เซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึมเพื่อการบำบัดไฮโดรเจนซัลไฟด์จากการบำบัดน้ำเสีย ปนเปื้อนสารอินทรีย์และซัลเฟต

นายเดชาธร โกมลโยธิน

CHULALONGKORN UNIVERSITY

ับทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)

เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text อิทยุกษิรยุร์นี้เป็นส่อนชนึ่งยุคงการสึกชุภทามหอักสุขธุปริมุญกาชิกกรรมชาสุขมชนิยันหยิดository (CUIR)

are the thesis authors ก็เอร รับอาการรุบสิ่งแวดล้อม กาควิชาวิศากรรุบสิ่งแวดล้อม School.

คณะวิศวกรรมศาสตร์ จุ[ั]ฬาลงกรณ์มหาวิท[์]ยาลัย

ปีการศึกษา 2559

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MICROBIAL FUEL CELLS (MFC) WITH ABSORPTION COLUMN FOR TREATING HYDROGEN SULFIDE FROM ORGANIC AND SULFATE WASTEWATER TREATMENT

Mr. Decharthorn Komolyothin

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Environmental Engineering Department of Environmental Engineering Faculty of Engineering Chulalongkorn University Academic Year 2016 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	เซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึมเพื่อการบำบัด
	ไฮโดรเจนซัลไฟด์จากการบำบัดน้ำเสียปนเปื้อน
	สารอินทรีย์และซัลเฟต
โดย	นายเดชาธร โกมลโยธิน
สาขาวิชา	วิศวกรรมสิ่งแวดล้อม
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร.เบญจพร สุวรรณศิลป์
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	รองศาสตราจารย์ ดร.พิสุทธิ์ เพียรมนกุล

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

	a	9		6
വെല	ເລັດຄ	เขาสา	กรรมสา	າຊພະ
164 U	1818166	1 IN 18	11999161	1617/18

(รองศาสตราจารย์ ดร.สุพจน์ เตชวรสินสกุล)

คณะกรรมการสอบวิทยานิพนธ์

.....ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.ชัยพร ภู่ประเสริฐ)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร.เบญจพร สุวรรณศิลป์)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

(รองศาสตราจารย์ ดร.พิสุทธิ์ เพียรมนกุล)

.....กรรมการ

(รองศาสตราจารย์ ดร.วิบูลย์ลักษณ์ พึ่งรัศมี)

.....กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.มนัสกร ราชากรกิจ)

.....กรรมการภายนอกมหาวิทยาลัย

(ผู้ช่วยศาสตราจารย์ ดร.วิลาสินี อยู่ชัชวาล)

เดชาธร โกมลโยธิน : เซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึมเพื่อการบำบัดไฮโดรเจนซัลไฟด์จากการ บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต (MICROBIAL FUEL CELLS (MFC) WITH ABSORPTION COLUMN FOR TREATING HYDROGEN SULFIDE FROM ORGANIC AND SULFATE WASTEWATER TREATMENT) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.เบญจพร สุวรรณศิลป์, อ.ที่ปรึกษาวิทยานิพนธ์ ร่วม: รศ. ดร.พิสุทธิ์ เพียรมนกุล, 187 หน้า.

งานวิจัยนี้ศึกษาการใช้เซลล์เชื้อเพลิงชีวภาพแบบห้องเดี่ยวร่วมกับหอดูดซึมเพื่อการบำบัดก๊าซ ไฮโดรเจนซัลไฟด์จากการบำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต โดยถังปฏิกรณ์แบ่งเป็น 2 ห้องย่อย ห้องแรก ทำหน้าที่เป็นห้องไร้อากาศ และห้องที่สองทำหน้าที่เป็นห้องเซลล์เชื้อเพลิงชีวภาพ หอดูดซึมบรรจุชั้นตัวกลางแบบ กลวงสูง 5 เซนติเมตร เวียนน้ำจากห้องเซลล์เชื้อเพลิงชีวภาพ 36 ลิตรต่อวัน เดินระบบแบบต่อเนื่องโดยใช้น้ำเสีย ้สังเคราะห์ที่ประกอบด้วยกลูโคสสำหรับเป็นแหล่งคาร์บอนความเข้มข้น 3,000 มิลลิกรัมซีโอดีต่อลิตร โซเดียม ซัลเฟตความเข้มข้น 300 มิลลิกรัมซัลเฟตต่อลิตร ควบคุมอัตราการไหลของน้ำเสียเท่ากับ 2 ลิตรต่อวัน และ ระยะเวลากักเก็บน้ำเท่ากับ 1 วันในแต่ละห้อง ผลการเดินระบบห้องไร้อากาศพบว่าระบบมีความเสถียรตั้งแต่วันที่ 40 โดยมีประสิทธิภาพการบำบัดสารอินทรีย์ช่วงคงที่เฉลี่ยเท่ากับ 78 4+3 21% และ 85 3+5 69% ในเซลล์ เชื้อเพลิงชีวภาพ 1 และ 2 ตามลำดับ สำหรับประสิทธิภาพการบำบัดซัลเฟตช่วงคงที่มีค่าเฉลี่ยเท่ากับ 97.7±3.03% และ 98.5±2.08% ตามลำดับ และผลิตก๊าซชีวภาพที่มีก๊าซไฮโดรเจนซัลไฟด์ความเข้มข้น 14,500±620 ส่วนในล้าน ้ส่วน และ 17,300±470 ส่วนในล้านส่วน ในเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ตามลำดับ ในวันที่ 110 ติดตั้งอุปกรณ์ ทางไฟฟ้าและผันน้ำขาออกห้องไร้อากาศเข้าสู่ห้องเซลล์เชื้อเพลิงชีวภาพ ระบบสามารถผลิตกระแสไฟฟ้าสูงสุด เท่ากับ 8.00 mW/m² และ 6.88 mW/m² ในเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ตามลำดับ และการบำบัดซัลไฟด์ใน ้ห้องเซลล์เชื้อเพลิงชีวภาพเกิดจากปฏิกิริยาทางเคมีเป็นหลัก โดยผลิตภัณฑ์หลักที่เกิดขึ้นคือซัลเฟอร์และซัลเฟต เมื่อ เดินระบบต่อเนื่องพบว่าประสิทธิภาพการบำบัดซัลไฟด์และการผลิตกระแสไฟฟ้ามีค่าลดลงจากการเสื่อมของเยื่อ เลือกผ่านโปรตอนและขั้วแคโทด การบำบัดก๊าซไฮโดรเจนซัลไฟด์โดยหอดูดซึมพบว่ามีประสิทธิภาพคงที่เฉลี่ย 99.0±0.20% และ 98.7±0.17% ในเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ตามลำดับ เมื่อวิเคราะห์กลุ่มประชากรจุลินทรีย์ ในห้องไร้อากาศและบนขั้วแอโนดของเซลล์เชื้อเพลิงชีวภาพที่ 1 พบว่าแบคทีเรียในห้องไร้อากาศที่พบมากที่สุดคือ Streptococcus macedonicus (38%) และพบแบคทีเรียกลุ่มรีดิวซ์ซัลเฟต 2 ชนิดคือ Desulfovibrio vulgaris (9%) และ Thermodesulfovibrio yellowstonii (4%) สำหรับแบคทีเรียกลุ่มหลักที่พบบนขั้วแอโนดยังคงพบ S. macedonicus (48%) และพบแบคทีเรียกลุ่มออกซิไดซ์ซัลไฟด์คือ Halothiobacillus neapolitanus (12%) อีก ้ทั้งยังพบ Klebsiella pneumoniae (20%) ซึ่งเป็นแบคทีเรียที่สามารถส่งถ่ายอิเลคตรอนไปยังขั้วแอโนดได้ สำหรับ สายพันธุ์อาเคียร์ที่พบมากที่สุดในห้องไร้อากาศและบนขั้วแอโนดคือ Methanosaeta concilii และจากการศึกษา ้ลักษณะขั้วแอโนดหลังการใช้งานโดยวิธี SEM/EDS พบการสะสมของซัลเฟอร์ (ของแข็ง) เพียง 1% โดยน้ำหนัก อาจ เป็นผลมาจากการกวนผสมจึงช่วยลดการสะสมของซัลเฟอร์บนขั้วแอโนดได้

ภาควิชา	วิศวกรรมสิ่งแวดล้อม	ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมสิ่งแวดล้อม	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2559	ลายมือชื่อ อ ที่ปรึกษาร่วม

5770415321 : MAJOR ENVIRONMENTAL ENGINEERING

KEYWORDS: MICROBIAL FUEL CELL / SULFATE REDUCTION / HYDROGEN SULFIDE / ABSORPTION COLUMN

DECHARTHORN KOMOLYOTHIN: MICROBIAL FUEL CELLS (MFC) WITH ABSORPTION COLUMN FOR TREATING HYDROGEN SULFIDE FROM ORGANIC AND SULFATE WASTEWATER TREATMENT. ADVISOR: ASST. PROF. BENJAPORN SUWANNASILP, Ph.D., CO-ADVISOR: ASSOC. PROF. PISUT PAINMANAKUL, Ph.D., 187 pp.

In this study, two-compartment single-chamber MFC was operated with absorption column to treat hydrogen sulfide gas from organic and sulfate wastewater treatment. The first and the second compartments functioned as an anaerobic bioreactor and an MFC, respectively. The absorption column was filled with hallow media at 5 cm height, and the recirculated flow rate was 36 liter per day. The MFCs were fed continuously with synthetic wastewater, consisting of 3,000 mg-COD/l of glucose, 300 mg-SO42-/l of sodium sulfate, and nutrients at flow rate 2 liters per day with hydraulic retention time of 1 day in each compartment. After day 40, treatment efficiencies of the anaerobic compartment effluent were stable, COD removal efficiencies were 78.4±3.21% and 85.3±5.69%, sulfate removal efficiencies were 97.7 ±3.03% and 98.5±2.08% in MFC1 and MFC2, respectively, while generating hydrogen sulfide gas with averages concentrations of 14,500±620 ppm and 17,300±470 in MFC1 and MFC2, respectively. The maximum power density of MFC1 and MFC2 were 8.00 mW/m² and 6.88 mW/m². Sulfide treatment mainly caused by abiotic oxidation and the main products were sulfate and sulfur. Sulfide treatment efficiencies and electricity generation decrease overtime due to deterioration of proton exchange membrane and cathode. Absorption column can treat hydrogen sulfide gas with averages of 99.0±0.20% and 98.7±0.17% in MFC1 and MFC2, respectively. Microbial communities were investigated in the sludge from anaerobic compartment and the anode-attached biofilm from MFC1. In the anaerobic sludge sample, the predominant bacteria were Streptococcus macedonicus (38%), Desulfovibrio vulgaris (9%) and Thermodesulfovibrio yellowstonii (4%). In the anode-atached biofilm, the predominant bacteria were S. macedonicus (48%) and Halothiobacillus neapolitanus (12%). Moreover, we found Klebsiella pneumoniae (20%) on the anode which was exoelectrogenic bacteria. The predominant archaea in both samples was Methanosaeta concilii. Scanning microscope and energy-disperse Xray spectroscopy (SEM/EDS) analysis found only 1% (by weight) of sulfur on the anode surface, which may be caused by the mixing in MFC compartment thereby reducing the sulfur accumulation on the anode.

Department:	Environmental Engineering	Student's Signature
Field of Study:	Environmental Engineering	Advisor's Signature
Academic Year	2016	Co-Advisor's Signature
Academic real.	2010	

กิตติกรรมประกาศ

การทำวิจัยและวิทยานิพนธ์ฉบับนี้สำเร็จลุล่วง ผู้วิจัยได้รับความอนุเคราะห์จากหน่วยงานหลาย หน่วยงานและบุคคลหลายท่าน ทั้งนี้ผู้วิจัยขอกราบขอบพระคุณต่อผู้ที่ให้ความอนุเคราะห์ดังต่อไปนี้

ทุนอุดหนุนวิทยานิพนธ์จากภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บริษัท ไทยควอลิตี้สตาร์ช จำกัด ที่ให้ความอนุเคราะห์ตะกอนจุลินทรีย์บำบัดแบบไร้อากาศ เพื่อใช้ในการเริ่มเดินระบบ ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และ ศูนย์ความเป็นเลิศด้านการจัดการสารและของเสียอันตราย จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ความอนุเคราะห์พื้นที่ และเครื่องมือในการวิจัย

ผู้ช่วยศาสตราจารย์ ดร.เบญจพร สุวรรณศิลป์ อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก และรอง ศาสตราจารย์ ดร. พิสุทธิ์ เพียรมนกุล อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม ที่คอยให้คำปรึกษา และช่วยชี้แนะ แนวทางในการทำวิจัย รวมถึงช่วยแก้ไขสิ่งที่บกพร่องตลอดระยะเวลาในการทำวิจัยและเล่มวิทยานิพนธ์ ซึ่งเป็น ส่วนสำคัญที่ทำให้วิทยานิพนธ์ฉบับนี้สำเร็จด้วยดี

ผู้ช่วยศาตราจารย์ ดร.ชัยพร ภู่ประเสริฐ ประธานในการสอบวิทยานิพนธ์ ตลอดจนรอง ศาสตราจารย์ ดร.วิบูลย์ลักษณ์ พึ่งรัศมี ผู้ช่วยศาสตราจารย์ ดร.มนัสกร ราชากรกิจ และผู้ช่วยศาสตรจารย์ ดร. วิลาสินี อยู่ชัชวาล ที่กรุณาเป็นกรรมการในการสอบวิทยานิพนธ์ รวมถึงการให้คำแนะนำจนทำให้วิทยานิพนธ์ ฉบับนี้สำเร็จลุล่วง

คณาจารย์ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ทุกท่านที่สั่งสอนและให้ความรู้เกี่ยวกับงานด้านวิศวกรรมสิ่งแวดล้อม

เจ้าหน้าที่ห้องปฏิบัตการและเจ้าหน้าที่ห้องธุรการ ภาควิศวกรรมสิ่งแวดล้อม คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ตลอดจนเจ้าหน้าที่ศูนย์ความเป็นเลิศด้านการจัดการสารและของ เสียอันตราย จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ความอนุเคราะห์และอำนวยความสะดวกในการใช้เครื่องมือ วิเคราะห์ผล ห้องปฏิบัติการวิจัย รวมถึงคำแนะนำด้านเอกสาร

ขอขอบคุณ นายกฤตยพงษ์ จันทรเดช นายวิชยุตม์ นิยม นางสาวคลหทัย สรวมศิริ และ นางสาวพิมพ์ศิริ หีบแก้ว ที่ให้ความช่วยเหลือในการทำวิจัย ตลอดจน เพื่อนๆ พี่ๆ ห้องปฏิบัติการวิจัยและ บัณฑิต และครอบครัวที่ให้ความช่วยเหลือ กำลังใจ และดูแลตลอดระยะเวลาการทำวิจัย

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	۹
บทคัดย่อภาษาอังกฤษ	ົາ
กิตติกรรมประกาศ	ນີ
สารบัญ	ช
สารบัญตาราง	ຢູ
สารบัญภาพ	j]
บทที่ 1 บทนำ	1
1.1 ความเป็นมาและความสำคัญ	1
1.2 วัตถุประสงค์ของงานวิจัย	2
1.3 ขอบเขตของงานวิจัย	3
1.4 ประโยชน์ที่คาดว่าจะได้รับ	4
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง	5
2.1 เซลล์เชื้อเพลิงชีวภาพ (Microbial fuel cells; MFC)	5
2.2 น้ำเสียปนเปื้อนซัลเฟต	9
2.3 กระบวนการทางชีวภาพที่เกี่ยวข้องในระบบเซลล์เชื้อเพลิงชีวภาพที่บำบัง สารอินทรีย์และซัลเฟต	ดน้ำเสียปนเปื้อน 14
2.3.1.กระบวนการสร้างก๊าซมีเทน (methanogenesis)	15
2.3.2 กระบวนการซัลเฟตรีดักซ์ชัน (sulfate reduction)	19
2.3.3 กระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชัน (sulfide/sulfur oxidat	tion)21
2.3.4 กระบวนการส่งถ่ายอิเลคตรอนไปยังขั้ว	22
2.4 การบำบัดไฮโดรเจนซัลไฟด์โดยหอดูดซึม	24
2.5 การวิเคราะห์กลุ่มประชากรจุลินทรีย์	32
2.6 การวิเคราะห์ทางไฟฟ้า	

2.6.1 การสูญเสียศักย์ไฟฟ้าของปฏิกิริยา (activation loss)	7
2.6.2 การสูญเสียศักย์ไฟฟ้าโอห์มมิก (ohmic loss)3 ⁻	7
2.6.3 การสูญเสียจากการถ่ายโอนมวลหรือความเข้มข้นของสาร (mass transfer หรือ	
concentration loss)	8
2.7 ปัจจัยที่ส่งผลต่อประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ	0
2.7.1 ปัจจัยทางด้านกายภาพและเคมี (physico-chemical factors)40	0
2.7.2 ปัจจัยทางชีวภาพ4	1
2.7.3 ปัจจัยด้านการเดินระบบ	2
2.8 เซลล์เชื้อเพลิงชีวภาพกับการบำบัดสารอินทรีย์และซัลเฟตในน้ำเสีย42	2
บทที่ 3 วิธีดำเนินงานวิจัย	9
3.1 แผนการดำเนินงานวิจัย	9
3.2 การดำเนินการทดลอง	0
3.2.1 การทดลองช่วงที่ 1 การศึกษาประสิทธิภาพการบำบัดน้ำเสียโดยห้องไร้อากาศ5	9
3.2.2 การทดลองช่วงที่ 2 การศึกษาผลของความสูงชั้นตัวกลางต่อค่าสัมประสิทธิ์การ	
ถ่ายเทมวลสารรวม (Volumetric mass transfer coefficient, K _L a)61	1
3.2.3 การทดลองช่วงที่ 3 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ ก่อนและ	2
ทศงการพฤตจากยุ่ญตขมo.	2
3.2.4 การทดลองช่วงที่ 4 การศึกษาบทบาทของกลุ่มจุลินทรีย์บนขัวแอโนดในการผลิต กระแสไฟฟ้า	5
3.2.5 การทดลองช่วงที่ 5 การวิเคราะห์กลุ่มประขากรุจลินทรีย์ในเซลล์เชื้อเพลิง	
ชีวภาพ	7
3.2.6 การทดลองช่วงที่ 6 การศึกษาการเปลี่ยนแปลงสภาพพื้นผิวของขั้วแอโนด โดยวิธี	
SEM-EDS7	3
บทที่ 4 ผลและวิจารณ์ผลการทดลอง	4

ซ

4.1 การศึกษาประสิทธิภาพการบำบัดน้ำเสียโดยห้องไร้อากาศ74
4.2 ผลการทดลองช่วงที่ 2 การศึกษาผลของความสูงชั้นตัวกลางต่อค่าสัมประสิทธิ์การถ่ายเทมวล
สารรวม79
4.3. ผลการทดลองช่วงที่ 3 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ
4.3.1 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัดสารอินทรีย์81
4.3.2 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัดซัลเฟต
4.3.3 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัดซัลไฟด์
4.3.4 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัด ก๊าซไฮโดรเจนซัลไฟด์ 89
4.3.5 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการผลิตกระแสไฟฟ้า91
4.4 ผลการทดลองช่วงที่ 4 การศึกษาบทบาทของจุลินทรีย์บนขั้วแอโนดต่อการผลิตกระแสไฟฟ้า ของเซลล์เชื้อเพลิงชีวภาพ96
4.4.1 การศึกษาบทบาทของจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์บนขั้วแอโนด
4.4.2 การศึกษาบทบาทของปฏิกิริยาทางไฟฟ้าเคมี (abiotic process)
4.5 ผลการทดลองช่วงที่ 5 การวิเคราะห์กลุ่มประขากรจุลินทรีย์ในเซลล์เชื้อเพลิงชีวภาพ 103
4.6. ผลการทดลองช่วงที่ 6 การศึกษาการเปลี่ยนแปลงสภาพพื้นผิวของขั้วแอโนด โดย
เปรียบเทียบภาพถ่ายอิเลคตรอนของขั้วแอโนด ประกอบกับการศึกษาองค์ประกอบธาตุ ด้วยวิธี
SEM-EDS
4.7 การวิเคราะห์กลไกการทำงานของเซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึม
บทที่ 5 สรุปผลและข้อเสนอแนะ
5.1 สรุปผลการวิจัย
5.2 ประโยชน์ทางวิศวกรรมสิ่งแวดล้อม 121
5.3 ข้อเสนอแนะ
รายการอ้างอิง
ภาคผนวก

หน้า

ภาคผนวก ก		
ภาคผนวก ข		
ภาคผนวก ค		170
ภาคผนวก ง		
ภาคผนวก จ		
ประวัติผู้เขียนวิทยา	านิพนธ์	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

หน้า

สารบัญตาราง

ตารางที่	2.1	มาตรฐานความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพ12
ตารางที่	2.2	สัดส่วนขององค์ประกอบในก๊าซชีวภาพที่สามารถใช้งานได้
ตารางที่	2.3	ความเข้มข้นไฮโดรเจนซัลไฟด์จากแหล่งผลิตก้าซชีวภาพ13
ตารางที่	2.4	คุณสมบัติของก๊าซองค์ประกอบในก๊าซชีวภาพ14
ตารางที่	2.5	ตัวอย่างปฏิกิริยาการย่อยสลายสารอินทรีย์โดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต20
ตารางที่	2.6	ค่าความต่างศักย์มาตรฐานครึ่งปฏิกิริยา ณ อุณหภูมิ 30°C และพีเอชเท่ากับ 734
ตารางที่	2.7	งานวิจัยที่ใช้ระบบเซลล์เชื้อเพลิงชีวภาพในการบำบัดซัลไฟด์ในน้ำเสีย47
ตารางที่	3.1	ส่วนประกอบและความเข้มข้นของสารที่ใช้ในการเตรียมน้ำเสียสังเคราะห์)
ตารางที่	3.2	พารามิเตอร์ที่ทำการวิเคราะห์ในการศึกษาครั้งนี้
ตารางที่	4.1	ค่าพารามิเตอร์ต่างๆในน้ำขาเข้าและขาออกห้องไร้อากาศตั้งแต่วันที่ 40 ถึง 190 .76
ตารางที่	4.7	ร้อยละธาตุที่พบบนขั้วแอโนดหลังการทดลองที่ 3.2.2 115

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สารบัญภาพ

ภาพที่ 2.1 ส่วนประกอบของเซลล์เชื้อเพลิงชีวภาพชนิดห้องคู่ (double-chamber MFC) โดย ใช้ออกซิเจนเป็นสารรับอิเลคตรอน	.5
ภาพที่ 2.2 ส่วนประกอบของเซลล์เชื้อเพลิงชีวภาพชนิดห้องเดี่ยว (single-chamber MFC) โด ใช้ออกซิเจนเป็นสารรับอิเลคตรอน	เย .7
ภาพที่ 2.3 การส่งถ่ายอิเลคตรอนของจุลินทรีย์ในเซลล์เชื้อเพลิงชีวภาพ แบบส่งถ่ายโดยตรง แล อาศัยสารตัวกลาง จากเยื่อหุ้มเซลล์สู่ขั้วแอโนด	ะ .8
ภาพที่ 2.4 การส่งถ่ายอิเลคตรอนบริเวณเยื้อหุ้มเซลล์ของจุลินทรีย์กลุ่ม Geobacter spp. ใน ระบบเซลล์เชื้อเพลิงชีวภาพ	.8
ภาพที่ 2.5 วัฏจักรซัลเฟอร์ที่เกี่ยวของกับกระบวนการของจุลินทรีย์	.9
ภาพที่ 2.6 การรีดิวซ์ซัลเฟตโดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต (SRB) กลายเป็นซัลไฟด์และ เกิดปฏิกิริยาซัลไฟด์ออกซิเดชันโดยจุลินทรีย์กลุ่มออกซิไดซ์ซัลเฟอร์ (sulfur/sulfide-oxidizing microorganisms)	10
ภาพที่ 2.7 วิธีการทางเคมีและชีวภาพในการควบคุมปริมาณซัลไฟด์	12
ภาพที่ 2.8 ลักษณะเซลล์เชื้อเพลิงชีวภาพที่ใช้ในการศึกษาครั้งนี้	15
ภาพที่ 2.9 ขั้นตอนย่อยสลายแบบไม่ใช้อากาศสำหรับการผลิตมีเทน	16
ภาพที่ 2.10 ตัวอย่างกระบวนการย่อยสลายน้ำตาลโดยจุลินทรีย์ที่เกี่ยวข้องกับ การหมักกลุ่มต่างๆ	18
ภาพที่ 2.11 ภาพถ่าย SEM ของ Shawanella oneidensis บนขั้วแอโนดจากเซลล์เชื้อเพลิง ชีวภาพ	22
ภาพที่ 2.12 การสะสมของโปรตอนในชั้น Biofilm บนขั้วแอโนด	23
ภาพที่ 2.13 กลุ่มจุลินทรีย์และปฏิกิริยาที่คาดว่าเกิดขึ้นในระบบเซลล์เชื้อเพลิงชีวภาพ	23
ภาพที่ 2.14 ปัจจัยที่ส่งผลต่อประสิทธิภาพการบำบัดไฮโดรเจนซัลไฟด์	26
ภาพที่ 2.15 การถ่ายเทมวลสารจากก๊าซสู่ของเหลว	27
ภาพที่ 2.16 องค์ประกอบและทิศทางการไหลของเฟสต่างๆในหอดูดซึม	<u>2</u> 9

ภาพที่ 2.17 ความดันลดที่เกิดขึ้นในหอดูดซึมบรรจุตัวกลางแบบสุ่ม
ภาพที่ 2.18 การสร้าง DNA library (ligation และ transformation)
ภาพที่ 2.19 กราฟความสัมพันธ์ระหว่างความหนาแน่นกระแสและความต่างศักย์
ภาพที่ 2.20 การสูญเสียศักย์ไฟฟ้าทางทฤษฎีของระบบเซลล์เชื้อเพลิง
ภาพที่ 3.1 แผนการดำเนินงานโดยรวมของงานวิจัยครั้งนี้
ภาพที่ 3.2 ด้านข้างของระบบเซลล์เชื้อเพลิงชีวภาพในการทดลองครั้งนี้ ภาพแสดงสัดส่วน (บน) และภาพถ่าย (ล่าง)
ภาพที่ 3.3 ด้านบนของระบบเซลล์เชื้อเพลิงชีวภาพในการทดลองครั้งนี้ ภาพแสดงสัดส่วน (บน) และภาพถ่าย (ล่าง)
ภาพที่ 3.4 อุปกรณ์ไฟฟ้าที่ติดตั้งในห้องเซลล์เชื้อเพลิงชีวภาพขั้วแอโนด (ก) ขั้วแคโทดและเยื่อ
เลือกผ่านโปรตอน (ข) เส้นลวดไทเทเนียม (ค) และตัวต้านทานภายนอก (ง)
ภาพที่ 3.5 การเชื่อมต่อขั้วแคโทด และแผ่นตาข่ายเงิน54
ภาพที่ 3.6 การเดินระบบเซลล์เชื้อเพลิงชีวภาพการทดลองช่วงที่ 1 (ห้องไร้อากาศ)
ภาพที่ 3.7 ขั้นตอนการคัดเลือกสายพันธุ์จุลินทรีย์และศึกษาประสิทธิภาพการบำบัดสารอินทรีย์ และซัลเฟตในน้ำเสียด้วยห้องหมักแบบไร้อากาศของการทดลองช่วงที่ 1
ภาพที่ 3.8 ลักษณะตัวกลางที่ใช้บรรจุภายในหอดูดซึม
ภาพที่ 3.9 แผนผังการเดินระบบสำหรับทดสอบผลของความสูงชั้นตัวลางต่อค่าสัมประสิทธิ์ การ ถ่ายเทมวลสารรวม
ภาพที่ 3.10 ขั้นตอนการทดลองช่วงที่ 3
ภาพที่ 3.11 ตัวอย่างบทบาทของจุลินทรีย์กลุ่มต่างๆ และ กระบวนการ abiotic oxidation65
ภาพที่ 3.12 การเดินระบบเซลล์เชื้อเพลิงชีวภาพการทดลองช่วงที่ 4
ภาพที่ 3.13 ขั้นตอนทดลองช่วงที่ 4 การศึกษาบทบาทของกลุ่มจุลินทรีย์บนขั้วแอโนด ในการ ผลิตกระแสไฟฟ้า
ภาพที่ 3.14 ขั้นตอนการศึกษาความหลากหลายของจุลินทรีย์โดยเทคนิค DNA clone library 67
ภาพที่ 3.15 ตำแหน่งยีนและผังของเวกเตอร์ pGEM®-T Easy Vector (Promega, USA)70

ภาพที่ 4.1 ค่าพารามิเตอร์ต่างๆในน้ำขาออกห้องไร้อากาศที่ 1 (•)และ 2 (○) ช่วงวันที่ 1 ถึง 19077
ภาพที่ 4.2 ลักษณะตะกอนภายในห้องไร้อากาศก่อน (ก) และหลัง (ข) การเดินระบบ
ภาพที่ 4.3 ค่าสัมประสิทธิ์การถ่ายเทมวลสารของก๊าซออกซิเจนที่ระดับความสูงตัวกลางต่างๆ เมื่อเดินระบบด้วยหอดูดซึมและตัวกลางแบบทรงกระบอกกลวง
ภาพที่ 4.4 การศึกษาปัจจัยที่มีผลต่อประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ
ภาพที่ 4.5 ประสิทธิภาพการบำบัดสารอินทรีย์ในห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (>) ช่วงการทดลองที่ 3
ภาพที่ 4.6 ความเข้มข้นซัลเฟตขาเข้าห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (○) ช่วงการ ทดลองที่ 3
ภาพที่ 4.7 ความเข้มข้นซัลเฟตขาออกห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (○) ช่วงการ ทดลองที่ 3
ภาพที่ 4.8 ความเข้มข้นซัลไฟด์ในน้ำที่ลดลงในห้องเซลล์เซื้อเพลิงชีวภาพที่ 1 (•) และ 2 (○) ช่วง การทดลองที่ 3
ภาพที่ 4.9 ความเข้มข้นซัลไฟด์ขาเข้าห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (○) ช่วงการ ทดลองที่ 3
ภาพที่ 4.10 ค่าพีเอชภายในห้องห้องไร้อากาศที่ 1 (•) และ 2 (○) ช่วงการทดลองที่ 387
ภาพที่ 4.11 ความเข้มข้นซัลไฟด์ขาออกห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (○) ช่วงการ ทดลองที่ 3
ภาพที่ 4.12 ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพขาเข้าห้องเซลล์เชื้อเพลิงชีวภาพ ที่ 1 (•) และ 2 () ช่วงการทดลองที่ 3
ภาพที่ 4.13 ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพขาออกห้องเซลล์เชื้อเพลิงชีวภาพ ที่ 1 (•) และ 2 () ช่วงการทดลองที่ 390
ภาพที่ 4.14 ค่าความต่างศักย์ไฟฟ้าวงจรเปิดของห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (ៈ) ช่วงการทดลองที่ 3
ภาพที่ 4.15 ค่าความต่างศักย์ไฟฟ้าวงจรเปิดของห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (ៈ) ช่วงการทดลองที่ 3

ภาพที่ 4.16 ค่าความหนาแน่นกำลังไฟฟสูงสุดห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (ៈ) ช่	່/วง
การทดลองที่ 3	93
ภาพที่ 4.17กราฟความสัมพันธ์ระหว่างความต่างศักย์ไฟฟ้าและความหนาแน่นกระแสไฟฟ้าขอ	۹۵
เซลล์เชื้อเพลิงชีวภาพที่ 1 ช่วงที่ 1 วันที่ 1 6 11 และ 17	95
ภาพที่ 4.18 ความเข้มข้นซัลไฟด์ขาเข้า () และขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้ง	งแต่
วันที่ 1 ถึง 15 ของช่วงการทดลองที่ 4.1	97
ภาพที่ 4.19 ความเข้มข้นซัลเฟตขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้งแต่วันที่ 1 ถึง 1	5
ของช่วงการทดลองที่ 4.1	97
ภาพที่ 4.20 ค่าความต่างศักย์ไฟฟ้าวงจรเปิด (ก) และความต่างศักย์ไฟฟ้าที่ความต้านทาน ภายนอก 1,000 โอห์ม (ข) ของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองที่ 4.1	98
ภาพที่ 4.21 ค่าความหนาแน่นกำลังไฟฟ้าสูงสุดของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองท์ 4.1	์ กี่ 99
ภาพที่ 4.22 ความเข้มข้นซัลไฟด์ขาเข้า (>) และขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้งเ	แต่
วันที่ 1 ถึง 8 ของช่วงการทดลองที่ 4.2	100
ภาพที่ 4.23 ความเข้มข้นซัลเฟตขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้งแต่วันที่ 1 ถึง 8 ของช่วงการทดลองที่ 4.2	101
ภาพที่ 4.24 ค่าความต่างศักย์ไฟฟ้าวงจรเปิด (ก) และความต่างศักย์ไฟฟ้าที่ความต้านทาน ภายนอก 1,000 โอห์ม (ข) ของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองที่ 4.2	101
ภาพที่ 4.25 ค่าความหนาแน่นกำลังไฟฟ้าสูงสุดของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองท์ 4.2	์ ที่ 102
ภาพที่ 4.26 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างแบคทีเรียกลุ่มแขวนลอย	ย
ในห้องไร้อากาศจากโคโลนีที่ 1 ถึง 20 ที่ได้รับพาหะเข้าสู่เซลล์	103
ภาพที่ 4.27 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างแบคทีเรียกลุ่มยึดเกาะ 1	บน
ขั้วแอโนดจากโคโลนีที่ 1 ถึง 21 ที่ได้รับพาหะเข้าสู่เซลล์	104
ภาพที่ 4.28 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างอาเคียร์กลุ่มแขวนลอย ห้องไร้อากาศจากโคโลนีที่ 1 ถึง 24 ที่ได้รับพาหะเข้าสู่เซลล์	104

ภาพที่ 4.29 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างอาเคียร์กลุ่มยึดเกาะ บน
ขั้วแอโนดจากโคโลนีที่ 1 ถึง 21 ที่ได้รับพาหะเข้าสู่เซลล์
ภาพที่ 4.30 สัดส่วนสายพันธุ์แบคทีเรียที่พบในตะกอนแขวนลอยห้องไร้อากาศ 106
ภาพที่ 4.31 phylogenetic tree ของ 16S rRNA gene clone library โดยใช้ neighbor-
joining method ของกลุ่มตัวอย่างแบคทีเรียแขวนลอยห้องไร้อากาศศายางกลุ่มตัวอย่างแบคทีเรียแขวนลอยห้องไร้อากาศ
ภาพที่ 4.32 สัดส่วนสายพันธุ์แบคทีเรียที่พบบนขั้วแอโนด เซลล์เชื้อเพลิงชีวภาพที่ 1 108
ภาพที่ 4.33 phylogenetic tree ของ 16S rRNA gene clone library โดยใช้ neighbor-
joining method ของตัวอย่างแบคทีเรียบนขั้วแอโนด109
ภาพที่ 4.34 สัดส่วนสายพันธุ์อาเคียร์ที่พบในตะกอนแขวนลอยห้องไร้อากาศ 110
ภาพที่ 4.35 phylogenetic tree ของ 16S rRNA gene clone library โดยใช้ neighbor-
joining method ของตัวอย่างอาเคียร์ในตะกอนแขวนลอยห้องไร้อากาศ
ภาพที่ 4.36 สัดส่วนสายพันธุ์อาเคียร์ที่พบบนขั้วแอโนด เซลล์เชื้อเพลิงชีวภาพที่ 1 112
ภาพที่ 4.37 phylogenetic tree ของ 16S rRNA gene clone library โดยใช้ neighbor-
joining method ของตัวอย่างอาเคียร์บนขั้วแอโนด
ภาพที่ 4.38 ลักษณะพื้นผิวขั้วแอโนด (activated carbon cloth) ก่อน (ก) และหลัง (ข) การ
ทดลองช่วงที่ 3.2.2
ภาพที่ 4.39 ธาตุที่พบบนขั้วแอโนดหลังการทดลองช่วงที่ 3.2.2
ภาพที่ 4.40 กลไกที่คาดว่าเกิดขึ้นภายในเซลล์เชื้อเพลิงชีวภาพ
ภาพที่ 4.41 แผนภาพสรุปกลไกของเซลล์เชื้อเพลิงชีวภาพในการวิจัยครั้งนี้

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญ

้ ปัญหาสิ่งแวดล้อมด้านมลพิษทางน้ำจากโรงงานอุตสาหกรรมเป็นหนึ่งในปัญหาที่สำคัญ เนื่องจากระบบบำบัดน้ำเสียของโรงงานอุตสาหกรรมอาจไม่สามารถบำบัดสารปนเปื้อนได้อย่างมี ประสิทธิภาพหรือเกิดจากการปล่อยน้ำเสียในปริมาณสูงเกินความสามารถของธรรมชาติในการบำบัด ตัวเอง (self-purification) ของสารปนเปื้อนเหล่านั้น น้ำเสียที่ปนเปื้อนสารอินทรีย์ความเข้มข้นสูง ้สามารถใช้วิธีการบำบัดโดยระบบไร้อากาศ แต่หากน้ำเสียมีส่วนประกอบของซัลเฟตในความเข้มข้น สูง จะส่งผลให้ระบบไม่สามารถบำบัดสารอินทรีย์ได้อย่างมีประสิทธิภาพ เนื่องจากซัลเฟตจะถูก เปลี่ยนสภาพเป็นซัลไฟด์ในสภาวะไร้อากาศ ซึ่งส่งผลต่อการเจริญเติบโตของจุลินทรีย์กลุ่มสร้างมีเทน (methane producing archaea; MPA) (Chou และคณะ, 2008; Jing และคณะ, 2013; Hu และ คณะ, 2015) ที่เป็นจุลินทรีย์กลุ่มสำคัญที่ใช้ในการบำบัดสารอินทรีย์ในน้ำเสียแบบไม่ใช้อากาศ และสำหรับดึงกลับพลังงานในรูปของก๊าซชีวภาพ แหล่งที่มาของน้ำเสียเหล่านี้สามารถเกิดได้จาก โรงงานหลายประเภท อาทิ โรงงานผลิตยาและเวชภัณฑ์ โรงงานผลิตเยื่อกระดาษ โรงงานน้ำยางพารา (Saritpongteerakaและ Chaiprapat, 2008) ปัญหาจากซัลเฟตที่ปนเปื้อนในระบบบำบัดน้ำเสีย แบบไร้อากาศคือการเปลี่ยนเป็นซัลไฟด์โดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต (sulfate-reducing bacteria; SRB) ซึ่งมีกลิ่นเหม็นและเป็นอันตรายต่อผู้สุดดม ทำให้ก๊าซชีวภาพที่ผลิตจากระบบไร้อากาศ มีคุณภาพต่ำอีกทั้งยังก่อให้เกิดปัญหาการกัดกร่อนของท่อ จึงจำเป็นต้องมีระบบบำบัด ไฮโดรเจนซัลไฟด์ก่อนการนำไปใช้งาน

เมื่อมีการปนเปื้อนของซัลเฟตและซัลไฟด์ ในระบบบำบัดแบบไร้อากาศ สงผลให้ ประสิทธิภาพการบำบัดสารอินทรีย์และการผลิตก๊าซชีวภาพลดลง จึงมีการศึกษาวิธีการยับยั้งการ เปลี่ยนรูปซัลเฟตและการเกิดซัลไฟด์ (Zhang และคณะ, 2008) เช่น การกำจัดซัลไฟด์โดยใช้ กระบวนการทางเคมีและทางกายภาพ และในการบำบัดด้วยกระบวนการทางชีวภาพโดยอาศัย จุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์/ซัลเฟอร์ (sulfide/sulfur-oxidizing bacteria; SOB) ที่มี ความสามารถในการใช้ซัลไฟด์เป็นแหล่งพลังงานและเปลี่ยนให้อยู่ในรูปซัลเฟตหรือซัลเฟอร์ในรูป ของแข็ง ที่มีความเสถียรและไม่เป็นพิษต่อสิ่งแวดล้อม

เซลล์เชื้อเพลิงชีวภาพ (microbial fuel cells ; MFC) คือระบบบำบัดน้ำเสียที่สามารถผลิต กระแสไฟฟ้าโดยใช้กระบวนการชีวไฟฟ้าเคมี โดยมีจุลินทรีย์เป็นตัวเร่งปฏิกิริยาภายในห้องแอโนด จากการศึกษาเซลล์เชื้อเพลิงชีวภาพที่ใช้บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต พบการกระจาย ตัวของจุลินทรีย์กลุ่ม SRB ในตะกอนแขวนลอยเป็นหลัก ตัวอย่างเช่น จุลินทรีย์สายพันธุ์ *Desulfovibrio* และพบจุลินทรีย์กลุ่ม SOB บริเวณขั้วไฟฟ้าเป็นหลัก เช่น *Thiobacillus* (Sun และ คณะ, 2010) เมื่อจุลินทรีย์ทั้ง 2 กลุ่มอาศัยอยู่ร่วมกันจึงสามารถบำบัดซัลเฟตและซัลไฟด์ได้ในระบบ เดียว (Sangcharoen และคณะ, 2015) งานวิจัยที่ผ่านมา (Zhao และคณะ, 2008) พบว่า เซลล์เชื้อเพลิงชีวภาพที่ป้อนน้ำเสียที่ปนเปื้อนซัลไฟด์สามารถผลิตกระแสไฟฟ้าได้ทันทีหลังจาก มีซัลไฟด์เข้าสู่ระบบ

งานวิจัยที่เกี่ยวข้องกับการบำบัดซัลไฟด์ในน้ำเสียโดยเซลล์เชื้อเพลิงชีวภาพมีอัตราการบำบัด อยู่ในช่วง 6.1-10.8 µM/m²·s (Liu และคณะ, 2013; Zhang และคณะ, 2012) โดยทั่วไปมีค่าที่สูง กว่าอัตราการละลายน้ำของก๊าซไฮโดรเจนซัลไฟด์ ดังนั้นหากเพิ่มพื้นที่สัมผัสระหว่างก๊าซและน้ำ ภายในเซลล์เชื้อเพลิงชีวภาพ โดยการใช้หอดูดซึม (absorption column) จะสามารถเพิ่มอัตราการ บำบัดซัลไฟด์ในระบบได้ดียิ่งขึ้น และเนื่องจากสมบัติทางกายภาพของก๊าซไฮโดรเจนซัลไฟด์ที่ละลาย น้ำได้ดีกว่าก๊าซมีเทน จะช่วยให้ก๊าซที่ผ่านการบำบัดแล้วมีคุณภาพดียิ่งขึ้น

ในงานวิจัยนี้จึงสนใจการบำบัดก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพที่ผลิตจากกระบวนการ บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟตแบบไร้อากาศ โดยอาศัยกระบวนการซัลไฟด์/ซัลเฟอร์ ออกซิเดชัน ภายในเซลล์เชื้อเพลิงชีวภาพร่วมกับการถ่ายเทมวลสารจากวัฏภาคก๊าซสู่วัฏภาคของเหลว โดยใช้หอดูดซึม เพื่อการบำบัดไฮโดรเจนซัลไฟด์และผลิตกระแสไฟฟ้า รวมถึงการศึกษาความ หลากหลายของจุลินทรีย์ที่เกี่ยวข้องในกระบวนการดังกล่าว เพื่ออธิบายกลไกและปฏิกิริยาที่เกิดขึ้น ภายในระบบ

1.2 วัตถุประสงค์ของงานวิจัย

 1.2.1 เพื่อศึกษาประสิทธิภาพการบำบัดซัลไฟด์และการผลิตกระแสไฟฟ้าโดยเซลล์เชื้อเพลิง ชีวภาพชนิดห้องเดี่ยวร่วมกับหอดูดซึม ที่บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต

1.2.2 เพื่อศึกษากลไกและบทบาทของจุลินทรีย์ในการบำบัดซัลเฟต ซัลไฟด์และผลิต กระแสไฟฟ้า ในเซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึมที่บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต

1.4.3 เพื่อศึกษากลุ่มจุลินทรีย์ในระบบเซลล์เชื้อเพลิงชีวภาพที่บำบัดน้ำเสียปนเปื้อน สารอินทรีย์และซัลเฟต

1.3 ขอบเขตของงานวิจัย

งานวิจัยนี้เป็นงานวิจัยระดับห้องปฏิบัติการโดยดำเนินการทดลอง ณ ภาควิชาวิศวกรรม สิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย มีขอบเขตงานวิจัยดังนี้

1.3.1 เซลล์เชื้อเพลิงชีวภาพที่ใช้ในการวิจัยเป็นชนิดห้องเดี่ยว แบบ 2 ห้องย่อย มีขนาดกว้าง
16 เซนติเมตร สูง 21 เซนติเมตร ยาว 26.5 เซนติเมตร ประกอบด้วยขั้วแอโนดชนิด activated
carbon cloth ขนาด 5x5 เซนติเมตร และขั้วแคโทดชนิด carbon cloth ปรับปรุงพื้นผิวด้วย
แพลตินัม 0.5 มิลลิกรัมต่อตารางเซนติเมตร และยึดติดกับเยื่อเลือกผ่านโปรตอนด้วยความร้อนภายใต้
แรงดัน

 1.3.2 หอดูดซึมเลือกใช้รูปแบบ packed column เส้นผ่านศูนย์กลางภายใน 5 เซนติเมตร สูง 15 เซนติเมตร บรรจุตัวกลางโพลีโพรพิลีน ขนาดเส้นผ่าศูนย์กลางด้านนอกเท่ากับ 5.73±0.17 มิลลิเมตร หนา 0.585±0.016 มิลลิเมตร ยาว 6.13±0.78 มิลลิเมตร

1.3.3 เดินระบบที่อุณหภูมิห้อง และกำหนดระยะเวลากักเก็บ 1 วันในแต่ละห้องย่อย ของเซลล์เชื้อเพลงชีวภาพ

1.3.4 น้ำเสียสังเคราะห์ประกอบด้วยกลูโคสเป็นแหล่งสารอินทรีย์ ที่ความเข้มข้น
3,000 มิลลิกรัมซีโอดีต่อลิตร และโซเดียมซัลเฟตเป็นแหล่งซัลเฟตที่ความเข้มข้น 300 มิลลิกรัม
ชัลเฟตต่อลิตร

 1.3.5 ตะกอนจุลินทรีย์เริ่มต้น เลือกใช้ตะกอนจุลินทรีย์จากระบบบาบัดแบบไร้อากาศ ที่บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต

1.3.6 ศึกษาความหลากหลายประชากรจุลินทรีย์ในระบบเซลล์เชื้อเพลิงชีวภาพโดยใช้เทคนิค 16S rRNA gene clone library

1.4 ประโยชน์ที่คาดว่าจะได้รับ

1.4.1 สามารถประเมินประสิทธิภาพและผลิตภัณฑ์ของระบบที่บำบัดสารอินทรีย์และซัลเฟต โดยใช้เซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึม

1.4.2 เป็นแนวทางในการออกแบบหอดูดซึมสำหรับการทำงานร่วมกับเซลล์เชื้อเพลิงชีวภาพ เพื่อการบำบัดซัลไฟด์

1.4.3 ทราบความหลากหลายของจุลินทรีย์กลุ่มหลักที่มีความสำคัญสำหรับการบำบัดน้ำเสีย ปนเปื้อนสารอินทรีย์และซัลเฟต

1.4.4 พัฒนาแนวทางการบำบัดไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพและการผลิตกระแสไฟฟ้า
โดยเซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึม เพื่อนำก๊าซชีวภาพจากกระบวนการหมักแบบไร้อากาศไป
ใช้ประโยชน์ได้ดียิ่งขึ้น

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 เซลล์เชื้อเพลิงชีวภาพ (Microbial fuel cells; MFC)

เซลล์เซื้อเพลิงชีวภาพคือเทคโนโลยีในการนำพลังงานเคมีจากน้ำเสียกลับมาใช้อีกครั้ง ในรูปของพลังงานไฟฟ้า ซึ่งระบบนี้มีการสร้างสภาวะที่เหมาะสมต่อการเติบโตของจุลินทรีย์กลุ่มไม่ใช้ อากาศ โดยอาศัยจุลินทรีย์เป็นตัวกระตุ้นในกระบวนการย่อยสลายสารอินทรีย์และอนินทรีย์ ในการเปลี่ยนพลังงานเคมีให้เป็นพลังงานไฟฟ้า หลักการทำงานของระบบนี้คือ หลังจากเกิดปฏิริยา ออกซิเดชัน (oxidation reaction) ย่อยสลายสารอินทรีย์แล้วจะเกิดผลิตภัณฑ์ที่สำคัญคือ อิเลคตรอน (electron; e⁻) และโปรตอน (proton; H⁺) ซึ่งโปรตอนในสารละลายในฝั่งแอโนดจะเคลื่อนที่ผ่าน เยื่อเลือกผ่านโปรตอนไปยังฝั่งแคโทด ก่อให้เกิดความต่างศักย์ระหว่างทั้งสองฝั่ง ทำให้อิเลคตรอน เคลื่อนที่จากฝั่งแอโนดผ่านทางขั้วแอโนดและตัวนำไฟฟ้ามายังขั้วแคโทด เพื่อรวมกับโปรตอนและ ตัวรับอิเลคตรอน เช่น ออกซิเจน เกิดปฏิกิริยารีดักชัน (reduction reaction) การเคลื่อนที่ของ อิเลคตรอนนี้เองจึงทำให้เกิดพลังงานไฟฟ้าขึ้น ส่วนประกอบของเซลล์เซื้อเพลิงชีวภาพ (ภาพที่ 2.1) แบ่งออกเป็น 6 ส่วนได้แก่

ภาพที่ 2.1 ส่วนประกอบของเซลล์เชื้อเพลิงชีวภาพชนิดห้องคู่ (double-chamber MFC) โดยใช้ออกซิเจนเป็นสารรับอิเลคตรอน (Du และคณะ, 2007)

2.1.1 ขั้วแอโนด (anode)

เป็นตัวรับอิเลคตรอนจากการย่อยสลายหรือเปลี่ยนรูปสารอินทรีย์และสารอนินทรีย์ โดยจุลินทรีย์ ขั้วแอโนดสามารถทำมาจากวัสดุหลายประเภท เช่น คาร์บอน โลหะ ซึ่งมีความแตกต่าง ในด้านรูปร่าง พื้นที่ผิวและการนำไฟฟ้าตัวอย่างของรูปแบบวัสดุคาร์บอนที่นำมาทำเป็นขั้วแอโนด ได้แก่ แผ่นเรียบ (carbon paper) ถักทอเป็นแผ่น (carbon cloth) แบบแปรง (carbon brush) และ แบบ reticulated vitrified carbon

2.1.2 ขั้วแคโทด (cathode)

เป็นที่สำหรับให้ตัวรับอิเลคตรอน เช่น ออกซิเจน มารับอิเลคตรอนและรวมตัวกับ โปรตอนที่มาจากฝั่งแอโนด เกิดกระบวนการไฟฟ้าเคมีได้สมบูรณ์ วัสดุที่นำมาทำขั้วแคโทดสามารถ ใช้วัสดุเช่นเดียวกับขั้วแอโนด

2.1.3 เยื่อเลือกผ่านโปรตอน (proton exchange membrane; PEM)

มีลักษณะเป็นแผ่นที่ให้เพียงโปรตอนสามารถผ่านได้เท่านั้น วัสดุที่ใช้ได้แก่ Nafion Ultrex หรือ Polyethylene

2.1.4 ห้องแอโนดและแคโทด (anode and cathode chamber)

สำหรับเป็นที่อยู่อาศัยของจุลินทรีย์และเกิดกระบวนการย่อยสลายทางชีวเคมี ห้องแคโทดอาจไม่จำเป็นหากระบบใช้ออกซิเจนในอากาศเป็นตัวรับอิเลคตรอน เช่น ในกรณีของเซลล์ เชื้อเพลิงชีวภาพแบบห้องเดี่ยว (single-chamber MFC) สามารถผลิตจากวัสดุหลายประเภทเช่น กระจก โพลีคาร์บอเนต หรือกระจกชนิด Plexiglas

2.1.5 อุปกรณ์ทางไฟฟ้า (electrical equipment)

สำหรับเป็นตัวกลางในการส่งถ่ายอิเลคตรอนระหว่างขั้วทั้งสองได้แก่ สายไฟ (wire) และตัวต้านทานภายนอก (external resistant)

2.1.6 จุลินทรีย์ (microorganisms)

กลุ่มของจุลินทรีย์ที่นำมาเติมในห้องแอโนดต้องมีความสามารถในการใช้สารอินทรีย์ และสารอนินทรีย์ที่ปนเปื้อนในน้ำเสียเป็นสารให้อิเลคตรอน (electron donor) สำหรับการ เจริญเติบโตและสามารถส่งถ่ายอิเลคตรอนไปยังขั้วแอโนดได้ การใช้ออกซิเจนละลายน้ำเป็นตัวรับอิเลคตรอนภายในห้องแคโทดมีข้อจำกัดด้าน ความสามารถในการละลายน้ำ และต้องใช้พลังงานสูง จึงมีการพัฒนาขั้วแคโทดให้สามารถใช้ ออกซิเจนจากอากาศโดยตรง ทำให้ลดขนาดของเซลล์เชื้อเพลิง และลดการใช้พลังงานในการเติม อากาศ โดยเรียกระบบเช่นนี้ว่า เซลล์เชื้อเพลิงชีวภาพแบบห้องเดี่ยว (single-chamber MFC หรือ air-cathode MFC) ดังภาพที่ 2.2

ภาพที่ 2.2 ส่วนประกอบของเซลล์เชื้อเพลิงชีวภาพชนิดห้องเดี่ยว (single-chamber MFC) โดยใช้ออกซิเจนเป็นสารรับอิเลคตรอน (ดัดแปลงจาก Du และคณะ, 2007)

ในกระบวนการเปลี่ยนรูปแบบของพลังงานเคมีเป็นพลังงานไฟฟ้าจะเกิดปฏิกิริยาที่ห้อง แอโนด ในกรณีนี้จะกล่าวถึงปฏิกิริยาและกระบวนการที่เกี่ยวข้องกับจุลินทรีย์เป็นหลัก กระบวนการ ที่สำคัญที่สุดในการให้พลังงานไฟฟ้าคือการส่งถ่ายอิเลคตรอน ในขั้นต้นสารอินทรีย์จะถูกย่อยสลาย ด้วยจุลินทรีย์แบบไม่ใช้อากาศในห้องแอโนด เช่น การย่อยสลายอะซิเตทและกลูโคส (ดังสมการที่ 2.1 และ 2.2)

$$C_2H_3O_2^- + 2H_2O \longrightarrow 2CO_2 + 7H^+ + 8e^-$$
(2.1)
 $C_6H_{12}O_6 + 6H_2O \longrightarrow 6CO_2 + 24H^+ + 24e^-$ (2.2)

อิเลคตรอนที่เกิดจากการย่อยสลายจะถูกใช้ในการสร้างพลังงานให้แก่เซลล์ จากกระบวนการ ขนส่งอิเลคตรอนบริเวณเยื่อหุ้มเซลล์ด้านในโดยสารตัวกลาง เช่น ควิโนน (quinone) NADH หรือ ไซโตโครม (cytochrome) เป็นต้น จนขั้นสุดท้ายอิเลคตรอนจะถูกส่งออกภายนอกเซลล์ ซึ่งโดยทั่วไป จุลินทรีย์สามารถส่งถ่ายอิเลคตรอนไปยังขั้วแอโนดได้ 2 วิธีดังภาพที่ 2.3

ภาพที่ 2.3 การส่งถ่ายอิเลคตรอนของจุลินทรีย์ในเซลล์เชื้อเพลิงชีวภาพ แบบส่งถ่ายโดยตรง และอาศัยสารตัวกลาง จากเยื่อหุ้มเซลล์สู่ขั้วแอโนด (Mohan และคณะ, 2014)

วิธีที่ 1 คือการส่งถ่ายอิเลคตอนโดยตรง (direct electron transfer; DET) จุลินทรีย์เหล่านี้ จะเกาะติดกับขั้วแอโนดโดยตรง จึงไม่จำเป็นต้องใช้สารตัวกลางในการส่งถ่ายอิเลคตรอน ซึ่งมักเรียก จุลินทรีย์กลุ่มนี้ว่า exoelectrogenic microorganisms (EEM) สามารถแบ่งเป็น 2 กลุ่มย่อยคือ

1 กลุ่มที่ใช้ตัวกลางบริเวณเยื่อหุ้มเซลล์ ดังภาพที่ 2.3 (ก) เป็นวิธีหนึ่งในการส่งถ่าย อิเลคตรอนจากเซลล์จุลินทรีย์ไปยังขั้วแอโนด

2 กลุ่มที่ใช้ท่อขนาดเล็ก (nanowire) ในการส่งถ่ายอิเลคตรอนดังภาพที่ 2.3 (ข) ซึ่ง จุลินทรีย์บางชนิดมีโครงสร้างที่เยื่อหุ้มเซลล์เป็นท่อหรือสายขนาดเล็กที่นำไฟฟ้าได้ เมื่ออาศัยอยู่ที่ บริเวณขั้วจึงใช้เป็นตัวกลางในการส่งถ่ายอิเลคตรอน (ภาพที่ 2.4)

ภาพที่ 2.4 การส่งถ่ายอิเลคตรอนบริเวณเยื้อหุ้มเซลล์ของจุลินทรีย์กลุ่ม *Geobacter spp.* ในระบบเซลล์เชื้อเพลิงชีวภาพ (Du และคณะ, 2007)

วิธีที่ 2 คือการส่งถ่ายอิเลคตรอนโดยใช้สารตัวกลาง (mediated electron transfer; MET) ดังภาพที่ 2.3 (ค และ ง) จุลินทรีย์ที่ใช้วิธีนี้ส่วนใหญ่จะไม่ได้อาศัยโดยการเกาะที่ขั้ว หากแต่จะอาศัย อยู่แบบแขวนลอย จึงทำให้ต้องมีสารตัวกลางในการรับอิเลคตรอนจากเซลล์ไปยังขั้วหรือจุลินทรีย์ตัว อื่น จากงานวิจัยพบว่าสารตัวกลางสามารถช่วยเร่งการส่งถ่ายอิเลคตรอนได้ และหากมีค่า redox potential สูงจะให้พลังงานไฟฟ้ามากขึ้นเช่นกัน สารตัวกลางเหล่านี้อาจจะเป็นสารสังเคราะห์ที่ไม่ เป็นพิษต่อจุลินทรีย์ ราคาถูกและย่อยสลายได้ช้า หรืออาจเป็นผลิตภัณฑ์จากการย่อยสลาย สารอินทรีย์และอนินทรีย์ทั้งปฐมภูมิและทุติยภูมิซึ่งเกิดขึ้นจากจุลินทรีย์เอง (Ieropoulos และคณะ, 2005; Lovley, 2006; Schröder, 2007; Mohan และคณะ, 2014)

2.2 น้ำเสียปนเปื้อนซัลเฟต

กำมะถันหรือซัลเฟอร์ (sulfur) มักปรากฎในธรรมชาติในรูปแบบของซัลเฟอร์ต่างๆ เช่น ซัลเฟต ซัลไฟด์ ไธโอซัลเฟต ดังภาพที่ 2.5 ซึ่งรูปแบบของซัลเฟอร์ต่างๆนี้จะมีความสำคัญต่อสิ่งมีชีวิต แตกต่างกัน ในทางตรงกันข้ามหากมีปริมาณหรือความเข้มข้นที่สูงเกินไปย่อมส่งผลกระทบต่อสิ่งมีชีวิต และสิ่งแวดล้อมเช่นกัน เช่น หากในน้ำเสียมีปริมาณซัลไฟด์สูง จะยับยั้งการทำงานของจุลินทรีย์กลุ่ม สร้างมีเทน (methanogens) อีกทั้งทำให้คุณภาพของก๊าซชีวภาพลดลง (Hu และคณะ, 2015)

ภาพที่ 2.5 วัฏจักรซัลเฟอร์ที่เกี่ยวของกับกระบวนการของจุลินทรีย์

น้ำเสียที่มีการปนเปื้อนซัลเฟตมีแหล่งกำเนิดมาจากแหล่งต่างๆทั้งจากโรงงาน เช่น โรงงานผลิตกระดาษ โรงงานแป้ง โรงงานผลิตยา โรงงานย้อมผ้า อุตสาหกรรมเหมืองแร่ จากการเกษตร เช่น ปุ๋ยที่อยู่ในรูปของสารประกอบซัลเฟต เมื่อเกิดการชะของฝนและไหลลงสู่แหล่ง น้ำ หรือจากชุมชนต่างๆ (Saritpongteerakaและ Chaiprapat, 2008; Zhao และคณะ, 2009; Angelov และคณะ, 2013; Liang และคณะ, 2013; Lee และคณะ, 2014) เมื่อซัลเฟตปนเปื้อนใน น้ำเสียจะถูกรีดิวซ์ให้กลายเป็นซัลไฟด์ภายใต้สภาวะไร้อากาศ ด้วยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต (sulfate-reducing bacteria; SRB) ซึ่งก่อให้เกิดกลิ่นเหม็นและกัดกร่อนระบบท่อดังภาพที่ 2.6 จากนั้นก๊าซไฮโดรเจนซัลไฟด์จะสามารถแพร่สู่อากาศด้านบนและถูกออกซิไดซ์กลายเป็นกรดซัลฟิวริก

ดังสมการที่ 2.3 และ 2.4 ซึ่งมีฤทธิ์กัดกร่อนท่อเหล็กหรือท่อคอนกรีตจนเกิดความเสียหายได้

 $2 H_2S (g) + O_2 (g) \rightarrow 2S (s) + 2H_2O (l) \qquad \dots \dots (2.3)$ $2S (s) + 2H_2O (l) + 3O_2 (g) \rightarrow 2H_2SO_4 (aq) \qquad \dots \dots (2.4)$

ภาพที่ 2.6 การรีดิวซ์ซัลเฟตโดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต (SRB) กลายเป็นซัลไฟด์และเกิดปฏิกิริยา ซัลไฟด์ออกซิเดชันโดยจุลินทรีย์กลุ่มออกซิไดซ์ซัลเฟอร์ (sulfur/sulfide-oxidizing microorganisms) (Larry L. Bartonและ Guy D. Fague, 2009) เนื่องจากก๊าซไฮโดรเจนซัลไฟด์มีผลต่อสุขภาพของผู้ที่ได้รับสาร จึงมีการกำหนดมาตรฐาน ความเข้มข้นของก๊าซไฮโดรเจนซัลไฟด์สำหรับผู้ที่ปฏิบัติงานโดย

 ประกาศกระทรวงมหาดไทย เรื่องความปลอดภัยในการทำงานเกี่ยวกับภาวะ สิ่งแวดล้อม ฉบับที่ 103 กำหนดให้ควบคุมหรือกำจัดไฮโดรเจนซัลไฟด์ภายในห้องปิดไม่เกิน 20 ppm และความเข้มข้นสูงสุดไม่เกิน 50 ppm ภายในระยะเวลาสัมผัสไม่เกิน 10 นาที (permissible exposure limit) หากได้รับก๊าซไฮโดรเจนซัลไฟด์ความเข้มข้นสูงกว่า 200 ppm ผู้รับสัมผัสจะเริ่ม ไม่ได้กลิ่น หากความเข้มข้นสูงกว่านี้จะส่วนผลต่อการทำงานของระบบหายใจ อาจทำให้หมดสติและ หยุดหายใจได้

2. Agency for Toxic Substance and Disease Registry (ASTDR) กำหนดค่า ความปลอดภัยด้วยค่า minimal risk level (MLRs) เมื่อรับสารโดยการหายใจ โดยประกอบด้วย 3 ระดับคือ ระดับเฉียบพลัน ซึ่งสงผลต่อระบบหายใจทันที โดยมีค่าเท่ากับ 0.07 ppm ระดับต่อมาคือ ระดับปานกลาง มีค่าเท่ากับ 0.02 ppm พิษของสารจะส่งผลต่อระบบหายใจและระบบประสาท บางส่วน และระดับสุดท้ายคือระดับเรื้อรัง ซึ่งปรากฏผลของสารต่อสุขภาพแต่ยังไม่มีการกำหนดค่า ออกมาเป็นทางการ

การบำบัดซัลเฟตและสารอินทรีย์ที่ปนเปื้อนในน้ำเสียสามารถทำได้โดยการบำบัดแบบไม่ใช้ อากาศเพื่อลดปริมาณสารอินทรีย์และเปลี่ยนซัลเฟตให้กลายเป็นซัลไฟด์ หลังจากนั้นจึงใช้ระบบบำบัด แบบใช้อากาศเพื่อเปลี่ยนซัลไฟด์เป็นซัลเฟอร์ซึ่งไม่มีอันตรายและมีความเสถียร อีกทั้งสามารถกำจัด ได้ง่าย

การควบคุมปริมาณซัลไฟด์จากการบำบัดน้ำเสียแบบไม่ใช้อากาศสามารถแบ่งได้เป็น 2 ส่วน หลักๆ คือ การยับยั้งหรือลดการสร้างซัลไฟด์ และ การกำจัดโดยการเปลี่ยนรูป (form) ให้อยู่ในรูป ที่ไม่มีอันตราย ซึ่งทั้งสองส่วนนี้สามารถใช้กระบวนการทางกายภาพ เคมีและชีวภาพเข้ามาช่วย ดังภาพที่ 2.7 เช่น การควบคุมพีเอชให้เหมาะสำหรับกลุ่มจุลินทรีย์บางกลุ่ม การเติมสารเคมีสำหรับ ทำปฏิกิริยากับซัลไฟด์ หรือการใช้โลหะสำหรับทำปฏิกิริยากับซัลไฟด์ เป็นต้น

ภาพที่ 2.7 วิธีการทางเคมีและชีวภาพในการควบคุมปริมาณซัลไฟด์ (ดัดแปลงจาก Zhang และคณะ, 2008)

ตัวอย่างของกระบวนการกำจัดไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพโดยกระบวนการทางเคมี เช่น การเติมออกซิเจนเข้าไปในถังหมักบริเวณผิวน้ำ ก่อให้เกิดปฏิกิริยาออกซิเดชันโดยออกซิเจน ผลิตภัณฑ์ที่ได้คือซัลเฟอร์ (elemental sulfur) ดังสมการที่ 2.5

ในขั้นตอนการบำบัดแบบไร้อากาศนี้จะเกิดก๊าซชีวภาพขึ้น โดยจะมีส่วนผสมของก๊าซมีเทน คาร์บอนไดออกไซด์และไฮโดรเจนซัลไฟด์ ซึ่งหากก๊าซไฮโดรเจนซัลไฟด์มีความเข้มข้นสูงเกินมาตรฐาน จำเป็นต้องมีการกำจัดหรือบำบัดก๊าซชีวภาพนั้นก่อนโดยมีมาตรฐานความเข้มข้นของ ไฮโดรเจนซัลไฟด์ตามการนำไปใช้งานดังตารางที่ 2.1 เช่น เครื่องยนต์สำหรับผลิตไฟฟ้าจาก ก๊าซชีวภาพสามารถทนต่อการกัดกร่อนของไฮโดรเจนซัลไฟด์ได้ที่ระดับ 200 ppm แต่เพื่อยืด ระยะเวลาการใช้งานจึงแนะนำให้ใช้ก๊าซที่มีความเข้มข้นของไฮโดรเจนซัลไฟด์ต่ำกว่า 100 ppm

ตารางที่ 2.1 มาตรฐานความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพ (กระทรวงอุตสาหกรรม, 2553)

การนำไปใช้ประโยชน์	ความเข้มข้น (ppm)	ลักษณะก๊าซ
ใช้ในครัวเรือน (เตาหุงต้ม)	<1,000	ความดัน 80-250 mbar; CH ₄ >50%
เครื่องยนต์สันดาปภายใน	<100	ความดัน 8-25 mbar
ผลิตเป็นก๊าซธรรมชาติ	<4	CH ₄ >95%

และจากข้อมูลของกระทรวงอุตสาหกรรมที่แนะนำคุณภาพก๊าซชีวภาพโดยแสดงดัง ตารางที่ 2.2 ซึ่งหากเทียบกับความเข้มข้นของไฮโดรเจนซัลไฟด์ที่วัดโดย Martin (2008) จากแหล่ง ที่สามารถผลิตก๊าซชีวภาพได้ดังตารางที่ 2.3 พบว่าก่อนการนำไปใช้จำเป็นต้องมีการบำบัดเพื่อความ ปลอดภัยและลดการปล่อยก๊าซซัลเฟอร์ไดออกไซด์ (SO₂) ที่เกิดจากการเผาไหม้ของก๊าซชีวภาพ (สมการที่ 2.6) ซึ่งเป็นมลพิษทางอากาศ

ตารางที่ 2.2 สัดส่วนขององค์ประกอบในก๊าซชีวภาพที่สามารถใช้งานได้ (กระทรวงอุตสาหกรรม, 2553)

องค์ประกอบ	สัดส่วน (% โดยปริมาตร)
Methane	50-75
Carbon dioxide	25-45
Water vapor	2-7
Oxygen	<2
Nitrogen	<2
Ammonia	<1
Hydrogen	<1
Hydrogen sulfide	าวิทยาลัย <1

Chulalongkorn University

ตารางที่ 2.3 ความเข้มข้นไฮโดรเจนซัลไฟด์จากแหล่งผลิตก๊าซชีวภาพ (Martin, 2008)

แหล่งผลิต	ความเข้มข้น (ppm)
ฟาร์มสุกร	600-4,000
ฟาร์มโค	600-7,000
หลุมฝังกลบขยะ	0-2,000

จากคุณสมบัติทางกายภาพของก๊าซไฮโดรเจนซัลไฟด์ที่ละลายน้ำได้ดีกว่ามีเทนและ คาร์บอนไดออกไซด์ ดังตารางที่ 2.4 จึงนำมาประยุกต์ใช้ในการกำจัดหรือลดความเข้มข้นของ ก๊าซไฮโดรเจนซัลไฟด์ออกจากก๊าซชีวภาพ โดยอาศัยกระบวนการดูดซึม (absorption) หรือ การถ่ายเทมวลสารเฟสก๊าซไปยังเฟสของเหลว ซึ่งมีการถ่ายเทมวลสารผ่านผิวสัมผัสระหว่างวัฏภาค ทั้งสอง โดยมีการเพิ่มพื้นที่ผิวของการสัมผัสด้วยการใช้ตัวกลางชนิดบรรจุตัวกลาง (packed column) หรือแบบถาด (tray column)

ຄວາສາເບັດ		ชนิดก้าซ		
មូសេតង បម	CH ₄	CO ₂	H_2S	
มวลโมเลกุล (กรัม/ໂมล)	16.04	44.01	34.08	
ความหนาแน่น (กก./ลบ.ม.)	0.49	1 07	1 4 5	
ที่ 1.013 Abs. Bar 15 °C	0.00 1.07		1.45	
ค่าคงที่การละลายน้ำ (l-atm/mol)	77/ 00.0		0.0	
ที่ 1.013 Abs. Bar 20 °C		20.0	9.0	

ตารางที่ 2.4 คุณสมบัติของก้าซองค์ประกอบในก้าซชีวภาพ (กระทรวงอุตสาหกรรม, 2553)

2.3 กระบวนการทางชีวภาพที่เกี่ยวข้องในระบบเซลล์เชื้อเพลิงชีวภาพที่บำบัดน้ำเสียปนเปื้อน สารอินทรีย์และซัลเฟต

จากน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟตที่เข้าสู่ระบบบำบัด จะถูกเปลี่ยนรูปโดย กระบวนการต่างๆ อาทิ การเปลี่ยนรูปซัลเฟตโดยกระบวนการซัลเฟตรีดักซ์ซัน (sulfate reduction) และกระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชัน (sulfide/sulfur oxidation) โดยสามารถเกิดจาก จุลินทรีย์กลุ่มรีดิวซ์ซัลเฟตและกลุ่มออกซิไดซ์ซัลไฟด์/ซัลเฟอร์ตามลำดับ และการเปลี่ยนรูป สารอินทรีย์โดยกระบวนการย่อยสลายแบบไม่ใช้อากาศ เช่น การสร้างกรดอินทรีย์ การสร้างมีเทน และการย่อยสลายสารอินทรีย์พร้อมทั้งส่งถ่ายอิเลคตรอนไปยังขั้วไฟฟ้า

ภายในระบบเซลล์เชื้อเพลิงชีวภาพที่บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟตสามารถพบ จุลินทรีย์ได้หลายกลุ่ม จึงเกิดความสัมพันธ์ระหว่างกลุ่มของจุลินทรีย์เกิดขึ้นทั้งการแก่งแย่งสารอาหาร การพึ่งพาอาศัยสารที่ได้จากการย่อยโดยจุลินทรีย์อีกกลุ่ม (syntrophy) ซึ่งแต่ละกลุ่มจะมีหน้าที่และ ความสำคัญต่อระบบเซลล์เชื้อเพลิงชีวภาพแตกต่างกัน ในงานวิจัยนี้มุ่งเน้นการใช้เซลล์เชื้อเพลิง ชีวภาพเพื่อบำบัดซัลไฟด์ที่เกิดขึ้นจากกระบวนการไร้อากาศซึ่งบำบัดน้ำเสียที่ปนเปื้อนสารอินทรีย์ และซัลเฟต ระบบบำบัดและเซลล์เชื้อเพลิงชีวภาพที่จะกล่าวถึงจึงประกอบด้วย 2 ห้องย่อย ได้แก่ ห้องไร้อากาศและห้องแอโนด ทั้งนี้สามารถแบ่งกลุ่มจุลินทรีย์เป็น 2 กลุ่มหลักตามบริเวณที่พบคือ บริเวณห้องไร้อากาศและบริเวณขั้วแอโนดดังแสดงในภาพที่ 2.8

ภาพที่ 2.8 ลักษณะเซลล์เชื้อเพลิงชีวภาพที่ใช้ในการศึกษาครั้งนี้

(ฺ คือจุลินทรีย์ในห้องไร้อากาศและ ◊ คือจุลินทรีย์บริเวณขั้วแอโนด)

จุลินทรีย์ทั้ง 2 กลุ่มหลักนี้มีความเกี่ยวข้องกับกระบวนการทางชีวภาพที่เกิดขึ้นในบริเวณ ที่จุลินทรีย์อาศัย โดยในที่นี้จะแบ่งกระบวนการออกเป็น 4 กระบวนการได้แก่ กระบวนการสร้างก๊าซ มีเทน กระบวนการซัลเฟตรีดักซ์ชัน กระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชัน และกระบวนการส่ง ถ่ายอิเลคตรอนไปยังขั้ว ซึ่งมีรายละเอียดดังนี้

2.3.1.กระบวนการสร้างก๊าซมีเทน (methanogenesis)

การบำบัดสารอินทรีย์ที่ปนเปื้อนในน้ำเสียแบบไร้อากาศมีวัตถุประสงค์เพื่อกำจัด สารอินทรีย์ทั้งที่อยู่ในรูปของสารอินทรีย์ละลายน้ำและไม่ละลายน้ำให้กลายเป็นก๊าซมีเทนและก๊าซ คาร์บอนไดออกไซด์ โดยอาศัยปฏิกิริยาต่างๆจากจุลินทรีย์ที่เกี่ยวข้อง ซึ่งประกอบด้วย 4 ขั้นตอนหลัก ดังแสดงในภาพที่ 2.9

ภาพที่ 2.9 ขั้นตอนย่อยสลายแบบไม่ใช้อากาศสำหรับการผลิตมีเทน (http://www.wtert.eu/default.asp?Menue=13&ShowDok=12)

2.3.1.1 การย่อยสลายด้วยน้ำหรือไฮโดรไลซิส (hydrolysis)

จุลินทรีย์จะหลั่งเอนไซม์หรือสารออกมาเพื่อย่อยสารอินทรีย์ที่มีโครงสร้าง ซับซ้อนหรือโมเลกุลใหญ่ให้มีขนาดเล็กลงจนสามารถดูดซึมเข้าสู่เซลล์ได้ เช่น การย่อยคาร์โบไฮเดรต เป็นน้ำตาลโมเลกุลเดี่ยว (monosaccharide) หรือการย่อยไตรกลีเซอร์ไรด์เป็นกลีเซอร์รอลและกรด ไขมัน ดังสมการที่ 2.7 สารอินทรีย์ที่เข้าสู่ระบบบำบัดมีผลต่อประสิทธิภาพ การย่อยเนื่องจากเอนไซม์ ที่หลั่งจากจุลินทรีย์จะมีความจำเพาะต่อสารอินทรีย์ต่างกัน อีกทั้งยังขึ้นกับอุณหภูมิ พีเอซ และขนาดของสารอินทรีย์ (มั่นสิน ตัณฑุลเวศน์, 2546) ตัวอย่างของจุลินทรีย์ที่พบ เช่น Enterobacterium spp. Streptococus spp.

$$C_{12}H_{22}O_{11} + H_2O \longrightarrow 2C_6H_{12}O_6$$
(2.7)

2.3.1.2 การสร้างกรด (acidogenesis)

สำหรับผลิตกรดอินทรีย์ระเหย (volatile fatty acid; VFA) โดยหลังจาก สารอินทรีย์ผ่านขั้นตอนไฮโดรไลซิส โมเลกุลของสารอินทรีย์จะเล็กลงและถูกดูดซึมเข้าสู่เซลล์ของ จุลินทรีย์ ซึ่งจะถูกผลิตเป็นกรดอินทรีย์ระเหย โดยที่สารอินทรีย์ เช่น กลูโคส กรดอะมิโน กรดไขมัน จะถูกย่อยสลายเป็นกรดอินทรีย์ระเหยที่มีโมเลกุลเล็กลงเช่น โพรพิโอนิค (propionic acid) บิวทีริค (butyric acid) แลกติค (lactic acid) เป็นต้น ซึ่งจะต้องผ่านขั้นตอนการสร้างกรดอะซิติคต่อไป และ บางส่วนของก๊าซไฮโดรเจน และก๊าซคาร์บอนไดออกไซด์ถูกใช้ในการสร้างกรดอะซิติกได้เช่นกัน ตัวอย่างปฏิกิริยาการสร้างกรดดังสมการ 2.8 กลูโคสจะถูกย่อยเป็นกรดไพรูวิกผ่านวิถีไกลโคไลซิส ตัวอย่างของจุลินทรีย์ที่พบในกระบวนการหมักได้แก่ Acetobacterium spp. Clostridium spp. Escherichia coli Flavobacterium spp. และ Pseudomonas spp. เป็นต้น

$$C_6H_{12}O_6 + 2H_2O \longrightarrow C_2H_3O_2^- + 2CO_2 + 4H_2 + 2H_3O^+$$
(2.8)

2.3.1.3 การสร้างกรดอะซิติค (acetogenenesis)

ผลิตภัณฑ์จากการย่อยสลายและขั้นตอนการสร้างกรด เกิดกรดอินทรีย์ ระเหยหลายชนิด บางส่วนยังคงมีโครงสร้างโมเลกุลใหญ่ ซึ่งจุลินทรีย์กลุ่มสร้างมีเทนไม่สามารถ นำไปใช้ได้ จึงต้องเปลี่ยนรูปเป็นกรดอะซิติค จุลินทรีย์ที่ทำหน้าที่เหล่านี้สามารถแบ่งได้เป็น 2 ชนิดคือ homoactetogenic bacteria ที่สามารถใช้คาร์บอนไดออกไซด์และไฮโดรเจนในการผลิตกรดอะซิติค ดังสมการ 2.9

และจุลินทรีย์อีกกลุ่มหนึ่งคือ hydrogen-producing acetogenic bacteria ที่ใช้กรดอินทรีย์ระเหยหรือแอลกอฮอล์ในการผลิตอะซิติคและก๊าซไฮโดรเจน อย่างไรก็ตาม ก๊าซไฮโดรเจนที่ถูกผลิตขึ้นอาจมีผลยับยั้งการเติบโตของจุลินทรีย์ที่สร้างกรดอะซิติค จึงจำเป็นต้องมี การอยู่ร่วมกันกับจุลินทรีย์กลุ่มสร้างมีเทนที่ใช้ไฮโดรเจนเป็นสารอาหารจึงจะช่วยลดความดันย่อยหรือ ความเข้มข้นของก๊าซไฮโดรเจนลงได้ ตัวอย่างของจุลินทรีย์กลุ่มนี้ได้แก่ Acetobacterium woodii Clostridium aceticum Syntrophobacter wolinii เป็นต้น

ขั้นตอนทั้งสามขั้นตอนของการย่อยสารอินทรีย์เบื้องต้น สามารถเรียกรวมเป็น กระบวนการหมัก (fermentation) ซึ่งเป็นกระบวนการย่อยสลายสารโดยจุลินทรีย์ ในการเปลี่ยนรูป สารที่มีโครงสร้างซับซ้อนให้มีโครงสร้างเล็กลง เช่น การเปลี่ยนกลูโคสเป็นแอลกอฮอล์ กรดอินทรีย์ ระเหย ซึ่งในขั้นตอนการย่อยสลายจะทำให้จุลินทรีย์สามารถสังเคราะห์สารให้พลังงานสูงขึ้น เช่น adenosine triphosphate (ATP) อีกทั้งจุลินทรีย์แต่ละชนิดจะมีกระบวนการย่อยที่แตกต่างกัน ทำให้ได้ผลิตภัณฑ์ที่แตกต่าง ตัวอย่างเช่น การหมักน้ำตาล จุลินทรีย์แต่ละชนิดจะให้ผลิตภัณฑ์ต่างกัน ดังภาพที่ 2.10 เช่น *Lactococus sp.* ผลิตกรดแลคติกจากกลูโคส

ภาพที่ 2.10 ตัวอย่างกระบวนการย่อยสลายน้ำตาลโดยจุลินทรีย์ที่เกี่ยวข้องกับการหมักกลุ่มต่างๆ (*Müller, 2001*)

2.3.1.4 การสร้างก๊าซมีเทน (methanogenesis)

จุลินทรีย์ที่ผลิตก๊าซมีเทนสามารถแบ่งย่อยเป็น 3 กลุ่มตามแหล่งของคาร์บอนที่ใช้ คือ คาร์บอนไดออกไซด์ กรดอะซิติค และสารประกอบเมทิล (Madigan และคณะ, 2003) แสดงดัง สมการปฏิกิริยาที่ 2.10 ถึง 2.12 ตัวอย่างจุลินทรีย์กลุ่มนี้ เช่น Methanobacterium Methanosaeta Methanoregula เป็นต้น

$e^- \rightarrow CH_4 + 2H_2O$	(2.10)
$O \longrightarrow CH_4 + HCO_3$	(2.11)
3CH ₄ + CO ₂ + 2H ₂ O	(2.12)

หากพิจารณาร่วมกับสมการการเติบโตของเซลล์ ที่มีสัดส่วนการสร้างเซลล์ (f_s) เท่ากับ 0.08 โดยเซลล์ใช้อะซิเตทเป็นแหล่งของอิเลคตรอนและคาร์บอนไดออกไซด์เป็นสาร รับอิเลคตรอนจะได้ดังนี้

 $0.125 \text{ CH}_3\text{COO}^- + 0.006 \text{ CO}_2 + 0.004 \text{ NH}_4^+ + 0.109 \text{ H}_2\text{O} \longrightarrow 0.115 \text{ CH}_4 + 0.004 \text{ C}_5\text{H}_7\text{O}_2\text{N} + 0.109 \text{ HCO}_3^-$

2.3.2 กระบวนการซัลเฟตรีดักซ์ชัน (sulfate reduction)

เกิดในสภาวะไร้ออกซิเจน โดยซัลเฟตถูกใช้เป็นสารรับอิเลคตรอน และมีสารอินทรีย์ หรือไฮโดรเจนเป็นสารให้อิเลคตรอน จุลินทรีย์ที่เกี่ยวข้องกับกระบวนการซัลเฟตรีดักซ์ชัน (sulfatereducing bacteria; SRB) สามารถพบอยู่ร่วมกันกับจุลินทรีย์ที่เกี่ยวข้องในการสร้างมีเทน หากใน แหล่งน้ำเสียมีความเข้มข้นของซัลเฟต สูง จะทำให้จุลินทรีย์กลุ่มนี้แข่งขันได้ดีกับจุลินทรีย์ที่ผลิตมีเทน เช่น จากงานวิจัยของ Hu และคณะ, 2015 พบว่าที่สัดส่วน COD/SO₄²⁻ ต่ำจะพบจุลินทรีย์สายพันธุ์ *Desulfovibrio* เป็นกลุ่มหลักในการย่อยสลายเอทานอล การแบ่งประเภทของจุลินทรีย์กลุ่มรีดิวซ์ ซัลเฟตสามารถ แบ่งออกเป็น 2 กลุ่มตามความสามารถในการออกซิไดซ์สารอินทรีย์คือ

2.3.2.1 กลุ่มย่อยสลายสารอินทรีย์ได้ไม่สมบูรณ์ (incomplete-oxidizing sulfatereducing bacteria; I-SRB) สารอินทรีย์ที่ผ่านการย่อยจะอยู่ในรูปของอะซิเตท ตัวอย่างของจุลินทรีย์ กลุ่มนี้เช่น *Desulfobulbus Desulfomonas* และ *Desulfovibrio*

2.3.2.2 กลุ่มย่อยสลายสารอินทรีย์ได้สมบูรณ์ (complete-oxidizing sulfatereducing bacteria; C-SRB) สารอินทรีย์ที่ผ่านการย่อยสมบูรณ์จะอยู่ในรูปก๊าซคาร์บอนไดออกไซด์ ตัวอย่างของจุลินทรีย์กลุ่มนี้เช่น *Desulfococcus* spp. *Desulfonema* spp. และ *Desulfosarcrina* spp.

สารอินทรีย์ที่ปนเปื้อนในน้ำจะถูกใช้เป็นแหล่งพลังงานแก่จุลินทรีย์กลุ่มนี้ ตัวอย่าง ของสารตั้งต้นและปฏิกิริยาที่เกิดขึ้นแสดงดังตารางที่ 2.5 ตัวอย่างของปฏิกิริยาที่เกี่ยวข้องกับการ เติบโตของจุลินทรีย์กลุ่มนี้ที่ใช้อะซิเตทเป็นสารรับอิเลคตรอน โดยมีค่า f_s เท่ากับ 0.288 (Liamleam และ Annachhatre, 2007) เช่น 0.125 CH₃COO⁻ + 0.089 SO₄²⁻ + 0.074 H⁺ + 0.011NH₄⁺

 \rightarrow 0.045 H₂S + 0.045 HS⁻ + 0.011 C₅H₇O₂N + 0.136 HCO₃⁻ + 0.067 CO₂ + 0.093 H₂O

จากสมการปฏิกิริยาเคมีในการรีดิวซ์ซัลเฟตเป็นซัลไฟด์ (สมการที่ 2.13) แสดงให้ เห็นว่าหากอัตราส่วน COD/SO^{4²⁻} (COD 64 กรัมให้ 8e⁻ ทำปฏิกิริยากับซัลเฟต 96 กรัม) มีค่าต่ำกว่า 0.67 จะเกิดปฏิกิริยาไม่สมบูรณ์ เช่น งานวิจัยของ Chou และคณะ (2008) ที่อัตราส่วน COD/SO^{4²⁻} เท่ากับ 0.5 ประสิทธิภาพในการบำบัดซัลเฟตมีเพียง 61.4% แต่เมื่อเพิ่มอัตราส่วน COD/SO^{4²⁻} เป็น 0.8 สามารถกำจัดซัลเฟตได้ถึง 93.7% โดยที่ยังคงสามารถบำบัดอะซิเตทได้สูงที่ 98.1% และ 98.6% ตามลำดับ

$$SO_4^{2^-} + 10H^+ + 8e^- \rightarrow H_2S + 4H_2O$$
(2.13)

ตารางที่ 2.5 ตัวอย่างปฏิกิริยาการย่อยสลายสารอินทรีย์โดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต (ดัดแปลงจาก มั่นสิน ตัณฑุลเวศน์, 2546)

ที่	สารให้อิเลคตรอน	จุลินทรีย์	ปฏิกิริยา
1	ไฮโครเจน-ฟอร์เมท	I-SRB	$4H_2 + SO_4^{2-} + H^+ \longrightarrow 4H_2O + HS^-$
		C-SRB	
2	อะซิเตท	I-SRB	$CH_3COO^- + SO_4^{2-} \longrightarrow 2HCO_3^- + HS^-$
		C-SRB	
3	โพรพิโอเนท	I-SRB	$4CH_{3}CH_{2}COO^{-}+3SO_{4}^{2-} \longrightarrow 4CH_{3}COO^{-}+4HCO_{3}^{-}+3HS^{-}+H^{+}$
		C-SRB	$4CH_3CH_2COO^- + 7SO_4^{2-} \rightarrow 12HCO_3^- + 7HS^- + H^+$
4	บิวทีเรท	I-SRB	$2CH_3(CH_2)_2COO^-+SO_4^{2-} \rightarrow 4CH_3COO^-+HS^-+H^+$
		C-SRB	$2CH_3(CH_2)_2COO^-+5SO_4^{2-} \longrightarrow 8HCO_3^-+5HS^-+H^+$
5	แลคเตท	I-SRB	$2CH_3CHOHCOO^-+SO_4^{2-} \rightarrow 2CH_3COO^-+2HCO_3^-+HS^-+H^+$
		C-SRB	$2CH_3CHOHCOO^- + 3SO_4^{2-} \longrightarrow 6HCO_3^- + 3HS^- + H^+$
6	เบน โซเอท	I-SRB	$4C_6H_5COO^-+3SO_4^{-2-}+16H_2O \longrightarrow 12CH_3COO^-+4HCO_3^-+3HS^-+9H^+$
		C-SRB	$4C_6H_5COO^{-}+15SO_4^{2-}+16H_2O \longrightarrow 28HCO_3^{-}+15HS^{-}+9H^{+}$
หมายเหตุ I-SRB คือ จุลินทรีย์กลุ่มย่อยสลายสารอินทรีย์ได้ไม่สมบูรณ์			

C-SRB คือ จุลินทรีย์กลุ่มย่อยสลายสารอินทรีย์ได้สมบูรณ์
การแข่งขันของจุลินทรีย์กลุ่มสร้างมีเทนและกลุ่มรีดิวซ์ซัลเฟตจะเกิดขึ้นได้ดี เมื่อมีสัดส่วน COD/SO4²⁻ อยู่ในช่วง 1.7-2.7 หากมีค่ามากกว่า 2.7 จุลินทรีย์กลุ่มสร้างมีเทน จะเจริญเติบโตได้ดีกว่า ในทางตรงกันข้ามหากมีค่าต่ำจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟตจะเจริญเติบโตดีกว่า เนื่องจากสามารถแข่งขันสารอินทรีย์และผลิตซัลไฟด์ซึ่งยับยั้งการเติบโตของจุลินทรีย์กลุ่มสร้างมีเทน (Choiและ Rim, 1991)

กระบวนการสร้างมีเทนและซัลเฟตรีดักซ์ชันมักพบได้ทั่วไปในระบบบำบัดแบบไม่ใช้ อากาศ ซึ่งคล้ายกับห้องไร้อากาศในการศึกษาครั้งนี้ (ภาพที่ 2.8) จุลินทรีย์ที่คาดว่าจะพบได้แก่ จุลินทรีย์ที่เกี่ยวข้องกับการหมัก การสร้างมีเทนและรีดิวซ์ซัลเฟต ดังที่ได้กล่าวไปแล้ว แต่ยังคงมี กระบวนการที่เกิดขึ้นได้อีก 2 กระบวนการ คือ กระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชัน และกระบวนการส่งถ่ายอิเลคตรอนไปยังขั้ว ที่คาดว่าจะพบได้บริเวณขั้วแอโนดของระบบเซลล์ เชื้อเพลิงชีวภาพ โดยจะพิจารณาจากแหล่งที่มาของอิเลคตรอนในการเกิดปฏิกิริยา

2.3.3 กระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชัน (sulfide/sulfur oxidation)

เป็นกระบวนการเปลี่ยนรูปจากซัลไฟด์เป็นซัลเฟอร์หรือซัลเฟต ซึ่งเกิดได้ทั้งกรณีไม่มี จุลินทรีย์เกี่ยวข้อง (abiotic oxidation) และมีจุลินทรีย์เกี่ยวข้อง (biotic oxidation) ดังสมการที่ 2.14 ถึง 2.17

$H_2S + O_2 \longrightarrow SO_4^{2-} + 2H^+$	(2.14)
$HS^{-} + 0.5 O_2 + H^{+} \longrightarrow S^{0} + H_2O$	(2.15)
$S^0 + H_2O + 1.5 O_2 \longrightarrow SO_4^{2-} + 2H^+$	(2.16)
$S_2O_3^{2-} + H_2O + 2O_2 \longrightarrow 2SO_4^{2-} + 2H^+$	(2.17)

ระบบเซลล์เชื้อเพลิงชีวภาพที่ปนเปื้อนซัลเฟตและสารอินทรีย์สูงมักจะพบจุลินทรีย์ ที่เกี่ยวข้องกับกระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชันซึ่งอาศัยซัลไฟด์หรือซัลเฟอร์เป็นแหล่งให้ พลังงาน โดยสามารถพบจุลินทรีย์กลุ่มนี้ได้มากบริเวณขั้วแอโนด (Sun และคณะ, 2010; Sangcharoen และคณะ, 2015) ซึ่งสามารถใช้เป็นทางเลือกในการนำซัลเฟอร์ที่ปนเปื้อนในน้ำเสีย กลับมาใช้อีกครั้ง โดยอาศัยปฏิกิริยาเคมีในการเปลี่ยนซัลไฟด์ให้เป็นซัลเฟอร์ในรูปของของแข็งโดยใช้ การทำงานร่วมกับจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต (Lee และคณะ, 2014) ตัวอย่างจุลินทรีย์ในกลุ่มนี้ได้แก่ *Pseudomonas* spp. *Rhodobacter* spp. และ *Thiobacillus* spp. (Sun และคณะ, 2009) เป็น ต้น กระบวนการออกซิเดชันซัลไฟด์โดยจุลินทรีย์สามารถเกิดขึ้นโดยใช้ flavocytochrome-C sulfide dehydrogenase หรือ quinone reductase เพื่อเปลี่ยน เป็นซัลไฟด์/ซัลเฟอร์ (S²⁻/S⁰) หรือซัลเฟต อิเลคตรอนที่เกิดจากการออกซิไดซ์ซัลไฟด์/ซัลเฟอร์สามารถถูกส่งไปยังขั้วแอโนด ก่อให้เกิดกระแสไฟฟ้าได้เช่น เดียวกับกระบวนการส่งถ่ายอิเลคตรอนโดยจุลินทรีย์อีกกลุ่มหนึ่ง

2.3.4 กระบวนการส่งถ่ายอิเลคตรอนไปยังขั้ว

บริเวณขั้วแอโนดยังคงมีสารอินทรีย์ปนเปื้อนอยู่ ซึ่งอาจถูกนำไปใช้โดยจุลินทรีย์กลุ่ม ที่สามารถถ่ายทอดอิเลคตรอนออกสู่ภายนอกเซลล์ (exoelectrogenic microorganisms; EEM) โดยจุลินทรีย์กลุ่มนี้ให้อิเลคตรอนแก่ขั้ว แอโนดจากการออกซิไดซ์สารอินทรีย์ ซึ่งแตกต่างจากจุลินทรีย์ ที่ออกซิไดซ์ซัลไฟด์/ซัลเฟอร์ การส่งถ่ายอิเลคตรอนแบ่งเป็น 2 รูปแบบหลักคือ การส่งผ่านเยื่อหุ้ม เซลล์โดยผ่าน cytochrome หรือโครงสร้างภายนอกโดยตรง เช่น จุลินทรีย์กลุ่ม *Geobacter* sulfurreducens และ Shawanella oneidensis (Logan และคณะ, 2006; Loganและ Regan, 2006) ที่มีโครงสร้าง nanowires บริเวณเยื่อหุ้มเซลล์ (ภาพที่ 2.11) และการส่งผ่านตัวกลาง (mediator) เช่น สารอินทรีย์หรือสารอนินทรีย์ทั้งที่เกิดจาก การย่อยในระบบหรือที่เติมเข้าไป เช่น pyrocyanin ที่ผลิตโดย Psudomonas aeruginosa

ภาพที่ 2.11 ภาพถ่าย SEM ของ *Shawanella oneidensis* บนขั้วแอโนดจากเซลล์เชื้อเพลิงชีวภาพ (Loganและ Regan, 2006)

จุลินทรีย์ที่อาศัยอยู่บนขั้วแอโนดมีการย่อยสลายสารอินทรีย์และปลดปล่อยโปรตอน ออกมาเช่นกัน (ภาพที่ 2.12) โดยโปรตอนจะเคลื่อนที่ไปยังขั้วแคโทดผ่านเยื่อเลือกผ่านโปรตอน แต่ถ้ามีอัตราการส่งผ่านโปรตอนน้อยจะเกิดการสะสมของโปรตอนซึ่งมีผลทำให้เกิดการยับยั้งการ ทำงานของจุลินทรีย์ และส่งผลต่อการผลิตกระแสไฟฟ้าของระบบ

ภาพที่ 2.12 การสะสมของโปรตอนในชั้น Biofilm บนขั้วแอโนด (Franksและ Nevin, 2010)

จากกระบวนการทางชีวภาพและกลุ่มจุลินทรีย์ทั้งหมดที่กล่าวไปสามารถสรุปได้ดัง ภาพที่ 2.13 โดยประกอบด้วยกลุ่มจุลินทรีย์ 5 กลุ่มหลักได้แก่ กลุ่มที่เกี่ยวข้องกับการหมัก (fermenter) การสร้างมีเทน (methanogens) การรีดิวซ์ซัลเฟต (sulfate-reducing bacteria; SRB) การออกซิไดซ์ซัลไฟด์/ซัลเฟอร์ (sulfide/sulfur-oxidizing bacteria; SOB) และการส่งถ่าย อิเลคตรอน (exoelectrogenic microorganisms; EEM) จุลินทรีย์ 3 กลุ่มแรกคาดว่าพบได้สูง ในส่วนของห้องไร้อากาศ และจุลินทรีย์อีก 2 กลุ่มสุดท้ายจะพบได้บริเวณขั้วแอโนด

ภาพที่ 2.13 กลุ่มจุลินทรีย์และปฏิกิริยาที่คาดว่าเกิดขึ้นในระบบเซลล์เชื้อเพลิงชีวภาพ

2.4 การบำบัดไฮโดรเจนซัลไฟด์โดยหอดูดซึม

จากข้อมูลข้างต้นทำให้ทราบผลเสียและอันตรายของก๊าซไฮโดรเจนซัลไฟด์ ที่มีผลเสียต่อ โครงสร้าง ประสิทธิภาพการบำบัดของระบบ อีกทั้งส่งผลต่อสุขภาพของผู้ปฏิบัติงาน ตัวอย่างวิธีการ บำบัดหรือกำจัดไฮโดรเจนซัลไฟด์ที่ปนเปื้อน เช่น การเผาที่อุณหภูมิสูง การดูดซับด้วยถ่านกัมมันต์ หรือสารเคมีอื่นๆ และการกรองผ่านชั้นกรองชีวภาพ โดยที่วิธีกรองผ่านชั้นกรองชีวภาพและการดูดซึม เป็นที่นิยมมากที่สุด

การบำบัดโดยชั้นกรองชีวภาพ มีข้อดีคือสามารถเกิดปฏิกิริยาซัลไฟด์ออกซิเดชัน ซึ่งช่วยลด ความเข้มข้นซัลไฟด์ได้ แต่จำเป็นต้องมีการเติมสารอาหารเพื่อให้จุลินทรีย์สามารถเติบโตอยู่บนชั้น ตัวกลางได้

การบำบัดโดยหอดูดซึมเป็นระบบบำบัดคุณภาพอากาศรูปแบบหนึ่งที่อาศัยการถ่ายเทมวล สารของปนเปื้อนจากสภาวะก๊าซสู่สารละลาย โดยไม่ต้องอาศัยปฏิกิริยาของจุลินทรีย์จึงไม่จำเป็นต้อง มีการเติมสารอาหาร ส่งผลให้ง่ายต่อการเดินระบบ กระบวนการดูดซึมแบ่งออกเป็น 2 ประเภทคือ การดูดซึมทางกายภาพ สารที่ต้องการบำบัดในก๊าซละลายลงสู่ของเหลวโดยไม่มีการเปลี่ยนรูป และ การดูดซึมทางเคมี เมื่อสารที่ต้องการบำบัดเกิดปฏิกิริยาและเปลี่ยนรูปไป ตัวอย่างของสารละลายที่ นิยมใช้คือ น้ำ

การถ่ายเทมวลสารเป็นผลจากความแตกต่างของความเข้มข้นที่มีอยู่ในก๊าซและสารละลาย ซึ่งไม่อยู่ในสภาวะสมดุล หากสารมีความเข้มข้นในก๊าซและสารละลายต่างกันมากจะทำให้อัตราเร็วใน การถ่ายเทมวลสารสูง แต่หากความเข้มข้นของสารต่างกันไม่มาก สามารถทำให้อัตราการถ่ายเทมวล สารสูงขึ้นโดย เพิ่มพื้นที่ผิวการสัมผัสระหว่างก๊าซและสารละลาย เพิ่มระยะเวลาสัมผัสและการผสม เข้าด้วยกัน การเลือกใช้สารละลายที่มีความเข้มช้นน้อยมากๆ

ในการศึกษาครั้งนี้เลือกใช้หอดูดซึมชนิดตัวกลางอัดแน่น (packed column) เนื่องจาก มีตัวกลางที่ช่วยเพิ่มพื้นที่ผิวสัมผัสระหว่างก๊าซและสารละลาย และรูปแบบการดูดซึมเป็นแบบการดูด ซึมทางเคมี โครงสร้างของหอดูดซึมประกอบด้วยหอ (cylindrical tower) สำหรับบรรจุตัวกลาง เป็นบริเวณที่การเกิดการถ่ายเทมวลสาร และสารละลายซึ่งจะถูกเติมเข้าสู่หอทางด้านบนโดยปั้ม สำหรับก๊าซที่บำบัดจะถูกดันเข้าหอจากทางด้านล่างในทิศทางสวนกับสารละลาย (counter current)

ปฏิกิริยาที่เกิดขึ้นเมื่อก๊าซไฮโดรเจนซัลไฟด์ละลายลงสู่สารละลาย (น้ำ) แสดงดังสมการที่ 2.18 และ 2.19 แต่ในสารละลายที่ใช้ยังคงมีความกระด้างชั่วคราว (สารประกอบคาร์บอเนต) ซึ่งช่วย ให้เกิดการดูดซึมได้ดีขึ้น ดังสมการ 2.20

$H_2S + OH^- \longrightarrow HS^- + H_2O$	(2.18)
$H_2S + H_2O \longrightarrow HS^- + H_3O^+$	(2.19)
$H_2S + HCO_3^- \rightarrow HS^- + H_2CO_3$	(2.20)

. ปัจจัยที่ส่งผลต่อประสิทธิภาพการดูดซึม

 ค่าพีเอชของสารละลาย ประสิทธิภาพของระบบจะสูงขึ้นเมื่อมีค่าพีเอชสูงขึ้น ดังนั้นการ ควบคุมระดับพีเอช จึงสำคัญต่อการเดินระบบ และเนื่องจากปฏิกิริยาข้างต้น (สมการ 2.18 ถึง 2.20) แสดงให้เห็นว่าระดับพีเอชจะลดลงตามระยะทางของหอดูดซึม และมีผลต่อการแตกตัวของ ไฮโดรเจนซัลไฟด์ ซึ่งสามารถลดข้อจำกัดได้ด้วยการเพิ่มสัดส่วนของเหลวต่อก๊าซ (liquid/gas ratio; L/G) ที่ผ่านระบบหรือเพิ่มค่าความเป็นด่าง

 อุณหภูมิ มีผลต่อค่าการละลายน้ำของก๊าซ จากงานวิจัยของ Azizi และคณะ (2014) พบว่าก๊าซไฮโดรเจนซัลไฟด์ถูกกำจัดได้สูงขึ้นเมื่อระบบมีอุณหภูมิสูงขึ้น

 สัดส่วนของเหลวต่อก๊าซ (liquid/gas ratio; L/G) เป็นปัจจัยที่สำคัญที่ส่งผลต่อการสัมผัส ระหว่างก๊าซและสารละลาย หากสัดส่วน L/G สูงขึ้น ระบบจะมีประสิทธิภาพในการกำจัดสูงขึ้น แต่มีข้อเสียคือเพิ่มความดันลดภายในระบบ และอาจทำใหเกิดน้ำขังภายในชั้นตัวกลาง

4. ความเป็นด่างของน้ำ (alkalinity) มีส่วนสำคัญในการเกิดปฏิกิริยากับไฮโดรเจนซัลไฟด์ ซึ่งช่วยเพิ่มการถ่ายเทมวลสารของระบบ และช่วยรักษาระดับพีเอชของระบบ

5. ความสูงของหอ จากการทดลองของ Lien และคณะ (2014) พบว่าที่ระยะความสูงเพิ่มขึ้น จากระดับ 50 เป็น 70 เซนติเมตร ประสิทธิภาพการบำบัดจะสูงขึ้นจาก 33.3% เป็น 51.1%

ภาพที่ 2.14 ปัจจัยที่ส่งผลต่อประสิทธิภาพการบำบัดไฮโดรเจนซัลไฟด์ (Azizi และคณะ, 2014)

การถ่ายเทมวลสารระหว่างเฟส (phase) คือกระบวนการเคลื่อนที่ของสารจากเฟสหนึ่งไปอีก เฟสหนึ่งหรือเฟสเดียวกัน เช่นการดูดซึมไฮโดรเจนซัลไฟด์จากเฟสก๊าซโดยน้ำ กระบวนการถ่ายเทมวล สารระหว่างเฟสก๊าซและของเหลวจะมีการสัมผัสระหว่างเฟสในหอดูดซึม ซึ่งมีชั้นฟิล์มของเฟส ของเหลว เรียกว่าพื้นผิวสัมผัสระหว่างเฟส (interfacial surface) การเคลื่อนที่ของสารระหว่างสอง เฟสเกิดจากความแตกต่างของความเข้มข้นในแต่ละเฟส โดยที่ทั้งสองเฟสไม่ผสมรวมกัน ตัวอย่างเช่น ไฮโดรเจนซัลไฟด์จะแพร่ผ่านเฟสก๊าซมายังพื้นที่ผิวสัมผัสแล้วจึงแพร่ผ่านไปยังชั้นฟิล์มที่ต่อเนื่องกันไป ยังอีกเฟสหนึ่ง แสดงดังภาพที่ 2.15 ความเข้มข้นในเฟสก๊าซ Y_x ลดเหลือ Y_{xi} ที่ชั้นฟิล์มในขณะที่ความ เข้มข้นในเฟสของเหลวเพิ่มขึ้นเป็น C_{xi} และแพร่เข้าสู่สารละลายจนเหลือความเข้มข้น C_x โดยที่ความ เข้มข้น Y_{xi} และ C_{xi} นั้นอยู่ในสภาวะที่สมดุล หรือเรียกกลไกข่างต้นว่า ทฤษฎีสองความต้านทาน (two-resistance หรือ two-film theory) ที่มีสมมติฐานคือไม่มีความต้านทานการแพร่ในผิวสัมผัส และอัตราการแพร่ในชั้นฟิล์มเป็นขั้นตอนควบคุมอัตราการถ่ายเทมวลสารระหว่างเฟส

ความสัมพันธ์สมดุลระหว่างเฟส สามารถวิเคราะห์โดยการประยุกต์ใช้สมการสมดุล ตามกฏของเฮนรี่ (Henry's law) ที่ใช้ความสัมพันธ์ระหว่างความดันย่อยของสารในเฟสก้าซและ สัดส่วนโมล ของสารในเฟสของเหลว สามารถแสดงดังสมการที่ 2.21 (ที่ระดับความเข้มข้นต่ำถึง ปานกลาง) เช่น ก๊าซไฮโดรเจนซัลไฟด์มีค่าคงที่ของเฮนรี่เท่ากับ 609 สัดส่วนโมล/atm

$$H = \frac{P_{gas}}{C_{soln}}$$
(2.21)

คือค่าคงที่การละลายตามกฏเฮนรี่ (mole fraction/atm) เมื่อ Н

> คือค่าความดันของก้าซในก้าซผสม (atm) Pgas

C_{soln} คือค่าความเข้มข้นของก๊าซที่ลายละลายในน้ำ (mole fraction)

สมการสมดุลมวลของระหว่างเฟสในการศึกษาครั้งนี้ใช้กระบวนการดูดซึม ที่มีรูปแบบการ ใหลสวนทางกัน สามารถวิเคราะห์ประสิทธิภาพการทำงานและอัตราการไหลของเฟสก้าซและเฟส ของเหลวด้วยวิธีทางสมการเส้นปฏิบัติการดังสมการที่ 2.22

$$(Y_{in} - Y_{out}) = \frac{L}{G}(X_{out} - X_{in})$$
(2.22)

คือความเข้มข้นของสารในก๊าซก่อนการบำบัด (mole fraction) เมื่อ Yin

> คือความเข้มข้นของสารในก๊าซหลังการบำบัด (mole fraction) Yout

คือความเข้มข้นของสารในสารละลายก่อนการบำบัด (mole fraction) Xin

X_{out} คือความเข้มข้นของสารในสารละลายหลังการบำบัด (mole fraction)

- L คือปริมาณน้ำที่ผ่านการบำบัด (molar)
- G คือปริมาณก๊าซที่ผ่านการบำบัด (molar)

การออกแบบกระบวนการดูดซึมเพื่อออกแบบและเดินระบบดูดซึมให้มีประสิทธิภาพ ตามที่ต้องการ จึงต้องมีการควบคุมอัตราการไหลของทั้งสองเฟส ความดันลด ลักษณะของหอดูดซึม ทั้งขนาดเส้นผ่านศูนย์กลางและความสูง ชนิดตัวกลาง หอดูดซึมมีวัตถุประสงค์สำหรับการเพิ่มพื้นที่ผิว ระหว่างเฟสทั้งสองให้มากที่สุด และเพิ่มอัตราการถ่ายเทมวลสาร อุปกรณ์ที่ใช้ในกระบวนการดูดซึม ส่วนใหญ่ใช้สำหรับให้เฟสของเหลวเคลื่อนที่ในรูปแบบของฟิล์มบาง รูปแบบของหอดูดซึมสามารถ แบ่งเป็น 2 แบบคือ

1.หอดูดซึมแบบแผ่นหรือถาด (tray column)

2.หอดูดซึมแบบบรรจุตัวกลาง (packed column) ซึ่งสามารถแบ่งเป็น 2 รูปแบบย่อยคือ บรรจุตัวกลางแบบโครงสร้าง และบรรจุตัวกลางแบบสุ่ม

งานวิจัยครั้งนี้เลือกหอดูดซึมรูปแบบบรรจุตัวกลางแบบสุ่ม โดยที่องค์ประกอบภายในดัง แสดงในภาพที่ 2.16

1.หอดูดซึมทรงกระบอก ซึ่งมีช่องทางก๊าซเข้าและช่องกระจายด้านล่าง

2.ทางเข้าของเหลวและช่องกระจายด้านบน (orifice)

3.ช่องทางออกก๊าซด้านบน

4.ช่องทางออกของเหลวด้านล่าง

5.ตัวกลางภายในหอดูดซึม

ภาพที่ 2.16 องค์ประกอบและทิศทางการไหลของเฟสต่างๆในหอดูดซึม

ในส่วนของแนวทางการออกแบบหอดูดซึมแบบบรรจุตัวกลางจะกล่าวถึงปัจจัยที่เกี่ยวข้อง กับการออกแบบเพื่อให้มีประสิทธิภาพการดูดซึมที่ต้องการ ได้แก่ ความดันลดที่เกิดขึ้น ซึ่งขึ้นกับชนิด ขนาดของตัวกลางและอัตราการไหลของเฟสของเหลว ซึ่งจะมีค่าสูงสุดเรียกว่า ความเร็วท่วม (flooding velocity) หากเดินระบบด้วยอัตราการไหลสูงกว่านี้ ของเหลวจะไม่สามารถไหลผ่าน ตัวกลาง และจะไหลออกทางช่องระบายก๊าซด้านบนสำหรับตัวกลางแบบสุ่มที่เลือกใช้ในงานวิจัยครั้งนี้ สามารถคำนวณความดันลดที่เกิดขึ้นได้ดังภาพที่ 2.17

ภาพที่ 2.17 ความดันลดที่เกิดขึ้นในหอดูดซึมบรรจุตัวกลางแบบสุ่ม

ขั้นตอนในการออกแบบขนาดของหอดูดซึม

1. คำนวณค่า abscissa หรือตัวแปรอัตราการไหล

abscissa =
$$\left(\frac{L}{G}\right) \cdot \left(\frac{\rho_g}{\rho_l}\right)^{0.5}$$
(2.23)

เมื่อ L คืออัตราไหลของมวลของของเหลว

G คืออัตราไหลของมวลของของก๊าซ

ρ คือความหนาแน่น

2.นำค่าตัวแปรอัตราการไหลในขั้นตอนที่ 1 มาเทียบกับเส้นกราฟในภาพที่ 2.17 ลากเส้นตรง ขึ้นในแนวตั้งไปยังเส้น flooding line และลากไปในแนวนอนจะได้ค่า **E**

3.คำนวณค่า G' เพื่อหาอัตราการไหลก๊าซต่อพื้นที่หน้าตัดของหอดูดซึมตามสมการที่ 2.24

$$G' = \left[\frac{\varepsilon \cdot \rho_g \cdot \rho_l \cdot g}{F \cdot \theta \cdot \mu^{0.2}}\right]^{0.5} \tag{2.24}$$

เมื่อ g คือความเร่งเนื่องจากแรงโน้มถ่วง

- F คือค่าปัจจัยของตัวกลาง
- hetaคือความถ่วงจำเพาะของของเหลวที่ใช้
- µ คือความหนึดของเหลว

4.คำนวณค่า G' ของการเดินระบบ

$$G'_{operate} = f \cdot G'_{flooding}$$
 (2.25)

เมื่อ f คือค่าสัดส่วนอัตราเร็วท่วม

5.คำนวณพื้นที่หน้าตัดของหอดูดซึม

$$A = \frac{G}{G'_{operate}} \tag{2.26}$$

6.คำนวณเส้นผ่านศูนย์กลางของหอดูดซึม

$$D_t = \left(\frac{4A}{\pi}\right)^{0.5} \tag{2.27}$$

ต่อไปคือการหาความสูงของชั้นตัวกลางโดยวิธีหน่วยการถ่ายเทมวลสาร (method of transfer unit) ความสูงรวมของชั้นตัวกลาง เท่ากับผลคูณระหว่างจำนวนหน่วยถ่ายเทมวลสาร และความสูงหน่วยถ่ายเทมวลสาร

$$HTU_{OG} = \frac{G}{K_G aS} \tag{2.30}$$

$$A = \frac{L}{G \cdot m} \tag{2.31}$$

$$E_G = \frac{Y_{in} - Y_{out}}{Y_{in}} \tag{2.32}$$

เมื่อ Z คือความสูงหอดูดซึม (m)

NTU_{OG} คือจำนวนหน่วยการถ่ายเทมวลสารของก๊าซ

HTU_{OG} คือความสูงของหน่วยการถ่ายเทมวลสารของก๊าซ (m)

- A คือตัวแปรปัจจัยการดูดซึม
- E_G คือประสิทธิภาพการดูดซึม
- K_G คือค่าสัมประสิทธิ์การถ่ายเทของก๊าซ (s⁻¹)
- a คือพื้นที่ผิวจำเพาะของตัวกลางสัมผัส (m²/m³)
- S คือพื้นที่หน้าตัดของหอดูดซึม (m²)
- m คือสัดส่วนโมลของสารในก้าซต่อสารละลาย

2.5 การวิเคราะห์กลุ่มประชากรจุลินทรีย์

การศึกษาความหลากหลายและโครงสร้างทางประชากรของจุลินทรีย์ สามารถใช้เทคนิค ได้หลายวิธี สำหรับงานวิจัยครั้งนี้เลือกศึกษาความหลากหลายด้วยวิธี DNA Clone library โดยเลือก ศึกษาลำดับเบสช่วง 16S rRNA gene เนื่องจากคุณสมบัติของ 16S rRNA gene ที่สามารถบ่งบอก ความเกี่ยวข้องทางวิวัฒนาการของจุลินทรีย์จากความเกี่ยวข้องในการผลิตโปรตีนที่มีความจำเพาะ ของจุลินทรีย์แต่ละสายพันธุ์ และมีระดับการเปลี่ยนแปลงที่น้อยมาก จึงมักถูกนำมาใช้ในการศึกษา ความเกี่ยวข้องทางพันธุกรรมของจุลินทรีย์แต่ละชนิด โดยการเปรียบเทียบลำดับเบสของ 16S rRNA gene กับฐานข้อมูลทางพันธุกรรมของจุลินทรีย์ เช่น National Center for Biotechnology information (NCBI) ขั้นตอนการศึกษาด้วยวิธี DNA Cloning ประกอบด้วยขั้นตอนดังนี้

 การเตรียมชิ้นส่วนของ DNA ที่ต้องการ โดยการสกัด DNA จากตัวอย่างแล้วจึงใช้ ชุดไพรเมอร์สำหรับช่วงลำดับเบสที่ต้องการ ในขั้นตอนการเพิ่มจำนวนสารพันธุกรรม โดยเทคนิค polymerase chain reaction (PCR) และเพิ่มความบริสุทธิ์ของสาย DNA ที่ต้องการก่อนการใช้งาน

 2. การสร้าง DNA library (ภาพที่ 2.18) โดยในการวิจัยครั้งนี้เลือกใช้ พลาสมิด (plasmid) เป็นพาหะสำหรับสำหรับเชื่อมต่อชิ้นส่วน DNA (ligation) ได้เป็น recombinant DNA แล้วจึงนำเข้าสู่เซลล์เจ้าบ้าน (host cell) ด้วยวิธี transformation แล้วเลี้ยงเซลล์เพื่อเพิ่ม recombinant DNA ที่ต้องการ จากนั้นทำการคัดเลือกโคโลนีของเซลล์ที่ต้องการ

ภาพที่ 2.18 การสร้าง DNA library (ligation และ transformation)

 การคัดเลือกโคโลนี หลังจากการ transformation จำเป็นต้องมีการตรวจสอบ เพื่อหรือคัดเลือกโคโลนี โดยในงานวิจัยนี้ใช้เทคนิค blue-white screening ซึ่งอาศัยการทำงานของ ยืน lacZ ในการตรวจสอบการเชื่อมสาย DNA เข้ากับพาหะ หากเซลล์ได้รับพาหะเข้าสู่เซลล์ จะมีโคโลนีสีขาว แต่หากไม่ได้รับพาหะหรือพาหะที่ไม่มีการเชื่อมสาย DNA โคโลนีจะเป็นสีฟ้า

 4. การเตรียมตัวอย่างสำหรับการวิเคราะห์ลำดับเบส เมื่อคัดเลือกโคโลนีสีขาวแล้ว ทำการเพิ่มจำนวนพาหะโดยใช้เทคนิค PCR เช่นเดิม และเพิ่มความบริสุทธิ์ของผลิตภัณฑ์ก่อนการ วิเคราะห์

5. การเปรียบเทียบลำดับเบส โดยใช้ฐานข้อมูล National Center for Biotechnology information (NCBI) โดยใช้โปรแกรม BLAST® (US) แล้วจึงนำผลที่ได้มาจัดเรียง (alignment) และสร้าง phylogenetic tree โดยใช้โปรแกรม MEGA7

2.6 การวิเคราะห์ทางไฟฟ้า

เซลล์เชื้อเพลิงชีวภาพจัดเป็นเซลล์ไฟฟ้าชนิดกัลวานิค (galvanic cell) ผลิตกระแสไฟฟ้าจาก การเกิดความต่างศักย์ระหว่างขั้วแอโนดและแคโทด และมีการส่งถ่ายอิเลคตรอนจากสารตัวกลาง (intermediate) จุลินทรีย์กลุ่ม exoelectrogenic และกลุ่ม sulfur-oxidizing bacteria ไปยัง ขั้วแอโนด

ค่าความต่างศักย์ของเซลล์เชื้อเพลิงในอุดมคติตามหลักอุณหพลศาสตร์สามารถคำนวณได้ จากสมการของ Nernst โดยแสดงความสัมพันธ์ระหว่างศักย์ไฟฟ้าของเซลล์เชื้อเพลิงกับศักย์ไฟฟ้า มาตรฐานดังนี้ (สมการที่ 2.33 ถึง 2.35)

$E_{an} = E_{an}^0 - \frac{RT}{nF} \cdot \ln(\prod)$	(2.33)
$E_{ca} = E_{ca}^0 - \frac{RT}{nF} \cdot \ln(\prod)$	(2.34)

$$E_{mfc} = E_{ca} - E_{an} \tag{2.35}$$

โดยที่ E_{an} คือศักย์ไฟฟ้าของปฏิกิริยารีดักชันที่ขั้วแอโนด (V)

- E_{ca} คือศักย์ไฟฟ้าของปฏิกิริยารีดักชันที่ขั้วแคโทด (V)
- E_{an}⁰ คือศักย์ไฟฟ้ามาตรฐานของปฏิกิริยารีดักชันที่ขั้วแอโนด (V)
- E_{ct}⁰ คือศักย์ไฟฟ้ามาตรฐานของปฏิกิริยารีดักชันที่ขั้วแคโทด (V)
- E_{emf} คือศักย์ไฟฟ้าของเซลล์เชื้อเพลิง (∨)

- R คือค่าคงที่ของก๊าซ (8.31447 J/mol•K)
- T คืออุณหภูมิของระบบ (K)
- n คือจำนวนอิเลคตรอนที่ถ่ายทอด
- F คือค่าคงที่ฟาราเดย์ (96,485 C/mol ของอิเลคตรอน)
- □ คือสัดส่วนปฏิกิริยา ([products]/[reactants])

ค่าศักย์ไฟฟ้าของระบบสัมพันธ์กับสารที่ให้และรับอิเลคตรอน รวมถึงจำนวนอิเลคตรอนที่ถูก ส่งถ่ายในแต่ละปฏิกิริยา เช่น การเปลี่ยนรูปของ SO4²⁻ เป็น H₂S จะให้อิเลคตรอนแก่ระบบ 8 อิเลคตรอนและทำให้เกิดความต่างศักย์ -220 mV ตัวอย่างของศักย์ไฟฟ้ามาตรฐานครึ่งปฏิกิริยา ในการรับอิเลคตรอนแสดงดังตารางที่ 2.6

ตารางที่ 2.6 ค่าความต่างศักย์มาตรฐานครึ่งปฏิกิริยา ณ อุณหภูมิ 30°C และพีเอชเท่ากับ 7 (Madigan และคณะ, 2003)

สารให้/รับ อิเลคตรอน	จำนวนอิเลกตรอนที่ถ่ายทอด	ค่าความต่างศักย์ (mV)
CO ₂ /glucose	24	-430
2H ⁺ /H ₂	2	-420
CO ₂ /methanol	6	-380
NAD ⁺ /NADH	2	-320
CO ₂ /acetate	8	-280
S ⁰ /H ₂ S	2	-270
SO4 ²⁻ /H2S	8	-220
Pyruvate/lactate	2	-185
S406 ²⁻ /S203 ²⁻	2	+24
Cytochrome C	1	+254
0.50 ₂ /H ₂ O	2	+820

ค่าความต่างศักย์ที่คำนวณได้จากสมการของ Nernst เป็นเพียงค่าทางทฤษฎีเท่านั้น ความ ต่างศักย์ของเซลล์เชื้อเพลิงชีวภาพที่วัดได้จริงจะมีค่าต่ำกว่า เนื่องจากความสูญเสียทางศักย์ไฟฟ้า (voltage losses) ซึ่งมีสาเหตุมาจากหลายปัจจัยดังจะกล่าวถึงโดยละเอียดต่อไป ทั้งนี้ศักย์ไฟฟ้าสูงสุด ที่วัดได้จากระบบจริงเรียกว่าศักย์ไฟฟ้าวงจรเปิด (open circuit voltage ; OCV) โดยวัดขณะที่เป็น วงจรเปิด หรือต่อตัวต้านทานที่มีค่าสูงมาก อย่างไรก็ตามค่าที่ได้จะยังต่ำกว่าศักย์ไฟฟ้าในอุดมคติ

การเปรียบเทียบประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพโดยทั่วไปมักเลือกพิจารณาจาก กำลังไฟฟ้าที่ผลิตขึ้นต่อพื้นที่ขั้วแอโนดหรือปริมาตรห้องแอโนด กระแสไฟฟ้าที่ผลิตได้ เป็นความสัมพันธ์ของความต้านทานภายนอกและความต่างศักย์ของขั้วทั้งสองดังสมการ 2.36

$$I = \frac{E_{cell}}{R_{ext}}$$
.....(2.36)
ระแสไฟฟ้า (A)

โดยที่ I คือกระแสไฟฟ้า (A)

E_{cell} คือความต่างศักย์ของขั้ว (V)

R_{ext} คือความต้านทานภายนอก (Ω)

กำลังไฟฟ้าของเซลล์ต่อพื้นที่ขั้วแอโนดสามารถคำนวณจากสมการ 2.37 หรือ 2.38

	$P = \frac{I \cdot E_{cell}}{A_{an}}$	(2.37)
หรือ	$P = \frac{I^2 \cdot R_{ext}}{A_{an}}$	(2.38)
คือคว	ามหนาแน่นกำลังไฟฟ้า (Watt/ m²)	

โดยที่ P

A_{an} คือพื้นที่ขั้วแอโนด (m²)

จากสมการ 2.37 และ 2.38 แสดงความสัมพันธ์ของกระแสไฟฟ้าและศักย์ของเซลล์เซื้อเพลิง ชีวภาพ ซึ่งมีปัจจัยมาจากความต้านทานภายนอก จึงมีการใช้กราฟโพลาไรเซชัน (polarization Curve) ที่แสดงความสัมพันธ์ระหว่างความหนาแน่นกระแสไฟฟ้าและความต่างศักย์ที่ภาวะหนึ่งๆ (ภาพที่ 2.19) จะทำให้สามารถประเมินประสิทธิภาพของเซลล์เชื้อเพลิงได้ อีกทั้งสามารถสร้างกราฟ ความสัมพันธ์ระหว่างความหนาแน่นกระแสกับความหนาแน่นกำลังไฟฟ้า (power density curve) ซึ่งทั้งสองกราฟนิยมใช้ในการศึกษาและเปรียบเทียบประสิทธิภาพของเซลล์เชื้อเพลิงซีวภาพ

ภาพที่ 2.19 กราฟความสัมพันธ์ระหว่างความหนาแน่นกระแสและความต่างศักย์ (polarization curve) และกราฟความสัมพันธ์ระหว่างความหนาแน่นกระแสกับความหนาแน่น กำลังไฟฟ้า (power density curve) (ดัดแปลงจาก Leeและ Hwang, 2009)

จากกราฟ polarization curve เกิดจากการวัดศักย์ไฟฟ้าของระบบที่ความต้านทานต่างๆ นำค่าศักย์ไฟฟ้าและความต้านทานมาคำนวณด้วยสมการ 2.36 แล้วนำค่ากระแสไฟฟ้าและศักย์ไฟฟ้า มาสร้างกราฟจะได้ดังภาพที่ 2.20 โดยจะแสดงการสูญเสียศักย์ไฟฟ้า (voltage loss) ของระบบ ซึ่งสามารถแบ่งเป็น 3 สาเหตุหลักคือ

ภาพที่ 2.20 การสูญเสียศักย์ไฟฟ้าทางทฤษฎีของระบบเซลล์เชื้อเพลิง

2.6.1 การสูญเสียศักย์ไฟฟ้าของปฏิกิริยา (activation loss)

เกิดจากการสูญเสียพลังงานจากปฏิกิริยาออกซิเดชันและรีดักซ์ชัน ของสารตั้งต้น และจากการส่งถ่ายอิเลคตรอนจากเซลล์ไปยังขั้วแอโนด พบได้มากเมื่อระบบมีกระแสไฟฟ้าน้อย สามารถลดการสูญเสียได้โดยการเติมตัวเร่งปฏิกิริยา เพิ่มความหลากหลายของจุลินทรีย์เพิ่มพื้นที่ ขั้วแอโนด หรือการเพิ่มอุณหภูมิของระบบ ค่าการสูญเสียสามารถคำนวณได้จากสมการ Tafel (2.39)

$$\Delta V_{act} = A \cdot \ln \left(\frac{I}{I_0}\right) \tag{2.39}$$

โดยที่ ∆V_{act} คือการสูญเสียศักย์ไฟฟ้าของปฏิกิริยา (V)

- A คือค่าความชั้นของกราฟ Tafel (V)
- I คือความหนาแน่นกระแส (A/m²)
- I_0 คือการแลกเปลี่ยนความหนาแน่นกระแส (A/m²)

2.6.2 การสูญเสียศักย์ไฟฟ้าโอห์มมิก (ohmic loss)

เกิดจากการต้านทานการไหลของอิเลคตอนผ่านตัวนำไฟฟ้าของเซลล์เชื้อเพลิง และการต้านทานการไหลของโปรตอนผ่านเยื่อเลือกผ่าน ทำให้ศักย์ลดลงตามกฎของโอห์ม (Ohm's Law) โดยที่การสูญเสียศักย์ไฟฟ้าจะเพิ่มขึ้นเมื่อมีความหนาแน่นกระแสไฟฟ้าเพิ่มขึ้น ซึ่งสามารถลดการสูญเสียโดยการลดระยะห่างระหว่างขั้วทั้งสอง เพิ่มการนำไฟฟ้าของสารละลาย ในระบบ และการพัฒนาการส่งถ่ายโปรตอนผ่านเยื่อเลือกผ่าน ค่าการสูญเสียสามารถคำนวณจาก สมการ 2.40

$$\Delta V_{ohm} = I \cdot R_{ohm} \tag{2.40}$$

โดยที่ ∆V_{ohm} คือการสูญเสียศักย์ไฟฟ้าโอห์มมิก (V)

I คือความหนาแน่นกระแส (A/m²)

R_{ohm} คือความต้านทานภายใน (Ω• m²)

2.6.3 การสูญเสียจากการถ่ายโอนมวลหรือความเข้มข้นของสาร (mass transfer หรือ concentration loss)

เกิดจากความเข้มข้นของสารตั้งต้นหรือผลิตภัณฑ์ที่มีผลยับยั้งปฏิกิริยาที่เกิดขึ้น บริเวณขั้วแอโนด เมื่อความหนาแน่นกระแสไฟฟ้าเพิ่มขึ้นการสูญเสียศักย์ไฟฟ้าจะเพิ่มขึ้นเช่นกัน และมีค่าเพิ่มขึ้นอย่างรวดเร็วเมื่อความหนาแน่นไฟฟ้าของระบบมีค่าเท่ากับความหนาแน่น กระแสไฟฟ้าจำกัด สามารถคำนวณได้จากสมการของเนินสต์ (nernst equation) ดังแสดงในสมการ ที่ 2.41

$$\Delta V_{con} = c \cdot \ln\left(\frac{I_L - I}{I}\right) \tag{2.41}$$

โดยที่ ΔV_{con} คือการสูญเสียจากการถ่ายเทมวลหรือความเข้มข้นของสาร (V)

- c คือค่าคงที่
- I คือความหนาแน่นกระแส (A/m²)
- IL คือความหนาแน่นกระแสที่ความเข้มข้นสารตั้งต้นเท่ากับศูนย์ (A/m²)

ดังนั้นศักย์ไฟฟ้าของเซลล์เชื้อเพลิงชีวภาพที่วัดได้ (E_{cell}) สามารถคำนวณได้จากสมการที่ 2.42 ดังนี้

โดยที่ E_{cell} คือศักย์ไฟฟ้าของระบบที่วัดได้จริง (V)

- E_{emf} คือศักย์ไฟฟ้าของระบบตามทฤษฎี (V)
- ∆V_{act} คือการสูญเสียจากปฏิกิริยาไฟฟ้าเคมี (∨)
- ∆V_{ohm} คือการสูญเสียจากการส่งอิเลคตรอน (V)

∆V_{con} คือการสูญเสียจากการถ่ายเทมวลหรือความเข้มข้นของสาร (V)

จากภาพที่ 2.19 ในส่วนของกราฟแสดงความสัมพันธ์ระหว่างความหนาแน่นกระแสและ ความหนาแน่นกำลังแสดงถึงความหนาแน่นกำลังไฟฟ้าสูงสุดของระบบ เมื่อคำนวณโดยสมการที่ 2.36 และ 2.38 จะทำให้ทราบความต้านทานของระบบ ทำให้นำไปใช้ควบคุมระบบให้สามารถผลิต กระแสไฟฟ้าที่มีกำลังได้สูงสุด สำหรับปัจจัยที่ส่งผลต่อการผลิตกระแสไฟฟ้าและประสิทธิภาพของ ระบบเซลล์เชื้อเพลิงชีวภาพจะกล่าวถึงในหัวข้อต่อไป นอกจากการคำนวณการสูญเสียศักย์ไฟฟ้าของเซลล์เชื้อเพลิงชีวภาพแล้ว ยังมีการคำนวณ ประสิทธิภาพของการถ่ายทอดอิเลคตรอนจากสารตั้งต้นสู่ขั้วแอโนดในรูปของพลังงานไฟฟ้า (columbic efficiency) สามารถคำนวณได้จากสมการที่ 2.43 ซึ่งแสดงความสัมพันธ์ระหว่างจำนวน อิเลคตรอนที่ถูกส่งไปยังขั้วและจำนวนอิเลคตรอนที่ถูกปลดปล่อยจากสารตั้งต้นดังสมการ 2.44 และ 2.45

M_i คือมวลโมเลกุลสารตั้งต้น (กรัม)

ปัจจัยที่ส่งผลให้ประสิทธิภาพการถ่ายทอดอิเลคตรอนของระบบมีค่าลดลง เช่น การแพร่ของ ออกซิเจนผ่านเยื่อเลือกผ่าน ระบบมีความต้านทานสูง การมีอยู่ของสารรับอิเลคตรอนในระบบ เช่น ในเตรท ซัลเฟต และชนิดของจุลินทรีย์บนขั้วแอโนด (Oh และคณะ, 2004) เช่น การงานวิจัยของ Lee และคณะ (2012) พบว่าเซลล์เชื้อเพลิงชีวภาพที่บำบัดซัลไฟด์โดยมีจุลินทรีย์ในระบบมีค่า CE เท่ากับ 6.7 % ซึ่งสูงกว่าระบบที่ไม่มีจุลินทรีย์โดยมีค่าเพียง 3.2% แสดงถึงความสำคัญของจุลินทรีย์ ในการส่งถ่ายอิเลคตรอนไปยังขั้วแอโนด

2.7 ปัจจัยที่ส่งผลต่อประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ

วัตถุประสงค์ของเซลล์เชื้อเพลิงชีวภาพที่บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต คือการบำบัดสารอินทรีย์ การบำบัดซัลเฟตในน้ำเสีย และการดึงกลับพลังงานไฟฟ้า โดยอาศัย กระบวนการทางชีวภาพและกายภาพภายในระบบ ปัจจัยที่ส่งผลต่อการบำบัดและการผลิต กระแสไฟฟ้าสามารถแบ่งเป็น 3 ปัจจัยหลักคือ

2.7.1 ปัจจัยทางด้านกายภาพและเคมี (physico-chemical factors)

2.7.1.1 วัสดุของขั้วไฟฟ้า

สามารถผลิตได้จากวัสดุหลายประเภท โดยจะมีคุณสมบัติคือการนำไฟฟ้า ทนต่อการกัดกร่อน สามารถแบ่งเป็น 4 กลุ่มคือ 1. สารประกอบคาร์บอน 2.โลหะ 3.วัสดุที่มีการ เคลือบผิว และ 4.ขั้วโลหะผสมโดยทั่วไปมักจะใช้ขั้วไฟฟ้าที่ทำจากคาร์บอน เนื่องจากนำไฟฟ้าได้ดี ทนต่อการกัดกร่อน และสามารถผลิตได้หลายรูปแบบ จากงานวิจัยของ Zhao และคณะ (2008) พบว่าขั้วแอโนดแบบ activated carbon cloth สามารถใช้ในการบำบัดซัลไฟด์และผลิตกระแสไฟฟ้า ได้สูงสุด 0.51 mW/cm² (42.5 mW/m³) และยังมีการศึกษาวิธีเตรียมขั้วไฟฟ้าโดยการใช้ตะกั่วแทน platinum ซึ่งให้ความหนาแน่นกระแสไฟฟ้าที่สูงขึ้น (Zhangและ Ni, 2010)

2.7.1.2 พื้นที่ขั้วและระยะห่างระหว่างขั้วไฟฟ้า

พื้นที่ขั้วแอโนดมีผลต่อการส่งถ่ายอิเลคตรอนและการยึดเกาะของจุลินทรีย์ บางกลุ่ม พื้นที่ผิวที่สูงขึ้นจะช่วยให้การส่งถ่ายอิเลคตรอนเกิดได้ดีขึ้น Wei และคณะ (2011) ทำการศึกษาผลของพื้นที่ขั้วพบว่า เมื่อใช้ขั้วแอโนดแบบแปรงซึ่งมีพื้นที่ผิวสูงถึง 18,200 m²/m³brush volume และมีความพรุน 95% สามารถผลิตกระแสไฟฟ้าสูงสุดถึง 2,400 mW/m² เมื่อเทียบ กับขั้วแบบกระดาษคาร์บอนซึ่งผลิตกระแสไฟฟ้าได้สูงสุดที่ 600 mW/m² อีกทั้งมีประสิทธิภาพ การส่งถ่ายอิเลคตรอนสูงถึง 60 % งานวิจัยต่างๆยังพบว่าการลดระยะห่างระหว่างขั้วไฟฟ้าทั้งสอง สามารถลดการสูญเสียศักย์ไฟฟ้าโอห์มมิก (ohmic losses) ได้ อย่างไรก็ตาม Cheng และคณะ, 2006 พบว่าสำหรับเซลล์เชื้อเพลิงชีวภาพที่มีลักษณะแบบห้องเดี่ยว หากขั้วแอโนดถูกติดตั้งใกล้ขั้ว แคโทดมากเกินไปจะมีโอกาสที่ออกซิเจนจะซึมผ่านเข้ามายังเซลล์เชื้อเพลิงทำให้ได้กำลังไฟฟ้าลดลง ซึ่งสอดคล้องกับงานวิจัยของ Yu และคณะ (2012) ซึ่งเปรียบเทียบผลของระยะห่างระหว่างขั้วทั้งสอง พบว่าที่ระยะ 2 เซนติเมตรจะก่อให้เกิดความต่างศักย์สูงสุด

2.7.1.3 ค่าพีเอช (pH)

ค่าพีเอชมีผลต่อการย่อยสลายสารตั้งต้น การสังเคราะห์โปรตีน และ ผลิตภัณฑ์พลอยได้ (byproduct) จากการย่อยสลายสารอินทรีย์ภายในห้องแอโนด (anodic chamber) เช่น กรดอินทรีย์และโปรตอน (proton) ในระบบ กรดอินทรีย์ที่ถูกผลิตขึ้นจะใช้ในการ รักษาค่าพีเอชภายในเซลล์ ส่วนโปรตอนจะถูกใช้โดยจุลินทรีย์กลุ่มสร้างมีเทนและบางส่วนจะเคลื่อนที่ ผ่านเยื่อเลือกผ่านโปรตอนไปยังขั้วแคโทด Raghavulu เเละคณะ (2009) พบว่า ระบบที่มีสภาวะความเป็นกรดสามารถผลิตกระแสไฟฟ้าได้สูงกว่าระบบที่มีความเป็นกลาง (pH เท่ากับ 7) หรือด่าง (pH > 7) เนื่องมาจากความเข้มข้นของโปรตอนในสภาวะความเป็นกรดสูงกว่า แต่ระบบที่อยู่ในสภาวะความเป็นกลางสามารถบำบัดสารอินทรีย์ได้สูงกว่า อีกทั้งค่าพีเอขยังมีผลต่อ การละลายน้ำของซัลไฟด์ซึ่งจะละลายน้ำได้มากเมื่อมีค่าพีเอซสูงกว่า 7

2.7.1.4 สารรับอิเลคตรอนที่ห้องแคโทด

การออกแบบห้องแคโทดมีความสำคัญอย่างยิ่ง เนื่องจากเกี่ยวข้องกับ กระบวนการรีดักชัน ในงานวิจัยที่ผ่านมามีการใช้สารเคมีที่มีความสามารถในการรับอิเลคตรอนได้ดี เช่น potassium ferricyanide potassium permanganate (Franksเเละ Nevin, 2010) อย่างไรก็ตามสารเหล่านี้มีความเป็นพิษต่อสิ่งแวดล้อม นอกจากนี้ยังมีการใช้ออกซิเจนเป็นสาร รับอิเลคตรอน ซึ่งมีความปลอดภัยและต้นทุนที่ถูกกว่า ซึ่งสามารถใช้การเติมอากาศลงในน้ำในห้อง แคโทดหรือใช้ออกซิเจนในอากาศโดยตรง (open-air cathode)

2.7.2 ปัจจัยทางชีวภาพ

จุลินทรีย์มีผลต่อประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพเป็นอย่างมาก เนื่องจาก จำเป็นต้องอาศัยจุลินทรีย์ในการย่อยสลายสารอินทรีย์ปนเปื้อนในน้ำ และส่งถ่ายอิเลคตรอนไปยัง ขั้วแอโนด งานวิจัยที่ผ่านมามีการศึกษาผลของจุลินทรีย์แบบชนิดเดียว (monoculture) เช่น *Geobacter* spp. (Bondi i a ะ Lovley, 2 0 0 3) แ a ะ *Pseudomonas* sp.-C2 7 (Lee และคณะ, 2012) ในการผลิตกระแสไฟฟ้า แต่พบข้อจำกัดในการประยุกต์ใช้กับการบำบัดน้ำ เสียจริง งานวิจัยส่วนใหญ่จึงศึกษาเซลล์เชื้อเพลิงที่มีจุลินทรีย์หลายกลุ่มอาศัยรวมกัน ซึ่งสามารถให้ ความหนาแน่นไฟฟ้าที่สูงกว่า แต่มีประสิทธิภาพการส่งถ่ายอิเลคตรอนที่ต่ำ เนื่องจากในระบบมีสาร ตัวกลางและปฏิกิริยาที่หลากหลาย จึงมีการสูญเสียจากการถ่ายโอนมวลหรือความเข้มข้นของสาร (mass transfer losses) จุลินทรีย์ในเซลล์เซื้อเพลิงชีวภาพมีรูปแบบการอาศัยทั้งแบบแขวนลอยและ แบบยึดเกาะ สำหรับจุลินทรีย์ที่ยึดเกาะบนขั้วส่วนใหญ่จะเป็นจุลินทรีย์กลุ่มที่สามารถส่งถ่ายอิเลคตรอ นออกภายนอกเซลล์ (exoelectrogenic microorganisms) รวมถึงกลุ่มออกซิไดซ์ซัลไฟด์/ซัลเฟอร์ ซึ่งมีผลอย่างมากกับการผลิตกระแสไฟฟ้าของระบบ จากงานวิจัยของ Sun และคณะ (2010) พบว่า ในระบบเซลล์เชื้อเพลิงชีวภาพที่บำบัดซัลไฟด์ ชุดการทดลองที่ขั้วแอโนดมีจุลินทรีย์อาศัยอยู่จะ สามารถผลิตกระแสไฟฟ้าได้สูงกว่าและเป็นระยะเวลาที่นานกว่าขั้วที่ไม่มีจุลินทรีย์อาศัยอยู่ และจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์/ซัลเฟอร์ยังทำให้เกิดผลึกซัลเฟอร์บนขั้วแอโนดได้มากกว่าระบบ ที่ไม่มีจุลินทรีย์กลุ่มนี้บนขั้วแอโนด (Lee และคณะ, 2012; Lee และคณะ, 2014; Daghio และคณะ, 2005) ซัลเฟอร์ที่สะสมบนขั้วแอโนดยังส่งผลต่อการผลิตกระแสไฟฟ้าเช่นกัน (Dutta และคณะ, 2008; Sangcharoen และคณะ, 2015)

2.7.3 ปัจจัยด้านการเดินระบบ

งานวิจัยส่วนใหญ่เลือกใช้น้ำเสียสังเคราะห์เนื่องจากสะดวกต่อการวิเคราะห์ และควบคุมความเข้มข้นได้ง่ายกว่าน้ำเสียจริง สารอินทรีย์ตั้งต้นมีผลต่อกลุ่มจุลินทรีย์ที่ส่งถ่าย อิเลคตรอนไปยังขั้วแอโนด เนื่องจากจุลินทรีย์แต่ละชนิดมีความสามารถและความชอบสารอินทรีย์ ต่างกัน (Liamleamและ Annachhatre, 2007; Lee และคณะ, 2012) ซึ่งเกี่ยวข้องกับค่าพลังงาน อิสระของปฏิกิริยา สารที่นิยมใช้ในการศึกษาคือ กรดแลกติก เนื่องจากจุลินทรีย์สามารถนำไปใช้ใน การเติบโตได้ง่าย ทำให้จุลินทรีย์เพิ่มจำนวนได้อย่างรวดเร็ว หรือกรดอะซิติค เพราะมีโครงสร้างที่ไม่ ซับซ้อนอีกทั้งเป็นผลิตภัณฑ์ของหลายปฏิกิริยาในการย่อยสลายแบบไม่ใช้อากาศ ในการเดินระบบ ปัจจัยจากส่วนของระยะเวลากักเก็บ (hydraulic retention time ; HRT) มีผลต่อการผลิตระแส ไฟฟ้าเละการบำบัดเช่นกัน หากมีค่าต่ำจะส่งผลให้จุลินทรีย์จะบำบัดสารปนเปื้อนเละผลิต กระแสไฟฟ้าได้น้อยกว่าระยะเวลากักเก็บที่นานกว่า (Zhang และคณะ, 2012)

2.8 เซลล์เชื้อเพลิงชีวภาพกับการบำบัดสารอินทรีย์และซัลเฟตในน้ำเสีย

อุตสาหกรรมหลากหลายประเภทมีการผลิตน้ำเสียที่ปนเปื้อนสารอินทรีย์และซัลเฟตจำนวน มาก มลพิษหรืออันตรายจากซัลเฟตสามารถส่งผลกระทบต่อทั้งมนุษย์ ระบบนิเวศและสิ่งก่อสร้าง ต่างๆ งานวิจัยที่ผ่านมาจึงพัฒนาวิธีการและเทคโนโลยีในการลดมลพิษของซัลเฟต เซลล์เชื้อเพลิง ชีวภาพถูกนำมาประยุกต์ใช้ในการบำบัดน้ำเสียที่ปนเปื้อนสารอินทรีย์และซัลเฟต ซึ่งเป็นสิ่งที่น่าสนใจ เนื่องจากนอกจากจะสามารถบำบัดสารอินทรีย์และซัลเฟตที่ปนเปื้อนในน้ำเสียแล้ว ยังสามารถดึงกลับ พลังงานไฟฟ้าจากน้ำเสียได้อีกด้วย น้ำเสียที่มีปริมาณสารอินทรีย์สูงโดยทั่วไปจะถูกนำไปใช้ประโยชน์ ในการผลิตก๊าซชีวภาพ แต่หากมีการปนเปื้อนของซัลเฟตจะส่งผลต่อคุณภาพก๊าซที่ผลิตได้เนื่องจาก การเกิดซัลไฟด์ภายในระบบผลิตก๊าซ ทำให้ก๊าซที่ได้มีคุณภาพต่ำไม่เหมาะต่อการนำไปใช้งาน

การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัดสารอินทรีย์เริ่มเป็นที่สนใจจาก งานวิจัยของ Rabaey และคณะ (2003) โดยใช้กลูโคสเป็นแหล่งพลังงานและใช้ potassium hexacyanoferrate เป็นสารรับอิเลคตรอนในห้องแคโทด พบว่าให้ไฟฟ้าสูงถึง 3.6 W/m² โดยใช้ อัตราการเติมกลูโคสเท่ากับ 0.5-3 g/l/d ซึ่งจะให้ประสิทธิภาพการส่งถ่ายอิเลคตรอน อยู่ในช่วง 65 ถึง 89 % หากอัตราการเติมกลูโคสสูงกว่านี้จะเกิดการสะสมตัวของกรดอินทรีย์ ทำให้ค่าพีเอชของ ระบบลดลง จึงส่งผลให้เกิดการยับยั้งการทำงานของจุลินทรีย์บางกลุ่ม และการส่งถ่ายอิเลคตรอนไป ้ยังขั้วแอโนดมีค่าลดลงประมาณ 15% ต่อมา Rabaey และคณะ (2006) ได้ทำการทดลองใช้เซลล์ เชื้อเพลิงชีวภาพในการบำบัดซัลไฟด์ พบว่าชุดการทดลองที่เชื่อมต่อวงจรแบบจรปิดสามารถบำบัดได้ เสถียรกว่าระบบที่เป็นวงจรเปิด เมื่อคำนวณค่าประสิทธิภาพการส่งถ่ายอิเลคตรอน จากการบำบัด ซัลไฟด์เป็นซัลเฟอร์พบว่ามีค่าสูงถึง 29.5±7.9% เมื่อเติมซัลไฟด์เข้าในระบบที่ความเข้มข้น 100 mg-S/l แต่เมื่อเพิ่มความเข้มข้นเป็น 300 me-S/l ประสิทธิภาพการส่งถ่ายอิเลคตรอน ลดลงเหลือเพียง 14.6±4.4% แต่กำลังไฟฟ้าของของชุดการทดลองที่มีซัลไฟด์ 300 mg-S/l มีค่าสูงกว่าชุดการทดลอง ้ที่มีซัลไฟด์ 100 me-S/l ประมาณ 3 เท่า ทั้งนี้ระบบเซลล์เชื้อเพลิงชีวภาพที่ใช้ในการทดลองครั้งนี้ สามารถกำจัดซัลไฟด์ได้ถึง 278±181 mg-S/l NAC (Net anodic chamber) โดยบริเวณขั้วแอโนด พบจุลินทรีย์สายพันธุ์ Paracoccus denitrificans และ P. pantotrophus เป็นกลุ่มหลักซึ่งมี บทบาทสำคัญในกระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชัน ทำให้พบผลึกซัลเฟอร์บนขั้วแอโนด โดยคิด เป็นร้อยละ 59 ของซัลไฟด์ที่ถูกกำจัด

นอกจากนี้ได้มีงานวิจัยถึงผลของห้องแคโทดต่อการผลิตกระแสไฟฟ้าขึ้น Oh และคณะ (2004) เปรียบเทียบสารรับอิเลคตรอนในห้องแคโทดต่อประสิทธิภาพการผลิตกระแสไฟฟ้า โดยเลือกใช้ออกซิเจน(ละลายน้ำ) และสารละลายเฟอริคไซยาไนด์ (ferriccyanide) พบว่า เมื่อใช้สารละลายเฟอริคไซยาไนด์จะเพิ่มความหนาแน่นกระแสขึ้น 50-80% เมื่อเทียบกับการใช้ ออกซิเจนเนื่องจากมีประสิทธิภาพการส่งถ่ายอิเลคตรอนสูงกว่า อีกทั้งมีค่าศักย์ไฟฟ้าของระบบสูงกว่า อีกด้วย (332 และ 268 mV เมื่อใช้สารละลายเฟอริคไซยาไนด์และออกซิเจน ตามลำดับ) อย่างไรก็ตาม แม้ว่าสารละลายเฟอริคไซยาไนด์จะให้กำลังไฟฟ้าที่สูงกว่า แต่ไม่สามารถนำมาใช้ได้จริง เนื่องจากต้องมีการบำบัดผลิตภัณฑ์ที่เกิดขึ้น จึงใช้สำหรับการศึกษาระดับห้องปฏิบัติการเท่านั้น สำหรับออกซิเจนยังมีข้อจำกัดด้านการละลายน้ำของออกซิเจนที่มีสัดส่วนน้อย (4.6x10⁻⁶ mole fraction ที่ 25 °C) เมื่อเปรียบเทียบกับปริมาณออกซิเจนในอากาศ (0.21 mole fraction) จึงมีการ พัฒนาเซลล์เชื้อเพลิงชีวภาพให้สามารถใช้ออกซิเจนในอากาศได้โดยตรง โดยการเชื่อมต่อขั้วแคโทด และเยื่อเลือกผ่านโปรตอน (PEM) เข้าด้วยกันโดยกระบวนการ hot pressing ต่อมา Cheng และ คณะ (2008) จึงศึกษาวัสดุที่ใช้ยึดติดขั้วแคโทดสำหรับป้องกันการรั่วซึมของอากาศเข้าสู่ระบบ พบว่าการใช้ PTFE (polytetrafloroethylene) 4 ชั้นเหมาะสมที่สุดเนื่องจากมีค่ากำลังไฟฟ้าสูงสุด และยังช่วยป้องกันการรั่วซึมของน้ำจากระบบอีกด้วย

ตัวอย่างงานวิจัยที่ใช้รูปแบบเซลล์เชื้อเพลิงชีวภาพแบบห้องเดี่ยว เช่น งานวิจัยของ Zhao และคณะ (2008) ศึกษาการบำบัดซัลเฟตในระบบหมักแบบไร้อากาศร่วมกับเซลล์เชื้อเพลิง ้ชีวภาพโดยเปรียบเทียบจากผลของขั้วแอโนดที่ผลิตด้วยคาร์บอน 3 แบบคือ activated carbon cloth (ACC) carbon fiber veil (CFV) และ graphite foil (GF) โดยใช้จุลินทรีย์สายพันธุ์บริสุทธิ์ คือ Desulfovibrio desulfuricans พบว่าจุลินทรีย์ D. desulfuricans ในห้องหมักแบบไร้อากาศ ้สามารถบำบัดซัลเฟตได้สูงถึง 99% จากความเข้มข้น 3.03 mg-S/l และเมื่อนำน้ำเสียที่ผ่านการบำบัด ในห้องหมักแบบไร้อากาศซึ่งมีองค์ประกอบของซัลไฟด์เป็นหลักป้อนเข้าสู่ระบบเซลล์เชื้อเพลิงชีวภาพ ที่ใช้ ACC เป็นขั้วแอโนด พบว่าเซลล์เชื้อเพลิงชีวภาพให้ความหนาแน่นไฟฟ้าสูงสุดถึง 0.51 mW/cm² (1.3 mA/cm²) และไม่พบซัลไฟด์ในน้ำขาออกจากระบบ ในการทดลองครั้งนี้ยังพบว่าการกวนผสม สารละลายในห้องแอโนดทำให้ผลิตกระแสไฟฟ้าได้สูงขึ้น แสดงว่าข้อจำกัดของปฏิกิริยาซัลไฟด์ ออกซิเดชั้นเกิดจากกระบวนการแพร่ของซัลไฟด์ ต่อมางานวิจัยของ Zhao และคณะ (2009) พบว่าศักย์ไฟฟ้าของขั้วแอโนดขึ้นกับความเข้มข้นของซัลไฟด์ในระบบ ไม่ได้ควบคุมโดยกลุ่มจุลินทรีย์ บนขั้วแอโนด ซึ่งสอดคล้องกับงานวิจัยก่อนหน้านี้ในปี 2008 ที่พบว่าระบบจะผลิตกระแสไฟฟ้าได้ ทันทีหลังเติมซัลไฟด์ในระบบและจะลดลงเมื่อความเข้มข้นของซัลไฟด์ในระบบลดลง แต่หากความ เข้มข้นซัลไฟด์สูงเกินไปจะเกิดการยับยั้งปฏิกิริยาการผลิตซัลไฟด์ (leropoulos และคณะ, 2005; Zhao และคณะ, 2008)

รูปแบบการไหลของน้ำเสียภายในเซลล์เชื้อเพลิงชีวภาพมีผลต่อการผลิตกระแสไฟฟ้าเช่นกัน ดังเช่นงานวิจัยของ Cheng และคณะ (2006) ทดลองการไหลของน้ำเสียในแนวตั้งฉากกับขั้วแอโนด พบว่าให้กำลังไฟฟ้าสูงกว่าประมาณ 17% (490 ±4 mW/m²) เมื่อเทียบกับการไหลขนานผ่านขั้ว (420±10 mW/m²) อีกทั้งทดสอบผลของระยะห่างระหว่างขั้วต่อการผลิตกระแสไฟฟ้า โดยพบว่าเมื่อ ระยะห่างระหว่างขั้วลดลง ระบบจะผลิตกระแสไฟฟ้าได้สูงขึ้น และเมื่อวัดความต้านทานภายใน ของระบบพบว่ามีค่าลดลง 75% เมื่อเปรียบเทียบระยะห่างของขั้วที่ระยะ 3 และ 1 เซนติเมตร (826 mW/m²; 56Ω และ 1540 mW/m²; 14 Ω ตามลำดับ) เมื่อเปรียบเทียบระยะเวลากักเก็บน้ำ ภายในระบบพบว่าเมื่อมีระยะเวลานานขึ้น ประสิทธิภาพการบำบัดสารอินทรีย์และกระแสไฟฟ้าที่ถูก ผลิตขึ้นจะมีค่าสูงขึ้น เช่นที่ระยะเวลากักเก็บ 4.2 ชั่วโมงมีค่าประสิทธิภาพการบำบัดสารอินทรีย์ เท่ากับ 87±5% ความหนาแน่นกำลังไฟฟ้ามีค่า 790 mW/m² เมื่อเพิ่มระยะเวลากักเก็บเป็น 15.6 ชั่วโมงจะมีค่าประสิทธิภาพการบำบัดสารอินทรีย์เท่ากับ 94±3% และความหนาแน่นกำลังไฟฟ้า มีค่า 1,320 mW/m²

งานวิจัยข้างต้นเน้นการศึกษาในเรื่องของปัจจัยทางกายภาพที่ส่งผลต่อประสิทธิภาพการ บำบัด และการผลิตกระแสไฟฟ้าของเซลล์เชื้อเพลิงชีวภาพ นอกจากนี้ Sun และคณะ (2010) ได้ทำการศึกษากลุ่มประชากรจุลินทรีย์ที่เกี่ยวข้องในกระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชันภายใน ระบบเซลล์เชื้อเพลิงชีวภาพแบบห้องเดี่ยว โดยการเติมซัลไฟด์ความเข้มข้น 2 mM ในน้ำเสีย สังเคราะห์ที่ไม่มีสารอินทรีย์ จากการทดลองพบว่าระบบที่มีจุลินทรีย์ทั้งแบบแขวนลอยและยึดเกาะ บนขั้ว จะให้ความหนาแน่นกำลังไฟฟ้าที่สูงและเสถียรกว่าระบบที่ไม่มีจุลินทรีย์ จากนั้นจึงทำการ วิเคราะห์กลุ่มประชากรโดยการใช้วิธี 16S rRNA gene clone library จุลินทรีย์กลุ่มหลักที่พบบนขั้ว คือ *Pseudomonas* sp. ซึ่งเป็นจุลินทรีย์กลุ่ม sulfide/sulfur-oxidizing bacteria (SOB) ส่วนจุลินทรีย์กลุ่มหลักที่แขวนลอยคือ *Comamonas* sp. ซึ่งเป็นจุลินทรีย์กลุ่ม sulfate-reducing bacteria (SRB) จากงานวิจัยนี้แสดงให้เห็นถึงความเกี่ยวข้องกันของจุลินทรีย์ทั้งสองกลุ่มที่อาศัยแบบ พึ่งพาอาศัยกัน ซึ่งทำให้ระบบสามารถผลิตกระแสไฟฟ้าได้สูงสุด

ภายในห้องแอโนด มีจุลินทรีย์กลุ่ม SRB ซึ่งใช้สารอินทรีย์และซัลเฟตในการเติบโต Lee และคณะ (2012) จึงทำการศึกษาการเปลี่ยนแปลงของคุณภาพน้ำขาออกและการผลิต กระแสไฟฟ้าของระบบเมื่อองค์ประกอบน้ำเสียเปลี่ยนแปลงไป โดยบ่มจุลินทรีย์กลุ่ม SRB ภายในห้อง แอโนดด้วยแลกเตทและซัลเฟต ระบบสามารถบำบัดซัลเฟตจากความเข้มข้น 248 mg-S²/l เหลือเพียง 39.3 mg-S²/l และเปลี่ยนเป็น elemental sulfur ถึง 84.1% ให้ความหนาแน่น กำลังไฟฟ้าที่ 255 mW/m² แต่เมื่อเดินระบบด้วยซัลเฟตเพียงอย่างเดียว ความเข้มข้นซัลเฟตภายใน ระบบลดลงต่ำสุดที่ 192 mg-S/l ให้ความหนาแน่นกำลังไฟฟ้าที่ 2 mW/m² ภายในวันแรกแสดงให้ เห็นว่าจุลินทรีย์กลุ่ม SRB ไม่สามารถเติบโตหรือนำซัลเฟตมาใช้ได้หากไม่มีสารอินทรีย์ภายในระบบ และซัลเฟตเพิ่มขึ้นจนมีความเข้มข้นประมาณ 240 mg-S/l ภายใน 3 วัน เนื่องจากกระบวนการ ซัลไฟด์/ซัลเฟอร์ออกซิเดชันสามารถเปลี่ยนซัลไฟด์กลับมาเป็นซัลเฟตอีกครั้ง เมื่อเปรียบเทียบกับ เซลล์เชื้อเพลิงชีวภาพที่เดินระบบด้วยแลกเตทอย่างเดียวที่ให้หนาแน่นไฟฟ้า 12.7 mW/m² แสดงให้เห็นถึงความสามารถในการดึงกลับพลังงานจากน้ำเสียที่ปนเปื้อนสารอินทรีย์และซัลเฟต

บริเวณขั้วแอโนดของเซลล์เชื้อเพลิงชีวภาพ มีการอาศัยอยู่ของจุลินทรีย์กลุ่ม exoelectrogenic bacteria และกลุ่ม sulfide/sulfur-oxidizing bacteria (Sun และคณะ, 2010; Lee และคณะ, 2012; Sangcharoen และคณะ, 2015) ที่มีผลต่อการบำบัดซัลไฟด์และการผลิต กระแสไฟฟ้าเป็นหลัก นอกจากนี้ได้มีการศึกษาการบำบัดซัลไฟด์ในเซลล์เชื้อเพลิงชีวภาพ (Lee และคณะ, 2012) โดยใช้น้ำเสียสังเคราะห์ที่มีกลูโคสและซัลไฟด์ พบว่าเซลล์เชื้อเพลิงชีวภาพ ดังกล่าวสามารถให้กำลังไฟฟ้าสูงสุด 572.4±18.2 mW/m² และบำบัดซัลไฟด์ได้สูงถึง 84.7±2.8% โดยการบำบัดซัลไฟด์ประกอบด้วย 4 กระบวนการสำคัญ ได้แก่ กระบวนการทางไฟฟ้าเคมี (50.2%) กระบวนการออกซิเดชันโดยจุลินทรีย์ (24.1%) การดูดซับโดยขั้วแอโนด (14.6%) และการระเหย ของซัลไฟด์ (11.1%)

กลุ่มจุลินทรีย์ที่อาศัยในระบบไร้อากาศและเซลล์เชื้อเพลิงชีวภาพจะถูกควบคุมโดยคุณสมบัติ ของน้ำเสียที่เข้าสู่ระบบ เช่น สัดส่วน COD:SO4²⁻ ซึ่งจะส่งผลต่อการแข่งขันของจุลินทรีย์กลุ่มรีดิวซ์ ซัลเฟตและกลุ่มสร้างมีเทนในระบบไร้อากาศ หากสัดส่วนมีค่าต่ำกว่า 1.3 จุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต จะเจริญเติบโตได้ดีกว่า เนื่องจากความเข้มข้นซัลไฟด์ในระบบที่สูงจะยับยั้งการเจริญเติบโตของ จุลินทรีย์กลุ่มสร้างมีเทน ในทางตรงกันข้ามหากมีค่าสูงกว่า 2.0 จุลินทรีย์กลุ่มสร้างมีเทน จะเจริญเติบโตได้ดีกว่า (Chou และคณะ, 2008) ซึ่งเป็นสัดส่วนที่ใกล้เคียงกับรายงานของ Choiและ Rim (1991) ที่พบว่าหากสัดส่วนอยู่ในช่วง 1.7-2.7 จะเกิดการแข่งขันของจุลินทรีย์ทั้งสองกลุ่มนี้ Ghangrekar และคณะ (2010) จึงศึกษาผลของสัดส่วน COD:SO4²⁻ ต่างๆ (500 20 1 0.8 0.5 และ 0.3) พบว่า ที่สัดส่วนเท่ากับ 0.8 ระบบจะมีประสิทธิภาพการบำบัดสารอินทรีย์ได้สูงที่สุด (79%) มีความหนาแน่นกำลังไฟฟ้าที่ 97.2 mW/m² และพบว่ายิ่งสัดส่วนมีค่าลดลง ระบบจะยิ่งสามารถ บำบัดสารอินทรีย์ได้สูงขึ้น จากผลงานวิจัยทั้ง 3 งานดังกล่าวสามารถนำมาประยุกต์ใช้ในงานวิจัยครั้ง นี้ได้ เนื่องจากลักษณะของเซลล์เชื้อเพลิงชีวภาพที่มีการแบ่งเป็น 2 ห้องย่อย โดยภายในห้องแรก มีลักษณะคล้ายระบบไร้อากาศซึ่งใกล้เคียงกับงานวิจัยที่ผ่านมา

ตัวอย่างงานวิจัยต่างๆที่ใช้ระบบเซลล์เชื้อเพลิงชีวภาพในการบำบัดซัลไฟด์แสดงดัง ตารางที่ 2.7 ซึ่งรวมทั้งงานที่ประยุกต์ใช้เซลล์เชื้อเพลิงชีวภาพเข้ากับระบบบำบัดน้ำเสียอื่นๆ เช่น Upflow anaerobic sludge bed (UASB) สำหรับการบำบัดซัลไฟด์จากน้ำขาออกเนื่องจากน้ำเสีย ที่เข้าสู่ระบบมีสารอินทรีย์และซัลเฟตปนเปื้อน

7	Ð
Q	l l
90	5
~	2
8	6
2	چ
9	പ്പ
2	Š
	Ľ
0	<u>ي</u>
	È
	یم
6	ຊີ
	3
-	ر ر
Q	ŝ
٥	NS
	6
^ব	ŝ
6	ມ
	ŝ
	ື່
	Š
2	3
-6	ຼິ
Q	₽°
9	ിപ
4	ž
	ر م
	∼.
	\sim
-1	39
	ي
	آ
	-

		อัตราการบ้	าบัตซัลไฟด์	8		
າຕະະ	ข้อมูลการทดลอง	ต่อพื้นที่ข้ว	ต่อปริมาตร	WI'זנסואפשכט -	P _{MAX}	อ้างอิง
		(mW/hr/m ²)	(mM/hr/l-NAC)	ואטו טבו וז		
MFC	-DC-MFC	N/A	2.48	98.2%	27.8	Rabaey และ
	-เติมนั้กเสียที่มี 10.3 mM-S เข้าสู่ระบบแบบที่ละเท				mW/l-NAC	ค ณะ, 2006)
UASB-MFC	-tili 1 g/t glucose tiat 4.1 g/t MgSO $_{ m d}$ (34.1 mM-S)	N/A	8.69	68.7%	47	Rabeay และ
	-เชื้อมต่อแบบแนวตั้ง	1			mW/l-NAC	คณะ (2006)
MFC	-เติม D. desulfuricans 1 มล. ในน้ำเสีย 100 มล. ที่มีชัลเพต	147.2	12.3	97.5%	42.5	Zhao และคณะ
	(31.69 mM) แล้วปล่อยน้ำขาออกเข้าสู่ MFC				mW/l-NAC	(2008)
	-Activated carbon cloth as anode					
UASB-MFC-	-SC-MFC	N/A	0.43	85.7%	1410.2	Zhang และคณะ
BAF	-COD= 127,500 mg/l				mW/m ²	(2009)
MFC	-DC-MFC	11.6	0.154	88.73%	992.26	Zhang และ Ni
	-PbO ₂ catalyzed cathode				mW/m ²	(2010)
UASB-MFC	-SC-MFC	38.8	0.041	51.2%	888.9	Zhang และคณะ
	-COD:sulfate = 2400:600				mW/m ²	(2012)
	-เชื้อมต่อแบบอนุกรม					
MFC	-COD:sulfate = 800:100	22.1	0.283	81.4%	744	Zhang และคณะ
	-เดินระบบแบบที่ละเท				mW/m ²	(2013)
MFC	-SC-MFC (2 compartments)	34.04	0.135	52.6%	1.41	Niyom ແລະคณะ
	- COD:sulfate = 3,000:500				mW/m ²	(2015)
MFC	-SC-MFC (2 compartments)	4.16	0.006	21.8%	0.095	Sangcharoen
	- COD:sulfide = 800:300				mW/m ²	ແຄະคณะ (2015)
หมายเหตุ DC-h	MFC คือ Dual chamber microbial fuel cell, SC-MFC คือ	Single chamber m	nicrobial fuel cell, E	3AF ନିଁି biolog	ical aerated 1	ilter

งานวิจัยที่ผ่านมาเน้นการศึกษาเกี่ยวกับการบำบัดซัลเฟตหรือซัลไฟด์ที่ปนเปื้อนในน้ำเสียโดย ใช้เซลล์เชื้อเพลิงชีวภาพ ทั้งการเดินระบบแบบทีละเท (batch mode) และแบบต่อเนื่อง (continuous mode) แม้ว่าประสิทธิภาพการบำบัดสารอินทรีย์ ซัลเฟตและซัลไฟด์มีค่าค่อนข้างสูง แต่ประสิทธิภาพการผลิตกระแสไฟฟ้ายังคงมีค่าน้อย การดึงกลับพลังงานไฟฟ้าจึงอาจไม่คุ้มค่าต่อการ ลงทุนหรือนำไปใช้จริง จึงควรพัฒนาและศึกษาการนำเซลล์เชื้อเพลิงชีวภาพมาประยุกต์ใช้โดยอาศัย กระบวนการทางชีวภาพภายในระบบที่สำคัญ เช่น กระบวนการซัลไฟด์/ซัลเฟอร์ออกซิเดชัน บริเวณ ข้วแอโนดมาใช้ในการบำบัดซัลไฟด์ทั้งในน้ำเสียและก๊าซชีวภาพที่ได้จากกระบวนการหมักแบบ ไร้อากาศของน้ำเสียที่ปนเปื้อนสารอินทรีย์และซัลเฟต เพื่อปรับปรุงคุณภาพของก๊าซชีวภาพให้ใช้งาน ได้อย่างปลอดภัยและบำบัดซัลไฟด์ในน้ำซึ่งส่งกลิ่นเหม็นรบกวน ดังนั้น ในงานวิจัยนี้จึงสนใจ ที่จะศึกษาการใช้เซลล์เชื้อเพลิงชีวภาพในการบำบัดน้ำเสียปนเปื้อนสารอินทรีย์ ซัลเฟต และการ บำบัดซัลไฟด์ในน้ำเสียและก๊าซชีวภาพ พร้อมทั้งศึกษาประสิทธิภาพการผลิตกระแสไฟฟ้าและกลุ่ม จุลินทรีย์ภายในระบบเซลล์เชื้อเพลิงชีวภาพ อีกทั้งกลไกการผลิตกระแสไฟฟ้าของระบบ ซึ่งจะช่วย เพิ่มแนวทางในการประยุกต์ใช้เซลล์เชื้อเพลิงชีวภาพให้กว้างขวางขั้นต่อไป

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

บทที่ 3 วิธีดำเนินงานวิจัย

3.1 แผนการดำเนินงานวิจัย

งานวิจัยนี้เป็นการศึกษาระดับห้องปฏิบัติการ ณ ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย โดยศึกษาการบำบัดก๊าซไฮโดรเจนซัลไฟด์จากน้ำเสีย ปนเปื้อนสารอินทรีย์และซัลเฟต โดยใช้เซลล์เชื้อเพลิงชีวภาพชนิดห้องเดี่ยว ร่วมกับหอดูดซึมชนิด packed column ขั้นตอนในการทดลองสามารถแบ่งออกเป็น 5 ช่วง (ภาพที่ 3.1) ได้แก่

3.1.1 การศึกษาประสิทธิภาพการบำบัดน้ำเสียโดยห้องไร้อากาศ และเพื่อคัดเลือกกลุ่ม จุลินทรีย์ที่เหมาะสมสำหรับน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟตที่ใช้ในการศึกษาครั้งนี้

3.1.2 การศึกษาผลของความสูงชั้นตัวกลางภายในหอดูดซึมต่อค่าสัมประสิทธิ์การถ่ายเทมวล สารรวม (Volumetric mass transfer coefficient, K_La)

3.1.3 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ โดยเปรียบเทียบระหว่าง ประสิทธิภาพในการบำบัดน้ำเสียและก๊าซไฮโดรเจนซัลไฟด์ ก่อนและหลังการติดตั้งหอดูดซึมและ ระบบเวียนน้ำ

3.1.4 การศึกษาบทบาทของกลุ่มจุลินทรีย์บนขั้วแอโนดต่อการผลิตกระแสไฟฟ้าของเซลล์ เชื้อเพลิงชีวภาพ โดยการเปลี่ยนองค์ประกอบของน้ำเสียสังเคราะห์

3.1.5 การศึกษาวิเคราะห์กลุ่มประขากรจุลินทรีย์ในเซลล์เชื้อเพลิงชีวภาพ ทั้งส่วนของ จุลินทรีย์แขวนลอยและจุลินทรีย์บนขั้วแอโนด โดยเทคนิค 16S rRNA Clone library

3.1.6 การศึกษาการเปลี่ยนแปลงสภาพพื้นผิวของขั้วแอโนด โดยเปรียบเทียบภาพถ่าย อิเลคตรอนของขั้วและปริมาณธาตุองค์ประกอบบนขั้วแอโนด ด้วยเทคนิค SEM-EDS

ภาพที่ 3.1 แผนการดำเนินงานโดยรวมของงานวิจัยครั้งนี้

3.2 การดำเนินการทดลอง

งานวิจัยครั้งนี้ออกแบบรูปทรงของเซลล์เชื้อเพลิงชีวภาพให้มีลักษณะเป็นถังปฏิกรณ์ทรง สี่เหลี่ยม ทำจากอะคลีลิคใส poly(methyl methacrylate) เพื่อป้องกันการกัดกร่อนและการทำ ปฏิกิริยาของโลหะ เซลล์เชื้อเพลิงสามารถแบ่งเป็น 3 ส่วน ดังแสดงในภาพที่ 3.2 และภาพที่ 3.3

ส่วนแรกคือห้องหมักแบบไร้อากาศ (Anaerobic compartment) สำหรับการผลิต ก๊าซชีวภาพโดยจุลินทรีย์กลุ่มไม่ใช้อากาศ มีขนาดภายใน (กว้างxยาวxสูง) เท่ากับ 15X10X20 เซนติเมตร ความจุภายในเท่ากับ 3,000 มิลลิลิตร บรรจุน้ำเสียปริมาตรสูงสุด 2,000 มิลลิลิตร ซึ่งจะ ถูกกั้นแบ่งจากส่วนที่สองโดยแผ่นกั้น

ส่วนที่สองคือห้องแอโนดประกอบด้วยขั้วแอโนดขนาด 5X5 ตารางเซนติเมตร และขั้วแคโทด ขนาด 5X5 เซนติเมตร กั้นด้วยเยื่อเลือกผ่านโปรตอนขนาด 5X5 ตารางเซนติเมตร ในส่วน ที่สองจะมีขนาดภายใน (กว้างxยาวxสูง) เท่ากับ 15X15X20 เซนติเมตร ความจุภายในเท่ากับ 4,500 มิลลิลิตร บรรจุน้ำเสียปริมาตรสูงสุด 2,000 มิลลิลิตร ส่วนสุดท้ายคือหอดูดซึม (Absorption column) มีรูปร่างเป็นทรงกระบอก ความกว้าง ภายใน (เส้นผ่านศูนย์กลาง) เท่ากับ 5 เซนติเมตร สูง 15 เซนติเมตร บรรจุด้วยตัวกลางโพลีโพรพิลีน ลักษณะทรงกระบอกกลวง ขนาดเส้นผ่าศูนย์กลางด้านนอกเท่ากับ 5.73±0.17 มิลลิเมตร หนา 0.585±0.016 มิลลิเมตร ยาว 6.13±0.78 มิลลิเมตร พื้นที่ผิวจำเพาะเท่ากับ 777 ตารางเมตรต่อ ลูกบาศก์เมตร ร ค่าความพรุนเท่ากับ 0.30 เซลล์เชื้อเพลิงชีวภาพนี้มีช่องทางออกน้ำและจุดสำหรับ เก็บตัวอย่างน้ำเสียทั้งสิ้น 5 จุดและจุดเก็บตัวอย่างก๊าซ 2 จุด โดยลักษณะโครงสร้างและส่วนประกอบ ของเซลล์เชื้อเพลิงชีวภาพ

ในการศึกษาครั้งนี้เลือกใช้ขั้วแอโนดชนิด activated carbon cloth (Zorflex Knit FM50K, Calgon Carbon Corporation, USA) ขนาด 25 ตารางเซนติเมตร ยึดติดกับเส้นลวดไทเทเนียม สำหรับเป็นตัวกลางส่งถ่ายอิเลคตรอน (ภาพที่ 3.4ก) สำหรับขั้วแคโทดเลือกใช้ 30% wet-proof carbon cloth (Fuel Cell ETC, USA) ขนาด 25 ตารางเซนติเมตร (ภาพที่ 3.4ข) ปรับปรุงพื้นผิวขั้ว แคโทดโดยใช้สารเร่งปฏิกิริยาคือแพลทตินัม 0.5 mg-Pt/cm² เชื่อมต่อขั้วแอโนดและขั้วแคโทดด้วย เส้นลวดไทเทเนียม (ภาพที่ 3.4ค) โดยใช้ความต้านทานภายนอกขนาด 1,000 โอห์ม (ภาพที่ 3.4ง) และเลือกใช้เยื่อเลือกผ่านโปรตอนชนิด Nafion 117 โดยเยื่อเลือกผ่านโปรตอนและขั้วแคโทดที่ใช้ ทำการยึดติดกันด้วยความร้อนภายใต้แรงดัน (Hot-pressing) การติดตั้งขั้วไฟฟ้าทั้งสองในลักษณะ ขนานกันโดยมีระยะห่าง 2 เซนติเมตร รวมทั้งใช้แผ่นตาข่ายเงิน (silver mesh) สัมผัสกับพื้นผิวขั้วแค โทค เพิ่มช่วยในการรวบรวมอิเลคตรอนบริเวณพื้นผิวขั้วแคโทด (ภาพที่ 3.5) เนื่องจากข้อจำกัดของ ขั้วแคโทดชนิด carbon cloth ที่ไม่สามารถยึดติดกับเส้นลวดไทเทเนียมได้โดยตรง

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาพที่ 3.2 ด้านข้างของระบบเซลล์เชื้อเพลิงชีวภาพในการทดลองครั้งนี้ ภาพแสดงสัดส่วน (บน) และภาพถ่าย (ล่าง)

ภาพที่ 3.3 ด้านบนของระบบเซลล์เชื้อเพลิงชีวภาพในการทดลองครั้งนี้ ภาพแสดงสัดส่วน (บน) และภาพถ่าย (ล่าง)

ภาพที่ 3.4 อุปกรณ์ไฟฟ้าที่ติดตั้งในห้องเซลล์เชื้อเพลิงชีวภาพขั้วแอโนด (ก) ขั้วแคโทดและเยื่อเลือก ผ่านโปรตอน (ข) เส้นลวดไทเทเนียม (ค) และตัวต้านทานภายนอก (ง)

ภาพที่ 3.5 การเชื่อมต่อขั้วแคโทด และแผ่นตาข่ายเงิน

น้ำเสียสังเคราะห์ที่ใช้ในการทดลองครั้งนี้ประกอบด้วยกลูโคส สำหรับเป็นแหล่งสารอินทรีย์ ของจุลินทรีย์ เนื่องด้วยจุลินทรีย์สามารถใช้ในการเจริญเติบโตได้ดี โดยกำหนดให้น้ำเสียสังเคราะห์ มีค่าซีโอดีเท่ากับ 3,000 มิลลิกรัมซีโอดีต่อลิตร และใช้โซเดียมซัลเฟตเพื่อให้ความเข้มข้นซัลเฟตมีค่า เท่ากับ 300 มิลลิกรัมซัลเฟตต่อลิตร ควบคุมค่าพีเอชด้วยโซเดียมไบคาร์บอเนตความเข้มข้น 2,500 มิลลิกรัมหินปูนต่อลิตร และธาตุอาหารที่สำคัญอื่นๆ ดังตารางที่ 3.1

เซลล์เชื้อเพลิงชีวภาพเดินระบบแบบต่อเนื่อง (continuous operation) โดยเติมน้ำเสีย สังเคราะห์เข้าสู่ระบบด้วย Peristaltic pump ด้วยอัตราการไหลเท่ากับ 2 ลิตรต่อวัน ระยะเวลากัก เก็บภายในห้องไร้อากาศ 1 วัน และภายในห้องแอโนด 1 วัน ควบคุมค่าพีเอชให้อยู่ในช่วง 6.8-7.2 อุณหภูมิภายในห้องปฏิบัติการอยู่ในช่วง 28-34 องศาเซลเซียส เมื่อมีการติดตั้งหอดูดซึมจะทำการ เวียนน้ำภายในห้องแอโนดเข้าสู่หอดูดซึมในอัตรา 36 ลิตรต่อวัน

Chulalongkorn University

สาร สตรเดขี —		ความเข้มข้น	
g.12	สู่ทวเคม	mg/l	mg-X/l
Electron donor			
Glucose	$C_{6}H_{12}O_{6}$	2,812.5	3,000 mg-COD/l
Electron accepter			
Sulfate	Na_2SO_4	443.75	300 mg-SO ₄ ²⁻ /l
pH buffer			
Sodium bicarbonate	NaHCO ₃	3,400	2,500 mg-CaCO ₃ /l
Macronutrient			
Nitrogen	NH₄Cl	221.6	58 mg-N/l
Phosphorus	Na ₂ HPO ₄ ·2H ₂ O	58.9	11.32 mg-P/l
Micronutrient			
Cobalt	CoCl ₂ ·2H ₂ O	0.1	0.0224 mg-Co/l
Nickel	NiCl ₂ ·6H ₂ O	0.1	0.0232 mg-Ni/l
Zinc	ZnCl ₂	0.1	0.036 mg-Zn/l
Copper	CuCl ₂ ·2H ₂ O	0.1	0.0232 mg-Cu/l
Manganese	MnCl ₂ ·4H ₂ O	0.1	0.0232 mg-Mn/l
Boron	H ₃ BO ₄	0.2	0.02 mg-Bo/l
Common cations			
Sodium	NaCl	381.5	150 mg-Na/l
Potassium	KCl	573.8	300 mg-K/l
Calcium	CaCl ₂	416.3	150 mg-Ca/l
Magnesium	MgCl ₂	633.3	160 mg-Mg/l

ตารางที่ 3.1 ส่วนประกอบและความเข้มข้นของสารที่ใช้ในการเตรียมน้ำเสียสังเคราะห์ (ดัดแปลงจาก Sangcharoen และคณะ, 2015)
ในการทดลองช่วงที่ 3 และ 4 เดินระบบแบบวงจรปิด โดยการเชื่อมต่อความต้านทาน ภายนอกขนาด 1,000 โอห์ม ทำการบันทึกค่าความต่างศักย์ระหว่างขั้วทั้งสอง และทำการวัดค่าความ ต่างศักย์โดยเปลี่ยนความต้านทานภายนอก รวมทั้งวัดค่าความต่างศักย์แบบวงจรเปิด (open circuit voltage; OCV) สำหรับการวิเคราะห์โดยนำมาสร้างกราฟแสดงความสัมพันธ์ระหว่างกระแสไฟฟ้า และศักย์ไฟฟ้า (iv-curve) ซึ่งนำมาคำนวณค่าพลังงานไฟฟ้าของเซลล์เชื้อเพลิงชีวภาพ และสร้างกราฟแสดงความสัมพันธ์ระหว่างความหนาแน่นกระแสไฟฟ้าและความหนาแน่นพลังงาน สำหรับหาค่าพลังงานไฟฟ้าสูงสุดของระบบ ในการวัดค่าศักย์ไฟฟ้าจะใช้เครื่องโวลต์มิเตอร์ (voltmeter) ยี่ห้อ FLUKE รุ่น 115

การวิเคราะห์พารามิเตอร์ต่างๆตลอดการทดลองครั้งนี้ แสดงรายละเอียดดังตารางที่ 3.2 ซึ่งประกอบด้วยค่าพารามิเตอร์ วิธีมาตรฐานหรือเครื่องมือที่ใช้วิเคราะห์ ความถี่ในการตรวจวัด และตำแหน่งที่ตรวจวัด (จากภาพที่ 3.2) ในแต่ละการทดลอง

พารามิเตอร์	วิธีการ/เครื่องมือวิเคราะห์	ความถี่ (ครั้งต่อ สัปดาห์)	ช่วงการ ทดลอง	ตำแหน่งที่ เก็บตัวอย่าง
Chemical oxygen	close reflux method	3	1, 2-1,	1, 2, 3
demand	(standard method : 5220C)		2-2	
volatile fatty acids	Titration method	3	1, 2-1, 2-2	3
sulfate	turbidimetric method	3	1, 2-1,	1, 2, 3
	(standard method : 4110E)		2-2, 3	
sulfide	sulfide ion selective	3	1, 2-1,	2, 3
	electrode		2-2, 3	
	(standard method : 4500G)			
alkalinity-volatile fatty	titration method	3	1, 2-1,	2, 3
acid	(standard method : 2320B)		2-2	
พีเอช	pH meter	5	1, 2-1,	1, 2, 3
	(standard method : 4500B)		2-2, 3	
ORP	ORP meter	5	1, 2-1,	3
	(standard method : 2580B)		2-2, 3	
ความต่างศักย์ไฟฟ้า	โวลต์มิเตอร์	5	2-1,	11
			2-2, 3	
ก้าซไฮโดรเจนซัลไฟด์	Modified method	າສ ຍ 2	1, 2-1,	9
	(sulfide ion selective		2-2	
	electrode)			

ตารางที่ 3.2 พารามิเตอร์ที่ทำการวิเคราะห์ในการศึกษาครั้งนี้

3.2.1 การทดลองช่วงที่ 1 การศึกษาประสิทธิภาพการบำบัดน้ำเสียโดยห้องไร้อากาศ

ในการทดลองช่วงที่ 1 นี้มีวัตถุประสงค์เพื่อการคัดเลือกกลุ่มจุลินทรีย์ที่เหมาะสม สำหรับน้ำเสียสังเคราะห์ที่ใช้ในการศึกษาครั้งนี้ โดยทำการเดินระบบเฉพาะส่วนของห้องหมักแบบไร้ อากาศของระบบเซลล์เชื้อเพลิงชีวภาพดังภาพที่ 3.6 เริ่มต้นโดยเติมหัวเชื้อจุลินทรีย์จากระบบบำบัด แบบไร้อากาศจากบริษัท ไทยควอร์ลิตี้สตาร์ช จำกัด ซึ่งใช้ในการบำบัดน้ำเสียปนเปื้อนสารอินทรีย์ และซัลเฟต โดยกำหนดให้ตะกอนจุลินทรีย์ภายในระบบมีความเข้มข้นเท่ากับ 10,000 mg-MLSS/L เดินระบบโดยการเติมน้ำเสียสังเคราะห์โดยมีความเข้มข้นซีโอดีและซัลเฟตเท่ากับ 3,000 มิลลิกรัม ซีโอดีต่อลิตจร และ 300 มิลลิกรัมซัลเฟตต่อลิตร ตามลำดับ

สำหรับองค์ประกอบน้ำเสียสังเคราะห์อื่นๆมีส่วนประกอบดังตารางที่ 3.1 ข้างต้น การเดินระบบกำหนดระยะเวลาเก็บกักน้ำเท่ากับ 24 ชั่วโมง (อัตราการไหล 2 ลิตรต่อวัน) สำหรับ ขั้นตอนการทดลองช่วงที่ 1 แสดงดังภาพที่ 3.7 โดยวิเคราะห์คุณภาพน้ำขาออกและก๊าซ ไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพจากระบบและเมื่อค่าพารามิเตอร์ (ค่าสารอินทรีย์ละลาย ซัลเฟต ซัลไฟด์ พีเอซ ความกระด้าง กรดอินทรีย์ระเหย) ของถังปฏิกรณ์มีความแปรปรวนลดลงจนเข้าสู่ สภาวะคงที่ จึงเริ่มการทดลองช่วงที่ 3

ภาพที่ 3.6 การเดินระบบเซลล์เชื้อเพลิงชีวภาพการทดลองช่วงที่ 1 (ห้องไร้อากาศ)

刅

เดินระบบโดยกำหนดระยะเวลากักเก็บน้ำเท่ากับ 24 ชั่วโมง (อัตราการไหล 2 ลิตรต่อวัน) ความเข้มข้นสารอินทรีย์เท่ากับ 3,000 mg-COD/l แลtซัลเฟตเท่ากับ 300 mg-SO4²⁻/l

\mathcal{P}

วิเคราะห์คุณภาพน้ำขาเข้าและน้ำขาออกจากห้องไร้อากาศด้วยวิธีมาตรฐาน ซึ่งประกอบด้วยค่า COD, sulfate, sulfide, VFA, alkalinity, pH, ORP และตรวจวัดความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์

ภาพที่ 3.7 ขั้นตอนการคัดเลือกสายพันธุ์จุลินทรีย์และศึกษาประสิทธิภาพการบำบัดสารอินทรีย์ และซัลเฟตในน้ำเสียด้วยห้องหมักแบบไร้อากาศของการทดลองช่วงที่ 1

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

3.2.2 การทดลองช่วงที่ 2 การศึกษาผลของความสูงชั้นตัวกลางต่อค่าสัมประสิทธิ์การ ถ่ายเทมวลสารรวม (Volumetric mass transfer coefficient, K_La)

ในการศึกษาประสิทธิภาพของหอดูดซึมสำหรับการบำบัดก๊าซไฮโดรเจนซัลไฟด์ใน ก๊าซชีวภาพ งานวิจัยนี้เลือกใช้หอดูดซึมแบบบรรจุตัวกลาง รูปร่างทรงกระบอกขนาดเส้นผ่าศูนย์กลาง ภายใน 5 เซนติเมตร ความสูง 15 เซนติเมตร ตัวกลางที่ใช้คือพลาสติกโพรพีลีน (ภาพที่ 3.8) อัตราการไหลของก๊าซประมาณ 4 ลิตรต่อวัน และใช้อัตราการไหลของเหลวเท่ากับ 36 ลิตรต่อวัน โดยใช้หัวพ่นละอองน้ำละเอียดเป็นอุปกรณ์กระจายของเหลวสู่ตัวกลาง

ภาพที่ 3.8 ลักษณะตัวกลางที่ใช้บรรจุภายในหอดูดซึม

การเดินระบบทดสอบเพื่อหาความสูงขั้นตัวกลางที่เหมาะสมของหอดูดซึมใน การศึกษาครั้งนี้เลือกใช้ก๊าซออกซิเจนในการศึกษาเพื่อความปลอดภัย จำลองการเดินระบบ (ภาพที่ 3.9) โดยใช้การเติมอากาศเข้าสู่ระบบ ซึ่งของเหลวในระบบที่ใช้คือน้ำกลั่น จะถูกไล่ออกซิเจน ด้วยก๊าซไนโตรเจนเป็นเวลา 5 นาทีจนมีระดับออกซิเจนละลายน้ำต่ำกว่า 0.1 มิลลิกรัมต่อลิตร หลังจากนั้นจึงเริ่มการเดินระบบหอดูดซึม ทดสอบโดยการเปลี่ยนความสูงชั้นตัวกลาง 4 ค่าคือ 0 5 10 และ 15 เซนติเมตร โดยบันทึกค่าออกซิเจนละลายน้ำทุก 1 นาที หลังจากนั้นจึงนำค่าที่ได้มาสร้าง กราฟความสัมพันธ์ระหว่างเวลาและค่าออกซิเจนละลายน้ำ แล้วคำนวณค่าสัมประสิทธิ์การถ่ายเท มวลสารรวมจากสมการที่ 3.1 และคำนวณค่าสัมประสิทธิ์การถ่ายเทมวลสารรวมที่อุณหภูมิ 20 องศา เซลเซียสจากสมการที่ 3.2

$$\frac{\ln(C_{sat} - C_0)}{\ln(C_{sat} - C_t)} = K_L a_T * t \qquad(3.1)$$

โดยที่ C_{sat} คือความเข้มข้นก๊าซในของเหลวที่สมดุล (มิลลิกรัม/ลิตร)

- C₀ คือความเข้มข้นก๊าซในของเหลวเริ่มต้น (มิลลิกรัม/ลิตร)
- C_t คือความเข้มข้นก๊าซในของเหลวที่เวลาต่างๆ (มิลลิกรัม/ลิตร)
- $K_{L}a_{T}$ คือค่าสัมประสิทธิ์การถ่ายเทมวลสารรวมที่อุณหภูมิ T (ต่อนาที)

$$K_L a_{20} = K_L a_T * 1.024^{20-T} \qquad \dots (3.2)$$

โดยที่ K_La₂₀ คือค่าสัมประสิทธิ์การถ่ายเทมวุลสารรวมที่อุณหภูมิ 20 องศาเซลเซียส (ต่อนาที)

T คืออุณหภูมิที่ทำการทดลอง (องศาเซลเซียส)

ภาพที่ 3.9 แผนผังการเดินระบบสำหรับทดสอบผลของความสูงชั้นตัวลางต่อค่าสัมประสิทธิ์ การถ่ายเทมวลสารรวม

เมื่อทราบค่าสัมประสิทธิ์การถ่ายเทมวลสารของก๊าซออกซิเจนแล้ว จึงคำนวณค่าสัมประสิทธิ การถ่ายเทมวลสารของก๊าซไฮโดรเจนซัลไฟด์โดยใช้สมการที่ 3.3

$$\frac{K_L^{H_2S}}{K_L^{O_2}} = \sqrt{\frac{D_{H_2S}}{D_{O_2}}}$$
(3.3)

โดยที่ D_{H2S} คือค่าสัมประสิทธิการถ่ายเทมวลสารของไฮโดรเจนซัลไฟด์จากของเหลว

D₀₂ คือค่าสัมประสิทธิการถ่ายเทมวลสารของออกซิเจนจากของเหลว

3.2.3 การทดลองช่วงที่ 3 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ ก่อนและ หลังการติดตั้งหอดูดซึม

ในการทดลองช่วงที่ 3 มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพการบำบัดน้ำเสีย การ ผลิตก๊าซชีวภาพ และการผลิตกระแสไฟฟ้าของห้องเซลล์เชื้อเพลิงชีวภาพ โดยเปรียบเทียบผลของการ ติดตั้งหอดูดซึม การเปลี่ยนขั้วไฟฟ้าทั้งหมด และการเปลี่ยนเฉพาะขั้วแอโนด

หลังจากการทดลองช่วงที่ 1 ที่ห้องไร้อากาศมีความเสถียร ในด้านของการบำบัดน้ำ เสียและค่าพารามิเตอร์ต่างมีค่าค่อนข้างคงที่แล้ว จึงติดตั้งอุปกรณ์ทางไฟฟ้า (ขั้วแอโนด ขั้วแคโทด และเยื่อเลือกผ่านโปรตอน ลวดไทเทเนียม ตัวต้านทานภายนอกและแผ่นตาข่ายเงิน) และผันน้ำขา ออกห้องไร้อากาศเข้าสู่ห้องเซลล์เชื้อเพลิงชีวภาพ แล้วจึงติดตามผลการเดินระบบจากการตรวจวัด คุณภาพน้ำเข้าและน้ำออกห้องเซลล์เชื้อเพลิงชีวภาพ ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์และความต่าง ศักย์ไฟฟ้า เพื่อศึกษาประสิทธิภาพการบำบัดน้ำเสีย การบำบัดก๊าซไฮโดรเจนซัลไฟด์ และการผลิต กระแสไฟฟ้าของระบบ ขั้นตอนการทดลองแสดงดังภาพที่ 3.10 โดยการทดลองในช่วงนี้จะแบ่ง ออกเป็น 4 ช่วงคือ

ช่วงที่ 3.1 ศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพซึ่งไม่มีการติดตั้งหอดูดซึม ในการบำบัดน้ำเสียและก๊าซไฮโดรเจนซัลไฟด์ รวมทั้งผลิตกระแสไฟฟ้าโดยใช้ขั้วไฟฟ้าใหม่ เมื่อเดิน ระบบจนอยู่ในสภาวะเสถียรจึงทำการทดลองช่วงที่ 3.2 ต่อไป

ช่วงที่ 3.2 ศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึม ซึ่งเดิน ระบบโดยใช้ขั้วไฟฟ้าจากการทดลองช่วงที่ 3.1 เพื่อเปรียบเทียบผลของหอดูดซึมการบำบัดน้ำเสีย ก๊าซไฮโดรเจนซัลไฟด์และการผลิตกระแสไฟฟ้า กับผลการทดลองช่วง 3.1 ที่ในช่วงคงที่

ช่วงที่ 3.3 ศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพที่ติดตั้งหอดูดซึม โดยใช้ ขั้วไฟฟ้าใหม่ (ขั้วแอโนด เยื่อเลือกผ่านโปรตอนและขั้วแคโทด) เพื่อเปรียบเทียบผลของการเสื่อมของ ขั้วไฟฟ้าต่อประสิทธิภาพการบำบัดน้ำเสีย ก๊าซไฮโดรเจนซัลไฟด์และการผลิตกระแสไฟฟ้า กับผลการ ทดลองช่วง 3.2 ที่ในช่วงคงที่

ช่วงที่ 3.4 ศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพที่ติดตั้งหอดูดซึม โดยใช้ ขั้วแอโนดใหม่ เพื่อเปรียบเทียบผลของการเสื่อมของขั้วโนดต่อประสิทธิภาพการบำบัดน้ำเสีย ก๊าซไฮโดรเจนซัลไฟด์และการผลิตกระแสไฟฟ้า กับผลการทดลองช่วง 3.3 ที่ในช่วงคงที่

3.2.4 การทดลองช่วงที่ 4 การศึกษาบทบาทของกลุ่มจุลินทรีย์บนขั้วแอโนดในการผลิต กระแสไฟฟ้า

มีวัตถุประสงค์เพื่อศึกษาบทบาทของจุลินทรีย์กลุ่มต่างๆ และกระบวนการ abiotic oxidation ต่อการผลิตกระแสไฟฟ้าของเซลล์เซื้อเพลิงชีวภาพ (ภาพที่ 3.11) การเดินระบบช่วงที่ 4 นี้จะเดินระบบภายในเซลล์เชื้อเพลิงชีวภาพเพียง 2 ส่วนดังภาพที่ 3.12 น้ำเสียสังเคราะห์ที่เข้าสู่เซลล์ เชื้อเพลิงชีวภาพจะไม่มีส่วนประกอบของสารอินทรีย์ เนื่องจากต้องการจำกัดการทำงานของจุลินทรีย์ กลุ่ม exoelectrogenic microorganisms ในการส่งถ่ายอิเลคตรอนไปยังขั้วไฟฟ้า และกลุ่ม sulfatereducing bacteria (SRB) ที่อาจเปลี่ยนซัลเฟต (จากผลิตภัณฑ์ของจุลินทรีย์กลุ่ม sulfide/sulfuroxidized bacteria; SOB) กลับมาเป็นซัลไฟด์อีกครั้ง น้ำเสียสังเคราะห์ที่เติมเข้าสู่ระบบจึงมีเพียง ซัลไฟด์โดยกำหนดความเข้มข้นให้ใกล้เคียงกับน้ำออกจากห้องไร้อากาศในช่วงการทดลองที่ 2 สำหรับ ขั้นตอนการทดลองช่วงที่ 4 (ภาพที่ 3.13) สามารถแบ่งเป็น 2 การทดลองย่อยคือ

ช่วงที่ 4.1 การเดินระบบด้วยขั้วแอโนดที่มี biofilm (biotic anode) จากการ ทดลองที่ 3.3 โดยใช้เยื่อเลือกผ่านโปรตอนและขั้วแคโทดใหม่ รวมทั้งไม่มีจุลินทรีย์อื่นภายในระบบ เพื่อศึกษาประสิทธิภาพบำบัดน้ำเสีย และการผลิตกระแสไฟฟ้าโดยจุลินทรีย์กลุ่ม SOB และ abiotic sulfide/sulfur oxidation

ช่วงที่ 4.2 เดินระบบโดยใช้ขั้วไฟฟ้าใหม่ทั้งหมด และไม่มีจุลินทรีย์ในระบบ (Abiotic fuel cell) เพื่อศึกษาประสิทธิภาพการบำบัดน้ำเสีย และการผลิตกระแสไฟฟ้าจากกระบวนการ abiotic sulfide/sulfur oxidation เพียงอย่างเดียวเท่านั้น

ภาพที่ 3.11 ตัวอย่างบทบาทของจุลินทรีย์กลุ่มต่างๆ และ กระบวนการ abiotic oxidation

ภาพที่ 3.12 การเดินระบบเซลล์เชื้อเพลิงชีวภาพการทดลองช่วงที่ 4

ในการผลิตกระแสไฟฟ้า

3.2.5 การทดลองช่วงที่ 5 การวิเคราะห์กลุ่มประขากรจุลินทรีย์ในเซลล์เชื้อเพลิงชีวภาพ

ศึกษาความหลากหลายของจุลินทรีย์ภายในระบบเซลล์เชื้อเพลิงชีวภาพที่ใช้ในการ ทดลองครั้งนี้ โดยประกอบด้วยตัวอย่างจุลินทรีย์ดังนี้

- 1. แบคทีเรียจากตะกอนแขวนลอยห้องไร้อากาศ (หลังการเดินระบบ)
- 2. แบคทีเรียกลุ่มยึดเกาะบนขั้วแอโนด (การทดลองที่ 3.3)
- 3. อาเคียร์จากตะกอนแขวนลอยห้องไร้อากาศ (หลังการเดินระบบ)
- 4. อาเคียร์กลุ่มยึดเกาะบนขั้วแอโนด (การทดลองที่ 3.3)

โดยการศึกษาครั้งนี้ใช้วิธีการศึกษาด้วยเทคนิค 16S rRNA gene clone library มีขั้นตอน การศึกษาดังภาพที่ 3.14

ภาพที่ 3.14 ขั้นตอนการศึกษาความหลากหลายของจุลินทรีย์โดยเทคนิค DNA clone library

ขั้นตอนการศึกษาโดยเทคนิค DNA clone library มีดังนี้

3.2.5.1 การเตรียมตัวอย่าง (sample preparation)

จุลินทรีย์ในระบบสามารถแบ่งตัวอย่างออกเป็น 2 กลุ่มหลักคือ จุลินทรีย์ กลุ่มแขวนลอย (suspended microbe) ซึ่งในการวิจัยครั้งนี้ใช้ตัวอย่างจากห้องไร้อากาศ และกลุ่ม ยึดเกาะบนขั้วแอโนด (anode-attached microbe) ที่เก็บจากตัวอย่างขั้วแอโนดในห้องเซลล์ เชื้อเพลิงชีวภาพ เมื่อสุ่มตัวอย่างมาจากระบบจึงทำการหาความเข้มข้นตะกอนจุลินทรีย์ หลังจากนั้น จึงแบ่งเก็บตัวอย่างชุดละ 2 มิลลกรัมต่อหลอด แล้วจึงแยกชั้นน้ำด้วยการปั่นเหวี่ยง (centrifugation) ที่ความเร็ว 10,000 รอบต่อนาที เป็นระยะเวลา 1 นาที แล้วจึงแยกส่วนน้ำใสออก นำหลอดตัวอย่าง เก็บรักษาที่ความเย็น -20 องศาเซลเซียส

3.2.5.2 การสกัด DNA (DNA extraction)

ทำการสกัด DNA จากตัวอย่างด้วยชุดสกัด DNA FastDNA® SPIN Kit (MP Biomedicals)

3.2.5.3 การเพิ่มจำนวน 16S rRNA gene ด้วยเทคนิค PCR

ขั้นตอนการเพิ่มจำนวนชิ้นส่วน DNA ประกอบด้วย 6 ส่วนได้แก่ DNA ต้นแบบ (จากขั้นตอนที่ 3.2.5.2) สารละลายแมกนีเซียมคลอไรด์ สารละลายบัฟเฟอร์ ไพรเมอร์ นิวคลีโอไทด์ และเอนไซม์เทคโพลีเมอเรส โดยใช้สัดส่วนดังนี้

น้ำ (Molecular grade)	26.5	ไมโครลิตร
10X Tag buffer with $(NH_4)_2SO_4$	ERS 5.0	ไมโครลิตร
แมกนีเซียมคลอไรด์ 25 มิลลิโมลาร์	5.0	ไมโครลิตร
Forward primer (10µM)	5.0	ไมโครลิตร
Reverse primer (10µM)	5.0	ไมโครลิตร
dNTP Mix (10mM; Vivantis)	1.0	ไมโครลิตร
Tag polymerase (Fermentus)	0.5	ไมโครลิตร
DNA sample	2.0	ไมโครลิตร

เมื่อผสมสารและตัวอย่าง DNA และจึงนำเข้าเครื่องเพิ่มปริมาณสารพันธุกรรม T100™ Thermal cycle (Bio-Rad) โดยใช้สภาวะดังนี้

ชุดไพรเมอร์ 8F (5'-AGAGTTTGATCCTGGCTCAG-3') และ

1492R (5'-GGTTACCTTGTTACGACTT-3') (Boonchayaanant และคณะ, 2008) ใช้สำหรับ universal bacteria

Initial denaturing	ที่อุณหภูมิ 94 องสาเซลเซียส เป็นเวลา	5 นาที
Denaturing	ที่อุณหภูมิ 94 องสาเซลเซียส เป็นเวลา	30 วินาที
Annealing	ที่อุณหภูมิ 50 องสาเซลเซียส เป็นเวลา	30 วินาที
Extension	ที่อุณหภูมิ 72 องสาเซลเซียส เป็นเวลา	45 วินาที
Final extension	ที่อุณหภูมิ 72 องสาเซลเซียส เป็นเวลา	10 นาที

ชุดไพรเมอร์ 21F (5'TTCYGGTTGATCCYGCCRGA-3') และ

1492R (5'-GGTTACCTTGTTACGACTT-3') (Forschner และคณะ, 2009) ใช้สำหรับ universal archaea

Initial denaturing	ที่อุณหภูมิ 94 องสาเซลเซียส เป็นเวลา	4 นาที
Denaturing	ที่อุณหภูมิ 94 องสาเซลเซียส เป็นเวลา	30 วินาที
Annealing	ที่อุณหภูมิ 52 องสาเซลเซียส เป็นเวลา	90 วินาที
Extension	ที่อุณหภูมิ 72 องสาเซลเซียส เป็นเวลา	2 นาที
Final extension	ที่อุณหภูมิ 72 องสาเซลเซียส เป็นเวลา	10 นาที

3.2.5.4 การตรวจสอบผลการทำ PCR

ใช้เทคนิค DNA electrophoresis โดยใช้ 2% w/v agarose gel เป็น ตัวกลาง หลังจากนั้นจึงย้อมด้วย ethidium bromide และตรวจสอบความยาวสาย DNA จากการ เพิ่มจำนวนโดยสังเกตจากตำแหน่งดีเอนเอในเจล (gel documentation) เทียบกับ DNA ladder ขนาด 100 คู่เบส (Vivantis) โดยใช้แสงยูวี

3.2.5.5 การเพิ่มความบริสุทธิ์ของสาย DNA

เมื่อทำการเพิ่มจำนวน DNA ด้วยเทคนิค PCR และตรวจสอบความยาวของ สาย DNA ด้วย gel documentation แล้วจึงทำการตัดเจลบริเวณผลิตภัณฑ์ที่มีช่วงความยาว ประมาณ 1,500 เบส ด้วยใบมีด แล้วทำการสกัดสายดีเอนเอจากเจลด้วยชุด NucleoSpin® Gel and PCR clean-up (Macherey-Nagel)

3.2.5.6 การเชื่อมต่อสาย DNA และเวกตอร์ (ligation)

นำสาย DNA ที่ผ่านขั้นตอนที่ 3.2.5.5 มาเชื่อมต่อกับชิ้นส่วนเวกเตอร์ (ภาพที่ 3.15) โดยใช้ pGEM®-T Easy Vectors I (Promega, USA) และเอนไซม์ BstZ I โดยใช้ สัดส่วน DNA ต่อเวกเตอร์เท่ากับ 3:1 แล้วจึงบ่มที่อุณหภูมิห้องเป็นเวลา 1 ชั่วโมง

ภาพที่ 3.15 ตำแหน่งยีนและผังของเวกเตอร์ pGEM®-T Easy Vector (Promega, USA)

3.2.5.7 การนำพลาสมิดเข้าสู่เซลล์ (transformation)

เพื่อนำส่วนของเวกเตอร์ที่มีส่วน DNA ที่ต้องการเข้าสู่เซลล์ โดยใช้ XL-1 Blue Supercompetent cells (Agilent technologies) เป็นเซลล์เจ้าบ้าน (host) โดยใช้วิธี เปลี่ยนแปลงอุณหภูมิแบบกระทันหัน (heat pulse) และใช้ isopropyl-1-thio-β-Dgalactopyranoside (IPTG) เป็นสารกระตุ้นให้ยืน lacZ แสดงออกและทำให้สังเกตเห็นเป็นโคโลนี สีขาวเมื่อมีเซลล์มีได้รับเวกเตอร์

3.2.5.8 การบ่มเชื้อและคัดเลือกโคโลนี

ทำการบ่มเชื้อที่ผ่านการทรานส์ฟอร์เมชันที่อุณหภูมิ 37 องสาเซลเซียส เป็นระยะเวลา 16-18 ชั่วโมง แล้วจึงเลือกสุ่มโคโลนีสีขาวจำนวน 25 โคโลนีต่อตัวอย่าง จากถาดเลี้ยง เชื้อที่มีจำนวนโคโลนีสีขาวประมาณ 40-50 โคโลนี ย้ายไปยังอาหารเลี้ยงเชื้อแบบเดิม แล้วจึงบ่มเชื้อ ต่อเป็นระยะเวลา 24 ชั่วโมง

3.2.5.9 การเพิ่มจำนวน DNA จากเซลล์ที่ผ่านการทรานสฟอร์ม

ย้ายเชื้อที่ได้จากขั้นตอนที่ 3.2.5.8 (เพิ่มจำนวนเซลล์) ไปยังหลอดที่มีน้ำ 20 ไมโครลิตร โดยแยกหนึ่งตัวอย่างต่อหนึ่งหลอด จำนวนทั้งสิ้น 25 ตัวอย่าง แล้วจึงใช้เทคนิค PCR ในการเพิ่มจำนวน DNA จากพลาสมิดภายในเซลล์ที่ผ่านการคัดเลือก (โคโลนีสีขาว) โดยใช้สัดส่วนสาร ดังนี้และตรวจสอบผลิตภัณฑ์จากการทำ PCR ด้วย gel electrophoresis แล้วจึงเพิ่มความบริสุทธ์ ผลิตภัณฑ์ DNA อีกครั้ง

น้ำ (Molecular grade)	37.75	ไมโครลิตร
10X buffer	5.0	ไมโครลิตร
แมกนีเซียมคลอไรด์ 1 โมลาร์	5.0	ไมโครลิตร
Forward primer (8F หรือ 21F)	0.5	ไมโครลิตร
Reverse primer (1492R)	0.5	ไมโครลิตร
dNTP	1.0	ไมโครลิตร
Tag polymerase (Fermentus)	0.25	ไมโครลิตร
DNA sample	2.0	ไมโครลิตร

สำหรับตัวอย่างแบคทีเรียใช้ไพรเมอร์ 8F/1492R และตัวอย่างอางเคียร์ใช้ไพรเมอร์ 21F/1492R

3.2.5.10 ตรวจสอบความเข้มข้นสารพันธุกรรม

ตรวจวัดความเข้มข้นสารพันธุกรรมที่ได้จากขั้นตอนที่ 3.2.5.9 โดยใช้เครื่อง NanoDrop 2000 (Thermo Scientific)

3.2.5.11 วิเคราะห์ลำดับเบส (DNA sequencing) และศึกษากลุ่มประชากร

จุลินทรีย์

วิเคราะห์ลำดับเบสโดยบริษัท First BASE Laboratories ประเทศมาเลเซีย เลือกช่วงลำดับเบสของ 16S rRNA โดยใช้โปรแกรม FinchTV และนำไปเปรียบเทียบกับฐานข้อมูล National Center for Biotechnology information (NCBI) เพื่อเปรียบเทียบหาสายพันธุ์ของ จุลินทรีย์ แล้วจึงสร้าง phylogenetic tree ด้วยโปรแกรม MEGA7 รูปแบบ neighbor-joining tree และ Bootstrap method 500 replicates

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

3.2.6 การทดลองช่วงที่ 6 การศึกษาการเปลี่ยนแปลงสภาพพื้นผิวของขั้วแอโนด โดยวิธี SEM-EDS

มีวัตถุประสงค์สำหรับการศึกษาการเปลี่ยนแปลงสภาพพื้นผิวของขั้วแอโนด โดยเปรียบเทียบภาพถ่ายพื้นผิวและองค์ประกอบธาตุของขั้วแอโนดหลังการทดลอง กับลักษณะขั้ว ก่อนการใช้งาน ซึ่ง การวิจัยครั้งนี้วิเคราะห์ด้วยวิธี SEM/EDS (scanning electron microscopy with energy dispersive x-ray spectroscopy) ซึ่งอาศัยลำแสงอิเลคตรอนทุติยภูมิส่งกราดบน พื้นผิวตัวอย่าง ซึ่งการสะท้อนของอิเลคตรอน (ลำแสงปฐมภูมิ)ไปยังตัวรับสัญญานจะให้ข้อมูลลักษณะ พื้นผิวของตัวอย่าง อิเลคตรอนที่สะท้อนจากการตกกระทบตัวอย่าง (ของแข็ง) ทำให้เกิดสัญญานภาพ ซึ่งสัมพันธ์กับเลขอะตอมของธาตุบนตัวอย่าง ผลของลำแสงอิเลคตรอนปฐมภูมิที่ตกกระทบอะตอม ธาตุบนตัวอย่างก่อให้เกิดการปล่อยรังสีเอกซ์ (x-ray) ซึ่งมีลักษณะเฉพาะตัว เมื่อใช้เครื่องรับสัญญาน จากรังสีเอกซ์และการวัดพลังงาน จึงทำให้ทราบถึงปริมาณและธาตุที่พบบนผิวตัวอย่าง วิธีนี้มีข้อดึกคือ การศึกษาด้วยวิธี SEM ทำให้ได้ภาพที่มีกำลังขยายสูง และให้ข้อมูลปริมาณธาตุ แต่มีข้อจำกัดคือ ตัวอย่างต้องมีลักษณะเป็นของแข็ง และความละอียดของการตรวจวัดธาตุมีค่าที่ 0.1% อีกทั้งขึ้นกับ ธาตุแต่ละชนิด รวมทั้งอาจมีการทับซ้อนกับบางส่วน (overlapping peak) ของค่าพลังงานบางธาตุ แม้ในการศึกษาครั้งนี้ใช้ตัวอย่างจากขั้วแอโนดที่มีจุลินทรีย์เกาะบนพื้นผิว แต่ขั้นตอนการเตรียม ตัวอย่างจำเป็นต้องกำจัดความชื้น จึงอาจะไม่สามารถเห็นภาพของจุลินทรีย์บนขั้งได้

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 4 ผลและวิจารณ์ผลการทดลอง

งานวิจัยนี้ศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึมแบบบรรจุตัวกลาง เพื่อการบำบัดก๊าซไฮโดรเจนซัลไฟด์ที่เกิดขึ้นจากการบำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟต โดยสามารถแบ่งออกเป็น 6 การทดลองดังนี้

4.1 การศึกษาประสิทธิภาพการบำบัดน้ำเสียโดยห้องไร้อากาศ

การทดลองที่ 1 มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพ และกลไลการบำบัดน้ำเสียปนเปื้อน สารอินทรีย์และซัลเฟต และเพื่อผลิตก๊าซชีวภาพที่ปนเปื้อนก๊าซไฮโดรเจนซัลไฟด์สำหรับการทดลอง ในขั้นต่อไป รวมทั้งเพื่อการคัดเลือกจุลินทรีย์ที่เหมาะสมต่อน้ำเสียที่ใช้เดินระบบในครั้งนี้

ผลการเดินระบบเป็นระยะเวลา 190 วันพบว่าระบบเริ่มมีความเสถียรตั้งแต่ช่วงวันที่ 40 ของ การเดินระบบ โดยน้ำเสียสังเคราะห์มีความเข้มข้นสารอินทรีย์และซัลเฟตเฉลี่ยเท่ากับ 2,970±169.0 mg-COD/l และ 302.7±11.06 mg-SO4²/l ประสิทธิภาพการบำบัดน้ำเสียและค่าพารามิเตอร์ต่างๆ ในช่วงที่ระบบคงที่ (ช่วงวันที่ 40 ถึง 190) แสดงดังตารางที่ 4.1 และภาพที่ 4.1 เนื่องด้วยสัดส่วน สารอินทรีย์ต่อซัลเฟตมีค่าประมาณ 10 จุลินทรีย์กลุ่มหมักและสร้างมีเทนจึงสามารถเติบโตได้ดี ส่งผลให้ระบบมีประสิทธิภาพบำบัดสารอินทรีย์สูง (Angelov และคณะ, 2013; Hu และคณะ, 2015)

สาเหตุหนึ่งที่ส่งผลให้ห้องไร้อากาศมีประสิทธิภาพในการบำบัดสารอินทรีย์ได้ดีคือลักษณะ ของตะกอนภายในห้องไร้อากาศดังภาพที่ 4.2 เมื่อเปรียบเทียบลักษณะตะกอนเมื่อเริ่มเดินระบบและ หลังการเดินระบบ พบว่าลักษณะตะกอนมีการรวมกลุ่มค่อนข้างดี จนมีลักษณะคล้ายเป็นเม็ด ซึ่งช่วย ให้จุลินทรีย์และน้ำเสียสัมผัสกันได้ดี คาดว่าเป็นผลมาจากการกวนผสมภายในห้องไร้อากาศ

เมื่อน้ำเสียสังเคราะห์เข้าสู่ห้องไร้อากาศ ในเบื้องต้นสารอินทรีย์ในน้ำเสียสังเคราะห์ (กลูโคส) จะถูกบำบัดโดยจุลินทรีย์กลุ่มหมัก (Fermenters) เป็นส่วนใหญ่ บางส่วนจะถูกใช้โดยจุลินทรีย์กลุ่ม รีดิวซ์ซัลเฟต (sulfate-reducing bacteria) เมื่อผ่านกระบวนการหมัก และการสร้างกรดอะซิติก ขั้นต่อมาคือเปลี่ยนอะซิติกให้เป็นก๊าซมีเทนจากจุลินทรีย์กลุ่มสร้างมีเทน (methanogens) ซึ่งขั้นตอนนี้จะลดค่าซีโอดีในน้ำเสียได้สูงที่สุด

ซัลเฟตที่เข้าสู่ห้องไร้อากาศจะถูกบำบัดโดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต ซึ่งคาดว่าเกิด ผลิตภัณฑ์ส่วนใหญ่เป็นไฮโดรเจนซัลไฟด์ และไบซัลไฟด์ไอออน ซึ่งขึ้นกับค่าพีเอชภายใน ห้องไร้อากาศ เมื่อพิจารณาปริมาณสารอินทรีย์ที่ถูกบำบัดโดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟตกับปริมาณ สารอินทรีย์ที่ห้องไร้อากาศบำบัดได้ตามปริมาณสารสัมพันธ์ (stoichiometry) ซึ่งใช้สัดส่วน สารอินทรีย์ต่อซัลเฟตเท่ากับ 0.67 พบว่าร้อยละการบำบัดซีโอดีโดยใช้ร่วมในปฏิกิริยาซัลเฟตรีดักชัน ในช่วงคงที่มีค่าเฉลี่ยเท่ากับ 7.82-8.34 ซึ่งมีค่าใกล้เคียงกับสัดส่วนซัลเฟตต่อสารอินทรีย์ในน้ำเสีย สังเคราะห์ที่ใช้โดยมีค่าเฉลี่ยเท่ากับ 10.23±0.69

ผลิตภัณฑ์จากปฏิกิริยาซัลเฟตรีดักชัน (sulfate reduction) ส่วนใหญ่คือซัลไฟด์โดยอยู่ในรูป ของสารละลายช่วงที่มีค่าคงที่เฉลี่ย 70.43 ถึง 73.27 mg-S²⁻/l รองลงมาคือก๊าซไฮโดรเจนซัลไฟด์ ซึ่งมีค่าอยู่ในช่วง 14,800 ถึง 15,400 ppm (คิดเป็น 20.3 ถึง 21.1 mg-S²⁻/l) ซึ่งเมื่อรวมซัลไฟด์ทั้ง สองรูปมีค่าใกล้เคียงกับซัลเฟตที่ถูกบำบัดได้ในห้องไร้อากาศ (293 ถึง 297 mg-SO₄²⁻/l หรือ 97.7 ถึง 99.0 mg-S/l)

เมื่อพิจารณาค่าความเป็นด่างในน้ำขาออกเทียบกับน้ำขาเข้าที่มีค่าประมาณ 2,500 มิลลิกรัม หินปูนต่อลิตร พบว่าในน้ำขาออกมีค่าความเป็นด่างเฉลี่ย 2,190±160 และ 2,230±110 มิลลิกรัม หินปูนต่อลิตร ในห้องไร้อากาศที่ 1 และ 2 ตามลำดับ แสดงให้เห็นว่าการบำบัดสารอินทรีย์ ยังเกิดไม่สมบูรณ์ กรดไขมันระเหยจากกระบวนการหมักในห้องไร้อากาศจึงทำให้ค่าความเป็นด่าง ในห้องไร้อากาศมีค่าต่ำกว่าน้ำเสียขาเข้า

พารามิเตอร์	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2
ความเข้มข้นสารอินทรีย์ขาเข้า (mg-COD/l)	2,970±169	2,970±169
ความเข้มข้นสารอินทรีย์ขาออก (mg-COD/l)	640±114	437±174
ประสิทธิภาพการบำบัดสารอินทรีย์ (%)	78.7±3.2	85.2±5.49
ความเข้มข้นซัลเฟตขาเข้า (mg-SO ₄ ²⁻ /l)	302.7±11.06	305.1±10.38
ความเข้มข้นซัลเฟตขาออก (mg-SO ₄ ²⁻ /l)	9.1±12.2	5.1±6.5
ประสิทธิภาพการบำบัดซัลเฟต (%)	97.0±4.07	98.3±2.19
ความเข้มข้นซัลไฟด์ขาออก (mg-S ²⁻ /l)	73.27±13.92	70.43±12.05
ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ขาออก (ppm)	14,800±930	15,400±1,480
พีเอช	6.85±0.12	6.93±0.10
โออาร์พี (mV)	-366±10.7	-371±9.7
ความเป็นด่างขาออก (mg-CaCO ₃ /l)	2,165±105	2,210±90
ความเข้มข้นกรดไขมันระเหย (mg-CH ₃ COOH/l)	474±85	282±81

ตารางที่ 4.1 ค่าพารามิเตอร์ต่างๆในน้ำขาเข้าและขาออกห้องไร้อากาศตั้งแต่วันที่ 40 ถึง 190

ภาพที่ 4.1 ค่าพารามิเตอร์ต่างๆในน้ำขาออกห้องไร้อากาศที่ 1 (•)และ 2 (○) ช่วงวันที่ 1 ถึง 190 ก) ความเข้นข้นสารอินทรีย์ขาออก ข) ประสิทธิภาพการบำบัดสารอินทรีย์

ค) ความเข้มข้นซัลเฟตขาออก ง) ความเข้มข้นซัลไฟด์ขาออก จ) พีเอชน้ำขาออกจากห้องไร้อากาศ

ภาพที่ 4.2 ลักษณะตะกอนภายในห้องไร้อากาศก่อน (ก) และหลัง (ข) การเดินระบบ

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

4.2 ผลการทดลองช่วงที่ 2 การศึกษาผลของความสูงชั้นตัวกลางต่อค่าสัมประสิทธิ์การถ่ายเทมวล สารรวม

จากการเดินระบบเพื่อศึกษาผลของความสูงชั้นตัวกลางต่อค่าสัมประสิทธิ์การถ่ายเทมวลสาร รวมของก๊าซออกซิเจนโดยใช้หอดูดซึมที่ออกแบบในครั้งนี้ โดยใช้อัตราการไหลของก๊าซเท่ากับ 4 ลิตร ต่อวัน (ใกล้เคียงกับอัตราการเกิดก๊าซชีวภาพในการทดลองที่ 1) และอัตราการไหลของของเหลว เท่ากับ 36 ลิตรต่อวัน (0.91 บาร์) พบว่าที่ระดับความสูงชั้นตัวกลาง 0 เซนติเมตร (ไม่ใส่ตัวกลาง) ้มีค่าสัมประสิทธิ์การถ่ายเทมวลสารรวมที่อุณหภูมิ 20 องศาเซลเซียสสูงที่สุด โดยมีค่าเท่ากับ 0.5141±0.0116 ต่อชั่วโมง รองลงมาคือที่ระดับความสูงตัวกลางเท่ากับ 5 เซนติเมตร โดยมีค่า สัมประสิทธิ์การถ่ายเทมวลสารรวมเท่ากับ 0.4598±0.0090 ต่อชั่วโมง ตามลำดับ เมื่อคำนวณ ค่าสัมประสิทธิการถ่ายเทมวลสารของไฮโดรเจนซัลไฟด์ที่ระดับความสูงชั้นตัวกลาง 5 เซนติเมตร พบว่ามีค่าเท่ากับ 0.4257 ต่อชั่วโมง สำหรับค่าสัมประสิทธิ์การถ่ายเทมวลสารที่ความสูงชั้นตัวกลาง ต่างๆแสดงดังภาพที่ 4.3 ซึ่งสอดคล้องกับความสัมพันธ์แบบผกผันของความสูงชั้นตัวกลางและ ้ค่าสัมประสิทธิ์การถ่ายเทมวลสารรวม แต่ในการทดลองนี้พบว่า เมื่อเปรียบเทียบกับค่าสัมประสิทธิ์ การถ่ายเทมวลสารของการทดลองระดับความสูงตัวกลาง 0 เซนติเมตร (ไม่มีตัวกลาง) พบว่ามีค่าสูง กว่าค่าสัมประสิทธิ์การถ่ายเทมวลสารที่ระดับ 5 เซนติเมตร ซึ่งอาจอธิบายได้ขนาดของหยดน้ำที่ออก จากหัวกระจายน้ำซึ่งมีขนาดเล็ก โดยมีขนาดเฉลี่ยเท่ากับ 0.173±0.08 มิลลิเมตร ซึ่งมีขนาดเล็กกว่า ขนาดของหยดน้ำที่ใช้หัวกระจายน้ำแบบกรวยเต็ม(full cone) ที่มีขนาดประมาณ 0.850 มิลลิเมตร ณ ระดับความดันและอัตราการไหลของน้ำใกล้เคียงกัน ส่งผลให้พื้นที่ผิวในการถ่ายเทของมวลสาร ้สูงขึ้นอย่างมาก แต่เมื่อหยดน้ำทุกถูกกระจายจากหัวกระจายน้ำตกกระทบผิวตัวกลางและรวมตัวเป็น ้ชั้นฟิล์มและหยดน้ำขนาดใหญ่ ส่งผลให้พื้นที่ผิวในการถ่ายเทมวลสารลดลง แสดงให้เห็นว่า กระบวนการดูดซึมก๊าซเกิดได้ดีโดยมีการถ่ายเทมวลสารบริเวณพื้นผิวของหยดน้ำจากหัวกระจายน้ำ เป็นส่วนใหญ่ แต่เนื่องจากหอดูดซึมที่ใช้ในการศึกษาครั้งนี้มีขนาดเล็ก ขนาดของหยดน้ำจากหัว กระจายน้ำและหยดน้ำในน้ำชั้นตัวกลางมีความแตกต่างกันอย่างมาก จึงไม่สามารถเห็นผลของการ เพิ่มพื้นที่ผิวสัมผัสโดยใช้ตัวกลางได้อย่างชัดเจน ผู้วิจัยจึงเลือกระดับชั้นความสูงตัวกลางที่น้อยที่สุด (5 เซนติเมตร) มาใช้ในการศึกษาร่วมกับเซลล์เชื้อเพลิงชีวภาพในการทดลองต่อไป

ภาพที่ 4.3 ค่าสัมประสิทธิ์การถ่ายเทมวลสารของก๊าซออกซิเจนที่ระดับความสูงตัวกลางต่างๆ เมื่อเดินระบบด้วยหอดูดซึมและตัวกลางแบบทรงกระบอกกลวง

4.3. ผลการทดลองช่วงที่ 3 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ

การทดลองช่วงที่ 3 เริ่มเดินระบบห้องเซลล์เชื้อเพลิงชีวภาพในวันที่ 110 ของการเดินระบบ ห้องไร้อากาศ โดยการผันน้ำขาออกห้องไร้อากาศเข้าสู่ห้องเซลล์เชื้อเพลิงชีวภาพ ซึ่งได้ติดตั้ง ขั้วแอโนด เยื่อเลือกผ่านโปรตอนและขั้วแคโทด พร้อมทั้งเชื่อมต่อวงจรด้วยตัวต้านทานภายนอก 1,000 โอห์ม ซึ่งการทดลองช่วงที่ 3 แบ่งออกเป็น 4 ช่วง เพื่อศึกษาผลของการติดตั้งหอดูดซึม การเปลี่ยนขั้วไฟฟ้าใหม่ และการเปลี่ยนขั้วแอโนดใหม่ ดังภาพที่ 4.4 โดยการวิเคราะห์ความเข้มข้น สารอินทรีย์ ซัลเฟต ซัลไฟด์ ก๊าซไฮโดรเจนซัลไฟด์ และการผลิตกระแสไฟฟ้าของห้องเซลล์เชื้อเพลิง ชีวภาพตั้งแต่วันที่ 1 ถึงวันที่ 75 ของการเดินระบบห้องเซลล์เชื้อเพลิงชีวภาพ (วันที่ 111 ถึงวันที่ 186 ของการเดินระบบห้องไร้อากาศ)

ภาพที่ 4.4 การศึกษาปัจจัยที่มีผลต่อประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพ

4.3.1 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัดสารอินทรีย์

จากการวิเคราะห์ความเข้มข้นสารอินทรีย์ที่เข้าสู่ห้องเซลล์เชื้อเพลิงชีวภาพ (ขาออก ห้องไร้อากาศ) พบว่ามีค่าเฉลี่ยเท่ากับ 665±145 มิลลิกรัมซีโอดีต่อลิตร และ 568±151 มิลลิกรัม ซีโอดีต่อลิตร ในห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 และ 2 ตามลำดับ เมื่อผ่านการบำบัดโดยห้องเซลล์ เชื้อเพลิงชีวภาพ พบว่าห้องเซลล์เชื้อเพลิงชีวภาพมีประสิทธิภาพในการบำบัดเพิ่มขึ้นตามระยะเวลา แต่เมื่อทำการเปลี่ยนขั้วไฟฟ้าทั้งหมด (ช่วงที่ 3) และเปลี่ยนขั้วแอโนด (ช่วงที่ 4) พบว่าประสิทธิภาพ การบำบัดสารอินทรีย์ในห้องเซลล์เชื้อเพลิงชีวภาพมีค่าลดลงอย่างเป็นได้ชัด (ภาพที่ 4.5) แสดงให้เห็น ว่าการเพิ่มขึ้นของจุลินทรีย์กลุ่มยึดเกาะบนขั้วแอโนด มีบทบาทในการบำบัดสารอินทรีย์ที่เข้าสู่ระบบ ต่อมาในการทดลองที่ 2 พบว่าการติดตั้งหอดูดซึมไม่มีผลต่อการบำบัดสารอินทรีย์ เนื่องจากไม่มีการ สะสมของตะกอนจุลินทรีย์ในชั้นตัวกลาง เมื่อสังเกตปริมาณจุลินทรีย์กลุ่มแขวนลอยทั้งใน ห้องไร้อากาศและห้องเซลล์เชื้อเพลิงชีวภาพ พบว่าปริมาณตะกอนจุลินทรีย์กลุ่มแขวนลอยภายในห้อง เซลล์เชื้อเพลิงชีวภาพมีปริมาณน้อยกว่าอย่างเห็นได้ชัด ซึ่งสอดคล้องกับผลการวิเคราะห์ร้อยละ การบำบัดสารอินทรีย์ที่พบว่า ห้องไร้อากาศสามารถบำบัดสารอินทรีย์ได้เฉลี่ย 78.2±4.1% และ 81.4±4.6% ในห้องไร้อากาศที่ 1 และ 2 ตามลำดับ แต่ห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 และ 2 ตามลำดับ สารอินทรีย์ได้เพียง 3.0±2.4% และ 3.4±2.5% ในห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 และ 2 ตามลำดับ

ภาพที่ 4.5 ประสิทธิภาพการบำบัดสารอินทรีย์ในห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (०) ช่วง การทดลองที่ 3

4.3.2 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัดซัลเฟต

น้ำเสียสังเคราะห์ที่ผ่านการบำบัดโดยห้องไร้อากาศ (ขาเข้าห้องเซลล์เชื้อเพลิง ชีวภาพ) ตั้งแต่วันที่ 110 ถึง 186 พบว่ามีความเข้มข้นซัลเฟตเฉลี่ย 0.19±0.75 มิลลิกรัมซัลเฟตต่อ ลิตร และ 0.2±1.0 มิลลิกรัมซัลเฟตต่อลิตร (ภาพที่ 4.6) เมื่อตรวจวัดความเข้มข้นซัลเฟตในห้องเซลล์ เชื้อเพลิงชีวภาพ (ภาพที่ 4.7) พบว่าในช่วงแรกของการเดินระบบ ความเข้มข้นซัลเฟตเพิ่มสูงขึ้นอย่าง ต่อเนื่อง แสดงให้เห็นว่าซัลเฟตที่พบในห้องเซลล์เชื้อเพลิงชีวภาพเป็นผลิตภัณฑ์จากปฏิกิริยาภายห้อง เซลล์เชื้อเพลิงชีวภาพ (ปฏิกิริยาซัลไฟด์ออกซิเดชัน) (Dutta และคณะ, 2008; Hu และคณะ, 2015; Zhang และคณะ, 2012; Zhang และคณะ, 2009) ความเข้มข้นซัลเฟตที่สูงขึ้นในช่วงที่ 1 อาจเกิด จากปริมาณจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟตยังคงมีปริมาณน้อย จึงส่งผลให้ไม่สามารถบำบัดซัลเฟตได้ ทั้งหมด แต่เมื่อเดินระบบเป็นระยะเวลาหนึ่งพบว่าความเข้มข้นซัลเฟตเริ่มลดลง ซึ่งอาจเป็นผลจาก การเพิ่มขึ้นของจุลินทรีย์กลุ่มดังกล่าว และเมื่อพิจารณาความแตกต่างของความเข้มข้นซัลไฟด์ขาเข้า และขาออกห้องเซลล์เชื้อเพลิงชีวภาพ (ภาพที่ 4.8) พบว่าในช่วงที่ 1 ความเข้มข้นซัลไฟด์ในน้ำลดลง มากกว่าช่วงอื่นๆ ซึ่งคาดว่าเกิดปฏิกิริยาซัลไฟด์ออกซิเดชันมากกว่า จึงส่งผลให้เกิดผลิตภัณฑ์ (ซัลเฟต) มากกว่าช่วงการทดลองอื่นๆ จากการทดลองช่วงที่ 2 พบว่า การติดตั้งหอดูดซึมไม่มีผลต่อ การบำบัดซัลเฟตในห้องเซลล์เชื้อเพลิงชีวภาพเช่นเดียวกับการบำบัดสารอินทรีย์ และจากการทดลอง ช่วงที่ 3 และ 4 พบว่าการเปลี่ยนขั้วไฟฟ้าไม่มีผลต่อการบำบัดซัลเฟตเช่นกัน ซึ่งสอดคล้องกับงานวิจัย ของ Sun และคณะ (2010) ที่พบว่าจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟตภายในเซลล์เชื้อเพลิงชีวภาพพบมากใน ตัวอย่างตะกอนแขวนลอย ดังนั้นการเปลี่ยนขั้วไฟฟ้าจึงไม่มีผลต่อการบำบัดซัลเฟตในห้องเซลล์ เชื้อเพลิงชีวภาพ

Chulalongkorn University

ช่วงการทดลองที่ 3

ภาพที่ 4.8 ความเข้มข้นซัลไฟด์ในน้ำที่ลดลงในห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (○) ช่วงการทดลองที่ 3

4.3.3 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัดซัลไฟด์

ซัลเฟตที่ถูกบำบัดโดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟตภายในห้องไร้อากาศกลายเป็น ไฮโดรเจนซัลไฟด์ (H₂S) และไบซัลไฟด์ไอออน (HS⁻) โดยที่ไฮโดรเจนซัลไฟด์อยู่ทั้งในรูปแบบของก๊าซ และของเหลว ความเข้มข้นซัลไฟด์ในน้ำที่ออกจากห้องไร้อากาศ (ขาเข้าห้องเซลล์เชื้อเพลิงชีวภาพ) มี ค่าเฉลี่ยเท่ากับ 73.3±13.9 มิลลิกรัมซัลไฟด์ต่อลิตร 70.4±12.1 มิลลิกรัมซัลไฟด์ต่อลิตร ในห้องเซลล์ เชื้อเพลิงชีวภาพที่ 1 และ 2 ตามลำดับ (ภาพที่ 4.9) แม้ปริมาณซัลเฟตที่ถูกบำบัดโดยห้องไร้อากาศ จะมีค่าคงที่ แต่ด้วยสมบัติทางเคมีของไฮโดรเจนซัลไฟด์ที่สามารถเปลี่ยนรูปแบบจากของเหลวเป็น ก๊าซได้เพิ่มขึ้นที่พีเอชต่ำกว่า 7 ดังแสดงในภาพที่ 4.10 ที่พบว่าช่วงวันที่ 30 ถึง 40 ของการเดินระบบ ห้องเซลล์เชื้อเพลิงชีวภาพ ค่าพีเอชของห้องไร้อากาศมีค่าลดลง จึงส่งผลให้ซัลไฟด์อยู่ในรูปของก๊าซ เพิ่มขึ้น ความเข้มข้นซัลไฟด์ในน้ำขาออก (ขาเข้าห้องเซลล์เชื้อเพลิงชีวภาพ) จึงมีค่าลดลงเช่นกัน

เมื่อวิเคราะห์ความเข้มข้นซัลไฟด์ขาออกห้องเซลล์เชื้อเพลิงชีวภาพ (ภาพที่ 4.11) พบว่าก่อนการติดตั้งหอดูดซึมระบบสามารถบำบัดซัลไฟด์ได้อย่างมีประสิทธิภาพและน้ำขาออก มีความเข้มข้นที่ค่อนข้างคงที่ แต่เมื่อเดินระบบหอดูดซึม (ช่วงที่ 2) พบว่าความเข้มข้นซัลไฟด์ในน้้ำ เพิ่มขึ้นอย่างเห็นได้ชัด แสดงให้เห็นว่าหอดูดซึมทำให้ก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพละลายลงมา อยู่ในน้ำได้อย่างมีประสิทธิภาพ และเมื่อทำการเปลี่ยนขั้วไฟฟ้า (ช่วงที่ 3) พบว่าความเข้มข้นซัลไฟด์ ขาออกห้องเซลล์เชื้อเพลิงชีวภาพลดลง และสูงขึ้นอย่างต่อเนื่องตามระยะเวลา แสดงให้เห็นว่าระบบ มีประสิทธิภาพการบำบัดซัลไฟด์ได้ลดลง หรือการเกิดปฏิกิริยาซัลไฟด์ออกซิเดชันลดลง เมื่อทำการ เปลี่ยนขั้วแอโนดใหม่ (ช่วงที่ 4) พบว่าประสิทธิภาพการบำบัดซัลไฟด์ไม่ได้เพิ่มสูงขึ้น จึงสามารถสรุป ได้ว่า ประสิทธิภาพการบำบัดซัลไฟด์ลดลงจากการเสื่อมของเยื่องเลือกผ่านโปรตอนและขั้วแคโทด ซึ่งสอดคล้องกับการสังเกตลักษณะของเยื่อเลือกผ่านโปรตอนเมื่อสิ้นสุดการทดลองช่วงที่ 4 ที่พบว่า มีการสะสมของซัลเฟอร์บนเยื่อเลือกผ่านโปรตอน ซึ่งขัดขวางการส่งภ่ายโปรตอน จึงจำกัดการ เกิดปฏิกิริยาซัลไฟด์ออกซิเดชันบริเวณขั้วแอโนด

4.3.4 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการบำบัด ก๊าซไฮโดรเจนซัลไฟด์

ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ขาเข้าห้องเซลล์เชื้อเพลิงชีวภาพมีค่าเฉลี่ยเท่ากับ 14,900±1,030 ppm และ 14,600±900 ppm ในห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 และ 2 ตามลำดับ (ภาพที่ 4.12) เมื่อผ่านการบำบัดโดยห้องเซลล์เชื้อเพลิงชีวงภาพช่วงที่ 1 พบว่ามีความเข้มข้นลดลงใน ช่วงแรก แต่เมื่อเดินระบบนานขึ้นพบว่าความเข้มข้นก๊าซโฮโดรเจนซัลไฟด์เพิ่มสูงขึ้นอย่างรวดเร็ว คาด ว่าเกิดจากข้อกำจัดด้านการละลายน้ำของก๊าซเนื่องจากพบการสะสมของซัลเฟอร์บริเวณผิวน้ำเพิ่มขึ้น พื้นที่ผิวสัมผัสในการละลายจึงลดลง เมื่อทำการติดตั้งหอดูดซึม พบว่าสามารถควบคุมให้ความเข้มข้น ก๊าซไฮโดรเจนซัลไฟด์ขาออกมีค่าค่อนข้างคงที่และใกล้เคียง 200 ppm (ภาพที่ 4.13) ซึ่งเป็นเกณฑ์ ที่กำหนดสำหรับการนำไปใช้งานได้โดยตรง แสดงว่าหอดูดซึมที่ใช้งานวิจัยครั้งนี้สามารถบำบัดก๊าซ ไฮโดรซัลไฟด์ได้อย่างมีประสิทธิภาพ เมื่อทำการศึกษาผลของการเปลี่ยนขั้วไฟฟ้าและขั้วแอโนดพบว่า ไม่มีผลต่อประสิทธิภาพการบำบัดก๊าซไฮโดรเจนซัลไฟด์ในการทดลองครั้งนี้

ภาพที่ 4.12 ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพขาเข้าห้องเซลล์เชื้อเพลิงชีวภาพ ที่ 1 (•) และ 2 (○) ช่วงการทดลองที่ 3

ภาพที่ 4.13 ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพขาออกห้องเซลล์เชื้อเพลิงชีวภาพ ที่ 1 (•) และ 2 (○) ช่วงการทดลองที่ 3

4.3.5 การศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพในการผลิตกระแสไฟฟ้า

ผลการวัดความต่างศักย์ไฟฟ้าวงจรเปิดของเซลล์เชื้อเพลิงชีวภาพที่ 1 และ 2 (ภาพที่ 4.14) พบว่าเซลล์เชื้อเพลิงชีวภาพทั้ง 2 มีค่าความต่างศักย์ไฟฟ้าวงจรเปิดสูงสุดในวันที่ 1 หลังการ ติดตั้งขั้วไฟฟ้า ทั้งช่วงที่ 1 และ 3 โดยเซลล์เชื้อเพลิงชีวภาพที่ค่าความต่างศักย์ไฟฟ้าวงจรเปิดสูงสุด เท่ากับ 805 มิลลิโวลต์ และ 827 มิลลิโวลต์ในเซลล์เชื้อเพลิงชีวภาพที่ 1 และ 2 ตามลำดับ เมื่อเดิน ระบบอย่างต่อเนื่องพบว่าค่าความต่างศักย์ไฟฟ้าวงจรเปิดมีค่าลดลงอย่างต่อเนื่องและคงที่ในช่วง 580-600 มิลลิโวลต์ทุกช่วงการทดลอง หลังการติดตั้งหอดูดซึมพบว่า การติดตั้งหอดูดซึมไม่มีผลต่อ ค่าความต่างศักย์ไฟฟ้าวงจรเปิด เนื่องจากไม่เกิดปฏิกิริยาทางเคมีไฟฟ้าภายในหอดูดซึม และความ เข้มข้นซัลไฟด์ในห้องเซลล์เชื้อเพลิงชีวภาพไม่มีผลต่อค่าความต่างศักย์ไฟฟ้าวงจรเปิด ซึ่งแตกต่างจาก การเดินระบบแบบทีละเท ที่พบว่าค่าความต่างศักย์ไฟฟ้าของเซลล์เชื้อเพลิงชีวภาพขึ้นกับความ เข้มข้นซัลไฟด์ที่เข้าสู่ระบบ (Zhao และคณะ, 2009)

ผลการทดลองแสดงให้เห็นว่าปฏิกิริยาทางไฟฟ้าเคมีถูกจำกัดโดยขั้วไฟฟ้า ซึ่งสอดคล้องกับผลการเปลี่ยนขั้วไฟฟ้า ที่แสดงให้เห็นว่า การใช้ขั้วไฟฟ้าใหม่ทำให้เกิดปฏิกิริยาทาง ไฟฟ้าเคมีเพิ่มสูงขึ้น สาเหตุที่ทำให้ค่าความต่างศักย์ไฟฟ้าวงจรเปิดมีค่าลดลงคาดว่ามาจากการเสื่อม ของเยื่อเลือกผ่านโปรตอนและขั้วแคโทดเป็นหลัก เนื่องจากช่วงที่ 4 ภายหลังการเปลี่ยนขั้วแอโนด ใหม่พบว่าระบบยังคงมีค่าศักย์ไฟฟ้าวงจรเปิดใกล้เคียงเดิม

ตลอดระยะเวลาการเดินระบบเซลล์เชื้อเพลิงชีวภาพทั้ง 2 แม้องค์ประกอบน้ำเสีย มีค่าใกล้เคียงกัน แต่ค่าความต่างศักย์ไฟฟ้ามีค่าไม่เท่ากัน อาจมีผลมาจากกระบวนการส่งถ่าย อิเลคตรอนภายในห้องเซลล์เชื้อเพลิงชีวภาพที่แตกต่างกัน เช่น การเร่งปฏิกิริยาที่เกิดโดยจุลินทรีย์ การเกิดปฏิกิริยาทางเคมืไฟฟ้า หรือการเสื่อมของเยื่อเลือกผ่านโปรตอน เช่นเดียวกับงานวิจัยของ Cai และคณะ (2014) IzadiและRahimnejad (2014) และ Lee และคณะ, 2014

ภาพที่ 4.14 ค่าความต่างศักย์ไฟฟ้าวงจรเปิดของห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 (○) ช่วงการทดลองที่ 3

ผลการวัดความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม (ภาพที่ 4.15) พบว่าเมื่อมีการสะสมของจุลินทรีย์บนขั้วแอโนดเพิ่มมากขึ้น เซลล์เชื้อเพลิงชีวภาพจะมีค่าความต่าง ศักย์ไฟฟ้าที่ความต้านทานภายนอกสูงขึ้น ซึ่งสอดคล้องกับงานวิจัยของ Sun และคณะ (2009) และ Sun และคณะ (2010) ที่พบว่า จุลินทรีย์ภายในระบบส่งผลต่อค่าความต่างศักย์ไฟฟ้าของเซลล์ เชื้อเพลิงชีวภาพ และยังคงผลต่อค่าความหนาแน่นกำลังไฟฟ้าสูงสุดของเซลล์เชื้อเพลิงชีวภาพ (ภาพที่ 4.16) เช่นเดียวกัน

ภาพที่ 4.15 ค่าความต่างศักย์ไฟฟ้าวงจรเปิดของห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 () ช่วงการทดลองที่ 3

ภาพที่ 4.16 ค่าความหนาแน่นกำลังไฟฟสูงสุดห้องเซลล์เชื้อเพลิงชีวภาพที่ 1 (•) และ 2 () ช่วงการทดลองที่ 3

เมื่อนำค่าความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอกตั้งแต่ 82 โอห์มถึง 150,000 โอห์ม และค่าความหนาแน่นกระแสไฟฟ้า มาสร้างกราฟความสัมพันธ์ (ภาพที่ 4.17) พบว่าการ สูญเสียค่าความต่างศักย์ไฟฟ้าเกิดจาก 2 สาเหตุหลักคือ การสูญเสียความต่างศักย์ไฟฟ้าของปฏิกิริยา (activation loss) และการสูญเสียความต่างศักย์ไฟฟ้าโอห์มมิก (ohmic loss) โดยในส่วนของการ สูญเสียความต่างศักย์ไฟฟ้าของปฏิกิริยามีค่าเพิ่มสูงขึ้นตามระยะเวลาที่เดินระบบ คาดว่าเกิดจากการ เพิ่มขึ้นของจุลินทรีย์กลุ่มที่ไม่สามารถนำไฟฟ้า ซึ่งบดบังหรือลดพื้นที่ในการเกิดปฏิกิริยาบริเวณ ขั้วแอโนด ดังแสดงในภาพที่ 4.17 ที่พบว่าค่าความต่างศักย์สูงสุดของเซลล์เชื้อเพลิงชีวภาพมีค่าลดลง แม้ค่าความต่างศักย์วงจรเปิดจะมีค่าใกล้เคียงกัน สำหรับการสูญเสียความต่างศักย์ไฟฟ้าโอห์มมิก พบว่ามาจากขัดขวางหรือข้อจำกัดในการส่งถ่ายอิเลคตรอน หรือข้อจำกัดในการส่งโปรตอนโปรตอน ผ่านเยื่อเลือกผ่านโปรตอน ดังภาพที่ 4.17 ที่พบว่าค่าความชั้นของกราฟที่ค่ามากขึ้นแสดงว่าระบบ มีค่าความต้านทานสูงขึ้น ซึ่งมีค่าเพิ่มสูงขึ้นหลังจากเดินระบบและโดยสอดคล้องกับผลการวิเคราะห์ ประสิทธิภาพการบำบัดซัลไฟด์เนื่องจากปฏิกิริยาซัลไฟด์ออกซิเดชันเป็นหนึ่งในปฏิกิริยาที่ทำให้เซลล์ เชื้อเพลิงชีวภาพสามารถผลิตกระแสไฟฟ้า ที่พบว่าเซลล์เชื้อเพลิงชีวภาพบำบัดซัลไฟด์ได้ลดลงหลัง เกิดการเสื่อมของเยื่อเลือกผ่านโปรตอน

ภาพที่ 4.17กราฟความสัมพันธ์ระหว่างความต่างศักย์ไฟฟ้าและความหนาแน่นกระแสไฟฟ้าของเซลล์ เชื้อเพลิงชีวภาพที่ 1 ช่วงที่ 1 วันที่ 1 6 11 และ 17

4.4 ผลการทดลองช่วงที่ 4 การศึกษาบทบาทของจุลินทรีย์บนขั้วแอโนดต่อการผลิตกระแสไฟฟ้า ของเซลล์เชื้อเพลิงชีวภาพ

การทดลองช่วงที่ 4 ผู้วิจัยเลือกเซลล์เชื้อเพลิงชีวภาพที่ 1 เพื่อใช้ในการศึกษาบทบาทของ จุลินทรีย์บนขั้วแอโนดและปฏิกิริยาทางเคมีไฟฟ้า โดยเดินระบบเฉพาะส่วนของห้องเซลล์เชื้อเพลิง ชีวภาพและหอดูดซึม น้ำเสียสังเคราะห์ที่เข้าสู่ระบบมีความเข้มข้นซัลไฟด์ใกล้เคียงกับค่าเฉลี่ยของ น้ำขาออกห้องไร้อากาศช่วงทดลองที่ 3 โดยเตรียมน้ำเสียสังเคราะห์ใหม่ซึ่งไม่มีสารอินทรีย์และซัลเฟต เป็นองค์ประกอบ อัตราการไหลเท่ากับ 2 ลิตรต่อวัน ระยะกักเก็บเท่ากับ 24 ชั่วโมง ติดตั้งเยื่อเลือก ผ่านโปรตอนและขั้วแคโทดใหม่ การเดินระบบแบ่งออกเป็น 2 ส่วนคือ

 4.1 การศึกษาบทบาทของจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์บนขั้วแอโนด โดยใช้เฉพาะ ขั้วแอโนดจากการทดลองที่ 3 ช่วงที่ 4

4.2 การศึกษาบทบาทของปฏิกิริยาทางไฟฟ้าเคมี (abiotic process) โดยใช้ขั้วไฟฟ้าใหม่

4.4.1 การศึกษาบทบาทของจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์บนขั้วแอโนด

ผลการวิเคราะห์ความเข้มข้นซัลไฟด์ในน้ำเสียขาเข้าและขาออกเซลล์เชื้อเพลิง ชีวภาพ (ภาพที่ 4.18) พบว่ามีค่าเฉลี่ยช่วงคงที่เท่ากับ 76.4±6.5 มิลลิกรัมซัลไฟด์ต่อลิตร และ 1.54±1.51 มิลลิกรัมซัลไฟด์ต่อลิตร คิดเป็นประสิทธิภาพการบำบัดเท่ากับ 97.9±1.9% โดยในช่วง แรกยังความเข้มข้นซัลไฟด์ยังมีค่าสูงแต่เมื่อเดินระบบต่อเนื่องพบว่าน้ำขาออกมีความเข้มข้นซัลไฟด์ ้ลดลงจนมีค่าใกล้เคียงศูนย์ คาดว่าเกิดจากการเพิ่มขึ้นของจุลินทรีล์กลุ่มออกซิไดซ์ซัลไฟด์ และการ ลดลงของจุลินทรีย์กลุ่มที่ใช้สารอินทรีย์ในการเติบโต จึงส่งผลให้มีพื้นที่ในการเกิดปฏิกิริยาออกซิไดซ์ ซัลไฟด์เพิ่มขึ้น และพบซัลเฟตซึ่งผลิตภัณฑ์ที่ได้จากปฏิกิริยาออกซิไดซ์ซัลไฟด์ เช่นเดียวกับงานวิจัย ของ Lee และคณะ (2014) โดยในการทดลองครั้งนี้พบว่าในช่วงแรกซัลเฟตมีค่าสูงขึ้นอย่างรวดเร็ว เมื่อคำนวณปริมาณซัลเฟอร์จากซัลเฟตที่พบแล้วปริมาณซัลไฟด์ที่ถูกบำบัดพบว่ามีค่าใกล่เคียงกัน แสดงให้เห็นว่าผลิตภัณฑ์หลักจากปฏิกิริยาออกซิไดซ์ซัลไฟด์คือซัลเฟต แต่เนื่องจากน้ำเสียที่เข้าสู่ เซลล์เชื้อเพลิงชีวภาพนี้ไม่มีสารอินทรีย์เป็นองค์ประกอบ จึงจำกัดการทำงานของจุลินทรีย์กลุ่มรีดิวซ์ ซัลเฟต ทำให้ตรวจพบมีซัลเฟตในน้ำขาออกห้องเซลล์เชื้อเพลิงชีวภาพ แต่เมื่อเดินระบบต่อเนื่องพบว่า ปริมาณซัลเฟตลดลงจนเริ่มคงที่ในช่วง 110 ถึง 120 มิลลิกรัมซัลเฟตต่อลิตร (ภาพที่ 4.19) ้คาดว่าการเปลี่ยนองค์ประกอบของน้ำเสียส่งผลให้ผลิตภัณฑ์จากปฏิกิริยาเปลี่ยนไป โดยเกิด ซัลเฟตน้อยลงและเกิดซัลเฟอร์ (ของแข็ง) เพิ่มขึ้น หรือสัดส่วนการเกิดฏิกิริยาออกซิไดซ์ซัลไฟด์ ้โดยจุลินทรีย์ลดลง และเกิดปฏิกิริยาออกซิไดซ์ซัลไฟด์โดยปฏิกิริยาทางเคมีสูงขึ้น

ภาพที่ 4.18 ความเข้มข้นซัลไฟด์ขาเข้า () และขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้งแต่วันที่ 1 ถึง 15 ของช่วงการทดลองที่ 4.1

ภาพที่ 4.19 ความเข้มข้นซัลเฟตขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้งแต่วันที่ 1 ถึง 15 ของช่วงการทดลองที่ 4.1

ผลการวัดความต่างศักย์ไฟฟ้าวงจรเปิดพบว่าความต่างศักย์ไฟฟ้าลดลงอย่างซ้าๆจน อยู่ในช่วง 450-500 มิลลิโวลต์ (ภาพที่ 4.20) แต่ความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์มมีค่าสูงในช่วง 3 วันแรกของการเดินระบบ หลังจากนั้นมีค่าลดลงจนคงที่ตลอดการทดลอง โดยอยู่ในช่วง 65-80 mV เช่นเดียวกับค่าความหนาแน่นกำลังไฟฟ้าสูงสุดในช่วง 3 วันแรก และคงที่ ในช่วง 2.5-4.0 mW/m² (ภาพที่ 4.21) ผลการวิเคราะห์กราฟความสัมพันธ์ความหนาแน่นกระแส และความต่างศักย์ไฟฟ้าพบว่า ตลอดการเดินระบบการสูญเสียความต่างศักย์ไฟฟ้าส่วนใหญ่เกิดจาก การสูญเสียความต่างศักย์ปฏิกิริยาและการสูญเสียความต่างศักย์โอห์มมิก การสูญเสียความต่าง ศักย์ไฟฟ้าโดยรวมมีค่าสูงขึ้นหลังการเดินระบบ 2 วัน แต่หลังจากเดินระบบต่อเนื่องการสูญเสียความ ต่างศักย์มีค่าลดลง ซึ่งคาดว่าเป็นผลมาจากการเพิ่มขึ้นของจุลินทรีย์กลุ่มออกซีไดซ์ชัลไฟด์ บนขั้วแอโนดซึ่งสามารถส่งอิเลคตรอนไปยังขั้วได้ จึงทำให้ลดการสูญเสียความต่างศักย์ไฟฟ้า หรือ อาจจะเกิดจากการลดลงของจุลินทรีย์กลุ่มที่ไม่นำไฟฟ้าบนขั้วแอโนดจากสภาวะที่ขาดสารอินทรีย์ จึงทำให้มีพื้นที่ในการเกิดปฏิกิริยาอกซีไดซ์ชัลไฟด์เพิ่มขึ้น

ภาพที่ 4.20 ค่าความต่างศักย์ไฟฟ้าวงจรเปิด (ก) และความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม (ข) ของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองที่ 4.1

ภาพที่ 4.21 ค่าความหนาแน่นกำลังไฟฟ้าสูงสุดของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองที่ 4.1

Chulalongkorn University

4.4.2 การศึกษาบทบาทของปฏิกิริยาทางไฟฟ้าเคมี (abiotic process)

ผลการวัดความเข้มข้นซัลไฟด์ในน้ำเสียสังเคราะห์และน้ำขาออกพบว่าระบบ สามารถบำบัดซัลไฟด์จากความเข้มข้น 75.31±1.33 มิลลิกรัมซัลไฟด์ต่อลิตร เหลือเพียง 1.14±0.33 มิลลิกรัมซัลไฟด์ต่อลิตร (ภาพที่ 4.22) ซึ่งคิดเป็นร้อยละการบำบัดเท่ากับ 98.5±0.44 โดยพบซัลเฟต ในน้ำขาออกที่มีความเข้มข้นเฉลี่ยเท่ากับ 111.1±5.7 มิลลิกรัมซัลเฟตต่อลิตร (ภาพที่ 4.23) แสดงให้ เห็นว่าผลิตภัณฑ์จากปฏิกิริยาซัลไฟด์ออกซิเดชัน (ทางเคมี) คือซัลเฟอร์ (ของแข็ง) และซัลเฟตเป็น ส่วนใหญ่ โดยความเข้มข้นซัลเฟตใกล้เคียงกับผลการทดลองที่ 4 ช่วงที่ 1

ภาพที่ 4.22 ความเข้มข้นซัลไฟด์ขาเข้า () และขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้งแต่วันที่ 1 ถึง 8 ของช่วงการทดลองที่ 4.2

ภาพที่ 4.23 ความเข้มข้นซัลเฟตขาออก (•) ของห้องเซลล์เชื้อเพลิงชีวภาพ ตั้งแต่วันที่ 1 ถึง 8 ของ ช่วงการทดลองที่ 4.2

ผลการวัดความต่างศักย์ไฟฟ้าวงจรเปิดพบว่ามีค่าค่อนข้างคงที่อยู่ในช่วง 550-580 mV และความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอกมีค่าอยู่ในช่วง 65-75 มิลลิโวลต์ (ภาพที่ 4.24) อาจเนื่องมาจากการกวนผสมภายในห้องเซลล์เชื้อเพลิงที่ช่วยลดการสะสมของซัลเฟอร์ บนขั้วแอโนดและทำให้ซัลไฟด์ในระบบมีความเข้มข้นเท่ากัน แต่มีการสูญเสียความต่างศักย์ไฟฟ้า มากกว่าการทดลองที่ 4.1 เนื่องจากไม่มีจุลินทรีย์บนขั้วแอโนดช่วยลดการสูญเสียความต่างศักย์ไฟฟ้า ปฏิกิริยา แต่มีค่าความหนาแน่นกำลังไฟฟ้าสูงสุดจึงมีค่าค่อนข้างคงที่อยู่ในช่วง 3.0-3.5 มิลลิวัตต์ต่อ ตางรางเมตร (ภาพที่ 4.25) ซึ่งสูงกว่าการทดลองที่ 4.1 อาจมีสาเหตุจากการบดบังพื้นที่เกิดปฏิกิริยา โดยจุลินทรีย์ที่เกาะบนขั้วแอโนดซึ่งไม่ได้ทำหน้าที่ช่วยส่งอิเลคตรอน

ภาพที่ 4.24 ค่าความต่างศักย์ไฟฟ้าวงจรเปิด (ก) และความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม (ข) ของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองที่ 4.2

ภาพที่ 4.25 ค่าความหนาแน่นกำลังไฟฟ้าสูงสุดของห้องเซลล์เชื้อเพลิงชีวภาพช่วงการทดลองที่ 4.2

จากผลการวิเคราะห์บทบาทของจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์บนขั้วแอโนด พบว่า ช่วงบำบัดซัลไฟด์ในห้องเซลล์เชื้อเพลิงชีวภาพได้อย่างมีประสิทธิภาพ แต่ปฏิกิริยาซัลไฟด์ออกซิเดชัน ให้ผลิตภัณฑ์หลักคือซัลเฟต ซึ่งแตกต่างจากปฏิกิริยาทางเคมีไฟฟ้าที่ให้ผลิตภัณฑ์หลักคือซัลเฟอร์ (ของแข็ง) เมื่อเดินระบบช่วงที่ 4.1 ต่อเนื่องคาดว่าการบำบัดซัลไฟด์เกิดจากปฏิกิริยาทางเคมีเป็นหลัก เนื่องจากให้ผลิตภัณฑ์และค่าศักย์ไฟฟ้าใกล้เคียงการทดลองที่ 4.2 ซึ่งสอดคล้องกับงานวิจัยของ Zhang และคณะ (2013) ที่พบว่าการบำบัดซ์ลไฟด์และการผลิตกระแสไฟฟ้าเกิดขึ้นโดยปฏิกิริยาทาง เคมีไฟฟ้าเป็นหลัก

Chulalongkorn University

4.5 ผลการทดลองช่วงที่ 5 การวิเคราะห์กลุ่มประขากรจุลินทรีย์ในเซลล์เชื้อเพลิงชีวภาพ

การทดลองช่วงที่ 5 ใช้เทคนิค 16S rRNA gene clone library ในการศึกษากลุ่มประชากร จุลินทรีย์ ผลการตรวจสอบผลิตภัณฑ์ที่ผ่านการเพิ่มจำนวนสารพันธุกรรม (PCR) จากโคโลนีของเซลล์ ที่ได้รับพาหะ (vector) ของจุลินทรีย์ในแต่ละตัวอย่าง โดยตัวอย่างจุลินทรีย์ที่ใช้ศึกษาประกอบด้วย 4 กลุ่มตัวอย่างจากถังปฏิกรณ์ที่ 1 ซึ่งประกอบด้วย

- 1. แบคทีเรียกลุ่มแขวนลอยห้องไร้อากาศ
- 2. แบคทีเรียกลุ่มยึดเกาะบนขั้วแอโนด
- 3. อาเคียร์กลุ่มแขวนลอยห้องไร้อากาศ
- 4. อาเคียร์กลุ่มยึดเกาะบนขั้วขั้วแอโนด

โดยสุ่มเลือกโคโลนีที่ได้รับพาหะมาจำนวนกลุ่มตัวอย่างละ 25-30 โคโลนี และเพิ่มจำนวนชิ้นส่วน ดีเอนเอ และตรวจสอบผลิตภัณฑ์ PCR โดยผลการตรวจสอบแสดงดังภาพที่ 4.26 ถึง Error! Reference source not found.

ภาพที่ 4.26 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างแบคทีเรียกลุ่มแขวนลอย ในห้องไร้อากาศจากโคโลนีที่ 1 ถึง 20 ที่ได้รับพาหะเข้าสู่เซลล์

ภาพที่ 4.27 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างแบคทีเรียกลุ่มยึดเกาะ บนขั้วแอโนดจากโคโลนีที่ 1 ถึง 21 ที่ได้รับพาหะเข้าสู่เซลล์

ภาพที่ 4.28 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างอาเคียร์กลุ่มแขวนลอย ห้องไร้อากาศจากโคโลนีที่ 1 ถึง 24 ที่ได้รับพาหะเข้าสู่เซลล์

ภาพที่ 4.29 ผลการตรวจสอบผลิตภัณฑ์จากการทำ PCR ของตัวอย่างอาเคียร์กลุ่มยึดเกาะ บนขั้วแอโนดจากโคโลนีที่ 1 ถึง 21 ที่ได้รับพาหะเข้าสู่เซลล์

หลังจากการตรวจสอบความยาวขึ้นส่วนดีเอนเอจากโคโลนีที่ได้รับพาหะ จึงเพิ่มจำนวนของ สายดีเอนเอนและทำการเพิ่มความบริสุทธิ์ของตัวอย่าง และวิเคราะห์ลำดับเบส จากนั้นเลือกช่วง ลำดับดับเบสมาทำการเปรียบเทียบกับฐานข้อมูล NCBI

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ผลการวิเคราะห์ 16S rRNA gene clone library ของแบคทีเรียกลุ่มแขวนลอยห้องไร้อากาศ จำนวน 25 โคลน พบสัดส่วนสายพันธุ์แบคทีเรียดังภาพที่ 4.30 พบแบคทีเรียสายพันธุ์ Streptococcus macedonicus มีสัดส่วนสูงสุด (38%) ซึ่งเป็นจุลินทรีย์กลุ่ม fermenter และพบ แบคทีเรียกลุ่มรีดิวซ์ซัลเฟต 2 สายพันธุ์คือ Desulfovibrio vulgaris (9%) และ Thermodesulfovibrio yellowstonii (4%)

แบคทีเรียที่พบส่วนใหญ่จัดอยู่ในไฟลัม Firmicutes (44%) และ Proteobacteria (32%) ซึ่งพบแบคทีเรียที่เป็นกลุ่มรีดิวซ์ซัลเฟต 2 สายพันธุ์ คิดเป็น 13% ของจุลินทรีย์ที่พบ โดยพบ Desulfovibrio vulgaris (8%) เช่นเดียวกับงานวิจัยของ Deng เเละคณะ (2010) และพบ Syntrophomonas curvata ซึ่งเป็นแบคทีเรียกลุ่มที่มีความเกี่ยวข้องกับ methanogens ความสัมพันธ์ทางพันธุกรรมของแบคทีเรียที่พบในตัวอย่างตะกอนแขวนลอยห้องไร้อากาศ แสดงดังภาพที่ 4.31

ภาพที่ 4.30 สัดส่วนสายพันธุ์แบคทีเรียที่พบในตะกอนแขวนลอยห้องไร้อากาศ

เมื่อวิเคราะห์ 16S rRNA gene clone library แบคทีเรียที่พบบนขั้วแอโนดจำนวน 25 โคลน (ภาพที่ 4.32) ยังคงพบแบคทีเรียสายพันธุ์ *Streptococcus macedonicus* (48%) เป็นสายพันธุ์เด่น และพบแบคทีเรียกลุ่มออกซิไดซ์ซัลไฟด์สายพันธุ์ *Halothiobacillus neapolitanus* (12%) ซึ่งสอดคล้องกับผลการทดลองช่วงที่ 4.4 ที่พบซัลเฟตเป็นผลิตภัณฑ์จากปฏิกิริยาซัลไฟด์ออกซิเดซัน โดยยังคงพบจุลินทรีย์ 2 ไฟลัมหลักคือ Firmicutes (48%) และ Proteobacteria ชั้น Grammaproteobacteria (40%) โดยที่ *Klebsiella pneumonia* (20%) ซึ่งแบคทีเรียสายพันธุ์ ที่สามารถผลิตสารสื่อกลางที่สามารถส่งถ่ายอิเลคตรอนไปยังขั้วแอโนดได้ (exoelectrogenic microorganism) เช่นเดียวกับงานวิจัยของ Logan (2009) และ Deng และคณะ (2010)

ภาพที่ 4.32 สัดส่วนสายพันธุ์แบคทีเรียที่พบบนขั้วแอโนด เซลล์เชื้อเพลิงชีวภาพที่ 1

ภาพที่ 4.33 phylogenetic tree ของ 16S rRNA gene clone library โดยใช้ neighbor-joining method ของตัวอย่างแบคทีเรียบนขั้วแอโนด สำหรับผล 16S rRNA gene clone library ของจุลินทรีย์กลุ่มอาเคียร์ที่พบในตะกอน แขวนลอยห้องไร้อากาศจำนวน 24 โคลน (ภาพที่ 4.34) พบเพียง 3 สายพันธุ์คือ Methanosaeta concilii (83%) Methanospirillum hungatei (13%) และ Methanosaeta thermophile (4%) ซึ่งเป็นจุลินทรีย์กลุ่มสร้างมีเทน (methanogens) โดยอาเคียร์ที่พบมี 2 สกุลประกอบด้วย Methanosaeta (76%) และ Methanospirillum (24%) ซึ่ง Methanosaeta มีบทบาทสำคัญ ในการบำบัดสารอินทรีย์เนื่องจากใช้อะซิเตทเป็นสารตั้งต้นเพียงอย่างเดียวในการผลิตก๊าซมีเทน (Chang และคณะ, 2008)

ภาพที่ 4.34 สัดส่วนสายพันธุ์อาเคียร์ที่พบในตะกอนแขวนลอยห้องไร้อากาศ

ภาพที่ 4.35 phylogenetic tree ของ 16S rRNA gene clone library โดยใช้ neighbor-joining method ของตัวอย่างอาเคียร์ในตะกอนแขวนลอยห้องไร้อากาศ และเมื่อวิเคราะห์กลุ่มประชากรอาเคียร์ที่พบบนขั้วแอโนด จำนวน 25 โคลน ยังคงพบ อาเคียร์ 3 สายพันธุ์เช่นเดิมคือ Methanosaeta concilii (68%) Methanospirillum hungatei (24%) และ Methanosaeta thermophile (8%) ดังภาพที่ 4.36

Chulalongkorn University

4.6. ผลการทดลองช่วงที่ 6 การศึกษาการเปลี่ยนแปลงสภาพพื้นผิวของขั้วแอโนด โดย เปรียบเทียบภาพถ่ายอิเลคตรอนของขั้วแอโนด ประกอบกับการศึกษาองค์ประกอบธาตุ ด้วยวิธี SEM-EDS

การทดลองที่ 6 วิเคราะห์การเปลี่ยนแปลงพื้นผิวขั้วแอโนดหลังการเดินระบบ ด้วยการเปรียบเทียบภาพถ่ายและการเปรียบเทียบปริมาณธาตุองค์ประกอบของขั้วแอโนด โดยเลือก ขั้วแอโนดจากการทดลองที่ 3.2.2 ที่เดินระบบเซลล์เชื้อเพลิงชีวภาพเป็นระยะเวลา 20 วัน ร่วมกับการเดินระบบหอดูดซึม

จากภาพถ่ายพบว่ามีการสะสมของซัลเฟอร์น้อยมาก (ภาพที่ 4.38) ประกอบกับการวิเคราะห์ ธาตุ (ภาพที่ 4.39) พบว่ามีปริมาณซัลเฟอร์เพียง 1% โดยน้ำหนัก (normalized) ดังตารางที่ 4.2 ปัจจัยหนึ่งที่ทำให้มีการสะสมของซัลเฟอร์บนขั้วแอโนดน้อยคือการกวนผสมภายในห้องเซลล์เชื้อพลิง ชีวภาพ ซึ่งคาดว่าไม่ใช่สาเหตุหลักของการเสื่อมของระบบในครั้งนี้ คาดว่ามีสาเหตุจากคุณภาพ ของเยื่อเลือกผ่านโปรตอนและขั้วแคโทดเมื่อผ่านการใช้งาน

ภาพที่ 4.38 ลักษณะพื้นผิวขั้วแอโนด (activated carbon cloth) ก่อน (ก) และหลัง (ข) การทดลองช่วงที่ 3.2.2

ภาพที่ 4.39 ธาตุที่พบบนขั้วแอโนดหลังการทดลองช่วงที่ 3.2.2

ตารางที่ 4.2 ร้อยละธาตุที่พบบนขั้วแอโนดหลังการทดลองที่ 3.2.2

ธาตุ	ร้อยละโดยน้ำหนัก	ร้อยละโดยอะตอม
С	65.33	73.34
Ο	28.26	23.82
Na	1.19	0.70
Al	0.93	0.46
Si	0.34	0.16
Р	0.80	0.35
S	1.00	0.42
Cl	0.62	0.24
Ca	1.55	0.52

4.7 การวิเคราะห์กลไกการทำงานของเซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึม

จากการทดลองทั้ง 6 การทดลองสามารถวิเคราะห์กลไกการทำงานของเซลล์ เชื้อเพลิงชีวภาพที่บำบัดน้ำเสียปนเปื้อนสารอินทรีย์และซัลเฟตได้ดังภาพที่ 4.40 และ

น้ำเสียสังเคราะห์ที่เข้าสู่ห้องไร้อากาศประกอบด้วยสารอินทรีย์ (กลูโคส) และซัลเฟต โดยที่กลูโคสเป็นโมเลกุลที่ค่อนข้างใหญ่ จุลินทรีย์กลุ่มรีดิวซ์ซัลเฟตอาจไม่สามารถนำไปใช้ได้โดยตรง จึงอาศัยจุลินทรีย์กลุ่มหมักในการเปลี่ยนรูปกลูโคสให้เป็นกรดไขมันระเหย เช่น อะซิเตท โดยงานวิจัย นี้พบจุลินทรีย์กลุ่มหมักที่พบในสัดส่วนที่สูงสุดคือ Streptococcus macedonicus ซึ่งพบทั้งในห้อง ไร้อากาศและบนขั้วแอโนด

ซัลเฟตที่เข้าสู่ห้องไร้อากาศคาดว่าถูกรีดิวซ์โดยจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต โดยสาย พันธุ์ที่พบคือ Thermodesulfovibrio yellowstonii และ Desulfovibrio vulgaris ซึ่งผลิตภัณฑ์ จากการรีดิวซ์ซัลเฟตคือไฮโดรเจนซัลไฟด์และไบซัลไฟด์ไอออน โดยที่ไฮโดรเจนซัลไฟด์ส่วนหนึ่งจะอยู่ ในรูปของก๊าซ และอีกส่วนอยู่ในรูปของของเหลวซึ่งมีสัดส่วนขึ้นกับค่าพีเอชในห้องไร้อากาศ

สารอินทรีย์ที่ถูกย่อยให้เป็นสารที่มีโมเลกุลเล็ก เช่น อะซิเตท จะถูกใช้เป็น สารอาหารสำหรับจุลินทรีย์กลุ่มสร้างมีเทน โดยในการทดลองนี้พบ Methanosaeta concilii ในสัดส่วนที่สูงที่สุด ซึ่งพบทั้งตะกอนแขวนลอยห้องไร้อากาศและบนขั้วแอโนด

น้ำเสียที่ออกจากห้องไร้อากาศซึ่งมีซัลไฟด์เป็นองค์ประกอบจะเข้าสู่งห้องเซลล์ เชื้อเพลิงชีวภาพ โดยพบว่าซัลไฟด์จะถูกบำบัดโดยปฏิกิริยาซัลไฟด์ออกซิเดชัน (ทางเคมี) บนขั้วแอโนดเป็นหลัก อีกส่วนถูกบำบัดโดยจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์ เช่น Halothiobacillus neapolitanus ซึ่งทั้งสองส่วนให้ผลิตภัณฑ์หลักคือซัลเฟต และซัลเฟอร์ แต่คาดว่าภายในห้องเซลล์ เชื้อเพลิงชีวภาพมีตะกอนแขวนลอยของจุลินทรีย์กลุ่มรีดิวซ์ซัลเฟต จึงช่วยบำบัดซัลเฟตในห้องเซลล์ เชื้อเพลิงชีวภาพได้

ก๊าซไฮโดรเจนซัลไฟด์ในก๊าซชีวภาพที่เกิดขึ้นในห้องไร้อากาศเมื่อผ่านมายังหอดูดซึม จะมีถูกดูดซึมลงสู่ของเหลว ซึ่งไหลลงสู่ห้องเซลล์เชื้อเพลิงชีวภาพต่อไป กระบวนการผลิตกระแสไฟฟ้าของเซลล์เชื้อเพลิงชีวภาพคาดว่าเกิดจากปฏิกิริยา ซัลไฟด์ออกซิเดชันเป็นหลัก อีกส่วนหนึ่งเกิดจากการส่งถ่ายอิเลคตรอนมาขัวขั้วแอโนดของจุลินทรีย์ สายพันธุ์ Klebsiella pneumoniae

ภาพที่ 4.40 กลไกที่คาดว่าเกิดขึ้นภายในเซลล์เชื้อเพลิงชีวภาพ

[1] Fermentation, [2] Sulfate reduction, [3] Methanogenesis, [4] Hydrogen sulfide gas formation, [5] Sulfide oxidation, [6] Abiotic sulfide oxidation, [7] Electricity generation,

[8] Oxygen reduction, [9] Absorption

ภาพที่ 4.41 แผนภาพสรุปกลไกของเซลล์เชื้อเพลิงชีวภาพในการวิจัยครั้งนี้

บทที่ 5 สรุปผลและข้อเสนอแนะ

5.1 สรุปผลการวิจัย

งานวิจัยนี้ศึกษาประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพร่วมกับหอดูดซึมเพื่อการบำบัดก๊าซ ไฮโดรเจนซัลไฟด์จากการบำบัดน้ำเสียปนเปื้อนสาอินทรีย์และซัลเฟต โดยใช้เซลล์เชื้อเพลิงชีวภาพ ชนิดห้องเดี่ยวแบบ 2 ห้องย่อย เดินระบบแบบต่อเนื่องโดยใช้น้ำเสียสังเคราะห์ โดยมีความเข้มข้น สารอินทรีย์และซัลเฟตเท่ากับ 3,000 มิลลิกรัมซีโอดีต่อลิตรไ และ 300 มิลลิกรัมซัลเฟตต่อลิตร ตามลำดับ ระยะเวลากักเก็บน้ำในแต่ละห้องย่อยเท่ากับ 24 ชั่วโมง อัตราการไหลของน้ำ 2 ลิตรต่อวัน เชื่อมต่อวงจรโดยใช้ความต้านทานภายนอก 1,000 โอห์ม ติดตามการบำบัดน้ำเสียโดยการวิเคราะห์ พารามิเตอร์ต่างๆ

1. ห้องไร้อากาศมีประสิทธิภาพการบำบัดสารอินทรีย์เฉลี่ยเท่ากับ 78.4±3.21%
 และ 85.3±5.69% สำหรับประสิทธิภาพการบำบัดซัลเฟตเฉลี่ยเท่ากับ 97.7±3.03% และ
 98.5±2.08% สำหรับถังปฏิกรณ์ที่ 1 และ 2 ตามลำดับ โดยมีค่าคงที่ตั้งแต่วันที่ 50 ของการทดลอง

2. ประสิทธิภาพการบำบัดสารอินทรีย์ส่วนใหญ่เกิดขึ้นภายในห้องไร้อากาศ (75-80%)

 ถ้าซไฮโดรเจนซัลไฟด์ที่เกิดจากห้องไร้อากาศสามารถบำบัดโดยใช้เซลล์เชื้อเพลิงชีวภาพ ร่วมกับหอดูดซึม โดยมีความสามารถในการบำบัดก๊าซไฮโดรเจนซัลไฟด์ให้มีความเข้มข้น 120-160 ส่วนในล้านส่วน

 4. ผลิตภัณฑ์หลักจากปฏิกิริยาซัลไฟด์ออกซิเดชัน (ทางเคมีไฟฟ้า) คือซัลเฟอร์ (ของแข็ง) และซัลเฟตประมาณ 100-120 มิลลิกรัมซัลเฟตต่อลิตร

5.กระแสไฟฟ้าที่ถูกผลิตขึ้นเกิดจากปฏิกิริยาทางเคมี (abiotic reaction) เป็นหลัก โดยมีลักษณะการสูญเสียความต่างศักย์ไฟฟ้าส่วนใหญ่จากการสูญเสียความต่างศักย์ไฟฟ้าปฏิกิริยา (activation loss) และ การสูญเสียความต่างศักย์ไฟฟ้าโอห์มมิก (ohmic loss) ซึ่งมีสาเหตุหลัก มาจากการเสื่อมของเยื่อเลือกผ่านโปรตอนและแคโทด 6. แบคทีเรียสายพันธุ์ Streptococcus macedonicus พบมากที่สุดในห้องไร้อากาศและ สายพันธุ์ Klebsiella pneumoniae และ Desulfovibrio vulgaris ซึ่งเป็นจุลินทรีย์กลุ่มรีดิวซ์ ซัลเฟต และพบสายพันธุ์ Halothiobacillus neapolitanus ซึ่งเป็นจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์ บนขั้วแอโนด รวมทั้งพบอาเคียร์สายพันธุ์ Methanosaeta concilii เป็นหลักทั้งห้องไร้อากาศ และบนขั้วแอโนด

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

5.2 ประโยชน์ทางวิศวกรรมสิ่งแวดล้อม

จากงานวิจัยนี้แสดงให้เห็นถึงประสิทธิภาพของเซลล์เชื้อเพลิงชีวภาพแบบห้องเดี่ยว 2 ห้อง ย่อยร่วมกับหอดูดซึมในการบำบัดสารอินทรีย์ ซัลเฟต ซัลไฟด์และก๊าซไฮโดรเจนซัลไฟด์ อีกทั้งเพิ่ม ความเข้าใจในกระบวนการผลิตกระแสไฟฟ้าของเซลล์เชื้อเพลิงชีวภาพ ที่ใช้ซัลไฟด์เป็นสาร ให้อิเลคตรอน อีกทั้งการวิเคราะห์ประชากรจุลินทรีย์ในระบบที่ยังสามารถช่วยให้เข้าใจกลไกและ หลักการทำงานของเซลล์เชื้อเพลิงชีวภาพได้ดียิ่งขึ้น การเดินระบบหอดูดซึมร่วมกับเซลล์เชื้อเพลิง ชีวภาพเป็นแนวทางหนึ่งในการช่วยแก้ปัญหาก๊าซไฮโดรเจนซัลไฟด์ที่เกิดจากการบำบัดน้ำเสีย ปนเปื้อนสารอินทรีย์และซัลเฟต ในสภาวะที่ระบบยังมีศักยภาพในการผลิตก๊าซชีวภาพแต่ปนเปื้อน ก๊าซไฮโดรเจนซัลไฟด์ ซึ่งต้องมีการบำบัดก่อนการนำไปใช้งาน อีกทั้งยังช่วยดึงกลับพลังงาน จากน้ำเสียในรูปของกระแสไฟฟ้าอีกด้วย

5.3 ข้อเสนอแนะ

สำหรับงานวิจัยเกี่ยวกับเซลล์เชื้อเพลิงชีวภาพ ควรมีการปรับปรับคุณภาพหรือเลือกเยื่อเลือก ผ่านโปรตอนที่มีคุณสมบัติที่ลดการสะสมของซัลเฟอร์ ซึ่งเป็นข้อจำกัดของการเกิดกระแสไฟฟ้า และควรมีการพัฒนาการคัดเลือกจุลินทรีย์กลุ่มออกซิไดซ์ซัลไฟด์ในห้องเซลล์เชื้อเพลิงชีวภาพ ให้มีประสิทธิภาพและรวดเร็วยิ่งขึ้น เนื่องจากลักษณะของการอาศัยแบบยึดเกาะ จึงอาจทำให้พบ ในห้องเซลล์เชื้อเพลิงชีวภาพได้น้อยในระยะการเดินระบบที่สั้น

รายการอ้างอิง

- Angelov, A., Bratkova, S., & Loukanov, A. (2013). Microbial fuel cell based on electroactive sulfate-reducing biofilm. *Energy Conversion and Management, 67*, 283-286.
- Azizi, M., Biard, P.-F., Couvert, A., & Ben Amor, M. (2014). Simulation of hydrogen sulphide absorption in alkaline solution using a packed column. *Environmental Technology, 35*(24), 3105-3115. doi: 10.1080/09593330.2014.931470
- Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. *Applied and environmental microbiology, 69*(3), 1548-1555.
- Boonchayaanant, B., Kitanidis, P. K., & Criddle, C. S. (2008). Growth and cometabolic reduction kinetics of a uranium-and sulfate-reducing Desulfovibrio/Clostridia mixed culture: Temperature effects. *Biotechnology and bioengineering, 99*(5), 1107-1119.
- Cai, J., Zheng, P., Qaisar, M., & Sun, P. (2014). Effect of electrode types on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. *Separation and Purification Technology, 134*, 20-25. doi: <u>http://dx.doi.org/10.1016/j.seppur.2014.07.024</u>
- Chang, J.-J., Chou, C.-H., Ho, C.-Y., Chen, W.-E., Lay, J.-J., & Huang, C.-C. (2008). Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for biofuels and bio-hydrogen production. *International Journal of Hydrogen Energy, 33*(19), 5137-5146.
- Cheng, K. Y., Ho, G., & Cord-Ruwisch, R. (2008). Affinity of microbial fuel cell biofilm for the anodic potential. *Environmental science & technology, 42*(10), 3828-3834.
- Cheng, S., Liu, H., & Logan, B. E. (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. *Environmental science & technology, 40*(7), 2426-2432.

- Choi, E., & Rim, J. M. (1991). Competition and Inhibition of sulfate Reducers and Methane Producers in Anaerobic Treatment. *Water Science & Technology, 23*(7-9), 1259-1264.
- Chou, H.-H., Huang, J.-S., Chen, W.-G., & Ohara, R. (2008). Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters. *Bioresource technology, 99*(17), 8061-8067.
- Daghio, M., Gandolfi, I., Bestetti, G., Franzetti, A., Guerrini, E., & Cristiani, P. (2015). Anodic and cathodic microbial communities in single chamber microbial fuel cells. *New biotechnology, 32*(1), 79-84.
- Deng, L., Li, F., Zhou, S., Huang, D., & Ni, J. (2010). A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. *Chinese Science Bulletin, 55*(1), 99-104. doi: 10.1007/s11434-009-0563-y
- Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. *Biotechnology advances, 25*(5), 464-482.
- Dutta, P. K., Rabaey, K., Yuan, Z., & Keller, J. (2008). Spontaneous electrochemical removal of aqueous sulfide. *Water research, 42*(20), 4965-4975. doi: <u>http://dx.doi.org/10.1016/j.watres.2008.09.007</u>
- Forschner, S. R., Sheffer, R., Rowley, D. C., & Smith, D. C. (2009). Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basin. *Environmental Microbiology*, *11*(3), 630-639.
- Franks, A. E., & Nevin, K. P. (2010). Microbial fuel cells, a current review. *Energies, 3*(5), 899-919.
- Ghangrekar, M. M., Murthy, S. S., Behera, M., & Duteanu, N. (2010). Effect of sulfate concentration in the wastewater on microbial fuel cell performance. *Environ. Eng. Manage. J, 9*, 1227-1234.
- Hu, Y., Jing, Z., Sudo, Y., Niu, Q., Du, J., Wu, J., & Li, Y.-Y. (2015). Effect of influent COD/SO 4 2– ratios on UASB treatment of a synthetic sulfate-containing wastewater. *Chemosphere, 130,* 24-33.

- Ieropoulos, I. A., Greenman, J., Melhuish, C., & Hart, J. (2005). Comparative study of three types of microbial fuel cell. *Enzyme and Microbial Technology, 37*(2), 238-245.
- Izadi, P., & Rahimnejad, M. (2014). Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell. *Biofuel Research Journal,* 1(1), 34-38.
- Jing, Z., Hu, Y., Niu, Q., Liu, Y., Li, Y.-Y., & Wang, X. C. (2013). UASB performance and electron competition between methane-producing archaea and sulfatereducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. *Bioresource technology, 137*, 349-357.
- Larry L. Barton, & Guy D. Fague. (2009). Biochemistry, Physiology and Biotechnology of Sulfate-Reducing Bacteria. *Advances in Applied Microbiology, 68*, 41-98. doi: 10.1016/S0065-2164(09)01202-7
- Lee, D., Lee, C., & Chang, J. (2012). Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture. *Journal of hazardous materials, 243*, 67-72.
- Lee, D., Liu, X., & Weng, H. (2014). Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. *Bioresource technology*, *156*, 14-19.
- Lee, P. H., & Hwang, S. S. (2009). Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels. *Sensors, 9*(11), 9104-9121.
- Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction. *Biotechnology advances, 25*(5), 452-463.
- Liang, F.-Y., Huan, D., & Feng, Z. (2013). Sulfur pollutants treatment using microbial fuel cells from perspectives of electrochemistry and microbiology. *Chinese Journal of Analytical Chemistry*, *41*(8), 1133-1139.
- Lien, C.-C., Lin, J.-L., & Ting, C.-H. (2014). Water Scrubbing for Removal of Hydrogen Sulfide (H2S) Inbiogas from Hog Farms. *Journal of Agricultural Chemistry and Environment, 3*(02), 1.

- Liu, C., Li, J., Zhu, X., Zhang, L., Ye, D., Brown, R. K., & Liao, Q. (2013). Effects of brush lengths and fiber loadings on the performance of microbial fuel cells using graphite fiber brush anodes. *International Journal of Hydrogen Energy, 38*(35), 15646-15652.
- Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. *Nat Rev Micro, 7*(5), 375-381.
- Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman,
 P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and
 technology. *Environmental science & technology, 40*(17), 5181-5192.
- Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. *TRENDS in Microbiology*, *14*(12), 512-518.
- Lovley, D. R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. *Current opinion in biotechnology*, *17*(3), 327-332.
- Madigan, M. T., Martinko, J. M., & Parker, J. (2003). Brock biology of microorganisms. 10th edition. Upper Saddle River, NJ: Pearson Education Inc.
- Martin, J. H. I. (2008). A new method to evaluate hydrogen sulfide removal from biogas.
- Mohan, S. V., Velvizhi, G., Modestra, J. A., & Srikanth, S. (2014). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. *Renewable and Sustainable Energy Reviews, 40*, 779-797.

Müller, V. (2001). Bacterial Fermentation *eLS*: John Wiley & Sons, Ltd.

- Oh, S., Min, B., & Logan, B. E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. *Environmental science & technology, 38*(18), 4900-4904.
- Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. *Biotechnology letters, 25*(18), 1531-1535.
- Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Pham, H. T., Vermeulen, J., & Verhaege, M. (2006). Microbial fuel cells for sulfide removal. *Environmental science & technology, 40*(17), 5218-5224.

- Raghavulu, S. V., Mohan, S. V., Reddy, M. V., Mohanakrishna, G., & Sarma, P. (2009). Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. *International Journal of Hydrogen Energy, 34*(17), 7547-7554.
- Sangcharoen, A., Niyom, W., & Suwannasilp, B. B. (2015). A microbial fuel cell treating organic wastewater containing high sulfate under continuous operation: Performance and microbial community. *Process Biochemistry*, *50*(10), 1648-1655.
- Saritpongteeraka, K., & Chaiprapat, S. (2008). Effects of pH adjustment by parawood ash and effluent recycle ratio on the performance of anaerobic baffled reactors treating high sulfate wastewater. *Bioresource technology, 99*(18), 8987-8994. doi: <u>http://dx.doi.org/10.1016/j.biortech.2008.05.012</u>
- Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. *Physical Chemistry Chemical Physics, 9*(21), 2619-2629.
- Sun, M., Mu, Z.-X., Chen, Y.-P., Sheng, G.-P., Liu, X.-W., Chen, Y.-Z., Zhao, Y., Wang, H.-L., Yu, H.-Q., & Wei, L. (2009). Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. *Environmental science & technology*, 43(9), 3372-3377.
- Sun, M., Tong, Z.-H., Sheng, G.-P., Chen, Y.-Z., Zhang, F., Mu, Z.-X., Wang, H.-L., Zeng,
 R. J., Liu, X.-W., & Yu, H.-Q. (2010). Microbial communities involved in
 electricity generation from sulfide oxidation in a microbial fuel cell. *Biosensors* and *Bioelectronics*, 26(2), 470-476.
- Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. *Bioresource technology, 102*(20), 9335-9344.
- Yu, D.-y., Wang, G., Xu, F.-c., & Chen, L.-m. (2012). Constitution and Optimization on the Performance of Microbial Fuel Cell Based on Sulfate-Reducing Bacteria. *Energy Procedia*, 16, 1664-1670.
- Zhang, B., & Ni, J. (2010). Enhancement of Electricity Generation and Sulfide Removal in Microbial Fuel Cells with Lead Dioxide Catalyzed Cathode. Paper

presented at the Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on.

- Zhang, B., Zhang, J., Liu, Y., Hao, C., Tian, C., Feng, C., Lei, Z., Huang, W., & Zhang, Z. (2013). Identification of removal principles and involved bacteria in microbial fuel cells for sulfide removal and electricity generation. *International Journal* of Hydrogen Energy, 38(33), 14348-14355.
- Zhang, B., Zhang, J., Yang, Q., Feng, C., Zhu, Y., Ye, Z., & Ni, J. (2012). Investigation and optimization of the novel UASB–MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM). *Bioresource technology, 124*, 1-7.
- Zhang, B., Zhao, H., Zhou, S., Shi, C., Wang, C., & Ni, J. (2009). A novel UASB–MFC–BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. *Bioresource technology, 100*(23), 5687-5693.
- Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., & Verstraete, W.(2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. *Water research, 42*(1), 1-12.
- Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. *Environmental science & technology, 42*(13), 4971-4976.
- Zhao, F., Rahunen, N., Varcoe, J. R., Roberts, A. J., Avignone-Rossa, C., Thumser, A. E.,
 & Slade, R. C. (2009). Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. *Biosensors and Bioelectronics, 24*(7), 1931-1936.
- กระทรวงอุตสาหกรรม, ก. (2553). คู่มือการปฏิบัติงานเกี่ยวกับการออกแบบ การผลิต การควบคุม คุณภาพ และการใช้ก๊าซชีวภาพ(*biogas)* สำหรับโรงงานอุตสหากรรม. กรุงเทพมหานคร: กรม โรงงานอุตสาหกรรม.

มั่นสิน ตัณฑุลเวศน์. (2546). คู่มือการบำบัดระบบบำบัดน้ำเสียแบบไม่ใช้อากาศ. กรุงเทพมหานคร.

การคำนวณ

1.ปฏิกิริยารีดิวซ์ซัลเฟต

SO₄²⁻ + 10H⁺ 8e⁻ --> H₂S + 4H₂O 2O₂ + 8H⁺ + 8e⁻ --> 8H₂O ซัลเฟต 96 กรัม ทำปฏิกิริยากับอิเลคตรอน 8 โมลในการรีดิวซ์ ออกซิเจน 64 กรัม ให้อิเลคตรอน 8 โมล

เพราะฉะนั้นต้องใช้ออกซิเจน 64 กรัม ทำปฏิกิริยาพอดีกับซัลเฟต 96 กรัม

หรือคิดเป็นสัดส่วนออกซิเจน (ซีโอดี) ต่อซัลเฟตเท่ากับ 0.67

ดังนั้นจากการทดลองช่วงที่ 1 ห้องไร้อากาศที่ 1

ซัลเฟตถูกบำบัด 293 มิลลิกรัมซัลเฟตต่อลิตร ต้องใช้ซีโอดีเท่ากับ 0.67*293=196.3 มิลลิกรัมซีโอดีต่อลิตร

2.การคำนวนความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์

-เก็บตัวอย่างก๊าซ 50 มิลลิตร ในขวดที่มี SAOB 10 มิลลิลิตร

-นำ SAOB ที่มีซัลไฟด์ละลายอยู่มา 5 มิลลิลิตร เติมน้ำกลั่น 5 มิลลิลิตร

-วัดความเข้มข้นซัลไฟด์ในน้ำตัวอย่าง

-คำนวณมวลของซัลเฟอร์ในตัวอย่างน้ำให้อยู่ในรูปของก๊าซ

เช่น

-วัดซัลไฟด์ได้ 904.7 มิลลิโวลต์

-เมื่อเทียบกับกราฟมาตรฐานได้ซัลไฟด์เข้มข้น 78.41 มิลลิกรัมซัลไฟด์ต่อลิตร

-คิดเป็นมวลของซัลเฟอร์ต่อตัวอย่าง (10 มิลลิลิตร) เท่ากับ 0.7841 มิลลิกรัม

-คิดเป็นมวลของซัลเฟอร์ต่อก๊าซ 1 ลิตร เท่ากับ 15.08 มิลลิกรัมซัลเฟอร์

PV = nRT

หรือใช้สมการ H₂S _{ppm} = H₂S _{gram} x (temp+273) x 2.41

3. การหาค่าสัมประสิทธิ์การถ่ายเทมวลสารรวม

จากการวัดความเข้มข้นออกซิเจนละลายน้ำตามเวลา จึงนำมาสร้างกราฟเพิ่มหาความชัน ในช่วง 0.1-0.9 DO_{sat}

นำค่าออกซิเจนละลายมาสร้างกราฟโดยที่

แกน X คือระยเวลา (นาที)

แกน Y คือ ln(C_{sat}-C_o)/ln(C_{sat}-C_t)

-เปลี่ยนหน่วยค่าความชันจากกราฟ (สัมประสิทธิ์การถ่ายเทมวลสารรวม) ให้เป็น ต่อขั่วโมง

-ปรับค่าสัมประสิทธิ์การถ่ายเทมวลสารรวมให้เป็นที่อุณหภูมิ 20 องศาเซลเซียส

ด้วยสมการ KL_{a20C} = KL_{aTemp} x (1.024^(20-temp))

เช่น

-ค่าความชั้นกราฟมีค่าเท่ากับ 0.0117 ต่อนาที

-เปลี่ยนหน่วยเป็นต่อชั่วโมงได้เท่ากับ 0.0117×60 = 0.702 ต่อชั่วโมง

-ปรับแก้เป็นอุณหภูมิ 20 องศาเซลเซียส ได้เท่ากับ 0.4977 ต่อชั่วโมง

4. การคำนวน COD balance

-COD ขาเข้าประมาณ 3,000 มิลลิกรัมซีโอดีต่อลิตร

-น้ำขาออกห้องไร้อากาศมีค่าซีโอดีเฉลี่ยเท่ากับ 650 มิลลิกรัมซีโอดีต่อลิตร

คิดเป็น 22 % ของน้ำเสียขาเข้า

-ใช้ในการรีดิวซ์ซัลเฟต 300 มิลลิกรัมซัลเฟตต่อลิตร (COD:sulfate = 0.67)

คิดเป็น 0.67*300 = 200 มิลลิกรัมซัลเฟตต่อลิตร

คิดเป็น 6.7 % ของน้ำเสียขาเข้า

-ใช้ในการเติบโตของเซลล์ (f_s=0.1)

 $0.04167 \ \mathsf{C_6H_{12}O_6} + 0.005 \ \mathsf{HCO_3} + 0.005 \ \mathsf{NH_4^+} \dashrightarrow 0.005 \ \mathsf{C_5H_7O_2N} + 0.1175 \ \mathsf{CO_2} + 0.02 \ \mathsf{H_2O} + 0.1125 \ \mathsf{CH_4} + 0.005 \$

สัดส่วนมีเทนต่อเซลล์เท่ากับ 0.1125/0.005 = 22.5

เพราะฉะนั้นคิดเป็น 3.03% ของน้ำเสียขาเข้า

-ใช้ในการผลิตก้ำซมีเทน

คิดเป็น 68.3 % ของน้ำเสียขาเข้า

การเตรียมก๊าซไฮโดรเจนซัลไฟด์

ในการทดลองครั้งนี้ผู้ทำการศึกษาใช้การเตรียมก๊าซไฮโดรเจนซัลไฟด์จากสารละลายโซเดียม ซัลไฟด์ (ในสารละลายด่าง) และเปลี่ยนรูปซัลไฟด์ไอออนในสารละลายให้เป็นก๊าซไฮโดรเจนซัลไฟด์ โดยการเติมกรดไฮโดรคลอริกเข้มข้น โดยก๊าซที่ใช้เป็นก๊าซนำพาคือก๊าซไนโตรเจน โดยมีขั้นตอนการ เตรียมก๊าซดังนี้

1. กำหนดความเข้มข้นของก๊าซไฮเดรเจนซัลไฟด์ที่ต้องการเตรียม

2. คำนวณปริมาณไฮโดรเจนซัลไฟด์ในก๊าซที่ต้องการเตรียม

3. คำนวณปริมาณโซเดียมซัลไฟด์ที่ต้องใช้

4. ชั่งและละลายโซเดียมซัลไฟด์ในน้ำที่ไม่มีออกซิเจน (anoxic water)

5. เติมสารละลายโซเดียมซัลไฟด์ในขั้นตอนที่ 4 ใส่ขวดเซรัมสีชา พร้อมไล่อากาศภายในขวด ด้วยก๊าซไนโตรเจน หลังจากนั้นจึงปิดด้วยจุกซิลิโคนและฝาอะลูมิเนียม

 6. ต่อสายยางจากถุงเก็บก๊าซในโตรเจนมายังขวดเซรัมในขั้นตอนที่ 5 และต่อสายยางอีกเส้น ไปยังถุงที่ต้องการใช้เก็บก๊าซไฮโดรเจนซัลไฟด์ดังภาพ

7. เติมกรดไฮโดรคลอริกเข้มข้นปริมาตร 1 มิลลิลิตร ลงในขวดเซรัมด้วยเข็มฉีดยา

8. เขย่าสารละลายภายในขวดให้เข้ากัน พร้อมเติมไนโตรเจนเข้าสู่ขวดเซรัม จนเติมก๊าซได้

ปริมาตร 1 ลิตรหรือตามที่ต้องการ

9. ตรวจสอบความเข้มข้นของก๊าซไฮโดรเจนซัลไฟด์

การเตรียมก๊าซไฮโดรเจนซัลไฟด์ด้วยสารละลายโซเดียมซัลไฟด์

ขั้นตอนการตรวจวัดก๊าซไฮโดรเจนซัลไฟด์

ในการวิจัยครั้งนี้ตรวจวัดความเข้มข้นของก๊าซไฮโดรเจนซัลไฟด์ โดยอาศัยการเปลี่ยนรูปเป็น ซัลไฟด์ไอออน ในสารละลายด่าง ซึ่งสารละลายด่างที่เลือกใช้ในครั้งนี้คือ sulfide anti-oxidant buffer เพื่อป้องกันการออกซิไดซ์ของซัลไฟด์ และวัดความเข้มข้นซัลไฟด์ไอออนด้วย PerfectION[™] Combination Silver/Sulfide Electrode (Mettler Toledo) ขั้นตอนในการเตรียมตัวอย่างสำหรับ การตรวจวัดก๊าซไฮโดรเนซัลไฟด์มีดังนี้

1. เก็บตัวอย่างก๊าซปริมาตรในถุงเก็บก๊าซ FlexFoil® Plus (SKC) ขนาด 1 ลิตร

2. เติมสารละลาย sulfide anti-oxidant buffer ปริมาตร 10 มิลลิลิตร ลงในขวดเซรัมขนาด
125 มิลลิลิตร หลังจากนั้นไล่อากาศภายในขวดด้วยก๊าซไนโตรเจน แล้วจึงปิดด้วยจุกซิลิโคนและฝา
อะลูมิเนียม

3. ใช้หลอดฉีดยาดึงก๊าซจากขวดเซรัมในขั้นตอนที่ 2 ออกปริมาตร 50 มิลลิลิตร

 เติมก๊าซตัวอย่างปริมาตร 50 มิลลิลิตรเข้าสู่ขวดเซรัมพร้อมเขย่าขวดเพื่อให้ก๊าซละลายใน สารละลาย

5. ตั้งขวดไว้ 30 นาทีเพื่อให้ก๊าซไฮโดรเจนซัลไฟด์เปลี่ยนรูปเป็นซัลไฟด์ไอออน

6. นำสารละลายภายในขวดปริมาตร 5 มิลลิลิตร มาเติมด้วยน้ำกลั่น 5 มิลลิลิตรและ ionic strength adjuster ปริมาตร 50 ไมโครลิตร

7. วัดศักย์ไฟฟ้าของสารละลายด้วย PerfectION[™] Combination Silver/Sulfide Electrode หลังจากนั้นนำค่าที่ได้มาเทียบกับกราฟความเข้มข้นมาตรฐาน

Chulalongkorn University

	ความเข้มข้นสารอินทรีย์ (มิลลิกรัมซีโอดีต่อลิตร)			ประสิทธิภาพการบำบัด (%)	
วันที่	y	ขา	ออก	. איש	2 H 2
	ขาเข้า	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2	ห้องไว้อากาศ 1	ห้องไร้อากาศ 2
1	3136	732	1254	76.7	60.0
2	3136	1882	1150	40.0	63.3
5	3345	2195	2509	34.4	25.0
7	3136	1568	941	50.0	70.0
9	2512	279	219	88.9	91.3
12	2573	219	302	91.5	88.3
14	2452	279	339	88.6	86.2
16	2796	835	840	70.2	69.9
19	2918	825	852	71.7	70.8
21	2845	766	1054	73.1	63.0
23	2804	1065	1018	62.0	63.7
26	2751	1061	1044	61.4	62.0
28	2912	1071	1101	63.2	62.2
30	3073	678	668	77.9	78.3
33	3112	672	583	78.4	81.3
35	3069	692	646	77.4	78.9
37	2842	506	475	82.2	83.3
40	2900	492	457	83.0	84.2
42	3003	509	529	83.0	82.4
44	2854	555	524	80.5	81.7
48	2870	553	388	80.7	86.5
49	2936	557	394	81.0	86.6
51	2829	586	369	79.3	86.9
54	2911	590	237	79.7	91.9
56	2868	572	235	80.0	91.8
58	2901	576	313	80.1	89.2
61	2998	656	310	78.1	89.7

ผลการวิเคราะห์ค่าความเข้มข้นสารอินทรีย์ของห้องไร้อากาศ 1 และ 2 ช่วงการทดลองที่ 1

63	2895	601	327	79.3	88.7
65	2974	674	411	77.3	86.2
68	3007	684	356	77.2	88.2
70	3012	681	331	77.4	89.0
72	2888	617	344	78.6	88.1
75	2878	704	306	75.5	89.4
77	2991	681	299	77.2	90.0
79	3022	610	257	79.8	91.5
82	2894	595	269	79.4	90.7
84	2874	600	252	79.1	91.2
86	2978	622	252	79.1	91.5
89	2963	649	252	78.1	91.5
91	2924	661	283	77.4	90.3
93	2930	638	352	78.2	88.0
96	2889	650	350	77.5	87.9
98	2913	612	265	79.0	90.9
100	3080	544	216	82.3	93.0
103	2972	558	226	81.2	92.4
105	2869	594	193	79.3	93.3
107	3239	667	303	8 79.4	90.7
110	3256	772 016	299	5 111 76.3	90.8
112	3401	745	342	78.1	89.9
117	2728	547	320	79.9	88.3
119	2807	550	371	80.4	86.8
121	2922	568	447	80.6	84.7
124	2802	555	429	80.2	84.7
126	2802	537	417	80.8	85.1
128	2910	522	435	82.1	85.1
131	2995	547	479	81.7	84.0
133	3018	491	521	83.7	82.7
135	3030	509	580	83.2	80.9
138	2999	516	590	82.8	80.3

140	3044	618	634	79.7	79.2
142	2942	509	602	82.7	79.5
145	2931	446	707	84.8	75.9
147	2998	547	640	81.7	78.7
152	2998	581	505	80.6	83.1
154	2829	573	455	79.8	83.9
156	3166	573	438	81.9	86.2
159	3135	767	604	75.5	80.7
161	3045	851	678	72.1	77.7
163	3127	827	743	73.6	76.2
166	2996	796	661	73.4	77.9
168	3004	900	833	70.0	72.3
170	3184	696	599	78.2	81.2
173	3137	808	528	74.2	83.2
175	3113	778	575	75.0	81.5
177	3279	778	564	76.3	82.8
180	3137	814	552	74.1	82.4
182	3184	814	493	74.4	84.5
184	3090	713	552	76.9	82.1
187	3260	933	919	8 71.4	71.8
189	3184	879	956	SITY 72.4	70.0
MEAN	2971	640	437	78.7	85.2
SD	169	113.6	174.3	3.2	5.49

	ความเจ่	ความเข้มข้นซัลเฟต (มิลลิกรัมซัลเฟตต่อลิตร)			ประสิทธิภาพการบำบัด (%)	
วันที่	ขาเข้า	ขา	ขาออก		ห้องไร้อากาศ 2	
	01601	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2	NO4630 III III 1	101630 III III Z	
1	315.2	212.1	200.2	32.7	36.5	
2	329.4	238.2	223.9	27.7	32.0	
5	319.9	98.3	69.9	69.3	78.1	
7	310.4	67.5	62.8	78.2	79.8	
9	303.4	40.5	48.9	86.7	83.9	
12	308.5	66.9	78.4	78.3	74.6	
14	308.5	72.0	66.9	76.7	78.3	
16	293.1	101.6	90.5	65.3	69.1	
19	298.0	30.2	23.4	89.9	92.1	
21	298.0	21.8	19.1	92.7	93.6	
23	298.2	44.8	6.9	85.0	97.7	
26	302.8	55.0	10.3	81.8	96.6	
28	302.8	32.1	11.5	89.4	96.2	
30	295.1	36.3	19.3	87.7	93.5	
33	300.0	31.0	3.8	89.7	98.7	
35	295.1	18.3	8.6	93.8	97.1	
37	300.0	26.4	21.9	91.2	92.7	
40	298.4	50.8	16.7	83.0	94.4	
42	303.3	45.9	9.3	84.9	96.9	
44	298.4	41.1	2.0	86.2	99.3	
48	303.3	14.2	19.1	95.3	93.7	
49	308.1	16.7	13.2	94.6	95.7	
51	298.4	16.7	16.9	94.4	94.3	
54	308.1	31.3	8.3	89.8	97.3	
56	308.1	4.5	21.7	98.5	92.9	
58	303.3	23.0	3.5	92.4	98.9	
61	310.0	20.0	10.0	93.5	96.8	

ผลการวิเคราะห์ค่าความเข้มข้นซัลเฟตของห้องไร้อากาศ 1 และ 2 ช่วงการทดลองที่ 1

63	300.0	22.5	8.8	92.5	97.1
65	300.0	15.0	12.5	95.0	95.8
68	290.0	17.5	15.0	94.0	94.8
70	295.0	23.8	10.0	91.9	96.6
72	285.0	18.8	22.5	93.4	92.1
75	306.4	21.6	6.2	93.0	98.0
77	306.4	11.3	15.2	96.3	95.1
79	306.4	17.7	15.2	94.2	95.1
82	291.1	21.6	13.9	92.6	95.2
84	291.1	12.6	6.2	95.7	97.9
86	296.2	12.4	2.6	95.8	99.1
89	306.5	6.7	1.7	97.8	99.5
91	313.1	15.0	5.0	95.2	98.4
93	313.1	3.3	8.3	98.9	97.3
96	313.1	13.3	11.7	95.7	96.3
98	286.5	0.0	11.7	100.0	95.9
100	306.5	18.3	10.0	94.0	96.7
103	293.1	16.7	0.0	94.3	100.0
105	293.1	20.0	3.3	93.2	98.9
107	293.1	3.3	6.7	98.9	97.7
110	305.4	0.0	KORN 0.0 WER	SITY 100.0	100.0
112	305.4	3.0	0	99.0	100.0
114	317.3				
117	317.3	0.0	3.0	100.0	99.1
119	311.3	3.0	4.5	99.0	98.6
121	307.5	0.0	0	100.0	100.0
124	296.7	0.0	0	100.0	100.0
126	296.7	0.0	0	100.0	100.0
128	288.7	0.0	0	100.0	100.0
131	288.7	0	0	100.0	100.0
133	295.4	0	0	100.0	100.0
135	282.0	0	0	100.0	100.0

138	288.7	0	0	100.0	100.0
140	275.3	0	0	100.0	100.0
142	288.7	0	0	100.0	100.0
145	284.0	0	0	100	100.0
147	302.5	0	0	100	100.0
152	327.0	0	0	100	100.0
154	320.9	0	0	100	100.0
156	314.7	0	0	100	100.0
159	296.3	0	0	100	100.0
161	284.0	0	0	100	100.0
163	284.0	0	0	100	100
166	314.1	0	0	100	100
168	317.3	0	0	100	100
170	318.1	0	0	100	100
173	318.9	0	0	100	100
175	312.9	0	0	100	100
177	313.3	0	0	100	100
180	306.5	0	0	100	100
182	309.3	0	0	100	100
184	312.1	จุขาลงกร	ฉโมหาดไทยาล	2 100	100
187	312.9	GHL0.ALONG	KORN 0 NIVER	SITY 100	100
MEAN	302.7	9.1	5.1	97.0	98.3
SD	11.06	12.2	6.53	4.07	2.19

र व	ความเข้มข้นซัลไฟด์ (มี	ลิกรัมซัลไฟด์ต่อลิตร)	
วนท	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2	
2	37.96	33.83	
5	33.83	25.25	
7	28.08	30.96	
9	30.55	31.51	
12	36.14	29.16	
14	36.14	29.16	
16	26.02	33.59	
19	34.21	48.84	
21	53.26	42.98	
23	56.77	51.12	
26	49.28	52.29	
28	62.20	58.88	
30	73.97	76.37	
33	58.65	51.63	
35	59.35	53.94	
37	56.13	57.95	
40	67.42	67.42	
42	65.31	63.26	
44	57.67	55.91	
48	56.16	48.53	
49	51.17	51.17	
51	82.55	68.90	
54	87.05	70.60	
56	80.38	64.04	
58	71.01	76.58	
61	73.34	73.65	
63	75.21	76.49	
68	64.00	68.00	

ผลการวิเคราะห์ค่าความเข้มข้นซัลไฟด์ของห้องไร้อากาศ 1 และ 2 ช่วงการทดลองที่ 1

70	68.00	60.00
72	64.00	68.00
75	53.50	74.34
77	49.15	78.13
79	55.40	80.03
82	80.03	76.24
84	62.98	87.60
86	74.34	89.50
89	62.98	85.71
91	53.50	87.60
93	46.62	69.95
96	46.95	65.53
98	49.58	75.21
100	44.63	70.46
103	43.36	58.49
105	43.77	55.19
107	124.64	74.67
110	97.99	76.86
112	162.66	159.17
116	140.57	113.51
117	114.23	92.96
119	93.33	86.95
120	112.49	95.13
121	79.61	71.59
122	85.97	68.89
123	87.97	63.31
124	92.83	69.42
125	92.12	68.89
126	93.29	63.51
127	89.75	71.31
128	94.74	71.86
130	95.47	85.18

131	94.74	65.50
132		67.04
133		87.17
134	100.95	94.90
135	88.53	77.64
136	81.95	66.52
137	84.52	86.50
138	95.64	83.2241
139	84.52	77.64
140	85.18	77.64
141	82.58	78.84
142	85.18	71.86
145	63.02	54.84
146	67.04	61.10348
147	66.52	64.00
148	64.50	35.31
149		
150	72.98	60.63
151	66.52	60.17
152	60.17	53.58
153	48.47	SITY 55.27
155	39.65	42.50
156	54.42	53.58
157	55.69	39.65
158	56.13	51.55
159	47.35	53.58
160	72.02	68.95
161	54.25	53.47
162	49.01	59.63
163	68.45	62.28
164	72.02	60.94
165	73.08	70.98

166	72.02	72.55
167	72.02	72.55
168	66.98	64.59
169	83.29	80.32
170	60.06	57.50
171	78.58	74.69
172	78.01	76.33
173	80.90	78.01
174	84.51	82.68
175	85.12	76.89
176	86.37	82.68
177	85.74	86.37
178	77.45	80.32
179	83.29	80.32
180	74.69	74.15
181	82.68	83.29
182	83.89	81.49
183	90.87	85.74
184	82.08	84.51
185	78.01	85.12
186	80.32	SITY 85.74
187	68.45	73.61
188	66.98	72.55
189	76.89	68.45
190	73.08	65.53
MEAN	73.27	70.43
SD	13.92	12.05

วันที่	พีเอช		โออาร์พี (มิลลิโวลต์)	
	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2
2	7.13	7.03		
4	6.87	6.85		
5	6.79	6.82		
6	6.68	6.74		
7	6.65	6.75		
8	6.72	6.78		
9	6.81	6.82		
12	6.94	6.89		
13	7.16	7.20		
14	7.12	7.13	-342	-340
15	7.04	6.93	-352	-346
16	6.85	6.85	-359	-341
19	6.99	6.91	-344	-335
20	7.06	7.19	-354	-324
21	7.08	7.11	-348	-337
22	6.92	6.94	-347	-352
23	6.83	6.84	-354	-355
26	7.01	6.88	-355	-351
27	6.92	6.85	-349	-354
28	7.01	6.98	-359	-360
29	7.04	6.93	-367	-363
30	7.00	7.03	-370	-363
33	6.97	6.96	-369	-368
34	7.02	7.03	-368	-372
35	6.92	6.93	-363	-362
36	6.91	6.95	-365	-363
37	6.88	6.93	-363	-364
40	7.10	7.04	-380	-375
41	6.98	7.02	-365	-363

ผลการวิเคราะห์ค่าพีเอชและโออาร์พีห้องไร้อากาศ 1 และ 2 ช่วงการทดลองที่ 1

42	6.96	6.99	-368	-370
43	7.05	6.95	-371	-372
44	6.87	6.85	-359	-363
48	7.06	7.01	-358	-365
49	6.98	6.89	-360	-362
50	6.91	6.89	-357	-360
51	6.94	7.02	-383	-378
54	6.87	7.05	-381	-381
55	6.85	6.94	-383	-371
56	6.86	6.99	-382	-373
57	6.99	6.89	-374	-374
58	6.84	6.96	-377	-380
61	6.87	7.02	-377	-379
62	6.91	6.92	-364	-377
63	6.79	6.93	-369	-378
64	6.88	7.01	-374	-376
65	6.85	6.94	-366	-375
68	6.90	6.94	-365	-375
69	6.92	6.98	-367	-378
70	6.92	6.98	-367	-378
71	6.80	6.90	-365	-376
72	6.89	7.00	-379	-381
75	6.88	6.98	-361	-379
76	6.85	6.91	-368	-383
77	6.89	6.96	-367	-382
78	6.90	6.96	-380	-385
79	6.83	6.98	-379	-384
82	7.00	7.05	-388	-392
83	6.97	7.02	-384	-394
84	7.04	7.05	-380	-394
85	6.87	7.00	-373	-385
86	7.05	7.03	-381	-390

89	6.98	7.02	-376	-383
90	6.95	6.98	-379	-381
91	6.87	6.89	-376	-386
92	6.92	6.94	-375	-382
93	6.96	6.96	-373	-374
96	7.00	7.02	-373	-379
97	6.98	7.01	-372	-382
98	6.98	7.02	-375	-379
99	6.99	7.00	-378	-380
100	6.96	7.02	-375	-381
103	6.97	7.01	-378	-386
104	6.75	6.84	-366	-373
105	6.87	6.95	-370	-380
106	6.92	6.96	-375	-377
107	6.88	6.97	-382	-378
110	6.72	6.85	-371	-375
112	6.75	6.82	-370	-373
113	6.85	6.94	-371	-378
114	71			
117	6.79	6.90	-363	-373
118	6.88	7.00	SITY -377	-387
119	6.89	7.02	-377	-367
120	6.86	6.98	-372	-378
121	6.85	6.96	-370	-377
124	6.92	7.02	-377	-362
125	7.00	7.05	-376	-376
126	6.89	6.94	-372	-378
127	6.94	6.98	-370	-375
128	6.93	6.99	-376	-377
131	6.90	6.95	-370	-379
132	6.92	6.98	-372	-368
133	6.93	6.90	-370	-367

134	6.92	6.94	-372	-377
135	6.91	6.93	-359	-373
138	6.95	6.96	-382	-374
139	6.83	6.89	-380	-373
140	6.75	6.79	-374	-373
141	6.87	6.89	-368	-367
142	6.78	6.79	-361	-373
145	6.68	6.71	-368	-367
146	6.70	6.72	-364	-367
147	6.73	6.76	-354	-365
148	ll in			
149	interest of the second s			
150				
151	6.63	6.84	-357	-365
152	6.69	6.85	-360	-365
153	6.69	6.87	-350	-369
154	4			
155	6.77	6.93	-356	-360
156	7.00	7.08		
157	6.73	7.03	-348	-347
158	6.60	6.79	-354	-362
159	6.64	6.81	-352	-361
160	6.70	6.82	-351	-357
161	6.84	6.89	-354	-357
162	6.77	6.80	-355	-358
163	6.84	7.00	-357	-361
164	6.81	6.95	-352	-356
165	6.83	6.95	-355	-362
166	6.87	6.92	-354	-359
167	6.76	6.83	-356	-360
168	6.84	7.00	-358	-362
169	6.78	6.85	-365	-364

170	6.80	6.85	-355	-356
171	6.81	6.85	-357	-365
172	6.72	6.80	-356	-361
173	6.74	6.83	-359	-364
174	6.68	6.79	-358	-365
175	6.68	6.78	-350	-363
176	6.58	6.73	-352	-359
177	6.84	6.79	-352	-360
178	6.77	6.99	-356	-366
179	6.76	6.84	-357	-364
180	6.53	6.62	-354	-359
181	6.59	6.72	-359	-365
182	6.61	6.75	-360	-372
183	6.69	6.72	-363	-367
184	6.94	7.08	-340	-367
185	6.96	7.04	-361	-360
186	6.94	7.08	-357	-368
187	6.89	7.01	-351	-365
188	7.01	7.04	-360	-365
189	6.98	7.07	-340	-350
MEAN	6.85	6.93	-366.	-371.
SD	0.12	0.10	10.7	9.7

≥ ਰ	ความเป็นด่าง (มิลล์	ลิกรัมหินปูนต่อลิตร)	กรดไขมันระเหย (มิล	ลิกรัมอะซิติกต่อลิตร)
วนท	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2
5	2,225	2,235	1,039	1,069
7	2,190	2,280	930	1,105
9	2,290	2,290	944	1,076
12	2,300	2,250	996	1,083
14	2,010	2,030	937	1,039
16	1,973	2,020	1,069	1,054
19	2,155	2,215	1,168	1,054
21	2,155	2,190	761	725
23	2,160	2,160	710	571
26	2,290	2,295	688	703
28	2,210	2,360	542	571
30	2,025	2,030	556	571
33	2,010	2,100	571	586
35	2,080	2,080	520	578
37	2110	2,120	395	322
40	2,040	2,160	476	454
42	2,025	2,080	454	439
44	2,065	2,140	520	483
48	2,110	2,240	483	381
49	2,100	2,190	381	293
51	2,070	2,120	249	176
54	2,085	2,070	366	205
56	2,190	2,050	395	146
58	2,270	2,230	468	264

ผลการวิเคราะห์ความเป็นด่างและกรดไขมันระเหยง่ายห้องไร้อากาศ 1 และ 2 ช่วงการทดลองที่ 1

61	2120	2,140	395	234
63	2,140	2,180	425	264
65	2,140	2,150	425	278
68	2,190	2,200	483	381
70	2,240	2,250	512	322
72	2,850	2,550	425	278
75	2,130	2,350	476	322
77	2,380	2,290	498	278
79	2,340	2,230	498	322
82	2,260	2,260	512	293
84	2,220	2,230	571	278
86	2,290	2,270	556	249
89	2,350	2,350	586	264
91	2,040	2,160	600	322
93	2,195	2,370	644	307
96	2,090	2,190	498	176
98	2,100	2,150	527	249
100	2,100	2,150	527	220
103	2,050	2,140	351	190
105	2,120	2,310	425	176
107	2,350	2,350	381	234
110	2,150	2,350	600	264
112	2,350	2,380	608	307
117	2,470	2,480	439	190
119	2,420	2,370	542	220
121	2,400	2,500	556	245
124	2,500	2,350	593	249

126	2,510	2,290	432	264
128	2,500	2,360	494	245
131	2,370	2,370	414	234
133	2,440	2,320	344	242
135	2,450	2,440	307	278
138	2,390	2,350	465	205
140	2,510	2,350	355	242
142	2,570	2,430	465	264
145	2,570	2,440	403	285
147	2,620	2,440	395	278
152	2,710	2,530	410	271
159	2,590	2,460	564	278
161	2,970	2,570	454	227
166	3,040	2,610	490	234
170	2,990	2,580	564	300
174	2,785	2,710	476	271
183	3,690	3,500	556	300
184	4,030	3,710	710	381
MEAN	2,165	2,211	474	282
SD	103.3	89.6	85.5	81.7

	ความเข้มข้นสารอินทรีย์	์ (มิลลิกรัมซีโอดีต่อลิตร)	ประสิทธิภาพก	าารบำบัด (%)
วันที่	ห้องเซลล์เชื้อเพลิง	ห้องเซลล์เชื้อเพลิง	ห้องเซลล์เชื้อเพลิง	ห้องเซลล์เชื้อเพลิง
	ชีวภาพ 1	ชีวภาพ 2	ชีวภาพ 1	ชีวภาพ 2
1	729	284	0.49	1.71
			0.00	
6	533	320	0.51	0.00
8	531	230	0.70	5.00
10	558	350	0.31	3.31
13	528	374	0.97	1.94
15	501	338	1.29	2.80
17	501	296	0.73	4.77
20	515	343	1.09	4.55
22	473	331	0.59	6.27
24	450	426	1.95	5.08
27	426	516	2.99	2.46
29	469	506	4.89	4.21
31	429	500	2.72	3.49
33	227	505	ยาลัย 7.47	6.90
35	354 C HI	522	6.46	3.93
37	547	505	1.12	0.00
39	531	455	1.49	0.00
41	505	429	2.13	0.27
44	751	482	0.52	3.91
46	767	490	2.75	6.17
48	702	669	3.98	2.35
51	747	522	1.63	4.63
53	790	624	3.67	6.93
55	542	457	4.83	4.46
58	607	516	6.41	0.38
60	619	552	5.13	0.76

ผลการวิเคราะห์ความเข้มข้นสารอินทรีย์ห้องเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3

62	607	528	5.23	1.08
65	589	504	7.16	1.51
67	577	445	7.43	1.49
69	642	481	2.30	2.30
72	796	683	4.2	7.2
74	669	650	6.6	9.6
MEAN	569	464	3.0	3.4
SD	130.6	112.5	2.4	2.5

จะส่	ความเข้มข้นซัลเฟต (มิลลิกรัมซัลเฟตต่อลิตร)		
3 L3 VI	ห้องเซลล์เชื้อเพลิงชีวภาพ 1	ห้องเซลล์เชื้อเพลิงชีวภาพ 2	
1	0	1.5	
6	15	3.0	
8	0	0.0	
10	8.1	6.7	
13	1.3	2.7	
15	9.4	10.8	
17	0.0	0.0	
20	0.0	20.4	
22	0.0	17.1	
24	0.0	23.8	
27	0.0	10.4	
29	0.0	0.0	
31	0.0	0.0	
33	0.0	0	
35	9.0000 SQL 1000 B	ลัย 0	
37	0.0	RSITY 0	
39	0.0	0	
41	0.0	0	
44	0.0	0.0	
46	0.0	4.0	
48	0	7.1	
51	0	2.8	
53	0	0.0	
55	0	4.0	
58	0	0.0	
60	0	0.0	
62	0	0	

ผลการวิเคราะห์ความเข้มข้นซัลเฟตห้องเชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3

65	0	0
67	0	0
69	0	0
72	0	0
MEAN	0.66	3.7
SD	2.20	6.4

	ความเข้มข้นซัลไฟด์ (มี	มิลลิกรัมซัลไฟด์ต่อลิตร)	ประสิทธิภาพเ	าารบำบัด (%)
วันที่	ห้องเซลล์เชื้อเพลิง	ห้องเซลล์เชื้อเพลิง	ห้องเซลล์เชื้อเพลิง	ห้องเซลล์เชื้อเพลิง
	ชีวภาพ 1	ชีวภาพ 2	ชีวภาพ 1	ชีวภาพ 2
1	11.40	80.84	92.99	49.21
5	25.93	6.97	81.55	93.86
6	20.91	4.23	81.69	95.45
8	32.33	11.40	65.36	86.89
9	43.72	14.46	61.13	84.80
10	24.95	10.23	68.66	85.70
11	24.57	11.22	71.42	83.71
12	18.21	9.19	79.30	85.48
13	16.99	7.13	81.69	89.73
14	24.57	11.48	73.33	83.33
15	24.14	7.29	74.12	88.52
16	25.29	9.41	71.83	86.81
17	21.33	5.61	77.48	92.20
19	29.51	10.73	69.09	87.40
20	21.50	9.12	ยาลัย 77.31	86.07
22	9.05 C M	53.08	91.03	79.31
23	13.45	7.19	84.81	91.69
24	57.00	5.20	30.44	74.71
25	83.87	51.95	0.77	68.12
26	43.83	4.39	54.17	98.04
27	83.87	51.55	0.77	97.90
28	85.18	50.76	0.00	74.52
29	61.58	34.24	25.44	45.68
30	68.08	13.34	20.07	95.41
31	37.27	12.64	40.86	88.19
32	45.21	21.04	32.56	96.36
33	22.56	14.64	66.09	55.03

ผลการวิเคราะห์ความเข้มข้นซัลไฟด์ห้องเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3

34	34.24	0.29	46.92	46.46
36	8.26	13.76	93.30	91.10
37	4.46	12.45	75.48	60.54
38	14.75	4.46	85.05	75.03
39	7.25	13.97	63.08	45.68
40	14.64	13.55	64.20	96.33
41	19.48	1.05	51.99	64.87
42	26.74	0.83	59.18	59.38
43	22.91	13.14	59.81	31.46
44	19.03	29.11	55.03	57.87
45	32.39	3.17	75.03	35.80
46	13.55	6.32	93.94	37.18
47	2.97	2.17	56.63	34.86
48	29.69	28.01	45.68	54.04
49	39.12	32.63	44.08	44.48
50	40.87	6.32	46.07	38.54
51	38.84	28.63	56.00	46.46
52	31.69	18.11	64.10	40.30
53	24.05	35.08	46.46	50.93
54	44.59	2.95	ยาลัย 62.50	33.91
55	22.52 CHI	20.20	VERSI 65.63	53.02
56	27.01	30.34	38.98	33.91
57	47.60	52.32	36.73	29.95
58	51.19	32.86	35.33	29.44
59	54.65	53.08	42.43	29.44
60	49.01	48.30	38.98	30.96
61	52.70	53.86	47.23	32.94
62	45.24	39.70	36.26	79.31
63	49.36	44.59	32.94	91.69
64	55.85	49.36	38.09	74.71
65	46.24	39.70	38.54	68.12
66	50.82	49.72	44.08	98.04

67	46.92	39.99	37.18	97.90
68	57.08	56.67	29.95	74.52
69	57.50	39.70	47.62	45.68
70	40.87	56.26	60.25	95.41
71	31.92	60.06	53.36	88.19
72	31.92	51.94	54.04	96.36
73	30.78	51.19	35.33	55.03
74	49.72	47.26	38.98	46.46
MEAN	34.46	25.45	43.13	66.58
SD	18.76	20.07	27.89	23.57

	พีเอช		โออาร์พี (มิลลิโวลต์)	
วันที่	ห้องเชื้อเพลิงชีวภาพ	ห้องเชื้อเพลิงชีวภาพ	ห้องเชื้อเพลิงชีวภาพ	ห้องเชื้อเพลิงชีวภาพ
	1	2	1	2
1	6.88	7.11	-339	-370
3	6.89	7.02	-342	-368
6	7.01	7.12	-340	-340
7	7.01	7.27	-368	-365
8	6.92	7.05	-380	-349
9	7.01	7.07	-364	-348
10	7.00	7.05	-367	-350
13	7.02	7.07	-343	-349
14	7.13	7.16	-357	-355
15	7.05	7.1	-345	-353
16	7.1	7.12	-348	-352
17	7	7.06	-335	-350
20	6.99	7.04	-362	-358
21	7.04	7.09	-350	-372
22	7.1	7.09	-344	-358
24	7.1	GKORN 7.1	-377	-350
25	7.02	7	-375	-360
26	6.87	6.9	-374	-372
27	7.02	7.02	-381	-378
28	6.97	6.96	-384	-355
31	6.95	6.93	-377	-361
32	6.89	6.92	-365	-364
33	6.9	6.9	-358	-355
36	6.87	6.93	-326	-347
37	6.83	6.92	-352	-325
38	6.88	6.95	-345	-325

ผลการวิเคราะห์พีเอชและโออาร์พีเซลล์ห้องเชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3

40	6.86	6.99	-348	-349
41	6.97	7.1		
42	6.94	7.16	-367	-359
43	6.79	7.01	-347	-362
44	6.79	6.92	-349	-359
45	6.85	6.94	-339	-341
46	6.85	6.92	-341	-344
47	6.95	6.94	-350	-348
48	6.97	7.1	-353	-353
49	6.94	7.06	-352	-355
50	6.9	7.1	-352	-349
51	6.91	7.03	-347	-355
52	6.93	7	-350	-345
53	7.04	7.12	-350	-360
54	6.93	7.07	-360	-358
55	6.9	6.95	-348	-350
56	7.06	7	-295	-355
57	6.95	6.91	-362	-359
58	6.93	6.87	-362	-365
59	6.82	6.83	-359	-359
60	6.87	6.86	SITY -356	-369
61	6.82	6.85	-351	-348
62	6.94	6.92	-364	-362
63	6.99	7.07	-359	-368
64	6.98	7.02	-360	-365
65	6.7	6.72	-351	-357
66	6.72	6.78	-356	-362
67	6.77	6.82	-356	-356
68	6.82	6.83	-361	-363
69	7.01	7.16	-342	-364
70	7.06	7.13	-356	-365
71	7.1	7.18	-351	-367

72	7.08	7.08	-352	-358
73	7.16	7.1	-354	-360
74	7.2	7.14	-349	-350
75	7.09	7.08	-362	-360
MEAN	6.95	7.01	354.4	356.0
SD	0.11	0.11	14.2	9.82

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University
y d	ความเป็นด่าง (มิลลิกรัมหินปูนต่อลิตร)		กรดไขมันระเหย (มิลลิกรัมอะซิติกต่อลิตร)		
.1711	ห้องเชื้อเพลิงชีวภาพ 1	ห้องเชื้อเพลิงชีวภาพ 2	ห้องเชื้อเพลิงชีวภาพ 1	ห้องเชื้อเพลิงชีวภาพ 2	
2	2,370	2,360	600	307	
7	2,550	2,410	600	271	
9	2,410	2,380	586	198	
11	2,350	2,400	468	205	
14	2,610	2,380	571	220	
16	2,750	2,390	520	198	
18	2,630	2,370	476	203	
21	2,540	2,440	403	168	
23	2,530	2,340	329	212	
25	2,410	2,380	351	205	
28	2,450	2,380	406	183	
30	2,580	2,380	351	227	
32	2,600	2,460	425	227	
35	2,610	2,490	249	256	
37	2,630	2,480	359	264	
42	2,725	2,540	395	264	
49	2,750	2,550	498	256	
51	2,880	2,790	468	220	
56	3,040	2,,720	490	212	
60	2,940	2,680	527	293	
64	2,900	2,740	439	256	
73	3,790	3,570	454	256	
74	4,170	3,830	542	366	
MEAN	2,748	2,585	457	238	
SD	433.6	378	93.5	45.1	

ผลการวิเคราะห์ความเป็นด่างห้องเชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3

a da	ความเข้มข้นซัลไฟด์ (มิล		
ับเม	ขาเข้า	ขาออก	
1	75.78	21.72	71.34
2	88.27	14.05	84.09
3	83.89	0.10	99.88
4	73.08	0.52	99.28
5	85.12	4.00	95.30
6	83.89	3.97	95.27
7	72.02	3.46	95.20
8	69.45	1.75	97.49
9	67.96	2.40	96.46
10	69.45	0.13	99.81
11	72.55	0.12	99.84
12	78.58	0.06	99.92
13	79.73	0.31	99.61
14	71.50	1.88	97.37
15	75.23	1.30	98.28
MEAN	76.43	1.54	97.98
SD	6.457	1.511	1.910

ผลการวิเคราะห์ความเข้มข้นซัลไฟด์เซลล์เชื้อเพลิงชีวภาพ 1 ช่วงการทดลองที่ 4.1

วันที่	ความเข้มข้นซัลเฟต (มิลลิกรัมซัลเฟตต่อลิตร)
1	5
2	168
3	231
4	214
5	192
6	185
7	176
8	178
9	146
10	158
11	139
12	122
13	112
14	119
15	120

ผลการวิเคราะห์ความเข้มข้นซัลเฟตเซลล์เชื้อเพลิงชีวภาพ 1 ช่วงการทดลองที่ 4.1

and a	ความเข้มข้นซัลไฟด์ (มิลล์		
.17111	ขาเข้า	ขาออก	บระสทองกาพการบาบต (%)
1	75.78	1.55	97.95
2	74.69	1.28	98.29
3	75.23	0.91	98.79
4	78.01	1.09	98.60
5	74.15	0.50	99.32
6	75.23	1.42	98.11
7	73.61	1.05	98.57
8	75.78	1.29	98.30
MEAN	75.31	1.14	98.49
SD	1.33	0.33	0.44

ผลการวิเคราะห์ความเข้มข้นซัลไฟด์เซลล์เชื้อเพลิงชีวภาพ 1 ช่วงการทดลองที่ 4.2

ผลการวิเคราะห์ความเข้มข้นซัลเฟตเซลล์เชื้อเพลิงชีวภาพ 1 ช่วงการทดลองที่ 4.1 และ 4.2

วันที่	ความเข้มข้นซัลเฟต (มิลลิกรัมซัลเฟตต่อลิตร)
1	54
2 จหาลงกรณ์มหา	106
³ Chul Al ONGKORN	105
4	113
5	120
6	108
7	117
8	110

		ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ (ppm)				
ช่วงการทดลอง	วันที่	ห้องไร้อากาศ 1	ห้องไร้อากาศ 2	ห้องเซลล์เชื้อเพลิง ชีวภาพ 1	ห้องเซลล์เชื้อเพลิง ชีวภาพ 2	
	97	15,298	16,566	-	-	
	99	13,622	17,155	-	-	
1	101	14,438	17,562	-	-	
	103	14,466	17,712	-	-	
	105	14,886	17,588	-	-	
	116	-	-	133	153	
	121		Step.	220	136	
3.1	125	13,477	13,852	250	167	
	127	13,477	13,788	570	303	
	130	14,365	14,475	614	361	
	133	13,191	13,795	277	161	
321	136	13,815	13,543	177	289	
5.2.1	139	15,277	14,775	153	282	
	141	15,632	15,522	151	291	
	155	15,512	13,752	129	161	
3.2.2	161	15,512	13,970	140	166	
	165	15,753	15,004	132	153	
	176	16,040	15,474	122	150	
3.2.3	180	15,319	15,956	123	156	
	184	15,794	16,039	129	158	

ผลการวิเคราะห์ความเข้มข้นก๊าซไฮโดรเจนซัลไฟด์ในเซลล์เชื้อเพลิงชีวภาพ 1 และ 2

e d	เข	เซลล์เชื้อเพลิงชีวภาพ 1		เซลล์เชื้อเพลิงชีวภาพ 2		
ังนท	OCV	1,000Ω	MPD	OCV	1,000Ω	MPD
1	675	27	1.426	827	43	2.881
2	625	81	4.272	759	40	2.663
3	611	55	3.209	679	23	1.125
4						
5	598	57	4.947	656	20	0.746
6	581	77	3.698	619	29	1.027
7	566	85	6.750	606	20	0.893
8	562	105	8.003	582	18	0.740
9	558	85	5.576	576	16	0.641
10	575	81	5.000	570	14	0.794
11	573	67	3.136	564	14	0.485
12	565	70	3.162	557	17	0.999
13	587	54	3.000	560	20	0.627
14	577	51	3.388	541	23	0.889
15	581	52	2.353	538	30	1.046
16	579	54	3.009	1818 538	17	0.811
17	589	50	2.613	550	23	0.698
18	595	50	2.644	555	26	1.445
19	590	61	3.112	576	22	1.470
20	587	55	2.521	592	29	1.280

ผลการวิเคราะห์ค่าความต่างศักย์วงจรเปิดและที่ความต้านทานภายนอก 1,000 โอห์ม และค่าความ หนาแน่นกำลังไฟฟ้าสูงสุดของเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3.1

OCV คือค่าความต่างศักย์ไฟฟ้าวงจรเปิด (open-circuit voltage)

1,000 Ω คือค่าความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม

र वं	เซลล์เชื้อเพลิงชีวภาพ 1			เซลล์เชื้อเพลิงชีวภาพ 2		
วนท	OCV	1,000Ω	MPD	OCV	1,000Ω	MPD
22	605	52	2.869	554	20	0.980
23	650	57	2.959	547	30	1.312
24	620	60	3.916	569	20	0.744
25	567	48	2.847	566	14	0.405
26	560	64	3.589	545	10	0.353
27	575	71	4.038	575	18	0.485
28	595	77	4.612	560	15	0.769
29	577	68	3.600	571	18	0.952
30	550	70	3.676	570	18	0.864
31	575	83	5.040	571	19	1.116
32	545	46	2.247	596	23	1.667
33	553	55	2.318	572	30	1.502
34	540	38	1.596	540	33	1.613
35	556	57	1.798	514	29	1.291

ผลการวิเคราะห์ค่าความต่างศักย์วงจรเปิดและที่ความต้านทานภายนอก 1,000 โอห์ม และค่าความ หนาแน่นกำลังไฟฟ้าสูงสุดของเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3.2

OCV คือค่าความต่างศักย์ไฟฟ้าวงจรเปิด (open-circuit voltage)

1,000 Ω คือค่าความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม

e d	เข	เซลล์เชื้อเพลิงชีวภาพ 1			เซลล์เชื้อเพลิงชีวภาพ 2		
วนท	OCV	1,000Ω	MPD	OCV	1,000Ω	MPD	
36	805	10	0.664	740	9	0.423	
37	725	10	0.485	657	8	0.217	
38	660	11	0.415	740	9	0.423	
39	655	14	0.569	725	38	2.233	
40	673	18	0.997	693	12	0.65	
41							
42	670	10	0.535	604	15	0.274	
43	652	38	2.476	670	11	0.373	
44	653	42	2.784	690	10	0.415	
45	630	45	2.803	602	8	0.262	
46	606	10	0.819	590	9	0.448	
47	465	9	0.304	634	16	0.687	
48	511	11	0.393	671	37	1.92	
49	585	13	0.609	661	11	0.618	
50	626	18	0.961	635	89	5.653	
51	626	84	5.016	662 field	40	2.785	
52	621	60	2.595	664	90	6.88	
53	617	105	6.163				
54	617	105	6.163	538	25	0.819	
55	604	19	0.903	629	58	2.744	

ผลการวิเคราะห์ค่าความต่างศักย์วงจรเปิดและที่ความต้านทานภายนอก 1,000 โอห์ม และค่าความ หนาแน่นกำลังไฟฟ้าสูงสุดของเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3.3

OCV คือค่าความต่างศักย์ไฟฟ้าวงจรเปิด (open-circuit voltage)

1,000 Ω คือค่าความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม

e d	เข	เซลล์เชื้อเพลิงชีวภาพ 1			เซลล์เชื้อเพลิงชีวภาพ 2		
ำนท	OCV	1,000Ω	MPD	OCV	1,000Ω	MPD	
56	538	22	0.943	536	8	0.271	
57	537	41	1.843	586	6	0.168	
58	538	48	2.424				
59	537	58	2.236	568	20	1.116	
60	534	76	3.808	576	10	0.431	
61	567	102	7.373	552	46	0.802	
62	574	79	4.288	546	15	0.658	
63	588	55	2.67	574	8	0.253	
64	602	45	2.708	603	28	1.104	
65	602	45	2.134	6			
66	585	56	3.101	604	7	0.214	
67	604	66	3.589	595	13	0.819	
68	578	60	3.249	593	16	0.545	
69	592	70	3.676	588	16	0.746	
70	584	42	1.818	605	27	1.818	
71	565	30	1.166	1818 550	95	5.12	
72	515	27	1.063	545	73	3.596	
73	542	35	1.386	547	42	2.448	
74	599	86	5.603	590			
75	582	65	7.873	560			

ผลการวิเคราะห์ค่าความต่างศักย์วงจรเปิดและที่ความต้านทานภายนอก 1,000 โอห์ม และค่าความ หนาแน่นกำลังไฟฟ้าสูงสุดของเซลล์เชื้อเพลิงชีวภาพ 1 และ 2 ช่วงการทดลองที่ 3.2.3

OCV คือค่าความต่างศักย์ไฟฟ้าวงจรเปิด (open-circuit voltage)

1,000 Ω คือค่าความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม

2	เซลล์เชื้อเพลิงชีวภาพ 1					
11911	OCV	1,000Ω	MPD			
1	593	114	6.868			
2	591	131	7.296			
3	574	80	3.304			
4	521	64	2.448			
5	529	97	4.560			
6	537	78	3.380			
7	497	66	2.847			
8	522	80	3.586			
9	516	84	3.698			
10	505	80	3.630			
11	470	65	2.503			
12	453	77	2.921			
13	450	69	2.563			
14	485	89	4.130			
15	502	96	3.991			

ผลการวิเคราะห์ค่าความต่างศักย์วงจรเปิดและที่ความต้านทานภายนอก 1,000 โอห์ม และค่าความ หนาแน่นกำลังไฟฟ้าสูงสุดของเซลล์เชื้อเพลิงชีวภาพ 1 ช่วงการทดลองที่ 4.1

หมายเหตุ OCV คือค่าความต่างศักย์ไฟฟ้าวงจรเปิด (open-circuit voltage)

1,000 Ω คือค่าความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม

ય ય						
วันที่	เซลล์เชื้อเพลิงชีวภาพ 1					
	OCV	1,000Ω	MPD			
1	622	69	3.435			
2	583	63	2.940			
3	560	67	3.589			
4	563	61	2.899			
5	555	65	3.304			
6	582	68	3.456			
7	584	75	3.618			
8	562	67	3.332			

ผลการวิเคราะห์ค่าความต่างศักย์วงจรเปิดและที่ความต้านทานภายนอก 1,000 โอห์ม และค่าความ หนาแน่นกำลังไฟฟ้าสูงสุดของเซลล์เชื้อเพลิงชีวภาพ 1 ช่วงการทดลองที่ 4.1

หมายเหตุ

คือค่าความต่างศักย์ไฟฟ้าวงจรเปิด (open-circuit voltage) OCV 1,000 Ω คือค่าความต่างศักย์ไฟฟ้าที่ความต้านทานภายนอก 1,000 โอห์ม

ความสูงขั้นตัวกลาง (เซนติเมตร)	ครั้งที่	อุณหภูมิ (°C)	ค่าสัมประสิทธิ์ สาร (ต่	ค่าเฉลี่ย			
u			K _L a	K _L a ที่ 20°C	(S.D.)		
	1	34.5	0.702	0.49772			
	2	33.7	0.708	0.51159			
0	3	34.1	0.714	0.51106	0.51414 (0.01156)		
	4	33.1	0.714	0.52332			
	5	34.2	0.738	0.52698			
	1	34	0.654	0.46922			
	2	33.7	0.636	0.45957	0.45976 (0.00900)		
5	3	34.4	0.642	0.45626			
	4	33.3	0.618	0.45082			
	5	34.1	0.660	0.47241			
	1	32.9	0.558	0.41093			
8	2	35.7	0.588	0.4052			
10	3	33.2	0.582	0.42556	0.41796 (0.0177)		
Сни	ALO ⁴ GKO	33.4	0.612	0.44538			
	5	34.2	0.564	0.40274			
	1	33.6	0.588	0.42589			
	2	34.1	0.612	0.43805			
15	3	33.4	0.57	0.41482	0.40814 (0.02621)		
	4	33.9	0.534	0.38404			
	5	34.1	0.528	0.37792			

ผลการวิเคราะห์ค่าสัมประสิทธิ์การถ่ายเทมวลสารของก๊าซออกซิเจนช่วงการทดลองที่ 2

ลำดับ	ลำดัเ	มเบส	ผลการเปรียบเทียบกับฐานข้อมูล (NCBI)						
ที่	เริ่มต้น	สิ้นสุด	MAX SCORE	TOTAL SCORE	QUERY COVER	E value	IDENT	ACCESION No.	ORGANISM
1	560	1350	1450	1450	100%	0	99%	NR_037002.1	Streptococcus macedonicus
2	520	1340	730	730	99%	0	83%	<u>NR_102952.1</u>	Mesotoga prima
3	600	1450	1109	1109	99%	0	90%	NR_037002.1	Streptococcus macedonicus
4	750	1530	872	872	96%	0	88%	<u>NR_102861.1</u>	Alistipes shahii
5	750	1540	1450	1450	100%	0	99%	NR_037002.1	Streptococcus macedonicus
6	540	1410	1585	1585	100%	0	99%	<u>NR_036794.1</u>	Klebsiella pneumoniae
7	520	1320	1184	1184	98%	0	94%	NR_037002.1	Streptococcus macedonicus
8	570	1410	1543	1543	100%	0	99%	NR_037002.1	Streptococcus macedonicus
9	610	1470	1267	1267	99%	0	93%	<u>NR_074916.1</u>	Geobacter daltonii
10	590	1450	1020	1020	99%	0	88%	<u>NR_074383.1</u>	Anaerolinea thermophila
11	690	1500	1022	1022	98%	0	90%	<u>NR_074446.1</u>	Desulfovibrio vulgaris
12	560	1470	1666	1666	100%	0	99%	NR_037002.1	Streptococcus macedonicus
13	590	1460	1598	1598	100%	0	99%	NR_037002.1	Streptococcus macedonicus
14	590	1440	634	634	93%	0	81%	<u>NR_074345.1</u>	Thermodesulfovibrio yellowstonii
15	530	1360	1469	1469	100%	0	99%	<u>NR_074799.1</u>	Salmonella enterica
16	540	1340	1469	1469	100%	0	99%	<u>NR_037002.1</u>	Streptococcus macedonicus
17	700	1490	950	950	100%	0	88%	<u>NR_074446.1</u>	Desulfovibrio vulgaris
18	600	1390	972	972	96%	0	90%	<u>NR_074383.1</u>	Anaerolinea thermophila

ผลการวิเคราะห์สายพันธุ์แบคทีเรียกลุ่มแขวนลอยห้องไร้อากาศ (หลังการเดินระบบ)

10	650	1470	1177	1177	070/	0	020/	ND 07407E 1	Pelobacter
19	020	1470	11//	11//	91%	0	95%	<u>INK_074975.1</u>	propionicus
20	600	1410	1203	1203	0.00%	0	0606	ND 0257521	Syntrophomonas
20	000	1410	1295	1295	9970	0	9070	<u>INN_023732.1</u>	curvata
21	530	1400	1587	1587	100%	0	00%	NR 0370021	Streptococcus
21	550	1400	1507	1507	100%	0	9970	<u>INN_057002.1</u>	macedonicus
22	700	1510	037	037	08%	0	88%	NR 1100321	Clostridium
22	100	1510	951	251	9070	0	0070	<u>NN_119052.1</u>	paraputrificum
23	650	1460	771	771	0.8%	0	8/10/6	NR 0747571	Treponema
25	020	1400	111	111	9070	0	0470	<u>INI 014131.1</u>	caldarium
24	E 9 0	1250	015	015	0704	0	9004	ND 11004E 1	Aeromonas
24	560	1550	915	915	9190	0	09%	<u>INN_110945.1</u>	salmonicida
25	600	1360	1251	1351	100%	0	0.006	ND 036704 1	Klebsiella
25	000	1000	1001	1551	100%	0	7790	<u>1111_050794.1</u>	pneumoniae

ลำดับ	ลำดัเ	บเบส	ผลการเปรียบเทียบกับฐานข้อมูล (NCBI)							
ที่	เริ่มต้น	สิ้นสุด	MAX SCORE	TOTAL SCORE	QUERY COVER	E value	IDENT	ACCESION No.	ORGANISM	
1	510	1480	1700	1700	100%	0	98%	<u>NR_102952.1</u>	Mesotoga prima	
2	600	1450	1554	1554	100%	0	99%	<u>NR_036794.1</u>	Klebsiella pneumoniae	
3	590	1400	1487	1487	100%	0	99%	NR_043660.1	Streptococcus pasteurianus	
4	600	1380	1432	1432	100%	0	99%	<u>NR_037002.1</u>	Streptococcus macedonicus	
5	560	1390	1195	1195	99%	0	93%	<u>NR_104929.1</u>	Halothiobacillus neapolitanus	
6	600	1370	1413	1413	100%	0	99%	<u>NR_037002.1</u>	Streptococcus macedonicus	
7	600	1440	1194	1194	97%	0	93%	<u>NR_037002.1</u>	Streptococcus macedonicus	
8	600	1460	1413	1413	100%	0	99%	NR_037002.1	Streptococcus macedonicus	
9	610	1440	1197	1197	100%	0	93%	<u>NR_104929.1</u>	Halothiobacillus neapolitanus	
10	600	1410	1487	1487	100%	0	99%	NR_037002.1	Streptococcus macedonicus	
11	600	1450	1544	1544	100%	0	99%	NR_037002.1	Streptococcus macedonicus	
12	590	1440	1522	1522	100%	0	99%	<u>NR_036794.1</u>	Klebsiella pneumoniae	
13	570	1390	1450	1450	100%	0	99%	<u>NR_074799.1</u>	Salmonella enterica	
14	570	1340	1413	1413	100%	0	99%	<u>NR_036794.1</u>	Klebsiella pneumoniae	
15	560	1380	1218	1218	98%	0	94%	<u>NR_074799.1</u>	Salmonella enterica	
16	510	1360	1561	1561	100%	0	99%	NR_037002.1	Klebsiella pneumoniae	
17	550	1420	1598	1598	100%	0	99%	<u>NR_037002.1</u>	Klebsiella pneumoniae	
18	570	1400	1164	1164	100%	0	92%	<u>NR_104929.1</u>	Halothiobacillus neapolitanus	

ผลการวิเคราะห์สายพันธุ์แบคทีเรียกลุ่มยึดเกาะบนขั้วแอโนด (การทดลองที่ 3.2.2)

10	E C O	1400	1527	1527	1000/	0	0.00/	ND 027002.1	Streptococcus
19	000	1400	1557	1557	100%	0	99%	<u>INK_057002.1</u>	macedonicus
20	580	1410	1524	1524	100%	0	0.006	ND 0370021	Streptococcus
20	000	1410	1524	1524	100%	0	9970	<u>INN_057002.1</u>	macedonicus
21	610	1/130	1507	1507	100%	0	00%	NR 0370021	Streptococcus
21	010	1450	1507	1507	100%	0	9970	<u>INN_057002.1</u>	macedonicus
22	500	1350	1555	1555	100%	0	00%	NR 0370021	Streptococcus
22	500	1550	1555	1555	10070	0	9970	<u>INN_057002.1</u>	macedonicus
23	570	1360	1450	1450	100%	0	00%	NR 0370021	Streptococcus
2.5	510	1500	1450	1450	10070	0	9970	<u>INN_057002.1</u>	macedonicus
24	540	1330	1450	1450	100%	0	0.006	ND 0370021	Streptococcus
24	540	1550	1450	1450	100%	0	9970	<u>INN_057002.1</u>	macedonicus
25	610	1400	1114	1114	0606	0	0306	ND 074075 1	Pelobacter
25	010	1400	1114	1114	90%	0	7,5%0	<u>INIX_014913.1</u>	propionicus

ลำดับ	ลำดัเ	มเบส	ผลการเปรียบเทียบกับฐานข้อมูล (NCBI)									
ที่	เริ่มต้น	สิ้นสุด	MAX SCORE	TOTAL SCORE	QUERY COVER	E value	IDENT	ACCESION No.	ORGANISM			
1	610	1390	1195	1195	99%	0	94%	<u>NR_074214.1</u>	Methanosaeta thermophila			
2	590	1370	1443	1443	100%	0	100%	NR_102903.1	Methanosaeta concilii			
3	520	1370	1572	1572	100%	0	100%	NR_102903.1	Methanosaeta concilii			
4	630	1460	1535	1535	100%	0	100%	NR_102903.1	Methanosaeta concilii			
5	570	1420	1567	1567	100%	0	99%	NR_102903.1	Methanosaeta concilii			
6	580	1410	1247	1247	98%	0	94%	<u>NR_074177.1</u>	Methanospirillum hungatei			
7	570	1400	1530	1530	100%	0	99%	NR_102903.1	Methanosaeta concilii			
8	560	1340	1395	1395	99%	0	99%	<u>NR_074177.1</u>	Methanospirillum hungatei			
9	570	1380	1498	1498	100%	0	100%	<u>NR_102903.1</u>	Methanosaeta concilii			
10	550	1390	1554	1554	100%	0	100%	NR_102903.1	Methanosaeta concilii			
11	540	1380	1502	1502	99%	0	99%	<u>NR_102903.1</u>	Methanosaeta concilii			
12	670	1500	1474	1474	99%	0	99%	<u>NR_102903.1</u>	Methanosaeta concilii			
13	560	1380	1517	1517	100%	0	100%	<u>NR_102903.1</u>	Methanosaeta concilii			
14	660	1430	1321	1321	99%	10 0 8	98%	<u>NR_102903.1</u>	Methanosaeta concilii			
15	560	1380	1323	1323	99%	0	96%	<u>NR_074177.1</u>	Methanospirillum hungatei			
16	660	1390	1351	1351	100%	0	100%	NR_102903.1	Methanosaeta concilii			
17	550	1370	1517	1517	100%	0	100%	NR_102903.1	Methanosaeta concilii			
18	600	1430	1498	1498	99%	0	99%	NR_102903.1	Methanosaeta concilii			
19	580	1400	1517	1517	100%	0	100%	<u>NR_102903.1</u>	Methanosaeta concilii			
20	600	1380	1415	1415	100%	0	99%	NR_102903.1	Methanosaeta concilii			
21	530	1220	1277	1277	100%	0	100%	NR_102903.1	Methanosaeta concilii			
22	540	1240	1295	1295	100%	0	100%	NR_102903.1	Methanosaeta concilii			
23	490	1260	1400	1400	100%	0	99%	NR_102903.1	Methanosaeta concilii			
24	500	1240	1352	1352	100%	0	99%	NR_102903.1	Methanosaeta concilii			

ผลการวิเคราะห์สายพันธุ์อาเคียร์จากห้องไร้อากาศ (หลังการเดินระบบ)

ลำดับ	ลำดัเ	มเบส		ผลการเปรียบเทียบกับฐานข้อมูล (NCBI)							
ที่	เริ่มต้น	สิ้นสุด	MAX SCORE	TOTAL SCORE	QUERY COVER	E value	IDENT	ACCESION No.	ORGANISM		
1	360	1150	1351	1351	99%	0	98%	<u>NR_102903.1</u>	Methanosaeta concilii		
2	550	1380	1419	1419	99%	0	98%	NR_102903.1	Methanosaeta concilii		
3	630	1380	1365	1365	100%	0	99%	<u>NR_074177.1</u>	Methanospirillum hungatei		
4	630	1440	1448	1448	100%	0	99%	NR_102903.1	Methanosaeta concilii		
5	600	1430	1332	1332	99%	0	96%	<u>NR_074177.1</u>	Methanospirillum hungatei		
6	560	1410	1572	1572	100%	0	100%	NR_102903.1	Methanosaeta concilii		
7	590	1400	1495	1495	100%	0	99%	<u>NR_102903.1</u>	Methanosaeta concilii		
8	600	1400	1480	1480	100%	0	100%	<u>NR_102903.1</u>	Methanosaeta concilii		
9	580	1400	1500	1500	100%	0	99%	NR_102903.1	Methanosaeta concilii		
10	660	1470	1476	1476	100%	0	99%	NR_102903.1	Methanosaeta concilii		
11	600	1410	1498	1498	100%	0	100%	NR_102903.1	Methanosaeta concilii		
12	670	1480	1461	1461	99%	0	99%	<u>NR_102903.1</u>	Methanosaeta concilii		
13	600	1420	1517	1517	100%	0	100%	<u>NR_102903.1</u>	Methanosaeta concilii		
14	600	1420	1519	1519	100%	0	100%	NR_102903.1	Methanosaeta concilii		
15	590	1400	1493	1493	100%	0	99%	<u>NR_102903.1</u>	Methanosaeta concilii		
16	520	1390	1550	1550	99%	0	99%	<u>NR_074177.1</u>	Methanospirillum hungatei		
17	700	1530	1535	1535	100%	0	100%	NR_102903.1	Methanosaeta concilii		

ผลการวิเคราะห์สายพันธุ์อาเคียร์จากขั้วแอโนด (การทดลองที่ 3.2.2)

1.8	600	1410	1408	1/08	10006	0	100%	NP 102003 1	Methanosaeta
10	000	1410	1490	1490	100%	0	100%	<u>INN_102903.1</u>	concilii
10	500	1440	1530	1530	100%	0	0.00%	NP 102003 1	Methanosaeta
19	390	1440	1339	1559	100%	0	9970	<u>INN_102903.1</u>	concilii
20	570	1420	1517	1517	10006	0	0.004	ND 074177.1	Methanospirillum
20	510	1420	1517	1517	100%	0	99%	<u>INK_074177.1</u>	hungatei
21	600	1410	1242	1040	0.004	0	0404	ND 074214-1	Methanosaeta
21	600	1410	1242	1242	99%	0	94%	<u>NR_074214.1</u>	thermophile
22	E20	1200	1075	1075	0.00/	0	0.40/	ND 0741771	Methanospirillum
22	550	1300	1275	1275	99%	0	94%	<u>INK_074177.1</u>	hungatei
22	F40	1200	1540	1540	1000/	0	000/	ND 102002 1	Methanosaeta
25	540	1580	1548	1548	100%	0	99%	<u>INK_102905.1</u>	concilii
24	E10	1200	1640	1640	0.00/	1	0.90/	ND 0741771	Methanospirillum
24	510	1390	1540	1540	99%		90%	<u>INR_074177.1</u>	hungatei
0E	FOO	1260	1201	1201	1000/	0	0.50/	ND 074214.1	Methanosaeta
25	500	1200	1201	1201	100%	0	93%	<u>INK_074214.1</u>	thermophila

ประวัติผู้เขียนวิทยานิพนธ์

นายเดชาธร โกมลโยธิน เกิดเมื่อวันที่ 29 ตุลาคม พ.ศ. 2534 สำเร็จการศึกษาระดับ ปริญญาตรี หลักสูตรวิทยาศาตร์บัณฑิต สาขาวิทยาศาสตร์ทางทะเล คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 และเข้าศึกษาต่อในหลักสูตรวิศวกรรมศาสตร์ มหาบัณฑิต สาขาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปี การศึกษา 2557 ส่วนหนึ่งของงานวิจัยฉบับนี้ได้เผยแพร่ในเอกสารประกอบการประชุมวิชาการ นานาชาติดังนี้

1. Komolyothin, D., Painmanakul, P., and Suwannasilp B.B. "Microbial fuel cell (MFC) operation for treating hydrogen sulfide in biogas from organic and sulfate wastewater treatment". Oral presentation in the 11th ASIAN BIOHYDROGEN & BIOGAS SYMPHOSIUM (ABBS 2016), Jeju Island, South Korea, October 5-8, 2016.

2. Niyom, W., Komolyothin, D., and Suwannasilp, B.B. "Performances of Microbial Fuel Cells Treating Organic Wastewater at Various COD: sulfate ratio". Oral presentation in the 3 rd Interational Conference on Biological, Chemical and Environmental Sciences (BCES-2015), Kuala Lumpur, Malaysia, September 21-22, 2015.