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CHAPTER I

INTRODUCTION

An equation in which unknown are functions is called a functional equation and
Cauchy’s functional equation (CFE) is a functional equation, containing two variables
x,y and one unknown function f of one variable, of the form f(z +vy) = f(x) + f(y).
It is a generally known fact that the domain and the behavior of the solution function
play important roles for obtaining a solution.

In the case that the domain of a solution f is the real n-dimensional space, R",
we know that the solution of CFE is a linear function under suitable regularity on
the functions such as continuous at a point, bounded in an interval and mono-
tone. There are certain other functional equations which can be transformed into
a CFE. These are called equations of Cauchy’s type which are of the following form
(i) Fa+y) = [(2) (), (id) floy) = F@) + [y) and (i) [(zy) = [(2)(y).

In 1964, Pisot and Schoenberg investigated the monotone solution of Cauchy’s
functional equation f(3°F [u00) =S | f(u;0u) (u; are nonnegative integers) under
various assumptions concerning the number k and the components o/s. In a successive
paper, they considered the case where theidomain of a solution of Cahchy’s functional
equation  is a subset of R", then the solution may not be a linear function.

Studying both of Pisot and Schoenberg’s works, we find that the methods of
proof are capable of extending to wider classes of functional equation. We treat here
the CFE whose domain of solution is a subset of the complex field comprising finite

combinations over a subset of Gaussian integers. We find that uniformly continuous



solutions can be written as a linear function plus a periodic part.

In Chapter II, we introduce notation, definitions, auxiliary theorems used through-
out this thesis.

In Chapter III, we solve for uniformly continuous solutions of CFE whose domain
is a subset of the complex field. Uniformly continuous solutions of the three equations

of Cauchy’s type are also obtained as applications.



CHAPTER 11

PRELIMINARIES

The following symbols are standard:

R™ is the real n-dimensional space,

C is the complex field,

R is the set of all real numbers,

Q is the rational field,

7 is the set of all integers,

N is set of all natural numbers and
Ny =NU{0}.

2.1 Functional equation and Cauchy’s functional equation

(CFE)

In this section, we present definitions of functional equation and Cauchy’s func-
tional equation. Known general solutions of Cauchy’s functional equation which sat-

isfy some properties are given.

Definition 2.1.1. [1] An equation in which unknowns are functions is called a func-

tional equation.

A function satisfying a functional equation on a given domain is called a solution
of the equation on that domain.

Next, we give examples of a functional equation.



Example 2.1.2. A solution f:7 — 7 of the functional equation f(m + f(n)) =

ftm)+nis f(n)=n (neZ).

Example 2.1.3. A solution f:R — R of the functional equation f(x — f(y)) =
l—z—yis f(zr) =5 —x (z€R).
Definition 2.1.4. [1] A functional equation containing two variables x,y and one

unknown function f of one variable is called a Cauchy’s functional equation (abbre-

viated to CFE) if it is of the form f(x 4+ y) = f(x)+ f(y).

The followings group of functional equations are called equations of Cauchy’s type

because they can be transformed into CFE by certain change of variables.

flx+y)= fl=)f(y)
flzy) = f(2) + f(y)
flzy) = f(@)f(y).

For the first equation, if we let g(xz) = logf(z), then we obtain g(z + y) =
log(f(z +y)) = log(f(x)f(y)) = log(f(x)) + log(f(y)) = g(x) + g(y), so g satis-
fies Cauchy’s functional equation.

Known results about. CFE are contained in the following theorems

Theorem 2.1.5. [2] The general solution of a Cauchy’s functional equation in the
class of functions g : R" — R™, continuous at a point, is given by g(x) = C - x for
all x € R™ where C' is a constant m by n matrix and ‘- denotes the multiplication of

a vector by a matriz.

Corollary 2.1.6. [5] If the Cauchy’s functional equation f(x +vy) = f(x)+ f(y) is
satisfied for all reals x,y and if the function is continuous at a point, then f(x) = cx

for all real x where c is an arbitrary real constant.



Theorem 2.1.7. [2] The general continuous solution of Cauchy’s functional equation
for complex numbers is f(x) = ax + bx for all x € C where a,b are arbitrary complex

constants and T is the conjugate of x.

2.2 CFE on a subset of R"

In 1964-1965, Pisot and Schoenberg proved that for given ay, ..., € R", a
uniformly continuous solution of the CFE defined on the subset S = { Yo u | ug € No}

of R™ need not be a linear function. Their main result reads as follows:

Theorem 2.2.1. [4] Let oy, o, ...,y be elements of R™ (n < m) satisfying the

following conditions :
1. every set of n among the «; s linearly independent over R and

2. the elements oy, ao, ..., au, are rationally independent, i.e., linearly indepen-

dent over Q.
Let S = {Zuiai | u; € NO}, B a Banach space and f a map from S into B.
i=1

If f is a solution of the functional equation : f( Zuiai) = Z fluie) (u;’s are
i=1 i=1
arbitrary nonnegative integers) and-is uniformly-continuous on S, then f(x) admits

a unique representation of the form f(x) =\ x)+ Z @i(z) for all x € S in which \
i=1

1s a linear function from R™ into B, while; for-each i-= 1,2, ..., m, @; is a function

from

Sl‘ = {uiai + ijOéj | u; € NO and k’j € Z}
=1
i#i

into B and satisfies the following conditions :



2. pilr +a;) =gi(x) (j#i,x€S5;) and
3. @; is a uniformly continuous function on S;.

Dirichlet’s and Kronecker’s Theorems were applied in many places in the proof of

Theorem 2.2.1. Besides, these are important tools for our research.

Theorem 2.2.2 (Dirichlet’s Theorem). [3] For given real numbers &,&a, . .., &
and any positive number e, we can find an integer q so that q&; differs from an integer,

for every i, by less than ¢.

Theorem 2.2.3 (Kronecker ’s Theorem). [3] For each irrational number o, each
real number 3, each preassigned arbitrarily small number ¢ > 0, and arbitrarily large

number ), there exist integers p and n with |[n| > Q and | an— 3 —p | <e.

Definition 2.2.4. A subset D of the complex field, is dense in C (or R) if for each

z € C (or R) and & > 0, there exists d € D such that |d — z| < e.

Example 2.2.5. The set 7. + 73 is dense in R.

Proof. To prove this, let » € R and £ be a positive real number. By Kronecker’s

Theorem, we have n, p € Z such that ]n\/g—p— r| < e, so Z+7+/3is dense in R. [



CHAPTER II1

CFE ON A SUBSET OF THE COMPLEX FIELD

This chapter contains 4 sections. In the first section, we solve for uniformly

continuous solutions of a CFE on the set

n

ST = { Z(um + 6V )0y | Uy U, € No}

m=1

where a1, 9,...,a, € C (n € N with n > 2), with ST dense in C. We derive a
corollary similar to Corollary 2.1.7.

In the second section, we give examples of elements in R™ which satisfy the con-
ditions in Theorem 3.1.1.

In the third section, we find uniformly continuous solutions for equations of
Cauchy’s type.

In the last section, we compare Theorem 3.1.1 with Theorem 2.2.1.

3.1 Solutions of Cauchy’s functional equation

This section is devoted to finding uniformly continuous solutions of a CFE on the

set ST, dense in C. The following is the main result.

Theorem 3.1.1. Let ay,as,...,a, € C (n € N withn > 2) be such that the set

n

St = { Z(um + i) | Uy U € NO}

m=1



is dense in C. If f : ST — C is a uniformly continuous function satisfying the

functional equation:
FOY (i + ivm)om) =Y {f (moim) + f(ivpmam)}, (3.1)

m=1 m=1

then f can be written as

flx) = Ma) + ) pula), (3.2)

where A : C — C is a linear function over C and p,, is a complexr valued function

(m=1,2,...,n) defined on

S = {(uma + ithp) Oy 4> (Kja + k)05 | Umas s € Noj kja, ks € z}
7=1
JFm

with the following properties:
1. pn(0) =0,
2. pm(x+ ;) = gz +iay) = on(z) (J #m and x € S,,) and
3. O 1s uniformly continuous on S,.

Proof. Let f be a uniformly continuous solution of (3.1). There are 3 steps in the
proof. For the first step, we show that

lim f((u + iv)am)

|utiv|—o0 U+ v
u-+iv in certain region of C

exists

for all m =1,2,...,n. Then, we define a linear function \ : C — C over C and show
that A is uniformly continuous on S*. For the final step, we construct the functions

Om, m=1,2...,n.



Step 1 Let ¢ be a positive real number. Because of the uniform continuity of f,

there exists 4 > 0 such that
Vz,weStH|z—w <d=|f(z)— flw)| <e. (3.3)

Since ST is dense in C, there are x,y € ST such that |z — y| < §. Let z =
S (Cma + tCmp)am and y = 3" (dypa + idyp) @, Where g, Cnby dima, dimpy € No for
all m. Set ¢mr = ¢r — dppr where m =1,2,...,n and 7 = a,b and split {1,2,...,n}

into two disjoint sets I and J, T U J = {1,2,...,n}.

We claim that, for each M € N,

‘ Z {f((cta +icw) o) — [ ((da + idtb)at)}

tel
1
o D el F((Wja + Mlgsa)ay) — f(wjec;) }
jed
b S Flilu o Mlgpl)ay) — fwaan)}| <= (34
M “
JjeJ
where wj,, wj, are any nonnegative integers and n;; = 1if ¢;; > 0, n;; = —1if ¢;; <0

for j € Jand 7 =a orb.

To prove this inequality, let j € J, wj,, wj, €Ny and define cg-li), dg-li) for r =a,b
and k € N as follows:
if ¢ >0, let cyi) = wjr +kqjr, dg-]i) = wjr+ (k— 1)g;r,
if ¢jr <0, let cyi) = wj, + (k — 1)|gj|, dg-]i) = wj, + k|gj-|.

We see that cﬁﬁl,dﬁ,’fl € Ny and ¢, = cﬁ,’il—dﬁ’,ii forke N, 7=a,bandm=1,2,...,n.
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For each k € N, we have

Z(cm +icw)ay + Z(cglz) + z’cy;))aj and Z(dt“ + idy) oy + Z(dﬁ) + z'd;.lz))a]

tel jed tel jeJ

belong to ST and

{Z Cta + 1C1p Oét‘l“z +ZC a]} {Zdta+ldtb at+z ja +Zd] O{]}

tel jeJ tel jedJ

= > (cta — dea) + e — dulow+ D [(cS = d%) + i(cly) — d%)]oy

tel jed

= Z(Qta + iqw) oy + Z(q_ja + 1qp)

tel jed

n

= Z(qma + ime)am

m=1

n

= 1> [(Cma = dma) + (b — dmp)}rm

m=1

= Z(Cma + 2.Cmb)am - Z(dma 3 idmb)am
m=1 m=1

=z —y| <o,

which, by (3.3), yields

€ > ‘f(Z(Cta-i-ZCtb O‘“LZ —l—zc(k)) ) f(Z(dta‘i‘idtb)Oét‘i‘Z(ng)+id§";))aj)

tel JjeJ tel jeJ

‘Zf Cra + icn)a) + > f(( ]a—l—zcgk)) i)

tel jeJ
_Zf dta—l—ldtb OCt Zf ja —I—Zd )Oz])
tel jeJ

:‘Z{f((cm—kictb)at)— F(dia + id)on) } + 3" {F (%) +icly)ay) — f((d§’2)+id§.’;))aj)}‘

tel jedJ
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Letting £ = 1,2,..., M and forming the arithmetic mean of the M quantities, we

obtain the desired inequality (3.4).
Let F = Z {f((cta +icw)oy) — f((d + idtb)at)}. There are 4 cases correspond
to possible Cﬁg{CGS of g, and gj to be considered.
Case 1 gjq, g > 0.
If £ =1, then
1B+ {F (wia+ gja)ay) + £ (i(wss + gj0)a;)

Jj€J

~ F((wja +0-gia)a;) — f(i(wip +0-qp)oy) }| <e

If £ =2, then

1B+ {F((wja +2¢ja)a5) + F(i(ws, +2q;8)c;)

jedJ

— f(wje + gja)ay) — f(i(ws +ap)ay) }| < e

In general, if & = M, then

1B+ {f((wja + Mgja)ay) +f (i(wy + Magp)a)

jed

— [((wjo + (M =1)gja)) — f(i(wjp + (M =Dgp)a;) }| < e

Summing all the M inequalities, multiplying by % and using the triangle inequal-

ity, we have

e>|E+ % > A F((wja+ Mgja)ay) + f(i(wip + Mag)a;) = f(wjacy) = fliwspa;) }|

jeJ
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= \E+% > {f((wja+MQja)aj)_f(wjaaj)}_’_% > {f(i(wp+Map)ay) — f (iwpay) }.

jes jed
Applying the same technique to other cases, i.e., case gjq, g < 0, case gjo > 0, g;p < 0
and case gj, < 0, ¢j, > 0, the inequality (3.4) is similarly proved.
For fixed m, since —(1+4) € C and ST is dense in C, there exist ay, by, as, ba, . . . , Gy,
b, € Ny such that ‘ Z(ak + by )y — (—(1 + i)am)’ <9,
k=1
ie.,

‘ Z(ak +ibg)ak + [(am +1) +i(by, + 1)]am’ < 9.

k=1
k#m

Taking ¢ = ap, +1 > 1> 0 and ¢y = b, + 1 > 1 > 0 shows that for each m, there
exist qra = ax € No, gy = b € No (k= 1,2,... ,n,k # m) and that ¢na, gmp € N
such that

|(Q1a 1 iqlb)al ]+ Ssgin (qna N qu;>05n‘ < (5

From (3.4), (3.1) with & = (gia + igip)oa + - + (¢na + i@up) s, y =0, J = {m}

and I ={1,2,... ,n}~{m}, we have

€ > ‘ Z {f(Qtaat> + f(igwow)—f(0) — f(O)}

tel

+%{f((wma £ Mma) i) = [ (Winatim) }

A0 & Mmoo — Fliwnon)}]

=37 Fllata + o)) + 7 1 ima + im0) + M (i + )]

1 ,
— Mwama + 1Wpp) W ]| - (3.5)
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Consider the discrete strip

St(m) = {(wma+zwmb)+M(Qma+qub) ’ M € I\IO ) 0 S Wina < Gma and 0 S Wy < me}

f((u 4 iv)am)

U+ 1

Consider the sequence of values , where u+iv runs through St(m).
Let L be one of the limits of the sequence (e.g. lim sup or lim inf). For u + iv €

St(m), letting M — oo in (3.5), we have

lim | 37 fllaw + ign)a]
tel

+ { (wma + ZIwmb) + M(Qma + Zme> }{f[((wma + Zwmb) + M(Qma + Zme>>am] }
M (wma + Zwmb) + M(qma + Zme)

1
- Mf[(wma + iwmb>am]‘ S g,

ie.,

’ Z Fl(@ta + tqw) ] + (Gma + iqmp) L| < €. (3.6)

tel

We now show that L is unique. Suppose that L, Lo are any two limits of the sequence.



Let E' = Z Fl(qta + iqw) ], from(3.6) we obtain

tel

2e = et+e Z E, + (Qma + Zme)Ll‘ + ‘ - 1HE, + (Qma +Z.Q7’nb)L2

> E' — F + (qma + qub)Ll - (Qma + Zme)L2

= |4ma + ZmeHLl ¥ L2

Since € is arbitrary, Ly = Lg, and Step 1 is complete.
Step 2 We define A : C — C as follows: for each z € C,

we write
n

T = Z(mma Ty ixmb)ama

m=1

where x,,4, Ty € R and let

n

M) = (Tma +iTmb) M.

m=1
We show that
(a) Ais a function and
(b) A is linear over C.

To prove (a), it suffices to show that if

n

0= Z(:Cma + i Tmp) O

m=1

where x,,,, T, € R, then

A0) =Y (Zma + imp) A = 0.
m=1

14
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There are two cases to consider:
Case(I) : zp, =0forallm=1,2,... ,n; for all 7 = a,b. This case is trivial.

Case(II) : There exists @, # 0 for some m’ € {1,2,...,n} and 7’ € {a, b}.

From Dirichlet’s Theorem, for each v € N, there are tv k( 2 e 7 with t) > 0
such that
) w1 .
Y T —kptl < — (m=1,2,...,n;7 =a,b). (3.7)
v

We let k:,(,ﬂ = 0 if z,,, = 0. Note that we may choose t**) such that t*) — oo as

v — 00, so that kfﬁl — 00 as v — oo too. We see that
n

| Z ‘ = | Z kW 4 zk‘ t(”)(Z(x%é - m%)am‘

m=1
= | Z{(kf;g AW zna) + k) — 1T 0) b

< SR = o+ 3 {145~ ] o
s—z»amr+ > faud

m=1
m=1
Then
Lim| 3 (k7)o ik om| = 0. (3.8)
m=1
Next, we show that
k) .
lim _ dm .
v—00 k(u) Tm! !
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From (3.7), for each m = 1,2,...,n;7 = a,b we have

1 1
—— < kW) g < =
14 14

ie.,

1 1
T Y0 P
1% 1%

Note that
o if z,,, > 0, then tMa,,, — % > 0 for sufficiently large v and
o if z,,, <0, then t™a,,, + % < 0 for sufficiently large v.

Hence, for large v,

t(y)me - % k1(712/7)' t(y)'fmr + 1%
(D F 2 GO g, — L
Thus
)
Tim l;i) = ;"ml (3.9)

If z,,, > 0, we choose v such that t™z,,, > 1, so k,(ﬁz > 1 >0, and if z,,, < 0, we
choose v such that t™z,,, > —1, so k’ff{l < —1 < 0. Then sgn /{:ﬁ,ﬂ = sgn x,,, for
sufficiently large v when m=1,2,...,n.

Let

Ut ={m | mm>0} ={m sgn zp,» > 0} and

U-={m | zn <0} ={m|sgnz,. <0} (r=a,b).
Rewriting (3.8) as

lim | (Y K a+ > ik ) = (Y kD lac+ Y il las) | =0,

V—00
teUs teU;t s€Us s€U,




by uniform continuity and (3.1), we have
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. (V) .(v) . ) ()
Tim {37 Fan) + 32 flik a0} = {30 FURD o) + D F(ilkS )} =0
teUs teUt s€Us sEU,
so that
y f(k at ) K2 flikglod) ik
VLIEO‘ 2 0 oD L))
t€U+ m T’ ta tEU+ m' 7! tb
(s |avs) [R5 ik o) ik
Zf‘ |as) | Zf| |04 Z|sb’:0.
|k( i|k(u)|
seU, mT sa sEU7 mT sb
which, by (3.9) and step 1, yield
Lia thb |xsa| i|x8b|
/\ £ - s — | — VU
D D e DL D DRl B
teUt teu;" s€U, s€U,
Hence
n (Ima -|-’L£L’mb))\ - 07
m—1 L/ 7/
ie.,
n
(Tima + 1Tmp) A = 0.
m=1

Thus A(0) = 0,50 A is a function.

To prove (b), i.e., to show that Xis linear over C, let a,b,x,y€ C. Then there

are ri, Yyi, r2,Y2 - ..

m=1

m=

VT, Yn € Csuch that x = Z Ty, and y = Z Y -

1



By the definition of A,

Naz + by) = )\(a(z T Ql) - b(z Yt ) )

3
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n

=M (azp + bym)oun)
m=1

(azmAm + bYmAm)

m=1 m=1
=a Y T A, + 0 i Ym A = a)\(i TmQm) + b)\(i Y O
m=1 = m=1 m=1

Thus A is a linear function over C. Consequently,

A(ry +ire) = 1A (1) + raA(7) for all ri,r € R.

Next, we show that A is uniformly continuous on S*. Let ¢ > 0 and A =

max{‘)\(l)},

)\(z)|} Let © = x1+izs and y = y1+iys € ST besuchthat |z —y| < ALl

Then

[A(Z) = AW)| = [A(z1 + ix2) = Ayr + i)
= [21A(1) + 22A(1) — y1A(1) — 1A (1)]
<[zy = gl AM0)] 422 =l XD
< [z —y|A + |z —ylA

(<]

Hence A is uniformly continuous on S™*.

Step 3 Define the function w : ST — C by

for all x € ST.




19

Then w is uniformly continuous on ST since f and A are. Next, we show that w

satisfies (3.1). Let " | (Zma + iTmp) 0t € ST. Then

WO (@ma + i) 0m) = FO (Tma + 1)) = A (Tma + 12mb) )

= Z {f(xmaam) = f<2$mbam)} - Z {(JTma + Zl’mb)Am}
= Z {(f(xmaam> - /\<=77ma04m)) + (f(lxmbOém) — )\(z'xmbam))}

= N Aw(@natin) + Wiy -

mat
Hence w satisfies (3.1) as desired. Moreover, for each m = 1,2,...,n, by Step 1 and
the linearity of A,
lip @t em) (3.10)
|utiv|—oc0 U+
u,ve St(m)
Now, we define a function ¢,, : S, — Cforallm=1,2,... n by

1. om(0) =0,
2. oz + ;) = @z +iay) = o (z) for all j #m and z € S, and

3. gpm((uma + iumb)am) = w((uma + iumb)am).

Note that for each m, ¢,, has not been defined for the whole S,,. To extend the

domain of ¢,; to S,,, recall that

S, = {(uma + (U)o, + Z(kja + ik:jb)aj}uma, Ump € No; kja, kjp € Z }
=1
Jj#Em

and from the second property of ¢,,, it follows that

Om (x + (kjo + ik:jb)ozj) = om(T) (3.11)
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where x € St(m), kjo, kjy € Z and j € {1,2,...,n}~ {m} This shows that ¢,,(z)
exists for all x € S,,.

It remains to confirm the shape of (3.2), for each x = """ _ (Tnq +i%mp)m € ST,
we have

f(x) = Mx) + w(z)

= Az) +w(Y (Tma + 1 Tp)Om)

= /\(37) it Z w((xma u Z.xmb)am)

m=1

= MNx) + Z Pra (T + 1T ) O

gn— 1l

= )\<:L) + Z Spm((xma A ixmb)&m iy Z(I’ja + ’i.ijb)CYj)

m=1 =1
j#m

= Mz) + ) pmle).

To complete the proof, we are left only to show only that ,, is uniformly contin-

uous on S, form =1,2,...,n. Fix m, let € > 0. Since w is uniformly continuous on

ST, there exists 0* > 0 such that

Ve,y e ST, |z —y| <6 = |w(z) —w(y)| <e.

Let
¢= (Uma + Z‘umb)am + Z(kja + Zk]'b>O‘J'
=1
im
and

N = (Vma + 1VUmp) QU + Z(lja +iljp)

j=1
j#m
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be elements of S, such that [ —n| < 0*.

For each j # m, let ¢jo+igqj, = (kja+ikp)—(lja+ilp). Choose wjq, Uiy, Via, Vi € No

such that

Let

and

Then

|z —y

Gja + 1G5 = (Uja + 1jp) — (Vja + 1Vjp).

n
T = (Uma + Wmp) X + Z(Uja + dujp);
=1
i#m

Yy = (Vma + iUmp)@m + Z(Uja + 1)
=
i#m

{ (ttma + ittmp) 0 4> (w0 +it15) 0t} — {(Vima + 10mp) 0t + > (Vja + 10) 0}
Jzm Jm
{(uma + 1Upmp) U — (Vi + ivmb)am} + Z {(uja + dujp) oy — (Vg + ivjb)ozj}

Jj=1
JF#m

{(uma + Z.Umb)Oém s (Uma aF ivmb)am} + Z(QJCL + Zq]b)aj
7=1
Fm

{ (it i) Q. = (Vma+ V) } 3 (Ko + k) — (L + L))y

j=1
j#m
{ (Wra 1) G #-> < (o o+ ik )y b = i 0 ) 0 21> (i + L) }
[ —

| —n| <6

Applying (3.4) with f =w, I = {m}, J ={1,2,...,n} ~{m}, wj, = wj, =0 and

¢jr = Ujr — vj; for 7 = a,b, we get
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W ((Uma + Wnp) ) — W ((Vma + Vb))

N % 3" nja{w(M|gsalay) — 0}

jeJ
il )
+ i anb{w(zM|qu\0zj) — O} <e. (3.12)
JEJ
w(M|gjala;) w(iM|gp|ovy)

and

Since the sequence of values are subsequences of

M

the sequence of values M_:L)aj), where u+ v runs through St(m) and by (3.10),
w+ v
M|l Ml o .
tim SMelag) L0y, SMIG) gy o je s (313)
M—o0 M M —o00

Then by letting M — oo in (3.12), we obtain from (3.13) that

}w((uma + U ) ) — W((Vma + W) ) | < €

Note that
() = Pm ((Wmna + Wmp) o + Z(kja + ikjp);)
7
= Som((uma + Z.umb>05m) == W((uma + iumb>am)
and

SDm(U) = Spm(('vma + ?;Umb)Oém + Z(lja + ’iljb)()éj)
=1
J#Fm

= O ((Vma + 1Wmp) ) = W ((Vma + W)t ).
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This leads to

‘me(o - @m(n)‘ <e,

i.e., ¢, is uniformly continuous on S,,. [

To obtain only linear solution, further restrictions must be put on the domain
of solution. One such instance is the following corollary which may be regarded as

analogues of Corollary 2.1.6 and Theorem 2.1.7.

Corollary 3.1.2. Let aq,9,.. ., € C (n € N with n > 2) satisfy the following

properties:

1. ST = { (U V)OS |, Uy € No} is dense in C and

m=1

2. T,, = { i(uj + ivj)ozj‘uj,vj € Z} is dense in C for allm =1,2,...,n.
i
If f: St — C is a uniformly continuous solution of (3.1), then f is a linear
function, i.e., there exists a linear function X : C — C over C such that f(z) = M x)
for all z € ST.
Moreover, If ST = C, then f(z) = az+ bz where z € C, a,b are arbitrary complex

constants and Z is the conjugate of z.

Proof. From Theorem 3.1.1, f can be written in the form (3.2), i.e., f(x) = A(z) +
Z ©m(x) where Ais a linear function over € and ¢, is a function satisfying the three
m=1

properties as stated in Theorem 3.1.1. For each m =1,2,...,n, let u,,, v,, € Ny and

e > 0. Since T}, is dense in C, there are k; € Z (j =1,...,n; k # m) such that

n

Z(Uj + 10;)a; — (U + 100 | < €.
j=1
j#m
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By the uniform continuity and the properties of ¢,,, we have |0 — ¢, (U, + iv,)| =

n

gom(Z(uj + 1)) — Pm(Um + Uy)| < €, SO @um(Uy + ivy,) = 0. This implies
=1
j#m

that ¢, is the zero mapping, hence f = A. Since for each z = ry +iry, € C,

Az) = Ay 4+ irg) = rmA(1) + roA(i), we have A(ry + irg) = mA(1) + mA(i) =

EEN) + FEN) = M(l);{’\(i)z + @\(1)2;)\(1')2 = az + bz, so f(z) = az + bz for all

z e C. O

3.2 Examples

The following examples illustrate existence of als in Theorem 3.1.1, i.e., there

actually exist oy, as, ..., @, € C (n € N with n > 2) such that

n

St = { Z(um + 10 Oy | U, Uy € NO}

m=1
is dense in C.
Example 3.2.1 (Case n = 2).

We choose

a1 = V2 and g = —1.

To show that ST = {(u1 +ivy)o + (g + 1v9) g | Ur, vy, Ug, g € NO} is dense in C, let
ry +iro € C and e > 0. By Kronecker’s Theorem, there exist ui,p; € N, ug, ps € Z
such that \ulﬁ—uz—ﬁ] < 5 and ‘Ul\/§—/02—7"2| < 5 (uy and v; are large enough for
V2 =7 > 0and v;V2 —ry > 0, so that uy and vy are nonnegative integers ). Thus
|(u1+ivy)on + (ug +ivg ) ag — (11 +i12) | < |u1\/§—u2—r1|—|—|v1\/§—v2—r2| <:t+i=e.

Therefore ST is dense in C.
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Example 3.2.2 (Case n = 3).

Let

o =1+iV2, as=v2+i and az3=—-1—1i.
3
To show that ST = {Z(um + iU ) | U, U € No} is dense in C, let rq + iy € C
and ¢ > 0. By Krongl:lier’s Theorem, there exist ny,ny € N, p1,ps € Z such that
ny > |pil, [2r1v2 = 2p1 — 1| < § and [2n9V2 = 2p, — 1| < 5. Set p=ny + |pal,
q=p,a=mn9—p1,b=p—ps—ni,c=p+n;—p; and d = ny+py, hence p,q,a,b,c,d
are nonnegative integers. Then
|(a + i) (1 +iv/2) +(c +id)(V2+ i) + (p+ig)(—1 — i) — (r1 + irs)|
=|(a —bV2+i(aV24b) 4 cv/2 — d+ilc+dV2) — p+ q+i(—p — q) — (r1 +ir2)|
<e=b0)V2+(a—d=ptq)—rl+la+dV2+ (b+c—p—q)—r
=|(p+n1—pg—p+pz+n1)\/§+(n2—p1—ng—pl—p+p)—h|

—|—|(n2—p1+n2+p1)\/§+(p—p2—n1 +p+ng—p,—p—p)—ro
&
2

€
:|2n1\/_—2p1—r1|—|—|2n2\/——2p2—7’2|<§—|— = ¢/

Therefore ST is dense in C.
Example 3.2.3 (Case n =14).

Take

ol &I\ agz\/§+i,a3:—i and a4:3+i\/§.

It is verified similarly to the previous examples that ST is dense in C.

For the case n > 4, we can construct aq, as,...,a, by letting a;, as,as and ay
be the same elements in Example 3.2.3 and the others «}s arbitrary. Then, again,
St according to this choice is dense in C. In the same vein, we can also construct

aq,Qa, ..., oy using the choices of afs in Example 3.2.1 or Example 3.2.2.
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Note that the als defined in Examples 3.2.1 — 3.2.3 satisfy the hypothesises of
Corollary 3.1.2. Consequently, any uniformly continuous solutions of Cauchy’s func-
tional equation must be linear.

The following example gives the a/s such that S is not dense in C:
Example 3.2.4.

Let

o =14+iV2, a0 =v2+i and a3 =V3+iV2

3
Since elements in ST = {Z(um + U ) | U, U € No} is of the form

m=1

(ug — V1V2 — vaV/2 4 us /3 — 713\/5) + i(U1\/§+ vy 4 upV2 + uzv/2 + Ug\/g),

the imaginary part is nonnegative real number, so S can not be dense in C.

3.3 Equations of Cauchy’s type

We present next uniformly continuous solutions for equations of Cauchy’s type intro-
duced in Section 2.1. They are obtained from Theorem 3.1.1 by changing appropriate

variables and domains.

Corollary 3.3.1. Let ST = {H 6&;’"””’") | Uy U € NO}. Ifg: ST — Cisa
m=1
solution of the functional equation:

) (H @‘n)> S {8+ g(50)) .14

under the conditions

1T+ = {Z(um + vy Log(Bm) | tm, Um € NO} is dense in C and

m=1
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2. g(e*) is uniformly continuous on T,

then g s of the form

g(x) = A(Log 2) + Y _ @m(Log )

m=1

where A : C — C is a linear function over C and p,, is a complexr valued function

(m=1,2,...,n) on

Sm = {(uma + Zumb)LO.g(ﬁm) + Z(kja + Zk]b)LOQ(ﬁj) I Uma s Umb S NO; kja; kjb S Z}
JF A
i#m

with the following properties:
1. ¢,(0) =0,
2. pm(x + LogB;) = pm(z +ilogh;) = pm(x) (j # m and x € S,,) and

3. ©m s a uniformly continuous function on S,.
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and

> gl + g8} = D { (o) 4 g(etesti) }
= Z{f(umLog(ﬁm)) + f(ivmLog(Bm))}

= {f(nam) + f(ivmam)}

Then (3.14) is transformed into (3.1). Since T is dense in C and f(z) = g(e®) is

uniformly continuous on 7', by Theorem 3.1.1, we have

f(z) =XN@) + ) pm(2),

where A\ : C — C is a linear function over C and ¢,, is a complex valued function

Sy = {(uma + itty) O+ > (Ko + 1hijp) 5 | Uima, tinp € Noj kja, gy € Z}
j=1
J#Em

satisfying
L. ¢m(0) = 0,
2. pm(r+ o)) = oz +ia;) = pp(x) (j #m and x € S,,) and
3. ©m is a uniformly continuous function on S,,.

Changing back the variables, the result follows. Using similar proof, we also obtain

g(x) = f(Logz) = A(Log x) + > _ ¢m(Log )

m=1
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Corollary 3.3.2. Let ST = {Z(um + 1U) B | Uy U € No}. Ifg: St —Cisa
m=1
solution of functional equation:

g (Z(um + u)m)ﬁm) = H 9 (U Bm) g (10m Bm)

m=1 m=1

under the conditions
1. ST is dense in C and
2. Log(g(x)) is uniformly continuous on ST,

then g is of the form

9(%) = exp (A(x) O\ wm(x))

m=1
where A : C — C is a linear function over C and p,, is a complexr valued function

(m=1,2,...,n) on

Sm = {(uma + Ump) B + i(kja + ikjp) B | Umas Ump € No; Kja, kjp € Z}
Fom
with the following properties:
1 pm(0) = 0,
2. Gl B) = P (@ F 85 = 90 (@)1 2 ) andwre Sp) und

3. ©m 1s a uniformly continuous function on S,.
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Corollary 3.3.3. Let ST = {H Blumtivm) | gy, € NO}. If g : St — Cisa

m=1
solution of functional equation:

g (H ﬁﬁ:m*”m)) =[] 9(3im)9(Biem)
m=1

m=1

under the conditions

1 T+ = {Z(um + iU ) Log(Bm) | Um, Um € NO} is dense in C and

m=1

2. Log(g(ex)) is uniformly continuous on T,

then g is of the form

Mm-Sl

g(r) = eap (A(Log )+ Y pm(Log x))

where A : C — C s a linear function over C and p,, is a complexr valued function

(m=1,2,...,n) on

Sm = {(uma + Zumb)Log(ﬂm) + Z(kja o Zk]b)LOg(ﬁj) | Umas Umb € NO) k:jaa kjb € Z}

=1
j#m

with the following properties:

1. ©m(0) =0,

2. Spm(z + Logﬁj) = me(l‘ + ZLOgﬁ]) = Spm(x) (] 7é m and T € Sm) and

3. ©m 1s a uniformly continuous function on S,.
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3.4 Remarks

The statements of Theorem 3.1.1 are similar to those of Theorem 2.2.1 when n = 2

but with different domains of solutions. We change domain from

S = { Z U Oy | Uy € NO} in Theorem 2.2.1

m=1

into n
§* = { D (tm+ 1)t | i, Uy € Ny in Theorem 3.1.1

m=1
and replace the condition from linear independence of o's into the denseness of set,
i.e., ST is dense in C. We found that the forms of uniformly continuous solutions,
obtained from both theorems, are still the same but the properties of linear function
A and all ¢, for m = 1,2....n are changed, for example, A in Theorem 3.1.1 is a
linear function over C, but it is a linear function over R in Theorem 2.2.1.

A natural question is whether “R and @Q-linearly independence” are related to

“denseness”. The next two examples show that they are both rather unrelated.
Example 3.4.1.

In R?, let
o =(¥/2,0), 00 =(¥/2;1)-and a3 = (v/2,4/3).

To show that aq, as and a3 are rationally independent, let g1, q2,q3 € Q be such
that qia1 + g 4+ @sas = 0. Then ¢+ ¢s + g3 = 0 ‘and ¢o 4+ ¢3v/3'= 0. Hence g3 = 0
and so is g9, implying ¢; = 0. For the other condition that any set of two among the
als are linearly independent over R, let 711,712,721, 22, 731 and 732 € R be such that
riaq + rieay = 0, rojaq + reeaz = 0 and r3jan + r3eaz = 0. Hence 11y + 12 = 0,
o1+ =0, 731+ 732 = 0, 112 = 0, 2 = 0 and 731 +732V/3 = 0, S0 711, 712, T'21, 722, 31

and rso are all zero.



32

Next, we will show that {k1a1 + kocvo + ksag | ki, ko, ks € Z} is not dense in R2.
Since this set contains elements in the form kioq + koy + ksaz = (\/ﬁ(k‘l + ko +
ks), ko + k’3\/§), the first coordinate is a multiple of v/2 so this set can not be dense

in R2.
Example 3.4.2.

In R, let

a;=1,a0 = —1 and a3:\/§.

We claim that {kloq + koo + kgas | ki, ke, ks € Z} 1s dense in R. Let » € R and
£ > 0. By Kronecker’s Theorem, there are integers n, p such that [nv/2 —p —r| < ¢,
hence choose integers ki, ko and k3 such that k; — ks = —p and k3 = n. Thus

k1a1+k2a2+k3043—r’ —= ‘k‘l —k2+k3\/§—r‘ = ‘ —p+n\/§—7’| < g, so we have
the claim. Since oy + as + 0(a3) = 0, a1, @y and ag is linearly dependent over Q.
We note that by the same proof in Theorem 2.2.1, if we replace the linear inde-

pendence by the denseness of set, we also have the same result, i.e.,

Theorem 3.4.3. Let oy, an, ..., ay, be elements of R™ (n < m), B be a Banach space
and S = {Zuiai | u; € No} be such that S is dense in R™.
i=1

If f is a map from S wnto B and is a uniformly continuous solution on S of

the functional equation : f(Zuiam) = Zf(uiai) (u;’s are arbitrary nonnegative
i=1 i=1

integers), then f admits a unique representation of the form f(x) = A(z) + Z ©i(x)
for all x € S in which X\ is a linear function from R™ into B, while p; s aifzzjnction
from
S; = {uiozi + ijocj |u; € Ng and k; € Z}
=t

into B (fori=1,2,...,m) and satisfies the conditions :



2. pi(r+a;) = pi(x) (j #i,2€S;) and

3. @; is a uniformly continuous function on S;.

AOUUINBUINT )
ANRINTUNINEAE

33



REFERENCES

Aczel, J. Lectures on Functional Fquation and their Applications. New York:
Academic Press, 1966.

Aczel, J. and Dhombres, J. Functional Equation in Several variables.
Cambridge: Cambridge University Press, 1987.

Hardy, G.H. and Wright, EXM. An Introduction to the Theory of Numbers.
Oxford, 1954.

Pisot, C. and Schoenberg, 1.J. Arithmetic problems concerning
Cauchy’s functional equation II. Tllinois J. Math, 1965,
pp-129-136.

Smital, J. On Functions and Functional Equations. Philadelphia: Adam Hilger

Bristol, 1988.



35

VITA

Mr. Watcharapon Pimsert was born on November 26, 1979 in Nakhon Phanom,
Thailand. He graduated with a Bachelor of Science Degree in Mathematics with
first class honors from Kasetsart University in 2001. He has got a scholarship from
the Development and Promotion of Science and Technology Talents Project (DPST)
since 1995. For his Master degree, he has studied Mathematics at the Department of

Mathematics, Faculty of Science, Chulalongkorn University.



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	Chapter II Preliminaries
	2.1 Functional equation and Cauchy’s functional equation (CFE)
	2.2 CFE on a subset of Rn

	Chapter III CFE on a subset of the complex field
	3.1 Solutions of Cauchy’s functional equation
	3.2 Examples
	3.3 Equations of Cauchy’s type
	3.4 Remarks

	References
	Vita

