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CHAPTER |

INTRODUCTION

Furofurans are one of major subclasses of lignan family which originated from
shikimic acid pathway followed by dimerization of phenyl propanoids (C-Cs) at center
carbon (C-8) (Figure 1.1) [1]. Since their structures contain 2,6-diaryl substituted on 3,7-
dioxabicyclo[3.3.0]octane skeleton, furofurans can be divided into three types; endo-
endo, endo-exo and exo-exo, based on stereochemistry of substituents related to

head bridge hydrogen (Figure 1.1)

2 7 9 Oy AR O  _LAr O .\Ar2
3 1 2 2 2
©/\8/ HI:- -||H HII- -IIH HII- ~||H
4 6 A A
5 Ar1 0) Ar1\“ e} Ar1\\. (0)

phenyl propanoid endo-endo endo-exo exo-exo

Figure 1.1 Structure of phenyl propanoid and three subgroups of furofuran lignans

According to variety of their structures, furofuran lignans are responsible for a
wide range of bioactive compounds, such as antitumoral of syringaresinol (1.1) [2],
antioxidant of sesamolin (1.2) [3] and reducing serum and liver cholesterol levels in rat
of sesamin (1.3) [4]. This has inspired organic chemists to develop synthetic
methodologies for synthesis of this class of bioactive compounds and improve their

chemical and pharmaceutical profiles.



MeO (0}

syringaresinol (1.1) sesamolin (1.2) sesamin (1.3)

Figure 1.2 Structure of bioactive furofuran lignans.

For instance in 2003, David [5] reported diastereoselective synthesis of
furofuran lignans. Single vinyl epoxide (1.4) was used as a starting material followed by
thermal rearrangement afforded cis-disubstituted dihydrofuryl ester (1.5). Subsequent
lewis acid catalyzed cyclization gave either the endo-endo (1.7) or endo-exo furofuran
acetal (1.8) depending on reaction temperatures. Then, isomerization of 1.5 provided
the alternative exo-endo and exo-exo isomers (1.9 and 1.10 respectively). Finally,
acetal group was reduced to cyclic ether to complete the synthesis furofuran skeleton

(1.11-1.14), as shown in Scheme 1.1.
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O wAr O
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O Ar O Ar
Reduction
“J%E“ . %
Ph™ o~ “OMe Ph™ g

1.10 1.14, exo-exo
Scheme 1.1 Synthesis of 1-fluoro-endo,exo-furofurans 1.11-1.14
As well in 2005, Pohmakotr [6] synthesized 1-substitued endo,exo-2,6-diaryl-
3,7-dicabicyclo[3.3.0]octanes  (1.18-1.24) and (+)-gmelinol (1.25-1.26). Their

investigation began with the synthesis of (2,3-trans)-(4,5-cis)- Ol-aroylparaconic esters



(1.16) by reacting vicinal dianions derived from the corresponding Ol-aroylsuccinic
esters (1.15) with aromatic aldehydes. Subsequently, methylation or hydroxylation at
carbon position 1 was carried out to produce 1-substitued lactone as core structure.
They next achieved synthesis of furofurans 1.18-1.26 by three steps involving
reductions and lactonization as shown in Scheme 1.1. Similarly in 2015, Punirun [7]
reported  the  synthesis  of  1-fluorine-substituted exo,exo-2,6-diaryl-3,7-

dioxabicyclo[3.3.0]Joctanes (1.27-1.32) using aforementioned procedure (Scheme 1.2).

O O 0O O Methylation or 0O O 1. reduction o) 1
EtO \\\\AH Hydroxylationor gy Arl 2. lactonization wAr
Ar' OEt  Ar’CHO Fluorination [aX 3. reduction Hio—{ X
OEt ~509
ARG S0 AN S0 ~50% ARG
(0]

1.15 1.16 1.17 1.18-1.32
1.18 Ar‘:3,d—(CHSO)2C5H3, Ar’:S-HO—ﬂ-CH3C6H3, X=0H 1.26 Ar":CéHS, Ar":CﬁHS, X=F
1.19 Ar‘:S—HO-ﬂ—CH3OC§H3, Ar’:S-CHjo—d—HOCﬁHy X=0H 1.27 Ar‘:CéHS, Ar":ﬂ-CHEOCﬁHa, X=F
1.20 Ar‘,Ar):ﬂ—HO-S—CHSOCﬁHB, X=0H 1.28 Ar‘:d—CHSOCﬁHa, Ar7:C6H5, X=F
1.21 Ar1:3,df(CHjO)2C6H5, Ar’:}HOfﬂ{HjCéH}, X=CH, 1.29 Ar1:47CHSOC6H4, Ar":flfCHEOCEHa, X=F
1.22 Ar1:3fHOff17CH3C5H3, Ar’:SfCHZOfﬂfHOCEHz, X=CH, 1.30 Ar1:47CH3CéHﬂ, Ar?:flfCHzcéHa, X=F
1.23 Ari,Ar2:47H0737CH3OC5H3, X=CH, 1.31 Ar1:478r737CH30C6H3, Arl’:ﬂ{HECﬁHd, X=F
1.24 Ar‘,Ar}:B,d—(CHBOJZCéHy X=0H 1.32 Ar‘:d—Br—S—CHBOCﬁHy Ar":ﬂ-CHEOCﬁHa, X=F
1.25 Ar‘,Ar}:B,d—(CHBO)ZCéHy X=CH,

Scheme 1.2 Synthesis of 1-fluoro-endo,exo-furofurans 1.18-1.32

Although a number of developed synthetic methodologies and structure
modifications of these bioactive compounds were explored, structural activity
relationship studies (SARs) have not been reported due to the lack of a practical
synthetic method of producing diverse furofuran lignans. As aforementioned synthetic
strategies, furofurans were synthesized through many stepwise combinations of small
building block leading to provide expected products in low yield (=50%). Moreover, a
variety of furofuran lignans was also dropped because of the limited diversity of starting
material. From this reasons, we would like to optimize a new synthetic approach to

easily produce a huge series of furofuran lignans.



Recently, some researchers reported short route synthesis of furofuran lignans
by modifying naturally available sesamolin (1.2) to offer its derivatives. For example in
2012 [8], Haung synthesized sesaminol (1.34) from 1.2 in the presence of acidic resin
using benzene as aprotic nonpolar solvent. Noteworthy, the key step in
aforementioned synthesis involved acid-catalyzed formation of oxocarbenium ion.
Nucleophilic substitution by carbon nucleophile such as sesamol (1.33) afforded 1.34.
Identically in 2015, Mahamad [9] synthesized a series of alkyloxy samins (1.35) in one
step by reaction of sesamolin (1.2) with various alcohols. The products were generated
with retention of configuration, which were different from mechanistic presumption
involving oxocarbenium ion that would result in product mixtures. Moreover, this
methodology also has limitation due to the occurrence of unexpected products

sesaminol (1.34) and sesamol (1.33) (Scheme 1.3).

®
o)
o AN
d resi .
W on _acid resin__ e :—\ o | ™%, )\ {n 0
. benzene - + > .
"No "o HO o "No
o} o} o}
- Ly -
oxocarbenium ion 1.33 1.34
0
o -
o}
oy 00 gy
Hi—(H ROH, Amberlyst-15 Hi—{H Hoy—o O @
. , Amberlyst- ‘ + . + e}
Y No 4A MS, 70°C Y No Y No
o) o) o HO
Lg g g

1.2 1.35 1.34 1.33

Scheme 1.3 Semi-synthesis of sesaminol (1.34) and alkyloxysamins (1.35) from

sesamolin (1.2)

From literature reviews, semi-synthesis seem to be a suitable approach to
furnish diverse furofuran lignans. In this work, we applied above methodology using
samin (1.36) as starter instead of 1.2 due to the fact that hemiacetal moiety in 1.36 is

relatively more reactive than acetal group of 1.2 toward nucleophilic substitution.



Moreover, the released of H,O generated upon protonation of hemiacetal could be
trapped by molecular sieve readily in order to avoid regeneration of samin (1.36). With
samin (1.36) in hand, we examined the wide application of this reaction with three

types of nucleophiles, phenolics (C), thiols (S) and alcohols (O) as show in Scheme 1.4.

o Nu
Hriee cH
Amberlyst-15, l\% \g
4A MS, ACN /Q (¢}
O
L

1.36 3.1-3.3

hemiacetal

Scheme 1.4 Synthetic strategy to furofuran lignans 3.1-3.3.

In addition, there is no research studying about mechanistic reaction of samin
under acid condition; and the stereoselective outcome of previous report [9] still
unclear, therefore the mechanism understanding this reaction was carefully
investigated by a model reaction monitored by 'H NMR and computational
calculations. For computational study, the gseometrical optimization and determination
of product energy have been calculated using the density functional theory (DFT) with
the popular hybrid method (B3LYP). The split valence with diffuse and polarization
functions, 6-31+G(d,p), basis set is used in this study to propose the reaction
mechanisms through minimum-energy geometry. All of these calculations will be

performed by Gaussian 09 program [10]



CHAPTER Il

SYNTHESYS OF SAMIN

2.1 Isolation of sesamolin

The naturally available sesamolin (1.2) utilized in this work was isolated from
sesame seed oil which contains large amount of lignan together with sesamolin
0.5-2 % w/w. According to existing of fatty acids in sesame seed oil, the purification by
column chromatography directly is challenged. Therefore, the elimination of glyceride
was performed in initial step. This approach is based on the fact that fatty acids can
be saponified by KOH/MeOH, to give the corresponding potassium salts whereas 1.2
and other unsaponified matterials remain unchanged. The slightly excess of KOH (~1.5
times of saponification number) was applied in order to ensure complete removal of
triglyceride. After refluxed 3-5 h or completed saponification, MeOH was removed
followed by liquid-liquid extraction (H,O and EtOAc). The organic layer containing 1.2
was further purified using silica gel column chromatography, to yield sesamolin (1
%w/w) as a white solid and its identities (*H and ">C NMR) were found to be identical
with those reported in the literature [11]. This isolation methodology is summarized in

Figure 2.1.



sesame oil (150 g)
1) KOH (35g), MeOH, 70°C
2) partition (H,O/EtOAC)

unsaponifiable matters saponifiable matters
(salt of fatty acid)

3) SiO,, hexane-EtOAc

sesamolin (1.2, 1.5 g, 1% w/w)

Figure 2.1 Isolation of sesamolin (1.2) from sesame oil.

2.2 Synthesis of samin

According to predominant potentiality of hemiacetal, samin (1.36) was used as
a starting material. The synthesis of samin was operated with the methodology
described by Reshma [12] with nominal modification. Briefly, Amberlyst-15 was used
for acid-catalyzed hydrolysis of sesamolin (1.2) in 9:1 acetronitrile-water at 70 °C for 4-
5 h. Sesamolin (1.2) was protonated on an acetal group resulting in the loss of sesamol
and formation of expected samin (1.36) as shown in Scheme 2.1. The identification of
1.36 was investigated after purification by SiO, column chromatography eluting with

ethyl acetate and hexane.

P
o}
N O ..OH
o)
H‘-' Amberlyst-15 H“H”H 4 _\O
" No CH CN:H O 70°C 4-5 h. "Ng | ]
O/@ 3 2 O/Q HO
| [
sesamolin (1.2) samin (1.36) sesamol (1.33)

Scheme 2.1 Hydrolysis of sesamolin (1.2).



2.3 Experimental section

2.3.1 General experiment procedures

'H and C NMR were recorded (CDCl; as a solvent) at 400 and 100 MHz,
respectively, Varian Mercury” 400 NMR and a Bruker (Avance) 400 NMR spectrometer.
The chemical shifts were reported in ppm downfield from TMS. Mass spectra were
measured by HRESIMS obtaining from a micrOTOF Bruker mass spectrometer. Thin
layer chromatography (TLC) was performed on pre-coated Merck silica gel 60 Fysq
plates (0.25 mm thick layer) and visualized under 254 nm UV. Silica gel 60 Merk cat.

No. 7729 was used for open column chromatography.

2.3.2 Chemical

Sesame seed oils was purchased from Soun-Pana (Bangkok Thailand). All

reagents were obtained from Sigma-Aldrich and used without further purification.

2.3.3 Determining of saponification number

Saponification number was measured in triplicate by general procedure [13].
Briefly, a solution of 1 g sesame seed oil in 10 mL of 0.5M KOH/MeOH was stirred under
70°C for 3 h. After cooling, reaction was titrated against a standard solution of 0.5M
HCL. The difference between test reaction and blank gave the volume of 0.5M HCl
equivalence of KOH used in saponification 1 g sesame seed oil. Calculation of
saponification number by below equation presented that sesame seed oil has S.N.

around 156.6 mgKOH/oil.

(VHCl, blank — chl test) X [HCL] x 56

S.N. (mg KOH/oil) =
Woil

Note : 56 is the equivalent mass of KOH. W is exact


https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0ahUKEwj8rbXn5a3JAhVMH44KHbDVDVQQFggzMAc&url=http%3A%2F%2Fwww.sigma-aldrich.com%2Fsaws.nsf%2FHome%3FOpenFrameset&usg=AFQjCNEkOubPnHXqPu2FQBwtkZXWsY-Rjw&sig2=csFMnJDHm82vfNkJhHmoRw

2.3.4 Isolation of sesamolin

Sesame seed oil (150 g) dissolved in MeOH (150 mL) was saponified with KOH
(34 ¢) for 5 h. After solvent removal, the resulting mixture was extracted with ethyl
acetate and water. The organic layer was further purified by silica gel column
chromatography using 1:9 ethylacetate/hexane to obtain sesamolin (1.2) (1.5 g, 1

%W/ W).

Sesamolin (1.2) : as white solid; *H NMR (400 MHz, CDCls) 0 6.88 (s, 1H, H-2"), 6.84 —
6.77 (m, 2H, H-5" and H-6"), 6.71 (d, J = 8.5 Hz, 1H, H-5), 6.62 (d, J = 2.3 Hz, 1H, H-2),
6.50 (dd, J = 8.4, 2.4 Hz, 1H, H-6), 5.96 (s, 2H, H-7"), 5.92 (s, 2H, H-7"), 5.50 (s, 1H, H-2),
4.47 — 4.39 (m, 2H, H-6 and H-8), 4.13 (dd, J = 9.2, 6.1 Hz, 1H, H-4), 3.96 (d, J = 9.2 Hz,
1H, H-4), 3.64 (dd, J = 9.0, 7.6 Hz, 1H, H-8), 3.31 (dd, J = 16.7, 8.7 Hz, 1H, H-1), 2.95 (dd,
J = 15.4, 6.6 Hz, 1H, H-5); >C NMR (CDCl, 100 MHz) O 151.8 (C-17), 119.6 (C-6"), 108.9
(C-6), 108.1 (C-5), 108.0 (C-5), 106.8 (C-2), 106.5 (C-2"), 101.2 (C-7"), 101.0 (C-7"), 100.1

(C-2), 87.0 (C-6), 71.2 (C-8), 69.7 (C-4), 53.2 (C-1), 52.7 (C-5).
2.3.4 Synthesis of samin

To a solution of sesamolin (1.2) (100 g, 0.39 mmol) in a mixture of
acetonitrile/H,0 (9:1, 10 mL) was treated with acidic resin Amberlyst-15 (1 mg/0.005
mmol of sesamolin (1.2)). After stirring at 70°C for 4-8 h, the reaction mixture was
evaporated to dryness and purified by silica gel chromatography using 1:1

ethylacetate/hexane to give samin (1.36, 85%).
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samin (1.36) : as brown crystal; "H NMR (CDCls, 400 MHz) 0 6.85 (s, 1H, H-2), 6.80-6.75
(m, 2H, H-5" and H-6"), 5.94 (s, 2H, OCH,0), 5.36 (s, 1H, H-2), 4.35 (d, J = 8.4 Hz, 2H, H-6
and H-8), 4.16 (dd, J = 9.2, 6.0 Hz, 1H, H-4), 3.89 (d, J = 9.2 Hz, 1H, H-4), 3.56 (dd, J =
8.8, 7.2 Hz, 1H, H-8), 3.25 (brs, 1H, -OH), 3.05 (m, 1H, H-1), 2.86 (m, 1H, H-5), 13C NMR
(CDCls, 100 MHz) 0 148.1,147.4,134.7,119.7, 108.3, 106.7, 102.4, 101.2, 87.0, 71.4, 69.5,

53.7, 52.9.



CHAPTER IlI

SYNTHESIS OF NEW FUROFURAN LIGNANS FROM SAMIN

3.1 General procedure for the synthesis of new furofuran lignans

The synthesis of furofuran lignans from small starting materials through multi-
step strategy (total-synthesis) does not serve the need of SAR study. Due to the less
variety of substrates, few of furofurans were synthesized. Consequently, a semi-
synthesis seems to be efficient over total-synthesis in generating variety of new

furofuran lignans.

In this work, we exhibited short and efficient synthetic strategy to synthesize
diversity of new furofuran lignans using samin (1.36) as a lead compound. Under acidic
condition, samin was protonated to produce oxocarbenium ion along with release of
water which could be trapped by 4°A MS. Selected nucleophiles subsequently
attacked on oxocarbenium ion yielding new furofuran lignans. Three types of
nucleophile, phenolics (C), thiols (S) and alcohols (O), were used to synthesize these

derivatives.

3.2 Synthesis of new furofuran lignans using phenolics as a nucleophile

Phenolics used in this experiment were classified into seven groups (a-g, Figure
3.1) which have the differentiation of number and orientation of electron donating
groups on aromatic ring. Disappointingly, treatment of samin with anisole (a) failed to
provide the desired furofuran lignan. The presence of one electron donating group
such as OCHjs is not enough to enhance the nucleophilicity of aromatic toward the
reaction with samin. Therefore, disubstituted oxygenated benzenes (b-d) were
introduced as stronger nucleophiles. Surprisingly, only the reactions of samin and

1,3-dioxygenated benzenes (d and e) afforded the target products 3.1d and 3.1e as
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well as their epimers, respectively. This observation would be explained by the
enhanced nucleophilicity reinforced by two electron donating groups at meta position.
To test our hypothesis, the reaction of samin and m-cresol (b) was carried out. The
products 3.1b and epi-3.1b were obtained in moderate yields (45%). With the success
of the reactions between samin and 1,3-dioxygenated benzenes, we further explored
the reactions between samin and trioxygenated benzenes (e-g). The desired products
were obtained in good yields (50 — 90%). Noticeably, all phenolics (g-j) used in the
above reactions processed enhanced nucleophilicity caused by electron donating

groups in @ meta-relation to each other.

3% B BB S A

mono- 1,2-di- 1,3-di- 1,4-di- 1,2,3-tri- 1,3,4-tri- 1,3,5-tri-
oxygenated oxygenated oxygenated oxygenated oxygenated oxygenated oxygenated

OMe OMe OMe OMe OMe OH OH

MeO MeO MeO MeO ’ OMe
a c d OMe 8 OMe i

f i

OH OMe OMe OMe O

MeO MeO MeO OMe
b e h k

O = oHor ome
% = Indicates where the bonding between phenolic and furan moiety was formed

Figure 3.1. Phenolics used in synthesis strategy.

However, the presence of one electron withdrawing group such as acetyl group
(COCHs3) decreased nucleophilicity of trioxygenated benzene k, resulting in lower yield

(15%) of product 3.1k. All of results are summarized in Table 3.1



Table 3.1 Synthesis of furofuran lignans from samin (1.36) with phenolics (a - k)

O ..OH wArOH ArOH
Hio—{vH Hio—{vH Hioy—{vH
" Amberlyst-15, ArOH - -
o 4A MS, CH CN, 8 h o - o
o) 3 o) o)
\_ \_ \_

(0] O (0]
samin (1.36) 3.1 epi-3.1
Isolated yield (%)
Entry ArOH
3.1 epi-3.1
1 a NR
2 b 3.1b (30 %) epi-3.1b (15 %)
3 @ NR
4 d 3.1d (55 %) epi-3.1d (45 %)
5 e 3.1e (42 %) epi-3.1e (31 %)
6 f NR
7 g 3.1g (31 %) epi-3.1g (22 %)
8 h 3.1h (27 %) epi-3.1h (37 %)
9 i 3.1i (68 %) epi-3.1i (17 %)
10 j 3.1j (47 %) epi-3.1j (51 %)
11 k 3.1k (15 %) epi-3.1k (trace)

NR = no reaction
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Generally, the reactions between samin and phenolics would proceed through
Syl mechanism involving oxocarbenium ion. The hydroxyl group at anomeric center
(C-2) was initially protonated by strong acid to produce oxocarbenium ion (Scheme
3.1). Phenolics as carbon nucleophiles attacked on both sides of the planar
intermediate to provide diastereomeric products in equal ratio. In terms of
regioselectivity, the bonding between C-2 of samin and high electron density as well
as least hindrance of phenolics by ortho group were generally observed. The structural
identification and relative stereochemistries of other products were confirmed by 2D

experiments and 'H NMR patterns as predicated in next section.

H  AroH
Ar>[H
H+ 0 H )
———— O —_—
SN1 H H’ %
H
H H
samin (1.36) oxocarbenium ionI epi-3.1a - epi-3.1k
J ArOH
H H
Ar' H
[e] o
H H ArOH
H
3.1a - 3.1k

Scheme 3.1 Proposed mechanistic formation of 3.1a - 3.1k and epi-3.1a - epi-3.1k

3.2.1 Structural characterization of synthesized furofuran lignans (3.1 and

epi-3.1)

Structures of all synthesized compounds were characterized mainly by 'H and
3C NMR, along with 2D NMR for particular compounds. The 'H and *C NMR spectra of
3.1 and epi-3.1 showed closely related pattern, except for some signals from H atom
of core structure. For instance, H-2 and H-6 in 3.1b showed doublet signal with

comparable coupling constants (U = 4.0 Hz) whereas those in epi-3.1b displayed
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significantly distinct values; 5.6 Hz for H-2 and 8.0 Hz for H-6. A more strikingly significant
observation is the splitting patterns of diastereomeric H-4, which appeared as expected
as doublet of doublet. However, only H-4., of epi-3.1b showed an exceptional
doublet signal caused solely by germinal coupling of H-4., and H-4,. These
observations would account for a nearly 90° dihedral angle between H-4., and H-5
that gave rise to Jy4eqs = 0 Hz [14] (Figure. 3.2). The above evidence could be useful

in readily distinguishing the identity of other synthesized lignans 3.1 and their epimers.

CH3

d T T T T T T T T T T T T T T T T d T T T
51 50 49 48 47 46 45 44 43 42 41 40 38 3§ 37 36 35 34 33 32 31 30 29
f1 (pom)

Figure 3.2. 'H NMR spectra of (i) 3.1b and (i) epi-3.1b.

The relative configuration of 3.1b and epi-3.1b at C-2 was further determined
by NOESY data and coupling constant analysis. The NOESY spectrum of 3.1b showed
diagnostic correlations of H-2/H-8,, and H-4,,/H-6, suggesting that the occupation of
two aryls are on the exo-exo face of the bicyclic core (Figure 3.2 (i)). This interpretation
was corresponding with a chair-chair conformation of sesamin (1.3), which was verified
by X-ray analysis [15]. On the other hand, epi-3.1b showed key NOESY correlations of
H-2/H-4,, and H-6/H-8,,, which implied endo,exo-2,6-diarylfurofuran (Figure 3.2 (ii)).
These observations correlated well with the chair-boat conformation of epi-sesamin

or asarinin [15].
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v o £ Con,
o, Je I/
4 PyRe 5"
HIIHW
©’FG 8
O
°d 3
(ii)
CHs
Hi-
0 ; .
exo-endo -0 epi-3.1b

Figure 3.3 Diagnostic NOESY and HMBC correlations of (i) 3.1b and (ii) epi-3.1b.

3.3 Synthesis of new furofuran lignans using thiols as a nucleophile

With the success in applying phenolic compounds, we further synthesized
other furofuran lignans by using thiols as sulfur nucleophiles. Thiols used in this
investigation are listed in Figure 3.4. They are divided into two categories; aliphatic

thiols (sp® C=SH, l-p) and aromatic thiols (sp* C-SH, g-z).

A 'S atom is well recognized as a stronger nucleophile than C and O atoms.
Therefore, the products from reaction of samin and thiols would be obtained in high

to excellent yield (Table 3.2).
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S

SH H
HS
HS\/\/\/\/ HS\/\/\/\OH \/\©
m
n (¢] P

SH SH SH SH SH SH
OMe OMe

CHj OH OMe OH Cl

q r S t u \

SH O SH SH SH
MeO
HO
N
Oz °© 07 OH
w X y z

Figure 3.4 Thiols used in synthesis strategy.

Under the same reaction condition, diastereomeric furofuran lignans (3.2 and
epi-3.2) were produced after sulfur nucleophiles attacked on an oxocarbenium
intermediate. The diastereomeric ratios (dr) of products synthesized from samin and
aliphatic thiols (l-p) are in range of 5:1 to 7:1. On the other hand, the dr values of
products synthesized from samin and aromatic thiols (g-z) varied in broader range (2:1
to 12:1). The highly diastereomeric ratios of 3.2t : epi-3.2t and 3.2x : epi-3.2x were
possibly contributed by steric hindrance of ortho-substituent (t and x). These
observations were supported by the lower dr values of isomeric products. For
example, treatment of samin with y and z, the meta and para isomer of x, provided

products with lower diastereomeric ratios (6:1).
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Table 3.2 Synthesis of furofuran lignans from samin (1.36) with thiols (L - z)

O ..\OH WS—R S-R
Hi CaH Hi “nH Hi aH
. Amberlyst-15, R-SH . .
v o) —_— W o) + W )
4A MS, CH CN, 8 h
(@] 3 (0] o
L - d

O o
samin (1.36) 3.2 epi-3.2
Diastereomeric ratio®
Entry RSH Isolated yield (%)
3.2:epi-3.2
1 ( quant 7:1
2 m 65 % 5:1
3 n 79 % Not determine
a4 0 85.2 % 6:1
5 P 73 % 7:1
6 q 97 % 3:1
7 r 99 % 5:1
8 S 69 % 3:1
9 t 96 % 12:1
10 u 69 % 2:1
11 v Quant 5:1
12 w 73.3 % 6:1
13 X 67 % 12:1
14 y 65 % 6:1
15 z 77 % 6:1

®Isolated yield of diasteromeric mixture, ® Ratios were determined by "H NMR analysis

Note: According to small amount of epimers cannot be separated purely by general

technique, only pure spectra of their congeners were shown.
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3.3.1 Structural characterization of synthesized furofuran lignans (3.2 and

epi-3.2)

'H NMR spectra of synthesized furofuran lignans 3.2 and epi-3.2 have slightly
different pattern with those obtained from samin and phenolics (3.1a-3.1k). However,
careful inspection of 'H NMR spectra indicated striking difference in splitting pattern of
H-2. As shown in Figure 3.6, furofuran lignans 3.2 showed a singlet signal of H-2 whereas
epi-3.2 demonstrated doublet signal with J = 6-7 Hz. The unexpected singlet H-2 of
3.2 suggested a perpendicular dihedral angle ((I) ~ 90°) between H-2 and H-1 (Figure
3.6 (iii), indicating that 3.2 adopted exo-exo furofuran core structure the same as samin

[16].

i — H, ~_0
J=75 a8 — - OH

s

| o
| ML' I M L exoexo H, S-§-

\‘IV‘I U

J=6.1 J=6T

w‘ ’ ‘f‘ ﬁ 0 endo-exo
il

Figure 3.5 'H NMR spectra of (i) 3.2r and (i) epi-3.2r. Note that (iii) Newman projection
of 3.2r demonstrates dihedral angle nearly 90° between H-1 and H-2, thus resulting in

singlet (s) signal rather than expected doublet (d).

Since furofuran lignans containing a S atom have never been reported, their
structures were fully characterized by 2D NMR and X-ray analysis. All 'H and **C signals
of the representative lignans 3.2r and epi-3.2r were first confirmed by HSQC and HMBC

data, and selected HMBC correlations are shown in Figure 3.6.
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Figure 3.6 Selected HMBC correlations of 3.2r and epi-3.2r.

To unambiguously elucidate furofuran core structure and orientation of
the thiol moiety, X-ray crystallographic analysis was performed. Because a good single
crystal of epi-3.2r could not be obtained, its p-bromobenzylether (pBBE) derivative

(epi-3.2r-pBBE) was prepared (Scheme 3.2).

o pon o s
y K,CO3 N
N O W O
O/Q CH;CN, 70° O/Q
[ Br LO
epi-3.2r p-bromobezylbromide epi-3.2r-pBBE

Scheme 3.2 Preparation of epi-3.2r-pBBE.

Crystal structures of the two isomers are shown in Figure 3.7. Thiol substituted
at C-2 of 3.2r was located at the exo position, and dihedral angle between H-1 and H-
2 was approximately 96.14°, resulting in singlet signal of H-2 (J = 0 Hz). On the other
hand, the thiol substituent at C-2 of epi-3.2r-pBBE was located at endo position, and

dihedral angle between H-1 and H-2 was approximately 28.01° (J = 6.1 Hz).
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[ s OH

3.2r (exo,exo)

%“
g
;
i
%

epi-3.2r-pBEE (endo,exo)

Figure 3.7 ORTEP plots (20% probability level) of 3.2r and epi-3.2r-pBBE (color codes:

C = cyan, S = yellow, Br = orange, O = red, H= white).

3.4 Synthesis of new furofuran lignans using alcohols as a nucleophile

A wide range of alcohols were also applied to demonstrate a usability of our
designed synthetic method. Selected alcohols are varied in less steric alcohols (A-F),

high steric alcohols (G-J) and allylic alcohols (K-N) (Figure 3.8).

Less steric alcohols Allylic alcohols
HO A~~~ HOWOH HOM
A D K

H
HO o~~~ O
7 =

B E
HO
HO A~ /\)\/\)\
HO 7 L
C

F

High steric alcohols M
0\
i eeNion °
“'OH OH HO
G H I J

Figure 3.8 Alcohols used in synthesis strategy.
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From this experiment, fourteen new furofuran lignans (3.3A-3.3N) were able to
synthesize in high yield (69 % — quant, Table 3.3) although bulky or naturally allylic
alcohols were used as nucleophiles. These results indicated that our methodology is
compatible to all kinds of alcohols despite of alcohols N, which was susceptible to
dehydration under strong acidic condition. Therefore, reaction between samin and N
provided 3.3N in moderated yield together with the byproduct generated from self-

condensation of benzylic alcohol N.

Unexpectedly, each reaction provided single stereomeric products (3.3A -
3.3N) instead of mixture of two diastereomers as previously described in the reactions
between samin and phenolics as well as thiols. The stereochemistry of 3.3 proved to

be retention of configuration, which were elaborated in section 3.4.1.



Table 3.3 Synthesis of furofuran lignans from samin with alcohols (A - N)
o}

O ..OH WO-R
Hi H Hi i
. Amberlyst-15, R-OH .
W W
Y 4AMS, CH CN, 8 h o
o) 3 o)
. \_

o} o
samin (1.36) 3.3
Entry ROH Isolated yield (%)
1 A 3.3A (78 %)
2 B 3.3B  (quant)
3 C 3.3C  (quant)
q D 3.3D  (quant)
5 E 3.3 (quant)
6 F 3.3F (88 %)
7 G 3.3G  (quant)
8 H 3.3H (75 %)
9 I 3.3 (81 %)
10 J 3.3) (93 %)
11 K 33K (69 %)
12 L 3.3L (82 %)
13 M 3.3M (84 %)
14 N 33N (44.8 %)
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3.4.1 Structural characterization of synthesized furofuran lignans (3.3 and

epi-3.3)

Compounds 3.3A-3.3N showed singlet signals of H-2 similar to those of 3.2. For
instant, 3.3A and 3.2l exhibited sharp singlet signal around 4-5.5 ppm. These

observations indicated that their conformation adopted exo-exo furofuran type.

H-2

0.2.,0-CgHs

. Singlet
(i)

5.5 5.0

[ H2
(ii) Singlet
T T T T T T T T T T T
5.5 5.0 4.0 3.5 3.0 2.5

4.5
f1 (ppm)

Figure 3.9 'H NMR spectra of (i) 3.3A and (i) 3.2
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3.5 Experimental section
3.5.1 General experiment procedures

'H and C NMR were recorded (CDCl; as a solvent) at 400 and 100 MHz,
respectively, Varian Mercury” 400 NMR and a Bruker (Avance) 400 NMR spectrometer.
The chemical shifts were reported in ppm downfield from TMS. Mass spectra were
measured by HRESIMS obtaining from a micrOTOF Bruker mass spectrometer. Thin
layer chromatography (TLC) and Preparative thin Layer Chromatography (Prep TLC)
were operated on pre-coated Merck silica gel 60 F,s54 plates (0.25 and 0.50 mm thick
layer, respectively) and visualized under 254 nm UV. Silica gel 60 Merk cat. No. 7729

was applied for open column chromatography.

3.5.2 Chemical

All reagents were obtained from Sigma-Aldrich and used without further

purification.

3.5.3 General procedure for synthesis of new furofuran lignans

To a solution of samin (1 eq) in acetonitrile (1.0 mL/0.1 mmol of samin) was
treated with selected nucleophile (2 eq), acidic resin amberlyst-15 (1 mg/0.005 mmol
of samin) and molecular sieve, 4 A. After stirring at 60°C for 8 h, the reaction mixture
was evaporated to dryness and load onto silica gel column chromatography followed

by Prep TLC in order to obtain purely desired products.


https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0ahUKEwj8rbXn5a3JAhVMH44KHbDVDVQQFggzMAc&url=http%3A%2F%2Fwww.sigma-aldrich.com%2Fsaws.nsf%2FHome%3FOpenFrameset&usg=AFQjCNEkOubPnHXqPu2FQBwtkZXWsY-Rjw&sig2=csFMnJDHm82vfNkJhHmoRw
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-
(1R, 2R, 5S, 6S)-2-(2-hydroxy-4- (1R, 25, 55, 65)-2-(2-hydroxy-4-
methylphenyl)-6-(3,4- methylphenyl)-6-(3,4-
methylenedioxyphenyl)-3,7- methylenedioxyphenyl)-3,7-
dioxabicyclo[3.3.0]octane (3.1b) dioxabicyclo[3.3.0]Joctane (epi-3.1b)

Following the general procedure, reaction of 1.36 (64.5 mg, 0.26 mmol), m-cresol (40
uL, 0.39 mmol) in acetonitrile (2 mL) after 8 h yielded 3.1b (27 mg, 30%) and epi-3.1b

(13 mg, 15%) as white powder.

3.1b: 'H NMR (CDCls, 400 MHz) O 7.89 (brs, 1H, -OH), 6.92 (d, J = 7.6 Hz, 1H, H-6"), 6.83-
6.78 (m, 3H, H-2', H-5', and H-6"), 6.71 (s, 1H, H-3"), 6.67 (d, J = 7.6 Hz, 1H, H-5"), 5.95 (s,
2H, H-7"), 4.87 (d, J = 6.5 Hz, 1H, H-2), 4.78 (d, J = 4.4 Hz, 1H, H-6), 4.34 (dd, / = 9.2, 7.6
Hz, 1H, H-4), 4.15 (dd, J = 9.2, 6.8 Hz, 1H, H-8), 3.92-3.85 (m, 2H, H-4 and H-8), 3.21 (m,
1H, H-1), 3.14 (m, 1H, H-5), 2.29 (s, 3H, -CH,); °C NMR (CDCls, 400 MHz) 0 155.5, 148.2,
147.4,139.8,134.8, 126.8, 120.9, 120.9, 119.5, 117.9, 108.4, 106.7, 101.3, 86.7, 85.6, 72.5,
70.9, 53.6, 53.1, 21.2; HRMS m/z 363.1212 [M+Na]" (calcd for CyyH,NaOs, 363.1208).

epi-3.1b: "H NMR (CDCls, 400 MHz) O 7.85 (brs, 1H, -OH), 6.92 (d, J = 7.6 Hz, 1H, H-6"),
6.86-6.80 (m, 3H, H-2', H-5', and H-6), 6.71 (s, 1H, H-3"), 6.67 (d, J = 7.6 Hz, 1H, H-5"),
597 (s, 2H, H-7"), 4.85 (d, J = 5.6 Hz, 1H, H-6), 4.55 (d, J = 7.9 Hz, 1H, H-2), 4.11 (d, J =
9.6 Hz, 1H, H-8), 3.90 (dd, J = 8.4, 7.6 Hz, 1H, H-4), 3.82 (dd, J = 9.6, 6.0 Hz, 1H, H-8),
3.38-3.28 (m, 2H, H-1 and H-4), 3.04 (m, 1H, H-5), 2.29 (s, 3H, -CH5); *C NMR (CDCls, 400
MHz) 0 155.5, 147.9, 146.9, 139.8, 132.0, 126.9, 121.2, 120.8, 118.8, 118.0, 108.4, 106.5,
101.2, 88.6, 82.0, 70.7, 70.2, 53.4, 49.9, 21.3; HRMS m/z 363.1213 [M+Na]" (calcd for

CyoHooNaOs, 363.1208).
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W' O o
o} )

o -0
(1R, 2R, 5S, 6S)-2-(1,4- (1R, 25, 55, 65)-2-(1,4-
dimethoxyphenyl)- dimethoxyphenyl)
6-(3,4-methylenedioxyphenyl)-3,7- -6-(3,4-methylenedioxyphenyl)-3,7-
dioxabicyclo[3.3.0]octane (3.1d) dioxabicyclo[3.3.0]Joctane (epi-3.1d)

Following the general procedure, reaction of 1.36 (125 mg, 0.05 mmol), 1,3-
dimethoxybenzene (12 mg, 0.075 mmol) in acetonitrile (0.5 mL) after 8 h yielded 3.1d
(10 mg, 55%) and epi-3.1d (8.2 mg, 45%) as colorless oil.

3.1d: 'H NMR (CDCls, 400 MHz) 0 7.25 (dd, J = 8.0, 2.8 Hz, 1H), 6.84 (s, 1H), 6.81-6.74
(m, 2H), 6.45(d, J = 7.2 Hz, 1H), 6.44 (d, J = 2.4 Hz, 1H), 5.92 (s, 2H), 5.03 (d, J = 4.8 Hz,
1H), 4.64 (d, J = 5.6 Hz, 1H), 4.30 (dd, J = 9.2, 7.6 Hz, 1H), 4.19 (dd, J = 8.8, 6.4 Hz, 1H),
3.98 (dd, J = 9.2, 5.2 Hz, 1H), 3.90 (dd, J = 9.2, 4.0 Hz, 1H), 3.80 (s, 3H, -OCH,), 3.79 (s,
3H, -OCHs), 3.01 (m, 1H), 2.91 (m, 1H); *C NMR (CDCls, 400 MHz) & 160.2, 157.4, 147.9,
147.1, 1354, 126.1, 122.8, 119.5, 108.1, 106.6, 103.8, 101.0, 98.6, 85.5, 82.0, 73.3, 71.2,
55.4, 55.3, 54.7, 53.7; HRMS m/z 393.1310 [M+Na]" (calcd for C,;H,,NaOg, 393.1314).
epi-3.1d: 'H NMR (CDCls, 400 MHz) O 7.44 (d, J = 8.4 Hz, 1H), 6.87 (s, 1H), 6.81-6.76 (m,
2H), 6.50 (dd, J = 8.4, 2.4 Hz, 1H), 6.44 (s, 1H), 5.94 (s, 2H), 4.91 (d, J = 6.0 Hz, 1H, H-6),
4.36 (d, J = 8.0 Hz, 1H, H-2), 4.09 (d, J = 9.2 Hz, 1H), 3.81 (s, 3H, -OCH), 3.80 (s, 3H, -
OCH,), 3.78-3.74 (m, 2H), 3.47 (m, 1H), 3.22 (dd, J = 8.8, 8.8 Hz, 1H), 2.84 (m, 1H); “*C
NMR (CDCl;, 400 MHz) 0 160.2, 156.6, 148.1, 147.3, 135.6, 127.3, 127.3, 119.7, 108.3,
106.8, 103.9, 101.1, 98.3, 87.6, 78.6, 70.5, 69.9, 55.5, 55.4, 54.9, 48.7, HRMS m/z 393.1310
[M+Na]" (calcd for CyyH,NaOg, 393.1314).
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(1R, 2R, 55, 65)-2-(2,4-dimethoxy-3- (1R, 25, 5S, 65)-2-(2,4-dimethoxy-3-
methylphenyl)-6-(3,4- methylphenyl)-6-(3,4-
methylenedioxyphenyl)-3,7- methylenedioxyphenyl)-3,7-
dioxabicyclo[3.3.0]octane (3.1e) dioxabicyclo[3.3.0]Joctane (epi-3.1e)

Following the general procedure, reaction of 1.36 (63.0 mg, 0.25 mmol), 2,6-
dimethoxytoluene (74 uL, 0.5 mmol) in acetonitrile (2 mL) after 8 h yielded 3.1e (40

mg, 42%) and epi-3.1e (30 mg, 31%) as yellow oil.

3.1e: 'H NMR (CDCls, 400 MHz) 0 7.16 (d, J = 8.5 Hz, 1H), 6.90-6.72 (m, 3H), 6.63 (d, J
= 8.5 Hz, 1H), 5.95 (s, 2H), 5.06 (d, J = 4.0 Hz, 1H), 4.68 (d, J = 4.0 Hz, 1H), 4.30 (t, J =
8.2 Hz, 1H), 4.26-4.13 (m, 1H), 3.98 (dd, J = 9.0, 4.8 Hz, 1H), 3.90 (dd, J = 9.1, 3.9 Hz,
1H), 3.82 (s, 3H, -OCHs), 3.75 (s, 3H, -OCHj), 3.10 (m, 1H), 3.00 (m, 1H), 2.16 (s, 3H); **C
NMR (CDCls, 400 MHz) O 158.6, 157.0, 148.1, 147.2, 135.5, 127.0, 123.8, 120.1, 119.6,
108.3, 106.7, 106.0, 101.2, 85.7, 82.3, 73.1, 71.5, 60.9, 55.8, 54.8, 54.1, 9.2; HRMS m/z
407.1469 [M+Na]" (calcd for C,,H,4NaQy, 407.1471).

epi-3.1e: 'H NMR (CDCls, 400 MHz) 0 7.36 (d, J = 8.6 Hz, 1H), 6.90 — 6.74 (m, 3H), 6.66
(d, J = 8.5 Hz, 1H), 5.94 (s, 2H), 4.96 (d, J = 6.2 Hz, 1H, H-6), 4.38 (d, J = 7.4 Hz, 1H, H-
2),4.10 (d, J = 9.3 Hz, 1H), 3.83 (m, 4H), 3.74 (m, 4H), 3.46 (m, 1H), 3.24 (t, J = 8.6 Hz,
1H), 2.87 (m, 1H), 2.16 (s, 3H); >C NMR (CDCl;, 400 MHz) O 158.3, 155.7, 148.1, 147.3,
135.6, 124.5, 124.2, 123.6, 119.8, 108.3, 106.78, 105.9, 101.2, 87.7, 78.8, 70.6, 69.9, 60.6,

55.8, 55.0, 49.3, 9.3; HRMS m/z 407.1470 [M+Na]" (calcd for Cy,H,NaOg, 407.1471).
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(1R, 2R, 5S, 6S)-2-(2,3,4- (1R, 25, 55, 65)-2-(2,3,4-
trimethoxyphenyl)- trimethoxyphenyl)-
6-(3,4-methylenedioxyphenyl)-3,7- 6-(3,4-methylenedioxyphenyl)-3,7-
dioxabicyclo[3.3.0]octane (3.19) dioxabicyclo[3.3.0]octane (epi-3.1¢)

Following the general procedure, reaction of 1.36 (100 mg, 0.39 mmol), 1,2,3-
trimethoxybenzene (70.3 mg, 0.58 mmol) in acetonitrile (4 mL) after 8 h yielded 3.1¢

(73.3 mg, 31%) and epi-3.1g (51.7 mg, 22%) as brown oil.

3.1g: 'H NMR (CDCls, 400 MHz) O 7.03 (d, J = 8.6 Hz, 1H), 6.90 — 6.73 (m, 3H), 6.64 (d, J
= 8.6 Hz, 1H), 5.95 (s, 2H), 5.03 (d, J = 4.0 Hz, 1H), 4.67 (d, J = 4.0 Hz, 1H), 4.33 (dd, J =
8.9, 7.5 Hz, 1H), 4.21 (dd, J = 9.0, 6.6 Hz, 1H), 3.99 (dd, J = 8.0, 4.0 Hz, 1H), 3.92 (s, 3H,
-OCH5), 3.89 (m, 1H), 3.87 (s, 3H, -OCH3), 3.85 (s, 3H, -OCH), 3.05 (m, 1H), 2.98 (m, 1H).
13C NMR (CDCls, 400 MHz) O 153.4, 151.2, 148.1, 147.3, 142.4, 135.4, 128.0, 120.3, 119.6,
108.3, 107.1, 106.7, 101.2, 85.6, 82.4, 73.2, 71.5, 60.9, 60.9, 56.2, 54.8, 54.2; HRMS m/z
423.1431 [M+Na]* (calcd for Cy,H,aNaOs, 423.1420).

epi-3.1g: 'H NMR (CDCls, 400 MHz) 0 7.21 (d, J = 8.6 Hz, 1H), 6.87-6.76 (m, 3H, H-2', H-
5' and H-6"), 6.67 (d, J = 8.6 Hz, 1H), 5.94 (s, 2H, H-7"), 4.93 (d, J = 5.6 Hz, 1H, H-6), 4.37
(d, J = 8.0 Hz, 1H, H-2), 4.09 (d, J = 9.2 Hz, 1H, H-8), 3.92 (s, 3H, -OCH5), 3.86 (s, 6H, -
OCH5 (x2)), 3.83-3.77 (m, 2H), 3.43 (m, 1H), 3.24 (m, 1H), 2.86 (m, 1H); °C NMR (CDCl,,
400 MHz) O 153.2, 150.0, 148.1, 147.3, 141.8, 135.5, 124.4, 121.2, 119.7, 108.3, 107.0,
106.8, 101.2, 87.7, 78.6, 70.6, 69.9, 60.9, 60.8, 56.1, 55.0, 49.2; HRMS m/z 423.1431

[M+Na]" (calcd for C,,H,4NaO;, 423.1420).
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(1R, 2R, 5S, 6S)-2-(3-hydroxy-2,4- (1R, 2S, 55, 65)-2-(3-hydroxy-2,4-
dimethoxyphenyl)-6-(3,4- dimethoxyphenyl)-6-(3,4-
methylenedioxyphenyl)-3,7- methylenedioxyphenyl)-3,7-
dioxabicyclo[3.3.0]octane (3.1h) dioxabicyclo[3.3.0]octane (epi-3.1h)

Following the general procedure, reaction of 1.36 (36.0 mg, 0.14 mmol), 2,6-
dimethoxyphenol (43 mg, 0.28 mmol) in acetonitrile (2 mL) after 8 h yielded 3.1h (15

mg, 27%) and epi-3.1h (20 mg, 37%) as yellow oil.

3.1h: 'H NMR (CDCls, 400 MHz) O 6.89 — 6.73 (m, 4H), 6.62 (d, J = 8.6 Hz, 1H), 5.94 (s,
2H), 5.05 (d, J = 4.0 Hz, 1H), 4.68 (d, J = 4.0 Hz, 1H), 4.31 (dd, J = 9.1, 7.3 Hz, 1H), 4.22
(dd, J = 9.1, 6.6 Hz, 1H), 4.01 (dd, J = 9.2, 4.7 Hz, 1H), 3.92 (d, J = 4.3 Hz, 4H), 3.89 (d, J
= 7.1 Hz, 4H), 3.10 - 3.02 (m, 1H), 3.01 - 2.93 (m, 1H); *C NMR (CDCls, 400 MHz) O
148.1, 147.4, 144.6, 138.7, 135.4, 128.3, 119.6, 115.9, 108.3, 106.7, 105.9, 101.2, 85.6,
82.4, 73.1, 71.6, 60.6, 56.4, 54.8, 54.2; HRMS m/z 409.1260 [M+Na]* (calcd for
Co1H,NaO;, 409.1263).

epi-3.1h: 'H NMR (CDCls, 400 MHz) O 7.02 (d, J = 8.5 Hz, 1H), 6.89-6.73 (m, 3H), 6.65
(d, J = 8.4 Hz, 1H), 5.95 (s, 2H), 4.95 (d, J = 5.9 Hz, 1H, H-6), 4.36 (d, J = 8.0 Hz, 1H, H-
2),4.09 (d, J = 9.4 Hz, 1H), 3.97-3.84 (m, TH), 3.86-3.74 (m, 2H), 3.51-3.40 (m, 1H), 3.24
(t, J = 8.6 Hz, 1H), 2.86 (dd, J = 15.4, 7.2 Hz, 1H); >C NMR (CDCls, 400 MHz) O 148.1,
147.3, 147.2, 138.2, 1355, 129.9, 124.6, 119.7, 116.8, 108.3, 106.8, 105.8, 101.2, 87.7,
78.7, 70.6, 69.9, 60.3, 56.4, 54.9, 49.2; HRMS m/z 409.1261 [M+Na]® (calcd for

CyyHyoNaOy, 409.1263).
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(1R, 2R, 5S, 6S)-2-(2-hydroxy-4,5- (1R, 2S, 55, 65)-2-(2-hydroxy-4,5-
dimethoxyphenyl)-6-(3,4- dimethoxyphenyl)-6-(3,4-
methylenedioxyphenyl)-3,7- methylenedioxyphenyl)-3,7-
dioxabicyclo[3.3.0]octane (3.1i) dioxabicyclo[3.3.0]Joctane (epi-3.1i)

Following the general procedure, reaction of 1.36 (46.8 mg, 0.19 mmol), 3,4-
dimethoxyphenol (58 mg, 0.37 mmol) in acetonitrile (2 mL) after 8 h yielded 3.1i (49

mg, 68%) and epi-3.1i (15 mg, 17%) as white powder.

3.1i: 'H NMR (CDCls, 400 MHz) 0771 (brs, 1H, -OH), 6.84-6.79 (m, 3H), 6.54 (s, 1H), 6.49
(s, 1H), 5.96 (s, 2H), 4.82 (d, J = 4.0 Hz, 1H), 4.78 (d, J = 4.0 Hz, 1H), 4.36 (dd, J = 8.8, 7.2
Hz, 1H), 4.16 (dd, J = 9.6, 6.4 Hz, 1H), 3.92-3.86 (m, 2H), 3.84 (s, 3H, -OCHs), 3.82 (s, 3H,
-OCH,), 3.21-3.14 (m, 2H); *C NMR (CDCls, 400 MHz) 0 150.3, 150.1, 148.2, 147.4, 142.6,
134.8, 125.2, 119.5, 111.2, 108.4, 106.7, 102.1, 101.3, 86.7, 85.6, 72.6, 70.8, 57.2, 56.1,
53.6, 53.2; HRMS m/z 409.1286 [M+Na]" (calcd for C,,H,,NaO7, 409.1263).

epi-3.1i: 'H NMR (CDCL,, 400 MHz) O 8.05 (brs, 1H, -OH), 6.87-6.77 (m, 3H), 6.46 (s, 1H),
6.42 (s, 1H), 5.95 (s, 2H), 5.01 (d, J = 8.0 Hz, 1H), 4.44 (d, J = 6.8 Hz, 1H), 4.19(d, J = 9.6
Hz, 1H), 3.98 (t, J = 8.8 Hz, 1H), 3.88 (m, 1H), 3.85 (s, 3H, -OCHa), 3.80 (s, 3H, -OCH3), 3.49
(dd, J = 8.4, 9.2 Hz, 1H), 3.40 (m, 1H), 2.91 (m, 1H); "*C NMR (CDCls, 400 MHz) O 150.1,
149.8, 148.2, 147.5, 142.7, 134.8, 125.2, 119.8, 110.5, 108.4, 106.7, 101.9, 101.2, 87.7,
84.6, 71.9, 70.1, 57.0, 56.0, 53.7, 50.8; HRMS m/z 409.1275 [M+Na]" (calcd for

C21H22Na07, 4091263)
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(1R, 2R, 5S, 6S)-2-(2-hydroxy-4,6- (1R, 2S, 55, 65)-2-(2-hydroxy-4,6-
dimethoxyphenyl)-6-(3,4- dimethoxyphenyl)-6-(3,4-
methylenedioxyphenyl)-3,7- methylenedioxyphenyl)-3,7-
dioxabicyclo[3.3.0]Joctane (3.1)) dioxabicyclo[3.3.0]Joctane (epi-3.1j)

Following the general procedure, reaction of 1.36 (56.5 mg, 0.22 mmol), 3,5-
dimethoxyphenol (52 mg, 0.34 mmol) in acetonitrile (2 mL) after 8 h yielded 3.1j (41

mg, 47%) and epi-3.1j (44 mg, 51%) as white powder.

3.1j: 'H NMR (CDCl;, 400 MHz) O 8.96 (brs, 1H, -OH), 6.82-6.77 (m, 3H), 6.06 (d, J = 2.4
Hz, 1H), 6.01 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H), 5.21 (d, J = 4.8 Hz, 1H), 4.81 (d, J = 4.0 Hz,
1H), 4.47 (dd, J = 9.2, 8.4 Hz, 1H), 4.13 (dd, J = 9.2, 2.8 Hz, 1H), 4.03 (dd, J = 9.2, 6.8 Hz,
1H), 3.79 (m, 1H), 3.76 (s, 6H, -OCH5 (x2)), 3.19 (m, 1H), 3.01 (m, 1H); *C NMR (CDCl,
400 MHz) 0 161.0, 158.0, 157.6, 148.2, 147.3, 134.9, 119.5, 108.3, 106.7, 105.0, 101.2,
94.6,91.0,84.2,84.2,72.7,71.0, 55.5, 55.5, 54.8, 53.7; HRMS m/z 387.1449 [M+H]* (calcd
for C,H07, 387.1444).

epi-3.1j: 'H NMR (CDCls, 400 MHz) 0 9.15 (brs, 1H, -OH), 6.87-6.77 (m, 3H), 6.07 (d, J =
2.0 Hz, 1H), 6.00 (d, J = 2.4 Hz, 1H), 5.95 (s, 2H), 5.17 (d, J = 8.0 Hz, 1H, H-2), 4.40 (d, J
= 6.8 Hz, 1H, H-6), 4.17 (d, J = 10.0 Hz, 1H), 3.91 (dd, J = 8.0, 8.0 Hz, 1H), 3.81 (dd, J =
9.6, 6.4 Hz, 1H), 3.77 (s, 3H, -OCH3), 3.76 (s, 3H, -OCHs), 3.51-3.42 (m, 2H), 2.87 (m, 1H);
13C NMR (CDCLls, 400 MHz) O 160.9, 158.1, 157.4, 148.2, 147.5, 134.9, 119.8, 108.3, 106.8,
101.7, 101.2, 94.3,90.8, 87.5, 81.9, 71.4, 70.3, 55.7, 55.4, 53.7, 49.6; HRMS m/z 409.1273

[M+Na]+ (CalCd for C21H22Na07, 4091263)
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(1R, 2R, 55, 6S)-2-(3-acetyl-2,4,6-trimethoxyphenyl)-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.1k)

3.1k: Following the general procedure, reaction of 1.36 (100 mg, 0.39 mmol),
2,4,6-trimethoxyacetophenone (116.7 mg, 0.58 mmol) in acetonitrile (4 mL) after 8 h
yielded 3.1k (25.8 mg, 15%) as white powder; 'H NMR (CDCls, 400 MHz) 0 6.88 (m, 3H),
6.27 (s, 1H), 5.95 (s, 2H), 5.23 (d, J = 6.0 Hz, 1H), 4.74 (d, J = 5.6 Hz, 1H), 4.31 (dd, J =
9.2, 7.2 Hz, 1H), 4.13 (dd, J = 8.8, 7.6 Hz, 1H), 3.92-3.90 (m, 2H), 3.85 (s, 3H, -OCHs), 3.83
(s, 3H, -OCH5), 3.77 (s, 3H, -OCH5), 3.44 (m, 1H) 3.12 (m, 1H), 2.49 (s, 3H, -CH3); °C NMR
(CDCls, 400 MHz) 0 202.0, 160.6, 158.1, 157.8, 148.1, 147.2, 135.7, 119.7, 119.5, 108.3,
106.7, 101.2, 101.2, 92.0, 85.3, 79.1, 72.8, 72.6, 64.4, 56.0, 56.0, 55.9, 51.5, 29.8; HRMS

m/z 465.1538 [M+Na]" (calcd for CyqH,cNaOg, 465.1525).
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(1R, 2R, 5S, 6S)-6-(3,4-methylenedioxyphenyl)-

2-(octylsulfanyl)-3,7-dioxabicyclo[3.3.0]octane (3.20)

3.2l: Following the general procedure, reaction of 1.36 (80 mg, 0.32 mmol), 1-
octanethiol (166 pL, 0.96 mmol) in acetonitrile (3 mL) after 8 h yielded 3.2l (107.52
me, 89%) as a yellow oil; ‘H NMR (CDCls, 400 MHz) 0 6.86 — 6.75 (m, 3H, H-2', H-5" and
H-6"), 5.95 (s, 2H, H-7"), 5.38 (s, 1H, H-2), 4.38 (m, 2H, H-6 and H-8), 4.15 (dd, J = 9.3, 5.9
Hz, 1H, H-4), 3.83 (d, J = 9.4 Hz, 1H, H-4), 3.60 (m, 1H, H-8), 2.96 (m, 1H, H-1), 2.77 (m,
1H, H-5), 2.75 (m, 1H, H-1"), 2.55 (m, 1H, H-1"), 1.62 — 1.27 (m, 12H, H-CH,), 0.88 (t, 3H,
H-CHs); >C NMR (CDCls, 400 MHz) 0 148.0, 147.3, 134.6, 119.6, 108.2, 106.6, 101.1, 89.0,
86.9, 73.4, 68.3, 53.3, 53.2, 31.8, 31.1, 29.8, 29.2, 29.1, 29.0, 22.6, 14.0; HRMS m/z

401.1759 [M+Na]* (calcd for CpiHsoNaO,S, 401.1763).
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(1R, 2R, 5S, 65)- 2-[(6-hydroxy)hexylsulfanyl]-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]Joctane (3.2m)

3.2m: Following the general procedure, reaction of 1.36 (43 mg, 0.172 mmol), 6-
mercapto-1-hexanol (70 pL, 0.515 mmol) in acetonitrile (2 mL) after 8 h yielded 3.2m
(40.90 mg, 65%) as a yellow oil; *H NMR (CDCls, 400 MHz) O 6.86 — 6.75 (m, 3H), 5.94
(s, 2H), 5.26 (s, 1H), 4.42 — 4.32 (m, 2H), 4.12 (dd, J = 9.2, 6.0 Hz, 1H), 3.84 (d, J = 9.4 Hz,
1H), 3.65 = 3.52 (m, 3H), 2.97 (m, 1H), 2.81 —= 2.73 (m, 1H), 2.67 (m, 1H), 2.55 (m, 1H),
1.70 = 1.25 (m, 8H); °C NMR (CDCls, 400 MHz) 0 148.0, 147.3, 134.5, 119.6, 108.2, 106.6,
101.1, 89.0, 86.9, 73.4, 68.3, 62.9, 53.3, 53.2, 32.6, 31.0, 29.7, 28.6, 25.3; HRMS m/z

389.1395 [M+Na]* (calcd for CioHpsNaOsS , 389.1399)
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(1R, 2R, 58, 6S)- 2-(cyclohexylsulfanyl)-

£

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]Joctane (3.2n)

3.2n: Following the general procedure, reaction of 1.36 (20 mg, 0.08 mmol),
cyclohexanethiol (29 pL, 0.24 mmol) in acetonitrile (1 mL) after 8 h yielded 3.2n (22
mg, 79%) as a yellow oil; "H NMR (CDCls, 400 MHz) O 6.86 — 6.75 (m, 3H), 5.95 (s, 2H),
5.38 (s, 1H), 4.42 — 4.35 (m, 2H), 4.15 (dd, J = 9.3, 5.9 Hz, 1H), 3.83 (d, J = 9.4 Hz, 1H),
3.60 (m, 1H), 2.96 (m, 1H), 2.76 (m, 1H), 2.12 — 1.17 (m, 11H); **C NMR (CDCls, 400 MHz)
0 148.0, 147.3, 134.6, 119.6, 108.8, 106.6, 101.1, 87.9, 86.9, 73.5, 68.2, 53.4, 53.3, 43.4,
34.0, 33.8, 26.1, 26.0, 25.8; HRMS m/z 371.1297 [M+Na]" (calcd for CioHpNaO,S ,

371.1293).
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(1R, 2R, 5S, 6S)- 6-(3,4-methylenedioxyphenyl-

2-[(2-phenylethyl)sulfanyl]-3,7-dioxabicyclo[3.3.0]octane (3.20)

3.20: Following the general procedure, reaction of 1.36 (65 mg, 0.26 mmol),
phenylethylmercaptan (72 mg, 0.52 mmol) in acetonitrile (3 mL) after 8 h yielded 3.20
(72.1 mg, 75%) as a yellow oil, 'H NMR (CDCls, 400 MHz) 0 7.3 - 7.20 (m, 5H), 6.87 —
6.76 (m, 3H), 5.95 (s, 2H), 5.23 (s, 1H), 4.40 — 4.35 (m, 2H), 4.12 (dd, J = 9.4, 5.9 Hz, 1H),
3.85(d, J = 9.4 Hz, 1H), 3.56 (m, 1H), 3.01 - 2.73 (m, 5H); *C NMR (CDCls, 400 MHz) O
148.2,147.5,140.6, 134.7, 128.7, 128.6, 126.5, 119.8, 108.3, 106.7, 101.2, 89.3, 87.0, 73.6,
68.4, 53.5, 53.3, 36.6, 32.6; HRMS m/z 393.1149 [M+Na]® (calcd for CyH,,NaO,S,

393.1136).



38

OL..s
o
0
g
(1R, 2R, 5S, 6S)- 2-benzylsulfanyl-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.2p)

3.2p: Following the general procedure, reaction of 1.36 (68.8 mg, 0.27 mmol),
benzylmercaptan (100 mg, 0.81 mmol) in acetonitrile (3 mL) after 8 h yielded 3.2p
(47.97 mg, 50%) as a yellow oil; *H NMR (CDCls, 400 MHz) O 7.37 = 7.24 (m, 5H), 6.86 -
6.76 (m, 3H), 5.95 (s, 2H), 5.12 (s, 1H), 4.37 - 4.31 (m, 2H), 4.18 (dd, J = 9.4, 5.9 Hz, 1H),
3.91 -3.85(m, 2H), 3.71 (d, J = 13.5 Hz, 1H), 3.51 (dd, J = 8.9, 7.4 Hz, 1H), 2.96 (m, 1H),
2.79 (m, 1H); 13C NMR (CDCls, 400 MHz) 0 148.0, 147.4, 138.2, 134.5, 128.9, 128.6, 127.0,
119.6, 108.2, 106.6, 101.1, 87.5, 86.9, 73.4, 68.4, 53.3, 52.8, 34.8; HRMS m/z 379.0974

[M+Na]" (caled for CyoH,oNaO,S, 379.0980).
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(1R, 2R, 5S, 6S)-6-(3,4-methylenedioxyphenyl)-

2-(4-methylthiophenoxy)-3,7-dioxabicyclo[3.3.0]octane (3.2q)

3.2q: Following the general procedure, reaction of 1.36 (50.8 mg, 0.203 mmol), 4-
methylthiophenol (76 pL, 0.609 mmol) in acetonitrile (2 mL) after 8 h yielded 3.2q
(50.53 mg, 69.8%) as a white powder; 'H NMR (CDCls, 400 MHz) O 7.40 (d, J = 7.7 Hz,
2H), 7.13 (d, J = 7.8 Hz, 2H), 6.88 - 6.76 (m, 3H), 5.96 (s, 2H), 5.47 (s, 1H), 4.44 (t, J = 8.7
Hz, 1H), 4.36 (d, J = 7.5 Hz, 1H), 4.26 (dd, J = 9.4, 5.9 Hz, 1H), 3.92 (d, J = 9.5 Hz, 1H),
3.61 (m, 1H), 3.12 (m, 1H), 2.83 (m, 1H), 2.33 (s, 3H); "*C NMR (CDCls, 400 MHz) O 148.2,
147.5, 137.7, 134.6, 132.3, 131.2, 129.8, 119.8, 108.3, 106.7, 101.2, 92.5, 87.0, 73.5, 68.7,

53.4, 53.3, 21.2; HRMS m/z 379.0987 [M+Na]" (calcd for C,oH,0NaO,S, 379.0980).
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(1R, 2R, 5S, 65)-2-(4-hydroxythiophenoxy)-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.2r)

3.2r: Following the general procedure, reaction of 1.36 (70 mg, 0.28 mmol), 4-
Hydroxythiophenol (71 mg, 0.56 mmol) in acetonitrile (3 mL) after 8 h yielded 3.2r
(71.65 mg, 71.4%) as a white powder; 'H NMR (CDCls, 400 MHz) 0 7.38 (d, J = 8.5 Hz,
2H), 6.87 — 6.71 (m, 5H), 5.95 (s, 2H), 5.37 (s, 1H), 4.44 (t, J = 8.7 Hz, 1H), 4.37(d, J = 7.5
Hz, 1H), 4.28 (dd, J = 9.4, 5.9 Hz, 1H), 3.93 (d, J = 9.4 Hz, 1H), 3.61 (dd, J = 8.9, 7.1 Hz,
1H), 3.11 (m, 1H), 2.83 (m, 1H); **C NMR (CDCls, 400 MHz) O 156.1, 148.2, 147.6, 135.2,
134.4, 133.1, 119.9, 116.2, 108.4, 106.7, 101.2, 93.2, 87.0, 73.5, 68.7, 53.3, 53.0; HRMS

m/z 381.0771 [M+Na]" (calcd for CyHgNaOsS, 381.0773).
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epi-3.2r-pBBE: Following the general procedure, reaction of 1.36 (100 mg, 0.40 mmol),
4-Hydroxythiophenol (100 mg, 0.80 mmol) in acetonitrile (4 mL) was carfully performed
in room temperature for 1 h. Preparative TLC is used for purification of epi-3.2r (28.86
mg, 20%). A Solution of epi-3.2r in CH;CN was further reacted with 4-
bromobenzylbromide (30 mg, 0.12 mmol) under basic condition (K,COs3) for 4 h.
Solvent was evaporated, water was added, and after the usual work up in EtOAc, the
residue was purified by column chromatography. The white semisolid was
recrystallized from MeOH to afford epi-3.2r-pBBE (50 mg, 80 %) as a white crystal; 'H
NMR (400 MHz, CDCl) 0 7.50 (dd, J = 11.3, 8.6 Hz, 4H, H-2", H-3"", H-5"and H-6") 7.29
(d, J = 8.2 Hz, 2H, H-2" and H-6") 6.91 (d, J = 8.7 Hz, 2H, H-3"and H-5") 6.85 (s, 1H, H-2")
6.82 — 6.76 (m, 2H ,H-5and H-6") 5.95 (s, 2H, H-7") 5.11 (d, J = 6.1 Hz, 1H, H-2) 5.00 (s,
2H, H-7") 4.54 (d, J = 6.7 Hz, 1H, H-6) 4.21 (t, J = 8.7 Hz, 1H, H-8) 4.02 (dd, J = 17.2, 9.7
Hz, 2H, H-4) 3.81 (dd, J = 9.4, 6.7 Hz, 1H, H-8) 3.38 (dd, J = 15.7, 8.0 Hz, 1H, H-1)
288 - 282 (m, 1H, H-5); HRMS m/z 549.0349, 551.0329 [M+Na]" (calcd for

CoeHy3""BrNaOsS, 549.0347 and CogH,:*'BrNaOsS, 551.0327).



a2

(1R, 2R, 5S, 65)-2-(3,4- dimethoxythiophenoxy)-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]Joctane (3.2s)

3.2s: Following the general procedure, reaction of 1.36 (107 mg, 0.427 mmol), 3,4-
dimethoxythiophenol (123 pL, 0.557 mmol) in acetonitrile (4 mL) after 8 h yielded 3.2s
(86.56 mg, 50.4%) as a colorless oil; ‘H NMR (CDCls, 400 MHz) 0 7.09(dd, J = 83,18
Hz, 1H), 7.05 (d, J = 1.6 Hz, 1H) 6.81 (m, 4H), 5.95 (s, 2H), 5.42 (s, 1H), 4.44 (t, J = 8.7 Hz,
1H), 4.37 (d, J = 7.5 Hz, 1H), 4.27 (dd, J = 9.4, 5.9 Hz, 1H), 3.93 (d, J = 9.5 Hz, 1H), 3.89
(s, 3H, H-OCHa), 3.87 (s, 3H, H-OCH,), 3.62 (dd, J = 8.9, 7.1 Hz, 1H), 3.11 (m, 1H), 2.82 (m,
1H); *C NMR (CDCls, 400 MHz) O 149.3, 149.1, 148.0, 147.4, 134.4, 125.8, 125.5, 119.6,
116.1, 111.6, 108.2, 106.5, 101.9, 92.9, 86.8, 73.4, 68.6, 56.0, 56.0, 53.3, 53.0; HRMS m/z

425.1048 [M+Na]* (calcd for C,;H,,NaO4S , 425.1035).
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(1R, 2R, 5S, 65)-2-(2,5- dimethoxythiophenoxy)-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.2t)

3.2t: Following the general procedure, reaction of 1.36 (77.7 mg, 0.310 mmol), 2,5-
dimethoxythiophenol (93 uL, 0.621 mmol) in acetonitrile (3 mL) after 8 h yielded 3.2t
(119.78 mg, 88.3%) as a colorless oil; *H NMR (CDCls;, 400 MHz) 0 7.17 (d, J = 2.6 Hz,
1H), 6.87 - 6.74 (m, 5H), 5.94 (s, 2H), 5.68 (s, 1H), 4.44 (t, J = 8.7 Hz, 1H), 4.37 (d, J = 7.6
Hz, 1H), 4.23 (dd, J = 9.5, 5.9 Hz, 1H), 3.91 (d, J = 9.5 Hz, 1H), 3.84 (s, 3H, H-OCH,), 3.77
(s, 3H, H-OCH,), 3.64 (dd, J = 8.9, 7.2 Hz, 1H), 3.17 (m, 1H), 2.84 (m, 1H); °C NMR (CDCl,,
400 MHz) 0 153.9, 152.1, 148.0, 147.4, 134.4, 124.0, 119.6, 118.0, 112.9, 111.7, 108.2,
106.6, 101.1, 89.8, 86.9, 73.4, 68.8, 56.5, 55.8, 53.3, 53.2; HRMS m/z 425.1048 [M+Na]"

(caled for C,;H,,NaOgS , 425.1035).
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(1R, 2R, 55, 6S)-2-(4-hydroxy-3,5-ditertiarybutylthiophenoxy)-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.2u)

3.2u: Following the general procedure, reaction of 1.36 (50.8 mg, 0.209 mmol), 2,6-di-
tert-butyl-d-mercaptophenol (96.78 mg, 0.406 mmol) in acetonitrile (2 mL) after 8 h
yielded 3.2u (45.9 mg, 48.3%) as a yellow oil; *1H NMR (CDCls, 400 MHz) O 7.33 (s, 2H),
6.87 — 6.75 (m, 3H), 5.95 (s, 2H), 5.39 (s, 1H), 4.43 (t, J = 8.7 Hz, 1H), 4.37 (d, J = 7.5 Hz,
1H), 4.29 (dd, J = 9.4, 5.9 Hz, 1H), 3.93 (d, J = 9.4 Hz, 1H), 3.61 (m, 1H), 3.11 (m, 1H),
2.81 (m, 1H), 1.43 (s, 18H); °C NMR (CDCls, 400 MHz) 0 154.2,148.2, 147.5, 136.7, 130.4,
127.9,119.8, 108.3, 106.7, 101.2, 93.1, 86.98, 73.5, 68.5, 53.5, 53.2, 34.5, 30.3; HRMS m/z

493.2024 [M+Na]" (calcd for Co;H34NaOsS , 493.2025).
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(1R, 2R, 5S, 6S)-2-(4-chlorothiophenoxy)-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.2v)

3.2v: Following the general procedure, reaction of 1.36 (28.9 mg, 0.115 mmol), 4-
chlorothiophenol (50 mg, 0.35 mmol) in acetonitrile (2 mL) after 8 h yielded 3.2v (36.27
mg, 83.7%) as a yellow oil; 'H NMR (CDCls, 400 MHz) 0 7.40 (d, J = 8.4 Hz, 2H), 7.25 (d,
J=8.4Hz, 2H), 6.84 - 6.73 (m, 3H), 5.93 (s, 2H), 5.46 (s, 1H), 4.42 (t, J = 8.7 Hz, 1H), 4.34
(d, J = 75Hz, 1H), 4.21 (dd, J = 9.5, 5.9 Hz, 1H), 3.91 (d, J = 9.6 Hz, 1H), 3.59 (dd, J =
9.0, 7.1 Hz, 1H), 3.09 (m, 1H), 2.81 (m, 1H); *C NMR (CDCl;, 400 MHz) O 148.0, 147.4,
134.3, 133.5, 133.4, 132.8, 129.0, 119.6, 108.2, 106.5, 101.1, 92.0, 86.9, 73.3, 68.7, 53.2,

53.1.
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(1R, 2R, 5S, 65)-6-(3,4-methylenedioxyphenyl) )-
2-(4-nitrolthiophenoxy)-3,7-dioxabicyclo[3.3.0]octane (3.2w)

3.2w: Following the general procedure, reaction of 1.36 (65 mg, 0.26 mmol), 4-
nitrothiophenol (81 mg, 0.52 mmol) in acetonitrile (3 mL) after 8 h yielded 3.2w (70.5
mg, 70%) as a yellow powder; 'H NMR (CDCls, 400 MHz) 0 8.13 (d,J = 8.8 Hz, 2H), 7.59
(d, J = 8.8 Hz, 2H), 6.87 — 6.75 (m, 3H), 5.95 (s, 2H), 5.73 (s, 1H), 4.48 (t, J = 8.8 Hz, 1H),
4.41(d, J=7.5Hz, 1H), 4.21 (dd, J = 9.7, 5.8 Hz, 1H), 3.99 (d, J = 9.6 Hz, 1H), 3.67 (dd,
J=9.1,7.0Hz, 1H), 3.16 (m, 1H), 2.88 (m, 1H).; >C NMR (CDCl;, 400 MHz) 0 148.2, 147.6,
146.2, 1458, 134.2, 128.8, 124.0, 119.8, 108.4, 106.6, 101.3, 90.6, 87.0, 73.4, 69.2, 53.3,

53.2.
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(1R, 2R, 55, 65)-2-[(2- methoxycarbonyl)thiophenoxy]-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.2x)

3.2x: Following the general procedure above, reaction of 1.36 (80 mg, 0.319 mmol),
methylthiosalicylate (87.9 mg, 0.639 mmol) in acetonitrile (3 mL) after 8 h yielded 3.2x
(78.73 mg, 61.7%) as a white powder; "H NMR (CDCls, 400 MHz) 0793(dd, J=78, 1.1
Hz, 1H), 7.85(d, J = 8.1 Hz, 1H), 7.47 (m, 1H), 7.23 (dd, J = 14.2, 6.9 Hz, 1H), 6.88 - 6.75
(m, 3H), 5.95 (s, 2H), 5.68 (s, 1H), 4.48 - 4.41 (m, 2H), 4.23 (dd, J = 9.5, 5.8 Hz, 1H), 3.99
- 3.89 (m, 4H), 3.70 (dd, J = 9.1, 6.8 Hz, 1H), 3.24 (m, 1H), 2.87 (m, 1H); ")C NMR (CDCl,
400 MHz) 0 167.0, 148.1, 147.4, 139.9, 134.3, 132.4, 130.9, 128.8, 128.4, 125.1, 119.6,
108.2, 106.5, 101.1, 89.8, 86.8, 73.5, 68.9, 53.3, 53.0, 52.2; HRMS m/z 423.0884 [M+Na]"

(caled for C,H,0NaOgS , 423.0878).
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(1R, 2R, 5S, 6S)-2-[(3- methoxycarbonyl)thiophenoxy]-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]Joctane (3.2y)

3.2y: To a solution of 1.36 (100 mg, 0.399 mmol) were treated with 3-mercatobenzoic
acid (123 mg, 0.799 mmol), Amberlyst-15 (1 mg/0.005 mmol of 1.36) and 4 A molecular
seive. After stirring at room temperature for 8 h, the reaction mixture was evaporated
to dryness. The crude reaction was then metelated [17] in order to make easily to
sepearate by column cromatography, yielded 3.2y (89.3 mg, 56%) as a white powder;
'H NMR (CDCls, 400 MHz) O 8.16 (s, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H),
7.38 (t, J = 7.8 Hz, 1H), 6.88 — 6.75 (m, 3H), 5.95 (s, 2H), 5.58 (s, 1H), 4.46 (t, J = 8.7 Hz,
1H), 4.38 (d, J = 7.5 Hz, 1H), 4.26 (dd, J = 9.5, 5.9 Hz, 1H), 3.96 (d, J = 9.6 Hz, 1H), 3.92
(s, 3H), 3.64 (dd, J = 9.0, 7.1 Hz, 1H), 3.14 (m, 1H), 2.85 (m, 1H); *C NMR (CDCls, 400
MHz) 0 166.5, 148.1, 147.4, 135.7, 135.5, 134.3, 132.2, 130.9, 130.8, 128.9, 128.3, 119.6,
108.2, 106.5, 101.1,91.8, 86.8, 73.3, 68.7, 53.2, 52.2; HRMS m/z 423.0884 [M+Na]" (calcd

for CpyH,oNaO,S , 423.0878).
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(1R, 2R, 55, 65)-2-[(4- methoxycarbonyl)thiophenoxy]-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.2z)

3.2z: To a solution of 1.36 (100 mg, 0.399 mmol) were treated with 4-mercatobenzoic
acid (123 mg, 0.798 mmol), Amberlyst-15 (1 mg/0.005 mmol of 1.36) and 4 A molecular
seive. After stirring at room temperature for 8 h, the reaction mixture was evaporated
to dryness. The crude reaction was then metelated [17] in order to make easily to
sepearate via column cromatography, yielded 3.2z (105.8 mg, 66.2%) as a white
powder; 'H NMR (CDCls, 400 MHz) 0 7.95 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H),
6.88 - 6.76 (m, 3H), 5.96 (s, 2H), 5.68 (s, 1H), 4.47 (t, J = 8.7 Hz, 1H), 4.40 (d, J = 7.5 Hz,
1H), 4.23 (m, 1H), 3.97 (d, J = 9.6 Hz, 1H), 3.91 (s, 3H), 3.67 (dd, J = 9.0, 7.1 Hz, 1H), 3.15
(m, 1H), 2.86 (m, 1H); *C NMR (CDCls, 400 MHz) O 166.7, 148.1, 147.5, 142.1, 134.2,
129.9, 129.0, 128.8, 119.7, 108.2, 106.5, 101.1, 90.8, 86.9, 73.4, 68.9, 53.2, 53.1, 52.1;

HRMS m/z 423.0884 [M+Na]" (calcd for C,;H,0NaO4S , 423.0878).
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(1R, 2R, 5S, 6S)-6-(3,4-methylenedioxyphenyl)-

2-octyloxy-3,7-dioxabicyclo[3.3.0]octane (3.3A)

3.3A: Following the general procedure, reaction of 1.36 (16 mg, 0.06 mmol), 1-octanol
(30 pL, 0.18 mmol) in acetonitrile (0.6 mL) after 8 h yielded 3.3A (18 mg, 78%) as a
pale yellow oil; 'H NMR (CDCls, 400 MHz) 0 6.85 (d, J = 0.8 Hz, 1H), 6.80 (dd, J = 8.0,
1.2 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 5.94 (s, 2H), 4.93 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H),
434 (t, J = 7.2 Hz, 1H), 3.97 (dd, J = 8.8, 6.0 Hz, 1H), 3.85 (d, J = 8.8 Hz, 1H), 3.65 (m,
1H), 3.55 (dd, J = 8.8, 7.6 Hz, 1H), 3.37 (m, 1H), 3.04 (g, J = 8.8 Hz, 1H), 2.81 (g, / = 9.2
Hz, 1H), 1.59-1.54 (m, 4H), 1.27 (overlap, 8H), 0.87 (t, J = 6.8 Hz, 3H); °C NMR (CDCl,,
400 MHz) 0 148.1, 147.4, 134.9, 119.8, 108.3, 107.6, 106.7, 101.2, 87.2, 71.6, 69.0, 67.6,
53.2, 529, 31.9, 29.8, 29.5, 29.4, 26.3, 22.8, 14.2; HRMS m/z 385.1997 [M+Na]* (calcd

for C21H30Na05, 3851991)
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(1R, 2R, 55, 6S5)-2-decyloxy-6-(3,4-methylenedioxyphenyl)-

3,7-dioxabicyclo[3.3.0]Joctane (3.3B)

3.3B: Following the general procedure, reaction of 1.36 (11.3 mg, 0.05 mmol), 1-
decanol (30 pL, 0.15 mmol) in acetonitrile (0.5 mL) after 8 h yielded 3.3B (20.4 mg,
quantitative yield) as a colorless oil; 'H NMR (CDCls, 400 MHz) '*H NMR (CDCls, 400 MHz)
0 6.85(d, J = 1.6 Hz, 1H), 6.81-6.75 (m, 2H), 5.94 (s, 2H), 4.93 (s, 1H), 4.38 (d, J = 8.8 Hz,
1H), 4.35(t, J = 7.6 Hz, 1H), 3.97 (dd, J = 9.2, 6.0 Hz, 1H), 3.85 (d, J = 8.4 Hz, 1H), 3.65
(m, 1H), 3.55 (dd, J = 8.8, 7.6 Hz, 1H), 3.36 (m, 1H), 3.04 (g, J = 8.8 Hz, 1H), 2.81 (m, 1H),
1.60-1.52 (m, 4H), 1.26 (overlap, 12H), 0.87 (t, J = 6.8 Hz, 3H); C NMR (CDCls, 400 MHz)
%) 148.1, 147.4,134.9, 119.8, 108.3, 107.6, 106.7, 101.2, 87.2, 71.6, 69.0, 67.6, 53.3, 52.9,
32.0, 29.8, 29.7, 29.7, 29.6, 29.4, 26.3, 22.8, 14.2; HRMS m/z 413.2306 [M+Na]" (calcd

for C23H34Na05, 4132304)
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(1R, 2R, 5S, 6S)-2-dodecyloxy-6-(3,4-methylenedioxyphenyl)-

3,7-dioxabicyclo[3.3.0]Joctane (3.3C)

3.3C: Following the general procedure, reaction of 1.36 (13.6 mg, 0.05 mmol), 1-
dodecanol (34 pL, 0.15 mmol) in acetonitrile (0.5 mL) after 8 h yielded 3.3C (20 mg,
quantitative yield) as a colorless oil, 'H NMR (CDCls, 400 MHz) 0 6.85 (d, J = 1.2 Hz,
1H), 6.81-6.75 (m, 2H), 5.94 (s, 2H), 4.93 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H), 4.34 (t, J = 7.6
Hz, 1H), 3.97 (dd, J = 9.2, 6.0 Hz, 1H), 3.85 (d, J = 8.8 Hz, 1H), 3.65 (m, 1H), 3.54 (dd, J
= 8.8, 7.6 Hz, 1H), 3.36 (m, 1H), 3.04 (q, J = 8.4 Hz, 1H), 2.81 (m, 1H), 1.60-1.52 (m, 4H),
1.25 (overlap, 16H), 0.88 (t, J = 6.8 Hz, 3H); °C NMR (CDCls, 400 MHz) O 148.1, 147.4,
135.0, 119.8, 108.3, 107.6, 106.8, 101.2, 87.2, 71.6, 69.1, 67.6, 53.3, 53.0, 32.1, 29.8, 29.8,
29.8, 29.7, 29.6, 29.5, 26.4, 22.8, 14.2; HRMS m/z 441.2618 [M+Nal" (calcd for

C25H38Na05, 4412617)
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(1R, 2R, 5S, 65)-2-(6-hydroxy)hexyloxy-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.3D)

3.3D: Following the general procedure, reaction of 1.36 (6.5 mg, 0.03 mmol), 1,6-
hexanediol (11 mg, 0.09 mmol) in acetonitrile (0.2 mL) after 8 h yielded 3.3D (12 mg,
quantitative yield) as a colorless oil; 'H NMR (CDCls, 400 MHz) 0 6.85 (s, 1H), 6.81-6.76
(m, 2H), 5.94 (s, 2H), 4.93 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H), 4.35 (t, J = 8.0 Hz, 1H), 3.96
(dd, J = 9.2, 6.0 Hz, 1H), 3.85 (d, J = 8.8 Hz, 1H), 3.69-3.62 (m, 3H), 3.55 (dd, J = 8.8, 8.0
Hz, 1H), 3.38 (m, 1H), 3.03 (q, J = 8.4 Hz, 1H), 2.81 (g, J =8.8 Hz, 1H), 1.59-1.56 (m, 2H),
1.43-1.33 (m, 6H); *C NMR (CDCls, 400 MHz) O 148.1, 147.4, 134.9, 119.8, 108.3, 107.6,
106.7, 101.2, 87.2, 71.5, 69.1, 67.4, 64.6, 53.2, 52.9, 32.8, 29.7, 28.7, 25.9; HRMS m/z

373.1630 [M+Na]" (calcd for CygH,sNaQy, 373.1627).
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(1R, 2R, 5S, 65)-2-(10-hydroxy)decyloxy-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.3E)

3.3E: Following the general procedure, reaction of 1.36 (7 mg, 0.03 mmol), 1,10-
decanediol (16 mg, 0.09 mmol) in acetonitrile (0.3 mL) after 8 h yielded 3.3E (13 mg,
quantitative yield) as a colorless oil; 'H NMR (CDCls, 400 MHz) 0 6.85 (s, 1H), 6.81-6.75
(m, 2H), 5.94 (s, 2H), 4.93 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H), 4.35 (t, J = 7.6 Hz, 1H), 3.97
(dd, J = 8.8, 6.0 Hz, 1H), 3.85 (d, J = 8.8 Hz, 1H), 3.68-3.62 (m, 3H), 3.55 (dd, J = 8.8, 7.6
Hz, 1H, H-8), 3.37 (m, 1H), 3.04 (q, J = 8.4 Hz, 1H), 2.82 (g, J =8.8 Hz, 1H), 1.57-1.54 (m,
2H), 1.28-1.25 (m, 14H); *C NMR (CDCls;, 400 MHz) o) 148.1, 147.4, 134.9, 119.8, 108.3,
107.6, 106.7, 101.2, 87.2, 71.6, 69.1, 67.6, 63.2, 53.2, 52.9, 32.9, 29.8, 29.8, 29.7, 29.6,

29.5, 26.3, 25.9; HRMS m/z 429.2261 [M+Nal" (calcd for C,3H34NaOg, 429.2253).
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(1R, 2R, 5S, 6S)-6-(3,4-methylenedioxyphenyl)-

2-[3,7-dimethyloct-6-en-1-yloxy]-3,7-dioxabicyclo[3.3.0]octane (3.3F)

3.3F: Following the general procedure, reaction of 1.36 (27.8 mg, 0.11 mmol), ﬁ
citronellol (60 L, 0.33 mmol) in acetonitrile (1 mL) after 8 h yielded 3.3F (38 mg, 88%)
as a colorless oil; *H NMR (CDCls, 400 MHz) 6 6.85 (s, 1H), 6.81-6.76 (m, 2H), 5.94 (s, 2H),
5.09 (t, J = 6.8 Hz, 1H), 4.93 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H), 4.35 (t, J = 7.2 Hz, 1H), 3.97
(dd, J = 9.8, 6.0 Hz, 1H), 3.85 (d, J = 8.8 Hz, 1H), 3.70 (m, 1H), 3.55 (dd, J = 8.8, 7.6 Hz,
1H), 3.40 (m, 1H), 3.03 (g, J/ = 9.2 Hz, 1H), 2.81 (q, J = 6.8 Hz, 1H), 2.03-1.91 (m, 2H), 1.68
(s, 3H), 1.59 (s, 3H), 1.54 (m, 1H), 1.41-1.30 (m, 3H), 1.16 (m, 1H), 0.89 (d, J = 6.4 Hz,
3H); °C NMR (CDCls, 400 MHz) 0 148.1, 147.4, 135.0, 131.3, 124.9, 119.8, 108.3, 107.5,
106.7, 101.2, 87.2, 71.6, 69.1, 65.9, 53.3, 53.0, 37.4, 36.8, 29.8, 25.8, 25.6, 19.8, 17.8;

HRMS m/z 411.2155 [M+Nal" (calcd for C,3H3,NaOs, 411.2147).
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(IR, 2R, 55, 6S)-2-[(1R, 2S, 5R)-2-isopropyl-5-methylcyclohexyloxy-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.3G)

3.3G: Following the general procedure, reaction of 1.36 (12.6 mg, 0.05 mmol), menthol
(23 mg, 0.15 mmol) in acetonitrile (0.5 mL) after 8 h yielded 3.3G (20 mg, quantitative
yield) as a colorless oil; "H NMR (CDCls, 400 MHz) 0 6.84 (s, 1H), 6.81-6.75 (m, 2H), 5.94
(s, 2H), 5.01 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H), 4.35 (dd, J = 8.4, 6.4 Hz, 1H), 4.05 (dd, J =
9.2, 6.4 Hz, 1H), 3.84 (d, J = 8.8 Hz, 1H), 3.54 (dd, J = 9.2, 7.6 Hz, 1H), 3.31 (ddd, J =
10.4, 10.0, 4.4 Hz, 1H), 3.04 (g, J = 8.0 Hz, 1H), 2.83 (g, J = 8.8 Hz, 1H), 2.13-2.04 (m, 2H),
1.63-1.59 (m, 3H), 1.40 (m, 1H), 1.17 (m, 1H), 1.01-0.94 (m, 2H), 0.91(d, J = 4.8 Hz, 3H),
0.89 (d, J = 4.4 Hz, 3H), 0.78 (d, J = 6.8 Hz, 3H); °C NMR (CDCl,, 400 MHz) O 148.1, 147.4,
135.1,119.8, 109.4, 108.3, 106.7, 101.2, 87.3, 79.7, 71.7, 69.1, 53.4, 52.9, 48.9, 43.6, 34.5,
31.9, 25.9, 23.5, 22.4, 21.3, 16.5; HRMS m/z 411.2143 [M+Na]" (calcd for C,3H3,NaOs,

411.2147).
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(1R, 2R, 55, 65)-2-(4,7,7-trimethylbicyclo[2.2.1]heptan-3-yloxy)-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.3H)

3.3H: Following the general procedure, reaction of 1.36 (20 mg, 0.08 mmol), borneol
(37 mg, 0.24 mmol) in acetonitrile (0.8 mL) after 8 h yielded 3.3H (23 mg, 75%) as a
colorless oil; *H NMR (CDCls, 400 MHz) 0 6.85 (s, 1H), 6.82-6.76 (m, 2H), 5.95 (s, 2H),
4.95 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H), 4.34 (dd, J = 12.8, 8.0 Hz, 1H), 3.98 (dd, J = 8.8, 6.0
Hz, 1H), 3.82 (d, J = 8.8 Hz, 1H), 3.76 (brd, J = 8.0 Hz, 1H), 3.53 (dd, J = 8.8, 7.6 Hz, 1H),
3.07 (g, J = 8.4 Hz, 1H), 2.84 (g, J = 9.2 Hz, 1H), 2.22 (m, 1H), 1.89 (m, 1H), 1.68-1.58 (m,
2H), 1.22-1.15 (m, 2H), 1.01 (dd, J = 13.6, 3.2 Hz, 1H), 0.85 (s, 3H), 0.84 (s, 3H), 0.83 (s,
3H); °C NMR (CDCls, 400 MHz) o) 148.1, 147.4, 135.1, 119.8, 109.2, 108.3, 106.8, 101.2,
87.2,84.0,71.7, 69.0, 53.3, 53.1,49.4, 47.5, 45.2, 37.9, 28.4, 26.9, 19.9, 18.9, 14.0; HRMS

m/z 409.1992 [M+Na]" (calcd for Cp3HsNaOs, 409.1991).
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(IR, 2R, 55, 6S)-2-[2-(4-methylcyclohex-3-en-1-yl)propan-2-yloxyl-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.3I)

3.3l: Following the general procedure, reaction of 1.36 (48 mg, 0.19 mmol), -
terpeneol (95 L, 0.57 mmol) in acetonitrile (2 mL) after 8 h yielded 3.31 (60 mg, 81%)
as a colorless oil; ‘H NMR (CDCls, 400 MHz) 0 6.84 (d, J = 1.6 Hz, 1H), 6.80-6.77 (m, 2H),
5.94 (s, 2H), 5.37 (brs, 1H), 5.24 (s, 1H), 4.36 (d, J = 5.6 Hz, 1H), 4.33 (dd, J = 6.0, 4.0 Hz,
1H), 4.05 (dd, J = 9.2, 6.0 Hz, 1H), 3.80 (d, J = 8.8 Hz, 1H), 3.57 (dd, J = 8.8, 7.2 Hz, 1H),
2.95 (m, 1H), 2.83 (m, 1H), 2.04-1.96 (m, 4H), 1.83-1.81 (m, 3H), 1.64 (s, 3H), 1.57 (s, 3H),
1.19 (s, 3H); °C NMR (CDCl;, 400 MHz) 0 148.1, 147.4, 135.3, 134.1, 121.0, 119.7, 108.3,
106.7, 102.3, 101.2, 87.2, 78.5, 71.8, 69.1, 54.2, 53.2, 44.2, 31.2, 26.9, 24.3, 24.0, 23.6,

23.5; HRMS m/z 409.1992 [M+Na]" (calcd for Cy3H3oNaOs, 409.1991).
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(1R, 2R, 5S, 65)-2-cyclohexyloxy-6-(3,4-methylenedioxyphenyl)-

3,7-dioxabicyclo[3.3.0]octane (3.3))

3.3): Following the general procedure, reaction of 1.36 (12.9 mg, 0.05 mmol),
cyclohexanol (16 pL, 0.15 mmol) in acetonitrile (0.5 mL) after 8 h yielded 3.3J (16 mg,
93%) as a colorless oil; "H NMR (CDCls, 400 MHz) 0 6.85 (d, J = 0.8 Hz, 1H), 6.81-6.75
(m, 2H), 5.94 (s, 2H), 4.93 (s, 1H), 4.37 (d, J = 8.8 Hz, 1H), 4.34 (dd, J = 8.0, 5.6 Hz, 1H),
4.01 (dd, J = 8.8, 6.0 Hz, 1H), 3.83 (d, J = 8.8 Hz, 1H), 3.55 (m, 2H), 3.02 (g, J = 8.4 Hz,
1H), 2.83 (m, 1H), 1.89-1.52 (m, 10H); °C NMR (CDCl;, 400 MHz) 0 148.1, 147.4, 135.0,
119.8, 108.3, 106.8, 105.6, 101.2, 87.3, 74.9, 71.6, 69.0, 53.5, 53.0, 34.0, 32.0, 25.8, 24.5,

24.4; HRMS m/z 355.1527 [M+Na]" (calcd for CigH,4NaOs, 355.1521).
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(1R, 2R, 55, 65)-2-[(2E)-3,7-dimethylocta-2,6-dien-1-yloxy]-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]Joctane (3.3K)

3.3K: Following the general procedure, reaction of 1.36 (17 mg, 0.07 mmol), geraniol
(37 pL, 0.21 mmol) in acetonitrile (0.7 mL) after 8 h yielded 3.3K (18 mg, 69%) as a
colorless oil; *H NMR (CDCl;, 400 MHz) 0 6.85 (s, 1H), 6.81-6.75 (m, 2H), 5.94 (s, 2H),
5.33 (t, J = 6.4 Hz, 1H), 5.09 (m, 1H), 4.99 (s, 1H), 4.38 (d, J = 9.2 Hz, 1H), 4.35 (dd, J =
8.4, 7.2 Hz, 1H), 4.17 (dd, J = 12.0, 6.8 Hz, 1H), 4.02-3.97 (m, 2H), 3.87 (d, J = 8.8 Hz,
1H), 3.55 (dd, J = 9.2, 7.6 Hz, 1H), 3.06 (m, 1H), 2.82 (m, 1H), 2.10-2.04 (m, 4H), 1.68 (s,
6H), 1.60 (s, 3H); *C NMR (CDCls, 400 MHz) 0 148.1, 147.4, 141.1, 134.9, 131.8, 124.1,
120.2, 119.8, 108.3, 106.8, 106.7, 101.2, 87.2, 71.6, 69.1, 63.6, 53.3, 53.0, 39.8, 26.5, 25.8,

17.8, 16.6; HRMS m/z 409.1992 [M+Na]" (calcd for Cy3HsNaOs, 409.1991).



61

(0)
,\\O \
Hre i
W 0 “
O
0

(1R, 2R, 5S, 6S)-6-(3,4-methylenedioxyphenyl)-

2-[(22)-3,7-dimethylocta-2,6-dien-1-yloxy]-3,7-dioxabicyclo[3.3.0]octane (3.3L)

3.3L: Following the general procedure, reaction of 1.36 (105.8 mg, 0.42 mmol), nerol
(222 pL, 1.26 mmol) in acetonitrile (4 mL) after 8 h yielded 3.3L (134 mg, 82%) as a
colorless oil; *H NMR (CDCls, 400 MHz) 0 6.85 (s, 1H), 6.79-6.75 (m, 2H), 5.94 (s, 2H),
5.34 (m, 1H), 5.09 (brs, 1H), 4.98 (s, 1H), 4.38 (d, J = 9.2 Hz, 1H), 4.34 (dd, J = 12.4, 7.6
Hz, 1H), 4.16 (m, 1H), 4.01-3.94 (m, 2H), 3.86 (d, J = 8.8 Hz, 1H), 3.54 (m, 1H), 3.05 (m,
1H), 2.80 (m, 1H), 2.08 (brs, 4H), 1.75 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H); >°C NMR (CDCls,
400 MHz) O 148.1, 147.4, 141.4, 134.9, 132.1, 123.9, 121.1, 119.8, 108.3, 106.7, 106.7,
101.2, 87.1, 71.5, 69.1, 63.3, 53.2, 53.0, 32.3, 26.9, 25.8, 23.7, 17.8; HRMS m/z 409.1997

[M+Na]" (calcd for CysHsoNaOs, 409.1991).
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(1R, 2R, 5S, 6S)-2-[(2E, 6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yloxy]-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.3M)

3.3M: Following the general procedure, reaction of 1.36 (77.2 mg, 0.31 mmol),
trans,trans-farnesol (235 L, 0.93 mmol) in acetonitrile (3 mL) after 8 h yielded 3.3M
(118 mg, 84%) as a colorless oil; "H NMR (CDCls, 400 MHz) 0 6.85 (s, 1H), 6.79-6.75 (m,
2H), 5.94 (s, 2H), 5.33 (m, 1H), 5.10-5.07 (m, 2H), 4.98 (s, 1H), 4.38 (d, J = 8.8 Hz, 1H),
4.34 (dd, J = 9.6, 7.6 Hz, 1H), 4.18 (m, 1H), 4.01-3.98 (m, 2H), 3.86 (d, J = 8.8 Hz, 1H),
3.54 (dd, J = 8.8, 8.8 Hz, 1H), 3.06 (m, 1H), 2.81 (m, 1H), 2.12-1.95 (m, 8H), 1.69 (s, 3H),
1.67 (s, 3H), 1.59 (s, 6H); °C NMR (CDCls, 400 MHz) 0 148.1, 1474, 141.1, 135.5, 134.9,
131.4, 1245, 123.9, 120.2, 119.8, 108.3, 106.7, 106.7, 101.2, 87.1, 71.5, 69.1, 63.6, 53.2,
53.0, 39.8, 39.7, 26.9, 26.4, 25.8, 17.8, 16.6, 16.1; HRMS m/z 477.2617 [M+Na]" (calcd

for C28H38Na05, 4772617)
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(1R, 2R, 55, 6S)- 2-(3,4-(methylenedioxy)benzyloxy-

6-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3.3N)

3.3N: Following the general procedure, reaction of 1.36 (63.3 mg, 0.25 mmol), Piperonyl
alcohol (235 L, 0.51 mmol) in acetonitrile (3 mL) after 8 h yielded 3.3N (43.6 mg,
44.8%) as a whith solid; 'H NMR (400 MHz, CDCls) O 6.80 (m, 6H), 5.95 (d, J = 1.0 Hz,
4H), 5.02 (s, 1H), 4.60 (d, J = 11.4 Hz, 1H), 4.42 — 4.31 (m, 3H), 4.03 (dd, J = 9.1, 6.0 Hz,
1H), 3.90 (d, J = 9.0 Hz, 1H), 3.57 — 3.51 (m, 1H), 3.09 (dd, J = 16.9, 8.7 Hz, 1H), 2.83 (dd,
J = 155, 6.7 Hz, 1H); )C NMR (101 MHz, CDCl,) O 148.1, 134.8, 131.6, 121.9, 119.8,

108.9, 108.3, 106.7, 106.5, 101.2, 101.2, 87.2, 71.5, 69.3, 68.9, 53.2, 52.9.
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3.5.4 X-ray Crystallographic Analysis of 3.2r and epi-3.2r

Single crystal X-ray diffraction data were collected at 296(2) K on a Bruker X8
PROSPECTOR KAPPA CCD diffractometer using an IS X-ray microfocus source with

multilayer mirrors, yielding intense monochromatic Cu-KQU radiation (A = 154178 A)

for 3.2r and on a Bruker X8 APEX Il KAPPA CCD diffractometer using graphite

monochromatized Mo-KOL radiation (A= 0.71073 A) for epi-3.2r. The structures were
solved using SHELXTL XT 2013/1 [18], expanded using difference Fourier method, and
refined using full-matrix least squares on F2 with SHELXTL XLMP 2014/7 [19]. Absolute
configurations of the two compounds were ambiguously determined with the
estimated Flack parameters (x’s) [20] that are statistically close to zero; the
corresponding respective values are 0.040(19) and 0.026(12). Details of crystal data and

refinement parameters are listed in Table 3.4.
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Table 3.4 Crystal data and refinement parameters of compounds 3.2r and epi-3.2r.

3.2r epi-3.2r
Crystal habit Thin plate, colorless Thin plate, colorless
Crystal size (mm?) 0.01X0.24%0.34 0.01X0.18%0.20
Empirical formula Cio Hig O5 S Cyg Hoz Br O5 S
FwW 358.40 527.41
Crystal system Monoclinic Triclinic
Space group P2, (no. 4) P1 (no. 1)
a [A] 6.1485(2) 6.7501(13)
b [A] 7.6475(2) 8.8663(18)
c [A] 17.9288(4) 20.864(4)
al°l 90 95.858(5)
B1°] 90.711(1) 94.023(5)
7 [°] 90 111.089(5)
v [A%] 842.96(4) 1151.3(4)
Z 2 2
Deaicd [Mg m™] 1.412 1.521
4 [mm™] 1.948 1.912
F(000) 376 540
, Bruker X8 Prospector Bruker X8 APEX Il KAPPA

Diffractometer

KAPPA CCD CCDh
Radiation (A, A) CuKae (1.54178) MoKe (0.71073)
Resolution (A) 0.83 0.83
Temperature (K) 296(2) 296(2)
26, 136.8 50.6
Completeness (%) 99.6 99.7

Reflns collected/
unique/ > 2ot/)

Rint

Data / parameters

Goodness on fit

Ry, @ wR2 [/ > 20(/)]

Ry, wR, [all data]

Flack parameter (x)

Ap (e A7)

6974 / 3010 / 2417

0.0522

3010 / 227
1.100

0.0558, 0.1403
0.0672, 0.1535
0.040(19)
-0.39, 0.21

20477 / 8319 / 3229

0.0943

8319 / 595
0.921

0.0584, 0.0827
0.2047, 0.1200
0.026(12)
-0.28, 0.28

"R =2 IFol = IFl 7 ZIFol; ° wR = ZAwF = FEY 7 X R,



CHAPTER IV

MECHANISTIC INVESTIGATION OF ALKOXYSAMIN (3.3) FORMATION

Generally, hemiacetals are susceptible to protonation under strong acid
condition to generate oxocarbenium ion [21]. The attack of nucleophile on both sides
of oxocarbenium ion would produce a mixture of two diastereomers in an equal
amount. The aforementioned phenomena were observed in the reaction between
samin and phenolics. However, high stereoselectivity was noticed in reaction between
samin and thiols. Moreover, the reaction of samin and alcohols merely provide a single
stereomeric product. Therefore, the mechanism of unexpected of alkoxysamin
formations (3.3) were carefully investigate by a model reaction monitored by 'H NMR

spectroscopy and computational calculation.
4.1 Mechanistic investigation on 3.3 formation

The model reaction monitored by 'H NMR was set by treatment of samin (1.36)
with CD;OD as a representative nucleophile in the presence of deuterated-
trifluoroacetic acid (TFA-d) (Figure 4.1). During time interval observation, we found that
this reaction generated both 4.1 and epi-4.1 with diverse ratios. The presence of
compound 4.1 could be observed by singlet signal of H-2 at 4.88 ppm while its epimer
(epi-4.1) showed H-2 as doublet signal at 4.95 ppm with J = 5.4 Hz. Noticeably, the
depletion of starting samin could be monitored by signal integration at 5.29 ppm

(Figure 4.1).
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Figure 4.1 Overlaid 'H NMR spectra of methoxy—d3 samin, 4.1 and epi-4.1 (CD;0D),

occurring in the reaction, for different times.
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Figure 4.2 Time course of the evolution of samin (1.36), 4.1, and epi-4.1 in mole

fraction by 'H NMR spectroscopy (400 MHz).

Figure 4.2 showed time course of the evolution of 1.36, 4.1, and epi-4.1 in
mole fraction by integration of *H NMR signals. After 5 min of reaction, 4.1 and epi-4.1
were first detected in the ratio of 1:1 (4.1:epi-4.1), suggesting that the reaction proceed

through Sy1-like mechanism. Noticeably, compound 4.1 was predominantly generated



68

after 60 min as observed in unequal ratio with epi-4.1 (1.5:1 to 2:1). Although the
starting samin was completely consumed after 240 min of reaction, the mole fraction
of 4.1 still increased while epi-4.1 gradually declined. We inevitable hypothesized that
epi-4.1 would be transformed to 4.1. This result could explain the absence of epi-
alkoxysamins from reaction between samin and alcohols (section 3.3.); however exact

mechanism on transformation of epi-4.1 to 4.1 remain unclear.

In fact, the epimerization of furofuran lignans has been rarely explained due to
the complexity of their conformations. Mostly, isomerization on these compounds was
claimed to occur through ring opening reaction [5, 22]. In this experiment, we proposed
the mechanism for the transformation of epi-4.1 to 4.1 as illustrated in Scheme 4.1.
The first route involved the endocyclic C2-O cleavage facilitated by the electron-
donating OCHs (Scheme 4.1 (i)). Alternatively, Sy2 mechanism using CDs;OD as
nucleophile was also proposed (Scheme 4.1 (ii). Lastly, compound epi-4.1 might be
reversed subsequently through oxocarbenium ion to form a stable compound 4.1

(Scheme 4.1 (iii)).

%HH 0, i o
AI’O 2 + 0N /O Ar% \H
H Hl 264 St HONE 7 R 2H
H H H H H OCD3
samin oxocarbenium ion / 4.1
oco
H o A
H L
Ar% 2:<H
O7~—<0
H H i H
2 "
=) OCD,
S TS-Sp2
Y
H H H
%H 0CD; %H OH
AN N : — | Ag ‘S
WAl H i. Sy1 ring opening H H[ ocb
H H
epi-4.1

Scheme 4.1 Proposed mechanistic formation of 4.1 and epi-4.1
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4.2 Mechanistic investigation on epimerization of alkoxysamin and epi-

alkoxysamin

To investigate the reasonable epimerization mechanism from epi-4.1 to 4.1,
we set the criteria to prove this mechanism using the diastereomeric pure epi-4.1 as
starting material (Scheme 4.2). After diastereomeric pure epi-4.1 was gently produced
and separated by high performance liquid chromatography (HPLC), it was dissolved in

CDCl; in the presence of TFA-d (10uL) (Scheme 4.2).

o , -0CDy i) CDCl3 + TFA-d(10uL) N 0 5 OCD3
HI 'HTH H' IHI IH
e ii) CDCly + TFA-d(10uL) + CD3OD
(@) O
o e
L \_

o iii) CD30D
epi-4.1 4.1

Scheme 4.2 Epimerization of epi-4.1 under different conditions i) - iii).

After 'H NMR acquisition, there was neither change on epi-4.1 nor presence of
4.1 formation under first condition. This observation suggested that epimerization
through Sy1 ring opening (Scheme 4.1, route i) is impossible, and external nucleophile
is presumably required. To verify this assumption, a small amount (20uL) of CD;0D
was added into the reaction NMR tube (Scheme 4.2, condition (ii)). After shaken well
and left standing at room temperature for 10 min, the doublet signal H-2 of epi-4.1
was completely disappeared while singlet signal H-2 of 4.1 was clearly observed. In
addition, epimerization of epi-4.1 to 4.1 could not proceed without the presence of
strong acid as illustrate by dissolved epi-4.1 in CD;OD, and left it overnight without

any change (Scheme 4.2, condition (iii)).

We further considered possible epimerization through route i and iii.
Protonation of epi-4.1 to regenerate oxocarbenium ion (Scheme 4.1, route iii), which

was subsequently attacked by nucleophile to produce 4.1, is less likely to proceed
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because there was no epi-4.1 remained after reaction completed. In fact, if any
reaction proceed with equilibrium, both starting material (epi-4.1) and product (4.1)

would be detected in approximately equal amount.

i) epi-4.1 with
TFA-d 10puL and CD;0D 20puL
t=10 min | H-2 (4.1)
)L-fv‘\,- J\ .“‘L MJ W
i) epi-4.1
Jt H-2 (epi-4.1)
JLJL I YR TR

T g T T LA B e e LA A e e e T
6.9 6.7 6.5 63 6.1 5.9 5.7 5.5 5.3 5.1 4.9 4.7 4.5 4.3 4.1 3.9 3.7
f1 (ppm)

Figure 4.3 Overlaid 'H NMR spectra of (i) epi-4 and (ii) the treated epi-4.1 with CD;0D

and TFA-d for 10 min.

From this result, the requiring of CD;OD in the presence of TFA-d in
epimerization reaction revealed that this reaction presumably undergo Sy2-like

transition state contributed by acid-catalysis (Scheme 4.3).

Dc S
~o0-p
H H _CD, H H + H H
%H O-H oo %H H " o Ar7l>—| OH 0o
Ar Ar : —
5 S o S e ©)—CFs o Sy +CD0D + >—CF3
H H H 3 H H|  H o WoOH ocD I
H o H o H :
e
CD40D DC—0-D
epi-4.1 TS-Sy2 4.1

Scheme 4.3 Proposed S\2 reaction between epi-4.1 and deuterated methanol

(CD50D) with the present of deuterated-trifluoroacetic acid (CF;CO,D).
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4.3 Computational calculations

The above experimental result was strikingly different with that of Johansson
et al. [22], reported epimerization of furanosides by ring opening mechanism.
Therefore, we then confirmed a transformational possibility of epi-4.1 by bond
distances observation of structures at transition state, using PCM/B3LYP/6-31+G(d,p)
method to optimize the transition state structure (Figure 4.4). Table 4.1 lists major
geometrical features of the transition state. Due to the nucleophile and leaving group
are totally the same alcohols. C-O (breaking bond) and C-O (forming bond) bond
distances at transition state were not significantly different. However, the slightly
shorter new C-0°(2.51 A) bond inferred that there is more preferable bond formation
than C-O bond. The short H*-O bond (0.97 A) also supported the -OCH; of epi-4.1
prefer leaving to form free methanol molecule after receive proton from acid (TFA-d)
rather than bonding with anomeric carbon (C-2). All illustrated evidences corroborated

reasonably transformation of epi-4.1 into 4.1 through S\2-like transition state [10].

a) TFA-d

b) CD,0D

Figure 4.4 Transition-state model for the epimerization reaction of epi-4.1.

(Note @ Atoms of TFA-d and ° Atoms of CD,0OD)
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Table 4.1 Most important bond distances (in A) and valence angle (in °) of transition

state structure.

Coordinate/property

Transition state

Oa
Ha

Ha

Ob

1.843
0.975
2.868
2517
0.991
1.715
123.1

@ Atoms of TFA-d © Atoms of CD50D

In summary, our stereoselective products from reaction between samin and

alcohols as well as thiols were reasonably formed through Syl-like mechanism by

protonation of the hemiacetal center of samin to generate the corresponding

oxocarbenium

Subsequent reaction of this oxocarbenium ion with the

nucleophiles (l-z and A-N) then led to the observed only exo,exo-furofurans (3.2-3.3)

either directly, or alternatively, by protonation of their epimers (endo,exo-furofurans)

through the Sy2-like transition state contributed by acid-catalysis, likewise reaction

sequence of model reaction monitoring which is exemplified in Scheme 4.4.
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epi-3.2 - epi-3.3 Sn2-like trasition state

Scheme 4.4 A proposed mechanistic reaction of synthesis of stereoselective products

(3.2 and 3.3).
4.4 Experimental section

4.4.1 Mechanistic investigation on 3.3 formation

Solution of samin (7 mg, 0.027mmol), deuterated-trifluoroacetic acid (TFA-d, 20
uL) and CD;OD were sealed in NMR tube. At time interval, NMR proton spectra were
recorded. Chemical shifts of all combinations in 'H NMR spectra obtained with Varian
Mercury™ 400 were 5.29 ppm (1H, s) for samin, 4.95 ppm (= 5. 4, 1H, s) for epi-4.1 and
4.88 ppm (1H, s) for 4.1. Mole ratios were calculated from integration of NMR signals

corresponding to samin, 4.1 and epi-4.1.

4.4.2 Mechanistic investigation on epimerization
4.4.2.1 Synthesis of 4.1 and epi-4.1
To a solution of samin (100 mg, 0.39 mmol) in acetonitrile (4 mL) was treated

with methanol (0.80 mmol), acidic resin amberlyst-15 and molecular sieve, 4 A. After

stirring at 0°C for 1 h, the reaction was suddenly quenched, and evaporated to dryness.
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Reaction mixture was firstly purify by siliga gel column chromatography followed by

semi-preparative HPLC (tg = 45 min, gradient of CH;CN/H,0).

0. ..0CD; O._.0oCD,
H"H”H H"HTH
we' O W' O
0 0
d g

(1R, 2R, 55, 6S)-6-(3,4- (1R, 25, 55, 65)-6-(3,4-
methylenedioxy-phenyl)-2-metyl-d;-  methylenedioxy-phenyl)-2-metyl-d;-
oxy-3,7-dioxabicyclo[3.3.0]octane oxy-3,7-dioxabicyclo[3.3.0]octane

(4.1) (epi-4.1)

4.1; 'H NMR (CDCls, 400 MHz) O 6.81 (d, J = 17.9 Hz, 3H), 5.96 (s, 2H), 4.95 (s, 1H), 4.44
(dd, J = 21.2, 8.2 Hz, 2H), 4.02 (dd, J = 9.0, 5.9 Hz, 1H), 3.95 (d, J = 9.1 Hz, 1H), 3.65 (dd,

J=9.3,7.6 Hz, 1H), 3.11 (dd, J = 16.5, 8.6 Hz, 1H), 2.92 (dd, J = 15.3, 7.2 Hz, 1H).

epi-4.1; 'H NMR (CDCls, 400 MHz) & 6.80 (m, 3H), 5.94 (s, 2H), 4.93 (d, J = 5.5 Hz, 1H),
4.64 (d, J = 6.5 Hz, 1H), 4.18 (dd, J = 8.9, 4.2 Hz, 1H), 4.05 — 3.97 (m, 2H), 3.86 — 3.81

(m, 1H), 3.11 (m, 1H), 2.92 (m, 1H).
4.4.2.2 "H NMR monitoring section

Solution of compound epi-4.1 (14 mM), in CDCl; were treated with two
conditions, namely, deuterated-trifluoroacetic acid (TFA-d 10 pL) and TFA-d 10 pL
along with duterated methanol (CD;OD, 20 pL), performed in NMR tube. H NMR
spectroscopy was applied to monitor the transformation under different condition of

each compounds as well as epi-4.1 in CD;0D.
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4.4.3 Computational section

The geometrical optimization and determination of product energy have been
calculated using the density functional theory (DFT) with the popular hybrid method
(B3LYP) with the 6-31+G(d,p) basis set. Methanol phase and the polarizable continuum
model (PCM) calculations were carried out using the Gaussian09 package [23] with

default convergence criteria.



CHAPTER V

CONCLUSION

Our synthesis approach is efficient to provide almost fifty furofuran lignans
starting from naturally available sesamolin. Key step of our methodology involved
protonation of samin to generate oxocarbenium ion, followed by nucleophilic addition.
Three types of nucleophiles were used to investigate the feasibility of our designed
synthetic method; namely, phenolics (ArOH), thiols (RSH), and alcohols (ROH). This
synthesis strategy provided moderate to high yield of diastereomeric products except
for those synthesized from samin and alcohols which was further investicated by a
time-course 'H NMR technique. The result revealed that the stereoselective products
were presumably obtained from nucleophilic addition of oxocarbenium ion, or
alternatively, via protonation of their epimers through the Sy2-like transition state
which can be confirmed by structural energy and bond distances of optimized

transition state structure, generated by Gaussian09.

This practical synthesis method of furofuran lignans suggested an opportunity
of studying structural activity relationship would be improved. In addition, mechanistic
insights make us easily controlled the producing of expected products in further

research.
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Figure 101. 'H NMR spectrum of compound 3.3J in CDCls
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Figure 109. 'H NMR spectrum of compound 3.3N in CDCls
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Figure 113. ORTEP plot of 3.2r

Bond angles of 3.2r
Number Atom1 Atom2 Atom3 Angle
1 Cc2 C1 C8 113.33
2 ca c5 cé6 117.56
Torsion angles of 3.2r
Atom1 Atom?2 Atom3 Atom4 Torsion
H2 C2 &t H1 -96.14

Figure 114. ORTEP plot of epi-3.2r-pBBE

Bond angles of epi-3.2r-pBBE
Number Atom1 Atom2 Atom3 Angle
1 C2 Cl C8 114.01
2 Cca 5 ) 116.04
Torsion angles of epi-3.2r-pBBE
Atom1 Atom?2 Atom3 Atom4 Torsion
H2 Cc2 C1 H1 28.01
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