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CHAPTER I

INTRODUCTION

Graphs arising from linear algebra over finite commutative rings have been

widely studied. Meemark and Prinyasart [15] introduced the symplectic graphs

over the ring of integers modulo pn. Previously, the graphs were studied only

over a finite field [18, 9]. There are several articles influenced by this defini-

tion such as [10], [11], [7], [6] and [5]. Meemark and Puirod [16, 17] extended

this work to the symplectic graphs over finite local rings and finite commuta-

tive rings. Gu and Wan [5] defined and studied the orthogonal graphs over

finite fields of odd characteristic. Recently, Li, Guo and Wang [12] studied the

orthogonal graphs over Galois rings of odd characteristic using matrix theory

over finite Galois rings. Their work depends on the structure of orthogonal

spaces studied in [3] and the graphs are defined on orthogonal spaces similar

to Meemark’s graph which are defined on the symplectic spaces. Mostly, the

works were on vertex and arc transitivities, strong and quasi-strong regularity,

chromatic numbers, automorphism groups.

In this work, we define orthogonal graphs over finite commutative rings

of odd characteristic and study their properties including strongly and quasi-

strongly regular graphs, vertex and arc transitives, chromatic numbers and graph

automorphisms.

The thesis is organized as follows. We determine the structure of orthogonal

space (V, β) over a finite local ring R in Chapter II. In Chapter III, we study the

orthogonal graph GOR(V ) when R is a finite local ring. We prove that this graph

is vertex and arc transitive. Moreover, in Section 3.3, we obtain a classification

for our graph to be strongly regular or to be a quasi-strongly regular graph. In

the last section of Chapter III, we obtain results of orthogonal graph over finite



2

commutative rings. Finally, we determine the chromatic number and obtain

automorphism group of orthogonal graphs, in Chapter IV.



CHAPTER II

ORTHOGONAL SPACES

In this chapter, we determine the structure of orthogonal spaces over a finite

local ring of odd characteristic. This generalizes the work of Cao [3]. The last

section also contains basic properties of a Galois ring.

Let R be a commutative ring with unity. We shall denote its unit group by

R×. Let V be a free R-module of rank n, where n ≥ 2. Assume that we have

a function β : V × V → R which is R-bilinear, symmetric and the R-module

morphism from V to V ∗ = homR(V,R) given by ~x 7→ β(·, ~x) is an isomorphism.

For ~x ∈ V , we call β(~x, ~x) the norm of ~x. The pair (V, β) is called an orthogonal

space. Moreover, if B = {~b1, . . . ,~bn} is a basis of (V, β), then we have the associ-

ated matrix [β]B = [β(~bi,~bj)]n×n. An orthogonal basis B′ = {~e1, . . . , ~en} of (V, β)

is a basis satisfying β(~ei, ~ei) = ui for some ui ∈ R× and β(~ei, ~ej) = 0 for i 6= j.

2.1 Units and the square mapping

A local ring is a commutative ring which has a unique maximal ideal. Note that

for a local ring R, its unique maximal ideal is given by M = RrR×(Proposition

1.2.11 of [2]) and we call the field R/M , the residue field of R.

Example 2.1.1. If p is a prime, then Zpn , n ∈ N, is a local ring with maximal

ideal pZpn and residue field Zpn/pZpn isomorphic to Zp. Moreover, every field is

a local ring with maximal ideal {0}.

Recall a common theorem about local rings that:

Theorem 2.1.1. Let R be a local ring with unique maximal ideal M . Then 1 + m is a

unit of R for all m ∈M . Furthermore, u+m is a unit in R for all m ∈M and u ∈ R×.
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Proof. Suppose that 1 + m is not a unit. Since R is local, 1 + m ∈ M . Hence, 1

must be in M , which is a contradiction.

Let R be a finite local ring of odd characteristic with unique maximal ideal

M and residue field k. From Theorem XVIII. 2 of [13] we have that the unit

group of R, denoted by R×, is isomorphic to (1 + M) × k×. Consider the exact

sequence of groups

1 −→ KR −→ R× −→ (R×)2 −→ 1

where θ : a 7−→ a2 is the square mapping on R× with kernel KR = {a ∈ R× :

a2 = 1} and (R×)2 = {a2 : a ∈ R×}. Note that KR consists of the identity and

all elements of order two in R×. Since R is of odd characteristic and k× is cyclic,

KR = {±1}. Hence, [R× : (R×)2] = |KR| = 2.

Proposition 2.1.2. Let R be a finite local ring of odd characteristic with unique maxi-

mal ideal M and residue field k.

(1) The image (R×)2 is a subgroup of R× with index [R× : (R×)2] = 2.

(2) For z ∈ R× r (R×)2, we have R× r (R×)2 = z(R×)2 and |(R×)2| = |z(R×)2| =

(1/2)|R×|.

(3) For u ∈ R× and a ∈M , there exists c ∈ R× such that c2(u+ a) = u.

(4) If −1 /∈ (R×)2 and u ∈ R×, then 1 + u2 ∈ R×.

(5) If −1 /∈ (R×)2 and z ∈ R× r (R×)2, then there exist x, y ∈ R× such that z =

(1 + x2)y2.

Proof. We have proved (1) in the above discussion and (2) follows from (1). Let

u ∈ R× and a ∈M . Then u−1(u+a) = 1+u−1a ∈ 1+M , so (u−1(u+a))|1+M |+1 =

u−1(u + a). Since |1 + M | = |M | is odd, u−1(u + a) = (c−1)2 for some c ∈ R×.

Thus, c2(u+ a) = u which proves (3).
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For (4), assume that−1 /∈ (R×)2 and let u ∈ R×. Suppose that 1+u2 = x ∈M .

Then u2 = −(1−x). Since |M | is odd and 1−x ∈ 1+M , (u|M |)2 = (−(1−x))|M | =

(−1)|M |(1 − x)|M | = (−1)(1) = −1, which contradicts −1 is non-square. Hence,

1 + u2 ∈ R×.

Finally, we observe that |1 + (R×)2| = |(R×)2| is finite. If 1 + (R×)2 ⊆ (R×)2,

then they must be equal, so there exists b ∈ (R×)2 such that 1 + b = 1, which

forces b = 0, a contradiction. Hence, there exists an x ∈ R× such that 1 + x2 /∈

(R×)2. By (4), 1 + x2 ∈ R×. Therefore, for a non-square unit z, we have R× is a

disjoint union of cosets (R×)2 and z(R×)2, so 1 + x2 = z(y−1)2 for some y ∈ R×

as desired.

2.2 Cogredient matrices

Throughout this section, we let R be a finite local ring of odd characteristic.

Notation. For any l × n matrix A and q × r matrix B over R, we write

A⊕B :=

A 0

0 B


which is an (l + q)× (n+ r) matrix over R.

For any matrices S1, S2 ∈ Mn(R), if there exists an invertible matrix P such

that PS1P
T = S2, we say that S1 is cogredient to S2 overR and we write S1 ≈ S2.

Note that S ≈ c2S for all c ∈ R× and S ∈ Mn(R). The next lemma is a key for

our structure theorem.

Lemma 2.2.1. For a positive integer ν and z ∈ R× r (R×)2, zI2ν is cogredient to I2ν .

Proof. If−1 = u2 for some u ∈ R×, we may choose P = 2−1

 (1 + z) u−1(1− z)

u(1− z) (1 + z)


whose determinant is z ∈ R×. Note that our R of odd characteristic, so 2 is a

unit. Hence, P is invertible and PP T = zI2. Next, we assume that −1 is non-

square. Then, by Proposition 2.1.2 (5), z = (1+x2)y2 for some units x and y inR×.
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Choose Q =

xy y

−y xy

. Then detQ = (1 + x2)y2 = z ∈ R×, so Q is invertible

and QQT =

(1 + x2)y2 0

0 (1 + x2)y2

 = zI2. Therefore, zI2ν =

ν′s︷ ︸︸ ︷
zI2 ⊕ · · · ⊕ zI2 is

cogredient to I2ν =

ν′s︷ ︸︸ ︷
I2 ⊕ · · · ⊕ I2.

McDonald and Hershberger proved the following theorem.

Theorem 2.2.2 (Theorem 3.2 of [14]). Let (V, β) be an orthogonal space of rank n ≥ 2.

Then (V, β) processes an orthogonal basis C so that [β]C is a diagonal matrix whose

entries on the diagonal are units.

Let (V, β) be an orthogonal space of rank n ≥ 2. Let C be an orthogonal basis

of V such that [β]C is a diagonal matrix whose entries on the diagonal are units.

From [β]C = diag(u1, . . . , un) and ui are units for all i. Assume that u1, . . . , ur

are squares and ur+1, . . . , un are non-squares. Since R× is a disjoint union of the

cosets (R×)2 and z(R×)2 for some non-square unit z, we have ui = w2
i for some

wi ∈ R×, i = 1, . . . , r and uj = zw2
j for some wj ∈ R×, j = r + 1, . . . , n. Thus,

[β]C = diag(u1, . . . , ur)⊕ z diag(wr+1, . . . , wn) which is cogredient to Ir⊕ zIn−r. If

n − r is even, Lemma 2.2.1 implies that [β]C is cogredient to In. If n − r is odd,

then n− r− 1 is even and so [β]C is cogredient to In−1 ⊕ (z) by the same lemma.

Note that In and In−1 ⊕ (z) are not cogredient since z is non-square. We record

this result in the next theorem.

Theorem 2.2.3. Let z be a non-square unit in R. Then [β]C is cogredient to either In

or In−1 ⊕ (z).

The next lemma follows by a simple calculation.

Lemma 2.2.4. Let z be a non-square unit in R and ν a positive integer. Write H2ν = 0 Iν

Iν 0

.
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(1) If −1 ∈ (R×)2, then Iν is cogredient to H2ν and

1 0

0 z

 ≈
1 0

0 −z

 .

(2) If −1 /∈ (R×)2, then Iν ⊕ zIν is cogredient to H2ν and I2 ≈

1 0

0 −z

 .

Proof. First we observe that if −1 = u2 for some unit u, then

1 0

0 −z

 =

1 0

0 u

1 0

0 z

1 0

0 u

 .

However, if −1 is non-square, then −1 = zc2 for some unit c ∈ R and

1 0

0 c

1 0

0 −z

1 0

0 c

 =

1 0

0 −zc2

 = I2.

Next, a simple calculation with P = 1
2

Iν −Iν
Iν Iν

 shows that L = 2

Iν 0

0 −Iν


is cogredient to H2ν . Clearly, if −1 is square, L is cogredient to I2ν . Assume that

−1 is non-square. By Proposition 2.1.2 (2), −1 = zc2 for some unit c which also

implies that 2 or −2 must be a square unit. If 2 is a square, then

L ≈ Iν ⊕ (−Iν) ≈ Iν ⊕ zc2Iν ≈ Iν ⊕ zIν .

Similarly, if −2 is a square, then

L ≈ (−Iν)⊕ Iν ≈ zc2Iν ⊕ Iν ≈ Iν ⊕ zIν .

Therefore, Iν ⊕ zIν is cogredient to H2ν .

Next, we apply Lemmas 2.2.1 and 2.2.4 in the following calculations. We

distinguish three cases. Let z be a non-square unit and ν a positive integer.

1. Assume that −1 is square. Then
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(a) I2ν ≈ H2ν and I2ν+1 ≈ H2ν ⊕ (1).

(b) I2ν ⊕ (z) ≈ H2ν ⊕ (z) and I2ν−1 ⊕ (z) ≈ I2(ν−1) ⊕

1 0

0 z

 ≈ H2(ν−1) ⊕1 0

0 −z

 .

2. Assume that −1 is non-square and ν is even. Then

(a) I2ν ≈ Iν⊕Iν ≈ Iν⊕zIν ≈ H2ν and I2ν+1 ≈ Iν⊕Iν⊕(1) ≈ Iν⊕zIν⊕(1) ≈

H2ν ⊕ (1).

(b) I2ν ⊕ (z) ≈ Iν ⊕ Iν ⊕ (z) ≈ Iν ⊕ zIν ⊕ (z) ≈ H2ν ⊕ (z) and

I2ν−1 ⊕ (z) ≈ Iν−2 ⊕ Iν−2 ⊕ I3 ⊕ (z) ≈ Iν−2 ⊕ zIν−2 ⊕ I3 ⊕ (z)

≈ Iν−1 ⊕ zIν−1 ⊕ I2 ≈ H2(ν−1) ⊕

1 0

0 −z

 .

3. Assume that −1 is non-square and ν is odd. Then

(a) I2ν ≈ Iν−1 ⊕ Iν−1 ⊕ I2 ≈ Iν−1 ⊕ zIν−1 ⊕ I2 ≈ H2(ν−1) ⊕

1 0

0 −z

 and

I2ν+1 ≈ Iν−1⊕Iν−1⊕I2⊕(1) ≈ Iν−1⊕zIν−1⊕zI2⊕(1) ≈ Iν⊕zIν⊕(z) ≈

H2ν ⊕ (z).

(b) I2ν ⊕ (z) ≈ Iν−1 ⊕ Iν−1 ⊕ I2 ⊕ (z) ≈ Iν−1 ⊕ zIν−1 ⊕ I2 ⊕ (z) ≈ Iν ⊕

zIν ⊕ (1) ≈ H2ν ⊕ (1) and I2ν−1 ⊕ (z) ≈ Iν−1 ⊕ Iν−1 ⊕ (1) ⊕ (z) ≈

Iν−1 ⊕ Iν−1 ⊕ (1)⊕ (z) ≈ Iν ⊕ zIν ≈ H2ν .

This proves a structure theorem of an orthogonal space over a finite local ring

of odd characteristic.

Theorem 2.2.5. Let R be a finite local ring of odd characteristic and let (V, β) be an

orthogonal space where V is a free R-module of rank n ≥ 2. Then there exists a δ ∈
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{0, 1, 2} such that ν =
n− δ

2
≥ 1 and the associating matrix of β is cogredient to

S2ν+δ,∆ =


0 Iν

Iν 0

∆

 ,

where

∆ =


∅(disappear) if δ = 0,

(1) or (z) if δ = 1,

diag(1,−z) if δ = 2,

and z is a fixed non-square unit of R.

We call ν a hyperbolic rank of V . Hence, when we work on an orthogonal

space (V, β) over a finite local ring, we may assume that the associating matrix

of β is in the above shape.

2.3 Galois rings

Let r, n be positive integers and p a prime. Then there exists a monic polynomial

f(x) in Zpn [x] of degree r such that the reduction f̄(x) in Zp[x] is irreducible.

Consider the ring extension Zpn [x]/(f(x)) of Zpn . This is given by

{a0 + a1x+ · · ·+ ar−1x
r−1 + (f(x)) : ai ∈ Zpn for all i ∈ {0, 1, . . . , r − 1}}.

It is called a Galois extension.

Theorem 2.3.1 (Theorem 5.1.8 of [2]). Up to isomorphism the Galois extension with

parameters r, n and p is unique.

Hence, we may denote Zpn [x]/(f(x)) byGR(pn, r), and call it the Galois ring.

Remark. GR(pn, 1) = Zpn and GR(p, r) = Fpr , the field of pr elements.

We record some properties of GR(pn, r) in the next theorem.
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Theorem 2.3.2 (Section 6.2 of [2]). Let n, r be positive integers and p a prime. Let

f(x) ∈ Zpn [x] be a monic polynomial of degree r be such that the reduction f̄(x) in

Zp[x] is irreducible. Let R = Zpn [x]. Then

1. R is a finite local ring of order pnr with maximal ideal M = pZpn [x]/(f(x)) and

residue field R/M ∼= Fpr . Moreover, the characteristic of R is pn.

2. R× =
{
a0 + a1x + · · · + ar−1x

r−1 + (f(x)) : a0, a1, . . . , ar−1 ∈ Zpn and ai ∈

Z×pn for some i ∈ {0, 1, . . . , r − 1}
}

.



CHAPTER III

ORTHOGONAL GRAPHS

In this chapter, we first study the orthogonal graph GOR(Vδ) when R is a finite

local ring of odd characteristic because we know the stucture of the orthogonal

space over a finite local ring from the previous chapter. We prove that this graph

is vertex and arc transitive. We also obtain a classification for our graph to be

strongly regular or to be a quasi-strongly regular. When R is a finite commuta-

tive ring, it is well known that R is a product of finite local rings (Theorem 8.7

of [1]). We show how to use the decomposition of finite commutative rings into

local rings and study basic properties of the orthogonal graphs.

3.1 Definitions and examples

Let R be a commutative ring and let (V, β) be an orthogonal space, where V is a

free R-module of rank n ≥ 2. A vector ~x in V is said to be unimodular if there

is an f in homR(V,R) with f(~x) = 1; equivalently, if ~x = α1
~b1 + . . .+αn~bn, where

{~b1, . . . ,~bn} is a basis for V , then the ideal (α1, . . . , αn) = R. If ~x is unimodular,

then the line R~x is a free R-direct summand of rank one. Moreover, it is easy

to see that if ~x and ~y are unimodular vectors in V , then R~x = R~y if and only if

~x = λ~y for some λ ∈ R×.

A hyperbolic pair {~x, ~y} is a pair of unimodular vectors in V with the prop-

erty that β(~x, ~x) = β(~y, ~y) = 0 and β(~x, ~y) = 1. The module H = R~x ⊕ R~y is

called a hyperbolic plane. An R-module automorphism σ on V is an isometry

on V if β(σ(~x), σ(~y)) = β (~x, ~y) for all ~x, ~y ∈ V . The group of isometries on V is

called the orthogonal group of (V, β) over R and denoted by OR(V ).
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Define the graph GOR(V ) whose vertex set V(GOR(V )) is the set of lines

{R~x : ~x is a unimodular vector in V and β(~x, ~x) = 0}

and its adjacency condition is given by

R~x is adjacent to R~y ⇐⇒ β(~x, ~y) ∈ R×(or equivalently, β(~x, ~y) = 1).

That is, R~x is adjacent to R~y if and only if {~x, ~y} is a hyperbolic pair. We call

GOR(V ) the orthogonal graph of (V, β) over R.

To see that this adjacency condition is well defined, let ~x1, ~x2, ~y1 and ~y2 be

unimodular vectors in V . Assume that R~x1 = R~x2 and R~y1 = R~y2. Then ~x1 =

λ~y1 and ~x2 = λ′~y2 for some λ, λ′ ∈ R×. Thus, we have

β(~x1, ~y1) ∈ R× ⇔ β(λ~x2, λ
′~y2) ∈ R× ⇔ λλ′β(~x2, ~y2) ∈ R× ⇔ β(~x2, ~y2) ∈ R×.

Example 3.1.1. [5, 12] Let p be an odd prime number and let R be the ring of

integers modulo pn, Zpn , or the field of pn elements Fpn , or Galois ring GR(pn, r),

where n, r ∈ N. For ν ≥ 1 and δ = 0, 1 or 2, let Vδ denote the set of 2ν + δ- tuples

(a1, . . . , a2ν+δ) of elements in R. Define β : Vδ × Vδ → R by

β((a1, a2, . . . , a2ν+δ), (b1, b2, . . . , b2ν+δ))

= (a1, a2, . . . , a2ν+δ)S2ν+δ,∆(b1, b2, . . . , b2ν+δ)
t,

for all (a1, a2, . . . , a2ν+δ), (b1, b2, . . . , b2ν+δ) ∈ Vδ, where

S2ν+δ,∆ =


0 I(ν)

I(ν) 0

∆

 , ∆ =


∅(disappear) if δ = 0,

(1) or (z) if δ = 1,

diag(1,−z) if δ = 2,

and z is a fixed non-square element of R× (as in Theorem 2.3.4). Then (Vδ, β) is
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an orthogonal space, and unimodular vectors in Vδ are those (a1, . . . , a2ν+δ) of

elements in R such that ai ∈ R× for some i ∈ {1, 2, . . . , 2ν + δ} because if all

ai ∈ M , then the ideal (a1, a2, . . . , a2ν+δ) ⊆ M where M is the unique maximal

ideal of R.

3.2 Vertex transitivity and arc transitivity

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and let (Vδ, β) be an orthogonal space of rank 2ν + δ, where ν ≥ 1, δ ∈ {0, 1, 2}.

By Theorem 2.2.5, Vδ possesses a basis B = {~b1,~b2, . . . ,~b2ν+δ} in which [β]B =

S2ν+δ,∆. Therefore, if ~x = x1
~b1 +x2

~b2 + · · ·+x2ν+δ
~b2ν+δ and ~y = y1

~b1 + y2
~b2 + · · ·+

y2ν+δ
~b2ν+δ are vectors in V , then

β(~x, ~y) =
(
x1 x2 · · · x2ν+δ

)
S2ν+δ,∆

(
y1 y2 · · · y2ν+δ

)T

=



ν∑
i=1

(xiyν+i + xν+iyi) if δ = 0,
ν∑
i=1

(xiyν+i + xν+iyi) + x2ν+1y2ν+1∆, if δ = 1,
ν∑
i=1

(xiyν+i + xν+iyi) + x2ν+1y2ν+1 − zx2ν+2y2ν+2, if δ = 2,

where ∆ = 1 or z, for some non-square unit z. For convenience, we write

x̃δ = ∅ (disappear), −1
2
∆x2

2ν+1 or −1
2
(x2

2ν+1 − zx2
2ν+2) and x̃ỹδ = ∅ (disappear),

x2ν+1y2ν+1∆ or x2ν+1y2ν+1 − zx2ν+2y2ν+2 according to δ = 0, 1 or 2, respectively.

We also have a criterion for determining whether a vector ~x in V is unimod-

ular. It proof is as explained at the end of Example 3.1.1.

Theorem 3.2.1 (Theorem 2.2 of [16]). An ~x = x1
~b1 + · · · + x2ν+δ

~b2ν+δ in V is

unimodular if and only if xi is a unit of R for some i ∈ {1, . . . , 2ν + δ}.

Lemma 3.2.2. Under the above set up, if R~x ∈ V(GOR(Vδ)), then xi is a unit of R for

some i ∈ {1, . . . , 2ν}.

Proof. Theorem 3.2.1 gives the result when δ = 0. If δ = 1 and x1, . . . , x2ν ∈ M ,

then 0 = β(~x, ~x) = 2(x1xν+1 + · · · + xνx2ν) + ∆x2
2ν+1, where ∆ = 1 or z, implies
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x2ν+1 is also in M which contradicts unimodularity of ~x. Now assume δ = 2 and

x1, . . . , x2ν ∈ M . Again, 0 = β(~x, ~x) = 2(x1xν+1 + · · · + xνx2ν) + x2
2ν+1 − zx2

2ν+2

implies x2
2ν+1− zx2

2ν+2 = m for some m ∈M . This forces that x2ν+1 and x2ν+2 are

units. By Proposition 2.1.2 (3), there exists c ∈ R× such that zx2
2ν+2 = x2

2ν+1−m =

c2(x2
2ν+1 −m + m) = c2x2

2ν+1, contradicting z is non-square. This completes the

proof of the lemma.

Let G and H be graphs. A function σ from G to H is a homomorphism from

G to H if σ(g1) and σ(g2) are adjacent in H whenever g1 and g2 are adjacent in

G. It is called an isomorphism if it is a bijection and σ−1 is a homomorphism

from H to G. An isomorphism on G is also called an automorphism. The set

of all automorphisms of a graph G is denoted by Aut(G). It is a group under

composition, called the automorphism group of a graph G.

A graph G is vertex transitive if its automorphism group acts transitively

on the vertex set. That is, for any two vertices of G, there is an automorphism

carrying one to the other. An arc inG is an ordered pair of adjacent vertices, and

G is arc transitive if its automorphism group acts transitively on its arcs. Note

that an arc transitive graph is necessarily vertex transitive. More on transitive

graphs can be found in Chapter 3 of Godsil’s book [4]. We have the next result.

Lemma 3.2.3 (Theorem 4.2 of [14]). Let R be a local ring having 2 a unit and let

(V, β) be a free orthogonal space of hyperbolic rank ≥ 1. Then, OR(V ) acts transitively

on unimodular vectors of the same norm.

Observe that for any automorphism φ of Vδ, we have the induced automor-

phism Tφ on the vertex set of the orthogonal graph GOR(Vδ) given by

Tφ : R~x 7→ Rφ(~x)

for all unimodular vectors ~x ∈ Vδ and β(~x, ~x) = 0. Let ~x and ~y be unimodular

vectors in Vδ and β(~x, ~x) = β(~y, ~y) = 0. Since our ring is of odd characteristic, 2

is a unit in R. By Lemma 3.2.3, there is an automorphism φ ∈ OR(Vδ) such that



15

φ(~x) = ~y. Thus, we have Tφ ∈ Aut GOR(Vδ) and Tφ : R~x 7→ Rφ(~x) = R~y. This

proves vertex transitivity.

For arc transitivity, we shall need the following lemma.

Lemma 3.2.4. LetR be a local ring having 2 a unit and let (Vδ, β) be a orthogonal space

of hyperbolic rank ≥ 1. If {~a,~b} and {~c, ~d} are hyberbolic pairs of unimodular vectors,

then there exists an automorphism in OR(Vδ) which carries ~a to ~c and~b to ~d.

Proof. We shall show that any ordered hyperbolic pair can be carried by an au-

tomorphism in OR(Vδ) to ~e1 and ~eν+1 and the result follows. Let {~a,~b} be a

hyberbolic pair of unimodular vectors. By Lemma 3.2.3, there exists an auto-

morphism σ ∈ OR(V ) such that σ(~a) = ~e1. Since

1 = β(~a,~b) = β(σ(~a), σ(~b)) = β(~e1, σ(~b)),

σ(~b) is of the form (x1, . . . , xν , 1, xν+2, . . . , x2ν+2) for some xi ∈ R. To finish the

lemma, it suffices to show that there exists an automorphism in OR(Vδ) which

leaves ~e1 invariant and carries σ(~b) to ~eν+1. If δ = 2, then the map τ in OR(V )

given by

[τ ]B =



1 xν+2 · · · x2ν x1 x2 · · · xν x2ν+1 zx2ν+2

1 −x2

. . . ...

1 −xν
1

−xν+2 1
... . . .

−x2ν 1

−x2ν+1 1

−x2ν+2 1


is a desired automorphism. The cases of δ = 0 and δ = 1 can be done in a similar
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way.

Let R~x1, R~x2, R~y1, R~y2 ∈ V(GOR(Vδ)) be such that R~x1 is adjacent to R~y1 and

R~x2 is adjacent to R~y2. That is, {~x1, ~y1} and {~x2, ~y2} are hyperbolic pairs. By

Lemma 3.2.4, there exists an automorphism φ ∈ OR(Vδ) such that φ(~x1) = ~x2

and φ(~y1) = ~y2. Hence, Tφ ∈ Aut GOR(Vδ) carries R~x1 to R~x2 and R~y1 to R~y2.

Therefore, we have shown:

Theorem 3.2.5. Let R be a local ring of odd characteristic and let (V, β) be an orthogo-

nal space of rank n ≥ 2. Then the orthogonal graph GOR(V ) is vertex and arc transitive.

3.3 Strong regularity

The number of vertices and degree of regularity of an orthogonal graph over

finite local ring of odd characterisitc are presented in the next theorem.

Theorem 3.3.1. Let R be a finite local ring of odd characteristic and let (Vδ, β) be an

orthogonal space of dimension 2ν + δ, where ν ≥ 1, δ = 0, 1 or 2. Then GOR(V ) is

|R|2ν−2+δ-regular on

(|R|ν − |M |ν)(|R|ν+δ−1 + |M |ν+δ−1)

|R| − |M |

many vertices.

Proof. Since an orthogonal graph is vertex transitive, it is regular. For its degree

of regularity, it suffices to calculate the number of neighbors for only one vertex.

Observe that each vertex adjacent toR~b1 is of the formR(x1
~b1+· · ·+xν~bν+~bν+1+

xν+2
~bν+2+· · ·+x2ν+δ

~b2ν+δ), where xi ∈ F for all i and x1 = −x2xν+2−· · ·−xνx2ν+

x̃δ. Thus, the degree of regularity is |R|2ν−2+δ.

Next, we compute the number of vertices. Let R~x be a vertex of the graph

GOR(Vδ). Write ~x = x1
~b1 + · · ·+ x2ν+δ

~b2ν+δ. By Lemma 3.2.2, we may assume that

one of x1, . . . , x2ν is equal to 1. For 1 ≤ i ≤ 2ν, let Ωi be the set of vertices of the

form

R(x1
~b1 + · · ·+ xi−1

~bi−1 +~bi + xi+1
~bi+1 + · · ·+ x2ν+δ

~b2ν+δ)



17

where x1, . . . , xi−1 ∈ M and xi+1, . . . , x2ν+δ ∈ R . Then {Ω1, . . . ,Ω2ν} is a parti-

tion of the vertex set V(GOR(Vδ)). For 1 ≤ i ≤ ν, any vectorR(x1
~b1+· · ·+xi−1

~bi−1+

~bi + xi+1
~bi+1 + · · ·+ x2ν+δ

~b2ν+δ) of Ωi satisfies

xν+i = −x1xν+1 − . . .− xi−1xν+i−1 − xi+1xν+i+1 − . . .− xνx2ν + x̃δ.

Then |Ωi| = |M |i−1|R|2ν+δ−i−1 for all 1 ≤ i ≤ ν. Also, for 1 ≤ i ≤ ν, any vector

x1
~b1 + · · ·+ xν+i−1

~bν+i−1 +~bν+i + xν+i+1
~bν+i+1 + · · ·+ x2ν+δ

~b2ν+δ of Ων+i satisfies

xi = −x1xν+1 − . . .− xi−1xν+i−1 − xi+1xν+i+1 − . . .− xνx2ν + x̃δ.

Note that x2ν+1 ∈M if δ = 1, and x2ν+1, x2ν+2 ∈M if δ = 2. Thus,

|Ων+i| = |M |ν+i−2+δ|R|ν−i for all 1 ≤ i ≤ ν.

Therefore, the number of vertices is the sum

ν∑
i=1

(|M |i−1|R|2ν+δ−i−1) +
ν∑
i=1

(|M |ν+i−2+δ|R|ν−i)

=
(|R|ν − |M |ν)(|R|ν+δ−1 + |M |ν+δ−1)

|R| − |M |

as desired.

Arc transitivity also implies the next lemma.

Lemma 3.3.2. Let R be a finite local ring of odd characteristic and let (Vδ, β) be an

orthogonal space of dimension 2ν + δ, where ν ≥ 1, δ = 0, 1 or 2. Then

(1) For any two adjacent vertices R~x and R~y of GOR(Vδ), the number of common neigh-

bors of R~x and R~y is equal to the number of common neighbors of R~e1 and R~eν+1.

(2) For any two non-adjacent vertices R~x and R~y of GOR(Vδ), there is a vertex R~c not

adjacent to R~e1 (i.e., β(~e1,~c) ∈ M ) such that the number of common neighbors of

R~x and R~y is equal to the number of common neighbors of R~e1 and R~c.
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Proof. Let R~a, R~b be two adjacent vertices. Since GOR(Vδ) is arc transitive by The-

orem 3.2.5, there exists an automorphism f on V(GOR(Vδ)) such that f(R~e1) = R~a

and f(R~eν+1) = R~b. Then f maps each common neighbors of R~e1 and R~eν+1 to

distinct common neighbors of R~a and R~b. Now, let R~c′ be a common neighbors

of R~a and R~b. Since f is a graph automorphism, there is a vertex R~c such that

f(R~c) = R~c′ and R~c is a common neighbor of R~e1 and R~eν+1. Hence, we have

(1).

For (2), by using the vertex transitivity of GOR(Vδ), we can obtain the result by

using the above technique.

To count the number of common neighbors of two distinct vertices, we need

the next propositon.

Proposition 3.3.3. Let R be a finite local ring of odd characteristic with unique max-

imal ideal M and z a non-square unit. Then the number of the ordered pairs (a, b) ∈

R×R with a2 − zb2 ∈M is |M |2.

Proof. Let (a, b) ∈ R×R be such that a2− zb2 = m ∈M . Suppose that a ∈ R× or

b ∈ R×. Then, by Proposition 2.1.2 (3), a2−m = zb2 ∈ z(R×)2 = R×r (R×)2 and

so there exists a unit c in R such that a2 −m = c2(a2 −m + m) = c2a2 ∈ (R×)2

which contradicts c is non-square. Thus, a, b ∈ M and hence the number is

|M |2.

A complete graph with parameters (n, k) is a k-regular graph on n vertices.

A strongly regular graph with parameters (n, k, λ, µ) is a k-regular graph on n

vertices such that for every two adjacent vertices have λ common neighbors,

and for every two non-adjacent vertices have µ common neighbors.

Gu and Wan [5] showed that:

Theorem 3.3.4 (Theorem 2.1 of [5]). Let p be an odd prime number and let n, ν ∈ N.

Let R be a commutative ring of odd characteristic and let (Vδ, β) be an orthogonal space

of dimension 2ν + δ, where ν ≥ 1, δ = 0, 1 or 2.
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1. If R = Fpn and ν = 1, then the GOR(Vδ) is a complete graph with parameters

(pnδ + 1, pnδ).

2. If R = Fpn and ν ≥ 2, then the GOR(Vδ) is a strongly regular graph with parame-

ters

((pnν − 1)(pn(ν+δ−1) + 1)

pn − 1
, pn(2ν+δ−2),

pn(2ν+δ−2) − pn(2ν+δ−3) − pn(ν−1) + pn(ν+δ−2), pn(2ν+δ−2) − pn(2ν+δ−3)
)
.

Example 3.3.1. The following figure shows the orthogonal graph GOF2(V0)
, where

V0 is the orthogonal space of dimension 2 · 2 + 0. It is strongly regular with

parameters (9, 4, 1, 2).

When R is a finite local ring of odd characteristic, we have the following

result.

Theorem 3.3.5. Let R be a finite local ring of odd characteristic with unique maximal

ideal M and let (Vδ, β) be an orthogonal space of dimension 2 + δ, where δ = 0, 1 or 2.

Then GOR(Vδ) is strongly regular with parameters (n, k, λ, µ), where n and k are studied

in Theorem 3.3.1, λ = |R|δ − |M |δ and µ = dδ/2eRδ.
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Proof. Here, ν = 1. To determine λ, by Lemma 3.3.2, it suffices to count the

common neighbors of R~e1 and R~e2. It is easy to see that we have no common

neighbor when δ = 0. If δ = 1 and ∆ = 1 or z, then a common neighbor of R~e1

andR~e2 is of the formR(1,−1
2
∆a2, a) for some a ∈ R×, so λ = |R|−|M |. If δ = 2,

then a common neighbor ofR~e1 andR~e2 is of the formR(1,−1
2
(a2−zb2), a, b) for

some a, b ∈ R such that a2 − zb2 ∈ R×, and thus λ = |R|2 − |M |2 by Proposition

3.3.3.

Next, let R~x and R~y be two non-adjacent vertices of the graph GOR(Vδ). By

Lemma 3.3.2, we may choose a vertex R~c not adjacent to R~e1 and count the

common neighbors of R~e1 and R~c. Again, it is clear that we have no common

neighbor when δ = 0. If δ = 1, then a common neighbor of R~e1 and R~c is

of the form R(−1
2
∆a2, 1, a), where a ∈ R, so µ = |R|. Finally, if δ = 2, then by

Proposition 2.1.2 (3), a common neighbor ofR~e1 andR~c is of the formR(−1
2
(a2−

zb2), 1, a, b) for some a, b ∈ R, and hence µ = |R|2.

A connected graph of valency k on n vertices is quasi-strongly regular of

grade d with parameters (n, k, λ; c1, c2, . . . , cd) if any two adjacent vertices have

λ common neighbors, and any two non-adjacent vertices have ci common neigh-

bors for some i.

Li, Guo and Wang [12] had the next theorem for othogonal graphs over a

Galois ring.

Theorem 3.3.6 (Theorems 3.3 and 3.4 of [12]). Let p be an odd prime number and

let n, ν and r ∈ N. Let R be a commutative ring of odd characteristic and let (Vδ, β) be

an orthogonal space of dimension 2ν + δ, where ν ≥ 1, δ = 0, 1 or 2.

1. If R = Zpn and ν = 1, then the GOR(Vδ) is strongly regular with parameters

(
pδ + 1)p(n−1)δ, pnδ, (pδ − 1)pδ(n−1), dδ/2e pnδ

)
.
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2. If R = Zpn and ν ≥ 2, then the GOR(Vδ) is quasi-strongly regular with parameters

((pν − 1)(p(ν+δ−1) + 1)p(n−1)(2ν−2+δ)

p− 1
, pn(2ν−2+δ),

(p− 1)(1 + (δ − 1)p(1−ν− δ
2

))p(2nν−2n−1+nδ); (p− 1)p(n(2ν−2+δ)−1), pn(2ν−2+δ)
)
.

3. If R = GR(pmr, r) and ν = 1, then the GOR(Vδ) is strongly regular with parame-

ters

(
pmδ + 1)pm(r−1)δ, pmrδ, (pmδ − 1)pmδ(r−1), dδ/2e pmrδ

)
.

4. If R = GR(pmr, r) and ν ≥ 2, then the GOR(Vδ) is quasi-strongly regular with

parameters

((pmν − 1)(pm(ν+δ−1) + 1)pm(s−1)(2ν−2+δ)

pm − 1
, pmr(2ν−2+δ),

(pm − 1)(1 + (δ − 1)pm(1−ν− δ
2

))pm(2rν−2r−1+rδ); (pm − 1)pm(r(2ν−2+δ)−1),

pmr(2ν−2+δ)
)
.

Example 3.3.2. The following figure shows the orthogonal graph GOZ2(V1)
, where

V1 is the orthogonal space of dimension 2 · 2 + 1. which is quasi-strongly regular

with parameters (15, 8, 1; 4, 8).
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We can prove more general results for a local ring as follows.

Theorem 3.3.7. Let R be a finite local ring of odd characteristic with unique maximal

ideal M and let (Vδ, β) be an orthogonal space of dimension 2ν + δ, where ν ≥ 2, δ =

0, 1 or 2. Then GOR(Vδ) is quasi-strongly regular with (n, k, λ; c1, c2), where n, k are

given by Theorem 3.3.1, λ = (|R| − |M |)(|R|ν+ δ
2
−1 + (δ − 1)|M |ν+ δ

2
−1)|R|ν−2+ δ

2 ,

c1 = (|R| − |M |)|R|2ν−3+δ and c2 = |R|2ν−2+δ.

Proof. Again, to determine λ, by Lemma 3.3.2, it suffices to count the common

neighbors of R~e1 and R~e2. A common neighbor of R~e1 and R~e2 is of the form

R~a = R(1, a2, . . . , a2ν+δ), where aν+1 ∈ R× and aν+1 = −a2aν+2− . . .− aνa2ν + ãδ.

Note that there exists a unit among a2, . . . , aν , ãδ. If ai is a unit for some i ∈

{2, . . . , ν}, then

aν+i = −a−1
i (aν+1 + a2aν+2 + · · ·+ ai−1aν+i−1 + ai+1aν+i+1, . . . , aνa2ν − ãδ),

and so there are (|R| − |M |)(|R|ν−1 − |M |ν−1)|R|ν−2+δ possible vectors. Next, we

assume that ai ∈ M for all i ∈ {2, . . . , ν}. This forces ãδ a unit. By Proposition

3.3.3, there are (|R|δ − |M |2)|M |ν−1|R|ν−1 possible vectors. Hence,

λ = (|R| − |M |)(|R|ν+ δ
2
−1 + (δ − 1)|M |ν+ δ

2
−1)|R|ν−2+ δ

2 .
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Now we compute c1 and c2. Let R~x and R~y be two non-adjacent vertices

of GOR(Vδ). By Lemma 3.3.2, we may choose a vertex R~c not adjacent to R~e1 and

count the common neighbors ofR~e1 andR~c. Since β(~e1,~c) is inM , yν+1 ∈M and

so yj is a unit for some j ∈ {1, 2, . . . , 2ν}r {ν + 1} by Lemma 3.2.2. A common

neighbor ofR~e1 andR~c is of the formR~a = R(a1, . . . , aν , 1, aν+2, . . . , a2ν+δ) where

a1 = −
ν∑
l=2

alaν+l+ ãδ and also (a1yν+1 +y1)+
ν∑
l=2

(alyν+l+aν+lyl)+(ãỹ)δ = r ∈ R×.

If j 6= 1, then we can assume that 2 ≤ j ≤ ν. Then

aν+j =
y−1
j

1− y−1
j ajyν+1

(
r+
( ν∑
l=2,l 6=j

alaν+l − ãδ
)
yν+1

− y1 −
ν∑

l=2,l 6=j

(alyν+l + aν+lyl)− ajyν+j − (ãỹ)δ

)
,

so we have c1 = (|R|− |M |)|R|2ν−3+δ. If j = 1 and yl ∈M for all l ∈ {2, . . . , 2ν}r

{ν+ 1}, then by Proposition 2.1.2 (3), ỹδ must be in M , and so there are |R|2ν−2+δ

possible vectors from the relation a1 = −
ν∑
l=2

alaν+l + ãδ.

Remark. Gu and Wan [5] worked on the orthogonal graphs over finite fields.

These graphs are either complete or strongly regular depending on the dimen-

sion of their othogonal spaces. More generally, our orthogonal graphs are ei-

ther strongly regular or quasi-strongly regular and our proof uses combinatorial

method which is similar to Li, Guo and Wang’s over Galois rings [12].

3.4 Results over finite commutative rings

In the previous sections, we have studied orthogonal graphs over a finite local

ring of odd characteristic. Now, we let R be a finite commutative ring of odd

characteristic.

It is well known that:

Theorem 3.4.1 (Theorem 3.1.4 of [2]). Let R be a finite commutative ring of odd

characteristic. Then R is a product of finite local rings of odd characteristic.
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Write

R = R1 ×R2 × · · · ×Rt

as a direct product of finite local rings of odd characteristic Ri, i = 1, 2, . . . , t.

Consider Vδ = R2ν+δ, a free R-module of rank 2ν + δ, where ν ≥ 1 and δ ∈

{0, 1, 2}. We have the canonical 1-1 correspondence

~x = (x1, x2, . . . , x2ν+δ)
ϕ7→ ((x

(j)
1 )tj=1, (x

(j)
2 )tj=1, . . . , (x

(j)
2ν+δ)

t
j=1).

Note that if ~x, ~y ∈ Vδ, then this correspondence induces the orthogonal map β

on Vδ by

β(~x, ~y) = β(((x
(j)
1 )tj=1, (x

(j)
2 )tj=1, . . . , (x

(j)
2ν+δ)

t
j=1), ((y

(j)
1 )tj=1, (y

(j)
2 )tj=1, . . . , (y

(j)
2ν+δ)

t
j=1))

= (β1(~x(1), ~y(1)), β2(~x(2), ~y(2)), . . . , βt(~x
(t), ~y(t)))

where ~x(j) = (x
(j)
1 , x

(j)
2 , . . . , x

(j)
2ν+δ) ∈ V

(j)
δ := R

(2ν+δ)
j and (V

(j)
δ , βj) is an orthogo-

nal space of Rj of rank 2ν + δ associated with the matrix S2ν+δ,∆j
as in Theorem

2.2.5, for all j ∈ {1, 2, . . . , t}. Since R× = R×1 ×R×2 × · · · ×R×t , we have

β(~x, ~y) ∈ R× ⇔ βj(~x
(j), ~y(j)) ∈ R×j for all j ∈ {1, 2, . . . , t}.

Therefore, it follows that

GOR(Vδ)
∼= G

OR1
(V

(1)
δ )
⊗ G

OR2
(V

(2)
δ )
⊗ · · · ⊗ G

ORt (V
(t)
δ )
,

as a graph isomorphism. Here, for two graphs G and H , we define their tensor

product G ⊗ H to be the graph with vertex set V(G) × V(H), where (u, v) is

adjacent to (u′, v′) if and only if u is adjacent to u′ and v is adjacent to v′.

From Theorem 3.3.1 and the above isomorphism, we have the number of
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vertices of GOR(Vδ) is equal to

|V(GOR(Vδ))| =
t∏

j=1

|V(GORj (Vδ))| =
t∏

j=1

(|Rj|ν − |Mj|ν)(|Rj|ν+δ−1 + |Mj|ν+δ−1)

|Rj| − |Mj|

and GOR(Vδ) is regular of degree |R1|2ν−2+δ|R2|2ν−2+δ · · · |Rt|2ν−2+δ = |R|2ν−2+δ.

Moreover, every two adjacent vertices of GOR(Vδ) has |R|δ−|M |δ common neigh-

bors if ν = 1 by Theorem 3.3.5 or (|R|−|M |)(|R|ν+ δ
2
−1 +(δ−1)|M |ν+ δ

2
−1)|R|ν−2+ δ

2

common neighbors if ν ≥ 2 by Theorem 3.3.7. We record these results in the next

theorem.

Theorem 3.4.2. Let R be a finite commutative ring and (Vδ, β) be the induced orthog-

onal space of rank 2ν + δ, ν ≥ 1 and δ ∈ {0, 1, 2}, discussed above.

(1) The orthogonal graph GOR(Vδ) is a |R|2ν−2+δ-regular and isomorphic to the graph

G
OR1

(V
(1)
δ )
⊗ G

OR2
(V

(2)
δ )
⊗ · · · ⊗ G

ORt (V
(t)
δ )
.

(2) Every two adjacent vertices of GOR(Vδ) has
t∏

j=1

|Rj|δ − |Mj|δ common neighbors if

ν = 1 and
t∏

j=1

(|Rj| − |Mj|)(|Rj|ν+ δ
2
−1 + (δ − 1)|Mj|ν+ δ

2
−1)|Rj|ν−2+ δ

2 common

neighbors if ν ≥ 2.

Let G and H be two graphs. If ρ and τ are automorphisms of G and of H ,

respectively, then it is easy to see that the map

ρ : (g, h) 7→ (ρ(g), τ(h)) for all g ∈ V(G), h ∈ V(H),

is an automorphism of G⊗H . Thus, we have shown:

Theorem 3.4.3. For two graphs G and H , Aut(G)× Aut(H) ⊆ Aut(G⊗H).

Recall from Theorem 3.2.5 that for each i, we have G
ORi (V

(i)
δ )

is vertex and arc

transitive. Then it follows from Theorem 3.4.2 (1) and Theorem 3.4.3 that

Aut(G
OR1

(V
(1)
δ )

)× Aut(G
OR2

(V
(2)
δ )

)× · · · × Aut(G
ORt (V

(t)
δ )

) ⊆ Aut(GOR(Vδ)).
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Thus, GOR(Vδ) is also vertex and arc transitive. Hence, we have proved:

Theorem 3.4.4. If (V, β) is an orthogonal space over a finite commutative ring R, then

the orthogonal graph GOR(V ) is vertex and arc transitive.



CHAPTER IV

CHROMATIC NUMBERS AND AUTOMORPHISM GROUPS

This final chapter contains results on chromatic numbers and fractional coloring

of a graphs. Moreover, we determine automorphism groups of our orthogonal

graphs over a finite local ring of odd characteristic using the results of orthogo-

nal graph over a finite field [5].

4.1 Chromatic numbers

The chromatic number of a graph G is the smallest number of colors needed to

color the vertices of G so that no two adjacent vertices share the same color. The

chromotic number of a graph G is commonly denoted by χ(G).

Example 4.1.1. The chromatic number of this cycle of length five below is 3.

If k is a finite field and Vδ is an orthogonal space of dimension 2ν + δ, where

ν ≥ 1 and δ ∈ {0, 1, 2}, then Gu and Wan [5] computed the chromatic number

of GOk(Vδ) in the following Proposition.



28

Proposition 4.1.1 (Propostion 2.4 and Theorem 2.5 of [5]). If k is a field of q ele-

ments and Vδ is the orthogonal space of dimension 2ν+ δ, there exist subsets Y1, . . . , Yκ

of V(GOk(Vδ)), where κ = qν+δ−1 + 1, such that

V(GOk(Vδ)) = Y1 ∪ · · · ∪ Yκ

and Yi ∩ Yj = ∅ for all i 6= j, and |Yi| =
qν − 1

q − 1
for all i ∈ {1, . . . , κ}, and there exists

no edge of GOk(Vδ) joining two vertices of the same subset. Moreover, χ(GOk(Vδ)) =

qν+δ−1 + 1.

Example 4.1.2. From the above proposition, the orthogonal graph GOF2(V0)
, where

V0 is the orthogonal space of dimension 2 ·2+0 has the chromatic number equal

to 22+0−1 + 1 = 3.

LetR be a finite local ring of odd characteristic with unique maximal idealM

and residue k = R/M . Let (Vδ, β) be an orthogonal space of rank 2ν + δ, where

ν ≥ 1 and δ ∈ {0, 1, 2}. This orthogonal space induces a 2ν + δ dimensional

vector space (V ′δ , β
′), where β′ is given via the canonical map π : R 7→ k by

β′(π(~a,~b)) = π(β(~a,~b))

for all ~a,~b ∈ Vδ. Here, we write π(~a) = (π(a1), . . . , π(a2ν+δ)) for all ~a = (a1, . . . ,

a2ν+δ) ∈ Vδ. It also follows that

β′(π(~a), π(~b)) ∈ k× ⇔ β(~a,~b) ∈ R×

for all ~a,~b ∈ Vδ. This gives (3) of the next theorem. Moreover, we can see that (4)

is an immediate consequence of (3).

Theorem 4.1.2. Under the above set up, let κ = |k|ν+δ−1 + 1 and l = |k|ν−1
|k|−1

. For

each i ∈ {1, . . . , κ}, let Xi = {~xi1 , . . . , ~xil} be the set of unimodular vectors in Vδ

with zero norm such that {{kπ(~xis) : s = 1, . . . , l} : i = 1, . . . , κ} is a partition of

V(GOk(V ′
δ )) satisfying kπ(~xis) and kπ(~xit) are non-adjacent vertices for all s 6= t. Then
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the following statements hold.

(1) The set Π = {R(X1 + M2ν+δ), . . . , R(Xκ + M2ν+δ} is a partition of the ver-

tex set V(GOR(Vδ)), where R(Xi + M2ν+δ) = {R(~xis + ~m) : s = 1, . . . , l, ~m ∈

M2ν+δ and β(~xis + ~m, ~xis + ~m) = 0} for all i ∈ {1, . . . , κ}. Moreover, for each

i ∈ {1, . . . , κ}, any two distinct vertices in R(Xi + M2ν+δ) are non-adjacent ver-

tices. Hence, GOR(Vδ) is a κ-partitie graph.

(2) |R(Xi +M2ν+δ)| = l|M |2ν+δ−2 for all i ∈ {1, . . . , κ}.

(3) For unimodular vectors with zero norm ~a,~b ∈ Vδ, we have R~a and R~b are adjacent

vertices in GOR(Vδ) if and only if kπ(~a) and kπ(~b) are adjacent vertices in GOk(V ′
δ ).

(4) For i, j ∈ {1, . . . , κ}, s, t ∈ {1, . . . , l} and s 6= t, if kπ(~xis) and kπ(~xit) are

adjacent vertices, then R(~xis + ~m1) and R(~xit + ~m2) are adjacent vertices in the

graph GOR(Vδ) for all ~m1, ~m2 ∈ M2ν+δ such that β(~xis + ~m1, ~xis + ~m1) = β(~xit +

~m2, ~xit + ~m2) = 0.

(5) The chromatic number of the orthogonal graph GOR(Vδ) is |k|ν+δ−1 + 1.

Proof. The first part of (1) follows from the fact that GOk(V ′
δ ) is a κ-partite and so

Π consists of the inverse image of each partite set of the canonical map π. Note

that

β(~xis + ~m1, ~xit + ~m2) = β(~xis , ~xit) + β(~xis , ~m2) + β(~m1, ~xit) + β(~m1, ~m2) ∈M

for all i, j ∈ {1, . . . , κ} and s, t ∈ {1, . . . , l} and ~m1, ~m2 ∈ M2ν+δ. This proves the

second part of (1). Next, let i ∈ {1, . . . , κ}. observe that if s, t ∈ {1, . . . , l} and

s 6= t, then kπ(~xis) 6= kπ(~xit), soR(~xis+ ~m1) 6= R(~xit+ ~m2) for all ~m1, ~m2 ∈M2ν+δ.

Now, we shall fix s ∈ {1, 2, . . . , l} and show that the number of distinct vertices

in {R(~xis + ~m) : ~m ∈M2ν+δ and β(~xis + ~m, ~xis + ~m) = 0} is |M |2ν+δ−2.

Let s ∈ {1, 2, . . . , l}, ~xis ∈ Xi and assume that R(~xis + ~m1) = R(~xis + ~m2) in

R(Xi +M2ν+δ). Then ~xis + ~m1 = λ(~xis + ~m2) for some λ ∈ R×. Thus, (1−λ)~xis =

λ~m2 − ~m1 ∈ M2ν+δ. Since ~xis is unimodular, 1 − λ ∈ M , so λ = 1 + µ for some
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µ ∈M . Hence, ~xis+ ~m1 = (1+µ)(~xis+ ~m2). Next, we show thatR(1+µ)(~x+ ~m) =

R(~x + ~m) for all µ ∈ M , ~x ∈ V and ~m ∈ M2ν+δ. Clearly, R(1 + µ)(~x + ~m) ⊆

R(~x+ ~m). Since µ ∈M , 1 + µ ∈ R×. Then r(~x+ ~m) = (r(1 + µ)−1)(1 + µ)(~x+ ~m)

for all r ∈ R which gives another inclusion. Therefore, the number of elements

in the set {R(~xis + ~m) : ~m ∈ M2ν+δ} is |M |2ν+δ−1. However, the ~xis + ~m is also

required to have norm zero. Write ~xis = (x1, x2, . . . , x2ν+δ). By Lemma 3.2.2,

xj is a unit for some j ∈ {1, 2, . . . , x2ν}. The requirement β(~x + ~m, ~x + ~m) = 0

and xj is a unit allow us to count the number of possible vectors ~m and see that

|{R(~xis + ~m) : ~m ∈ M2ν+δ and β(~xis + ~m, ~xis + ~m) = 0}| = |M |2ν+δ−2 as desired.

This proves (2).

Finally, we determine the chromatic number. Since our graph is |k|ν+δ−1 +

1-partite, χ(GOR(Vδ)) is at most |k|ν+δ−1 + 1. To prove the reverse inequality,

we consider the induced subgraph of GOR(Vδ) on the vertex set {R(~xis) : i =

1, . . . , κ and s = 1, . . . , l}. By (3), this subgraph is isomorphic to the orthogonal

graph GOk(V ′
δ ) with chromatic number |k|ν+δ−1 +1. Hence, the chromatic number

of the graph GOR(Vδ) is |k|ν+δ−1 + 1.

A set I of vertices of a connected graph G is called an independent set if

no two distinct vertices of I are adjacent. Write α(G) for the size of largest

independent set of G.

Example 4.1.3. If R is a finite local ring of odd characteristic with unique max-

imal ideal M and residue field k = R/M , Theorem 4.1.2 implies that the sets

R(Xi + M2ν+δ), i ∈ {1, 2, . . . , κ}, are independent sets in the orthogonal graph

GOR(Vδ).

Example 4.1.4. The following figure shows the orthogonal graph GOF2(V0)
, where

V0 is the orthogonal space of dimension 2 ·2 + 0. The size of largest independent

set of GOF2(V0)
is α(GOF2(V0)

) = 3 (vertices labelled 1).
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Gu and Wan [5] showed that α(GOk(V ′
δ )) ≤ |k|ν−1

|k|−1
. Together with Theorem

4.1.2 (2), we have α(GOk(V ′
δ )) = |k|ν−1

|k|−1
. Then, for any two distinct indices i and

j, every ~x ∈ Xi, kπ(~x) is adjacent to kπ(~y), for some ~y ∈ Xj . By Theorem 4.1.2

(4), for any two distinct indices i and j and every ~x ∈ Xi + M2ν+δ, the vertex

R~x is adjacent to a vertex R~y, for some ~y ∈ Xj + M2ν+δ. Hence, we obtain the

following theorem.

Theorem 4.1.3. Let R be a finite local ring of odd characteristic with unique maximal

idealM and residue field k = R/M and let (Vδ, β) be an orthogonal space of rank 2ν+δ,

ν ≥ 1 and δ ∈ {0, 1, 2}. Then

α(GOR(Vδ)) =

(
|k|ν − 1

|k| − 1

)
|M |2ν+δ−2.

A fractional coloring of a graph G is a mapping f which assigns to each

independent set I of G a real number f(I) ∈ [0, 1] such that for any vertex v,∑
v∈I f(I) = 1. The total weight w(f) of a fractional coloring f of G is the sum

of f(I) over all the independent sets I of G. The fractional chromatic number

of G, denoted by χ∗(G), is the minimum total weight of a fractional coloring

of G.

Example 4.1.5. Consider the 5-cycle C5. It has exactly five independent set of

size two, and each vertex lies in two of them. Thus, if we define f to take the
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value 1
2

on each of these independent sets and 0 on all others, then the fractional

chromatic number of a cycle graph C5 is χ∗(C5) = 5
2
.

The color classes of a proper l-coloring of G form a collection of l pairwise

disjoint independent sets I1, I2, . . . , Il whose union is V(G). The function f such

that f(Ij) = 1 for all j ∈ {1, 2, . . . , l} and f(S) = 0 for all other independent sets

S is a fractional coloring of weight l. Therefore, χ∗(G) ≤ χ(G). Moreover, when

G is vertex transitive, we have the following proposition.

Proposition 4.1.4 (Corollary 7.5.2 of [4]). If G is a vertex transitive graph, then

χ∗(G) =
|V(G)|
α(G)

.

Let R be a finite local ring of odd characteristic and let (Vδ, β) be an orthogo-

nal space of rank 2ν + δ, ν ≥ 1 and δ ∈ {0, 1, 2}. By Theorems 3.3.1 and 4.1.3, we

have

|V(GOR(Vδ))| =
(|R|ν − |M |ν)(|R|ν+δ−1 + |M |ν+δ−1)

|R| − |M |

and

α(GOR(Vδ)) =

(
|k|ν − 1

|k| − 1

)
|M |2ν+δ−2,

respectively. Since the graph GOR(Vδ) is vertex transitive, it follows from Propo-

sition 4.1.4 that

χ∗(GOR(Vδ)) =

(|R|ν − |M |ν)(|R|ν+δ−1 + |M |ν+δ−1)

|R| − |M |(
|k|ν − 1

|k| − 1

)
|M |2ν+δ−2

= |k|ν+δ−1 + 1,

which is equal to the chromatic number of GOR(Vδ). We record this result in the

next theorem.

Theorem 4.1.5. Let R be a finite local ring of odd characteristic with unique maximal

idealM and residue field k = R/M and let (Vδ, β) be an orthogonal space of rank 2ν+δ,
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ν ≥ 1 and δ ∈ {0, 1, 2}. Then

χ∗(GOR(Vδ)) = |k|ν+δ−1 + 1 = χ(GOR(Vδ)).

It is easy to see that if there is a homomorphism from a graph X to a graph

Y , then χ(X) ≤ χ(Y ). Let G and H be graphs. Since both G and H are ho-

momorphic images of G ⊗ H (using the projection homomorphisms), we have

that

χ(G⊗H) ≤ min{χ(G), χ(H)}.

Hedetniemi [8] has conjectured that for all graphs G and H equality occurs in

the above bound. This conjecture is still open. However, Zhu [19] showed that

Hedetniemi’s conjecture is true for fractional chromatic numbers.

Proposition 4.1.6. (Theorem 2 of [19]) For graphs G and H ,

χ∗(G⊗H) = min{χ∗(G), χ∗(H)}.

Now, let R be a finite commutative ring of odd characteristic decomposed as

R = R1×R2× · · ·×Rt, where Ri is a finite local ring of odd characteristic for all

i = 1, 2, . . . , t same as in Section 3.4. Then

GOR(V )
∼= GOR1

(V (1)) ⊗ GOR2
(V (2)) ⊗ · · · ⊗ GORt (V

(t)),

as we have seen earlier. By Proposition 4.1.6 and the above discussion,

min
1≤i≤t

χ∗(GORi (V
(i))) = χ∗(GOR(V )) ≤ χ(GOR(V )) ≤ min

1≤i≤t
χ(GORi (V

(i))).

Since χ∗(GORi (V
(i))) = χ(GORi (V

(i))) for al i = 1, 2, . . . , t, it forces that

χ∗(GOR(V )) = χ(GOR(V )) = min
1≤i≤t

χ(GORi (V
(i))).

Together with Theorem 4.1.2 (5), we obtain our desired chromatic number.
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Theorem 4.1.7. Let R be a finite commutative ring of odd characteristic decomposed

as R = R1 × R2 × · · · × Rt, where Ri is a finite local ring of odd characteristic and ki

is its residue field, for all i = 1, 2, . . . , t. If (Vδ, β) is an orthonal space over R of rank

2ν + δ, ν ≥ 1 and δ ∈ {0, 1, 2}, then

χ∗(GOR(Vδ)) = χ(GOR(Vδ)) = min
1≤i≤t

|ki|ν+δ−1 + 1.

Corollary 4.1.8. Let m > 1 and R = Zm ∼= Zpn11
× Zpn22

× · · · × Zpntt , where ni ∈ N

and pi are primes such that p1 < p2 < · · · < pt. For the orthogonal space Vδ over R of

dimension 2ν + δ, ν ≥ 1 and δ = 0, 1 or 2, we have the chromatic number of the graph

GOR(Vδ) given by

χ∗(GOR(Vδ)) = χ(GOR(Vδ)) = |p1|ν+δ−1 + 1.

4.2 Automorphisms

In Section 3.2, we have defined an automorphism of a graph G and the set of

all automorphisms of G forms a group under composition, denoted by Aut(G).

We shall close this work by describing the automorphism group of orthogonal

graphs over a finite local ring.

We begin by recalling the work over a finite field. Let k be a field and write

Aut k for the group of automorphism of k. Let ϕ be the natural action of Aut(k)

on the group (k×)(ν) = k× × · · · × k× (ν ≥ 1 copies) defined by

ϕ(φ)((a1, . . . , aν)) = (φ(a1)), . . . , φ(aν),

for all φ ∈ Aut(k) and a1, . . . , aν ∈ k×. Then the semidirect product of (k×)(ν)

by Aut(k) corresponding to ϕ, denoted by (k×)(ν) oϕ Aut(k), is the group con-

sisting of all elements of the form ((a1, . . . , aν), φ), where a1, . . . , aν ∈ k× and
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φ ∈ Aut(k), with the multiplication defined by

((a1, . . . , aν), φ)((a′1, . . . , a
′
ν), φ

′) = ((a1, . . . , aν)(ϕ(φ)(a′1, . . . , a
′
ν)), φ ◦ φ′)

= ((a1φ(a′1), . . . , aνφ(a′ν)), φ ◦ φ′).

Also, we have
(
(k×)2 × (k×)(ν−1) × {±1}

)
oϕ Aut(k) which isa similarly de-

fined as above. The set of all permutations of a set S is denoted by Sym(S) or

just Sym(n) if |S| = n. Note that | Sym(n)| = n!. Gu and Wan [5] determined

the automorphism groups of orthogonal graphs for every case except ∆ = z

and δ = 1. However, that case can be proved in a similar manner. Hence, the

automorphism group of orthogonal graphs over a finite field can be described

as follows.

Theorem 4.2.1. Let R be a commutative ring and (Vδ, β) an orthogonal space over R.

For each σ ∈ OR(Vδ), σ can be considered as an automorphism of GOR(Vδ). That is, we

have the imbedding OR(Vδ) ↪→ Aut(GOR(Vδ)).

Proof. Let σ ∈ OR(Vδ). Define the map σ̄ on GOR(Vδ) by σ̄ : R(~x) 7→ Rσ(~x) for

all unimodular vectors ~x ∈ Vδ with zero norm. Since σ is an isometry, σ̄ is a

bijection and β(~x, ~y) = β(σ(~x), σ(~y)) for all unimodular vectors ~x, ~y ∈ Vδ with

zeor norm. Thus,

β(~x, ~y) ∈ R× ⇐⇒ β(σ(~x), σ(~y)) ∈ R×

for all unimodular vectors ~x, ~y ∈ Vδ. Hence, σ̄ ∈ Aut
(
GOR(Vδ)

)
.

Theorem 4.2.2 (Theorems 3.3, 4.1 and 5.1 of [5]). Let k be a finite field and Vδ be a

orthogonal space over k of dimension 2ν+δ, ν ≥ 1, δ ∈ {0, 1, 2}. Regard the orthogonal

group Ok(Vδ)/{±I2ν+δ} as a subgroup of Aut(GOk(Vδ)) (as shown in Theorem 4.2.1)

and let Eδ be the subgroup of Aut(GOk(Vδ)) defined by

Eδ = {σ ∈ Aut(GOk(Vδ)) : σ(k~ei) = k~ei for all i = 1, . . . , 2ν},
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where ~ei has 1 at the ith position and the rest is zero for all i = 1, . . . , 2ν. If ν = 1, then

Aut(GOk(Vδ)) = Sym(|k|δ + 1). Assume ν ≥ 2. Then

Aut(GOk(Vδ)) = (Ok(V )/{±I2ν}) · Eδ,

where

E0
∼=

Sym(k×)× Sym(k×) if ν = 2,

(k×)(ν) oϕ Aut(k) if ν ≥ 3,

E1
∼=
(
(k×)2 × (k×)(ν−1) × {±1}

)
oϕ Aut(k),

and E2 consists of all σ depending on u1, u2, · · · , uν ∈ k×, τ ∈ Aut(k), x1, x2, y1, y2 ∈

k, which maps a vertex k(a1, a2 · · · , a2ν+2) of GOk(V ) to

k(τ(a1), u2τ(a2) · · · , uντ(aν), u1τ(aν+1), u1u
−1
2 τ(a2ν), a

′
2ν+1, a

′
2ν+2),

where x2
1 − zx2

2 = u1, y2
1 − zy2

2 = u1τ(−z) and

a′2ν+1 = u1(y2τ(a2ν+1) + x2τ(za2ν+2))/(x1y2 − x2y1),

a′2ν+2 = u1z
−1(y1τ(a2ν+1) + x1τ(za2ν+2))/(x1y2 − x2y1).

For a finite local ring, the automorphism group of an orthogonal graph is the

direct product of the automorphism group of the graph over its residue field and

a symmetric group.

Theorem 4.2.3. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (Vδ, β) be an orthogonal space of rank 2ν+δ, ν ≥ 1, δ ∈ {0, 1, 2}.

Then

Aut(GOR(Vδ))
∼= Aut(GOk(V ′

δ ))× (Sym(|M |2ν+δ−2))lκ,

where κ = |k|ν+δ−1 + 1, l = |k|ν−1
|k|−1

, V ′δ is the 2ν + δ-dimensional orthogonal space over

k induced from Vδ and Aut(GOk(V ′
δ )) is presented in Theorem 4.2.2.

Proof. For each i ∈ {1, . . . , κ}, let Xi = {~xi1 , . . . , ~xil} be the set of unimodular
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vectors in Vδ with zero norm such that {{kπ(~xis) : s = 1, . . . , l} : i = 1, . . . , κ}

is a partition of V(GOk(V ′
δ )). Theorem 4.1.2 shows that the subgraph of GOR(Vδ)

induced from the vertex set {R(~xis) : i = 1, . . . , κ and s = 1, . . . , l} is isomor-

phic to the orthogonal graph GOk(V ′
δ ). Moreover, each automorphism of GOR(Vδ)

corresponds with an automorphism of the graph GOk(V ′
δ ) and a permutation of

vertices in the set R(~xis +M2ν+δ) for all i ∈ {1, . . . , κ} and s ∈ {1, . . . , l}. Thus,

Aut(GOR(Vδ))
∼= Aut(GOk(V ′

δ ))×
κ∏
i=1

l∏
s=1

Sym(|R(~xis +M2ν+δ)|)

= Aut(GOk(V ′
δ ))× (Sym(|M |)2ν+δ−2)lκ

because |R(Xi +M2ν+δ)| = l|M |2ν+δ−2 for all i ∈ {1, . . . , κ}.
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