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and provide good accuracy and able to handle noise compared with single estimator. 

 

 

Department: Chemical Engineering 

Field of Study: Chemical Engineering 

Academic Year: 2016 
 

Student's Signature   
 

Advisor's Signature   
  

 

 

 



 vi 

 

 

 
ACKNOWLEDGEMENT S 
 

ACKNOWLEDGEMENTS 

 

I would first like to thank and express my gratitude to my thesis advisor, 

Professor Dr. Paisan Kittisupakorn, for his encouragement, supervision, advice, 

inspiration and helpful suggestions throughout the course of this Master Degree 

study. Without the support from him, this thesis would have never been completed. 

Furthermore, I would also like to thank Professor Mohamed Azlan Hussain for his 

time to discuss an estimator and useful comments on this thesis. 

I would like to thank to all my friends, colleagues in the Control and 

Systems Engineering Research Laboratory and staffs in the Department of 

Chemical Engineering, Chulalongkorn University for their friendship and 

assistance over the years. 

Financial support to this work under The Institutional Research Grant 

(The Thailand Research Fund), IRG 5780014, and Chulalongkorn University, 

Contract No. RES_57_411_21_076. 

Finally. I would like to thank my family for their love, encouragement and 

financial supported me. Without their support, my research work would not have 

finished. 

 



CONTENTS 
  Page 

THAI ABSTRACT ....................................................................................................... iv 

ENGLISH ABSTRACT................................................................................................. v 

ACKNOWLEDGEMENTS .......................................................................................... vi 

CONTENTS ................................................................................................................. vii 

LIST OF TABLES ..................................................................................................... viii 

LIST OF FIGURES ...................................................................................................... ix 

Chapter 1 ........................................................................................................................ 1 

Introduction .................................................................................................................... 1 

1.1 Importance and reasons ....................................................................................... 1 

1.2 Objective .............................................................................................................. 2 

1.3 Scopes of this work ............................................................................................. 2 

Chapter 2 ........................................................................................................................ 3 

Literature reviews .......................................................................................................... 3 

2.1 Estimator .............................................................................................................. 3 

2.2 Hybrid estimator .................................................................................................. 6 

Chapter 3 ........................................................................................................................ 8 

Theory ............................................................................................................................ 8 

3.1 Ethylene polymerization process ......................................................................... 8 

3.2 Sliding mode observer (SMO) ........................................................................... 13 

3.3 Artificial neural networks (ANNs) .................................................................... 14 

3.3.1 A biological neuron ........................................................................................ 15 

3.3.2 An artificial neural .......................................................................................... 16 

3.3.3 Artificial neural networks ............................................................................... 19 

3.3.4 Activation (Transfer) functions ...................................................................... 20 

3.3.5 Layer arrangement in a neural network .......................................................... 22 

3.3.6 Types of artificial neural networks ................................................................. 23 

3.3.7 Training of artificial neural networks ............................................................. 26 

3.3.8 Training algorithms ........................................................................................ 27  

 



 viii 

  Page 

Chapter 4 ...................................................................................................................... 32 

Simulation .................................................................................................................... 32 

4.1 Dynamic model of ethylene polymerization process ......................................... 32 

4.2 Estimator ............................................................................................................ 34 

4.3 Hybrid estimator ................................................................................................ 42 

Chapter 5 ...................................................................................................................... 46 

Simulation results......................................................................................................... 46 

5.1 Normal condition ................................................................................................... 46 

5.2 Noise condition ...................................................................................................... 50 

5.3 Disturbance conditions........................................................................................... 52 

5.2.1 5% increasing of the molar flow rates of ethylene ......................................... 52 

5.2.2 10% increasing of the molar flow rates of ethylene ....................................... 55 

Chapter 6 ...................................................................................................................... 58 

Conclusion and Recommendations .............................................................................. 58 

6.1 Conclusion ......................................................................................................... 58 

6.2 Recommendation ............................................................................................... 59 

REFERENCES ............................................................................................................ 60 

VITA ............................................................................................................................ 63 

 

 



 

LIST OF TABLES 

Page 

 

Table 4. 1 Steady state operating condition ................................................................ 33 

Table 4. 2 Process parameters ..................................................................................... 34 

Table 4. 3 The components of neural network models ............................................... 40 

Table 4. 4 The components of hybrid neural network models .................................... 45 

Table 5. 1 The summary of performance comparison between the designed 

estimators under the normal condition, noise condition and disturbance condition .... 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ix 

 

 

LIST OF FIGURES 

Page 

 

Figure 3. 1 Schematic of the polyethylene reactor. ....................................................... 9 

Figure 3. 2 A biological neuron .................................................................................. 15 

Figure 3. 3 A basic artificial neuron. .......................................................................... 16 

Figure 3. 4 An artificial neural network ...................................................................... 19 

Figure 3. 5 Transfer functions with different characteristic constant values .............. 21 

Figure 3. 6 Layer arrangement in a neural network .................................................... 22 

Figure 3. 7 A Single layer feedforward network ........................................................ 24 

Figure 3. 8 A multilayer feed forward network .......................................................... 25 

Figure 3. 9 A recurrent network .................................................................................. 26 

Figure 4. 1 The schematic diagram of SMO design ................................................... 35 

Figure 4. 2 First training data set for NN .................................................................... 37 

Figure 4. 3 Second training data set for NN ............................................................... 38 

Figure 4. 4 Cross validation data set for NN............................................................... 38 

Figure 4. 5 The structure of NN in the NN estimator ................................................. 41 

Figure 4. 6 The structure of SMO-NN hybrid estimator............................................. 42 

Figure 4. 7 The structure of NN in the SMO-NN hybrid estimator ............................ 43 



 

 

x 

Figure 4. 8 First training data set for SMO-NN  ......................................................... 44 

Figure 4. 9 Second training data set for SMO-NN ..................................................... 44 

Figure 4. 10 Cross validation data set for SMO-NN................................................... 45 

Figure 5. 1 The estimation of the ethylene concentration under normal condition: 

a) SMO, b) NN estimator and c) SMO-NN hybrid estimator ...................................... 48 

Figure 5. 2 The estimation of the ethylene concentration under noisy condition: a) 

SMO, b) NN estimator and c) SMO-NN hybrid estimator .......................................... 52 

Figure 5. 3 The estimation of the ethylene concentration under disturbance 

condition (5% increasing of    ): a) SMO, b) NN estimator and c) SMO-NN 

hybrid estimator ........................................................................................................... 54 

Figure 5. 4 The estimation of the ethylene concentration under disturbance 

condition (10% increasing of    ): a) SMO, b) NN estimator and c) SMO-NN 

hybrid estimator ........................................................................................................... 56 

 



 

Chapter 1  

Introduction 

1.1 Importance and reasons 

The state feedback law is often based on the assumptions that all states are 

available for online measurement. Nonetheless, in practice, some of them may not be 

measurable due to lack of measurement or the high price of sensor devices. Therefore, 

measuring the states is not only difficulty but also the high cost of installation of these 

devices. Hence, devices known as an estimator have been developed to reconstruct the 

state vector for estimate the states or variables. 

Estimators are applied to several chemical processes for estimating variables such 

as growth rate and kinetic coefficient in biochemical process (Zhang and Guay 2002), 

composition in batch distillation column (Jana 2010) and temperature in heat 

exchanger (Bagui, Abdelghani-Idrissi et al. 2004). However, estimators are still 

restrictions and for overcome their limitations, researchers have also developed 

estimators called ―hybrid estimators‖ which are combinations of various estimators. 

In order to overcome the limitations of the single estimator, the hybrid estimator is 

used in this work. In addition, it can improve the single estimator inerasably. 

The gas-phase ethylene polymerization reactor using catalyst is a high-complex 

systems, phenomena in reactor namely the various heat and mass transfer 

mechanisms, the kinetics of heterogeneous polymerization and flow characteristics of 

solids and gas is combined in a manner of realistic. Reaction which occurring in the 

reactor is highly exothermic reactions, unusual steady-state is cause of strong 



 

 

2 

interaction in this process. Thus, in order to obtain accuracy state or variables for 

control law, it is very necessary using the hybrid estimator for estimating states in this 

high complex system. 

Accordingly, the purpose of this work is to design the hybrid estimator which are 

combined between sliding mode observer (SMO) – simple estimator designed is 

based on the Luenberger observer methodology with neural network (NN) for 

estimating the ethylene concentration in this system by using MATLAB software. 

1.2 Objective 

This work aims to design the hybrid estimator to estimate the ethylene 

concentration for the gas-phase ethylene polymerization process and compare 

effectiveness of estimation between hybrid estimator and single estimator. 

1.3 Scopes of this work 

i. The ethylene polymerization process well-mixed model proposed by 

McAuley, Macdonald, and McLellan is applied.  

ii. Modeling and parameters used in this work are validated against plant data. 

iii. Modeling of the process is performed by MATLAB. 

iv. Effect of operating parameters (the reactor temperature,    and the molar 

flow rates of ethylene,    ) on dynamics behavior process are investigated. 

v. Comparison of effectiveness of estimator between hybrid estimator and 

single estimator (Sliding mode observer, SMO and Neural network 

estimator, NN) are investigated. 

  



 

Chapter 2  

Literature reviews 

 In recent year, hybrid estimator has been a growing interest in the use for 

estimating unmeasured parameters and variables. Literature reviews regarding design 

of hybrid observer are presented in this chapter. The reviews consist of two parts. The 

first part introduces the single estimator which applied to polymerization process. The 

second part presents hybrid estimator that is published various papers. 

2.1 Estimator 

 The estimator is used for estimating the uncertainty and unknow parameters in 

the polymerization process. The estimators such as an extend Kalman filter (EKF), an 

extend Luenberger observer (ELO) and a high-gain observer are normally applied in 

this process. These estimators have been reviewed in many literatures as followings. 

McAuley and MacGregor (1991) presented a methodology for density 

prediction and on-line melt index in a reactor of fluidized bed polyethylene by using 

extend Kalman Filter (EKF). When the laboratory results analyze enhance obtainable, 

a recursive estimation error method will update adjusted parameters. The result 

presented that estimation of density and melt index are able of effectively by using 

this technique. 

 Appelhaus and Engell (1996) reported about the implementation of an 

observer which is an extend Kalman Filter (EKF) in a pilot plant reactor based on a 

model of polymerization. The result shows that two important concentrations in the 

polymer melts, specific surface and the product of mass transfer coefficient in a 
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polyethylene terephthalate (PET) reactor can be able to determine by the observer. 

The new possibility for improved process control is offers by the latter parameter 

knowledge. 

 Gentric et al. (1999) discussed the determination of optimal the temperature 

policy of  -methylstyrene and styrene in a reactor of batch emulsion polymerization. 

In addition, estimation the non-measured state variables which are number of particles 

per unit volume and monomer concentration are used by an extended Kalman filter. 

The result of experimental for this complex system presented that estimations is 

excellent. The observer tracked a good temperature and the control and the estimation 

is well. 

Yang et. al (1999) shown that three different modeling of the neural network 

which applying in a reactor of semi-batch polymerization. Initiator and monomer 

concentration are estimated by concentration of initiator in feed, feed temperature and 

temperature of reactor. The simulation results shown that estimation difficult-to-

measure polymer variables with acceptable accuracy for semi-batch reactor is 

proposed by the multi-stage approach proposed. 

Pico et al. (2009) reported the estimation of substrate concentration and 

specific growth rate in fermentation process from biomass measurements. Exactly, 

Lyapunov stability theory is used to demonstrate finite-time convergence by sliding-

mode observers (SMO). The convergence rate of the real substrate concentration is 

increased by observer in this condition of substrate estimation. 

Hajatipour and Farrokhi (2010) indicated that observer uses the sliding-mode 

observer (SMO) as the high gain property for get the estimated states to the system 

fast convergence. Furthermore, for maintaining good estimation of the states and to 
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introduce to make the proposed observer less sensitive to measurement noises, the 

Variable Relay-Equivalent Gain technique is applied to this work. 

Another work of Kuroda and Kim (2002), they applied NN estimator to modeling 

the behavior of temperature caused by exothermic reactions in a polymerization 

process. In batch emulsion polymerization, there may occur unexpected thermal 

reactive runaway. Therefore, it is difficult to control the behavior of the system in 

order to keep uniform fine product quality in each batch job. The NN is applied in the 

batch polymerization process for estimating the energy balance. The results shown 

that the temperature changes caused by exothermic reactions could be easily 

estimated and predicted by such neural network in the complicated polymerization 

processes. However, the single estimator has the unsatisfied results about the accuracy 

and the robustness when using in this process. Thus, the hybrid estimator that 

combined two different estimators is applied for solving the problems.  
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2.2 Hybrid estimator 

In recent year, the hybrid estimator that consisted of two or more estimators 

becomes a popular estimator in many industries owing to it has the higher accuracy 

and robustness than the single estimator. The hybrid estimator is studied and reported 

in the following literatures. 

Ng and Hussian (2004) presented hybrid neural network which are combined 

between neural network and first principle model (FPM). They developed two various 

hybrid estimator which are applied for estimating the overall heat transfer coefficient 

and the rate of polymerization in a reactor of semi-batch polymerization. The 

simulation shown that hybrid estimator can estimate accurately and fast convergence 

rate. In some of the conditions, the simulation result has been exposed that the HNN 

is more easier to apply and accurate than the extend Kalman filter. 

Aguilar-Lopez and Maya-Yescas (2005) proposed a hybrid estimator in a 

batch stirred polymerization reactor. The hybrid estimator including a sliding mode 

observer and proportional-type contribution for the measurement of error. In this 

process, the hybrid estimator is provided for estimating monomer concentration, 

polydispersity, filtering of temperature and average molecular weight. The SMO 

offers model uncertainties and robustness in contrast to measurements noisy. They 

compared the hybrid estimator through simulation of numerical in order to a classic 

proportional observer and the hybrid estimator presents better performance in contrast 

to noisy measurements and non-modelled dynamics. 

Hulhoven et. al (2006) designed hybrid observer combining Luenberger 

observer and asymptotic observer. They used this hybrid observer for estimating 

biomass concentration in fed-batch bacteria fermentation system. An adjustable rate 



 

 

7 

of convergence is accurate in the process model by the Luenberger observer. 

Whereas, for avoid using the kinetic model, they used a state transformation from the 

asymptotic observer but the process operating conditions define the convergence rate. 

Hence, the hybrid observer is proposed, which builds two state estimation algorithms. 

The results shown that developed hybrid observer can evolves between the asymptotic 

and exponential observer and in the process model is evaluated a level of confidence. 

Sheibat-Othman et. al (2008) presented nonlinear observers which is an apply 

in polymerization reactor. The termination rate coefficient is estimated by a high gain 

continuous-discrete nonlinear observer and the radical concentrations is observed by 

the adaptive observer. A function of the polymer concentration investigates by a 

slightly decreasing profile. Besides, it is remained by the estimation strategy. As the 

result, the variation of    with the concentration of polymer can estimate and derive 

by this model. 

 

  

  

  



 

Chapter 3  

Theory 

3.1 Ethylene polymerization process 

3.1.1 Process description 

 Polymer in this world which is the most popular is polyethylene. The Ziegler-

Natta catalysts with the gas-phase ethylene polymerization process produced a large 

proportion of polyethylene. The gas-phase polyethylene production has more 

advantage when compared with the other method because it does not use solvent in 

the process. Thus, this process must not produce and recover the solvent. In addition, 

the gas-phases ethylene polymerization process can operate at low temperature. So, 

this process saves the energy. However, it should be careful about the zone of the 

reaction. This process must keep the reactant below the melting point for protect 

agglomeration and particle melting as well as it must keep above the dew point for 

avoid condensation. The model of McAuley et al. (1990) is developed based on the 

well mix model for applying in the polymerization of the polyethylene. In Figure 3.1, 

producing of the polyethylene is explained. Major component namely the monomer 

(ethylene), co-monomer (butene), hydrogen (H2) and nitrogen (N2) is used as feed gas 

which is combined with the recycle gas before enter to the reactor. 
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Figure 3. 1 Schematic of the polyethylene reactor. 
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The ethylene polymerization process has the major assumption as follows: 

1. All of temperature and gases concentration is assumed that well mix model. 

2. A pseudo-homogenous single-phase is used in this model. Hydrodynamic 

characteristics of the reactor used describe the properties of emulsion phase and the 

bubble phase. 

3. We neglect mass and heat transfer which is generate between the emulsion gas and 

the solid particle as well as mass and heat transfer which is generate by the emulsion 

gas and the bubble gas. 

4. In the reactor, we used catalyst which entries unceasingly.  

5. Particle size which used in this model is assumed that their have constant mean 

size. 

6. Reaction generate immediately and gas recycle return to the reactor instantly. 

 

3.1.2 Process model for parameter estimations 

   as ethylene,    as butene,   as hydrogen and   as nitrogen are placed in 

the mole balance of the process as follow: 

1
1 1 1

M
g M M t M

dC
V F x B R

dt
             (1) 

2
2 2 2

M
g M M t M

dC
V F x B R

dt
           (2) 

H
g H H t H

dC
V F x B R

dt
            (3) 

N
g N N t

dC
V F x B

dt
            (4) 

With 
( / )(1/ 1/ )

1 1 1
refE R T T

M M c pR C Y k e
 

               (5) 
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( / )(1/ 1/ )

2 2 2
refE R T T

M M c pR C Y k e
 

               (6) 

Here Vg is the reactor volume,                are the concentration of 

ethylene, butene, hydrogen and nitrogen.                are the molar flow rates of 

ethylene, butene, hydrogen and nitrogen.                are the mole fraction of 

ethylene, butene, hydrogen and nitrogen.    is the bleed flow rate and           are 

the gases constant.     depends on the ethylene propagation rate constant (denoted by 

   ),     depends on the butene propagation rate    ) and   is the ideal gas constant. 

   is the number of mole at catalyst site,   is the activation energy for propagation,   

and      are the reactor and reference temperature, respectively. 

 Number of moles at the catalyst site is described by: 

/c
c c d c p c w

dY
F a k Y O Y B

dt
             (7) 

With 1 1 2 2( ) ( )p w M w MO M R M R                     (8) 

Where    is the catalyst flow rate,    is the active site concentration,    is the 

deactivation rate constant,    is the polymer outlet rate,    is the mass of polymer 

and         are the molecular weight of ethylene and butane, respectively.  

Reactor temperature and recycle stream temperature are given as follows: 

( )r r w p

dT
M Cp B Cp HF HG HR HT HP

dt
             (9) 

( ) ( )
g

g g g g gi g w w wi wo

dT
M Cp F Cp T T F Cp T T

dt
                               (10) 

where 1 1 2 2( )( )M M M M H H N N f refHF F Cp F Cp F Cp F Cp T T                   (11) 

( )g g g refHG F Cp T T                               (12) 

( ) ( )g T g refHT F B Cp T T                      (13) 
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( )p p refHP O Cp T T                               (14) 

1 1w M RHR M R H                           (15) 

The total pressure of the reactor is given by: 

1 2( )t M M H NP C C C C RT                                                                                           

(16) 

The relation of cooling water with the temperature is given by: 

( ) 0.5 [( ) ( )]w w wi wo wo wi gi gF Cp T T UA T T T T                     (17) 

Here             are the sensible heat of fresh feed, recycle gas, reactor 

and product respectively while    is the enthalpy generated from the polymerization, 

      is the thermal capacitance of the reaction vessel,    is water hold up in heat 

exchanger.                    are the heat capacity of ethylene, butene, hydrogen 

and nitrogen respectively.     is the heat capacity of polymer whereas     and     

are the heat capacity of recycle gas and water. Besides that,       are the cooling 

water and recycle flow rate accordingly,         are the cooling water temperature 

(before and after cooling) while        are the recycle temperatures (before and after 

cooling).    is the overall heat transfer coefficient,    is the heat of reaction and    

is the total pressure. 

The polyethylene process model which is developed by McAuley et al. (1995) 

can calculate by Eqs.(1)–(17). This model is slightly changed to calculate heat 

removal. The external heat exchanger is used for remove which generated by reaction. 

The well-mix model is assumed to this system. We used ideal gas law for calculating 

the partial pressure of the substrate. 
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3.2 Sliding mode observer (SMO) 

Unique properties are contained in the Sliding mode observers. The sliding mode 

observers can use the error the estimated value and the measured from the plant to 

build sliding motion. 

The problem of state estimation for the nonlinear system 

 ̇   ( )   ( ) ,                  (18) 

where       , by output vector measurements 

   ( )                       (19) 

has been considered. For exactly known smooth nonlinearities   and   and if    , 

the method of global linearization by using nonlinear state transformation permits to 

obtain a system in the new variables        which is linear with respect to   and has 

in the right-hand side nonlinear function only of the measurements  . After that, the 

standard linear pole-placement technique can provide for designing observer.  

For successful application of the technique the nonlinear transformation must 

be determined. The essential and necessary conditions of existence for this 

transformation were given by Krener and Respondek (1985). These conditions are 

more restrictive considerably than the observability condition of the system 18, 19. 

On other hand, the problem of integration of a corresponding partial differential 

equation for obtaining this transformation makes sometimes this method difficult to 

implement in practical situations.  

Observers based on sliding mode approach first were developed for linear case. 

 ̇                            (20) 

    .                   (21) 



 

 

14 

By structure they are very similar to the standard full order observers with 

replacement of the linear innovative term by a discontinuous function: 

 ̇̂    ̂          (    ̂),                (22) 

where   is the observer gain and      is understood componentwise for vector 

argument       (       ) and    ( )     (   (  )      (  ))            (23) 

 

3.3 Artificial neural networks (ANNs) 

Artificial Neural Networks (ANNs) are the tools which using computational. 

Artificial Neural Networks can be able to calculate or solve the system which has 

more nonlinear. In addition, it uses data in the historical as knowledge for generate 

structure to build model (Hecht-Nielsen 1990). 
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3.3.1 A biological neuron 

  

 

Figure 3. 2 A biological neuron 

 

 

 The neuron within the brain have various type, but it has same component as 

four basics. The four basics component including axon, synapses, dendrite and soma 

Soma: The soma or cell body is the body of neuron. Within the soma including 

biochemical and nucleus. 

Dendrite: Shape of dendrite like hair and it has many branches. Duty of dendrite 

receive data or signal from external or the other neuron. 

Axon: Duty of axon is decision and transfer data or signal along body to the synapse. 

Shape of axon is tubular and long. 

Synapse: The tail of the neuron has the branch like dendrite. When two neurons 

connected together, point of connection is called synapse. The first neuron transfer 
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signal trough axon and then it sent signal to the next neuron. After that, dendrite of 

another will received input and evaluate. 

 

3.3.2 An artificial neural 

 A biological neuron was mimic four functions by the artificial neural network. 

An artificial neuron is demonstrated in Figure 3.3. 

 

Figure 3. 3 A basic artificial neuron. 

 

In Figure 3.3, the mathematical symbol,  ( ) is presented to the various inputs 

of the network. The connection weight multiplied by each of these inputs.  ( ) is 

represented the weights. Before feed to the transfer function, these data were sum of 

product in order to build result and then there will be sent to output. An artificial 

neuron includes seven major components. The input layer, the hidden layer and the 

output layer is used in the neural network. 



 

 

17 

Component 1. Weighting Factors: A neuron received many contemporary inputs. 

Each input has its own connected weight, which gives the input the impact that it 

needs on the processing element's summation function. Some inputs are structured 

more important than others to have a superior effect on the processing element as they 

combine to produce a neural response. Weights were modified that determine the 

intensity of the input signal as registered by the artificial neuron.  

Component 2. Summation Function: In the previous component, sum of products in 

weights is complex less than the summation function. Before the signal data is sent to 

the transfer function, the weighting coefficients and the input will be merged. The 

maximum, minimum, the majority is selected by the summation function. 

Component 3. Transfer Function: The next step of transfer data is transfer function. 

When we receive results transforms form the summation function, and then signal 

will sent via the transfer function. The transfer function will compare value that 

receive from the summation function with threshold in order to regulate the output. 

The processing element will create signal, if result of summation function has larger 

than the threshold. On the other hand, the processing element will ignore if result of 

summation function has below than the threshold value. 

Component 4. Limiting and Scaling: This procedure is attach from the activation 

function. Because, data or information have various of data then we must ensure that 

data scale is not lower bound or exceed an upper. 

Component 5. Output: One output signal accepts each processing element which may 

be receive from many nodes. Output is the result which came from learning of the 

neural network. 



 

 

18 

Component 6. Error Function: The modification between the desired output and the 

current output are considered which are changed using the error function for 

coordinate an architecture network in most learning networks. The previous layer 

propagate backward by this error. 

Component 7. Learning Function: The weights of the inputs in each node consistent 

with some neural which is calculated algorithm. 
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3.3.3 Artificial neural networks 

 
 

Figure 3. 4 An artificial neural network 
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In Figure 3.4 illustrate an artificial neural network. From the upper left, inputs 

go into the processing element. In the first, weighting factor is fed to the inputs. Input 

which is change fed to the summation function. In summation function will calculate 

sum of product. 

The summation function in the output is sent to an activation function, that it 

tries this number into a real output through some algorithm. The activation function 

can also control its value through thresholds or scale the output. This output is sent to 

an outside connection or other processing elements, as uttered via the network 

structure. 

 

3.3.4 Activation (Transfer) functions 

 The activation function of the neural network should variance as well as 

enable correcting error continuously. Computation of local gradient required the 

derivative of the activation function. The most activation function which is found in 

the various paper is the sigmoid function. The S-shape is contained to the sigmoid 

function. The sigmoid function is common form to apply in the neural network 

because of an increasing function. In addition, the sigmoid function is positive value 

which it has advantage for protect balance concerning nonlinear and linear behavior. 

What more, the transfer functions can also be active as shown in Figure 3.5. 
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Figure 3. 5 Transfer functions with different characteristic constant values 
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3.3.5 Layer arrangement in a neural network 

In many ways, the neurons can be grouped together. In the human mind, the 

grouping can generate, too. Example of system in self-organizing way, interactive or a 

dynamic. From microscopic components, a three-dimensional world constructs the 

neural network. 

 

 

Figure 3. 6 Layer arrangement in a neural network 
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Essentially, a neural network is grouped into layers, the connections 

concerning these layers, and the activation functions or summation function that 

comprises a functioning neural network. Input layer, output layer and hidden layer is 

the least of layer which require in the most applications network. The data from 

electronic sensors in real-time applications or from input files is informed in the input 

layer. The layer of output will send information to the outside world directly, to a 

subordinate computer system or to another device. Many hidden layers are between 

input layer and output layer. In various interconnected structures are comprise in the 

hidden layer. 

 

3.3.6 Types of artificial neural networks 

3.3.6.1 Single layer feed forward network 

 In this type, the neural network contains a single layer of weights, which is 

connected directly to the outputs. This structure includes two layers; input layer and 

output layer as shown in Figure 3.7. A feed-forward type is considered in this type. 

The weights and the inputs is calculated by sum of the products in each node. If the 

value of result is above some threshold, nodes will send signal to next node. On the 

other hand, if result of sum product is below threshold, it will not send signal. 
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Figure 3. 7 A Single layer feedforward network 

 

3.3.6.2 Multilayer feed forward network 

Multilayer feed forward network (Figure 3.8) contains of one or more hidden 

layers, which are named hidden units or hidden neurons. The hidden neurons function 

is to relate concerning the output of network and the external input in to extract higher 

order statistics and some useful manner. For the input layer of neural network, input 

will transfer signal to the neurons or node to next layer. Node of next layer will 

receive signal and then sum for sending to the next node in the next layer. 
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Figure 3. 8 A multilayer feed forward network 

 

3.3.6.3 Recurrent network 

In the recurrent network, the neurons output can be feedback to the neurons in 

the other layers or to the same neurons. Signal propagate in both backward and 

forward directions. Illustration of recurrent networks namely the Jordan network, the 

Elman network, and the Hopfield network. A dynamic memory of recurrent networks 

use outputs at a given instant reflect the current inputs and previous output as shown 

in Figure 3.9. The recurrent networks are useful in mapping dynamic change in a 

system. 
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Figure 3. 9 A recurrent network 

 

3.3.7 Training of artificial neural networks 

When we obtain neural network structure which is generated appreciated 

structure. Next step, network will be trained. Weights are random in the initiate and 

then it will be train for adjusting the weight. Methods of training have two algorithm 

including supervised and unsupervised. 

3.3.7.1 Supervised training 

In supervised training, a set of training data or examples data, which has been 

obtained from actual process behavior are fed to the training algorithms. The network 

is trained to calculate the inputs which matching output correctly. The outputs of 

network are compared with the targets value when the network is added by the input. 

The training algorithms make use of the error concerning the target value and output 

value in order to modify the weights and biases for driving the outputs of network 

following to the targets value. In this technique, the trainer knows exactly the desired 
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output. The error between the desired output and the actual value is exploited to adjust 

the strengths of the connection such as weights between neurons and the training 

performed until it reaches the required performance. In addition, this method is used 

in most applications. 

3.3.7.2 Unsupervised or adaptive training 

 In unsupervised training, only weights and biases are changed in response to 

inputs of network. The target outputs are not available. The clustering operations are 

performed by these algorithms which a finite number of classes grouped to input 

patterns. Most of applications which is usages such as pattern recognition. In this 

method, the trainer does not know the desired teaching signal. The methodology of 

training is similar to the supervised training method. This method is also used as the 

pre-processing for the supervised training method to improve training for better 

convergence. The hidden neurons must fide ways to organize themselves. In this 

method, no outputs of example are offered to the network in contrast to it can be 

compared to the predicted performance for a given input vector. 

 

3.3.8 Training algorithms 

 Since in this study, I am nervous about the feed forward neural network, that 

uses the method of supervised training, I will describe the training algorithm involved 

for training the feedforward only in the next section. 

 

3.3.8.1 The data rule 

 For train a single layer network, one of the original supervised learning 

method used is the data rule. In this method, the inputs offered to the outputs and the 
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network are calculated. These outputs value are compared with the targets values and 

difference between them is calculated to give the error,   , i.e. 

                                 (24) 

The modification of the weights is proportional to the past calculated error, the input 

and a learning coefficient as given below, 

                           (25) 

  (   )    ( )                     (26) 

where    is the inputs before the weight is moderated and   is the learning coefficient 

with value selected randomly. In order to obtain better convergence during training, 

the learning rate coefficient is normally set between the values of 0 to 1. The 

drawback of this rule is that the output of the network must be known for calculate 

and adjust the weights. As a consequence of this, the delta rule is only applicable 

efficiently for a single layer network. As for the multilayer network, the 

backpropagation method is presented and will be define in the next section. 

 

3.3.8.2 The backpropagation method 

 The objective of this training method is in order to train the weights of a 

multilayer network for obtain the required and the targeted outputs corresponding to a 

given set of inputs to the network. The methodology of the conventional 

backpropagation method is mentioned below by highlighting the important steps: 

 1. Weight and biases are initialized with values between -1 and 1 randomly. 

 2. Inputs are summed and propagated to the hidden layer for a node   as: 

         ∑      
    

  
                   (27) 

 3. Output from node   is given by 
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   (    )                  (28) 

   where   is the transfer function or activation used in the hidden nodes 

            4. Hidden layer output is propagated to node   at the output layer given as: 

        ∑      
    

  
                   (29) 

            5. Output from the node   is: 

           
   (    )                  (30) 

 6. Error is solves at the layer as: 

      ∑ (     
 )   

                    (31) 

 7. Weights are adjusted along the negative gradient descent of the error,   as: 

          
  

    
                 (32) 

  where   is the learning rate applied in the training. 

 8. Weights in the hidden layers and output layer are then adjusted by equations 

follow: 

            
 (    

 )  
 ∑   

    
  
                    (33) 

 and        (     
 )  

 (    
 )  

                  (34) 

 9. The momentum term is then enhanced to the eq.(34) for facilitate 

convergence and to avoid local minima to occur: 

     ( )     ( )    (   )               (35) 

  where   is the momentum term. 

  

 In training of multilayered neural networks, the backpropagation algorithm 

is verified to be extremely effective. Filtering of errors is used in the system and 

applied to modify the connection concerning the layers in a supervised learning 
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approach, thus improving performance. Another method of training which gives faster 

convergence is the Levenberg-Marquardt method as explained in the next section. 

 

 

3.3.8.3 Levenberg-Marquardt method 

 Levenberg-Marquardt method is a nonlinear least square optimization 

algorithm based on Newton’s method. In order to minimize a function  ( ) with 

respect to the parameter vector  , therefore Newton’s method would be: 

        ( )     ( )                 (36) 

where     ( ) is the Hessian matrix and   ( ) is the gradient. Suppose that  ( ) is 

a sum of squares function, 

 ( )  ∑   
 ( ) 

                     (37) 

then it can show that 

  ( )    ( ) ( )                  (38) 

   ( )    ( ) ( )   ( )                 (39) 

where   ( ) is the Jacobian matrix and 

 ( )  ∑   ( )    ( ) 
                    (40) 

For the Gauss-Newton method, it is assumed that  ( )   , and the weight updates in 

eq.(36) becomes, 

      ( ) ( )     ( ) ( )                (41) 

The Levenberg-Marquardt modification to the Gauss-Newton method is, 

      ( ) ( )         ( ) ( )                (42) 
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The parameter   is the multiplied by some factor   whenever a step would 

result in an increased  ( ). When a step reduces  ( ),   is divided by  . Remark 

that when   is great, the system converts steepest descent with step   ⁄ , while for 

smaller  , the algorithm becomes Gauss-Newton. The Levenberg-Marquardt method 

is interpolated concerning the truncated Taylor-series and the approaches based on the 

maximum neighborhood  gives an adequate representation of the nonlinear model. 

This technique is located that it has beneficial when compared with the other 

algorithm. In this work, the neural network model is trained by using this method.  

  

  



 

Chapter 4  

Simulation 

The method of the process simulation is shown in this chapter that consist of 

three parts. The first part represents dynamic model of ethylene polymerization 

process that the nonlinear equation model is solved. The second part introduce the 

estimator which is applied in this process namely sliding mode observer (SMO) and 

neural network (NN). Ultimately, the hybrid estimator that combines between SMO 

and NN is designed.  The simulation of the ethylene polymerization process is solved 

by using MATLAB software. 

4.1 Dynamic model of ethylene polymerization process 

The process model that was improved by McAuley, McDonald and Mclellan 

is applied in this work. Kinetic parameters were validated compared to plant data that 

cause of selecting this model. The description on the parameters and various states of 

the process model is described in the previous chapter. The nonlinear differential 

equations can presente in state space vector equation of the form 

  ( )

  
  ( ( )  ( )  ( )  )                 (43) 

   ( ( )  )                  (44) 

where      is a vector of state variables, which variable as     (butene 

concentration),      (ethylene concentration),    (nitrogen 

concentration),     (Hydrogen concentration),    (Number of moles at 

the catalyst site),    (recycle stream temperature) and   (reactor 

temperature) 
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  is a vector of input variables that are the process inputs namely     

(molar flow rates of bulene),      (molar flow rates of ethylene),    

(molar flow rates of nitrogen),     (molar flow rates of 

hydrogen),    (recycle flow rate),    (cooling water flow rate), and    

(catalyst flow rate) and    (feed temperature) 

  is a vector of measurable disturbance variables 

  is a vector of measured output (reactor temperature,  ) 

     is the system constant parameters 

The model of ethylene polymerization process is simulated in the MATLAB program 

with values of the steady state operating condition and process parameters that is 

shown in Table 4.1 and Table 4.2. 

 

Table 4. 1 Steady state operating condition 

 

    297.06 mol/m
3
     5.849     mole 

    116.17 mol/m
3
   355.85   K 

   105.78 mol/m
3
     10.39     mole/s 

   166.23 mol/m
3
     3.11x104 mole/s 

    131.13 mol/s     324.7      K 

    3.5100 mol/s     308         K 

   1.6000 mol/s      293         K 

   2.5200 mol/s     2             kg/h 
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Table 4. 2 Process parameters 

 

   70x107
 g      85           L/mole s 

   0.85     cal/g K     3             L/mole s 

  9000    cal/mole     293         K 

   500      m
3
     3             atm 

     360      K     0.548      mole/kg 

   -894    cal/g      11          cal/mole 

K 

   0         1/s      24          cal/mole 

K 

      1400   kcal/K     7.7         cal/mole 

K 

   8500   mole/s     6.9         cal/mole 

K 

   1.263x105
 cal/s K     18          cal/mole 

K 

 

 

4.2 Estimator 

4.2.1 Design of SMO 

The sliding mode observer drive estimated states to hypersurface by using 

nonlinear high-gain feedback. The hypersurface is no discrepancy concerning the 

measured value and the estimated value. A scaled switching function such as the 

signum (i.e.,    ) of the estimated is used in the observer for the nonlinear gain. 

Hence, due to this high-gain feedback, the vector field of the observer has a crease in 

it so that observer trajectories slide along a curve where the estimated output matches 

the measured output exactly. When process is check observability, so the observer can 

drive process to the actual value. In this work, the SMO is used to estimate ethylene 

concentration of the ethylene polymerization process by measured reactor 

temperature. The structure of SMO illustrates in Figure 4.1. 
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Figure 4. 1 The schematic diagram of SMO design 
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A class of nonlinear systems can construct by the sliding mode observer. The 

original variable estimate  ̂ can write by this observer follow as: 

 ̇̂    ̂          (   ̂)                (45) 

with            (     )                  (46) 

where   ̇̂ is the estimated value 

   ̂ is the output yields the estimated state vector  ̂ 

  is the measurement vector from nonlinear model, which variable as    

     is understood componentwise for vector argument    

   (       ) and    ( )     (   (  )      (  )) 

  is the observer gain which is solved by the pole position using the 

equation shown in eq.(46)  

  is 7Nx7N Jacobians matrix which is calculated by 

  
  

  
 

   
   

   
   

 
   
   

   

   

   

   

 
   

   

 
   
   

 
   
   

 
 

 
   
   

 

  is Nx7N Jacobians matrix as [0 0 0 0 0 1 0] 

  is the chosen position for the error dynamics that is characteristics 

equation. 
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4.2.2 Design of NN 

In this section, the neural network estimator is trained to estimate the ethylene 

concentration. Data for training the neural network in the simulation work are 

obtained by solving the ordinary differential equations (ODEs) that govern the 

ethylene polymerization process as discussed in the previous chapter. Equation (1), 

(2), (3), (4), (7) and (9) in chapter III are solved to obtain process states according to 

changes in the manipulated variable such as coolant temperature,   . Two data sets 

have been prepared for training the neural network model and one is used for cross 

validation purposes in order to test the validity of the trained neural network. The 

system identification is improved by training procedure which is trained switch 

between two training data set. Figure 4.2, 4.3 and 4.4 show the first, second training 

and the cross validation data sets respectively. 

 

Figure 4. 2 First training data set for NN 
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Figure 4. 3 Second training data set for NN 

 

Figure 4. 4 Cross validation data set for NN 
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The inputs of the neural network model are reactor temperature ( ) and 

recycle stream temperature(  ). The desired network output is assigned to be the 

ethylene concentration,    . During training, the weights each input are modified for 

obtain value with corresponding the target value. Performance index is represented of 

the model by using training technique. Primarily, weights and bias is random thus 

training algorithm is used in order to obtain the weights and bias appreciatory. 

Performance index will update and develop whereas the weights are adjusted 

throughout training. When error frequency is minor or achieves its desired value, the 

training procedure will finish. Mean squared-error (MSE) is used to the performance 

index. 

The training data two sets is switched for training until the neural network 

obtain the MSE value satisfy. For obtain the feed forward neural network model, the 

hidden nodes number play vary significant role in the network performance. Try and 

error method is use in selection of the hidden node. The correct number of hidden 

nodes is chosen when neural network obtain the minimum-trained error. Another data 

set is used to validate neural network model which is excluding the two training data 

sets. 
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Table 4. 3 The components of neural network models 

 

Parameters Description 

Network Feed forward neural network 

Performance function MSE 

Training algorithm Levenberg-Marquardt 

Epochs 300 

Node in hidden layer 5 

Activation function Sigmoid function 

Node in hidden layer 1 

Activation function Linear function 

  

 

In this study, the forward model for the ethylene polymerization process is a 

two-layered feedforward neural network consisting of 4 input nodes, 5 hidden nodes 

and 1 output node as shown Figure 4.5. The input of this model are temperature of 

reactor and temperature of the recycle stream. These inputs are chosen because they 

are online measured in the plant. The sigmoid transfer function is applied in the 

hidden nodes and in the output node used linear transfer function. The network is 

trained using the Levenberg-Marquardt backpropagation algorithm until it satisfies or 

less than performance with criteria of mean square error (MSE) of 0.0001. The error 

which is between the actual desired values and the output from the network training 

was defined. The details of component of NN estimator as shown in Table 4.3. 
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Figure 4. 5 The structure of NN in the NN estimator 

 

 In this work, an algebraic equation can be presented on the neural network 

output. The output of the neural network can solve by the general equation as shown 

in eq.(47). 

      (      (        )    )                (47) 

where    is outputs from the neural network  

   is inputs to the neural network 

    is activation function at layer1 (input layer) 

    is activation function at layer2 (hidden layer) 

      is weight at layer 1 (input layer) 

      is weight at layer 2 (hidden layer) 

     is bias value at layer 1 (input layer) 

    is bias value at layer 2 (hidden layer) 

𝑇 (𝑘) 

𝑇𝑔 (𝑘) 

𝑇𝑔 (𝑘   ) 

𝐶𝑀     𝑁𝑁 (𝑘) 

𝑇 (𝑘   ) 
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4.3 Hybrid estimator 

In this research, I design the hybrid estimator that merges between the sliding 

mode observer (SMO) and neural network (NN) for estimating the ethylene 

concentration. The hybrid estimator, SMO-NN, is developed from SMO combined 

with NN. The first step, the SMO is used to estimate state variable of the. I used the 

SMO firstly since the SMO recommends to stable estimation and fast convergence 

whereas it can create the signal or sliding motion on the output error and the measured 

error. And then, the            and     are sent to the NN for estimating the ethylene 

concentration again. The structure of SMO-NN hybrid estimator is shown in Figure 

4.6.  

 

   

 

Figure 4. 6 The structure of SMO-NN hybrid estimator. 

 

For SMO in this structure, the SMO used applied to estimate the state variable 

which is the ethylene concentration. The SMO structure represents in the previous 

section. After that, NN inputs are selected as the value of estimated state variables 

from the SMO that including            and    for estimating ethylene concentration 

Process 

SMO NN 

𝑢 

𝐶 𝑀  𝑆𝑀𝑂 

 

𝑇   𝑇𝑔 

  

𝐶 𝑀  𝑆𝑀𝑂 𝑁𝑁 

  

𝐶𝑀  
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again. In this structure,          estimated by the SMO is added to input of neural 

network for increasing accuracy. In the NN estimator,           does not chosen to 

input because it cannot online measured but          can use to input of the hybrid 

estimator due to estimating by the SMO. The optimal NN estimator consists of 6 

nodes of input layer, 4 nodes of a hidden layer and a node of output layer (6-4-1 

configuration). The optimal NN is used to estimate the ethylene concentration which 

is the output of the SMO-NN hybrid estimator from the estimated state variables of 

SMO. The topology of NN has exposed in Figure 4.7. The details component of 

hybrid neural network as shown in Table 4.4. 

 

Figure 4. 7 The structure of NN in the SMO-NN hybrid estimator 

 

Data for training the NN in the SMO-NN hybrid estimator are obtained by 

solving the ordinary differential equations (ODEs) and the SMO. The training method 

of the NN estimator is same as the NN estimator of the SMO-NN hybrid estimator. 

The two training sets data and the cross validation data sets of the networks show in 

Figure 4.8, 4.9 and 4.10 respectively. The details of component of NN hybrid 

estimator as shown in Table 4.2. 

𝐶𝑀  𝑆𝑀𝑂 (𝑘   ) 

𝐶𝑀  𝑆𝑀𝑂 (𝑘) 

𝑇𝑆𝑀𝑂  (𝑘) 

𝑇𝑆𝑀𝑂  (𝑘   ) 

𝑇𝑔 (𝑘) 

𝑇𝑔 (𝑘   ) 

𝐶𝑀  𝑒𝑠𝑡  (𝑘) 
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Figure 4. 8 First training data set for SMO-NN 

 
Figure 4. 9 Second training data set for SMO-NN 
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Figure 4. 10 Cross validation data set for SMO-NN 

 

 The performance of the SMO-NN hybrid estimator is compared with 

the SMO and the NN estimator under normal, noise and disturbance conditions which 

is discussed in the next chapter. 

Table 4. 4 The components of hybrid neural network models 

 

Parameters Description 

Network Feed forward neural network 

Performance function MSE 

Training algorithm Levenberg-Marquardt 

Epochs 300 

Node in hidden layer 4 

Activation function Sigmoid function 

Node in hidden layer 1 

Activation function Linear function 

  

 



 

Chapter 5  

Simulation results 

In this chapter, the SMO, the NN estimator and the SMO-NN hybrid estimator 

are applied to estimate the ethylene concentration in ethylene polymerization process. 

The performances and robustness of the all estimators are test with three conditions 

including the normal condition, noise condition and disturbance condition. In 

addition, the simulation results of SMO-NN hybrid estimator is compared with the 

SMO and the NN. 

5.1 Normal condition 

In this condition, the estimators provide the estimated ethylene concentration 

using the measured reactor temperatures which are calculated from the ethylene 

polymerization process models under the normal condition. The ethylene 

concentration estimation simulation results are demonstrated in Figure 5.1.  

From Figure 5.1(a), sliding mode observer (SMO) is used to estimate the 

ethylene concentration. The simulation result shown that the SMO can estimate 

smooth estimation. The SMO used the dynamics of the estimation error to drive 

estimated value converge to actual data. However, the result indicated that the SMO 

has large error between the actual plant value and the estimated concentration. Due to, 

the primary of estimation, we assumed initially any values of estimated value. After 

that, the estimated value is recalculated by the SMO until the estimated value close to 

the actual value. 
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(a) 

 
(b) 
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(c) 

 

Figure 5. 1 The estimation of the ethylene concentration under normal condition: a) 

SMO, b) NN estimator and c) SMO-NN hybrid estimator 

 

 Based on Figure 5.1(b), the ethylene concentration is estimated by neural 

network (NN) estimator. The optimal NN estimator consists of 4 nodes of input layer, 

5 nodes of one hidden layer and one node of output layer (4-5-1 configuration). The 

training target data are the ethylene concentration (   ), produced from the 

simulation. The activation functions which are used in hidden layer as sigmoid 

function and output layer as linear function. The simulation result has shown that the 

NN estimator can be estimated the ethylene concentration and the estimated value 

approximate the actual data. However, the result of estimation has small error 

between the estimated value and the actual value and unsmooth. In order that, the 
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inputs of the NN estimator which are temperature of reactor and temperature of 

recycle stream are not sufficient sensitivity, so it has an affect on the accuracy 

estimation. 

 

Table 5. 1 The summary of performance comparison between the designed estimators 

under the normal condition, noise condition and disturbance condition 

Condition IAE  

SMO NN SMO-NN 

Normal condition 20,021.69 2,391.42 835.25 

Noise condition (1K) 12,995.84 23,623.08 2,509.60
 

Disturbance condition#1 (   +5%) 20,164.77 7639.92 761.55 

Disturbance condition#2 

(   +10%) 

20,305.20 13,643.51 573.89 

    

 

From Figure 5.1(c), the SMO-NN hybrid estimator is designed for estimating 

the ethylene concentration to improve performance of the SMO and the NN estimator. 

The SMO found problem about initially error, so the NN estimator combined into the 

SMO for increasing accuracy. The simulation result show that the SMO-NN hybrid 

estimator is capable of estimating the ethylene concentration excellent. The result of 

the estimation of the SMO-NN hybrid estimator showed fast to drive estimated value 

close to actual value and can be estimated smoothly. The SMO-NN estimator, the 

SMO and the NN estimator are compared performance of estimation by calculation 

Integral Squared Error (IAE) value. The IAE value of the SMO-NN estimator, the 

SMO and the NN estimator are 20,021.69, 2391.42 and 835.25, respectively. From 

the IAE value show that the SMO-NN hybrid estimator has the least value as shown 
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in Table 5.1. As the result, in normal condition, the SMO-NN hybrid estimator is the 

best of estimator. 

5.2 Noise condition 

For this condition, noise is presented in the system. Random noises accounting 

to 1 K from the temperature of reactor are introduced into the measured temperature 

of reactor to evaluate robustness and performance of the estimators under real 

situations.  

As shown in Figure 5.2(a), the result of estimation shows that the SMO can 

provide to acceptable estimate the ethylene concentration. The SMO used the sign of 

the error to drive the observer, thus it becomes insensitive to many forms of noise. 

However, the initial of estimation is far away from actual data. From Figure 5.2(b), 

the NN estimator cannot provide for estimating the ethylene concentration because 

noise signal strongly affects to the inputs of NN which is sensitively. Hence, the NN 

estimator do not appreciate to apply to estimate the ethylene concentration in this 

noise condition. 

The simulation result of the SMO-NN hybrid estimator is shown in Figure 2.2(c). The 

SMO-NN hybrid estimator still estimates the ethylene concentration even noise signal 

is added to system. Because of advantage of the SMO and NN estimator, the SMO-

NN is able to estimate concentration against noise. Advantages of SMO are provide 

fast convergence and robustness. On the other hand, benefits of NN are accuracy 

estimated and suitable for nonlinear system. Because of NN sensitivity, the SMO is 

design first for support noise condition. After that, NN is design later for approve 

accuracy estimated value from SMO. For this reason, the SMO-NN hybrid estimator 
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can estimate the ethylene concentration in this condition. In addition, the IAE value 

represents that the SMO-NN hybrid estimator has the least IAE value when compare 

with the SMO and the NN estimator in noise condition as shown in Table 5.1. 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 5. 2 The estimation of the ethylene concentration under noisy condition: a) 

SMO, b) NN estimator and c) SMO-NN hybrid estimator 

 

5.3 Disturbance conditions 

The designed estimators are also evaluated involving several disturbances. For 

the disturbance condition, the molar flow rates of ethylene (   ) are increased by 5% 

and 10% from the normal value. The two case simulation results are discussed in 

below section. 

5.2.1 5% increasing of the molar flow rates of ethylene   

 First, the process is simulated by using the ODEs equation and parameters as 

shown in Table 4.1 and Table 4.2 but the molar flow rates of ethylene parameter is 

increased by 5% from 131.13 mol/s to 137.69 mol/s. This simulation information is 

used to the actual data for comparing with the designed estimator in this case. 
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 Based on Figure 5.3, the simulation shows the results of the SMO, the NN 

estimator and the SMO-NN hybrid estimators for estimating the ethylene 

concentration with introduced     disturbance. From Figure 5.3(a), the simulation 

result of the SMO shows that the SMO can estimate the ethylene concentration like 

the normal condition. Due to dynamics of the estimation error term, the SMO has 

more robustness. However, it still has large error initially because the initial estimated 

value is assumed. On the other hand, the results of the NN estimator and the SMO-

NN hybrid estimator show that they can give the estimate of the ethylene 

concentration accurately while the NN estimator shows the small discrepancy 

between the estimated value and the actual value. The comparative performance of 

the SMO-NN hybrid estimator, the SMO and the NN estimator are compared by IAE 

value as shown in Table 5.1.  

 
(a) 



 

 

54 

 
(b) 

 
(c) 

Figure 5. 3 The estimation of the ethylene concentration under disturbance condition 

(5% increasing of    ): a) SMO, b) NN estimator and c) SMO-NN hybrid estimator 
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5.2.2 10% increasing of the molar flow rates of ethylene   

Like the 5% increasing of the molar flow rates of ethylene case, we run the 

process simulation using the condition as given in Table 4.1 and Table 4.2 but the 

molar flow rates of ethylene parameter are increased by 10% from 131.13 mol/s to 

144.24 mol/s. The process model is run in order to find the new actual value that this 

value is used to compare with the ethylene concentration estimated by all estimators. 

 

 

 
(a) 
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(b) 

 
(c) 

Figure 5. 4 The estimation of the ethylene concentration under disturbance condition 

(10% increasing of    ): a) SMO, b) NN estimator and c) SMO-NN hybrid estimator 



 

 

57 

 In this case, the molar flow rates of ethylene (   ) are increased by 

10%. The simulation results of this case are shown in Figure 5.4. From Figure 5.4, the 

simulations show result of the ethylene concentration estimation of the SMO, the NN 

estimator and the SMO-NN hybrid estimator.  Their results have shown that all the 

proposed estimator can estimated the ethylene concentration smoothly like the 5% 

increasing of the molar flow rates of ethylene case. However, in all the proposed 

estimator, the SMO-NN hybrid estimator give the best of the estimation. In addition, 

the IAE value of the SMO-NN estimator indicates that it has the least of value when 

comparing with the SMO and the NN estimator in this case. 

 

  



 

Chapter 6 

Conclusion and Recommendations 

6.1 Conclusion 

 In this work, the proposed hybrid estimator which combined between sliding 

mode observer (SMO) and neural network (NN) is designed for estimating the 

ethylene concentration of the ethylene polymerization process. The structure of hybrid 

estimator, which is SMO-NN hybrid estimator is studied. The first part of the SMO-

NN hybrid estimator, SMO that provided fast and accurate estimation used applied to 

estimate all state variables and its output are sent to be NN input. The second part, the 

NN estimator estimates the ethylene concentration again from SMO output. The 

performance of the SMO-NN is compared with the performance of the single SMO 

and the NN. The performance is compared with three conditions, which are normal, 

noisy and disturbance condition, respectively. 

 Simulation results have shown that proposed SMO-NN hybrid estimator has 

provided stable, fast and accurate estimation in spite of noise case when compared 

with the SMO and the NN estimator. The single SMO can smooth estimated the 

ethylene concentration. However, it has error because it is assumed with any values 

initially. In contrast, the NN estimator can provide estimation accurately in normal 

condition. Nonetheless, it has the differences between the estimated value and the 

actual value because of selecting and number of NN input node. As a result, in the 

ethylene polymerization process, the SMO-NN hybrid estimator is the best 
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approached in estimating the ethylene concentration and provide fast convergence and 

can handle noise when compared with the SMO and the NN estimator. 

6.2 Recommendation 

 In this work, the SMO-NN hybrid estimator is only used to estimate the 

ethylene concentration. As for the future work, the SMO-NN will estimate other 

polymerization parameters such as molecular weight distribution (MWD) and heat 

transfer coefficient.  

In model predictive control, the parameters which is estimated will apply for approve 

control performance. 
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