃
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Proof. We consider (A,+) as an abelian group. By Proposition 2.2.15, there exists a

unique group homomorphism β̂ : FA(M ×N) → A such that β = β̂ ◦ τ .

Let L be the subgroup defined in Definition 3.3.1. Then L is a subgroup of ker β̂

because β is a middle linear map and β = β̂ ◦ τ .

Let π : FA(M ×N) → FA(M ×N)/L be the cannonocal projection. Since L is

a subgroup of ker β̂ , by Lemma 3.3.15, there exists a unique group homomorphism

β̃ : FA(M×N)/L→ A such that β̂ = β̃ ◦π . Now we obtain a group homomorphism

β̃ : M ⊗K N → A . We must show that i) β = β̃ ◦B and ii) β̃ is unique.

i) Consider the diagram

M ×N FA(M ×N) M ⊗K N

A

-τ

Q
Q

Q
Q

Q
Q

QQs

β

-π

?

β̂

�
�

�
�

�
�

��+

β̃

For each m ∈M and n ∈ N , the canonical middle linear map B : M ×N →M ⊗K N

satisfies B(m,n) = m ⊗ n = τ(m,n) + L = π(τ(m,n)) = π ◦ τ(m,n). This shows

that, in fact, B = π ◦ τ . Hence β̃ ◦B = β̃ ◦ (π ◦ τ) = (β̃ ◦ π) ◦ τ = β̂ ◦ τ = β .

ii) Let f : M ⊗K N → A be a group homomorphism such that β = f ◦B and let

ψ = f ◦ π . Consider the diagram

M ×N FA(M ×N) M ⊗K N

A

-τ

Q
Q

Q
Q

Q
Q

QQs

β

-π

?

ψ β̂

�
�

�
�

�
�

��+

f

β̃

Note that ψ ◦ τ = (f ◦ π) ◦ τ = f ◦ (π ◦ τ) = f ◦B = β . Then ψ = β̂ because of the

uniqueness of β̂ . Next, f ◦ π = ψ = β̂ = β̃ ◦ π . Then, by the uniqueness of β̃ , we

obtain that f = β̃ . �
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Corollary 3.3.17. If MK ,M
′
K , KN and KN

′ are modules over a semifield K ,

f : M →M ′ and g : N → N ′ are right and left K -module homomorphisms, re-

spectively, then there is a unique group homomorphism M ⊗K N → M ′ ⊗K N ′ such

that m⊗ n 7→ f(m)⊗ g(n) for all m ∈M and n ∈ N .

Proof. Define h : M ×K N → M ′ ⊗K N ′ by h(m,n) = f(m) ⊗ g(n) for all m ∈ M

and n ∈ N . From Theorem 3.3.16, it is enough to define a function h from M ×N

into M ′ ⊗K N ′ . Next, we claim that h is a middle linear map. Since f and g are

functions, we obtain that h is well-defined. Let α ∈ K,m,m′ and n, n′ ∈ N . Then

h(m+m′, n) = f(m+m′)⊗ g(n) = (f(m) + f(m′))⊗ g(n)

= f(m)⊗ g(n) + f(m′)⊗ g(n) = h(m,n) + h(m′, n).

Similary, we also have h(m,n+ n′) = h(m,n) + h(m,n′). Next,

h(mα, n) = f(mα)⊗ g(n) = f(m)α⊗ g(n) = f(m)⊗ αg(n)

= f(m)⊗ g(αn) = h(m,αn).

Therefore h is a middle linear map. By Theorem 3.3.16, there exists a unique

group homomorphism h̃ : M ⊗KN →M ′⊗KN
′ such that h̃(m⊗n) = h̃◦B(m,n) =

h(m,n) = f(m)⊗ g(n) for all m ∈M and n ∈ N . �

Note 3.3.18. The unique group homomorphism arised in Corollary 3.3.17 is denoted

by f ⊗ g : M ⊗K N →M ′ ⊗K N
′ .

Proposition 3.3.19. Let MK ,M
′
K ,M

′′
K , KN, KN

′ and KN
′′ be modules over a semi-

field K . If f : M → M ′ and f́ : M ′ → M ′′ are right K -module homomorphisms

and g : N → N ′ and g′ : N ′ → N ′′ are left K -module homomorphisms, then
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(f ′ ⊗ g′)(f ⊗ g) := (f ′ ◦ f)⊗ (g′ ◦ g) : M ⊗K N →M ′′ ⊗K N
′′ is a group homomor-

phism.

If f and g are right and left K -module isomorphisms, respectively, f ⊗ g is a

group isomorphism with inverse f−1 ⊗ g−1 .

Proof. This is straightforward. �

Theorem 3.3.20. Let K and S be semifields and SAK , SA
′
K , KB, KB

′, CK , C
′
K , KDS ,

KD
′
S be modules as indicated.

(i) Then A⊗K B is a left S -module such that s(a⊗ b) = sa⊗ b for all

s ∈ S, a ∈ A and b ∈ B .

(ii) If f : A → A′ is a homomorphism of S −K bimodules and g : B → B′ is

a left K -module homomorphism, then the induced map f ⊗ g : A ⊗K B →

A′ ⊗K B
′ is a left S -module homomorphism.

(iii) Then C ⊗K D is a right S -module such that (c ⊗ d)s = c ⊗ ds for all

s ∈ S, c ∈ C and d ∈ D .

(iv) If f : C → C ′ is a right K -module homomorphism and g : D → D′ is a

homomorphism of K−S bimodules, then the induced map f⊗g : C⊗KD →

C ′ ⊗K D
′ is a homomorphism of right S -modules.

Proof. (i) Let s ∈ S and φs : A × B → A ⊗K B be a function defined by (a, b) 7→

sa ⊗ b . It is easy to verify that φs is a middle linear map over K . Therefore, by

Theorem 3.3.16 there exists a unique group homomorphism φ̃s : A⊗K B → A⊗K B

such that φ̃s◦B(a, b) = φs(a⊗b) = sa⊗b for each a ∈ A and b ∈ B . For each element

u =

p∑
i=1

ai ⊗ bi ∈ A ⊗K B , define su to be the element φ̃s(u) =

p∑
i=1

φ̃s(ai ⊗ bi) =

p∑
i=1

sai⊗ bi . Since φ̃s is a group homomorphism, this action of s is well-defined (that

is, independent of how u is written as a sum of elements in a basis).
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Next, we show that A⊗K B is a left S -module. Let k, k1, k2 ∈ K and u, u1, u2 ∈

A⊗KB . Thus u =
r∑
i=1

ai⊗bi, u1 =

p∑
i=1

a′i⊗b′i , and u2 =

q∑
i=1

a′′i⊗b′′i where ai, a
′
i, a

′′
i ∈ A

and bi, b
′
i, b

′′
i ∈ B . We can see that

s(u1 + u2) = φ̃s

(
p∑
i=1

a′i ⊗ b′i +

q∑
i=1

a′′i ⊗ b′′i

)
= φ̃s

(
p+q∑
i=1

a′i ⊗ b′i

)
=

p+q∑
i=1

φ̃s(a
′
i ⊗ b′i)

=

p+q∑
i=1

sa′i ⊗ b′i =

p∑
i=1

sa′i ⊗ b′i +

q∑
i=1

sa′′i ⊗ b′′i = su1 + su2,

where a′i = a′′i−p and b′i = b′′i−p for i = p+ 1, . . . , p+ q ,

(s1 + s2)u = φ̃s1+s2

(
r∑
i=1

ai ⊗ bi

)

=
r∑
i=1

φ̃s1+s2(ai ⊗ bi)

=
r∑
i=1

(s1 + s2)(ai ⊗ bi)

=
r∑
i=1

(s1ai + s2ai)⊗ bi

=
r∑
i=1

s1ai ⊗ bi +
r∑
i=1

s2ai ⊗ bi

=
r∑
i=1

φ̃s1(ai ⊗ bi) +
r∑
i=1

φ̃s2(ai ⊗ bi)

= φ̃s1

(
r∑
i=1

ai ⊗ bi

)
+ φ̃s2

(
r∑
i=1

ai ⊗ bi

)

= s1u+ s2u

and

(s1s2)u = φ̃s1s2

(
r∑
i=1

ai ⊗ bi

)
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=
r∑
i=1

φ̃s1s2(ai ⊗ bi)

=
r∑
i=1

(s1s2)ai ⊗ bi

=
r∑
i=1

s1(s2ai)⊗ bi

=
r∑
i=1

φ̃s1(s2ai ⊗ bi)

= φ̃s1

(
r∑
i=1

s2ai ⊗ bi)

)

= φ̃s1

(
r∑
i=1

φ̃s2(ai ⊗ bi)

)

= φ̃s1

(
φ̃s2

(
r∑
i=1

ai ⊗ bi)

))
= s1(s2u).

Hence A⊗K B is a left S -module.

(ii) Let f : A→ A′ be a homomorphism of S −K bimodules and g : B → B′ be

a left K -module homomorphism. From (i), we obtain that A ⊗K B and A′ ⊗K B′

are left S -modules. By Corollary 3.3.17, there exists a unique group homomorphism

h : A⊗K B → A′ ⊗K B
′ such that a⊗ b 7→ f(a)⊗ g(b) for all a ∈ A and b ∈ B . So

we claim that, for each s ∈ S and
r∑
i=1

ai ⊗ bi ∈ A⊗K B ,

h

(
s

(
r∑
i=1

ai ⊗ bi

))
= s

(
h

(
r∑
i=1

ai ⊗ bi

))
.

Let s ∈ S and
r∑
i=1

ai⊗bi ∈ A⊗KB . By (i) we have s

(
r∑
i=1

ai ⊗ bi

)
=

r∑
i=1

sai⊗bi .

Thus

h

(
s

(
r∑
i=1

ai ⊗ bi

))
= h

(
r∑
i=1

sai ⊗ bi

)
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=
r∑
i=1

h(sai ⊗ bi)

=
r∑
i=1

f(sai)⊗ g(bi)

=
r∑
i=1

sf(ai)⊗ g(bi)

= s

(
r∑
i=1

f(ai)⊗ g(bi)

)

= s

(
r∑
i=1

h(ai ⊗ bi)

)

= s

(
h

(
r∑
i=1

ai ⊗ bi)

))
.

Hence h is a left S -module homomorphism.

(iii) The proof of (iii) is similar to (i).

(iv) The proof of (iv) is similar to (ii). �

Remark 3.3.21. Let K be a semifield . Every K -module M is a K -K bimodule

from Note 3.1.2. In this case for every modules M and N over K , the tensor product

M ⊗K N is also a K -K bimodule with

k(m⊗ n) = km⊗ n = mk ⊗ n = m⊗ kn = m⊗ nk = (m⊗ n)k

for all k ∈ K,m ∈ M and n ∈ N . Since K is a semifield, the tensor product of

K -modules may be characterized by a useful variation of Theorem 3.3.20.

Definition 3.3.22. Let M,N and W be modules over a semifield K . A bilinear

map (over K ) from M × N to W is a function T : M × N → W such that for all

m,m′ ∈M,n, n′ ∈ N , and α ∈ K ,

(i) T (m+m′, n) = T (m,n) + T (m′, n),

(ii) T (m,n+ n′) = T (m,n) + T (m,n′) and

(iii) T (mα, n) = αT (m,n) = T (m,αn).



27

Note 3.3.23. The conditions (i) and (ii) in Definition 3.3.22 are the same condi-

tions (i) and (ii) in Definition 3.3.10. For a semifield K , the condition (iii) in Def-

inition 3.3.22 clearly implies the condition (iii) in Definition 3.3.10, whence every

bilinear map is a middle linear map.

Example 3.3.24. If M and N are modules over a semifield K , so is M ⊗K N and

the canonical middle linear map B : M ×N →M ⊗K N is easily seen to be bilinear.

Definition 3.3.25. The bilinear map B in Example 3.3.24 is called the canonical

bilinear map (over K ).

Theorem 3.3.26. The Universal Mapping Property of Tensor Products

Let M,N and A be modules over a semifield K and B : M ×N →M ⊗K N the

canonical bilinear map. For any bilinear map β : M ×N → A, there exists a unique

K -module homomorphism β̃ : M ⊗K N → A such that β = β̃ ◦B , i.e., the following

diagram commutes:

M ×N M ⊗K N

A

-B

?

β

pppppppppppppp+ ∃!β̃

Proof. By Theorem 3.3.16 there is a unique group homomorphism β̃ : M ⊗K N → A

such that β = β̃ ◦B . Now, it suffices to prove that

(i) β̃(αx) = αβ̃(x) for all α ∈ K and x ∈M ⊗K N and

(ii) β̃ is unique as a K -module homomorphism.

Let α ∈ K and x ∈ M ⊗K N . Then x =

p∑
i=1

mi ⊗ ni for some mi ∈ M and

ni ∈ N . Therefore

β̃(αx) = β̃

(
α

p∑
i=1

(mi ⊗ ni)

)
=

p∑
i=1

β̃ (α(mi ⊗ ni)) =

p∑
i=1

β̃(αmi ⊗ ni)
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=

p∑
i=1

β̃(B(αmi, ni)) =

p∑
i=1

β(αmi, ni) =

p∑
i=1

αβ(mi, ni) = α

p∑
i=1

β(mi, ni)

= α

p∑
i=1

β̃ ◦B(mi, ni) = α

p∑
i=1

β̃(mi ⊗ ni) = αβ̃

(
p∑
i=1

(mi ⊗ ni)

)
= αβ̃(x).

For a K -module homomorphism f : M ⊗K N → A such that β = f ◦ B , we

obtain that f is a group homomorphism such that β = f ◦ B . By the uniqueness

of β̃ , it follows that β̃ = f . Hence β̃ is a unique K -module homomorphism such

that β = β̃ ◦B . �

Note 3.3.27. If K and S are semifields and MK , KNS, SW are modules, then

M ⊗K N is a right S -module and N ⊗K W is a left K -module by Theorem 3.3.20.

Consequently, both (M ⊗K N)⊗S W and M ⊗K (N ⊗S W ) are well-defined abelian

additive groups.

Theorem 3.3.28. Let K and S be semifields and MK , KNS , SW are modules, then

there is a group isomorphism between (M ⊗K N)⊗S W and M ⊗K (N ⊗S W ).

Proof. For each v ∈ (M ⊗K N) ⊗S W , we know that v is a finite sum

p∑
i=1

ui ⊗ wi

where ui ∈M ⊗K N and wi ∈ W . Since ui ∈M ⊗K N , we obtain that ui is a finite

sum

ri∑
j=1

mij ⊗ nij where mij ∈M and nij ∈ N . Thus

v =

p∑
i=1

ui ⊗ wi =

p∑
i=1

(
ri∑
j=1

mij ⊗ nij

)
⊗ wi =

p∑
i=1

ri∑
j=1

((mij ⊗ nij)⊗ wi).

Therefore, (M ⊗K N) ⊗S W is generated by all elements of the form (m ⊗ n) ⊗ w

where m ∈ M,n ∈ N and w ∈ W . Similarly, M ⊗K (N ⊗S W ) is generated by all

m⊗ (n⊗ w) where m ∈M,n ∈ N and w ∈ W .

Now, we define a function f : (M ⊗K N)×W →M ⊗K (N ⊗S W ) by

f

(
p∑
i=1

mi ⊗ ni, w

)
=

p∑
i=1

(mi ⊗ (ni ⊗ w))
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for all

(
p∑
i=1

mi ⊗ ni, w

)
∈ (M ⊗K N)×W . Next, we show that f is a middle linear

map over S . It is obvious that f is well-defined. Let α ∈ S,
p∑
i=1

mi⊗ni,
p∑
i=1

m′
i⊗n′i ∈

M ⊗K N and w,w′ ∈ W . Thus

f

(
p∑
i=1

mi ⊗ ni +

p∑
i=1

m′
i ⊗ n′i, w

)
= f

(
p+q∑
i=1

mi ⊗ ni, w

)
=

p+q∑
i=1

(mi ⊗ (ni ⊗ w))

=

p∑
i=1

(mi ⊗ (ni ⊗ w))+

q∑
i=1

(m′
i ⊗ (n′i ⊗ w)) = f

(
p∑
i=1

mi ⊗ ni, w

)
+f

(
q∑
i=1

m′
i ⊗ n′i, w

)
,

where mi = m′
i−p and ni = n′i−p for i = p+ 1, . . . , p+ q ,

f

(
p∑
i=1

mi ⊗ ni, w + w′

)
=

p∑
i=1

(mi ⊗ (ni ⊗ (w + w′)))

=

p∑
i=1

(mi ⊗ ((ni ⊗ w) + (ni ⊗ w′)))

=

p∑
i=1

((mi ⊗ (ni ⊗ w)) + (mi ⊗ (ni ⊗ w′)))

=

p∑
i=1

(mi ⊗ (ni ⊗ w)) +

p∑
i=1

(mi ⊗ (ni ⊗ w′))

= f

(
p∑
i=1

mi ⊗ ni, w

)
+ f

(
p∑
i=1

mi ⊗ ni, w
′

)

and

f

((
p∑
i=1

mi ⊗ ni

)
α,w

)
= f

(
p∑
i=1

mi ⊗ niα,w

)
=

p∑
i=1

(mi ⊗ (niα⊗ w))

=

p∑
i=1

(mi ⊗ (ni ⊗ αw)) = f

(
p∑
i=1

mi ⊗ ni, αw

)
.

Therefore f is a middle linear map over S . By Theorem 3.3.16 there exists a group

homomorphism
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φ : (M ⊗K N)⊗S W →M ⊗K (N ⊗S W )

with φ((m ⊗ n) ⊗ w) = φ ◦ B((m ⊗ n), w) = f(m ⊗ n,w) = m ⊗ (n ⊗ w) for all

m ∈M,n ∈ N and w ∈ W .

Similary, a function h : M × (N ⊗S W ) → (M ⊗K N)⊗S W defined by

h

(
m,

p∑
i=1

ni ⊗ wi

)
=

p∑
i=1

((m⊗ ni)⊗ wi)

for all

(
m,

p∑
i=1

ni ⊗ wi

)
∈M × (N ⊗SW ) is also a middle linear map over K which

induces a group homomorphism

ψ : M ⊗K (N ⊗S W ) → (M ⊗K N)⊗S W

such that ψ(m⊗ (n⊗w)) = ψ ◦B(m, (n⊗w)) = h(m,n⊗w) = (m⊗ n)⊗w for all

m ∈M,n ∈ N and w ∈ W .

For each m ∈M,n ∈ N and w ∈ W,ψ ◦ φ((m⊗ n)⊗ w) = (m⊗ n)⊗ w , whence

ψ◦φ is the identity function on (M⊗KN)⊗SW and φ◦ψ(m⊗(n⊗w)) = m⊗(n⊗w),

whence φ ◦ ψ is the identity function on M ⊗K (N ⊗S W ).

Therefore φ and ψ are group isomorphisms. �

Corollary 3.3.29. Let M,N and W be modules over a semifield K . Then

(M ⊗K N)⊗K W ∼= M ⊗K (N ⊗K W )

as a K -module isomorphism.

Proof. From Theorem 3.3.28, the function f : (M ⊗K N)×W → M ⊗K (N ⊗K W )

defined by

(
p∑
i=1

mi ⊗ ni, w

)
7→

p∑
i=1

(mi ⊗ (ni ⊗ w)) is a middle linear map over K .

Next, we show that f is a bilinear map over K . Let α ∈ K,
p∑
i=1

mi⊗ni ∈M⊗KN and

w ∈ W . It remains to show that f

(
α

(
p∑
i=1

mi ⊗ ni

)
, w

)
= αf

(
p∑
i=1

mi ⊗ ni, w

)
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because f

((
p∑
i=1

mi ⊗ ni

)
α,w

)
= f

(
p∑
i=1

mi ⊗ ni, αw

)
. We can see that

f

(
α

(
p∑
i=1

mi ⊗ ni

)
, w

)
= f

(
p∑
i=1

αmi ⊗ ni, w

)

=

p∑
i=1

(αmi ⊗ (ni ⊗ w))

=

p∑
i=1

α (mi ⊗ (ni ⊗ w))

= α

(
p∑
i=1

(mi ⊗ (ni ⊗ w))

)

= αf

(
p∑
i=1

mi ⊗ ni, w

)
.

Therefore f is a bilinear map. By the universal mapping property of tensor products

there exists a K -module homomorphism

φ : (M ⊗K N)⊗S W →M ⊗K (N ⊗S W )

with φ((m ⊗ n) ⊗ w) = B ◦ φ((m ⊗ n), w) = f(m ⊗ n,w) = m ⊗ (n ⊗ w) for all

m ∈ M,n ∈ N and w ∈ W . From the proof of Theorem 3.3.28 we obtain that φ is

a bijective function. Therefore φ is a K -module isomorphism.

Hence (M ⊗K N)⊗K W ∼= M ⊗K (N ⊗K W ) as a K -module isomorphism. �

Later, we shall identify (M ⊗K N)⊗K W as M ⊗K (N ⊗K W ) under K -module

isomorphism in Corollary 3.3.29 and simply write M ⊗K N ⊗KW . It is now possible

to define recursively the n-fold tensor product:

M1 ⊗K M2 ⊗K · · · ⊗K Mn

where K is a semifield and M1, . . . ,Mn are module over K . Such iterated tensor

product may also be characterized in terms of n-linear maps over K which will be

discussed in Section 3.4.
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3.4. Multilinear Maps

Definition 3.4.1. Let M1, . . . ,Mn and W be modules over the same semifield K .

An n-linear map or a multilinear map (over K ) from M1 × · · · ×Mn into W is a

function µ : M1 × · · · ×Mn → W such that if ∀j ∈ {1, . . . , n} ∀m1, . . . ,mn with

mi ∈Mi for all i ∀m′
j ∈Mj ∀α ∈ K , then

(i) µ(m1, . . . ,mj−1,mj +m′
j,mj, . . . ,mj+1, . . . ,mn) =

µ(m1, . . . ,mj−1,mj,mj+1, . . . ,mn)+µ(m1, . . . ,mj−1,m
′
j,mj+1, . . . ,mn) and

(ii) µ(m1, . . . ,mj−1, αmj,mj, . . . ,mj+1, . . . ,mn) =

αµ(m1, . . . ,mj−1,mj,mj+1, . . . ,mn),

In the case n = 2, an n-linear map µ : M1 ×M2 → W is a bilinear map.

Moreover, we use L(M1, . . . ,Mn;W ) to denote the set of all n-linear maps from

M1 × · · · ×Mn into W . For n = 1 we simply write L(M1) instead of L(M1,M1).

Proposition 3.4.2. Let M1, . . . ,Mn and W be modules over a semifield K . Then

L(M1, . . . ,Mn;W ) becomes a module over K if we use the zero function for the zero

element of L(M1, . . . ,Mn;W ) and define the operations as follows:

(i) (f + g)(m1, . . . ,mn) = f(m1, . . . ,mn) + g(m1, . . . ,mn), and

(ii) (αf)(m1, . . . ,mn) = αf(m1, . . . ,mn)

for all α ∈ K , f, g ∈ L(M1, . . . ,Mn;W ) and mi ∈Mi for all i.

Moreover, if M1, . . . ,Mn and W are vector spaces over K , then L(M1, . . . ,Mn;W )

is a vector space over K .

Proof. This is straightforward. �

Multilinear maps are important parts in order to define tensor products of more

than two modules over semifields. We need another version of the universal mapping

property of tensor products. Although, tensor products are defined between two

modules over a semifield, we can generalize this to tensor products of finite modules
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M1, . . . ,Mn over a same semifield K and write this as M1 ⊗K M2 ⊗K · · · ⊗K Mn by

dropping all parentheses because it is independent of those.

Example 3.4.3. Let n ≥ 2 and M1, . . . ,Mn be modules over the semifield K . Then

the function Bn : M1 × · · · ×Mn → M1 ⊗K · · · ⊗K Mn defined by (m1, . . . ,mn) 7→

m1 ⊗ · · · ⊗mn is multilinear.

Proof. This is straightforward. �

Definition 3.4.4. The multilinear map Bn defined in Example 3.4.3 is called the

canonical n-linear map or canonnical multilinear map.

Theorem 3.4.5. Let n ≥ 2, M1, . . . ,Mn and W be modules over a semifield K .

For any multilinear map µ : M1 × . . . ×Mn → W , there exists a unique K -module

homomorphism µ̃ : M1 ⊗K · · · ⊗K Mn → W such that µ = µ̃ ◦Bn , i.e., the following

diagram commutes:

M1 × · · · ×Mn M1 ⊗K · · · ⊗K Mn

W

-Bn

?

µ

pppppppppppppppppppppp� ∃!µ̃

Proof. Let µ be a multilinear map from M1 ⊗K · · · ⊗K Mn into W . We prove by

induction. If n = 2, this is the universal mapping property of tensor products.

For each m ∈Mn+1 , let µm : M1 × · · · ×Mn → W be defined by

µm(m1, . . . ,mn) = µ(m1, . . . ,mn,m) for all mi ∈Mi , 1 ≤ i ≤ n .

Then µm is multilinear. By the induction hypothesis, there exists a unique K -

module homomorphism µ̃m : M1 ⊗K · · · ⊗K Mn → W such that µm = µ̃m ◦ Bn (see
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the following diagram):

M1 × · · · ×Mn M1 ⊗K · · · ⊗K Mn

W

-Bn

?

µm

pppppppppppppppppppppp� ∃!µ̃m

Let β : (M1 ⊗K · · · ⊗K Mn) ×Mn+1 → W be defined by β(x,m) = µ̃m(x) for

all x ∈ M1 ⊗K · · · ⊗K Mn and m ∈ Mn+1 . Then β is well-defined because of the

uniqueness of µ̃m . Next, we show that β is bilinear.

Let α ∈ K , x, y ∈M1 ⊗K · · · ⊗K Mn and u, v ∈Mn+1 . Then

β(x+ y, v) = µ̃v(x+ y) = µ̃v(x) + µ̃v(y) = β(x, v) + β(y, v) and

β(αx, v) = µ̃v(αx) = αµ̃v(x).

Moreover, we have to show that

(i) β(x, u+ v) = β(x, u) + β(x, v), i.e., µ̃u+v = µ̃u + µ̃v and

(ii) β(x, αv) = αβ(x, v), i.e., µ̃αv = αµ̃v .

Recall that µ̃u+v is the unique K -module homomorphism such that µu+v

= µ̃u+v ◦Bn . Thus it is enough to show only that (µ̃u+ µ̃v)◦Bn = µu+v . Let mi ∈Mi

for all i = 1, . . . , n . Then

((µ̃u + µ̃v) ◦Bn) (m1, . . . ,mn) = (µ̃u ◦Bn) (m1, . . . ,mn) + (µ̃v ◦Bn) (m1, . . . ,mn)

= µu(m1, . . . ,mn) + µv(m1, . . . ,mn)

= µ(m1, . . . ,mn, u) + µ(m1, . . . ,mn, v)

= µ(m1, . . . ,mn, u+ v)

= µu+v(m1, . . . ,mn).
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Since µ̃αv is the unique K -module homomorphism such that µαv = µ̃v ◦ Bn , we

will show that (αµ̃v) ◦Bn = µαv . Let mi ∈Mi for all i = 1, . . . , n . Then

((αµ̃v) ◦Bn) (m1, . . . ,mn) = α (µ̃v ◦Bn) (m1, . . . ,mn)

= αµv(m1, . . . ,mn)

= αµ(m1, . . . ,mn, v)

= µ(m1, . . . ,mn, αv)

= µαv(m1, . . . ,mn).

Therefore β is a bilinear.

For each mi ∈ Mi for all i = 1, . . . , n, n + 1. Consider the bilinear map B :

(M1 ⊗K · · · ⊗K Mn) × Mn+1 → (M1 ⊗K · · · ⊗K Mn) ⊗K Mn+1 . We can see that

canonical

B(Bn(m1, . . . ,mn),mn+1) = Bn(m1, . . . ,mn)⊗mn+1

= (m1 ⊗ · · · ⊗mn)⊗mn+1

= m1 ⊗ · · · ⊗mn ⊗mn+1

= Bn+1(m1, . . . ,mn,mn+1).

Now, fix i ∈ {1, . . . , n, n+ 1} and let α ∈ K , mi,m
′
i ∈Mi for ali i .

Case 1 1 ≤ i ≤ n . Then

Bn+1(m1, . . . ,mi +m′
i, . . . ,mn,mn+1)

= B (Bn(m1, . . . ,mi +m′
i, . . . ,mn),mn+1)

= B(Bn(m1, . . . ,mi, . . . ,mn) +Bn(m1, . . . ,m
′
i, . . . ,mn),mn+1)
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= B (Bn(m1, . . . ,mi, . . . ,mn),mn+1) +B (Bn(m1, . . . ,m
′
i, . . . ,mn),mn+1)

= Bn+1(m1, . . . ,mi, . . . ,mn,mn+1) +Bn+1(m1, . . . ,m
′
i, . . . ,mn,mn+1)

and

Bn+1(m1, . . . , αmi, . . . ,mn,mn+1) = B (Bn(m1, . . . , αmi, . . . ,mn),mn+1)

= B (αBn(m1, . . . ,mi, . . . ,mn),mn+1)

= αB (Bn(m1, . . . ,mi, . . . ,mn),mn+1)

= αBn+1(m1, . . . ,mi, . . . ,mn,mn+1).

Case 2 i = n+ 1. Then

Bn+1(m1, . . . ,mn,mn+1 +m′
n+1)

= B
(
Bn(m1, . . . ,mn),mn+1 +m′

n+1

)
= B (Bn(m1, . . . ,mn),mn+1) +B

(
Bn(m1, . . . ,mn),m

′
n+1

)
= Bn+1(m1, . . . ,mn,mn+1) +Bn+1(m1, . . . ,m

′
n,mn+1)

and

Bn+1(m1, . . . ,mn, αmn+1) = B (Bn(m1, . . . ,mn), αmn+1)

= αB (Bn(m1, . . . ,mn),mn+1)

= αBn+1(m1, . . . ,mn,mn+1).

Therefore Bn+1 is an (n+ 1)-linear map.
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Now, we consider the case n+1 where µ : M1×· · ·×Mn+1 → W is a multilinear

map. Since β and B are bilinear and by induction hypothesis, there exists a unique

K -module homomorphism µ̃ : M1⊗K · · ·⊗KMn⊗KMn+1 → W such that β = µ̃◦B .

(M1 × · · · ×Mn)×Mn+1 M1 ⊗K · · · ⊗K Mn ⊗K Mn+1

W

-B

?

β

ppppppppppppppppppppppppppppppppppp�
∃!µ̃

Consider the following diagram.

M1 × · · · ×Mn+1 (M1 ⊗K · · · ⊗K Mn)×Mn+1 M1 ⊗K · · · ⊗K Mn+1

W

-

HHH
HHH

HHH
HHH

HHj

µ

-B

?

β

���
���

���
������

∃!µ̃

Next, we show that i) µ = µ̃ ◦Bn+1 and ii) µ̃ is unique.

i) Let mi ∈Mi for all i = 1, . . . , n+ 1. Then

(µ̃ ◦Bn+1)(m1, . . . ,mn,mn+1) = µ̃ (B(Bn(m1, . . . ,mn),mn+1))

= β (Bn(m1, . . . ,mn),mn+1)

= µ̃mn+1 (Bn(m1, . . . ,mn))

= µmn+1(m1, . . . ,mn)

= µ(m1, . . . ,mn,mn+1).

Thus µ = µ̃ ◦Bn+1 .

ii) Suppose that ρ : M1⊗K · · ·⊗KMn⊗KMn+1 → W is a K -module homomorphism
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such that µ = ρ ◦ Bn+1 . For each v ∈ Mn+1 , let ρv : M1 ⊗K · · · ⊗K Mn → W be

defined by ρv(x) = ρ (B(x, v)) for all x ∈M1⊗K · · ·⊗KMn . Thus ρv is a K -module

homomorphism. Let mi ∈Mi for all i = 1, . . . , n . Then

(ρv ◦Bn)(m1, . . . ,mn) = ρ (B(Bn(m1, . . . ,mn), v))

= ρ (Bn+1(m1, . . . ,mn, v))

= µ(m1, . . . ,mn, v)

= µv(m1, . . . ,mn).

This shows that ρv ◦Bn = µv . By the uniqueness of µ̃v we obtain that ρv = µ̃v .

Next, we show that β = ρ ◦B . Let x ∈M1 ⊗K · · · ⊗K Mn and v ∈Mn+1 . Then

(ρ◦B)(x, v) = ρ (B(x, v)) = ρv(x) = µ̃v(x) = β(x, v) = µ̃◦B(x, v). By the uniqueness

of µ̃ , we have ρ = µ̃ . �

Theorem 3.4.6. Let M,N and W be modules over a semifield K . Then

L(M,N ;W ) ∼= L(M ⊗K N,W ).

Proof. For each φ ∈ L(M,N ;W ), by the universal mapping property of tensor prod-

ucts and the following diagram,

M ×N M ⊗K N

W

-B

?

φ

ppppppppppppp+ ∃!φ̃

where B is the canonical bilinear map and φ is a bilinear map from M ×N into W

and the universal mapping property of tensor products, there exists a unique K -

module homomorphism φ̃ : M ⊗K N → W such that φ = φ̃ ◦B . For this reason, we

define T : L(M,N ;W ) → L(M ⊗K N,W ) by φ 7→ φ̃ for all φ ∈ L(M,N ;W ). Then

T is well-defined from the uniqueness of φ̃ for each φ ∈ L(M,N ;W ).
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Next, we show that T is a K -module homomorphism. Let α ∈ K and φ, ψ ∈

L(M,N ;W ). Since φ, ψ ∈ L(M,N ;W ), we obtain that αφ, φ + ψ ∈ L(M,N ;W ).

By the universal mapping property of tensor products, there exist K -module homo-

morphisms α̃φ : M ⊗K N → W , φ̃+ ψ : M ⊗K N → W , φ̃ : M ⊗K N → W ,

and ψ̃ : M ⊗K N → W such that αφ = α̃φ ◦ B , φ + ψ = φ̃+ ψ ◦ B , φ = φ̃ ◦ B

and ψ = ψ̃ ◦ B . Then α̃φ ◦ B = αφ = α(φ̃ ◦ B) = αφ̃ ◦ B . For the uniqueness

of α̃φ we have α̃φ = αφ̃ . Thus T (αφ) = α̃φ = αφ̃ = αT (φ). Since φ̃+ ψ ◦ B =

φ + ψ = φ̃ ◦ B + ψ̃ ◦ B = (φ̃ + ψ̃) ◦ B and the uniqueness of φ̃+ ψ , we obtain that

φ̃+ ψ = φ̃ + ψ̃ . Thus T (φ + ψ) = φ̃+ ψ = φ̃ + ψ̃ = T (φ) + T (ψ). Therefore T is a

K -module homomorphism.

In order to show that T is an injective function by showing that kerT = {0} , let

φ ∈ kerT . Then φ ∈ L(M,N ;W ) and there exists φ̃ ∈ L(M ⊗K N,W ) such that

φ = φ̃ ◦ B . Since φ ∈ kerT , we obtain that 0 = T (φ) = φ̃ . Thus φ = φ̃ ◦ B = 0.

Therefore T is an injective function.

Finally, we show that T is a surjective function. Let φ̃ ∈ L(M ⊗K N,W ). Let

φ = φ̃ ◦ B and we claim that φ is a bilinear map. Since φ̃ : M ⊗K N → W and

B : M × N → M ⊗K N , we obtain that φ is a function from M × N into W . Let

α ∈ K , m,m′ ∈M and n, n′ ∈ N . Then

φ(m+m′, n) = φ̃ ◦B(m+m′, n)

= φ̃ (B(m+m′, n))

= φ̃ (B(m,n) +B(m′, n))

= φ̃ (B(m,n)) + φ̃ (B(m′, n))

= φ(m,n) + φ(m′, n),

φ(αm, n) = φ̃ ◦B(αm, n)
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= φ̃ (B(αm, n))

= φ̃ (αB(m,n))

= αφ̃ (B(m,n))

= αφ(m,n)

and, similarly, we also have φ(m,n + n′) = φ(m,n) + φ(m,n′) and φ(m,αn) =

αφ(m,n). Thus φ is a bilinear map. Therefore φ ∈ L(M,N ;W ). By the universal

mapping property of tensor products, there exists a unique K -module homomorphism

φ̂ : M ⊗K N → W such that φ = φ̂ ◦ B . By the uniqueness of φ̂ , we have φ̂ = φ̃ .

Therefore T (φ) = φ̂ = φ̃ .

Hence T is a K -module isomorphism from L(M,N ;W ) onto L(M ⊗K N,W ).

Therefore L(M,N ;W ) ∼= L(M ⊗K N,W ). �

Theorem 3.4.7. Let M1, . . . ,Mn and W be modules over a semifield K . Then

L(M1, . . . ,Mn;W ) ∼= L(M1 ⊗K · · · ⊗K Mn,W ).

Proof. We obtain this theorem by applying Theorem 3.4.6 and induction. �



CHAPTER IV

TENSOR PRODUCTS OF VECTOR SPACES OVER

SEMIFIELDS

In this chapter, we investigate tensor products of vector spaces over semifields

satisfying a certain property. Definitions and theorems involving vector spaces over

semifields satisfying a specific property are given in Section 4.1. Then, in Section 4.2,

we discuss tensor products of vector spaces over such a semifield.

4.1. Vector Spaces over Semifields

Recall that, a system (K,+, ·) is said to be a semifield if

(i) (K,+) is a commutative semigroup with identity 0,

(ii) (K\{0}, ·) is an abelian group and k · 0 = 0 · k = 0 for all k ∈ K , and

(iii) x · (y + z) = x · y + x · z for all x, y, z ∈ K ,

and for a semifield K , a vector space V over K is an abelian additive group with

identity 0, together with a function K × V → V (the image of (k, v ) being denoted

by kv ) such that for all v, v1, v2 ∈ V and k, k1, k2 ∈ K ,

(i) k (v1 + v2 )= kv1 + kv2 ,

(ii) (k1 + k2 )v1 = k1v + k2v ,

(iii) (k1k2 )v = k1 (k2v ), and

(iv) 1Kv = v where 1K is the identity of
(
K\{0}, ·

)
Definition 4.1.1. Let V be a vector space over a semifield K . An element of V is

called a vector of V . A vector v ∈ V is a linear combination of v1, . . . , vn ∈ V if
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v = α1v1 + · · · + αnvn for some α1, . . . , αn ∈ K . We denote α1v1 + · · · + αnvn by
n∑
i=1

αivi .

Recall that, if V is a vector space over a field F and B is a basis of V , then

each element of V can be written as a unique linear combination of elements of B .

However, let K be a semifield and V be a vector space over K . If B is a basis of V ,

then there has not been proved yet that each element of V can be written as a unique

linear combination of elements of B .

For this reason, we consider a particular semifield K which satisfies the following

property:

(∗) For all α, β ∈ K there exists a γ ∈ K such that α = β + γ or β = α+ γ .

Example 4.1.2.

(i) Every field is a semifield and satisfies the property (∗).

(ii) Q+
0 is a semifield satisfying the property (∗) but is not a field.

(iii)
(
Q+

0 , ∗, ·
)

and (Z ∪ {ε},⊕,�) in Example 2.2.3 are semifields satisfying the

property (∗) but are not fields.

(iv) (Q+ ×Q+) ∪ {(0, 0)} is a semifield which does not satisfy the property (∗)

is not a field since (1, 2) 6= (2, 1) + (x, y) and (2, 1) 6= (1, 2) + (x, y) for all

x, y ∈ Q+
0 .

Proposition 4.1.3. [5] Let K be a semifield. If there exists x ∈ K such that x has

an additive inverse, then every element of K has an additive inverse and hence K is

a field.

Proposition 4.1.4. [3] Let V be a nonzero vector space over a semifield K which

is not a field, i.e., every nonzero vector has no additive inverse. If B is a basis of V ,

then every vector v of V can be written uniquely as v =
n∑
i=1

αiεibi where n ∈ N,
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αi ∈ K and εibi ∈ {bi,−bi} for all bi ∈ B , that is, if v =
n∑
i=1

αiεibi =
m∑
i=1

βiεib
′
i ,

then m = n and by appropriate rearranging, αi = βi and εibi = εib
′
i for all i.

In this chapter, as a result of Proposition 4.1.3, we let K denote a semifield

satisfying the property (∗) such that K is not a field, i.e., every nonzero vector has

no additive inverse. Moreover, let 1K be the identity of K .

Theorem 4.1.5. Let V be a vector space over a semifield K and X ⊆ V . Then X

is linearly independent if and only if for all distinct elements x1, . . . , xn ∈ X and for

all α1, . . . , αn ∈ K , if α1ε1x1 + · · ·+ αnεnxn = 0, then αi = 0 for all i.

Proof. First, assume that X is a linearly independent subset of V .

Case 1 If X = ∅ , we are done.

Case 2 If |X| = 1 and X 6= {0} , then X = {a} for some a ∈ V \ {0} . Thus, if

αεa = 0, then α = 0 since εa 6= 0.

Case 3 Let |X| > 1 and x /∈
〈
X\{x}

〉
for all x ∈ X . Without loss of generality, we

suppose that there exist distinct x1, . . . , xn ∈ X and α1, . . . , αn ∈ K with α1 6= 0

such that α1ε1x1 + · · ·+ αnεnxn = 0. Then

ε1x1 = −
(
α2

α1
ε2x2 + α3

α1
ε3x3 + · · ·+ αn

α1
εnxn

)
∈
〈
X\{x1}

〉
,

which is a contradiction. Therefore, for all distinct elements x1, . . . , xn ∈ X and for

all α1, . . . , αn ∈ K , if α1ε1x1 + · · ·+ αnεnxn = 0, then αi = 0 for all i .

Conversely, we assume that for all distinct elements x1, . . . , xn ∈ X and for all

α1, . . . , αn ∈ K , if α1ε1x1 + · · ·+ αnεnxn = 0, then αi = 0 for all i .

Case 1 If X = ∅ , we are done.

Case 2 Let |X| = 1 and suppose that X = {0} . Then there exists α ∈ K\{0} such

that αε0 = 0 which is a contradiction. Thus X 6= {0} .

Case3 Let |X| > 1 and we suppose that there exists x ∈ X such that x ∈
〈
X\{x}

〉
.

Then there exist α1, . . . , αn ∈ K \ {0} and distinct x1, . . . , xn ∈ X \ {x} such that
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x = α1ε1x1 + · · ·+ αnεnxn . Therefore α1ε1x1 + · · ·+ αnεnxn + 1K(−x) = 0 which is

a contradiction. Hence ∀x ∈ X , x /∈
〈
X\ {x}

〉
.

Therefore X is linearly independent. �

Notation 4.1.6. In Proposition 4.1.4 we sometime write
n∑
i=1

βibi+
n∑
i=1

γi(−bi) instead

of
n∑
i=1

αiεibi . It means that, for each i = 1, . . . , n if εibi = bi , then βi = αi and γi = 0

and if εibi = −bi , then βi = 0 and γi = αi .

Recall that, a subset X of a vector space V over a semifield is said to be a basis

of V if X is a linearly independent set which spans V .

Theorem 4.1.7. [3] Let A and B be finite subsets of a vector space V over a

semifield. If they are bases of V , then |A| = |B|.

Theorem 4.1.7 shows that if a vector space V over a semifield has two finite bases,

then the two bases of V must have the same cardinality.

Now, we will extend this to the case that V has an infinite basis.

Theorem 4.1.8. Let V be a vector space over a semifield which has an infinite

basis X . Then every basis of V has the same cardinality as the cardinality of X .

Proof. Let Y be another basis of a vector space V over a semifield K . First, we

show that Y is infinite. Suppose on the contrary that Y were finite. Moreover, since

Y generates V and every element of Y is a linear combination of a finite number of

elements of X , there is a finite subset {x1, . . . , xm} of X which generates V . Since

X is infinite, let

x ∈ X \ {x1, . . . , xm} .

Then there exist αi ∈ K such that x = α1εix1 + . . . + αmεmxm , which contradicts

the linear independence of X . Therefore, Y is infinite. Hence every basis of V must

be infinite.
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Now, it remains to show that all bases of V have the same cardinality by applying

Schroeder-Bernstein Theorem. Let P(Y ) be the set of all finite subsets of Y . Define

a function f : X → P(Y ) by x 7→ {y1, . . . , yn} , where x = α1ε1y1 + · · ·+αnεnyn and

αi 6= 0 for all i . Since Y is a basis, we obtain that f is well-defined. If im f were

finite, then
⋃

W∈ im f

W would be a finite subset of Y that would generate 〈X〉 and

hence V . This leads to a contradiction that a basis of V must be infinite according

to the preceding paragraph. Hence im f is infinite.

Next, we show that f−1(W ) is a finite subset of X for all W ∈ im f ⊆ P(Y ).

Let W ∈ im f ⊆ P(Y ). Since W is finite and each w ∈ W is a linear combination

of a finite number of elements of X , there exists a finite subset U of X such that

〈W 〉 ⊆ 〈U〉 . Let x ∈ f−1(W ). Then x ∈ 〈W 〉 ⊆ 〈U〉 and x is a linear combination

of elements of U . Since x ∈ X and U ⊆ X , this contradicts the linear independence

of X unless x ∈ U . Therefore, f−1(W ) ⊆ U , whence f−1(W ) is finite.

For each W ∈ im f , order the elements of f−1(W ), say x1, . . . , xm , and define

a function gW : f−1(W ) → im f × N by xk 7→ (W, k). Clearly, gW is an injective

function. Next, we show that the set of all f−1(W ) where W ∈ im f forms a partition

of X . It is obvious that
⋃

W∈ im f

f−1(W ) = X .

Let W1,W2 ∈ im f such that W1 = {a1, . . . , an} and W2 = {b1, . . . , bn} . Suppose

that f−1(W1) ∩ f−1(W2) 6= ∅ . Then x = α1ε1a1 + · · · + αnεnan and x = β1ε1b1 +

· · ·+ βmεmbm where αi, βi ∈ K . Since Y is a basis of V and from Proposition 4.1.4,

we can conclude that n = m,αi = βi and εiai = εibi . Then W1 = W2 . Therefore

f−1(W1) = f−1(W2). Hence the set f−1(W ), where W ∈ im f , forms a partition

of X . Define a function φ : X → im f×N by x 7→ gW (x) where x ∈ f−1(W ). Clearly,

φ is an injective function. Then |X| ≤ |im f × N| . Therefore, by Definition 2.2.4,

Theorem 2.2.6 and Corollary 2.2.7, we obtain that

|X| ≤ |im f × N| = |im f |ℵ0 = |im f | ≤ |P(Y )| = |Y | .
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Interchanging X and Y in the preceding argument shows that |Y | ≤ |X| . Therefore

|Y | = |X| by Schroeder-Bernstein Theorem. �

Corollary 4.1.9. Let V be a vector space over a semifield which has a finite basis X .

Then every basis of V has the same cardinality as the cardinality of X .

Proof. We obtain that every basis of V must be finite from the proof of Theorem 4.1.8

and then must have the same cardinality as X from Theorem 4.1.7. Therefore, every

basis of V has the same cardinality as the cardinality of X . �

Definition 4.1.10. Let V be a nonzero vector space over a semifield K . Then V

is said to be finite-dimensional if V has a finite basis and V is said to be infinite-

dimensional if V has an infinite basis. Moreover, if a basis of V has cardinality n ,

then we say that V is an n-dimensional vector space.

The dimension of V , denoted by dimV or dimKV , is the cardinality of a basis

of V .

Example 4.1.11.

(i) dimQ = 1 since {1} is a basis of Q over Q+
0 .

(ii) Let e1, . . . , en ∈ Qn be defined by

e1 = (1, 0, . . . , 0, 0), e2 = (0, 1, . . . , 0, 0), . . . , en = (0, 0, . . . , 0, 1).

Then {e1, . . . , en} is a basis of the vector space Qn over the field Q . In

fact, by the definition of a vector space over a semifield, we also obtain that

{e1, . . . , en} is a basis of the vector space Qn over the semifield Q+
0 , hence

dimQn = n . Also, this fact is true if we replace Q by R and Q+
0 by R+

0 .

Theorem 4.1.12. [3] Let V be a vector space over a semifield and X a linearly

independent nonempty subset of V . Then there exists a subset B of V such that

X ⊆ B and B is a basis of V .
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Corollary 4.1.13. [3] Every vector space over a semifield has a basis.

Theorem 4.1.14. [3] Let V be a vector space over a semifield and X a subset of V

such that X spans V . Then there exists a subset B of X such that B is a basis

of V .

Recall that, if V and W are vector spaces over a semifield K and T is a mapping

from V into W , then T is said to be a linear transformation if for all α ∈ K and

v, v1, v2 ∈ V ,

T (v1 + v2) = T (v1) + T (v2) and T (αv) = αT (v).

Lemma 4.1.15. [3] Let V and W be vector spaces over a semifield and T : V → W

a linear transformation. If B is a subset of V which spans V , then T (B) spans

im T .

Theorem 4.1.16. [3] Let V and W be vector spaces over a semifield and let B =

{b1, . . . , bn} be a basis of V where bi 6= bj for i 6= j . If {c1, . . . , cn} is a subset of W,

then there exists a unique linear transformation T : V → W such that T (bi) = ci for

all i ∈ {1, . . . , n}.

Definition 4.1.17. Let T be a linear transformation from V into W . The nullity

of T , denoted by nullT , is the dimension of kerT . The rank of T , denoted by

rank T , is the dimension of im T .

Definition 4.1.18. Let n ∈ N and V be a vector space over a semifield. A subset X

of V is n-independent if |X| ≥ n and any n-vectors of X are linearly independent.

In [1], Guo, Y. Q. and Shum, K. P. studied an infinite n-independent subset of

vector spaces over fields and some facts, independent subsets, proper subspaces and

linear transformations. These are also true if we replace “ vector spaces over fields ”

by “ vector spaces over semifields ”.
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Theorem 4.1.19. Let V be an n-dimensional vector space over a semifield and

s ∈ N. Then the following statements are equivalent.

(i) If Vi is a proper subspace of V for all i = 1, 2, . . . , s, then
s⋃
i=1

Vi ( V .

(ii) If {αi1, . . . , αir} is a linearly independent subset of V with 1 ≤ r ≤ n − 1

and i = 1, 2, . . . , s, then there exists an α ∈ V such that the extended set

{α, αi1, . . . , αir} is still linearly indepdent for all i = 1, 2, . . . , s.

(iii) There exists an infinite n-independent subset of V .

(iv) If Ti, Tj ∈ L(V ) with Ti 6= Tj whenever i 6= j for all i, j = 1, 2, . . . , s, then

there exists an α ∈ V such that Tiα 6= Tjα.

(v) If Ti, Tj ∈ L(V ) with rank Ti = rank Tj = n and Ti 6= Tj whenever i 6= j

for all i, j = 1, 2, . . . , s, then there exists an α ∈ V such that Tiα 6= Tjα.

(vi) If Ti, Tj ∈ L(V ) with rank Ti = rank Tj = 1 and Ti 6= Tj whenever i 6= j

for all i, j = 1, 2, . . . , s, then there exists an α ∈ V such that Tiα 6= Tjα.

Proof. (i) ⇒ (ii) For each i = 1, 2, . . . , s and 1 ≤ r ≤ n − 1, let {αi1, . . . , αir} be

linearly independent and Vi = 〈αi1, . . . , αir〉 be the subspace of V . It is easy to see

that Vi is a proper subspace of V because dimVi = r < n for all i = 1, 2, . . . , s.

By (i), we obtain that
s⋃
i=1

Vi ( V . Then there exists an α ∈ V such that α /∈ Vi

for all i = 1, . . . , s . Since α /∈ Vi = 〈αi1, . . . , αir〉 and {αi1, . . . , αir} is linearly

independent, we can conclude that the set {α, αi1, . . . , αir} is linearly independent,

for any i = 1, 2, . . . , s .

(ii) ⇒ (iii) We proof by induction. First, let X1 = {α1, . . . , αm} be an n−independent

subset of V . This subset X always exists, for example, a basis of V . Then |X1| =

m ≥ n Let X1i be a subset of X1 consisting n − 1 elements for i = 1, 2, . . . ,
(
m
n−1

)
.

Since X1 consists of n linearly independent vectors and X1i is a set containing n− 1

linearly independent vectors for all i = 1, 2, . . . ,
(
m
n−1

)
, by (ii) there exists αm+1 ∈ V
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such that the n-vector set T1i = X1i ∪ {αm+1} is still linearly independent for all

i = 1, 2, . . . ,
(
m
n−1

)
.

Let X2 = X1 ∪ {αm+1} . It is obvious that X2 is still a subset of V in which

any n vectors are linearly independent and |X2| = |X1| + 1. Continue this process,

we obtain a chain of subsets Xi of V in which any n vectors of Xi are linearly

independent, say the chain

∅ ( X1 ( X2 ( · · · ( Xi ( · · · .

Clearly,
∞⋃
i=1

Xi is an infinite set in which any n vectors are linearly independent.

(iii) ⇒ (iv) Let X be an infinite n-independent subset of V . Assume that

Ti, Tj ∈ L(V ) such that Ti 6= Tj if i 6= j , for all i, j = 1, 2, . . . , s . let

Vij =
{
α ∈ V | Tiα = Tjα

}
.

Then, for all i, j = 1, 2, . . . , s with i 6= j , we can see that 0 < dimVij ≤ n − 1. So

that Vij is a proper subspace of V . Then |Vij ∩X| ≤ n− 1. Let m be a number of

subspaces Vij . Then we have∣∣∣∣∣∣∣∣
 s⋃
i,j=1
i6=j

Vij

 ∩X

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
s⋃

i,j=1
i6=j

(Vij ∩X)

∣∣∣∣∣∣∣∣ ≤
s∑

i,j=1
i6=j

|Vij ∩X| ≤ m(n− 1).

This leads to X \
s⋃

i,j=1
i6=j

Vij 6= ∅ . Hence, there exists α ∈ X \
s⋃

i,j=1
i6=j

Vij such that α /∈ Vij

for all i, j . This implies that (Ti − Tj)(α) 6= 0 for all i 6= j , i, j = 1, 2, . . . , s .

Consequently, Ti(α) 6= Tj(α) for all i 6= j , i, j = 1, 2, . . . , s . This proves (iv).

(iv) ⇒ (v) and (iv) ⇒ (vi) are obvious.

(v) ⇒ (i) Let Vi be a proper subspace of V for all i = 1, 2, . . . , s . We show that
s⋃
i=1

Vi ( V . Without loss of generality, we may assume that Vi * Vj where i 6= j

and i, j = 1, 2, . . . , s . For i, j = 1, 2, . . . , s , let {αi1αi2, . . . , αiri} be a basis of Vi ,
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where 1 ≤ ri = dimVi ≤ n − 1. We extend this basis of Vi to a basis of V , say

{αi1, αi2, . . . , αiri , αiri+1, . . . , αin} .

Now, we construct the linear transformation Ti on V by

Ti :


αij 7−→ αij if j = 1, 2, . . . , ri

αij 7−→ αij + αi,j−1 if j = ri + 1, . . . , n.

(4.1.20)

Clearly, rank Ti = n and Ti 6= I (the identity transformation) for all i, j = 1, . . . , s .

Since T (Vi) = Vi , we obtain that Ti 6= Tj , where i 6= j , and i, j = 1, 2, . . . , s .

Therefore
{
T0 = I, T1, T2, · · · , Ts

}
is a set of linear transformations satisfying the

condition in (v). By the assumption, there exists α ∈ V such that Tiα 6= Tjα where

i 6= j and i, j = 0, 1, . . . , s . In particular, Ti(α) 6= T0(α) = I(α) = α , for all

i = 1, . . . , s . By the definition of (4.1.20), T (Vi) = Vi is a subspace of V under Ti .

Thus α /∈ Vi for all i = 1, . . . , s . Hence
s⋃
i=1

Vi ( V .

(vi) ⇒ (i) Let Vi be a proper subspace of V for all i = 1, 2, . . . , s . Without

loss of generality, we assume that Vi * Vj , and dimVi = n − 1 where i 6= j and

i, j = 1, 2, . . . , s .

Now, for any i ∈ {1, 2, . . . , s} , let {αi1, αi2, . . . , αi,n−1} be a basis of Vi . We extend

this basis of Vi to a basis of V , say {αi1, αi2, . . . , αi,n−1, αi,n} . Now we construct the

linear transformations on V as follow:

1Ti :


αij 7−→ 0 if j = 1, 2, . . . , n− 1, and

αin 7−→ αin

(4.1.21)

2Ti :


αij 7−→ 0 if j = 1, 2, . . . , n− 1, and

αin 7−→ αin + αi,n−1.

(4.1.22)
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Clearly, rank 1Ti = rank 2Ti = 1. If αin = αjn where i 6= j , and i, j = 1, 2, . . . , s ,

then Vi = Vj where i 6= j and i, j = 1, 2, . . . , s so that Vi = Vj . This leads to

a contradiction. So kTi 6= lTj where k, l = 1, 2, and i, j = 1, . . . , s with (k, i) 6=

(l, j). Thus there are 2s linear transformations 1T1 , 1T2, . . . , 1Ts , 2T1 , 2T2, . . . , 2Ts

satisfying the condition in (vi). By the assumption we see that there exists α ∈ V

such that kTi 6= lTj where k, l = 1, 2, and i, j = 1, . . . , s with (k, i) 6= (l, j). In

particular, 1Ti(α) 6= 2Ti(α) for all i = 1, . . . , s . By (4.1.21) and (4.1.22), we can see

that Vi = ker 1Ti = ker 2Ti for all i = 1, . . . , s . Thus α /∈ Vi . Hence
s⋃
i=1

Vi ( V . �

4.2. Tensor Products of Vector Spaces over Semifields

One major different points from a vector space over any semifield and a vector

space over a semifield satisfying the property (∗) is the existence of a basis. Although

tensor products of vector spaces over any semifields were studied in Section 3.3, it

is more benefit to learn whether there are other results regarding tensor products of

vector spaces over a semifield satisfying the property (∗) by means of bases.

Theorem 4.2.1. [3] Let V and W be finite-dimensional vector spaces over the same

semifield and T : V → W a linear transformation. If dim V = dim W , then T is

injective if and only if T is surjective.

Definition 4.2.2. [3] Let K be a semifield and FK a field containing a subsemi-

field K . A linear transformation from a vector space V over K into FK is called

a linear function. Moreover, let V ∗ = L(V, FK) and V ∗∗ = (V ∗ )∗ . We call V ∗ the

dual space of V and V ∗∗ the double dual of V .

Remark 4.2.3. [3] If V is a finite-dimensional vector space over a semifield, then

dim V = dim V ∗ = dim V ∗∗ .
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Theorem 4.2.4. [3] Let V be a finite-dimensional vector space over a semifield,

dim V = n, and B = {b1, . . . , bn} a basis of V . For each i ∈ {1, 2, . . . , n}, let

fi ∈ V ∗ be such that

fi(bj) =


1, if j = i,

0, if j 6= i .

Then the following statements hold.

(i) {f1, . . . , fn} is a basis of V ∗ which is called the dual basis of B .

(ii) For all f ∈ V ∗, f =
n∑
i=1

f(bi)fi.

(iii) For all v ∈ V, v =
n∑
i=1

fi(v)bi.

Definition 4.2.5. Let V and W be vector spaces over a semifield. For each v ∈ V

and w ∈ W , we say that εv and ε′w have the same sign if

(i) εv = v and ε′w = w or

(ii) εv = −v and ε′w = −w .

Moreover, we say that εv and ε′w have the different sign if εv and ε′w does not

have the same sign.

Proposition 4.2.6. Let V and W be vector spaces over a semifield K and α, β ∈ K .

Let v ∈ V and w ∈ W be such that εv and ε̃w have the same sign and ε̂v and ε̄w

have the same sign. Then there exists γ ∈ K such that α(εv) + β(ε̂v) = γ(ε′v) and

α(ε̃w) + β(ε̄w) = γ(ε′′w) where ε′v and ε′′w have the same sign.

Proof. There are four cases to be considered.

Case 1 Assume that α(εv) = αv and β(ε̂v) = βv . Then α(ε̃w) = αw and β(ε̄w) =

βw . Thus α(εv) + β(ε̂v) = αv + βv = (α + β)v and α(ε̃w) + β(ε̄w) = αw + βw =

(α+ β)w . Then we choose γ = α+ β .



53

Case 2 Assume that α(εv) = α(−v) and β(ε̂v) = β(−v). Then α(ε̃w) = α(−w)

and β(ε̄w) = β(−w). Thus α(εv) + β(ε̂v) = α(−v) + β(−v) = (α + β)(−v) and

α(ε̃w) + β(ε̄w) = α(−w) + β(−w) = (α+ β)(−w). Then we choose γ = α+ β .

Case 3 Assume that α(εv) = αv and β(ε̂v) = β(−v). Then α(ε̃w) = αw and

β(ε̄w) = β(−w).

If α = β + γ for some γ ∈ K , then α(εv) + β(ε̂v) = (β + γ)v + β(−v) = γv and

α(ε̃w) + β(ε̄w) = (β + γ)w + β(−w) = γw .

If β = α + γ for some γ ∈ K , then α(εv) + β(ε̂v) = αv + β(−v) = αv + (α +

γ)(−v) = γ(−v) and α(ε̃w) + β(ε̄w) = αw + β(−w) = αw + (α+ γ)(−w) = γ(−w).

Case 4 Assume that α(εv) = α(−v) and β(ε̂v) = βv . Then α(ε̃w) = α(−w) and

β(ε̄w) = βw .

If α = β + γ for some γ ∈ K , then α(εv) + β(ε̂v) = (β + γ)(−v) + βv = γ(−v)

and α(ε̃w) + β(ε̄w) = (β + γ)(−w) + βw = γ(−w).

If β = α + γ for some γ ∈ K , then α(εv) + β(ε̂v) = α(−v) + (α + γ)v = γ(v)

and α(ε̃w) + β(ε̄w) = α(−w) + (α+ γ)w = γ(w).

From Case 1 – Case 4, we can conclude that there exists γ ∈ K such that

α(εv) + β(ε̂v) = γ(ε′v) and α(ε̃w) + β(ε̄w) = γ(ε′′w) where ε′v and ε′′w have the

same sign. �

Lemma 4.2.7. Let V and W be vector spaces over a semifield K , B a basis of W

and C = {w1, . . . , wn} ⊆ B . Let β : V ×W → V be defined as follows: for each

v ∈ V and w ∈ W such that

w =
n∑
i=1

αiεiwi +
∑
b∈B\C

αbεbb

where
∑
b∈B\C

αbεbb is a finite sum with α1, . . . , αn, αb ∈ K ,

β(v, w) =
n∑
i=1

αi(εiv).

Then β is bilinear.
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Proof. Let v, v′ ∈ V, w,w′ ∈ W and a ∈ K . Then

w =
n∑
i=1

αiεiwi +
∑
b∈B\C

αbεbb and w′ =
n∑
i=1

βiε
′
iwi +

∑
b∈B\C

βbε
′
bb

where α1, . . . , αn, αb, β1, . . . , βn, βb ∈ K for all b ∈ B \ C . Then β is well-defined

because every vector in W can be written uniquely as a linear combination of elements

in B . It is easy to verify that β(v, aw) = aβ(v, w) = β(av, w) and β(v + v′, w) =

β(v, w) + β(v′, w).

Next, we show that β(v, w+w′) = β(v, w) + β(v, w′). We can see that β(v, w) =
n∑
i=1

αi(εiv) and β(v, w′) =
n∑
i=1

βi(ε
′
iv). For each i , since εiwi and εiv have the same

sign and ε′iwi and ε′iv have the same sign, by Proposition 4.2.6 there exists γi ∈ K

such that αiεiwi + βiε
′
iwi = γiε

′′
iwi , αiεiv+ βiε

′
iv = γiε

′′
i v and ε′′iwi and ε′′i v have the

same sign. It follows that

β(v, w + w′) = β

v, n∑
i=1

αiεiwi +
n∑
i=1

βiε
′
iwi +

∑
b∈B\C

αbεbb+
∑
b∈B\C

βbε
′
bb


= β

v, n∑
i=1

(αiεiwi + βiε
′
iwi) +

∑
b∈B\C

αbεbb+
∑
b∈B\C

βbε
′
bb


= β

v, n∑
i=1

γi(ε
′′
iwi) +

∑
b∈B\C

αbεbb+
∑
b∈B\C

βbε
′
bb


=

n∑
i=1

γi(ε
′′
i v)

and

β(v, w) + β(v, w′) = β

v, n∑
i=1

αiεiwi +
∑
b∈B\C

αbεbb

+ β

v, n∑
i=1

βiε
′
iwi +

∑
b∈B\C

βbε
′
ib


=

n∑
i=1

αi(εiv) +
n∑
i=1

βi(ε
′
iv)
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=
n∑
i=1

(αi(εiv) + β(ε′iv))

=
n∑
i=1

γi(ε
′′
i v).

Therefore β is bilinear. �

Theorem 4.2.8. Let V and W be vector spaces over a semifield and let v1, . . . , vn ∈ V,

w1, . . . , wn ∈ W. If {w1, . . . , wn} is linearly independent and
n∑
i=1

vi ⊗ εiwi = 0, then

vi = 0 for all i.

Proof. Let B be a basis of W containing w1, . . . , wn. For each i = 1, 2, . . . , n , define

βi : V ×W → V by for each v ∈ V and w ∈ B

βi(v, w) =


v if w = wi,

−v if w = −wi,

0 otherwise.

It follows from Lemma 4.2.7 by letting C = {wi} that β is bilinear. By the universal

mapping property of tensor products, there exists a unique linear transformation

β̃ : V ⊗KW → V such that β = β̃ ◦B where B : V ×W → V ⊗KW is the canonical

bilinear map. From
n∑
j=1

vj ⊗ εjwj = 0, we apply β̃. Then

0 = β̃

(
n∑
j=1

vj ⊗ εjwj

)

=
n∑
j=1

β̃(vj ⊗ εjwj)
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=
n∑
j=1

(β̃ ◦B)(vj, εjwj)

=
n∑
j=1

β(vj, εjwj)

= εivi

Thus vi = 0 for all i . �

Corollary 4.2.9. Let V and W be vector spaces over a semifield. For all v ∈ V

and w ∈ W , if v 6= 0 and w 6= 0 then v ⊗ w 6= 0.

Proof. This is straightforward. �

Corollary 4.2.10. Let V and W be vector spaces over a semifield and B a basis

of V and C a basis of W . If v, v′ ∈ B and w,w′ ∈ C are such that v 6= v′ or w 6= w′ ,

then v ⊗ w 6= v′ ⊗ w′ .

Proof. This follows from Corollary 4.2.9. �

Note 4.2.11. Let V and W be vector spaces over a semifield, v ∈ V and w ∈ W .

Then ε(v ⊗ w) = (εv ⊗ w) = (v ⊗ εw).

Proof. This follows from Remark 3.3.6 (ii). �

Theorem 4.2.12. Let V and W be vector spaces over a semifield K , B a basis of V

and C a basis of W . Then {v ⊗ w | v ∈ B and w ∈ C} is a basis of V ⊗K W .

Proof. Let D = {v⊗w | v ∈ B and w ∈ C} . We claim that D is linearly independent.

First of all, let v, v′ ∈ B , w ∈ C and a, b ∈ K be such that v 6= v′ and

aε̄(v ⊗ w) + bε̂(v′ ⊗ w) = 0.

Then 0 = aε̄(v ⊗ w) + bε̂(v′ ⊗ w) = (aε̄v ⊗ w) + (bε̂v′ ⊗ w) = (aε̄v + bε̂v′) ⊗ w .

Thus, we obtain from Theorem 4.2.8 that aε̄v+ bε̂v′ = 0. Suppose that a 6= 0. Then
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ε̄v = a−1(−bε̂v′) which is a contradiction because v, v′ are distinct elements in the

basis B . Therefore a = 0 and then b = 0.

For this reason, in order to show that D is linearly independent it is enough to let

v1, . . . , vn ∈ B , w1, . . . , wn ∈ C , α1, . . . , αn ∈ K be such w1, . . . , wn are all distinct

and α1ε1(v1 ⊗w1) + · · ·+ αnεn(vn ⊗wn) = 0. Then (α1ε1v1 ⊗w1) + · · ·+ (αnεnvn ⊗

wn) = 0. Since w1, . . . , wn are all distinct elements in the basis C , we obtain that

{w1, . . . , wn} is linearly independent. So that αiεivi = 0 for all i = 1, . . . , n from

Theorem 4.2.8. Since vi is an element of B for all i , we obtain that αi = 0. Hence

D is linearly independent.

Next, we show that D spans V ⊗KW . Let x ∈ V ⊗KW . Then x =
n∑
i=1

mi(vi⊗wi)

where mi ∈ Z , vi ∈ V and wi ∈ W for all i . For each vi ∈ V and wi ∈ W , there

exist αi1, . . . , αiji , βi1, . . . , βiji , γi1, . . . , γiki , λi1, . . . , λiki ∈ K and b1, . . . , bji ∈ B and

c1, . . . , cki ∈ C such that

vi = αi1b1 + · · ·+ αijibji + βi1(−b1) + · · ·+ βiji(−bji) = ηi1(ε1b1) + · · ·+ ηiji(εjibji)

wi = γi1c1 + · · ·+ γikicki + λi1(−c1) + · · ·+ λiki(−cki) = ζi1(ε1c1) + · · ·+ ζiki(εkicki)

where

ηij =


αij if εjbj = bj,

βij if εjbj = −bj,
and ζij =


γij if εjcj = cj,

λij if εjcj = −cj.

Then

x =
n∑
i=1

mi

(
ji∑
l=1

αilbl +

ji∑
l=1

βil(−bl)

)
⊗

(
ki∑
p=1

γipcp +

ki∑
p=1

λip(−cp)

)

=
n∑
i=1

mi

(
ji∑
l=1

αilbl ⊗
ki∑
p=1

γipcp

)
+

n∑
i=1

mi

(
ji∑
l=1

αilbl ⊗
ki∑
p=1

λip(−cp)

)
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+
n∑
i=1

mi

(
ji∑
l=1

βil(−bl)⊗
ki∑
p=1

γipcp

)
+

n∑
i=1

mi

(
ji∑
l=1

βil(−bl)⊗
ki∑
p=1

λip(−cp)

)

=
n∑
i=1

ji∑
l=1

ki∑
p=1

miαilγip(bl ⊗ cp) +
n∑
i=1

ji∑
l=1

ki∑
p=1

miαilλip(bl ⊗−cp)

+
n∑
i=1

ji∑
l=1

ki∑
p=1

miβilγip(−bl ⊗ cp) +
n∑
i=1

ji∑
l=1

ki∑
p=1

miβilλip(−bl ⊗−cp)

=
n∑
i=1

ji∑
l=1

ki∑
p=1

[mi(αilbl ⊗ γipcp) +mi(αilbl ⊗ λip(−cp)) +mi(βil(−bl)⊗ γipcp)

+mi(βil(−bl)⊗ λip(−cp))].

Fix i, l, p and consider

mi(αilbl ⊗ γipcp) +mi(αilbl ⊗ λip(−cp))

+mi(βil(−bl)⊗ γipcp) +mi(βil(−bl)⊗ λip(−cp)). (4.2.13)

Case 1 If αil 6= 0 and γip 6= 0, then βil = λip = 0. Thus (4.2.13) is mi(αilbl⊗ γipcp).

Case 2 If αil 6= 0 and λip 6= 0, then βil = γip = 0. Thus (4.2.13) is mi (αilbl ⊗ λip(−cp)).

Case 3 If βil 6= 0 and γip 6= 0, then αil = λip = 0. Thus (4.2.13) is mi (βil(−bl)⊗ γipcp).

Case 4 If βil 6= 0 and λip 6= 0, then αil = γip = 0. Thus (4.2.13) is mi (βil(−bl)⊗ λip(−cp)).

Therefore (4.2.13) is mi (ηil(εlbl)⊗ ζip(εpcp)). Hence

x =
n∑
i=1

ji∑
l=1

ki∑
p=1

[mi (ηil(εlbl)⊗ ζip(εpcp))]

=
n∑
i=1

ji∑
l=1

ki∑
p=1

miηilζil(εlbl)⊗ (εpcp)

=
n∑
i=1

ji∑
l=1

ki∑
p=1

miηilζilεlεp(bl ⊗ cp)
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which is a finite sum. This shows that x ∈ 〈D〉 . Hence {v ⊗ w | v ∈ B and w ∈ C}

is a basis of V ⊗K W . �

Example 4.2.14. Let V be a vector space over a semifield K of dimension 2 with

basis B = {v1, v2} . Then the following set is a basis of V ⊗K V :

{v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2} .

Example 4.2.15.

(i) {1⊗ 1} is a basis of Q⊗Q+
0

R .

(ii) Qn and Rm are vector spaces over Q+
0 with basis {e1, . . . , en} and {e′1, . . . , e′m} ,

respectively, then {ei ⊗ e′j|i = 1, . . . , n, and j = 1, . . . ,m} is a basis of

Qn ⊗Q+
0

Rm .

Corollary 4.2.16. Let V and W be finite-dimensional vector spaces over a semi-

field K . Then V ⊗K W is also finite-dimensional and

dim V ⊗K W = (dim V )(dim W ).

Proof. This follows from Theorem 4.2.12. �

Note 4.2.17. Let V and W be finite-dimensional vector spaces over a semifield K .

Let B = {v1, . . . , vn} be a basis of V with dual basis B′ = {φ1, . . . , φn} and C =

{w1, . . . , wm} a basis of W with dual basis C ′ = {ψ1, . . . , ψn} . Then

{φi ⊗ ψj | i = 1, . . . , n and j = 1, . . . ,m}

is a basis of V ∗ ⊗K W
∗ .

Theorem 4.2.18. Let V and W be finite-dimensional vector spaces over a semi-

field K . Then

V ∗ ⊗K W
∗ ∼= (V ⊗K W )∗

via the isomorphism τ : V ∗ ⊗K W
∗ → (V ⊗K W )∗ defined by
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τ(φ⊗ ψ)(v ⊗ w) = φ(v)ψ(w) for all φ ∈ V ∗ , ψ ∈ W ∗ , v ∈ V and w ∈ W .

Proof. In order to define a linear transformation from V ∗ ⊗K W
∗ to (V ⊗K W )∗ , we

need to define a bilinear map β : V ∗ ×W ∗ → (V ⊗K W )∗ satisfying the following

diagram:

V ∗ ×W ∗ V ∗ ⊗K W
∗

(V ⊗K W )∗

-B

?

β

where B is the canonical bilinear map. Note that β(φ, ψ) must be an element of

(V ⊗K W )∗ for each φ ∈ V ∗ and ψ ∈ W ∗ .

Let φ ∈ V ∗ and ψ ∈ W ∗ . An element of (V ⊗K W )∗ can be derived from the

universal mapping property of tensor products by considering the diagram below:

V ×W V ⊗K W

FK

-B

?

fφ,ψ

where B is the canonical bilinear map and fφ,ψ is a bilinear map defined by

fφ,ψ(v, w) = φ(v)ψ(w) for all v ∈ V and w ∈ W .

Then there exists a unique linear transformation f̃φ,ψ : V ⊗K W → FK such that

fφ,ψ = f̃φ,ψ ◦B . Consequently, f̃φ,ψ ∈ (V ⊗KW )∗ and f̃φ,ψ(v⊗w) = (f̃φ,ψ ◦B)(v, w) =

fφ,ψ(v, w) = φ(v)ψ(w) for all v ∈ V and w ∈ W .

Now we define β : V ∗ ×W ∗ → (V ⊗K W )∗ by β(φ, ψ) = f̃φ,ψ for all φ ∈ V ∗ and

ψ ∈ W ∗ . By the uniqueness of f̃φ,ψ , we obtain that β is well-defined.

Next, we show that β is bilinear. Let a, b ∈ K , φ, ϕ ∈ V ∗ , ψ, ξ ∈ W ∗ , v ∈ V

and w ∈ W . Then
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β(aφ+ bϕ, ψ)(v ⊗ w) = f̃aφ+bϕ,ψ(v ⊗ w)

= faφ+bϕ,ψ(v, w)

= (aφ+ bϕ)(v)ψ(w)

= aφ(v)ψ(w) + bϕ(v)ψ(w)

= afφ,ψ(v, w) + bfϕ,ψ(v, w)

= af̃φ,ψ ◦B(v, w) + bf̃ϕ,ψ ◦B(v, w)

= af̃φ,ψ(v ⊗ w) + bf̃ϕ,ψ(v ⊗ w)

= aβ(φ, ψ)(v ⊗ w) + bβ(ϕ, ψ)(v ⊗ w).

Similary, we also obtain β(φ, aψ + bξ) = aβ(φ, ψ) + bβ(φ, ξ). Therefore, by

the universal mapping property of tensor products, there exists a unique linear

transformation τ : V ∗ ⊗K W ∗ → (V ⊗K W )∗ such that β = τ ◦ B . Moreover,

τ(φ ⊗ ψ)(v ⊗ w) = f̃φ,ψ(v ⊗ w) = φ(v)ψ(w) for all φ ∈ V ∗ , ψ ∈ W ∗ , v ∈ V and

w ∈ W .

Next, we will show that τ is an isomorphism. Let B = {v1, . . . , vn} be a basis

of V with dual basis B′ = {φ1, . . . , φn} and C = {w1, . . . , wm} be a basis of W with

dual basis C ′ = {ψ1, . . . , ψm} . Then

τ(φi ⊗ ψj)(vk ⊗ wl) = φi(vk)ψj(wl)

=


1 if i = k and j = l

0 if i 6= k or j 6= l.
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This shows that {τ(φi ⊗ ψj) | i = 1, . . . , n and j = 1, . . . ,m} forms the dual

basis of the basis {vk ⊗ wl | i = 1, . . . , n and j = 1, . . . ,m} for V ⊗K W . Thus τ

maps the basis {φi⊗ψj | i = 1, . . . , n and j = 1, . . . ,m} of V ∗⊗KW
∗ to the basis

{τ(φi ⊗ ψj) | i = 1, . . . , n and j = 1, . . . ,m} of (V ⊗K W )∗ . By Theorem 4.1.15

and Theorem 4.1.16, it follows that τ is surjective. Furthermore, τ is injective from

Theorem 4.2.1. Hence τ is an isomorphism. Therefore V ∗⊗K W
∗ ∼= (V ⊗K W )∗ �

Remark 4.2.19. Let V and W be finite-dimensional vector spaces over a semi-

field K . Then

V ∗ ⊗K W
∗ ∼= (V ⊗K W )∗ ∼= L(V,W ;FK).

Proof. We obtain from Theorem 4.2.18 that V ∗⊗KW
∗ ∼= (V ⊗KW )∗ and from The-

orem 3.4.6 that (V ⊗KW )∗ = L(V,W ;FK). As a result, V ∗⊗KW
∗ ∼= (V ⊗K W )∗ ∼=

L(V,W ;FK). �
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