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One of the quantum effects of black holes is Hawking radiation. Scatter-

ing of Hawking radiation from a gravitational potential barrier, resulting from

the curvature of spacetime, is analogous to the scattering of matter wave from a

potential barrier in quantum mechanics. In the context of black hole radiation,

the transmission probability is known as greybody factor. In this dissertation,

rigorous bounds on greybody factors for non-rotating black holes, Kerr-Newman

black holes, and dirty black holes are derived. For non-rotating black holes, in-

cluding dirty black holes, calculations of rigorous bounds on the greybody factors

are simple. However, for a Kerr-Newman black hole, which is a type of rotating

black holes, the situations are more complicated since the rigorous bounds on the

greybody factors depend on scalar angular momentum mode. Moreover, there is a

new phenomenon called super-radiance that arises in rotating black holes, which

is absent in the non-rotating black holes.
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Chapter I

Introduction

Black holes are mysterious objects in the universe. The existence of black

hole has been predicted by Einstein’s general theory of relativity. From a classical

point of view, it is believed that anything which enters a black hole cannot escape,

not even light. As a result, they cannot directly be perceived by any observers,

which consequently leads to their ‘black hole’. However, indirect observations are

possible through its gravitational field. A black hole is a singularity surrounded

by a surface known as the event horizon which acts as the boundary of the black

hole. The singularity of a black hole is the spacetime region with infinite curvature,

where all of the laws of physics break down. The event horizon separates the black

hole from the universe. Anything can cross the event horizon within a finite time

frame, while another observer simultaneously sees it approach the event horizon

forever, albeit never really seeing it cross the event horizon. In nature, a black

hole is the final fate of a dead star. When a star uses up all its fuel, the repulsive

force from the pressure of the star cannot resist the gravitational attraction. It

then starts to gravitationally collapse into a white dwarf, a neutron star or a black

hole depending on its initial mass before collapsing. If the initial mass of a star is

large enough, a black hole can be formed.

In the standard (four-dimensional) general relativity, classical black holes

can be classified into four types. The first is the Schwarzschild black hole, which

is the simplest black hole. It is an uncharged, non-rotating black hole. The second

is the Reissner-Nordström black hole, which is a charged, non-rotating black

hole. If we take the limit Q → 0, where Q is the total charge of a black hole,

from the Reissner-Nordström black hole, we will recover the Schwarzschild black

hole. The third is the Kerr black hole, which is an uncharged, rotating black

hole. If we take the limit a → 0, where a is angular momentum per unit mass of

a black hole, we will recover the Schwarzschild black hole. The last is the Kerr-

Newman black hole, which is a charged, rotating black hole. The Kerr-Newman

black hole is the most general black hole. If we take the limit Q→ 0 while keeping

a ̸= 0 on the Kerr-Newman black hole, we will recover the Kerr black hole. If we
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take the limit a → 0 while keeping Q ̸= 0 on the Kerr-Newman black hole, we

will recover the Reissner-Nordström black hole. If we take the limit a → 0 and

Q → 0 on the Kerr-Newman black hole, we will recover the Schwarzschild black

hole. In higher dimensions, the generalization of Schwarzschild black holes to d

dimensions is called Schwarzschild-Tangherlini black holes. Moreover, there

are black holes which are the solutions to the low-energy string theory. Each of

these black holes is associated with a dilaton field. In this dissertation, we will

study them in both (2 + 1) and (3 + 1) dimensions.

On the other hand, from a quantum point of view, Stephen Hawking showed,

in 1974, that a black hole is not in actuality ‘black’ but rather can emit radiation,

which became known as Hawking radiation [1]. By studying quantum field

theory in a black hole background, he discovered that radiation. Hawking radiation

is a thermal radiation with a Hawking temperature (in the unit c = 1, which

will also be used throughout this dissertation)

TH =
~κ

2πkB
, (1.1)

where ~ is the reduced Planck’s constant, kB is the Boltzmann constant, and κ

is the surface gravity which is inversely proportional to the mass of a black hole.

The emission of Hawking radiation leads to black hole evaporation. Eventually,

a black hole will disappear. Due to its inverse proportion to mass, Hawking

radiation has an increasing temperature while being emitted from a black hole.

Hawking radiation propagates in a curved spacetime, which is the direct result of

a black hole, according to general relativity. This nontrivial spacetime behaves

as a gravitational potential barrier which scatters Hawking radiation. Therefore,

part of it is reflected back into the black hole while the rest is transmitted out

of the black hole. This phenomenon is analogous to a scattering phenomenon in

one-dimensional potential problems in quantum mechanics. An observer away

from the black hole can only observe the transmitted wave. This transmitted wave

can be thought of as a greybody radiation because the incident wave, which is a

blackbody radiation, is modified by the curvature of spacetime. In the black hole

context, the transmission probability defines the so-called greybody factor, a

quantity that tells us what fraction of initial Hawking radiation can reach infinity.

To obtain the greybody factor, we have to solve the Schrödinger-like equa-

tion. However, we cannot, in general, find the exact solutions. Consequently,

various methods have been developed to derive the approximate solutions. Parikh

[2], Fleming [3], and Lange [4] studied a shell of energy denoted as Hawking ra-

diation emitted from the four-dimensional Schwarzschild and Reissner-Nordström
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black holes. They used the WKB approximation to calculate the greybody factors.

Fernando [5] studied a massless scalar field as Hawking radiation emitted from the

charged and uncharged dilaton black holes in (2 + 1) dimensions. She used the

simple matching technique to obtain the greybody factors. She found that the

greybody factors for the charged and uncharged dilaton black holes show similar

behavior. Kim and Oh [6] studied a massless scalar field as Hawking radiation

emitted from the charged dilaton black holes in (3 + 1) dimensions. They also

used the simple matching technique to obtain the greybody factors. Escobedo

[7] also studied a massless scalar field as Hawking radiation. He used the simple

matching technique and string theory computation to obtain the greybody factors

at low frequencies for the five-dimensional black holes with three charges, and the

monodromy matching technique to obtain the greybody factors at high frequen-

cies for the four-dimensional Schwarzschild and Reissner-Nordström black holes.

Besides the approximate solutions, Boonserm and Visser [8, 9, 10] have developed

new methods to derive rigorous bounds on the greybody factors. They [11] stud-

ied a particle with arbitrary spin emitted from the four-dimensional Schwarzschild

black holes. They then used the new methods to obtain the rigorous bounds on

the greybody factors. Their methods can enhance the qualitatively understanding

of black holes and give a new way of studying black hole greybody factors. More-

over, these new methods of deriving rigorous bounds on the greybody factors are

valid in all frequency regimes while other approximations can only work in some

limits.

In this dissertation, rigorous bounds on the greybody factors for various

types of black holes are derived. A review of quantum mechanics and the basics of

black holes are presented in Chapter II. Rigorous bounds on the greybody factors

for non-rotating black holes, Kerr-Newman black holes, and dirty black holes are

obtained in Chapter III-V, respectively. Finally, conclusions are drawn in Chapter

VI.



Chapter II

Introduction to quantum mechanics and black

holes

Quantum mechanics is a theory that successfully describes microscopic phe-

nomena. There are several different formulations of quantum mechanics such as

matrix mechanics founded by Werner Karl Heisenberg in 1925 and wave mechan-

ics founded by Erwin Schrödinger in 1926. Wave mechanics is the primary focus

of this dissertation. In this Chapter, the Schrödinger equation and some one-

dimensional problems with various potentials such as a delta function potential,

a rectangular barrier potential, an Eckart potential, and a Hulthen potential are

studied.

2.1 Quantum mechanics

2.1.1 The Schrödinger equation

The dynamical equation that governs the motion of a particle is the time-dependent

Schrödinger equation

i~
∂Ψ(r⃗, t)

∂t
= − ~2

2m
∇2Ψ(r⃗, t) + V (r⃗, t)Ψ(r⃗, t), (2.1)

where Ψ(r⃗, t) is the wave function, V (r⃗, t) is the potential, and m is the particle’s

mass. The quantity |Ψ(r⃗, t)|2 is interpreted as the probability density. In many

cases, the potential is time-independent, V (r⃗, t) = V (r⃗), in which case the wave

function is separable. Thus, we can write

Ψ(r⃗, t) = ψ(r⃗)f(t). (2.2)

Substituting the above equation into equation (2.1), we obtain

i~ψ(r⃗)
df(t)

dt
= − ~2

2m
f(t)∇2ψ(r⃗) + V (r⃗)ψ(r⃗)f(t). (2.3)
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Multiplying by 1/ψ(r⃗)f(t) on both sides gives

i~
1

f(t)

df(t)

dt
= − ~2

2m

1

ψ(r⃗)
∇2ψ(r⃗) + V (r⃗). (2.4)

The left hand side contains functions that are only time variable t, while the right

hand side contains functions that are only space variable r⃗. The equality of both

sides requires that each side must be equal to a constant. This constant has the

dimension of energy and is denoted by E. Therefore, we obtain two ordinary

differential equations
1

f(t)

df(t)

dt
= −iE

~
(2.5)

and

− ~2

2m
∇2ψ(r⃗) + V (r⃗)ψ(r⃗) = Eψ(r⃗). (2.6)

Equation (2.6) is called the time-independent Schrödinger equation. The solutions

to equation (2.5) are given by

f(t) = e−iEt/~ (2.7)

while the solutions to equation (2.6) depend on the potential V (r⃗). Then the wave

function (2.2) becomes

Ψ(r⃗, t) = ψ(r⃗)e−iEt/~. (2.8)

In one dimension, the time-independent Schrödinger equation reduces to

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (2.9)

We can write it in another form by rearranging it

d2ψ(x)

dx2
+

2m

~2
[E − V (x)]ψ(x) = 0. (2.10)

2.1.2 The Conservation of Probability

We begin with the time-dependent Schrödinger equation

i~
∂Ψ(r⃗, t)

∂t
= − ~2

2m
∇2Ψ(r⃗, t) + V (r⃗, t)Ψ(r⃗, t). (2.11)

Its complex conjugate is given by

−i~∂Ψ
∗(r⃗, t)

∂t
= − ~2

2m
∇2Ψ∗(r⃗, t) + V (r⃗, t)Ψ∗(r⃗, t). (2.12)

Multiplying equation (2.11) by Ψ∗(r⃗, t)

i~Ψ∗(r⃗, t)
∂Ψ(r⃗, t)

∂t
= − ~2

2m
Ψ∗(r⃗, t)∇2Ψ(r⃗, t) + V (r⃗, t)Ψ∗(r⃗, t)Ψ(r⃗, t) (2.13)
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and equation (2.12) by Ψ(r⃗, t)

−i~Ψ(r⃗, t)
∂Ψ∗(r⃗, t)

∂t
= − ~2

2m
Ψ(r⃗, t)∇2Ψ∗(r⃗, t) + V (r⃗, t)Ψ(r⃗, t)Ψ∗(r⃗, t) (2.14)

and by subtracting them, we obtain

i~
∂

∂t
[Ψ∗(r⃗, t)Ψ(r⃗, t)] = − ~2

2m
[Ψ∗(r⃗, t)∇2Ψ(r⃗, t)−Ψ(r⃗, t)∇2Ψ∗(r⃗, t)]. (2.15)

Using

∇⃗ · (aB⃗) = a∇⃗ · B⃗ + ∇⃗a · B⃗, (2.16)

we can recast equation (2.15) as

∂ρ

∂t
+ ∇⃗ · J⃗ = 0, (2.17)

where ρ = Ψ∗(r⃗, t)Ψ(r⃗, t) is the probability density and

J⃗ =
i~
2m

[Ψ(r⃗, t)∇⃗Ψ∗(r⃗, t)−Ψ∗(r⃗, t)∇⃗Ψ(r⃗, t)] (2.18)

is the current density. Equation (2.17) is interpreted as the conservation of

probability. In one dimension, these densities reduce to

ρ = Ψ∗(x, t)Ψ(x, t) and J =
i~
2m

[
Ψ(x, t)

∂Ψ∗(x, t)

∂x
−Ψ∗(x, t)

∂Ψ(x, t)

∂x

]
. (2.19)

For a system with a time-independent potential in which the wave function is

given by equation (2.8), we obtain

ρ = ψ∗(x)ψ(x) and J =
i~
2m

[
ψ(x)

dψ∗(x)

dx
− ψ∗(x)

dψ(x)

dx

]
. (2.20)

In the next sections, we demonstrate how to apply the Schrödinger equation in

various physical systems.

2.1.3 A delta function potential

A delta function potential takes the form [12]

V (x) = αδ(x), (2.21)

where α is a positive constant and the delta function is defined by

δ(x) =

{
1 if x = 0

0 if x ̸= 0
. (2.22)
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We are interested in a scattering state E > 0. We define

k2 =
2mE

~2
and k0 =

mα

~2
. (2.23)

The time-independent Schrödinger equation is

d2ψ(x)

dx2
+

2m

~2
[E − αδ(x)]ψ(x) = 0. (2.24)

For x ̸= 0, the above equation reduces to

d2ψ(x)

dx2
+ k2ψ(x) = 0. (2.25)

Its most general solutions are given by

ψ(x) =

{
Aeikx +Be−ikx if x < 0

Ceikx +De−ikx if x > 0
, (2.26)

where Aeikx and Ceikx represent right-moving waves, while Be−ikx and De−ikx

represent left-moving waves. Here, we are interested in a system in which waves

are initially incident on the potential at x = 0, from the left. They can be reflected

to the region x < 0 and be transmitted to the region x > 0. Thus, there are no

left-moving waves in the region x > 0. That is D = 0 and equation (2.26) becomes

ψ(x) =

{
Aeikx +Be−ikx if x < 0

Ceikx if x > 0
, (2.27)

The continuity of the wave functions at x = 0 leads to

A+B = C. (2.28)

Since the potential is infinite at x = 0, the first derivatives of the wave functions

are discontinuous. We can find the jump condition by rewriting the equation

(2.24)
d2ψ(x)

dx2
+ k2ψ(x) = 2k0δ(x)ψ(x) (2.29)

and integrating over x both sides from −ϵ to ϵ∫ ϵ

−ϵ

d2ψ(x)

dx2
dx+

∫ ϵ

−ϵ

k2ψ(x)dx =

∫ ϵ

−ϵ

2k0δ(x)ψ(x)dx

dψ(x)

dx

∣∣∣∣ϵ
−ϵ

+

∫ ϵ

−ϵ

k2ψ(x)dx = 2k0ψ(0). (2.30)

Taking the limit ϵ→ 0, we obtain

dψ(x)

dx

∣∣∣∣
x=0+

− dψ(x)

dx

∣∣∣∣
x=0−

= 2k0ψ(0). (2.31)
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Substituting equation (2.27) into equation (2.31), we derive

ikC − ikA+ ikB = 2k0(A+B). (2.32)

We can solve equation (2.28) and equation (2.32) to obtain B and C in terms of

A

B =
k0A

ik − k0
and C =

ikA

ik − k0
. (2.33)

Now, we calculate the transmission and reflection probabilities defined by

T =

∣∣∣∣Jtransmitted

Jincident

∣∣∣∣ and R =

∣∣∣∣JreflectedJincident

∣∣∣∣ , (2.34)

where J is given by the equation (2.20). Therefore, the incident current density is

Jincident =
i~
2m

[
ψincident(x)

dψ∗
incident(x)

dx
− ψ∗

incident(x)
dψincident(x)

dx

]
, (2.35)

where from equation (2.27) ψincident(x) = Aeikx. Then,

Jincident =
i~
2m

(
−ik|A|2 − ik|A|2

)
=

~k
m

|A|2. (2.36)

Similarly, the transmitted current density is

Jtransmitted =
i~
2m

[
ψtrans(x)

dψ∗
trans(x)

dx
− ψ∗

trans(x)
dψtrans(x)

dx

]
(2.37)

and the reflected current density is

Jreflected =
i~
2m

[
ψreflected(x)

dψ∗
reflected(x)

dx
− ψ∗

reflected(x)
dψreflected(x)

dx

]
, (2.38)

where from equation (2.27) ψtrans(x) = Ceikx and ψreflected(x) = Be−ikx. Then,

Jtransmitted =
i~
2m

(
−ik|C|2 − ik|C|2

)
=

~k
m

|C|2 (2.39)

and

Jreflected =
i~
2m

(
ik|B|2 + ik|B|2

)
= −~k

m
|B|2. (2.40)

From equation (2.34), we obtain

T =

∣∣∣∣CA
∣∣∣∣2 and R =

∣∣∣∣BA
∣∣∣∣2 . (2.41)

Using equation (2.33), the transmission and reflection probabilities are derived

[13, 14]

T =
k2

k2 + k20
and R =

k20
k2 + k20

. (2.42)

Note that

T +R = 1. (2.43)
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The transmission and reflection probabilities varying with k are plotted as shown

in Figure 2.1 and Figure 2.2, respectively. We can see that the transmission prob-

ability tends to unify as k goes to infinity. We say, however, that this potential

has no transmission resonances (T = 1). On the other hand, the reflection reso-

nances (R = 1) occur at k0 → ∞. That is, when the potential is stronger than

the threshold, penetration of a particle or wave through the potential becomes

significantly more difficult.

Figure 2.1: Plotting of transmission probabilities varying with k for the delta

function potential with k0 = 1, k0 = 10, and k0 = 100.

Figure 2.2: Plotting of reflection probabilities varying with k for the delta function

potential with k0 = 1, k0 = 10, and k0 = 100.
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2.1.4 Rectangular barrier potential

The rectangular barrier potential has the form [15, 16]

V (x) =

{
V0 if |x| ≤ a

0 if otherwise
. (2.44)

The shape of the rectangular barrier potential is shown in Figure 2.3. We are

interested in two cases E > V0 > 0 and V0 > E > 0.

Figure 2.3: The rectangular barrier potential with a = 1 and V0 = 1.

Case I: E > V0 > 0

We define

k2 =
2mE

~2
, q2 =

2m(E − V0)

~2
, and k20 =

2mV0
~2

= k2 − q2. (2.45)

The time-independent Schrödinger equation is

d2ψ(x)

dx2
+

2m

~2
[E − V (x)]ψ(x) = 0. (2.46)

When |x| ≤ a, we obtain
d2ψ(x)

dx2
+ q2ψ(x) = 0, (2.47)

and when |x| > a, the Schrödinger equation becomes

d2ψ(x)

dx2
+ k2ψ(x) = 0. (2.48)

Their solutions are given by

ψ(x) =


Aeikx +Be−ikx if x < −a
Ceiqx +De−iqx if −a < x < a

Eeikx if x > a

. (2.49)
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The continuity of the wave functions at x = −a leads to

Ae−ika +Beika = Ce−iqa +Deiqa (2.50)

and the continuity at x = a leads to

Eeika = Ceiqa +De−iqa. (2.51)

Since the potential is finite, derivatives of the wave functions are also continuous

at x = −a and x = a, leading to

Ae−ika −Beika =
q

k
Ce−iqa − q

k
Deiqa (2.52)

and

Eeika =
q

k
Ceiqa − q

k
De−iqa. (2.53)

Adding equation (2.50) to equation (2.52), we obtain

2Ae−ika =
(
1 +

q

k

)
Ce−iqa +

(
1− q

k

)
Deiqa, (2.54)

leading to

(k + q)Ce−iqa + (k − q)Deiqa = 2kAe−ika. (2.55)

The equality of equation (2.51) and equation (2.53) gives

C = −k + q

k − q
De−2iqa. (2.56)

We can solve equation (2.55) and equation (2.56) to obtain C and D in terms of

A

C = − 2k(k + q)Ae−ika

(k − q)2eiqa − (k + q)2e−3iqa
e−2iqa (2.57)

and

D =
2k(k − q)Ae−ika

(k − q)2eiqa − (k + q)2e−3iqa
. (2.58)

Substituting C and D into equation (2.50) and equation (2.51), we obtain

B =
(k2 − q2) (e2iqa − e−2iqa)A

(k − q)2e2iqa − (k + q)2e−2iqa
e−2ika (2.59)

and

E = − 4kqAe−2ika

(k − q)2e2iqa − (k + q)2e−2iqa
. (2.60)

Therefore, the transmission probability and the reflection probability are [17, 18]

T =

∣∣∣∣EA
∣∣∣∣2 = 4k2q2

4k2q2 + k40 sin
2(2qa)

and R =

∣∣∣∣BA
∣∣∣∣2 = k40 sin

2(2qa)

4k2q2 + k40 sin
2(2qa)

. (2.61)
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Note that

T +R = 1. (2.62)

The transmission and reflection probabilities varying with q are plotted as shown

in Figure 2.4, Figure 2.5, and Figure 2.6. The effects of barrier heights V0 of the

potential on the probabilities when the width a of the potential is fixed are shown

in Figure 2.4. It has been found that the higher the barrier of the potential is, the

more the number of reflection resonances. This is similar to the case of the delta

function potential: penetration of a particle or wave through the potential is harder

to occur when the barrier height of the potential is large. The effects of the widths

of the potential on the probabilities when the barrier height of the potential is fixed

are shown in Figure 2.5 and 2.6. The results are that the reflection resonance can

occur when the width increases. Analytically, the transmission resonances occur

at

q =
nπ

2a
, (2.63)

where n = 1, 2, 3, ..., while the reflection resonance is at k = 0 for this potential.

Figure 2.4: The effects of barrier heights V0 of the potential on the probabilities

for varying q in the rectangular barrier with k0 = 1, k0 = 10, and k0 = 100 for

a = 1.

Case II: V0 > E > 0

We define

Q2 =
2m (V0 − E)

~2
. (2.64)

The time-independent Schrödinger equation is

d2ψ(x)

dx2
+

2m

~2
[E − V (x)]ψ(x) = 0. (2.65)
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Figure 2.5: The effects of the widths a of the potential on the reflection probabil-

ities varying with q in the rectangular barrier with a = 1, a = 5 and a = 10 for

k0 = 1.

When |x| ≤ a, we obtain
d2ψ(x)

dx2
−Q2ψ(x) = 0, (2.66)

and when |x| > a, the Schrödinger equation becomes

d2ψ(x)

dx2
+ k2ψ(x) = 0. (2.67)

Their solutions are given by

ψ(x) =


Aeikx +Be−ikx if x < −a
CeQx +De−Qx if −a < x < a

Eeikx if x > a

. (2.68)

The continuity of the wave functions at x = −a leads to

Ae−ika +Beika = Ce−Qa +DeQa (2.69)

and the continuity at x = a leads to

Eeika = CeQa +De−Qa. (2.70)

Since the potential is finite, derivatives of the wave functions are also continuous

at x = −a and x = a, leading to

Ae−ika −Beika = − iQ
k
Ce−Qa +

iQ

k
DeQa (2.71)

and

Eeika = − iQ
k
CeQa +

iQ

k
De−Qa. (2.72)
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Figure 2.6: The effects of the widths a of the potential on the transmission prob-

abilities varying with q in the rectangular barrier with a = 1, a = 5, and a = 10

for k0 = 1.

Adding equation (2.69) to equation (2.71), we obtain

2Ae−ika =

(
1− iQ

k

)
Ce−Qa +

(
1 +

iQ

k

)
DeQa, (2.73)

leading to

(k − iQ)Ce−Qa + (k + iQ)DeQa = 2kAe−ika. (2.74)

The equality of equation (2.70) and equation (2.72) gives

C = −k − iQ

k + iQ
De−2Qa. (2.75)

We can solve equation (2.74) and equation (2.75) to obtain C and D in terms of

A

C = − (k − iQ)kAe−(Q+ik)a

(k2 −Q2) sinh(2Qa) + 2ikQ cosh(2Qa)
(2.76)

and

D =
(k + iQ)kAe(Q−ik)a

(k2 −Q2) sinh(2Qa) + 2ikQ cosh(2Qa)
. (2.77)

Substituting C and D into equation (2.69) and equation (2.70), we obtain

B =
(k2 +Q2)A sinh(2Qa)e−2ika

(k2 −Q2) sinh(2Qa) + 2ikQ cosh(2Qa)
. (2.78)

and

E =
2iQkAe−2ika

(k2 −Q2) sinh(2Qa) + 2ikQ cosh(2Qa)
. (2.79)

Therefore, the transmission probability is

T =

∣∣∣∣EA
∣∣∣∣2 = 4k2Q2

(k2 −Q2)2 sinh2(2Qa) + 4k2Q2 cosh2(2Qa)
(2.80)
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and the reflection probability is

R =

∣∣∣∣BA
∣∣∣∣2 = k40 sinh

2(2Qa)

(k2 −Q2)2 sinh2(2Qa) + 4k2Q2 cosh2(2Qa)
. (2.81)

We can see that in this case T ̸= 0. It follows that a particle can penetrate the

barrier from one side to the other, although the potential energy of the particle

exceeds its total energy, which does not appear in classical physics. This is called

tunneling.

2.1.5 An Eckart potential

An Eckart potential is an exponential-type potential and useful in physics and

chemical physics. The Eckart potential takes the form [12]

V (x) =
V−∞ + V∞

2
+
V∞ − V−∞

2
tanh

(x
a

)
+

V0

cosh2(x/a)
. (2.82)

The shape of the Eckart potential is shown in Figure 2.7.

Figure 2.7: The Eckart potential with V−∞ = 2, V∞ = 1, a = 3, and V0 = −1/9.

We define

k2±∞ =
2m (E − V±∞)

~2
and k̄ =

k∞ + k−∞

2
. (2.83)

The Eckart potential can be expressed in another form [19]

V (x) = − Aξ

1− ξ
− Bξ

(1− ξ)2
+ V−∞, (2.84)

where

ξ = − exp

(
2x

a

)
, A = V∞ − V−∞, and B = 4V0. (2.85)
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The time-independent Schrödinger equation is

d2ψ(x)

dx2
+

2m

~2

[
E +

Aξ

1− ξ
+

Bξ

(1− ξ)2
− V−∞

]
ψ(x) = 0. (2.86)

Using the chain rule, we obtain

dψ

dx
=

2ξ

a

dψ

dξ
and

d2ψ

dx2
=

4ξ2

a2
d2ψ

dξ2
+

4ξ

a2
dψ

dξ
. (2.87)

The Schrödinger equation (2.86) becomes

ξ2
d2ψ

dξ2
+ ξ

dψ

dξ
+
ma2

2~2

[
E +

Aξ

1− ξ
+

Bξ

(1− ξ)2
− V−∞

]
ψ = 0. (2.88)

Its solutions are given by [19]

ψ = (1− ξ)iβ
(

ξ

ξ − 1

)iα

F

[
1

2
+ i(α− β + δ),−1

2
+ i(α− β − δ),

1− 2iβ,
1

1− ξ

]
, (2.89)

where

α =
k−∞a

2
, β =

k∞a

2
, δ =

i

2

√
1− 8mV0a2

~2
, (2.90)

and hypergeometric function F (a, b, c, x) is defined by

F (a, b, c, z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(2.91)

which diverges when |z| ≥ 1. Here, (q)n is the Pochhammer symbol which is

defined by

(q)n =

{
1 if n = 0

q(q + 1) . . . (q + n− 1) if n > 0
. (2.92)

However, this solution diverges when ξ → 0. This problem can be solved using

analytic extension, and we obtain

ψ = a1

(
ξ

ξ − 1

)iα

(1− ξ)iβF

[
1

2
+ i(α− β + δ),−1

2
+ i(α− β − δ),

1 + 2iα,
ξ

ξ − 1

]
+ a2

(
ξ

ξ − 1

)−iα

(1− ξ)iβF

[
1

2
+ i(−α− β + δ),

−1

2
+ i(−α− β − δ), 1− 2iα,

ξ

ξ − 1

]
, (2.93)

where

a1 =
Γ(1− 2iβ)Γ(−2iα)

Γ[(1/2) + i(−α− β − δ)]Γ[(1/2) + i(−α− β + δ)]
(2.94)
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and

a2 =
Γ(1− 2iβ)Γ(2iα)

Γ[(1/2) + i(α− β − δ)]Γ[(1/2) + i(α− β + δ)]
. (2.95)

Note that this new solution converges when ξ → 0. Here Γ(t) is gamma function

which is defined by

Γ(t) =

∫ ∞

0

xt−1e−xdx. (2.96)

Since |Γ(2iα)/Γ(−2iα)| = 1, we obtain [19]

R =

∣∣∣∣a2a1
∣∣∣∣2 = ∣∣∣∣Γ[(1/2) + i(δ − β − α)]Γ[(1/2) + i(−δ − β − α)]

Γ[(1/2) + i(δ − β + α)]Γ[(1/2) + i(−δ − β + α)]

∣∣∣∣2 . (2.97)

From

|Γ(u+ iv)Γ(1− u+ iv)| = Γ(u)Γ(1− u)√
(cosh 2πv − cos 2πu)/2 sin2 πu

, (2.98)

we obtain

R =
cosh[2π(α− β)] + cos(2π|δ|)
cosh[2π(α + β)] + cos(2π|δ|)

. (2.99)

Using equation (2.90), we obtain

R =
cosh[πa(k−∞ − k∞)] + cos(π

√
1− 8mV0a2/~2)

cosh(2πk̄a) + cos(π
√

1− 8mV0a2/~2)
. (2.100)

Therefore, the transmission probability is given by [20]

T = 1−R =
2 sinh(πk−∞a) sinh(πk∞a)

cosh(2πk̄a) + cos(π
√

1− 8mV0a2/~2)
. (2.101)

The transmission and reflection probabilities varying with V0 are plotted as shown

in Figure 2.8. The effects of a on the probabilities for a = 1 and a = 2 are shown

in Figure 2.8 (a) and (b), respectively. When a→ ∞, the transmission probability

approaches unity.

2.1.6 A Hulthen potential

A Hulthen potential is important and useful in nuclear and particle physics, atomic

physics, condensed matter and chemical physics as well as the scattering problem

for a relativistic particle. The Hulthen potential takes the form [21]

V (x) = θ(−x) V0
e−ax − q

+ θ(x)
V0

eax − q
, (2.102)

where V0, a, and q all are real and positive with q < 1. θ(x) is the Heaviside step

function defined by

θ(x) =

{
1, if x > 0

0, if x < 0
. (2.103)
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Figure 2.8: The effects of a on the probabilities varying with V0 in the Eckart

potential with (a) a = 1 and (b) a = 2 for k−∞ = 1, k∞ = 2, and m = ~ = 1.
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Figure 2.9: The Hulthen potential with q = 0.9, a = 0.5, and V0 = 1.

The shape of the Hulthen potential is shown in Figure 2.9.

We are interested in the case E > V (x) > 0. The time-independent Schrödinger

equation is

d2ψ(x)

dx2
+

2m

~2

[
E − θ(−x) V0

e−ax − q
− θ(x)

V0
eax − q

]
ψ(x) = 0. (2.104)

From the matching condition, the transmission and reflection amplitudes for this

potential are given, in terms of hypergeometric function F (a, b, c, ; q), by (see [21])

t =
(1− q)2λq2µ

1 + 2µ
[{q(1 + 2µ)(λ2 − 2λµ+ µ2 − ν2)F (1 + λ− µ− ν, 1 + λ− µ+ ν, 2− 2µ; q)

F (λ+ µ− ν, λ+ µ+ ν, 1 + 2µ; q)} − {q(1− 2µ)(λ2 + 2λµ+ µ2 − ν2)

F (1 + λ+ µ− ν, 1 + λ+ µ+ ν, 2 + 2µ; q)F (λ− µ− ν, λ− µ+ ν, 1− 2µ; q)}

−{(1− 2µ)(2µ)(1 + 2µ)F (λ+ µ− ν, λ+ µ+ ν, 1 + 2µ; q)

F (λ− µ− ν, λ− µ+ ν, 1− 2µ; q)}]

/[{q(λ2 + 2λµ+ µ2 − ν2)F (1− λ− µ− ν, 1− λ− µ+ ν, 2− 2µ; q)

F (λ− µ− ν, λ− µ+ ν, 1− 2µ; q)}+ {q(λ2 − 2λµ+ µ2 − ν2)

F (1 + λ− µ− ν, 1 + λ− µ+ ν, 2− 2µ; q)F (−λ− µ− ν,−λ− µ+ ν, 1− 2µ; q)}

−{(2µ)(1− 2µ)F (λ− µ− ν, λ− µ+ ν, 1− 2µ; q)

F (−λ− µ− ν,−λ− µ+ ν, 1− 2µ; q)}] (2.105)
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and

r = −q
1+2µ(λ2 + 2λµ+ µ2 − ν2)

1 + 2µ

√
E + k

E − k
[{(1 + 2µ)F (λ+ µ− ν, λ+ µ+ ν, 1 + 2µ; q)

F (1− λ− µ− ν, 1− λ− µ+ ν, 2− 2µ; q)}+ {(1− 2µ)

F (1 + λ+ µ− ν, 1 + λ+ µ+ ν, 2 + 2µ; q)F (−λ− µ− ν,−λ− µ+ ν, 1− 2µ; q)}]

/[{q(λ2 + 2λµ+ µ2 − ν2)F (1− λ− µ− ν, 1− λ− µ+ ν, 2− 2µ; q)

F (λ− µ− ν, λ− µ+ ν, 1− 2µ; q)}+ {q(λ2 − 2λµ+ µ2 − ν2)

F (1 + λ− µ− ν, 1 + λ− µ+ ν, 2− 2µ; q)F (−λ− µ− ν,−λ− µ+ ν, 1− 2µ; q)}

−{(2µ)(1− 2µ)F (λ− µ− ν, λ− µ+ ν, 1− 2µ; q)

F (−λ− µ− ν,−λ− µ+ ν, 1− 2µ; q)}], (2.106)

where µ = ik/a, ν = ip/a, λ = iV0/aq, p
2 = (E+V0/q)

2 −m2, and k2 = E2 −m2.

The transmission and reflection probabilities are derived from

T = |t|2 and R = |r|2. (2.107)

We can check that

T +R = 1. (2.108)

The transmission and reflection probabilities for varying E are shown in Figure

2.10. There are both transmission and reflection resonances. In Figure 2.10 (a)

and 2.10 (b), we describe how the diffuseness a has an effect on the probabilities

with the other parameters where m, V0, and q are fixed.

Figure 2.10: Plotting of transmission and reflection probabilities for varying E for

a Hulthen potential with (a) a = 0.5 and (b) a = 1 when m = 1, V0 = 1, and

q = 0.9.
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2.1.7 Rigorous bounds on transmission probabilities

In this subsection, we introduce rigorous bounds on transmission probabilities

developed by Boonserm and Visser [8, 9, 10]. We start with the time-independent

Schrödinger equation
d2ψ(x)

dx2
+ k2(x)ψ(x) = 0, (2.109)

where

k2(x) =
2m

~2
[E − V (x)] (2.110)

and V (x) is the potential which asymptotes to a constant

V (x→ ±∞) → V±∞. (2.111)

Therefore, the solutions in the asymptotic regions are given by

ψ(x→ ±∞) ≈


α
eik−∞x√
k−∞

+ β
e−ik−∞x√
k−∞

for x→ −∞

eik∞x

√
k∞

for x→ ∞
, (2.112)

where

k±∞ =

√
2m(E − V±∞)

~
. (2.113)

The reflection and transmission probabilities are defined by

R =

∣∣∣∣βα
∣∣∣∣2 and T =

∣∣∣∣ 1α
∣∣∣∣2 . (2.114)

From T +R = 1, we have the relation

|α|2 − |β|2 = 1. (2.115)

For any region, we assume the solutions

ψ(x) = a(x)
eiφ(x)√
φ′(x)

+ b(x)
e−iφ(x)√
φ′(x)

, (2.116)

where φ′(x) ̸= 0. Here φ(x) is real and a(x) and b(x) are complex. In the

asymptotic regions, these solutions should reduce to equation (2.112). Thus, we

have the conditions

φ′(x→ ±∞) → k±∞

a(x→ −∞) → α

a(x→ ∞) → 1 (2.117)

b(x→ −∞) → β

b(x→ ∞) → 0.
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We choose a gauge condition

d

dx

[
a(x)√
φ′(x)

]
eiφ(x) +

d

dx

[
b(x)√
φ′(x)

]
e−iφ(x) = 0 (2.118)

so that
dψ(x)

dx
= i
√
φ′(x)

[
a(x)eiφ(x) − b(x)e−iφ(x)

]
. (2.119)

Thus, the second derivative is given by

d2ψ(x)

dx2
= − [φ′(x)]2√

φ′(x)

[
a(x)eiφ(x) + b(x)e−iφ(x)

]
+

2iφ′(x)√
φ′(x)

da(x)

dx
eiφ(x)

−i φ
′′(x)√
φ′(x)

b(x)e−iφ(x) (2.120)

= − [φ′(x)]2√
φ′(x)

[
a(x)eiφ(x) + b(x)e−iφ(x)

]
− 2iφ′(x)√

φ′(x)

db(x)

dx
e−iφ(x)

+i
φ′′(x)√
φ′(x)

a(x)eiφ(x). (2.121)

Comparing the above equation with equation (2.109), we obtain

da(x)

dx
=

1

2φ′(x)

[
φ′′(x)b(x)e−2iφ(x)

+i
{
k2(x)− φ′(x)

2
}{

a(x) + b(x)e−2iφ(x)
}]

(2.122)

db(x)

dx
=

1

2φ′(x)

[
φ′′(x)a(x)e2iφ(x)

−i
{
k2(x)− φ′(x)

2
}{

b(x) + a(x)e2iφ(x)
}]
. (2.123)

For any complex number, we have

d|a(x)|
dx

=
1

2|a(x)|

[
a∗(x)

da(x)

dx
+ a(x)

da∗(x)

dx

]
. (2.124)

Using equation (2.122), we obtain

d|a(x)|
dx

=
1

2|a(x)|
1

2φ′(x)

[
φ′′(x)

{
a∗(x)b(x)e−2iφ(x) + a(x)b∗(x)e2iφ(x)

}
+i
{
k2(x)− φ′(x)

2
}{

a∗(x)b(x)e−2iφ(x) + a(x)b∗(x)e2iφ(x)
}]
.(2.125)

Then,

d|a(x)|
dx

=
1

2|a(x)|
1

2φ′(x)
Re
([
φ′′(x) + i

{
k2(x)− φ′(x)

2
}]

a∗(x)b(x)e−2iφ(x)
)
.

(2.126)

Using an inequality

Re(AB) ≤ |A||B|, (2.127)
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we obtain
d|a(x)|
dx

≤ ϑ(x)|b(x)|, (2.128)

where

ϑ(x) =

√
[φ′′(x)]2 + [k2(x)− {φ′(x)}2]2

2|φ′(x)|
. (2.129)

We introduce a new positive function h(x) defined by h(x) ≡ |φ′(x)|. Then,

ϑ(x) =

√
[h′(x)]2 + [k2(x)− h2(x)]2

2h(x)
. (2.130)

Using equation (2.115), we have

|a(x)|2 − |b(x)|2 = 1. (2.131)

Thus, we obtain
d|a(x)|
dx

≤ ϑ(x)
√
a2(x)− 1. (2.132)

Integrating the above inequality gives[
cosh−1 |a(x)|

]xf

xi
≤
∫ xf

xi

ϑ(x)dx. (2.133)

Using the conditions in equation (2.117), when xi → −∞ and xf → ∞, we obtain

cosh−1 |α| ≤
∫ ∞

−∞
ϑ(x)dx. (2.134)

Therefore, we obtain

|α| ≤ cosh

[∫ ∞

−∞
ϑ(x)dx

]
. (2.135)

From equation (2.114), this leads to

T ≥ sech2

[∫ ∞

−∞
ϑ(x)dx

]
. (2.136)

This is the rigorous bound on the transmission probability which will be applied

to black hole systems in the next chapter.

2.1.8 Summary in quantum mechanics

So far, we have reviewed the Schrödinger equation and some one-dimensional

problems with various potentials such as a delta function potential, a rectangular

barrier potential, an Eckart potential, and a Hulthen potential. All the potentials

can be summarized in table II.1.
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Name Scattering Tunneling

A delta function potential able to occur no occurrence

Rectangular barrier potential able to occur able to occur

An Eckart potential able to occur no occurrence

A Hulthen potential able to occur able to occur

Table II.1: All the potentials

The transmission probabilities for each potential are summarized in table II.2.

These potentials are useful for studying Hawking radiation since one-dimensional

problems in quantum mechanics and Hawking radiation are quite similar in terms

of their mathematical structures. In particular, equations of motion concerning

Hawking radiation in the black hole backgrounds take the form of the Schrödinger-

like equations with various potentials. Moreover, the rigorous bounds on the

transmission probabilities have been derived. These bounds are the heart of this

dissertation. After this, the derivation and general aspects of black holes and their

classification will be introduced.

Name Transmission probability (T )

A delta function potential T = k2

k2+k20

Rectangular barrier potential T = 4k2q2

4k2q2+k40 sin2(2qa)

An Eckart potential T = sinh(πk−∞a) sinh(πk∞a)

sinh2(πk̄a)+cos2(π
√

1/4−2mV0a2/~2)

A Hulthen potential T = |t|2, where t is from equation (2.105)

Table II.2: The summary of the transmission probabilities for each potential.

2.2 Black holes

2.2.1 The Schwarzschild solution

General relativity describes gravity in terms of an elegant mathematical structure.

There is no concept of gravitational force in this theory. Instead, gravitation is

manifested by the curvature of spacetime. One of the consequences of general

relativity is the existence of black holes. For most of these matters, we follow [22].

The geometry of spacetime representing gravitation is described by Ein-



25

stein’s field equation

Rµν −
1

2
Rgµν = 8πGTµν , (2.137)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric tensor,

G is Newton’s gravitational constant, and Tµν is the energy-momentum tensor.

This equation explains how spacetime is curved by mass and energy. The first

exact solution to Einstein’s field equation was obtained by Karl Schwarzschild in

1916. To solve the equation, he considered the empty spacetime outside a massive

spherical object, such as a star, and assumed the spacetime to be static, spherically

symmetric, and asymptotically flat. Under these assumptions, he obtained the

solution

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (2.138)

where M is the mass of the massive spherical object and dΩ2 = dθ2 + sin2 θdϕ2

is the metric on a unit two-sphere. This solution is known as the Schwarzschild

metric. Moreover, according to Birkhoff’s theorem, the Schwarzschild solution

presents a unique solution in a vacuum with a spherical symmetry. There are two

singularities in this solution, at r = 0 and r = 2GM . The point r = 0 is a true

singularity while the surface r = 2GM is not; it is just a coordinate singularity. To

see this, consider a coordinate-independent quantity such as the scalar RµνρσRµνρσ.

The calculation yields [22]

RµνρσRµνρσ =
48G2M2

r6
, (2.139)

where Rµνρσ is the Riemann tensor. This shows that r = 0 is a true singularity

while the surface r = 2GM is not.

2.2.2 Schwarzschild black holes

In this section, we will explore the curvature of a spherically symmetric spacetime

generated by a massive spherical body of mass M whose radius is smaller than

2GM . We start by considering radial null geodesics, given by [22]

ds2 = 0 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2. (2.140)

That is
dt

dr
= ±

(
1− 2GM

r

)−1

. (2.141)
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This describes light paths on the spacetime. When a ray of light approaches

r = 2GM , we obtain dt/dr → ±∞. It follows that from an observer’s point of

view, he sees that light never seems to cross r = 2GM . From the light’s point of

view, however, the proper time light takes to travel from outside r = 2GM to the

region r < 2GM is given by [23]

τ =
r
3/2
out√
2GM

[
π

2
− arcsin

√
rin
rout

+

√(
rin
rout

)(
1− rin

rout

)]
, (2.142)

where rout > 2GM and rin < 2GM . We have determined that τ is finite. This

indicates that it is not problematic for light or even for anything to pass r = 2GM .

To determine the behavior of light when crossing r = 2GM boundary, let us

transform the coordinate t into the new coordinate v defined by [22]

v = t+ r∗, (2.143)

where r∗ is the tortoise coordinate given by

r∗ = r + 2GM ln
( r

2GM
− 1
)
. (2.144)

These new coordinates (v, r, θ, ϕ) are known as Eddington-Finkelstein coordi-

nates. According to these terms, the Schwarzschild solution in equation (2.138)

becomes

ds2 = −
(
1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2. (2.145)

In this new form of the solution, r = 2GM is no longer a singularity. It only

presents as a coordinate singularity when the original coordinates are used (t, r, θ, ϕ),

as we have mentioned above. Consider radial null geodesics, as we have done in

equation (2.140), in the new coordinates given by

ds2 = 0 = −
(
1− 2GM

r

)
dv2 + 2dvdr. (2.146)

That is
dv

dr
= 0 or

dv

dr
= 2

(
1− 2GM

r

)−1

. (2.147)

Using equation (2.143), dv/dr = 0 or v = constant corresponds to dt/dr = −(1−
2GM/r)−1, which is negative for r > 2GM . This is the ingoing null geodesics. On

the other hand, dv/dr = 2(1−2GM/r)−1 corresponds to dt/dr = (1−2GM/r)−1,

which is positive for r > 2GM . This is the outgoing null geodesics. This means

that if light starts from r > 2GM and travels in the direction of decreasing r, it

can cross r = 2GM into r < 2GM and continue to travel in the same direction

towards the massive spherical object of massM whose radius is smaller than 2GM .
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If light starts from r < 2GM , it still travels in the direction of decreasing r. So,

it cannot cross r = 2GM into r > 2GM ; it is confined to the region r < 2GM .

That is, light passing r = 2GM from outside cannot come back. As a result,

we can never see that object. Therefore, it obtains the name black hole. The

surface r = 2GM is called an event horizon because we can never see any event

occurring inside the sphere r = 2GM . Despite not being able to observe it, we can

indirectly detect a black hole through its gravitational field. The Schwarzschild

spacetime is shown in Figure 2.11.

Figure 2.11: The Schwarzschild spacetime.

Nowadays, we believe that black holes exist in nature from astrophysical ob-

servations. They are possibly formed by the gravitational collapse of very massive

stars. A star is generally supported by internal pressure resulting from nuclear

fusion. When all the nuclear fuel has been consumed, a star starts to collapse as

its gravitational attraction starts overcoming the pressure. If this collapse is not

stopped, a star continuously decreases in size until it becomes smaller than 2GM

and the process ultimately results in the formation of a black hole.

2.2.3 Reissner-Nordström black holes

In this section, we consider a more general situation where a black hole is charged.

In this case, we still assume the static, spherically symmetric, and asymptotically

flat spacetime. However, outside a massive spherical object, a vacuum no longer

persists because of the presence of charges. Under these assumptions, the solution
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to Einstein’s field equation (2.137) is given by [22]

ds2 = −∆dt2 +∆−1dr2 + r2dΩ2, (2.148)

where

∆ = 1− 2GM

r
+
G (Q2 + P 2)

r2
. (2.149)

This solution is known as the Reissner-Nordström metric. In this expression,

M is the mass of the massive spherical object, Q is the total electric charge, and

P is the total magnetic charge. There are three singularities in this solution, at

r = 0 and r = r±, where

r± = GM ±
√
G2M2 −G (Q2 + P 2). (2.150)

Like the Schwarzschild case, the point r = 0 is a true singularity while the surfaces

r = r± are not; they are just coordinate singularities. We can check this by

computing the scalar RµνρσRµνρσ. The calculation yields

RµνρσRµνρσ =
48 [GMr −G (Q2 + P 2)]

2

r8
+

2G2 (Q2 + P 2)

r8
. (2.151)

This shows that r = 0 is a true singularity while the surfaces r = r± are not. The

event horizons are located at r = r±. There are possibly zero, one, or two event

horizons depending on the values of GM2 and Q2 + P 2.

Case I: GM2 < Q2 + P 2 [22]

In this case, there are no coordinate singularities and hence no event horizons.

However, there is still a true singularity at r = 0. Since there is no event horizon

surrounding the singularity, it is called a naked singularity. Anything could

travel to the singularity and could come back. A massive spherical object in

this case is not a black hole since it could be seen by an observer. The cosmic

censorship conjecture, however, states that all singularities must be surrounded

by event horizons. Consequently, the situation in this case is considered to be

unphysical.

Case II: GM2 = Q2 + P 2 [22]

In this case, there is only a coordinate singularity and hence only one event hori-

zon located at r = GM . A black hole, in this case, is thus known as an extremal
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Reissner-Nordström black hole. The total energy is equal to the energy con-

tribution from the electromagnetic fields. An observer can cross the event horizon

into the black hole and come back to the outside, but another asymptotically flat

spacetime. This is shown in Figure 2.12

Figure 2.12: The Penrose diagram for an extremal black hole [7].

An extremal black hole plays a role in supersymmetric theories. However,

it is unstable because adding even a small amount of mass to it can cause it to

become a black hole, akin to the next case.

Case III: GM2 > Q2 + P 2 [22]

As for this case, there are two coordinate singularities and hence two event horizons

located at r = r±, the inner one being at r = r− and the outer one at r = r+,

as shown in Figure 2.13. This is a realistic black hole. The energy from the

electromagnetic fields is less than the total energy. The surface r = r+ has the same

role as the surface r = 2GM of the Schwarzschild black hole. When an observer

passes the surface r = r+, he necessarily moves in the direction of decreasing r.

Another observer outside this charged black hole sees the same phenomena as he is

outside the Schwarzschild black hole; he sees that the infalling observer approaches

the surface r = r+ and never seems to cross it. For the infalling observer, after

passing the surface r = r+, he continues to move in the direction of decreasing r

until he arrives at the surface r = r−. After crossing the surface r = r−, he can

choose to move to the singularity at r = 0 or to go back to the surface r = r−

and cross it again. This time, he is forced to move in the direction of increasing r
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until he arrives at the surface r = r+ and cross it to the outside of the black hole

which is not the same place as the original location of entrance. He can choose

to go back into the black hole again, which is a different black hole from the first

black hole he entered, and can choose to repeat the journey as many times as he

desires. This is shown in Figure 2.14

Figure 2.13: The realistic Reissner-Nordström black hole.

2.2.4 Kerr black holes

So far, we have considered Schwarzschild black holes and Reissner-Nordström black

holes, both of which are non-rotating black holes. In this section, we consider ro-

tating black holes. Unlike non-rotating black holes, the assumptions based on a

static and spherically symmetric spacetime can no longer be made for rotating

black holes. They can, however, possess axial symmetry around the axis of rota-

tion. Under this assumption, the solution to Einstein’s field equation (2.137) in

the Boyer-Lindquist coordinates is given by [24, 25]

ds2 = −∆

Σ

(
dt− a sin2 θdϕ

)2
+

sin2 θ

Σ

[
adt−

(
r2 + a2

)
dϕ
]2

+
Σ

∆
dr2 + Σdθ2,

(2.152)

where

∆(r) = r2 − 2GMr + a2 and Σ(r, θ) = r2 + a2 cos2 θ. (2.153)

This solution is known as the Kerr metric. In this expression, M is the mass of

the black hole and a = J/M is the angular momentum per unit mass, where J is
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Figure 2.14: The Penrose diagram for a realistic black hole [7].

the angular momentum. There are three singularities in this solution, at Σ = 0

and r = r±, where

r± = GM ±
√
G2M2 − a2. (2.154)

Like the previous cases, Σ = 0 is a true singularity while the surfaces r = r±

are not; they are just coordinate singularities. We can check that the scalar

RµνρσRµνρσ diverges at Σ = 0. As in the Reissner-Nordström black hole, the

event horizons are located at r = r±. There are possibly zero, one, or two event

horizons depending on the values of GM and a. The GM < a case represents a

naked singularity and hence is not a black hole. The GM = a case is an extremal

black hole, which is unstable. The GM > a case signifies a usual black hole.

Now, we turn to a true singularity at Σ = 0. Since Σ = r2+ a2 cos2 θ results

from the sum of two nonnegative quantities, it can vanish if both of the quantities

vanish. That is

r = 0 and θ =
π

2
. (2.155)

The result will be interpreted here. Consider the Kerr metric in equation (2.152).

If we take the limit M → 0, we will obtain [22]

ds2 = −dt2+
r2 + a2 cos2 θ

r2 + a2
dr2+

(
r2 + a2 cos2 θ

)2
dθ2+

(
r2 + a2

)
sin2 θdϕ2. (2.156)
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This is the metric of a flat spacetime in ellipsoidal coordinates, which are related

to Cartesian coordinates by

x =
√
r2 + a2 sin θ cosϕ

y =
√
r2 + a2 sin θ sinϕ. (2.157)

z = r cos θ

Thus, the singularity r = 0 and θ = π/2 corresponds to

x2 + y2 = a2. (2.158)

This is a ring singularity. The rotation of the black hole spreads the Schwarzschild

point singularity out over a ring. An observer can go inside the ring and exit to

another spacetime, a different spacetime from the first. The Kerr black hole is

shown in Figure 2.15.

Figure 2.15: The Kerr black hole [26].

2.2.5 Kerr-Newman black holes

In this section, we consider a more general situation where a rotating black hole

is charged. We still assume an axial symmetry around the axis of rotation. Under

this assumption, the solution to Einstein’s field equation (2.137) in the Boyer-

Lindquist coordinates is given by [27, 28]

ds2 = −∆

Σ

(
dt− a sin2 θdϕ

)2
+

sin2 θ

Σ

[
adt−

(
r2 + a2

)
dϕ
]2

+
Σ

∆
dr2 + Σdθ2,

(2.159)
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where

∆(r) = r2 − 2GMr + a2 +Q2 and Σ(r, θ) = r2 + a2 cos2 θ. (2.160)

This solution is known as the Kerr-Newman metric. In this expression, M is

the mass of the black hole, a = J/M is the angular momentum per unit mass,

where J is the angular momentum, and Q is the charge of the black hole. There

are three singularities in this solution, at Σ = 0 and r = r±, where

r± = GM ±
√
G2M2 − a2 −Q2. (2.161)

Like the previous cases, Σ = 0 is a true singularity while the surfaces r = r± are

not; they are just coordinate singularities.

As in the Kerr black hole, the event horizons are located at r = r±. There

are possibly zero, one, or two event horizons depending on the values of GM and√
a2 +Q2. The GM <

√
a2 +Q2 case represents a naked singularity and hence

is not a black hole. The GM =
√
a2 +Q2 case is an extremal black hole, which

is unstable. The GM >
√
a2 +Q2 case signifies a usual black hole.

2.2.6 Summary in black holes

In the black hole section, we have reviewed the derivation and classification of

classical black holes. A classical black hole signifies the belief that anything that

enters a black hole cannot escape, not even light. As a result, it cannot directly be

seen by an observer. A black hole is a singularity surrounded by a surface known

as an event horizon, which acts as a boundary of the black hole. The singularity of

a black hole is the spacetime region with infinite curvature, where all of the laws

of physics break down. The event horizon separates the black hole from the rest

of the universe. Anything can cross the event horizon within a finite time frame,

while another observer simultaneously sees it approach the event horizon forever;

meaning that the observer will never see it actually cross the event horizon.

In this chapter, we have introduced Schwarzschild black holes, Reissner-

Nordström black holes, Kerr black holes and Kerr-Newman black holes. For non-

rotating black holes such as Schwarzschild black holes and Reissner-Nordström

black holes, their singularities are point singularities, whereas for rotating black

holes such as Kerr black holes and Kerr-Newman black holes, their singularities

become ring singularities as a result of rotation. The Schwarzschild black holes

have only one event horizon while the others have two event horizons (in the
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usual case). Here is the summary of different types of black holes in the standard

(four-dimensional) general relativity as shown in Figure 2.16.

Figure 2.16: Classification of black holes.

In the next chapters, we will study quantum of black holes. In particular,

we will study Hawking radiation emitted from various types of black holes.



Chapter III

Greybody factors for non-rotating black holes

In this chapter, the concept of greybody factors is introduced and grey-

body factor computation is performed for non-rotating black holes by placing

some rigorous bounds developed by Boonserm and Visser [8, 9, 10]. We start by

deriving the Regge-Wheeler equations for static and spherically symmetric black

holes. After that, we will study the rigorous bounds on the greybody factors for

massless scalar fields emitted from Reissner-Nordström black holes, Schwarzschild-

Tangherlini black holes, charged dilatonic black holes in (2 + 1) dimensions, and

charged dilatonic black holes in (3 + 1) dimensions. As for most of the contents

in this chapter, we obtained the information from [29].

3.1 The Regge-Wheeler equations for static and

spherically symmetric black holes

As outlined in chapter II, Stephen Hawking showed that a black hole can emit

Hawking radiation [1] when the quantum effects are taken into account. We

will start this section by studying Hawking radiation emitted from a static and

spherically symmetric black hole in d dimensions.

A static and spherically symmetric black hole in d dimensions can be de-

scribed by

ds2 = −A(r)dt2 + 1

B(r)
dr2 + r2dΩ2

d−2, (3.1)

where dΩ2
d−2 is the metric on (d− 2)-sphere and is given by

dΩ2
d−2 = dθ21 +sin2 θ1dθ

2
2 +sin2 θ1 sin

2 θ2dθ
2
3 + . . .+sin2 θ1 · · · sin2 θd−3dθ

2
d−2. (3.2)

We are interested in a massless uncharged scalar field emitted from this black hole.

The equation of motion of this scalar field on the black hole background is

1√
−g

∂µ
(√

−ggµν∂νΦ
)
= 0. (3.3)
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This equation is known as the Klein-Gordon equation. To calculate g, we

explicitly write the metric tensor

[gµν ] =



−A(r) 0 0 0 · · · 0

0 B−1(r) 0 0 · · · 0

0 0 r2 0 · · · 0

0 0 0 r2 sin2 θ1 · · · 0
...

...
...

...
. . . 0

0 0 0 0 · · · r2 sin2 θ1 · · · sin2 θd−3


(3.4)

and the inverse metric

[gµν ] =



−A−1(r) 0 0 0 · · · 0

0 B(r) 0 0 · · · 0

0 0 r−2 0 · · · 0

0 0 0 r−2 sin−2 θ1 · · · 0
...

...
...

...
. . . 0

0 0 0 0 · · · r−2 sin−2 θ1 · · · sin−2 θd−3


. (3.5)

Then, we obtain

g = −A(r)
B(r)

r2(d−2) sin2(d−3) θ1 sin
2(d−4) θ2 · · · sin2 θd−3. (3.6)

Therefore, we have

√
−g =

√
A(r)

B(r)
rd−2 sind−3 θ1 sin

d−4 θ2 · · · sin θd−3. (3.7)

Expanding equation (3.3) gives

1√
−g

∂

∂t

(√
−ggtt∂Φ

∂t

)
+

1√
−g

∂

∂r

(√
−ggrr ∂Φ

∂r

)
+

[
1√
−g

∂

∂θ1

(√
−ggθ1θ1 ∂Φ

∂θ1

)
+ . . .+

1√
−g

∂

∂θd−3

(√
−ggθd−3θd−3

∂Φ

∂θd−3

)]
+

1√
−g

∂

∂θd−2

(√
−ggθd−2θd−2

∂Φ

∂θd−2

)
= 0.

We observe that
√
−g is independent of t and θd−2. Then, we obtain

∂

∂t

(
gtt
∂Φ

∂t

)
+

1√
−g

∂

∂r

(√
−ggrr ∂Φ

∂r

)
+

[
1√
−g

∂

∂θ1

(√
−ggθ1θ1 ∂Φ

∂θ1

)
+ . . .+

1√
−g

∂

∂θd−3

(√
−ggθd−3θd−3

∂Φ

∂θd−3

)]
+

∂

∂θd−2

(
gθd−2θd−2

∂Φ

∂θd−2

)
= 0.



37

Substituting gµν into the above equation gives

− 1

A(r)

∂2Φ

∂t2
+

√
B(r)

A(r)
r2−d ∂

∂r

[√
A(r)

B(r)
rd−2B(r)

∂Φ

∂r

]

+

[
1

r2 sind−3 θ1

∂

∂θ1

(
sind−3 θ1

∂Φ

∂θ1

)
+ . . .

+
1

r2 sin2 θ1 · · · sin2 θd−4 sin θd−3

∂

∂θd−3

(
sin θd−3

∂Φ

∂θd−3

)]
+

1

r2 sin2 θ1 · · · sin2 θd−3

∂2Φ

∂θ2d−2

= 0. (3.8)

We assume the solution to be

Φ(t, r,Ω) = eiωtφℓ(r)Yℓm(Ω), (3.9)

where ω is the frequency of the wave and Yℓm(Ω) are the spherical harmonics on

the (d− 2)-dimensional sphere. Then,

φℓ(r)Yℓm(Ω)

A(r)
ω2eiωt +

eiωtYℓm(Ω)

rd−2

√
B(r)

A(r)

d

dr

[√
A(r)

B(r)
rd−2B(r)

dφℓ(r)

dr

]

+ eiωtφℓ(r)

[
1

r2 sind−3 θ1

∂

∂θ1

(
sind−3 θ1

∂Yℓm(Ω)

∂θ1

)
+ . . .

+
1

r2 sin2 θ1 · · · sin2 θd−4 sin θd−3

∂

∂θd−3

(
sin θd−3

∂Yℓm(Ω)

∂θd−3

)]
+

eiωtφℓ(r)

r2 sin2 θ1 · · · sin2 θd−3

∂2Yℓm(Ω)

∂θ2d−2

= 0.

Multiplying the above equation by r2/ [eiωtφℓ(r)Yℓm(Ω)] gives

ω2r2

A(r)
+

1

rd−4φℓ(r)

√
B(r)

A(r)

d

dr

[√
A(r)

B(r)
rd−2B(r)

dφℓ(r)

dr

]

+
1

Yℓm(Ω)

[
1

sind−3 θ1

∂

∂θ1

(
sind−3 θ1

∂Yℓm(Ω)

∂θ1

)
+ . . .

+
1

sin2 θ1 · · · sin2 θd−4 sin θd−3

∂

∂θd−3

(
sin θd−3

∂Yℓm(Ω)

∂θd−3

)]
+

1

sin2 θ1 · · · sin2 θd−3

1

Yℓm(Ω)

∂2Yℓm(Ω)

∂θ2d−2

= 0. (3.10)

We see that the r-dependent part and the angular part in equation (3.10) are

separated. Since the angular part satisfies

1

sind−3 θ1

∂

∂θ1

[
sind−3 θ1

∂Yℓm(Ω)

∂θ1

]
+ . . .

+
1

sin2 θ1 · · · sin2 θd−4 sin θd−3

∂

∂θd−3

[
sin θd−3

∂Yℓm(Ω)

∂θd−3

]
+

1

sin2 θ1 · · · sin2 θd−3

∂2Yℓm(Ω)

∂θ2d−2

= −ℓ(ℓ+ d− 3)Yℓm(Ω),
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equation (3.10) becomes

ω2r2

A(r)
+

1

rd−4φℓ(r)

√
B(r)

A(r)

d

dr

[√
A(r)

B(r)
rd−2B(r)

dφℓ(r)

dr

]
− ℓ(ℓ+ d− 3) = 0. (3.11)

By multiplying the above equation with A(r)φℓ(r)/r
2, we obtain

ω2φℓ(r) +
1

rd−2

√
A(r)B(r)

d

dr

[
rd−2

√
A(r)B(r)

dφℓ(r)

dr

]
− ℓ(ℓ+ d− 3)

A(r)φℓ(r)

r2
= 0. (3.12)

To simplify this equation, let us introduce a new coordinate r∗ related to r by

r∗ = z(r), (3.13)

where z(r) is expected to simplify the equation (3.12). The use of the chain rule

gives
d

dr
=

dr∗
dr

d

dr∗
= z′(r)

d

dr∗
. (3.14)

Then, equation (3.12) becomes

ω2φℓ(r) +
1

rd−2

√
A(r)B(r)z′(r)

d

dr∗

[
rd−2

√
A(r)B(r)z′(r)

dφℓ(r)

dr∗

]
− ℓ(ℓ+ d− 3)

A(r)φℓ(r)

r2
= 0.

If we choose
dr∗
dr

= z′(r) =
1√

A(r)B(r)
, (3.15)

we obtain

ω2φℓ(r) +
1

rd−2

d

dr∗

[
rd−2dφℓ(r)

dr∗

]
− ℓ(ℓ+ d− 3)

A(r)φℓ(r)

r2
= 0. (3.16)

The new coordinate r∗ is known as the tortoise coordinate which has already

been introduced in chapter II. Moreover, equation (3.16) can be made simpler by

letting

φℓ(r) = r(2−d)/2ψℓ(r). (3.17)

Then,
dφℓ(r)

dr∗
= r(2−d)/2dψℓ(r)

dr∗
+

2− d

2
r−d/2

√
A(r)B(r)ψℓ(r). (3.18)

By multiplying the above equation with rd−2, we obtain

rd−2dφℓ(r)

dr∗
= r(d−2)/2dψℓ(r)

dr∗
+

2− d

2
r(d−4)/2

√
A(r)B(r)ψℓ(r). (3.19)
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Differentiation with respect to r∗ gives

d

dr∗

[
rd−2dφℓ(r)

dr∗

]
= r(d−2)/2d

2ψℓ(r)

dr2∗
+
d− 2

2
r(d−4)/2

√
A(r)B(r)

dψℓ(r)

dr∗

+
2− d

2
r(d−4)/2

√
A(r)B(r)

dψℓ(r)

dr∗

+
d

dr∗

[
2− d

2
r(d−4)/2

√
A(r)B(r)

]
ψℓ(r). (3.20)

The second term and the third term cancel and we are left with

d

dr∗

[
rd−2dφℓ(r)

dr∗

]
= r(d−2)/2d

2ψℓ(r)

dr2∗
− d− 2

2

d

dr∗

[
r(d−4)/2

√
A(r)B(r)

]
ψℓ(r).

(3.21)

By substituting equation (3.17) and equation (3.21) into equation (3.16), we obtain

ω2r(2−d)/2ψℓ(r) +
1

r(d−2)/2

d2ψℓ(r)

dr2∗
− d− 2

2rd−2

d

dr∗

[
r(d−4)/2

√
A(r)B(r)

]
ψℓ(r)

− ℓ(ℓ+ d− 3)
A(r)ψℓ(r)

r(d+2)/2
= 0.

Multiplying the above equation by r(d−2)/2 gives

ω2ψℓ(r) +
d2ψℓ(r)

dr2∗
− d− 2

2r(d−2)/2

d

dr∗

[
r(d−4)/2

√
A(r)B(r)

]
ψℓ(r)

− ℓ(ℓ+ d− 3)
A(r)ψℓ(r)

r2
= 0. (3.22)

We can write
d2ψℓ(r)

dr2∗
+
[
ω2 − Vℓ(r)

]
ψℓ(r) = 0, (3.23)

where the effective potential Vℓ(r) is given by

Vℓ(r) =
ℓ(ℓ+ d− 3)A(r)

r2
+

(d− 2)
√
A(r)B(r)

2r(d−2)/2

d

dr

[
r(d−4)/2

√
A(r)B(r)

]
. (3.24)

The equation (3.23) is known as the Regge-Wheeler equation. It appears

to be like the Schrödinger equation mentioned in chapter II. Figure 3.1 shows

the potential, representing the curvature of spacetime. When the scalar field is

scattered by this potential, part of it will be reflected back into the black hole and

the rest will be transmitted out of the black hole. What is observed by an observer

away from the black hole is the transmitted scalar field. This transmitted wave

can be thought of as a greybody radiation because the incident wave, which is

a blackbody radiation, is modified by the curvature of spacetime. Therefore, the

transmission probability is called a greybody factor.

For one-dimensional scattering problems, there are a number of very general

and robust bounds that can be placed on the greybody factors [8]. Further devel-

opments in generic contexts can be found in [9, 30, 31, 32]. For the developments
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Figure 3.1: The scattering of Hawking radiation from the potential representing

the curvature of spacetime [7].

concerning the applications to black hole greybody factors, see [11, 29, 33]. Using

equation (2.136), the rigorous bound on the greybody factor is given by Boonserm

and Visser [8, 9, 10]

T ≥ sech2

[∫ ∞

−∞
ϑ(r)dr∗

]
, (3.25)

where

ϑ(r) =

√
[h′(r)]2 + [ω2 − Vℓ(r)− h2(r)]2

2h(r)
, (3.26)

for any positive function h(r). If we choose h(r) = ω, then

T ≥ sech2

[
1

2ω

∫ ∞

−∞
Vℓ(r)dr∗

]
. (3.27)

These methods of deriving rigorous bounds on the greybody factors are valid in

all frequency regimes no matter ω is very low or very high.

3.2 Greybody factors for Reissner-Nordström black

holes

The Reissner-Nordström metric is given by

ds2 = −∆(r)dt2 +∆−1(r)dr2 + r2dΩ2, (3.28)

where

∆(r) = 1− 2GM

r
+
G (Q2 + P 2)

r2
(3.29)
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or

∆(r) =
(
1− r+

r

)(
1− r−

r

)
, (3.30)

with

r+ = GM +
√
G2M2 −G (Q2 + P 2) (3.31)

is the outer event horizon and

r− = GM −
√
G2M2 −G (Q2 + P 2) (3.32)

is the inner event horizon. Comparing equation (3.28) with equation (3.1), we find

A(r) = B(r) = ∆(r) and d = 4. (3.33)

We are interested in a massless uncharged scalar field emitted from this black hole.

From equation (3.23), the Regge-Wheeler equation is

d2ψℓ(r)

dr2∗
+
[
ω2 − Vℓ(r)

]
ψℓ(r) = 0. (3.34)

In this case, from equation (3.15), the tortoise coordinate r∗ is given by

dr∗
dr

=
1

∆(r)
(3.35)

and from equation (3.24), we have the effective potential

Vℓ(r) =
ℓ(ℓ+ 1)∆(r)

r2
+

∆(r)

r

d∆(r)

dr
. (3.36)

The shape of the Reissner-Nordström potential with ℓ = 1, Q = 1, and M = 2 is

shown in Figure 3.2.

Figure 3.2: The Reissner-Nordström potential.

For a black hole with GM2 > Q2+P 2, the rigorous bound on the greybody factor

for h(r) = ω is given by

T ≥ sech2

[
1

2ω

∫ ∞

−∞
Vℓ(r)dr∗

]
. (3.37)
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Substituting the effective potential Vℓ(r) from equation (3.36) gives

T ≥ sech2

[
1

2ω

∫ ∞

−∞

{
ℓ(ℓ+ 1)∆(r)

r2
+

∆(r)

r

d∆(r)

dr

}
dr∗

]
. (3.38)

Using the tortoise coordinate in equation (3.35), we obtain

T ≥ sech2

[
1

2ω

∫ ∞

r+

{
ℓ(ℓ+ 1)

r2
+

1

r

d∆(r)

dr

}
dr

]
. (3.39)

Substituting ∆(r) from equation (3.29) gives

T ≥ sech2

[
1

2ω

∫ ∞

r+

{
ℓ(ℓ+ 1)

r2
+

2GM

r3
− 2G(Q2 + P 2)

r4

}
dr

]
. (3.40)

Performing the integral gives

T ≥ sech2

[
1

2ω

{
ℓ(ℓ+ 1)

r+
+
GM

r2+
− 2G (Q2 + P 2)

3r3+

}]
. (3.41)

If the black holes have no electric charges or magnetic charges, then r+ = 2GM

and the above bound reduces to

T ≥ sech2

[
2ℓ(ℓ+ 1) + 1

8GMω

]
, (3.42)

which is exactly the bound for the Schwarzschild black holes emitting spinless

particles [11]. From Figure 3.3, the graph is plotted by setting ℓ = 1, G = 1 M =

20, and ω = 2 as a function of qtotal =
√
Q2 + P 2. The graph shows that when

the magnitude of charges increase, the bound on the greybody factor decreases.

That is, the charges resist the tunneling of the uncharged scalar particles.

Figure 3.3: Dependence of the bound on the greybody factor on the Reissner-

Nordström black hole charges.
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3.3 Greybody factors for Schwarzschild-Tangherlini

black holes

The Schwarzschild-Tangherlini metric in d dimensions is given by [7, 34]

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

d−2, (3.43)

where

f(r) = 1−
(r0
r

)d−3

(3.44)

and the Schwarzschild radius r0 in d dimensions, which is the event horizon radius,

is given by

r0 =
16πGM

(d− 2)Ωd−2

, (3.45)

with

Ωd−2 =
2π(d−1)/2

Γ

(
d− 1

2

) . (3.46)

Comparing equation (3.43) with equation (3.1), we find

A(r) = B(r) = f(r). (3.47)

We are interested in a massless uncharged scalar field emitted from this black hole.

From equation (3.23), the derived Regge-Wheeler equation is

d2ψℓ(r)

dr2∗
+
[
ω2 − Vℓ(r)

]
ψℓ(r) = 0. (3.48)

In this case, from equation (3.15), the tortoise coordinate r∗ is given by

dr∗
dr

=
1

f(r)
(3.49)

and from equation (3.24), we have the effective potential

Vℓ(r) =
ℓ(ℓ+ d− 3)f(r)

r2
+

(d− 2)(d− 4)

4

f 2(r)

r2
+
d− 2

2

f(r)

r

df(r)

dr
. (3.50)

The shape of the Schwarzschild-Tangherlini potential with ℓ = 1 and GM = 1 for

various d’s is shown in Figure 3.4.

The rigorous bound on the greybody factor for h(r) = ω is given by

T ≥ sech2

[
1

2ω

∫ ∞

−∞
Vℓ(r)dr∗

]
. (3.51)
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Figure 3.4: The Schwarzschild-Tangherlini potential.

Substituting the effective potential Vℓ(r) from equation (3.50) gives

T ≥ sech2

[
1

2ω

∫ ∞

−∞

{
ℓ(ℓ+ d− 3)f(r)

r2
+

(d− 2)(d− 4)

4

f 2(r)

r2

+
d− 2

2

f(r)

r

df(r)

dr

}
dr∗

]
. (3.52)

Using the tortoise coordinate in equation (3.49), we obtain

T ≥ sech2

[
1

2ω

∫ ∞

r0

{
ℓ(ℓ+ d− 3)

r2
+

(d− 2)(d− 4)

4

f(r)

r2

+
d− 2

2r

df(r)

dr

}
dr

]
. (3.53)

Substituting f(r) from equation (3.44) gives

T ≥ sech2

[
1

2ω

∫ ∞

r0

{
ℓ(ℓ+ d− 3)

r2
+

(d− 2)(d− 4)

4r2

−(d− 2)(d− 4)

4

rd−3
0

rd−1
+

(d− 2)(d− 3)rd−3
0

2rd−1

}
dr

]
. (3.54)

Simplifying the above equation, we obtain

T ≥ sech2

[
1

2ω

∫ ∞

r0

{
ℓ(ℓ+ d− 3)

r2
+

(d− 2)(d− 4)

4r2

+
(d− 2)2rd−3

0

4rd−1

}
dr

]
. (3.55)

Performing the integral gives

T ≥ sech2

[
1

2ω

{
ℓ(ℓ+ d− 3)

r0
+

(d− 2)(d− 4)

4r0
+
d− 2

4r0

}]
. (3.56)
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Finally, we obtain

T ≥ sech2

[
4ℓ(ℓ+ d− 3) + (d− 2)(d− 3)

8ωr0

]
. (3.57)

If d = 4, then r0 = 2GM , and this bound reduces to

T ≥ sech2

[
2ℓ(ℓ+ 1) + 1

8GMω

]
, (3.58)

which is exactly the bound for the four-dimensional Schwarzschild black holes

emitting spinless particles [11]. From Figure 3.5, the graph is plotted by setting

ℓ = 1, GM = 2, and ω = 2. The point d = 4 corresponds to the four-dimensional

Schwarzschild black hole. The graph shows that when the dimension increases, the

bound on the greybody factor decreases. Note that for d ≥ 7, the Schwarzschild-

Tangherlini black hole hardly emits radiation.

Figure 3.5: Dependence of the bound on the greybody factor on the dimension.

3.4 Greybody factors for charged dilatonic black

holes in (2 + 1) dimensions

The charged dilatonic black holes in (2 + 1) dimensions is a solution to the low-

energy string theory in (2 + 1) dimensions which is described by the Einstein-

Maxwell-dilaton action [5]

S =

∫
d3x

√
−g
[
R− 4(∇ϕ)2 − e−4ϕFµνF

µν + 2e4ϕΛ
]
, (3.59)
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where Λ is the cosmological constant, ϕ is a dilaton field, and Fµν is the Maxwell’s

field strength. This action gives the solution

ds2 = −f(r)dt2 + 4r2

f(r)
dr2 + r2dθ2, (3.60)

where

f(r) = −2Mr + 8Λr2 + 8Q2. (3.61)

This is the metric of charged dilatonic black holes in (2 + 1) dimensions. For

M > 8Q
√
Λ, this spacetime describes a black hole with two event horizons

r± =
M ±

√
M2 − 64Q2Λ

8Λ
. (3.62)

Comparing equation (3.60) with equation (3.1), we find

A(r) = f(r), B(r) =
f(r)

4r2
, and d = 3. (3.63)

We are interested in a massless uncharged scalar field emitted from this black hole.

From equation (3.23), the derived Regge-Wheeler equation is

d2ψm(r)

dr2∗
+
[
ω2 − Vm(r)

]
ψm(r) = 0. (3.64)

In this case, from equation (3.15), the tortoise coordinate r∗ is given by

dr∗
dr

=
2r

f(r)
(3.65)

and from equation (3.24), we have the effective potential

Vm(r) = −(8m2Λ + 6mΛ) + 14Λ2r +

(
5M2

8
+ 2m2M

)
1

r

−(4MQ2 + 8m2Q2)
1

r2
+

6Q4

r3
. (3.66)

The shape of the potential of (2 + 1)-dimensional charged dilatonic black holes

with m = 1, Λ = 0.1, Q = 1, and M = 10 is shown in Figure 3.6.

The tortoise coordinate r∗ can explicitly be written as

r∗ =
1

4Λ(r+ − r−)
[r+ ln(r − r+)− r− ln(r − r−)] . (3.67)

In case of an uncharged black hole, the tortoise coordinate r∗ can be written as

r∗ =
1

4Λ
ln |r − rh|. (3.68)
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Figure 3.6: The potential of (2 + 1)-dimensional charged dilatonic black holes.

The rigorous bound on the greybody factor for h(r) = ω is [29]

T ≥ sech2

[
−368Λm(4m+ 3) + 644MΛ− 2576Q2Λ + 115M2 + 368m2M

60ω
√
M2 − 64Q2Λ

−
5
√
M2 − 64Q2Λ

8ω
− 5M + 16m2

16ω
ln

∣∣∣∣r−r+
∣∣∣∣

−23Q2(3Q2 − 2M − 4m2)

15ωΛ

]
. (3.69)

The effect of charges on the bound, on the greybody factor, is shown in Figure

3.7. The graph is plotted by setting m = 0, M = 10, ω = 2, and Λ = 0.1. The

graph shows that when the charges increase, the bound on the greybody factor

decreases. This result is similar to the Reissner-Nordström black hole’s result.

That is, the charges resist the tunneling of the uncharged scalar particles.

The effect of the cosmological constant on the greybody factor bound is

shown in Figure 3.8. The graph is plotted by setting m = 0, M = 10, ω = 2,

and Q = 1. The graph shows that when the value of the cosmological constant

increases, the bound also increases. That is, the cosmological constant makes the

gravitational potential produced by the black hole transparent.

3.5 Greybody factors for charged dilatonic black

holes in (3 + 1) dimensions

The charged dilatonic black holes in (3 + 1) dimensions is a solution to the low-

energy string theory in (3 + 1) dimensions which is described by the dilaton gravity
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Figure 3.7: Dependence of the bound on the greybody factor on the charges.

Figure 3.8: Dependence of the bound on the greybody factor on the cosmological

constant.

action [6]

S =

∫
d4x

√
−g
[
R− 2(∇ϕ)2 − e−2ϕFµνF

µν
]
, (3.70)

where ϕ is a dilaton field and Fµν is the Maxwell’s field strength. This action gives

the metric of charged dilatonic black holes in (3 + 1) dimensions

ds2 = −f(r)dt2 + 1

f(r)
dr2 +R2(r)dΩ2, (3.71)

where

f(r) = 1− r+
r

and R2(r) = r2
(
1− r−

r

)
, (3.72)

with

r+ = 2M and r− =
Q2

M
. (3.73)
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The event horizon radius is given by r = r+ corresponding toR(r+) =
√
r2+ − r+r−.

If r− = 0 which corresponds toQ = 0, the metric (3.71) reduces to the Schwarzschild

metric. By the coordinate transformation

r =
r− +

√
4R2 + r2−
2

, (3.74)

the metric (3.71) can be rewritten as

ds2 = −F(R)dt2 +
1

F(R)H2(R)
dR2 +R2dΩ2, (3.75)

where

F(R) = 1 +
r+r−
2R2

−
r+
√
4R2 + r2−
2R2

and H2(R) =
4R2

4R2 + r2−
. (3.76)

Comparing equation (3.75) with equation (3.1), we find

A(r) = F(R), B(r) = F(R)H2(R), and d = 4. (3.77)

We are interested in a massless uncharged scalar field emitted from this black hole.

From equation (3.23), the derived Regge-Wheeler equation is

d2ψℓ(R)

dR2
∗

+
[
ω2 − Vℓ(R)

]
ψℓ(R) = 0. (3.78)

In this case, from equation (3.15), the tortoise coordinate R∗ is given by

dR∗

dR
=

1

F(R)H(R)
(3.79)

and from equation (3.24), we have the effective potential

Vℓ(R) =
ℓ(ℓ+ 1)F(R)

R2
+

F(R)H(R)

R

d

dR
[F(R)H(R)]. (3.80)

The shape of the potential of (3 + 1)-dimensional charged dilatonic black holes

with ℓ = 0, r+ = 4, and r− = 0.5 is shown in Figure 3.9.

Choosing h(r) = ω, the rigorous bound on the greybody factor for ℓ = 0 is given

by

T ≥ sech2

[
1

2ω

∫ ∞

−∞
Vℓ=0(R)dR∗

]
. (3.81)

Substituting the effective potential Vℓ=0(R) from equation (3.80) gives

T ≥ sech2

[
1

2ω

∫ ∞

−∞

F(R)H(R)

R

d

dR
[F(R)H(R)]dR∗

]
. (3.82)

Using the tortoise coordinate in equation (3.79), we obtain

T ≥ sech2

[
1

2ω

∫ ∞

R(r+)

1

R

d

dR
[F(R)H(R)]dR

]
. (3.83)
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Figure 3.9: The potential of (3 + 1)-dimensional charged dilatonic black holes.

Integrating by parts gives∫ ∞

R(r+)

1

R

d

dR
[F(R)H(R)]dR =

F(R)H(R)

R

∣∣∣∣∞
R(r+)

+

∫ ∞

R(r+)

F(R)H(R)

R2
dR

=

∫ ∞

R(r+)

F(R)H(R)

R2
dR, (3.84)

where F(R(r+)) = 0. Substituting F(R) and H(R) from equation (3.76) gives

T ≥ sech2

[
1

2ω

∫ ∞

R(r+)

(
2

R
√
4R2 + r2−

+
r+r−

R3
√

4R2 + r2−
− r+
R3

)
dR

]
. (3.85)

Let u =
√

4R2 + r2−, so du = 4R/
√
4R2 + r2−dR. Then,∫ ∞

R(r+)

2

R
√

4R2 + r2−
dR =

∫ ∞

2r+−r−

1

2R2
du =

∫ ∞

2r+−r−

2

u2 − r2−
du (3.86)

and∫ ∞

R(r+)

r+r−

R3
√

4R2 + r2−
dR =

∫ ∞

2r+−r−

r+r−
4R4

du =

∫ ∞

2r+−r−

4r+r−

(u2 − r2−)
2du. (3.87)

By partial fractions,
2r−

u2 − r2−
=

1

u− r−
− 1

u+ r−
(3.88)

and

4r+r−

(u2 − r2−)
2 =

r+
r2−

(
1

u+ r−
− 1

u− r−

)
+
r+
r−

[
1

(u− r−)
2 +

1

(u+ r−)
2

]
, (3.89)

then ∫ ∞

2r+−r−

2

u2 − r2−
du =

1

r−
ln

(
u− r−
u+ r−

)∣∣∣∣∞
2r+−r−

=
1

r−
ln

(
r+

r+ − r−

)
(3.90)
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and∫ ∞

2r+−r−

4r+r−

(u2 − r2−)
2du =

r+
r2−

ln

(
u+ r−
u− r−

)∣∣∣∣∞
2r+−r−

− r+
r−

(
1

u− r−
+

1

u+ r−

)∣∣∣∣∞
2r+−r−

= −r+
r2−

ln

(
r+

r+ − r−

)
+

r+
2r−

(
1

r+ − r−
+

1

r+

)
. (3.91)

Therefore,

T ≥ sech2

[
1

2ω

{
1

r−
ln

(
r+

r+ − r−

)
− r+
r2−

ln

(
r+

r+ − r−

)
+

r+
2r−(r+ − r−)

+
1

2r−
− 1

2(r+ − r−)

}]
. (3.92)

Finally, we obtain

T ≥ sech2

[
1

2ωr−

{
1− r+ − r−

r−
ln

(
r+

r+ − r−

)}]
. (3.93)

If r− = 0, the rigorous bound on the greybody factor for ℓ = 0 becomes

T ≥ sech2

(
1

4ωr+

)
, (3.94)

which is the rigorous bound on the greybody factor for the Schwarzschild black

hole [11]. The effect of charges on the greybody factor bound is shown in Figure

3.10. The graph is plotted by setting r+ = 4 and r− = 3.125, 2, 0. The graph

shows that when the charges increase, the bound on the greybody factor decreases.

This result is also similar to the Reissner-Nordström black hole’s and the (2 + 1)

dimensional charged dilatonic black hole’s results. That is, the charges resist the

tunneling of the uncharged scalar particles.

Figure 3.10: Dependence of the bound on the greybody factor on the charges.
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3.6 Discussion

In this Chapter, we started by obtaining the Regge-Wheeler equations for the

static and spherically symmetric black holes. Then, we calculated the rigor-

ous bounds on the greybody factors for massless scalar fields emitted from non-

rotating black holes. In particular, we studied the Reissner-Nordström black holes,

Schwarzschild-Tangherlini black holes, charged dilatonic black holes in (2 + 1) di-

mensions, and charged dilatonic black holes in (3 + 1) dimensions. In calculating

the rigorous bounds on the greybody factors, we started with the Klein-Gordon

equation in curved spacetime which governs the motion of a scalar field in a black

hole background. By separating the variables and introducing the tortoise coor-

dinate, we obtained the radial equation of the Klein-Gordon equation in the form

of the Schrödinger-like equation. Then, we used the methods developed by Boon-

serm and Visser [8, 9, 10] to derive rigorous bounds on the greybody factors. We

assumed spherical symmetry so that the problems could become one dimensional.

It is straightforward to derive rigorous bounds on the greybody factors for

non-rotating black holes. In particular, we have chosen h(r) = ω for all non-

rotating black holes, which have been studied in this chapter.



Chapter IV

Greybody factors for Kerr-Newman black holes

In this chapter, we calculate the rigorous bounds on the greybody factors for

Kerr-Newman black holes, the rotating black holes with charges. The occurrence of

rotation of black holes considerably increases the level of difficulty of calculations.

In particular, the Kerr or Kerr-Newman black holes are generally much more

difficult to work with than the Schwarzschild or Reissner-Nordström black holes.

We also introduce the concept of superradiance, a new phenomenon for rotating

black holes which does not occur for non-rotating black holes. For the contents in

this chapter, we follow from [35].

4.1 Radial Teukolsky equation

The Kerr-Newman metric is given by [27, 28]

ds2 = −∆

Σ

(
dt− a sin2 θdϕ

)2
+
sin2 θ

Σ

[
adt−

(
r2 + a2

)
dϕ
]2
+

Σ

∆
dr2+Σdθ2, (4.1)

where

∆(r) = r2 − 2GMr + a2 +Q2 = (r − r+) (r − r−)

Σ(r, θ) = r2 + a2 cos2 θ. (4.2)

Here M is the mass of the black hole, and a = J/M is the angular momentum per

unit mass, where J is the angular momentum, and Q is its charge. The quantities

r± are given by

r± = GM ±
√
G2M2 − a2 −Q2. (4.3)

They denote the locations of the inner and outer horizons. When Q → 0, we

recover the Kerr spacetime [24, 25]. We are interested in a massless uncharged

scalar field emitted from this black hole. The equation of motion of this scalar

field on the black hole background is

1√
−g

∂µ
(√

−ggµν∂νΦ
)
= 0. (4.4)
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4.1.1 Spheroidal harmonics

We assume the solution to be [36]

Φ(t, r, θ, ϕ) = e−iωt ψℓm(r)√
r2 + a2

Sℓm(θ)e
imϕ, (4.5)

where Sℓm(θ)e
imϕ are the spheroidal harmonics, which generalize the usual

spherical harmonics Yℓm(θ, ϕ), and satisfy the differential equation [37][
1

sin θ

d

dθ

(
sin θ

d

dθ

)
− a2ω2 sin2 θ − m2

sin2 θ
+ 2maω + λℓm(aω)

]
Sℓm(θ) = 0,

(4.6)

where λℓm(aω) is the separation constant which generalizes the usual quantity

ℓ(ℓ + 1) occurring for spherical harmonics. In the slow-rotation limit, we have

[38, 39, 40, 41]

λℓm(aω) = ℓ(ℓ+ 1)− 2maω + (Hℓ+1,m −Hℓm)(aω)
2 +O[(aω)3], (4.7)

where

Hℓm =
2ℓ (ℓ2 −m2)

4ℓ2 − 1
(4.8)

is related to the confluent Heun functions [42, 43, 44, 45]. Let du = sin θdθ, then

d

dθ
=

du

dθ

d

du
= sin θ

d

du
. (4.9)

Therefore,
1

sin θ

d

dθ

[
sin θ

dSℓm(θ)

dθ

]
=

d

du

[
sin2 θ

dSℓm(θ)

du

]
. (4.10)

Equation (4.6) becomes

d

du

[
sin2 θ

dSℓm(θ)

du

]
=

[
a2ω2 sin2 θ +

m2

sin2 θ
− 2maω − λℓm(aω)

]
Sℓm(θ). (4.11)

If we multiply the above equation by Sℓm(θ) and perform an integration by parts,

we can see that the differential operator is negatively definite in the sense that∫
Sℓm(θ)

d

du

[
sin2 θ

dSℓm(θ)

du

]
du = −

∫
sin2 θ

[
dSℓm(θ)

du

]2
du ≤ 0. (4.12)

Consequently,

λℓm(aω) + 2maω ≥ a2ω2 sin2 θ +
m2

sin2 θ
≥ 0. (4.13)

Moreover,

λℓm(aω) ≥ a2ω2 sin2 θ − 2maω +
m2

sin2 θ
=
(
aω sin θ − m

sin θ

)2
≥ 0. (4.14)
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4.1.2 Effective potential

From equation (4.4), the radial equation for the solution (4.5) is given by [46][
d2

dr2∗
− Uℓm(r)

]
ψℓm(r) = 0. (4.15)

This equation is known as the radial Teukolsky equation. Here, the tortoise

coordinate r∗ is defined by

dr∗
dr

=
r2 + a2

∆
=

r2 + a2

(r − r+) (r − r−)
. (4.16)

It can explicitly be written as

r∗ = r +
r2+ + a2

r+ − r−
ln (r − r+)−

r2− + a2

r+ − r−
ln (r − r−) . (4.17)

Thus, we see that

lim
r→r+

r∗ → −∞ and lim
r→∞

r∗ → ∞. (4.18)

Now, we define the quantities

ϖ =
a

r2 + a2
and Ω+ =

a

r2+ + a2
, (4.19)

where ϖ(r) is related to frame dragging and Ω+ is the angular velocity of the

event horizon. The effective potential Uℓm(r) is

Uℓm(r) = Vℓm(r)− (ω −mϖ)2, (4.20)

where

Vℓm(r) =
∆

(r2 + a2)2
[λℓm(aω) +WMQJ(r)] . (4.21)

Here,

WMQJ(r) =
(r∆)′

r2 + a2
− 3r2∆

(r2 + a2)2
, (4.22)

which depends only on the spacetime geometry, not on the multipole (ℓm) under

consideration. This definition of Vℓm(r) is now as close as possible to the one

in chapter III and in references [11, 29, 33], and to the general (non-relativistic

quantum mechanical) analyses with references [8, 9, 30, 31, 32]. In the absence

of rotation, a → 0, this radial Teukolsky equation reduces to the Regge-Wheeler

equation [47, 48, 49].
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4.1.3 Positivity properties

We have already seen that the separation constant λℓm(aω) is positive. We can

show that the quantity WMQJ(r) is also positive. To see this, we write

∆ = (r − r+) (r − r−) , r+ + r− = 2GM, r+r− = a2 +Q2. (4.23)

Then, we have

0 ≤ a2

r+
≤ r− ≤ r+, and 0 ≤ Q2

r+
≤ r− ≤ r+. (4.24)

Furthermore, from equation (4.3) we observe that

a ≤ GM and |Q| ≤ GM. (4.25)

Now, consider

(r∆)′ = [r (r − r+) (r − r−)]
′

= (r − r+) (r − r−) + r (r − r+) + r (r − r−)

= 3r2 − 2r (r+ + r−) + r+r−. (4.26)

Then,

WMQJ(r) ∝ (r∆)′
(
r2 + a2

)
− 3r2∆

=
[
3r2 − 2r (r+ + r−) + r+r−

] (
r2 + a2

)
− 3r2 (r − r+) (r − r−)

= [0]r4 + [−2 (r+ + r−) + 3 (r+ + r−)] r
3 +

(
3a2 + r+r− − 3r+r−

)
r2

+
[
−2a2 (r+ + r−)

]
r +

(
a2r+r−

)
r0

= (r+ + r−) r
3 +

(
3a2 − 2r+r−

)
r2 − 2a2 (r+ + r−) r + a2r+r−

= r2 (rr+ + rr− − 2r+r−) + a2r (2r − r+ − r−) + a2∆

≥ 0 (4.27)

in the region outside the outer horizon (r ≥ r+). Moreover,

lim
r→∞

WMQJ = 0 and WMQJ(r+) =
r+ (r+ − r−)

r2+ + a2
. (4.28)

Thus, we see that Vℓm → 0 occurs both at the outer horizon r+ and at spatial

infinity.

4.1.4 Superradiance

In general, when an incident wave is scattered from an object, some of its energy

will be absorbed by that object. As a result, the reflected wave propagates with
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energy lower than that of the incident wave. However, in some special systems,

an object loses its energy to a wave when the scattering occurs. Consequently,

the energy of the reflected wave is higher than that of the incident wave. This

phenomenon is known as superradiance [50]. Mathematically, superradiance is a

phenomenon where the reflection coefficients are greater than unity. For example,

superradiance can occur when a scalar wave is scattered from a rotating black hole

[51, 52]. Moreover, superradiance can also occur in a system where electromagnetic

waves are scattered from a rotating and electrically conductive cylinder [53, 54].

There are no superradiance phenomena occurring in non-relativistic quan-

tum mechanics since the Schrödinger equation has first order time derivative. This

leads to a potential which is linear in the total energy term [55]

U(r) = V (r)− ω. (4.29)

On the other hand, the Klein-Gordon equation is second order in time derivative

so a potential is quadratic in the total energy term

U(r) = V (r)− (ω −mϖ)2. (4.30)

This potential leads to [56]

R = 1− ω −mΩ+

ω
T. (4.31)

Superradiance occurs when R > 1. This corresponds to

ω < mΩ+. (4.32)

Equation (4.31) is flux conservation rather than probability conservation and can

be rewritten as [55]

Freflected + Ftransmitted = 1, (4.33)

where Freflected = R and Ftransmitted = [(ω−mΩ+)/ω]T . If Ftransmitted ≥ 0, equation

(4.31) can reduce to probability conservation. If Ftransmitted < 0, we have to

interpret all quantities in terms of fluxes.

In case of a Kerr-Newman black hole, superradiance occurs if the condition

0 < ω < mΩ+ (4.34)

is satisfied, where ω is the frequency of a scalar wave. We define the quantity

m∗ =
ω

Ω+

. (4.35)

Then,
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• the modes m < m∗ are not superradiant;

• the modes m ≥ m∗ are superradiant.

We shall soon see further details regarding the superradiance phenomenon in the

subsequent discussion.

4.2 Non-superradiant modes (m < m∗)

We divide the discussion of the non-superradiant modes into three cases,

• m = 0, zero-angular-momentum modes;

• m < 0, negative-angular-momentum modes;

• m ∈ (0,m∗), low-lying positive-angular-momentum modes.

4.2.1 Zero-angular-momentum modes (m = 0)

This case is simple and is a guiding template for all the other cases. Some prelimi-

nary work on these zero-angular-momentum modes in the Kerr-Newman spacetime

can be found in reference [57]. Using equation (2.136), the rigorous bound on the

greybody factor is given by

Tℓm ≥ sech2

∫ ∞

−∞

√
[h̃′(r∗)]2 + [Uℓm(r) + h̃2(r∗)]2

2h̃(r∗)
dr∗

 , (4.36)

for any positive function h̃(r∗). In this case, we set m = 0. Then,

Uℓ,m=0(r) = −ω2 +
∆

(r2 + a2)2
[λℓ,m=0 +WMQJ(r)] . (4.37)

We choose an appropriate function h̃(r∗) in order that the bounds can be calcu-

lated. In this dissertation, we let h̃(r∗) = ω > 0. Therefore,

Tℓ,m=0 ≥ sech2

[
1

2ω

∫ ∞

−∞

∣∣∣∣ ∆

(r2 + a2)2
[λℓ,m=0 +WMQJ(r)]

∣∣∣∣ dr∗] . (4.38)

Changing the integration variable from dr∗ to dr using equation (4.16), we obtain

Tℓ,m=0 ≥ sech2

[
1

2ω

∫ ∞

r+

∣∣∣∣ 1

r2 + a2
[λℓ,m=0 +WMQJ(r)]

∣∣∣∣ dr] . (4.39)
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This corresponds to the Case I bound of reference [8]. Since λℓm and WMQJ(r)

are always positive, which have already been checked above, we can write

Tℓ,m=0 ≥ sech2

[
1

2ω

∫ ∞

r+

1

r2 + a2
[λℓ,m=0 +WMQJ(r)] dr

]
. (4.40)

We can separate this integral into two integrals, each of which can be explicitly

evaluated in closed form. The first integral can be calculated, yielding∫ ∞

r+

λℓ,m=0

r2 + a2
dr = λℓ,m=0(aω)

arctan(a/r+)

a
. (4.41)

For evaluating the second integral, we define the dimensionless quantity

KMQJ = r+

∫ ∞

r+

WMQJ

r2 + a2
dr = r+

∫ ∞

r+

1

r2 + a2

[
(r∆)′

r2 + a2
− 3r2∆

(r2 + a2)2

]
dr. (4.42)

Integrating by parts, we obtain

KMQJ = r+

∫ ∞

r+

[
−(r∆)

[(
r2 + a2

)−2
]′
− 3r2∆

(r2 + a2)3

]
dr, (4.43)

where the boundary terms vanish. Then,

KMQJ = r+

∫ ∞

r+

(4− 3)r2∆

(r2 + a2)3
dr = r+

∫ ∞

r+

r2∆

(r2 + a2)3
dr. (4.44)

Finally, we obtain

KMQJ =
3

8

arctan(a/r+)

a/r+
+
r+r−
8a2

[
arctan(a/r+)

a/r+
−

r2+
r2+ + a2

]
+
1

8

r+ (3a+ r+ − 2r−)

r2+ + a2
. (4.45)

In the limit a→ 0, we obtain

lim
a→0

arctan(a/r+)

a/r+
= 1 (4.46)

lim
a→0

1

a2

[
arctan(a/r+)

a/r+
−

r2+
r2+ + a2

]
=

2

3r2+
. (4.47)

Therefore,

lim
a→0

KMQJ =
3

8
+

1

12

r−
r+

+
1

8

r+ − 2r−
r+

=
3r+ − r−

6r+
. (4.48)

Substituting equation (4.41) and equation (4.45) into equation (4.40), we obtain

Tℓ,m=0 ≥ sech2

(
Iℓ,m=0

2ωr+

)
, (4.49)

where

Iℓ,m=0 = λℓ,m=0(aω)
arctan(a/r+)

a/r+
+KMQJ . (4.50)

It can explicitly be written as

Iℓ,m=0 =

[
λℓ,m=0(aω) +

3

8

]
arctan(a/r+)

a/r+
+
r+r−
8a2

[
arctan(a/r+)

a/r+
−

r2+
r2+ + a2

]
+
1

8

r+ (3a+ r+ − 2r−)

r2+ + a2
. (4.51)



60

4.2.2 Negative-angular-momentum modes (m < 0)

In this subsection, we consider the m < 0 case. Recall the rigorous bound on the

greybody factor

Tℓm ≥ sech2

∫ ∞

−∞

√
[h̃′(r∗)]2 +

[
Uℓm(r) + h̃2(r∗)

]2
2h̃(r∗)

dr∗

 (4.52)

for any positive function h̃(r∗). Using the triangle inequality,

√
a2 + b2 ≤ |a|+ |b| (4.53)

for all real numbers a and b, we obtain

Tℓ,m<0 ≥ sech2

1
2

∫ ∞

−∞

∣∣∣∣∣ h̃′(r∗)h̃(r∗)

∣∣∣∣∣ dr∗ +
∫ ∞

−∞

∣∣∣Uℓ,m<0(r) + h̃2(r∗)
∣∣∣

2h̃(r∗)
dr∗

 . (4.54)

We need h̃(r∗) to be monotone, h̃′(r∗) > 0 or h̃′(r∗) < 0. Then,

Tℓ,m<0 ≥ sech2

1
2

∣∣∣∣∣ln
[
h̃(∞)

h̃(−∞)

]∣∣∣∣∣+
∫ ∞

−∞

∣∣∣Uℓ,m<0(r) + h̃2(r∗)
∣∣∣

2h̃(r∗)
dr∗

 . (4.55)

We choose

h(r) = ω −mϖ, (4.56)

where h(r) = h̃(r∗). We see that

h̃′(r∗) =
dh̃(r∗)

dr∗
=

dr

dr∗

dh(r)

dr
=

∆

r2 + a2
2mar

(r2 + a2)2
< 0 (4.57)

for m < 0. Then, h̃(r∗) is monotonic. Moreover, we see that this h̃(r∗) is always

positive for m < 0. Then, we have

h̃(∞)

h̃(−∞)
=
h(∞)

h(r+)
=

ω

ω −mΩ+

=
1

1−mΩ+/ω
< 1. (4.58)

Thus,

1

2

∣∣∣∣∣ln
[
h̃(∞)

h̃(−∞)

]∣∣∣∣∣ = 1

2
ln(1−mΩ+/ω). (4.59)

Furthermore, in this case, we have ω −mΩ+ > h̃(r∗) > ω. Then,

∫ ∞

−∞

∣∣∣Uℓ,m<0(r) + h̃2(r∗)
∣∣∣

2h̃(r∗)
dr∗ =

∫ ∞

−∞

|Vℓ,m<0(r)|
2h̃(r∗)

dr∗ <

∫ ∞

−∞

Vℓ,m<0(r)

2ω
dr∗. (4.60)
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Therefore,

Tℓ,m<0 ≥ sech2

[
1

2
ln(1−mΩ+/ω) +

∫ ∞

−∞

Vℓ,m<0(r)

2ω
dr∗

]
. (4.61)

The second term is almost identical to what we performed for m = 0. Therefore,

Tℓ,m<0 ≥ sech2

[
1

2
ln(1−mΩ+/ω) +

Iℓ,m<0

2ωr+

]
, (4.62)

where

Iℓ,m<0 =

[
λℓ,m<0(aω) +

3

8

]
arctan(a/r+)

a/r+
+
r+r−
8a2

[
arctan(a/r+)

a/r+
−

r2+
r2+ + a2

]
+
1

8

r+ (3a+ r+ − 2r−)

r2+ + a2
. (4.63)

For m < 0, we have −m ≤ ℓ. Therefore, we obtain the weaker bound

Tℓ,m<0 ≥ sech2

[
1

2
ln(1 + ℓΩ+/ω) +

Iℓ,m<0

2ωr+

]
. (4.64)

4.2.3 Low-lying positive-angular-momentum modes [m ∈
(0,m∗)]

In this subsection, we consider the m ∈ (0,m∗) case. Similar to the previous case,

we obtain

Tℓ,m∈(0,m∗) ≥ sech2

1
2

∣∣∣∣∣ln
[
h̃(∞)

h̃(−∞)

]∣∣∣∣∣+
∫ ∞

−∞

∣∣∣Uℓ,m∈(0,m∗)(r) + h̃2(r∗)
∣∣∣

2h̃(r∗)
dr∗

 .
(4.65)

We choose

h(r) = ω −mϖ, (4.66)

where h(r) = h̃(r∗). We see that

h̃′(r∗) =
dh̃(r∗)

dr∗
=

dr

dr∗

dh(r)

dr
=

∆

r2 + a2
2mar

(r2 + a2)2
> 0 (4.67)

for m ∈ (0,m∗). Then, h̃(r∗) is monotonic. Moreover, we see that this h̃(r∗) is

always positive for m ∈ (0,m∗). Then, we have

h̃(∞)

h̃(−∞)
=
h(∞)

h(r+)
=

ω

ω −mΩ+

=
1

1−mΩ+/ω
> 1. (4.68)

Thus,

1

2

∣∣∣∣∣ln
[
h̃(∞)

h̃(−∞)

]∣∣∣∣∣ = −1

2
ln(1−mΩ+/ω). (4.69)
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Furthermore, in this case, we have ω −mΩ+ < h̃(r∗) < ω. Then,

∫ ∞

−∞

∣∣∣Uℓ,m∈(0,m∗)(r) + h̃2(r∗)
∣∣∣

2h̃(r∗)
dr∗ =

∫ ∞

−∞

|Vℓ,m∈(0,m∗)|
2h̃(r∗)

dr∗ <

∫ ∞

−∞

Vℓ,m∈(0,m∗)

2(ω −mΩ+)
dr∗.

(4.70)

Therefore,

Tℓ,m∈(0,m∗) ≥ sech2

[
−1

2
ln(1−mΩ+/ω) +

1

2

∫ ∞

−∞

Vℓ,m∈(0,m∗)

ω −mΩ+

dr∗

]
. (4.71)

The second term is almost identical to what we performed for m = 0. Therefore,

Tℓ,m∈(0,m∗) ≥ sech2

[
−1

2
ln(1−mΩ+/ω) +

Iℓ,m∈(0,m∗)

2(ω −mΩ+)r+

]
, (4.72)

where

Iℓ,m∈(0,m∗) =

[
λℓ,m∈(0,m∗)(aω) +

3

8

]
arctan(a/r+)

a/r+
+
r+r−
8a2

[
arctan(a/r+)

a/r+
−

r2+
r2+ + a2

]
+
1

8

r+ (3a+ r+ − 2r−)

r2+ + a2
. (4.73)

For m > 0, we have m ≤ ℓ. Therefore, we obtain the weaker bound

Tℓ,m∈(0,m∗) ≥ sech2

[
−1

2
ln(1− ℓΩ+/ω) +

Iℓ,m∈(0,m∗)

2(ω − ℓΩ+)r+

]
. (4.74)

4.2.4 Summary (non-superradiant modes)

We have defined

Iℓm = λℓm(aω)
arctan(a/r+)

a/r+
+KMQJ , (4.75)

where

KMQJ =
3

8

arctan(a/r+)

a/r+
+
r+r−
8a2

[
arctan(a/r+)

a/r+
−

r2+
r2+ + a2

]
+
1

8

r+ (3a+ r+ − 2r−)

r2+ + a2
. (4.76)

Then, for the non-superradiant modes

Tℓ,m≤0 ≥ sech2

[
1

2
ln(1−mΩ+/ω) +

Iℓ,m≤0

2ωr+

]
, (4.77)

and

Tℓ,m∈(0,m∗) ≥ sech2

[
−1

2
ln(1−mΩ+/ω) +

Iℓ,m∈(0,m∗)

2(ω −mΩ+)r+

]
. (4.78)
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These bounds can also be written as

Tℓ,m≤0 ≥ sech2

[
1

2
ln(1−m/m∗) +

Iℓ,m≤0

2ωr+

]
, (4.79)

and

Tℓ,m∈(0,m∗) ≥ sech2

[
−1

2
ln(1−m/m∗) +

Iℓ,m∈(0,m∗)

2ω(1−m/m∗)r+

]
. (4.80)

These are the best general bounds we have been able to establish for the non-

superradiant modes.

4.3 Superradiant modes (m ≥ m∗)

In this section, we consider the superradiant modes. The rigorous bound on the

greybody factor is given by

Tℓm ≥ sech2

∫ ∞

−∞

√
[h̃′(r∗)]2 + [Uℓm(r) + h̃2(r∗)]2

2h̃(r∗)
dr∗

 , (4.81)

for any positive function h̃(r∗). It can more explicitly be written as

Tℓm ≥ sech2

∫ ∞

−∞

√
[h̃′(r∗)]2 +

[
Vℓm(r)− [ω −mϖ(r)]2 + h̃2(r∗)

]2
2h̃(r∗)

dr∗

 . (4.82)

Using the triangle inequality in equation (4.53), we obtain

Tℓm ≥ sech2

1
2

∫ ∞

−∞

∣∣∣∣∣ h̃′(r∗)h̃(r∗)

∣∣∣∣∣ dr∗ +
∫ ∞

−∞

∣∣∣Vℓm(r)− [ω −mϖ(r)]2 + h̃2(r∗)
∣∣∣

2h̃(r∗)
dr∗

 .
(4.83)

Using the triangle inequality,

|a+ b| ≤ |a|+ |b| (4.84)

for all real numbers a and b, we obtain

Tℓm ≥ sech2

[
1

2

∫ ∞

−∞

∣∣∣∣∣ h̃′(r∗)h̃(r∗)

∣∣∣∣∣ dr∗ +
∫ ∞

−∞

Vℓm(r)

2h̃(r∗)
dr∗

+

∫ ∞

−∞

∣∣∣h̃2(r∗)− [ω −mϖ(r)]2
∣∣∣

2h̃(r∗)
dr∗

 . (4.85)

The third integral is finite if h2(∞) = ω2 and h2(r+) = (ω −mΩ+)
2. We observe

that when m = 2ω/Ω+ = 2m∗, we obtain ω
2 = (ω −mΩ+)

2. Therefore, we divide

the superradiant mode into two cases
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• m ∈ [m∗, 2m∗).

• m ∈ [2m∗,∞).

4.3.1 Low-lying superradiant modes [m ∈ [m∗, 2m∗)]

In this case, we have ω2 > (ω −mΩ+)
2. We choose

h(r) =

mΩ+ − ω if r+ < r < r0

ω − ma

r2 + a2
if r ≥ r0

, (4.86)

where h(r) = h̃(r∗) and r0 is the point at which ω −ma/ (r2 + a2) = mΩ+ − ω.

That is

r0 =

√
r2+ +

2 (m−m∗)

2m∗ −m
(r2+ + a2). (4.87)

The derivative of h̃(r∗) is

h̃′(r∗) =
dh̃(r∗)

dr∗
=

dr

dr∗

dh(r)

dr
=

 0 if r+ < r < r0
∆

r2 + a2
2mar

(r2 + a2)2
if r ≥ r0

. (4.88)

We see that h̃′(r∗) ≥ 0. Then, h̃(r∗) is positive and monotone. Moreover, h̃(r∗) ≥
mΩ+ − ω occurs everywhere. Therefore,∫ ∞

−∞

|h̃′(r∗)|
h̃(r∗)

dr∗ = | lnh(r)|∞r+ = ln

(
ω

mΩ+ − ω

)
= − ln(m/m∗ − 1). (4.89)

The Vℓm(r) integral is evaluated, yielding∫ ∞

−∞

Vℓm(r)

2h̃(r∗)
dr∗ ≤

∫ ∞

−∞

Vℓm(r)

2 (mΩ+ − ω)
=

Iℓm
2 (mΩ+ − ω) r+

=
Iℓm

2ω(m/m∗ − 1)r+
,

(4.90)

where Iℓm is the same quantity as before. Finally, the remaining integral to be

performed is

J low
m =

∫ ∞

−∞

h̃2(r∗)− [ω −mϖ(r)]2

2h̃(r∗)
dr∗. (4.91)

Substituting h̃(r∗), we obtain

J low
m =

∫ r0

r+

(mΩ+ − ω)2 − [ω −mϖ(r)]2

2 (mΩ+ − ω)

r2 + a2

∆
dr. (4.92)

Factorizing the numerator gives

J low
m =

m

2 (mΩ+ − ω)

∫ r0

r+

(Ω+ −ϖ) [mΩ+ − ω +mϖ(r)− ω]
r2 + a2

∆
dr. (4.93)
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In this range r ∈ (r+, r0), we have

0 ≤ mΩ+ − ω +mϖ(r)− ω ≤ 2 (mΩ+ − ω) . (4.94)

Therefore,

J low
m ≤ m

∫ r0

r+

(Ω+ −ϖ)
r2 + a2

∆
dr =

ma

r2+ + a2

∫ r0

r+

r + r+
r − r−

dr. (4.95)

It can be evaluated, giving

J low
m ≤ ma

r2+ + a2

[
r0 − r+ + (r+ + r−) ln

(
r0 − r−
r+ − r−

)]
. (4.96)

Finally, we obtain

Tℓ,m∈[m∗,2m∗) ≥ sech2

[
−1

2
ln (m/m∗ − 1) +

Iℓ,m∈[m∗,2m∗)

2ω (m/m∗ − 1) r+
+ J low

m

]
. (4.97)

4.3.2 Highly superradiant modes (m ≥ 2m∗)

In this case, we have (ω −mΩ+)
2 > ω2. We choose

h(r) =


ma

r2 + a2
− ω if r+ < r < r0

ω if r ≥ r0
, (4.98)

where h(r) = h̃(r∗) and r0 is the point at which ma/ (r2 + a2)− ω = ω. That is

r0 = a

√
m

2ωa
− 1. (4.99)

The derivative of h̃(r∗) is

h̃′(r∗) =
dh̃(r∗)

dr∗
=

dr

dr∗

dh(r)

dr
=

− ∆

r2 + a2
2mar

(r2 + a2)2
if r+ < r < r0

0 if r ≥ r0

.(4.100)

We see that h̃′(r∗) ≤ 0. Then, h̃(r∗) is positive and monotone. Moreover, h̃(r∗) ≥
ω occurs everywhere. Therefore,∫ ∞

−∞

|h̃′(r∗)|
h̃(r∗)

dr∗ = | lnh(r)|∞r+ = ln

(
mΩ+ − ω

ω

)
= ln (m/m∗ − 1) . (4.101)

The Vℓm(r) integral is evaluated, yielding∫ ∞

−∞

Vℓm(r)

2h̃(r∗)
dr∗ ≤

∫ ∞

−∞

Vℓm(r)

2ω
=

Iℓm
2ωr+

, (4.102)
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where Iℓm is the same quantity as before. Finally, the remaining integral to be

performed is

Jhigh
m =

∫ ∞

−∞

h̃2(r∗)− [ω −mϖ(r)]2

2h̃(r∗)
dr∗. (4.103)

Substituting h̃(r∗), we obtain

Jhigh
m =

∫ ∞

r0

ω2 − [ω −mϖ(r)]2

2ω

r2 + a2

∆
dr. (4.104)

Factorizing the numerator gives

Jhigh
m =

m

2ω

∫ ∞

r0

ϖ(r)[2ω −mϖ(r)]
r2 + a2

∆
dr =

ma

2ω

∫ ∞

r0

2ω −mϖ(r)

∆
dr. (4.105)

In this range r ≥ r0, we have

0 ≤ 2ω −mϖ(r) ≤ 2ω. (4.106)

If m > 2m∗, then,

Jhigh
m ≤ ma

∫ ∞

r0

1

∆
dr, (4.107)

which is finite. If m = 2m∗, we have

r0 = a

√
1

aΩ+

− 1 = a

√
r2+ + a2

a2
− 1 = r+. (4.108)

Therefore,

Jhigh
m = ma

∫ ∞

r+

[
1− ϖ(r)

Ω+

]
1

∆
dr, (4.109)

which is also finite. Finally, we obtain

Tℓ,m≥2m∗ ≥ sech2

[
1

2
ln (m/m∗ − 1) +

Iℓ,m≥2m∗

2ωr+
+ Jhigh

m

]
. (4.110)

4.3.3 Summary (superradiant modes)

For the superradiant modes, we have

Tℓ,m∈[m∗,2m∗) ≥ sech2

[
−1

2
ln (m/m∗ − 1) +

Iℓ,m∈[m∗,2m∗)

2ω (m/m∗ − 1) r+
+ J low

m

]
(4.111)

and

Tℓ,m≥2m∗ ≥ sech2

[
1

2
ln (m/m∗ − 1) +

Iℓ,m≥2m∗

2ωr+
+ Jhigh

m

]
. (4.112)
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4.4 Discussion

In this chapter, we have calculated the rigorous bounds on the greybody factors

for massless scalar field emitted from Kerr-Newman black holes. We have used the

methods developed by Boonserm and Visser [8, 9, 10] to derive rigorous bounds on

the greybody factors. Although for rotating black holes we lose the assumption of

spherical symmetry, which is possessed by non-rotating black holes, we can assume

axial symmetry which makes the separation of variables possible. We have also

used spheroidal coordinates instead of spherical coordinates that are normally used

with non-rotating black holes.

In order to obtain the bounds, we divide the scalar modes into five cases

depending on the value of m. Specifically, we have divided these modes into the

following; zero-angular-momentum mode (m = 0), negative-angular-momentum

mode (m < 0), and low-lying positive-angular-momentum mode [m ∈ (0,m∗)],

which are all referred to as non-superradiant modes (m < m∗), and also the low-

lying superradiant mode [m ∈ [m∗, 2m∗)] and highly superradiant mode (m ≥
2m∗), which are referred to as superradiant modes (m ≥ m∗). For the zero-

angular-momentum mode (m = 0), we have chosen h(r) = ω. For the negative-

angular-momentum mode (m < 0) and the low-lying positive-angular-momentum

mode [m ∈ (0,m∗)], we have chosen h(r) = ω −mϖ. On the other hand, for the

low-lying superradiant mode [m ∈ [m∗, 2m∗)], we have chosen

h(r) =

mΩ+ − ω if r+ < r < r0

ω − ma

r2 + a2
if r ≥ r0

. (4.113)

For the highly superradiant modes (m ≥ 2m∗), we have chosen

h(r) =


ma

r2 + a2
− ω if r+ < r < r0

ω if r ≥ r0
. (4.114)

In each of these cases, we choose an appropriate function h(r) in order that the

bounds can be calculated. Moreover, for rotating black holes, there is a new

phenomenon called super-radiance, a phenomenon where the reflection coefficients

are greater than unity, which disappears from non-rotating black holes.



Chapter V

Greybody factors for dirty black holes

In this chapter, we calculate the rigorous bounds on the greybody factors

for dirty black holes, ones which are surrounded by matters and energies instead

of vacuum. The presence of such matters and energies changes the main features

of black holes, such as the variations in the Regge-Wheeler equation and greybody

factors. In addition to scalar field (spin 0), we are also interested in vector field

(spin 1) and spin 2 field emitted from the black holes. We follow from [58].

5.1 Dirty black holes

Dirty black holes are in an environment of matters and energies [59, 60, 61]. The

spacetime for dirty black holes is a generic, static, spherically symmetric spacetime

with the metric

ds2 = −e−2ϕ(r)

[
1− 2Gm(r)

r

]
dt2 +

[
1− 2Gm(r)

r

]−1

dr2 + r2dΩ2, (5.1)

where ϕ(r) is related to the distribution of matter and m(r) is the total mass

within the radius r from center of a black hole. There are singularities in this

metric at r = 0 and r = rH , where

rH = 2Gm(rH). (5.2)

Like other black holes we have introduced in chapter II, the point r = 0 is a true

singularity while the surface r = rH is not; it is just a coordinate singularity and

a place where the event horizon is located. We assume asymptotic flatness. Then,

m(∞) is finite and ϕ(∞) = 0.

5.2 Classical energy conditions

The Einstein’s equations in spacetime give by equation (5.1) are

dm

dr
= 4πρr2 and

dϕ

dr
= − 4π(ρ+ pr)r

1− 2m(r)/r
, (5.3)
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where ρ and pr are the energy density and radial pressure of matter fields, re-

spectively. Classical energy conditions are coordinate-invariant constraints on the

energy-momentum tensor. There are various types of classical energy conditions.

For example, the weak and null energy conditions state that

WEC ⇒ ρ ≥ 0 ⇒ m(rH) ≤ m(r) ≤ m(∞) (5.4)

NEC ⇒ ρ+ pr ≥ 0 ⇒ ϕ(rH) ≥ ϕ(r) ≥ 0. (5.5)

That is, there are specific requirements that the energy density is nonnegative and

the pressure is not too large compared to the energy density. Furthermore, they

are also useful in obtaining the bounds on the greybody factors.

5.3 Regge-Wheeler equation

5.3.1 Scalar emission

In this section, we look at a massless uncharged scalar field emitted from the dirty

black hole. Comparing equation (5.1) with equation (3.1), we find

A(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

]
, B(r) = 1− 2Gm(r)

r
and d = 4. (5.6)

From equation (3.23), the Regge-Wheeler equation is

d2ψℓ(r)

dr2∗
+
[
ω2 − Vℓ(r)

]
ψℓ(r) = 0. (5.7)

In this case, from equation (3.15), the tortoise coordinate r∗ is given by

dr∗
dr

= eϕ(r)
[
1− 2Gm(r)

r

]−1

(5.8)

and from equation (3.24), we have the effective potential

Vℓ(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

]
ℓ(ℓ+ 1)

r2
+

1

r

d2r

dr2∗
. (5.9)

Using the Einstein equations

dm(r)

dr
=

4πρr2

G
and

dϕ(r)

dr
= − 4π(ρ+ pr)r

1− 2Gm(r)/r
, (5.10)

we obtain

1

r

d2r

dr2∗
= e−2ϕ(r)

[
1− 2Gm(r)

r

] [
2Gm(r)

r3
− 4π(ρ− pr)

]
. (5.11)

Therefore,

Vℓ(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

] [
ℓ(ℓ+ 1)

r2
+

2Gm(r)

r3
− 4π(ρ− pr)

]
. (5.12)
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5.3.2 Vector emission

In this section, we look at a vector field emitted from the dirty black hole. While

the equation of motion of a scalar field on the black hole background is the Klein-

Gordon equation, the equation of motion of a vector field is the Maxwell equa-

tion
1√
−g

∂µ
(√

−ggµνgρσFνσ

)
= 0, (5.13)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor. This equation is equivalent

to

∇µF
µν = 0, (5.14)

where ∇µ is the covariant derivative. The Regge-Wheeler equation is

d2ψℓ(r)

dr2∗
+
[
ω2 − Vℓ(r)

]
ψℓ(r) = 0. (5.15)

In this case, the tortoise coordinate r∗ is given by

dr∗
dr

= eϕ(r)
[
1− 2Gm(r)

r

]−1

(5.16)

and we have the effective potential

Vℓ(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

]
ℓ(ℓ+ 1)

r2
. (5.17)

5.3.3 Spin 2 emission

In this section, we look at a spin 2 field emitted from the dirty black hole. The

Regge-Wheeler equation is

d2ψℓ(r)

dr2∗
+
[
ω2 − Vℓ(r)

]
ψℓ(r) = 0. (5.18)

In this case, the tortoise coordinate r∗ is given by

dr∗
dr

= eϕ(r)
[
1− 2Gm(r)

r

]−1

(5.19)

and we have the effective potential [62]

Vℓ(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

] [
ℓ(ℓ+ 1)

r2
− 6Gm(r)

r3
+ 4π(ρ− pr)

]
. (5.20)

Using the Einstein equations (5.10), we obtain

Vℓ(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

] [
ℓ(ℓ+ 1)

r2
− 4Gm(r)

r3

]
− 1

r

d2r

dr2∗
. (5.21)
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5.3.4 Spins zero, one, and two

We can combine all the effective potentials into a single formula as

Vℓ(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

] [
ℓ(ℓ+ 1)

r2
− 2S(S − 1)Gm(r)

r3

]
+
1− S

r

d2r

dr2∗
, (5.22)

where S ∈ {0, 1, 2}. Using the Einstein equations (5.10), we obtain

Vℓ(r) = e−2ϕ(r)

[
1− 2Gm(r)

r

]
×
[
ℓ(ℓ+ 1)

r2
+

2(1− S2)Gm(r)

r3
− 4(1− S)π(ρ− pr)

]
. (5.23)

5.4 Rigorous bounds on greybody factors

The rigorous bound on the greybody factor for h(r) = ω is given by

T ≥ sech2

[
1

2ω

∫ ∞

−∞
Vℓ(r)dr∗

]
. (5.24)

Using equation (5.8), the effective potential in equation (5.22) becomes

Vℓ(r)dr∗ = e−ϕ(r)

[
ℓ(ℓ+ 1)

r2
− 2S(S − 1)Gm(r)

r3

]
dr

+
1− S

r

d

dr

[
e−ϕ(r)

(
1− 2Gm(r)

r

)]
dr. (5.25)

Using

u
dv

dr
=

d(uv)

dr
− v

du

dr
, (5.26)

then,

Vℓ(r)dr∗ = e−ϕ(r)

[
ℓ(ℓ+ 1)

r2
− 2S(S − 1)Gm(r)

r3
+

1− S

r2

(
1− 2Gm(r)

r

)]
dr

+(1− S)
d

dr

[
1

r
e−ϕ(r)

(
1− 2Gm(r)

r

)]
dr. (5.27)

Therefore,∫ ∞

−∞
Vℓ(r)dr∗ =

∫ ∞

rH

e−ϕ(r)

r2

[
ℓ(ℓ+ 1) + (1− S)− (S − 1)2

2Gm(r)

r

]
dr, (5.28)

where the total derivative term vanishes both at rH and at spatial infinity. Using

the WEC, equation (5.4), we see that the above integral is bounded above by∫ ∞

−∞
Vℓ(r)dr∗ ≤

∫ ∞

rH

e−ϕ(r)

r2

[
ℓ(ℓ+ 1) + (1− S)− (S − 1)2

rH
r

]
dr. (5.29)
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Using the NEC, equation (5.5), we obtain e−ϕ(r) ≤ 1. Thus,∫ ∞

−∞
Vℓ(r)dr∗ ≤

∫ ∞

rH

1

r2

[
ℓ(ℓ+ 1) + (1− S)− (S − 1)2

rH
r

]
dr. (5.30)

Performing this integral, we obtain∫ ∞

−∞
Vℓ(r)dr∗ ≤

1

rH

[
ℓ(ℓ+ 1) + (1− S)− (S − 1)2

2

]
=

1

rH

[
ℓ(ℓ+ 1) +

1− S2

2

]
.

(5.31)

Therefore, from equation (5.24), we obtain the rigorous bounds on the greybody

factors

T ≥ sech2

[
1

2ωrH

{
ℓ(ℓ+ 1) +

1− S2

2

}]
. (5.32)

5.5 Discussion

In this chapter, we calculated the rigorous bounds on the greybody factors for

massless scalar field, massless vector field, and massless spin 2 field emitted from

dirty black holes. A dirty black hole is a black hole surrounded by matters and

energies rather than vacuum. In the absence of these matters and energies, a dirty

black hole reduces to a Schwarzschild black hole. For a scalar field, we started

calculating the rigorous bounds on the greybody factors with the Klein-Gordon

equation in a curved spacetime, for a vector field, we initiated the calculations of

the rigorous bounds on the greybody factors with the Maxwell’s equations in a

curved spacetime, while for a spin 2 field, we began calculating the rigorous bounds

on the greybody factors with axial spin 2 perturbations on a curved spacetime.

The summaries are shown in table V.1.

Types of Hawking radiation Equation of motion

A scalar field The Klein-Gordon equation in curved spacetime

A vector field The Maxwell equation in curved spacetime

A spin 2 field Axial spin 2 perturbations on curved spacetime

Table V.1: Equation of motion of different types of Hawking radiation.

We have used the methods developed by Boonserm and Visser [8, 9, 10] and the

classical energy constraints on the spacetime geometry to extract very general

and rigorous bounds on the greybody factors. Specifically, we have used the weak

energy condition (WEC) and the null energy condition (NEC). We have chosen

h(r) = ω as we had done in chapter III in order to derive the rigorous bounds on

the greybody factors.



Chapter VI

Conclusions

We began this dissertation with a review of quantum mechanics in order

to provide some basics for the study and comprehension of quantum black holes.

Specifically, we have reviewed the Schrödinger equation and some one-dimensional

problems with various potentials such as a delta function potential, a rectangular

barrier potential, an Eckart potential, and a Hulthen potential. These are the

basics necessary for studying Hawking radiation emitted from black holes since

equations of motion of Hawking radiation in the black hole backgrounds take

the form of the Schrödinger-like equations with various potentials. We have also

introduced general aspects of black holes and their classification.

A classical black hole rests on the belief that anything that enters a black

hole cannot escape, not even light. As a result, it cannot directly be seen by an

observer. A black hole is a singularity surrounded by a surface known as an event

horizon which acts as a boundary of the black hole. The singularity of a black

hole is the spacetime region with infinite curvature, where all of the laws of physics

break down. The event horizon separates the black hole from the universe. In the

standard (four-dimensional) general relativity, classical black holes is classified

into four types which can be summarized in table VI.1.

No rotation (a = 0) With rotation (a ̸= 0)

No charge (Q = 0) Schwarzschild Kerr

With charge (Q ̸= 0) Reissner-Nordström Kerr-Newman

Table VI.1: Classification of classical black holes in general relativity.

For non-rotating black holes such as Schwarzschild black holes and Reissner-

Nordström black holes, their singularities are point singularities, whereas for ro-

tating black holes such as Kerr black holes and Kerr-Newman black holes, their

singularities become ring singularities as a result of rotation. The Schwarzschild

black holes have only one event horizon while the others have two event horizons (in
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the usual case). Moreover, we have also studied the generalization of Schwarzschild

black holes to d dimensions, which is called Schwarzschild-Tangherlini black holes

and also black holes which are the solutions to the low-energy string theory such

as charged dilatonic black holes both in (2 + 1) and in (3 + 1) dimensions.

On the other hand, from a quantum point of view, Stephen Hawking showed,

in 1974, that a black hole is in actuality not ‘black’ but rather can emit radiation,

which became known as Hawking radiation [1]. Hawking radiation is a thermal

radiation with a Hawking temperature which is inversely proportional to the black

hole mass. Emission of Hawking radiation leads to black hole evaporation. Even-

tually, a black hole will disappear. This Hawking radiation propagates in a curved

spacetime represented by the potential of the Schrödinger-like equations. When

the Hawking radiation is scattered by the potential, part of it will be reflected

back into the black hole and the rest will be transmitted out of the black hole.

This phenomenon is analogous to one-dimensional potential problems in quantum

mechanics. An observer away from the black hole can only observe the transmitted

wave. This transmitted wave can be thought of as a greybody radiation because

the incident wave, which is a blackbody radiation, is modified by the curvature of

spacetime. Therefore, a greybody factor is defined as a transmission probability.

Moreover, there is a new phenomenon, superradiance, arising in the rotating

black holes, which is absent in non-rotating black holes. Superradiance is a phe-

nomenon where the reflection coefficients are greater than unity. This is because

the incoming wave can actually extract energy from the system instead of losing

energy.

In this dissertation, we have obtained rigorous bounds on the greybody fac-

tors for massless scalar field emitted from non-rotating black holes. In particular,

we have studied the Reissner-Nordström black holes, Schwarzschild-Tangherlini

black holes, charged dilatonic black holes in (2 + 1) dimensions, and charged

dilatonic black holes in (3 + 1) dimensions. Moreover, we have obtained rigor-

ous bounds on the greybody factors for massless scalar field emitted from Kerr-

Newman black holes, and dirty black holes. We have also calculated rigorous

bounds on the greybody factors for massless vector field and massless spin 2 field

emitted from the dirty black holes.

We have used the methods developed by Boonserm and Visser [8, 9, 10]

to derive rigorous bounds on the greybody factors. For non-rotating black holes,

including dirty black holes, we have made an assumption of spherical symmetry

to simplify problems. Although Kerr-Newman black holes, which are the rotating
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black holes, do not possess spherical symmetry, we have assumed axial symmetry.

For dirty black holes, we have also used the classical energy constraints on the

spacetime geometry to extract very general and rigorous bounds on the greybody

factors.

The advantage of these methods is that we do not have to explicitly solve

the Regge-Wheeler equations in case of non-rotating black holes and dirty black

holes, and the radial Teukolsky equations in case of Kerr-Newman black holes to

obtain the greybody factors. In fact, setting up these methods implicitly solves

these Schrödinger-like equations already. Moreover, these methods can work in

all frequency regimes while other approximations can only be valid in some lim-

its. Rigorous bounds on greybody factors for various types of black holes are

summarized in table VI.2

Black holes Bounds on greybody factors

Reissner-Nordström T ≥ sech2

[
1
2ω

{
ℓ(ℓ+1)
r+

+ GM
r2+

− 2G(Q2+P 2)
3r3+

}]
Schwarzschild-Tangherlini T ≥ sech2

[
4ℓ(ℓ+d−3)+(d−2)(d−3)

8ωr0

]
(2 + 1) charged dilatonic Equation (3.69)

(3 + 1) charged dilatonic T ≥ sech2
[

1
2ωr−

{
1− r+−r−

r−
ln
(

r+
r+−r−

)}]
Kerr-Newman Equations (4.79), (4.80), (4.111), (4.112)

Dirty T ≥ sech2
[

1
2ωrH

{
ℓ(ℓ+ 1) + 1−S2

2

}]
Table VI.2: The summary of bounds on greybody factors for each black hole.

For non-rotating black holes and dirty black holes, it is straightforward to

derive rigorous bounds on the greybody factors. In particular, we have chosen

h(r) = ω for all non-rotating black holes which have been studied in this disser-

tation and for dirty black holes. For Kerr-Newman black holes, the situations

are more complicated when rigorous bounds on the greybody factors become de-

pendent on scalar angular momentum modes. That is, we have to divide the

scalar modes into five cases depending on the value of m. Specifically, we have di-

vided these modes into zero-angular-momentum modes (m = 0), negative-angular-

momentum modes (m < 0), and low-lying positive-angular-momentum modes

[m ∈ (0,m∗)], which are all referred to as non-superradiant modes (m < m∗),

as well as low-lying superradiant modes [m ∈ [m∗, 2m∗)] and highly superradi-

ant modes (m ≥ 2m∗), which are referred to as superradiant modes (m ≥ m∗).

For the zero-angular-momentum modes (m = 0), we have chosen h(r) = ω, for

the negative-angular-momentum modes (m < 0) and low-lying positive-angular-
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momentum modes [m ∈ (0,m∗)], we have chosen h(r) = ω − mϖ, and for the

low-lying superradiant modes [m ∈ [m∗, 2m∗)], we have chosen

h(r) =

mΩ+ − ω if r+ < r < r0

ω − ma

r2 + a2
if r ≥ r0

. (6.1)

For the highly superradiant modes (m ≥ 2m∗), we have chosen

h(r) =


ma

r2 + a2
− ω if r+ < r < r0

ω if r ≥ r0
. (6.2)

Choosing the appropriate function h(r) leads to the easiest rigorous bounds. For

the outlook, we can choose another form of the function h(r) to obtain better

bounds. The generalization of a particle with other spins such as a fermion is also

interesting. Moreover, we can apply the methods used in this dissertation to other

black holes or even other systems.
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