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CHAPTER 1
INTRODUCTION

Ring theorists began to concentrate more on special areas of subject such as
representation theory of finite dimensional algebras, Noetherian rings and group
rings since fifties to seventies of the last century. Afterward, questions in general
module theory continue to be interested by people worldwide. Here the emphasis
has been on the structure of modules themselves, independent of the structure of
underlying rings.

In 1976, Zelmanowitz[23] introduced the notion of compressible modules. Ac-
cording to Zelmanowitz, let R be an associative ring with identity, a right R-module
M is called compressible provided for each nonzero submodule N of M there
exists an R-module monomorphism from M to N. For example, if R is a domain,
i.e., a ring which has no zero divisors, then the right R-module R is compressible.
Generalizations of compressible modules have been studied in many papers [8],
[13], [27]. Recently, Smith[20] introduced the concept of a slightly compressible
module which is a generalization of compressible module. According to Smith, let
R be an associative ring with identity, a right R-module M is called slightly com-
pressible if for a nonzero submodule N of M, there exists a nonzero R-module
homomorphism from M to N and he also studied the properties of slightly com-
pressible modules. For example [[20], Example 1.2], let S be any nonzero ring and
let R denote the ring of 2 x 2 upper triangular matrices over S. Then the right
R-module R is slightly compressible.

Moreover, we are interested in the injectivity of modules. Injective modules
became familiar to any module theoretics from the work of Baer[2] in 1940 and
had many applications in characterization some classes of rings.

In 1940, Bear|2] established a very useful test for injectivity. This test called



the Baer’s Criterion, said that let R be an associative ring with identity and
(@ a right R-module, any R-module homomorphism of a right ideal I of R into )
can be extended to an R-module homomorphism of R into () if and only if @) is
injective.

The Baer Criterion has been generalized by many authors. For example, in
1989, Camillo[4] introduced the notion of principally injective modules for com-
mutative rings. Let R be an associative ring with identity. A right R-module M
is called principally injective (or p-injective) if every R-module homomor-
phism from a principal right ideal of R to M can be extended to an R-module
homomorphism from R to M. Next in 1999, Sanh, Shum, Dhompongsa and
Wongwai[19] extended the notion of principally injective modules for commuta-
tive rings to M-principal injectivity for a given right R-module M. Let R be an
associative ring with identity and M a right R-module. A right R-module N is
called M -principally injective if every R-module homomorphism from an M-
cyclic submodule of M to N can be extended to an R-module homomorphism from
M to N.

The first chapter of this thesis, we determine a general form of slightly com-
pressible modules. Let R be an associative ring with identity and M a right
R-module. A right R-module N is called M -slightly compressible if, for every
nonzero submodule A of N, there exists a nonzero R-module homomorphism from
M to A. In the case that M = N, N is, in fact, a slightly compressible module.
Moreover, we provide conditions for any right R-module to be an M-slightly com-
pressible module and examples of M-slightly compressible modules.

In the second chapter of this thesis, we introduce the concept of M-slightly
compressible injective modules, which extended from the Baer Criterion. Let R be
an associative ring with identity and M a right R-module. A right R-module N
is called M -slightly compressible injective if every R-module homomorphism
from an M-slightly compressible submodule of M to N can be extended to an
R-module homomorphism from M to N. Moreover, we study some properties of

M-slightly compressible injective modules and relationship between M -principally



injective modules and M-slightly compressible injective modules and we provide
examples of them.

In the third chapter of this thesis, we introduce the concept of sub- M-principally
injective modules. Let R be an associative ring with identity and M a right R-
module. A right R-module N is called sub-M -principally injective if for any
nonzero submodule A of M, any R-module homomorphism from A-cyclic submod-
ule of A to N can be extended to an R-module homomorphism from M to N.
Moreover, we study some properties of sub-M-principally injective modules and
relationship between M-principally injective modules, M-slightly compressible in-
jective modules and sub-M-principally injective modules and we provide examples

of them.



CHAPTER II
PRELIMINARIES

In this chapter, we present basic definitions, notations and theorems on rings

and modules which will be used for this thesis.

2.1 Modules and Submodules

Throughout this thesis, unless otherwise stated, let R and S be associative

rings with identities 1z and 1g, respectively.

Definition 2.1.1. [7] Let M be a nonempty set. A unital right R-module M

is
(i) an additive abelian group M together with
(ii) a mapping
M x R — M with (m,r) — mr,

called the module multiplication, for which we have
(a) Associative law: (mry)ry = m(riry),
(b) Distributive laws: (mq + ma)r = mqr + maor, m(ry + re) = mry + mro,
(¢) Unitary law: mlg =m

for all m, my,my € M and r,ry,792 € R.

An analogous definition holds for left R-modules. Moreover, by a right R-
module we mean a unital right R-module. We write Mp for a right R-module

M. We denote 0y the identity under addition of a right R-module M and Oy the



identity under addition of a ring R. Then Oy = 0); = mOg for all r € R and

me M.

Example 2.1.2. [1]

(i)

(i)

For every abelian group M, there is a unique right Z-module structure on

M. This is simply the structure given by the usual multiple function

(x,n)—an forallx e M,neZ

p
T4+ for neZ*

—

n terms
where an = ¢ _ r+---+ax| for neZ”
——
In| terms

| Owr for n=0.

Let ¢ : R — S be a ring homomorphism. Then ¢ induces a left and a
right R-module structure on the additive group of S. Indeed, the module
multiplication, for the left R-module S, is given by

(r,s) = ¢(r)s forallr e R,se€ S

where the product ¢(r)s is computed in the ring S. The right R-module

structure on S is defined similarly.

Each ring R induces a left R-module L structure on its additive group and a
right R-module M structure on its additive group via the module multipli-

cations

(a,z) — ax for alla € R,x € L and (z,a) — za forallz € M,a € R

where ax and za denote the products in the ring R. These modules induced
on the additive group of a ring R are called the regular left and regular

right modules of R, respectively. Then every left ideal of R is a regular left



module of R and every right ideal of R is a regular right module of R. The
rR is a left R-module and Rpg is a right R-module by product in R.

Definition 2.1.3. [21] Let M be a right R-module. A subgroup N of (M, +) is
called a submodule of M if N is closed under multiplication with elements in R,

ie., nr € N forallr € R,n € N. We write N — M for a submodule N of M.

Then N — M is also a right R-module by the operations induced from M:
NxR— N, (n,r)—nrforalreRneN.

The subset {0/} of a right R-module M is clearly a submodule of M. We call

it the zero submodule and usually denote it by 0 alone.

Remark. FEvery submodule of rR is a left ideal of R and every submodule of Ry
s a right ideal of R.

Definition 2.1.4. [21] A right R-module M is called simple if M # 0 and it has

no submodules except 0 and M.

For nonempty subsets N, N1, Ny of a right R-module M and a nonempty subset
A of a ring R we define:

N1+ Ny ::{Th,+'n2|7h € AG,NQ < A&},

k
NA = {Zniai | ni € Nya; € Ak € N}.

i=1
If Ny and N, are submodules of a right R-module M, then N; + N, is also a
submodule of M. For a right ideal A of R, the product N A is always a submodule
of M.

For any finite family { N)},ca of submodules of Mg, the sum Z N, is defined

AEA
by

Y Ny= {me e N, for allAeA}.

AEA AEA



This is a submodule of M.

For any infinite family { Ny} eca of submodules of Mg, the sum Z N, is defined
AEA

S S prennenn ent

AEA k=1

by

This is a submodule of M. Also the intersection ﬂ N, is a submodule of M.
AEA
Z N, is the smallest submodule of M which contains all Ny and ﬂ N, is the

AEA AEA
largest submodule of M which is contained in all N,.

Proposition 2.1.5. [1] Let M be a right R-module and let X be a nonempty subset
of M. Then XR is a submodule of M.

Proposition 2.1.6. [1] Let M be a right R-module and N a nonempty subset of

M. Then the followings are equivalent:
(i) N is a submodule of M.
(ii) NR= N.

(iii) For all a,b € R and all x,y € N,

xa+yb e N.

Definition 2.1.7. [21] Let M be a right R-module and {B;|i € I} a nonempty
family of submodules of M. If

Y

(i) M=) B; and (ii)VjeJ

icl

B;in Y Bi=0

i€l it]

then M is called the (internal) direct sum of the family of submodules
{B;|i € I}. This is written as M = @Bi and the B; are called direct sum-
mands of M. “

If only (i7) is satisfied, then {B;|i € I} is called an independent family of

submodules.



In the case of finite index set, say I = {1,2,...,n}, M is also written as
M =B ®B,®--- @ B,.

Lemma 2.1.8. [7] Let M be a right R-module with M = ZBi where B; — M
for alli € 1. Then (ii) of the previous definition is equivaleiig to :

For x € M, the representation r = Zbi with b; € B;, I' C I, where I is
finite, is unique in the following sense : e

If
=Y bi=)Y ¢ withb,c; € B;
iel’ iel’
then it follows that
Vie I [b;=c¢.

Definition 2.1.9. [7]

(i) A submodule B of a right R-module M is called a direct summand of M
if there exists C' — M such that M = B & C.

(ii) A nonzero right R-module M is called directly indecomposable if 0 and
M are the only direct summand of M.

We write BE M for a direct summand B of M.
Example 2.1.10. [21]

(i) Let K be a field, V a vector space over K and let {x;|i € I} be a basis of

V. Then clearly we have

Further every submodule of V' is a direct summand.

(ii) Let Z be the set of all integers. Then Z is a right Z-module. Hence the ideal

nZ is not a direct summand of Zz for all n € Z~{—1,0,1}.



Proof. Suppose there existsn € Z ~ {—1,0,1} such that Z = nZ & V for
some submodule V of Zz. Thus V = mZ for some m € Z and Z = nZ ® mZ.
Then nm € nZ N'mZ = {0}. Since Z does not have zero divisors, m = 0.
Then Z = nZ, i.e., n = —1 or n = 1 which is a contradiction. It follows that

27 is directly indecomposable. O

(iii) Every simple module M is directly indecomposable because it has only 0

and M as submodules.

Let M be a right R-module and let K be a submodule of M. Then it is easy

to see that the set of cosets

M/K ={z+ K|z e M}

is a right R-module relative to the addition and the scalar multiplication defined
via

(mi+K)+(me+K)=(my+ma)+ K, (m+K)r=mr+K

where m, mqy,mo € M,r € R. Of course, the additive identity and inverse are
given by
K=0+K and —(z+K)=-z+K.

In order to show that M/K is a right R-module, it is sufficient to show that
M/K x R— M/K with (m+ K,r) —»mr+ K

is a mapping since the other module properties follow directly from those of M.

Let mi+K,me+ K € M/K with m;+K = my+ K. Then m; —msy € K. Since
K < M, (m;—mg)r € K. Hence mir —mgyr € K, so we have myr+ K = mor+ K.
The resulting module M/ K is called the right R-factor module of M modulo
K.

Definition 2.1.11. [21] A submodule K of a right R-module M is called essential

or large in M if, for every nonzero submodule L of M, we have K N L # 0.
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Example 2.1.12. [21]
(i) Every right R-module M is an essential submodule in M.
(ii) In Zgz, every nonzero submodule is essential.

Definition 2.1.13. [21] A right R-module M is called a uniform module if,
every nonzero submodule is essential in M, i.e., the intersection of any two nonzero

submodules is nonzero.

Example 2.1.14. In Zy, since every nonzero submodule is essential, Z is a uniform

Z-module.

It is easy to check that every nonzero submodule of a uniform right R-module

is uniform.

Definition 2.1.15. [21] A subset L of a right R-module M is called a generating
set of M if LR = M. We also say L generates M or M is generated by L.
If there is a finite generating set of M, then M is called finitely generated.

If M is generated by one element, then it is called cyclic.
Example 2.1.16. [21]
(i) Every ring is generated by its unit.
(ii) Every principal right ideal of a ring R is just the cyclic submodule of Rp.

Definition 2.1.17. [21] A right R-module M is called divisible if, for every s € R

which is not a zero divisor and every n € M, there exists m € M with ms = n.

Example 2.1.18. [21] Let Q be the set of all rational numbers and R the set of
all real numbers. Then Q and R are divisible Z-modules.
2.2 Homomorphisms of Modules

Definition 2.2.1. [7] Let M and N be right R-modules. A map f: M — N is

an R-module homomorphism provided
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(i) f:M — N is a homomorphism of abelian groups and
(ii) if r € R and m € M, then f(mr) = f(m)r.

In this thesis, we write R-homomorphism instead of R-module homomorphism.
We denote Hompg(M, N), the abelian group of the R-homomorphism from M to
N and Endgr(M) is used to denote the endomorphism ring of M.

For f € Homg(M, N), we define the kernel and image by

Ker(f)y={me M| f(m)=0x} and Im(f)={f(m)e N|me M}.
Theorem 2.2.2. [21] For f € Homg(M,N), Ker (f) is a submodule of M and

Im (f) is a submodule of N.

The cotmage of f and the cokernel of f are defined, respectively, by

Coim (f) = M/Ker(f) and Coker(f)= N/Im(f).

Definition 2.2.3. [1] Let M and N be right R-modules and f : M — N an
R-homomorphism.
(i) f: M — N is called an R-epimorphism in case it is surjective.

(ii) f: M — N is called an R-monomorphism in case it is injective.

(iii) f: M — N is called an R-isomorphism in case it is injective and surjec-

tive.

Definition 2.2.4. [1] Let M and N be right R-modules. Then M and N are said
to be tsomorphic if there is an R-isomorphism between M and N. We write

M = N to represent that M is isomorphic to N.

Remark. [1]

(i) If M is a right R-module, then every submodule of M is actually the image

of some monomorphism. Let K be a submodule of M, then the inclusion



12
map ix : K — M, defined by
ix(k) =k
for all k € K, is an R-monomorphism, also called the natural embedding
of K wn M, with image K.

(ii) Every submodule of a right R-module M is also the kernel of an epimorphism.
Let K be a submodule of M. Then the mapping 7g : M — M/K from M
onto the factor module M /K defined by

WK(I):JT—FK

for all x € M is seen to be an R-epimorphism with kernel K. We call mx the
natural epimorphism of M onto M/K or canonical homomorphism

(projection) of M onto M/K.

Theorem 2.2.5. [1] Let M, M', N and N’ be right R-modules and f : M — N an

R-homomorphism.

(i) If g : M — M’ is an R-epimorphism with Ker (g) C Ker (f), then there

exists a unique R-homomorphism h : M' — N such that the diagram

commutes, i.e., f = hg. Moreover, Ker (h) = g(Ker (f)) and Im(h) =
Im(f), so

(a) h is an R-monomorphism if and only if Ker (g) = Ker (f) and

(b) h is an R-epimorphism if and only if f is an R-epimorphism.
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(it) If g+ N' — N is an R-monomorphism with Im (f) C Im/(g), then there

exists a unique R-homomorphism h: M — N’ such that

g

N L N
-,
M

commutes, i.e., f = gh. Moreover, Ker (h) = Ker(f) and Im(h) =
g~ (Im(f)), so

(a) h is an R-monomorphism if and only if f is an R-monomorphism and

(b) h is an R-epimorphism if and only if Im (g) = Im (f).
Example 2.2.6. [7]

(i) Let A and B be right R-modules. The zero R-homomorphism of A into B is
defined by

0:A— B

a0 for all a € A.
(ii) Let M be a right R-module. The identity map I;; on M defined by

Ing: M — M

m— m for allm € M.

(iii) Let B be a right R-module and A a submodule of B. The inclusion map
14 of A is defined by

iAZA%B

a— a for all a € A.

(iv) Let A be a right R-module and B a submodule of A. The natural(canonical)
R-homomorphism of A onto the factor module A/B is defined by
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mg:A— A/B

a— a-+ B forall a € A.

Theorem 2.2.7. [7] If a« : A — B is an R-homomorphism, then & : A/Ker (o) —
Im («), defined by
a(a+ Ker(a)) = a(a)

for all a + Ker (a) € A/Ker («), is an R-isomorphism, thus we have
A/Ker (a) = Im(a).
Definition 2.2.8. [1] Let M, M’ and M” be right R-modules. A pair of R-

homomorphisms M’ Ly M % M" is said to be ezact at M if Im (f) = Ker(g).

Definition 2.2.9. [1] Let M; be a right R-module and f; an R-homomorphism
from M;_; to M; for all j € {n+i|i € NU{0}} where n € Z. Let

A= "5 M B, M

be a sequence(finite or infinite) of R-homomorphisms f; where j € {n +i|i € NU{0}}

and n € Z.

(i) A is called an exact sequence if each pair of R-homomorphisms
VRIS VAREE S VA
is exact at Mj, i.e., Im(f;) = Ker (fj+1) for all j € {n+£i|i € NU{0}}.

(ii) Anexact sequence A is called a split exact sequence if Im (f;) = Ker (fj11)

is a direct summand of M; for all j € {n+i|i € NU{0}}.

Definition 2.2.10. [1] Let M, M’ and M" be right R-modules. An exact sequence
of the form

0— M 5 Mm% M0

is called a short exact sequence. This means that f is an R-monomorphism, g

is an R-epimorphism and Ker (g) = Im (f).
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Lemma 2.2.11. [7] Let N, M and W be right R-modules and A = 0 — N EN

M 2 W — 0 a short exact sequence.
(i) The followings are equivalent :
(a) A splits.
(b) There exists an R-homomorphism f': M — N with f'f = Iy.

(c) There exists an R-homomorphism ¢ : W — M with gq' = Ly .

(i1) If A splits, then f' and g’ ezist as in above and the sequence
0 NLEMEW 0

1s exact and splits.

Lemma 2.2.12. [7] Let M and N be right R-modules. For an R-homomorphism

a: M — N the followings are equivalent:

(i) Ker(a) is a direct summand of M and Im(«) is a direct summand of N.

(ii) There exists an R-homomorphism : N — M with a = afa.

Proposition 2.2.13. [1] Let M and N be right R-modules. If f : M — N is an

R-homomorphism, then
0— Ker(f) —i>Mi>N1>C’0ker(f) — 0

15 exact where i is the inclusion map and 7 is the natural epimorphism from N to

N/Im(f).

Definition 2.2.14. [21] Let M be a right R-module. An R-module N is called
M -cyclic if it is isomorphic to M/L for some submodule L of M.

Example 2.2.15. [21] Factor modules of M are M-cyclic modules.

Remark. [19] Any M-cyclic submodule X of M can be considered as the image
of an R-endomorphism of M.
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2.3 Injective Modules

In this section, we present the definition and the basic properties of injective

modules.

Definition 2.3.1. [9] Let A and B be right R-modules.
A right R-module [ is injective if, for any R-monomorphism g : A — B and

any R-homomorphism h : A — I, there exists an R-homomorphism A’ : B — [

such that the diagram g
1-1
A—— B
. *
h S h/ ( )
1

commutes, i.e., h = h'g.

We refer to this property informally by saying that any h : A — I can be

extended to B, or to an R-homomorphism b’ : B — I.
Example 2.3.2.

(i) Trivially, the zero module is injective.

(ii) Qz and Ry are injective because Qz and Ry are divisible.

The following remarkable criterion for injectivity, due to R. Baer, says that it
is sufficient to test the extendibility condition in (%) with B chosen to be the right

regular module, Rp.

Theorem 2.3.3. Baer’s Criterion or Baer’s Test[2] A right R-module I is
ingective if and only if, for any right ideal 4 of R, any R-homomorphism f : 30 — I

can be extended to an R-homomorphism f': R — I.

Remark. An R-homomorphism f': R — I is uniquely determined by specifying
the image f'(1g) € I. If we can find an element i € I such that f(r) = ir for every
r € 3, then f can be extended to f': R — I where f'(1g) = i.



17

For most rings R, Rp is simply not injective. But there exists a ring R for
which Rp is injective; we say that such rings are right self-injective. Some

examples are given below.

Example 2.3.4.
b
(i) Let F be a field and R = { (a ) la,be F} Then R is a right self-
0 0

injective ring because R has no proper right ideal.

(ii) Let R be the set of all n x n upper triangular matrices over a ring K # 0,

where n > 2. Then R is not right self-injective. To simplify the notations,

0
we work in the case n = 2. Consider the ideal & = { ( a) la € K}
0 0

0 a 0 0 0 a
and define f : 4 — R by f = for all e s

0 0 0 a 0 0

This is easily checked to be an R-homomorphism. If f can be extended

x
to R, there exists a matrix i € R such that
0 z
0 a x y\[0 a 0 za
f = = (a € K),
0 0 0 z/\0 O 0 0

which is clearly impossible. This shows that Rpg is not injective.
Proposition 2.3.5. [9] For any right R-module Q, the followings are equivalent :
(i) Q is a divisible module.

(i) For any a € R, any R-homomorphism f : aR — @ extends to an R-

homomorphism from Rg to Q).

In [4], a module Qg satisfying the condition (i7) in Proposition 2.3.5 is said to

be principally injective.

Theorem 2.3.6. [7] The following properties of a right R-module () are equivalent:
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(i) Q is injective.
(i) Any short exact sequence 0 — Q@ — M — N — 0 splits.

(111) Q is a direct summand of every right R-module containing it as a submodule.

Theorem 2.3.7. [7] Let A and Q be right R-modules. If Q is injective and QQ = A,

then A is injective.
Remark. FEvery vector space over a field F' is injective.

Proof. Let @) be a vector space over a field F. By Proposition 18.6[1], @ can
be embedded in an injective left F-module, say V. Then @ is isomorphic to a
subspace V' of V. Since every vector space has a basis, there exists a basis of V'
and extend it to a basis of V. Then V is the internal direct sum of V' and K for
some subspace K of V. By Theorem 5.3.4[7], V' is injective. Since @ = V', by
Theorem 2.3.7, () is injective. [



CHAPTER I11
M-SLIGHTLY COMPRESSIBLE MODULES

In this chapter, we determine a general form of slightly compressible modules
which subsequently are called M -slightly compressible modules for a right R-
module M. Moreover, we provide conditions for any right R-module to be an M-
slightly compressible module and also provide examples of M-slightly compressible

modules.

3.1 Definitions and Examples

First, we begin with the concept of compressible modules which was introduced

by Zelmanowitz in 1976.

Definition 3.1.1. [23] A right R-module M is called compressible if, for every

nonzero submodule N of M there exists an R-monomorphism from M to N.

Example 3.1.2. Every simple right R-module is compressible. Since any sim-
ple right R-module M has only one nonzero submodule that is M, so an R-

monomorphism from M to M is the identity map of M.

Next in 2005, Smith[20] introduced the concept of a slightly compressible mod-

ule, which is a generalization of compressible modules.

Definition 3.1.3. [20] A right R-module M is called slightly compressible if,
for every nonzero submodule N of M, there exists a nonzero R-homomorphism

from M to N.
Example 3.1.4.

(i) Let I be any proper ideal of R. Then the right R-module R/I is slightly

compressible.
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Proof. Claim that a right R-module R/I is slightly compressible. Note that
any nonzero submodule of R/I has the form FE/I for some nonzero right
ideal E of R properly containing I. Let a € E ~ I. Then the mapping
f:R/I — E/I defined by

fr+I)=ar+1forallreR
is a nonzero R-homomorphism. Hence the right R-module R/I is slightly

compressible. O

0
Let Zs be the set of all integers modulo 3 and R = { (a b) la,b e Z3}.
0

Then Rp is a slightly compressible module.

Proof. Note that all nonzero submodules of R are

0 0 0
{( >|a623},{< >|aezg} wd R
0 0 0 a
a 0
DeﬁneflzR—>{< >|a€Zg}by
0 0

a 0 a 0 a 0
fi = for all e R
0 b 00 0 b
0 O
anddeﬁnefQ:R—>{< >|a€Zg,}by
0 a
a 0 0 0 a 0
fa = for all € R.
0 b 0 b 0 b

It is easy to check that f; and f; are R-homomorphisms. Next, we claim that

Rp is not a compressible module by showing that every R-homomorphism

0
from Rp to E := { (a > la € Zg} is not one to one. Suppose there exists
0 0
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an R-monomorphism « from Rp to E. Then Ker (o) = and
00

10 a 0

o = for some a € Z3~{0}. Then
01 0 0
0 0 1 0)(O0 O a 0\(0 O 0 0
0 a 0 1/\0 a 0 0/\0 a 00

0 0

€ Ker (a), which is a contradiction. Hence every R-homomorphism
0 a

from Rpr to E is not one to one. Therefore Rg is a slightly compressible

module but not a compressible module. O

Next, we determine a general form of slightly compressible modules called an

M -slightly compressible modules for a right R-module M.

Definition 3.1.5. Let M be a right R-module. A right R-module N is called an

M -slightly compressible module if, for every nonzero submodule A of N, there

exists a nonzero R-homomorphism from M to A.

In the case that N = M, N is, in fact, a slightly compressible module.

Example 3.1.6.

(i)

(i)

(i)

Let M be a right R-module. The zero right R-module is an M-slightly

compressible module.

From [3], for right R-modules M and N, N is called a fully-M-cyclic
module if, every submodule A of N, there exists s € Homg(M,N) such
that A = s(M). Tt is clear that every fully-M-cyclic module is an M-slightly
compressible module but an M-slightly compressible module may not be a
fully-M-cyclic module, for example, Ry is Z-slightly compressible but not

fully-Z-cyclic module because Rz is not cyclic Z-module.

Let Z, be the set of all integers modulo p where p is a prime number,



22

0 b
R:{(a )\a,bezp},MR:{<“ )ya,bezp}
0 b 0 0
a O
andNR:{< >|a,b€Zp}.
b 0

Then N is an M-slightly compressible module.

Proof. Note that all nonzero submodules of N are

0 k0
{(a >|a€Zp},Ek::{<a )|a€Zp}wherek:€ZpandN.
0 0 a O
0
Deﬁneg:]\/[—){(g 0>]a€Zp}by

a 0 a b
g = for all e M,

and for each k € Z,, define f, : M — Ej, by

a b ka 0 a b
fr = for all e M.

0 0 a 0 0 0

It is easy to check that g and f; are nonzero R-homomorphisms for all k € Z,
and g, fr are also R-homomorphisms from M to N. Then N is an M-slightly

compressible module. O

Let Z,, and Z,, be the set of all integers modulo m and n, respectively, where
m,n € Z*. Then a right Z-module Z, is a Z,,-slightly compressible module

for all n|m.

Proof. Let m,n € Z* be such that n|m and ¢ : Z,, — Z,, a Z-homomorphism.
Then we must have m¢([1],,) = [0],. Since n|m, all elements [y|,, € Z,, sat-
isty m[y], = [myl, = [0],. There are n— 1 nonzero Z-homomorphisms, given

by [1m = [n, [Lm — [2]ns -+ [1]m = [n — 1],. Hence every nonzero
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submodule E of Z,, there exists a nonzero Z-homomorphism from 7Z,, to

E. [l

3.2 Some Properties of M-Slightly Compressible Modules

In general, the class of slightly compressible R-modules is not closed under

taking submodules.

Example 3.2.1. [20] Let F be a field,

b b
Rz{(a >|a,b,c€F}andA:{<a )|a,b€F}.
0 c 0 0

Then A is a cyclic right R-module which is not slightly compressible.

10 0
Proof. First, A = R. Thus A is cyclic. Let B = { ( a) la € F} Then
00 0 0

B — A. Next, we show that every R-homomorphism from A to B is zero. Let

f:A— B be an R-homomorphism. Then

x
f = for some z € F.

Then x = 0 so that f = 0. Hence every R-homomorphism from A to B is zero.
Therefore A is not slightly compressible. But from Example 1.2[20], R is slightly

compressible. ]

On the other hand, let M be a right R-module, every submodule of M-slightly

compressible module is also an M-slightly compressible module.
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Theorem 3.2.2. Let M and N be right R-modules. Then N 1is M-slightly com-

pressible if and only if every nonzero submodule of N is M -slightly compressible.

Proof. (<) It is obvious.

(=) Assume that N is M-slightly compressible. Let A be a nonzero submodule of
N and B a nonzero submodule of A. Then B is also a nonzero submodule of N.
There exists a nonzero R-homomorphism from M to B. Hence A is an M-slightly

compressible module. O

Example 3.2.3.

b b
(i) Letheaﬁeld,R:{(g >|a,b,c€F}andAR:{<g O>|a7b€F}.
&

By Example 3.2.1, Rp is a slightly compressible module, i.e., Rg is an Rz-
slightly compressible module. Since A < Rpg, by Theorem 3.2.2, A is Rg-
slightly compressible and every nonzero submodule of A is also an Rg-slightly

compressible module.

(ii) Let Z3 be the set of all integers modulo 3,

0 b
R:{(a >|a,b€Z3},MR:{<a >|a,b623}
0 b 0 0
a 0
andNR:{< >|a,b€Z3}.
b 0

From Example 3.1.6(iii), we have N is an M-slightly compressible module.
By Theorem 3.2.2, every nonzero submodule of N is an M-slightly compress-

ible module.

Corollary 3.2.4. Let M be a right R-module. Then M s slightly compressible if

and only if every submodule of M 1is M -slightly compressible.

We can change from submodules to essential submodules which is shown in the

following result.

Proposition 3.2.5. Let M and N be right R-modules. Then N is M -slightly com-

pressible if and only if every essential submodule of N is M -slightly compressible.
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Proof. (=) From Theorem 3.2.2, we are done.
(<) Assume that every essential submodule of N is M-slightly compressible. Since

N is an essential submodule of N, N is an M-slightly compressible module. O]

Example 3.2.6. Let Z3 be the set of all integers modulo 3,

b b
R—{(a )]a,b,cezg},MR—{<a )]a,beZg}
0 c 0 0

0 a
andAR: |GGZ3 .
0 0

Clearly, only A and M are essential submodules of M. Since Rp is an Rg-slightly
compressible module and M is a submodule of Rg, by Theorem 3.2.2, M is an
Rpg-slightly compressible module. By Proposition 3.2.5, A is an Rg-slightly com-

pressible module.

Proposition 3.2.7. Let M, P and Q) be right R-modules with P = Q. If P s an
M -slightly compressible module, then Q) is an M -slightly compressible module.

Proof. Assume that P is an M-slightly compressible module. Let L be a nonzero
submodule of ). Since P = (), there exists an R-isomorphism f : ) — P and
flz : L — P is an R-monomorphism. Then f|; (L) < P. Since P is an M-slightly
compressible module, there exists a nonzero R-homomorphism g : M — f|. (L).
Since f|, is an R-momonorphism, the R-homomorphism f|;* from f| (L) to L
exists and f |Zl g is an R-homomorphism from M to L. Hence @) is an M-slightly

compressible module. O

Example 3.2.8. Let Z3 be the set of all integers modulo 3,
b 0 0
Rz{(a >|a,b,cezg},MR:{< )]a,bEZg}
0 ¢ 0 a
0 a
andAR:{< )|GGZ3}.
0 O

From Example 3.2.6, A is an Rg-slightly compressible module. Define f: A — M
by
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It is easy to check that f is an R-isomorphism so A = M. By Proposition 3.2.7,
M is an Rp-slightly compressible module.

Theorem 3.2.9. Let M, M' and N be right R-modules which N is an M -slightly

compressible module.

(i) If M is an R-epimorphic image of M', then N is an M'-slightly compressible

module.

(ii) If M is an M’-slightly compressible module, then N is also an M’-slightly

compressible module.

Proof. (i) Assume that M is an R-epimorphic image of M’. There exists an
R-epimorphism « from M’ to M, so a(M') = M. Let A be a nonzero
submodule of N. Since N is M-slightly compressible, there exists a nonzero
R-homomorphism s from M to A. Then s« is a nonzero R-homomorphism

from M’ to A. Therefore N is an M’-slightly compressible module.

(ii) Assume that M is an M’-slightly compressible module. Let A be a nonzero

submodule of N. Since N is an M-slightly compressible module, there exists

a nonzero R-homomorphism ¢ from M to A. Since M is an M’-slightly

compressible module, there exists a nonzero R-homomorphism ¢’ from M’ to

M. Then gg’ is a nonzero R-homomorphism from M’ to A. Hence N is an
M'-slightly compressible module.

O

Example 3.2.10. Let Z, be the set of all integers modulo p where p is a prime

0 b
R:{(a >\a,bezp},MR:{<“ )ya,bezp}
0 b 0 0

0
andNR:{<a )|a,b€Zp}.
b 0

number,
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From Example 3.1.6(iii), IV is M-slightly compressible. Define f : R — M by
a 0 a b a 0
f = for all € R.
0 b

It is easy to check that f is an R-epimorphism and f(R) = M. By Theorem
3.2.9(i), M is an Rg-slightly compressible module. By Theorem 3.2.9(ii), N is an
Rp-slightly compressible module.

The following theorem indicates that every right R-module is an Rg-slightly

compressible module.
Theorem 3.2.11. FEvery right R-module is an Rg-slightly compressible module.

Proof. Let M be a right R-module and A a nonzero submodule of M. There exists
a € AN {04}. Then aR — A. Define f: R — A by

f(r)=ar for all r € R.

Since M is a unital right R-module, f(1g) = algr = a # 04, f is a nonzero R-

homomorphism from R to A. Hence M is an Rg-slightly compressible module. [
Example 3.2.12.

(i) Let Z, be the set of all integers modulo p where p is a prime number,

0 0
Rz{(a )|a,b€Zp}andNR:{<a >|a,b€Zp}.
0 b b 0

By Theorem 3.2.11, N is an Rg-slightly compressible module.

(ii) Every right ideal of R is an Rg-slightly compressible submodule of Rg be-

cause every right ideal of R is a right R-module.

The following results show the characteristics of essential submodules and uni-

form submodules of M-slightly compressible modules where M is a right R-module.
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Theorem 3.2.13. Let M and N be right R-modules which N is M -slightly com-

pressible and A s a submodule of N.

(i) A is essential in N if and only if for each t € Homp(M, N)~{0},
t(M)NA#D0.

(ii) A is uniform if and only if for each t € Homp(M, A)N{0}, t(M) is essential
in A.

Proof. (i) (=) It is obvious.
(<) Assume that for each t € Homg(M, N)~{0}, t(M)N A # 0. Let B be
a nonzero submodule of N. Since N is an M-slightly compressible module,
there exists a nonzero R-homomorphism s from M to B. Thus s is also a
nonzero R-homomorphism from M to N. By assumption, s(M) N A # 0.
Since s(M) < B, BN A # 0. Therefore A is essential in N.

(ii) (=) It is obvious.

(<) Assume that for each t € Homp(M, A)N{0}, t(M) is essential in A. Let
B and C' be nonzero submodules of A. Since N is an M-slightly compressible
module, there exists a nonzero R-homomorphism v from M to B and a
nonzero R-homomorphism v from M to C. Thus u,v are also nonzero R-
homomorphisms from M to A. By assumption, we have u(M) and v(M) are
essential in A. Then u(M) Nv(M) # 0. Since u(M) — B and v(M) — C,
BN C #0. Therefore A is uniform.

Example 3.2.14. Let Z3 be the set of all integers modulo 3,

a b a b
R = |a,b,c€Z3 , Mg = |a,b623
0 ¢ 0 0
0 a
andAR:{< )|a623}.
0 0

(i) Since M is a right R-module by Theorem 3.2.11, M is an Rg-slightly com-

pressible module. Clearly, all nonzero submodules of M are only A and M,
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so A is essential in M. Since A is simple, for each t € Hompg(R, M)~ {0},
t(R) = M or t(R) = A. Then t(R)N A # 0 for all t € Homg(R, M)~{0}.

(ii) Since A is simple, A is an uniform submodule of M. Then for each t €

Hompg(R, A)~{0}, t(R) = A and ¢(R) is essential in A.

Proposition 3.2.15. Let M and N be right R-modules with Hompg(M, N) # {0}.
Then N is a simple module if and only if N is an M -slightly compressible module

with every nonzero R-homomorphism from M to N is an R-epimorphism.

Proof. (=) It is obvious.

(<) Assume that N is a M-slightly compressible module with every nonzero R-
homomorphism from M to N is an R-epimorphism. Let A be a nonzero submodule
of N. There exists a nonzero R-homomorphism s from M to A so s is also a nonzero
R-homomorphism from M to N. By assumption, we have N = s(M) and hence
N = A. Therefore N is a simple module. O]

Example 3.2.16. Let F' be a field,

b 0
Rz{(a >\a,b,c€F}andNR:{< a>|a6F}.
0 c 0 0

Clearly, Ng is a simple module. Define f: R — N by
0 c a b
f = for all € R.

It is easy to check that f is a nonzero R-homomorphism so Hompg(R, N) # {0}.
By Proposition 3.2.15, N is an Rg-slightly compressible module with every nonzero

R-homomorphism from R to NN is an epimorphism.

Following result is a neccesary and sufficient condition for any right R-modules

to be M-slightly compressible modules where M is a right R-module.

Theorem 3.2.17. Let M and N be right R-modules. Fvery nonzero submodule of

N contains a nonzero M -cyclic module if and only if N is M -slightly compressible.



30

Proof. (=) Assume that every nonzero submodule of N contains a nonzero M-
cyclic module. Let A be a nonzero submodule of N. By assumption, there exists
a nonzero submodule B of A such that B = M/C for some submodule C' of
M, so there exists an R-isomorphism « from M/C to B. Let m¢ be the natural
epimorphism of M onto M/C. Thus arc : M — B is an R-epimorphism and
are is also a nonzero R-homomorphism from M to A. Hence N is M-slightly
compressible.

(<) Assume that N is M-slightly compressible. Let A be a nonzero submodule
of N. There exists a nonzero R-homomorphism s from M to A. Then s(M) is
a nonzero submodule of A. By Theorem 2.2.7, s (M) = M/Ker (s), so s(M)
is a nonzero M-cyclic module. Hence every nonzero submodule of N contains a

nonzero M-cyclic module. O

Example 3.2.18. Let Z, be the set of all integers modulo p where p is a prime

b
R:{(“ 0>\a,bezp},MR:{(“ >|a,b€Zp}
0 b 0 0

0
andNR:{<a >|a,b€Zp}.
b 0

number,

From Example 3.1.6(iii), N is an M-slightly compressible module. By Theorem

3.2.17, every nonzero submodule of N contains a nonzero M-cyclic module.

Corollary 3.2.19. Let M be a right R-module. Every nonzero submodule of M
contains a nonzero M -cyclic submodule of M if and only if M 1is slightly compress-

ible.



CHAPTER IV
M-SLIGHTLY COMPRESSIBLE INJECTIVE MODULES

In 1940, Bear[2] established a very useful test for injectivity. This test called

the Baer’s Criterion said that for any right R-module @,

any R-homomorphism of a right ideal 4 of R into Q)
can be extended to an R-homomorphism of R into ()
if and only if

Q 1s injective.

If Ry satisfies the Baer Criterion, that is, any R-homomorphism of a right ideal
I of R into R can be extended to an R-homomorphism of R into R, then R is called
a right self-injective ring.

Since every right ideal of R is a right R-module and by Theorem 3.2.11, we see
that every right ideal of R is an Rpg-slightly compressible submodule of Rp and
every Rg-slightly compressible submodule of Ry is a right ideal of R because every
submodule of Rpg is a right ideal of R. We use this fact to generalize the notion of
injectivity to M-slightly compressible injective module for a given right R-module
M.

Moreover, we investigate some properties of M-slightly compressible injective

modules and also provide examples of them.

4.1 Definition and Examples

Definition 4.1.1. Let M be a right R-module. A right R-module N is called an
M -slightly compressible injective module if every R-homomorphism from
an M-slightly compressible submodule of M to N can be extended to an R-

homomorphism from M to N.
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In other words, given any diagram

M-slightly compressible submodule of M —— 7/

N

where 7 is the inclusion map of an M-slightly compressible submodule of M and g
is an R-homomorphism from that M-slightly compressible submodule of M to N,

there exists an R-homomorphism h : M — N such that the diagram

M-slightly submodule of M ——~ A/

commutes, i.e., hi = g.

Example 4.1.2. Let Z, be the set of all integers modulo p, where p is a prime

number,

Then
(i) N is an Rg-slightly compressible injective module,
(ii) M is an M-slightly compressible injective module.

Proof. (i) From previous chapter, Rg is a slightly compressible module and by
Corollary 3.2.4, every submodule of Ry is an Rg-slightly compressible mod-

ule. All nonzero proper submodules of R are
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0 10 00 00
{(“ >|aezp}: Rand{( >|aezp}: R.
0 0 0 0 0 a 0 1

10
Case I : A, .= R
00

We claim that every R-homomorphism from A; to N is zero. Let a : Ay — N

be an R-homomorphism. Then
x
« = for some z € Z,,.

Since « is an R-homomorphism,

0 x 1 0
=«
0 0 0 0
1 0 1 0
=«
0 0 0 0
_0:1: 10_00
0 0 0 0 0 0

Then x = 0 so that a = 0. Hence every R-homomorphism from A; to N is
zero. Then every R-homomorphism from A; to N can be extended to the

zero R-homomorphism from R to N.

00
Case II : Ay = R
0 1

Let a: Ay — N be an R-homomorphism. Then

x
Qo = for some z € Z,.



Define & : R — N by

a 0 0 zb a 0
Qo = for all € R.
0 b 0 0 0 b

It is easy to check that & is an R-homomorphism from R to N and

0 0 0 0\(O O 0 0 0 0
8] = =

0 a 0 1/\0 a 0 1 0

0 z\[{0 O 0 za B 0 0
= = = X
0 0/\0 «a 0 0 0 a
for all € A,. Hence aig, = a.
0 a

Therefore N is an Rg-slightly compressible injective module.

(ii) All nonzero M-slightly compressible submodules of M are

0 0 0
A= la€Z, = R,
0 a 0 1
0 0 0 0
Ag—{( )|a€Zp}: R
a 0 10
0 0
and M = R
11
where the R-homomorphism f; : M — A; defined by
0 0 0 0 0 0
fi = for all eM
a b 0 b a b
and the R-homomorphism f5 : M — Ay defined by
0 0 0 0 0 0
fo = for all c M.

34



Let aq : Ay — M and as : Ay — M be R-homomorphisms. Then

0 0 0 0

1 = for some a,b € Z,,
01 a b
0 0 0 0

Q9 = for some c,d € Z,,.
10 c d

Since aq, ag are R-homomorphisms,

0
a; = for all eM

35
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and define ay : M — M by

0
Qo = for all e M.
Ty cx 0 Ty

Then a7 and a, are R-homomorphisms from M to M.

0 0 0Y[/O O 00 0 0
Thus oy =qq =
0 =x 0 1/\0 =« 0 1 0 =x
0 0\[O O 0 0 ~ 0 0
p— pr— pr— 1
0 b/\0 =z 0 bz 0 z
0 0 00 z 0 00 x 0
and oy = (v = Qg
x 0 1 0 0 0 10 0 0
0 0\fx O 0 0 - 0 0
pu— pu— pu— 2
c 0/J\O O cx 0 z 0
for all € A; and € Ay. Hence aqig, = a1 and dnig, = 9.
0 =x z 0
Therefore M is an M-slightly compressible injective module.
O

4.2 Some Properties of M-Slightly Compressible Injective
Modules

This section is concerned with M-slightly compressible injective modules and

the main properties of these modules are derived in this section.

Proposition 4.2.1. Let M, N and K be right R-modules with N = K. If N is
an M -slightly compressible injective module, then K is an M -slightly compressible

imjective module.

Proof. Assume that N is an M-slightly compressible injective module. Let A be
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an M-slightly compressible submodule of M and « an R-homomorphism from A
to K. Since N = K, there exists an R-isomorphism ( from K to N. Then S« is an
R-homomorphism from A to N. Since N is an M-slightly compressible injective
module, there exists an R-homomorphism v from M to N such that viy = fa
where i4 is the inclusion map. We choose & = 71y, so @iy = B yig = B~ fa =

a. Hence K is an M-slightly compressible injective module. O

Example 4.2.2. Let Z, be the set of all integers modulo p, where p is a prime

number,

0
and Mp = la, b€ Z, .

a
From Example 4.1.2, N is an Rpg-slightly compressible injective module. Define

a: N — M by
0 0 a
o = for all € N.

It is clear that a is an R-isomorphism, so M = N. By Proposition 4.2.1, M is also

an Rp-slightly compressible injective module.

Proposition 4.2.3. Let M be a right R-module. If M is a simple module, then

every right R-module is M -slightly compressible injective.

Proof. Suppose that M is a simple module. Then there is only one M-slightly
compressible submodule of M| i.e., M. Hence every right R-module is M-slightly

compressible injective. O

Example 4.2.4. Let Z be the set of all integers and Z, the set of all integers
modulo p, where p is a prime number. Since Z, is a simple Z-module, every right

Z-module is Z,-slightly compressible injective.

Next result is concerned with the necessary condition for an M-slightly com-

pressible submodule of M is an M-slightly compressible injective module.
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Proposition 4.2.5. Let M be a right R-module and N an M -slightly compressible
submodule of M. If N is an M -slightly compressible injective module, then N is a

direct summand of M.

Proof. Assume that N is an M-slightly compressible injective module. There exists
a: M — N such that aiy = Iy where Iy is the identity map. By Lemma 2.2.11

(i), the short exact sequence
0— N 2 M I M/N — 0

splits where 7y is the canonical projection of M onto M /N and iy is the inclusion

map. Therefore N is a direct summand of M. O

Example 4.2.6. Let Z, be the set of all integers modulo p, where p is a prime

0 0 0
R:{(“ >|a,bEZp}andMR:{< >|aezp}.
0 b 0 a

From Theorem 3.2.11, Ry is an Rg-slightly compressible module. Since M — Rpg,

number,

by Theorem 3.2.2, M is an Rg-slightly compressible submodule of Rg. From
Example 4.2.2, M is an Rg-slightly compressible injective module. By Proposition
4.2.5, ME Rp.

On the other hand, the converse of Proposition 4.2.5 is not true in general, for
example, in the Z-module Z, we know that Zy is indecomposable so only 0 and Zy
are direct summands of Zyz and Zjy is a Zy-slightly compressible submodule of Z
but Zy is not Zy-slightly compressible injective.

Indeed, mZy, is a Zgz-slightly compressible submodule of Z; where m € Z~. {0},
let f:mZ — Z be the Z-homomorphism defined by f(ma) = a for all ma € mZ.

Suppose there is a Z-homomorphism ¢ : Z — Z which extends f. Then

L= f(m) = 5(i(m)) = (m) = md(L),

which cannot hold. Therefore Zz is not Zy-slightly compressible injective.
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Theorem 4.2.7. Let M and N be right R-modules and AE N. If N is an M-

slightly compressible injective module, then A and N/A are M -slightly compressible

injective modules.

Proof. Assume that N is an M-slightly compressible injective module.

(i)

Claim that A is an M-slightly compressible injective module. Let B be an
M-slightly compressible submodule of M and o an R-homomorphism from

B to A. Since AE. N, the short exact sequence
0— A4 N4 N/A—0

splits where i, is the inclusion map and 74 is the canonical projection of
N onto N/A. By Lemma 2.2.11(i), there exists an R-homomorphism f’ :
N — A with f'iy = I, where I, is the identity map on A. Since N is an
M-slightly compressible injective module, there exists f : M — N such that
fip = iqa where ig : B — M is the inclusion map. Let & = f’f. Then
aig = f'fip = fliqja = [4a = . Hence A is an M-slightly compressible

injective module.

Claim that N/A is an M-slightly compressible injective module. Since AE N,
there exists A" < N such that N = A® A’ so A/E N and A’ = N/A. From
(i), A" is an M-slightly compressible injective module. By Proposition 4.2.1,
N/A is an M-slightly compressible injective module.

]

Example 4.2.8. Let Z, be the set of all integers modulo p, where p is a prime

number,

(o ) mrenban={(0 V) mea)

0
andNR:{<a )|a€Zp}.
0 0
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We want to show that M, N, R/M and R/N are Rg-slightly compressible injective

modules.

Proof. First, we claim that Rp is an Rg-slightly compressible injective module.
By Theorem 3.2.11, Ry is an Rg-slightly compressible module so all nonzero Rg-
slightly compressible submodules of Rp are N, M and Rgr. Let ay : N — R and
as @ M — R be R-homomorphisms. Then

10 a 0

ay = for some a,b € Z,,
00 0 b
00 c 0

Qo = for some c,d € Z,,.
01 0 d

Since aq, ag are R-homomorphisms,

a 0 10
:al
0 b 0 0
1 0\[1 O
:Oél
0 0/\O O
a 0\[f1 O a 0
0 b/\0 O 00
c 0 00
and = g
0 d 01
0 0\[fO O
:a2
0 1/\0 1
c 0Y[O0 O 0 0
0 d/\0 1 0 d
Then b= 0,c = 0 so that
10 0 0 0 0 0
o = and o =
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We define a;; : R — R by

z 0
for all €ER
0 vy 0 0 0 vy

R
Il

z 0 0 z 0
for all € R.
0 y 0 dy 0 y

=)
[}
I

Then @7 and @y are R-homomorphisms from R to R and

z 0 1 0\[fz O 10 z 0
aq = (7 = (1
00 0 0/\O O 0 0 0 0
a 0\[z O ar 0 ~ x 0
= = = @1
0 0/\O O 0 0 0 0
0 0 0 0\[fO O 0 0 0 0
and oy = (v = Qo
0 =z 0 1/\0 =z 0 1 0 =z
0 0\fO O 0 0 - 0 0
0 d/J\0 =z 0 dzx 0 =z
x
for all € N and € M. Hence ayiny = ag and apiy; = ag. Therefore
0 0 0 =z

Rp is an Rp-slightly compressible injective module. By Example 4.2.6, M & Rp,
so N& Rg. By Theorem 4.2.7, M, N, R/M and R/N are Rg-slightly compressible

injective modules. O]

Theorem 4.2.9. Let M, N be right R-modules and A an M -slightly compressible
submodule of M. If N is an M-slightly compressible injective module, then N 1is
A-slightly compressible injective.

Proof. Assume that N is an M-slightly compressible injective module. Let B be

an A-slightly compressible submodule of A and o an R-homomorphism from B to
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N. Since A is an M-slightly compressible submodule of M, by Theorem 3.2.2, B
is an M-slightly compressible submodule of M. There exists @ : M — N such that

aip = a. Then we choose a|s : A — N which extends a. O

Example 4.2.10. Let Z, be the set of all integers modulo p, where p is a prime

0 0
R:{(a )\a,bezp}andNR:{< “)yaezp}.
0 b 0 0

From Example 4.1.2(i), N is an Rg-slightly compressible injective module and

number,

10
A= R is an Rpg-slightly compressible submodule of Rr. By Theorem

00
4.2.9, N is an A-slightly compressible injective module.

The converse of Theorem 4.2.9 is not true in general, for example, let Z, and
Z,> be the set of all integers modulo p and p?, respectively, where p is a prime
number.

Let R =7, N = Z, and A = {[0],2, [pl,2, [2P]p2, - -, [(p — 1)p,2}. Thus A is
a Zy2-slightly compressible submodule of Z,2 because there is a Z-homomorphism
v Zy2 — A given by

v ([n]y2) = [nplye

for all [n],, € Z,2. Clearly, A is simple by Proposition 4.2.3, Z, is A-slightly

p
compressible injective but Z,, is not Z,:-slightly compressible injective because any

Z-homomorphism A : Z,2 — 7Z,, satisfies A (A) = 0.

Theorem 4.2.11. Let () be a right R-module. Then Q) is injective if and only if

Q 1s Rg-slightly compressible injective.

Proof. (=) It is obvious.

(<) Assume that @) is an Rg-slightly compressible injective module. We claim
that @ is injective by using the Baer’s Criterion that is, we show that any R-
homomorphism of a right ideal 4 of R into () can be extended to an R-homomor-

phism of R into (). Let 4 be a right ideal of R and o an R-homomorphism from
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i to . From Example 2.1.2(iii), & is a right R-module. By Theorem 3.2.11, &
is an Rpg-slightly compressible submodule of Rg. Then « can be extened to an

R-homomorphism from R into ). By Baer’s Criterion, () is injective. O]

Example 4.2.12. Let Z, be the set of all integers modulo p, where p is a prime

0 0
Rz{(a >\a,b€Zp}andNR:{< a>|a€Zp}.
0 b 0 0

From Example 4.1.2(i), N is an Rg-slightly compressible injective module. By

number,

Theorem 4.2.11, N is an injective right R-module.

Corollary 4.2.13. Rpg is an Rg-slightly compressible injective module if and only
if R is a right self-injective ring.

4.3 Relationship between M-Slightly Compressible and
M-Principally Injective Modules

Recall that a right R-module M is called principally injective (or p-injective)
if, every R-homomorphism from a principal right ideal of R to M can be extended
to an R-homomorphism from R to M.

If Rp is an injective module, then Rpg is a principally injective module. By
Theorem 4.2.11, an Rpg-slightly compressible injective module implies a princi-
pally injective module.

In 1999, Sanh and his group[19] introduced the notion of M-principally injec-
tive module which extended from principally injective module.

In this section, we study relationship between M-slightly compressible injective
modules and M-principally injective modules where M is a right R-module.

Recall that a right R-module N is called M -cyclic if it is isomorphic to M /L

for some submodule L of M.

Definition 4.3.1. [19] Let M be a right R-module. A right R-module N is called

an M-principally injective module if every R-homomorphism from an M-
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cyclic submodule of M to N can be extended to an R-homomorphism from M to

N.

In other words, given any diagram

M-cyclic submodule of M — M

N

where ¢ is the inclusion map of an M-cyclic submodule of M and g is an R-
homomorphism from that M-cyclic submodule of M to N, there exists an R-

homomorphism ¢’ : M — N such that the diagram

M-cyclic submodule of M —Z> M

g
N “~
commutes, i.e., ¢'i = g.
Note that every principally injective module is an Rz-principally injective mod-
ule so an Rg-slightly compressible injective module implies an Rg-principally in-
jective module. However, in case Mgr # Rg, an Mg-slightly compressible injective

module may not be an Mg-principally injective module.

Example 4.3.2. Let Z5 be the set of all integers modulo 2,

Loy Ly Lo a b c
R=10 Zy Zy| := 0 d el|labecde f€Zsy,
0 0 Z 00 s
Lo Ly Lo ([0 b ¢
Mr=1|0 Zy Zy| := 0 d ellabecdecZyy,
0 0 0 (\0o 0 0
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0 Zy Zs 0 a b
and Np=10 0 0 |:= 00 0]]a,beZs
00 0 00 0

We claim that
(i) N is an M-slightly compressible injective module, but
(ii) N is not an M-principally injective module.

Proof. (i) Note that all nonzero submodules of M are

0 0 Zs 0 01 0 0 k
00 0]l=1000]|R Ex:=]10 0 1]|R wherek € Zy,
00 O 0 00 0 0 0

0 0 Zoy|:|0 Zo Zo|,|0 Zy Zy |,

0 Zy Zy 0 0 Zy 0 0 0 0 0 Z
0 0 0],
0 0 O 00 0 0 0 O 0 0 O

Lo 7o 7o 0 Zy Zo 0 Zo Zo Lo Zo 7o
0 0 01,10 0 Zo)|,|0 Zy Zs|,| 0 0 Zs];
0 0 O 0 0 O 0 0 O 0 0 O
( 0 a b
0 a bl |abeZy) and M.
0 00
0 0 Z 00 k
It isclear that B/ := 10 0 0 |,and Ep:= |0 0 1 |R are simple right
00 O 0 0 0

R-modules for all k& € Z,. First, we claim that £’ and Ej, are not M-cyclic
submodules of M for all k& € Z,, that is, every R-homomorphism from M to
E'" and every R-homomorphism from M to E) are zero for all k € Z,.

Step I : Claim that every R-homomorphism from M to E’ is zero.

Let f: M — E’ be an R-homomorphism. Then
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100
fl1l1o0 10 =
00 0

Since f is an R-homomorphism,

0 x
0 0| forsome x € Zs,.
0 0

f (

00 = 1 00 1 0 0}f1 O O

00o0f=/f 010 = 01 0ffo 1 0

0 0 0 000 0 0 0/\O O O
0 0 z\{1 0 O 000
=10 0 01O 1 Of=1]10 00
00 0/\O O O 000

Then x = 0, and f : M — FE’ is the zero R-homomorphism. Hence every
R-homomorphism from M to E’ is zero.

Step II : Claim that every R-homomorphism from M to E} is zero for all
k € Zsy. Let k € Zs and f : M — Ej be an R-homomorphism. Then

1 00 0 0 kx
f 010 =10 0 =x for some = € Zs.
0 00 00 O

Since f is an R-homomorphism,

0 0 kx 1 00 1 0 0\[1 00
00 z|=Ff 010 =f 01 0flo 10
00 0 00 0 00 0/\o 00

100 100
=f1]10 10 010
00 0 00 0

0 0 kx\{1 0 O 000
=100 2 |]|0 1 0f=1]10 00
00 0/\0O OO 000
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Then x = 0 so that f: M — Ej is the zero R-homomorphism. Hence every
R-homomorphism from M to E is zero for all k € Z,. Since

0 Zo Zo 0 0 Z Lo Ty 2o
FE'is a submoduleof [0 0 0 |,]l0 0 Z |, 0 0 0|,
0 0 O 00 O 0O 0 O
0 Zo 7o 0 0 Zs 0 Zo 7o Ly Do 7o
0 0 Zo|, |0 Zyog Zo|, |0 Zy Zy|and | 0O 0 Zs]|,
0 0 O 0 0 O 0 0 O 0 0 O
0 0 O 0 0 O
Eo=10 0 Zy| = |0 Zy Zo |,
00 O 0 0 O
0 0 0 0 a b
and Fy = 00 b||bEZyp — 0 a bl l|abeZyy,
0 00 0 0 0

every nonzero submodule of M is not an M-slightly compressible submodule

of M. Hence N is an M-slightly compressible injective module.

0 Zy 7Z,
(ii) First, we show that Np = |0 0 0 | is an M-cyclic submodule of M.

0 0 O
Define f: M — N by
T Yy 2 0 w u T Yy z
f 0 w wu =0 0 o forall |0 w u]| € M.
0 0 O 0 0 0 0 0 O

It is clear that f is an R-homomorphism. Next, we show that f is onto.
0 a b 0 00

Let |0 0 0| € N where a,b € Zy,. We choose |0 ¢ b | € M. Then
000 0 00
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000 0 a b
fl1lo a b =10 0 0
000 000

Then f is an R-epimorphism, i.e., f(M) = N so N is an M-cyclic submodule
of M. Next, we claim that there exists a nonzero R-homomorphism « from
N to N such that aiy # « for all @ € Hompg(M, N). We choose o = Iy, the
identity map on IV, and we show that aiy # Iy for all @ € Homg(M, N).
Let @ € Homp(M, N). Then

1 00 0 a b
a 010 =10 0 0] for some a,b € Zs.
000 0 00
T Yy 2 1 0 0\[zxz v =
Then & 0 w u = 01 0[]0 w u
0 0 O 0 0 0/\O 0 O
1 00 T Yy 2
= 010 0 w u

000 0 0 O

0 a b\[z y =z 0 aw au

=10 0 OO0 w wu|=1]0 0 0

0 0 0/\O O O 0 0 0
Ty Z 0y =z 0 00
forall [0 w uw]| € M soa 00 0 =10 0 0
0 0 0 0 00 000

forall |0 0 0| € N. Hence aiy =0 # Iy for all @ € Homgr(M, N).

000

Therefore, N is not an M-principally injective module.
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In the following example, we can show that an M-principally injective module

may not be an M-slightly compressible injective module.

Example 4.3.3 ([15], Example 6.6 (Clark Example)). Let D be a discrete

valuation ring, that is a commutative integral domain with ideal lattice
0c---cp"DcC---Cp*DcCpDcCD.

[For example, D = Z,) = {% € Q|p 1 b} is the ring of integers localized at the
prime p where p is a prime number or D = F'[z] is the set of all polynomials over
F where F is a field (we take p = x)]. Let U be the group of units of D. Then
p" ™D — p"D = p"U and the field of quotients is @ = {up”|k € Z and u € U}.
Define Vp = Q/D and v,, = p™ + D € Vym >0 (so vo = 1 + D = 0). Then
pur, = v,_q for each & > 1. Let R be the trivial extension of D by V that is
R = D&V where the multiplication is defined by (d+v)(d +v") = dd' 4 (dv' +d'v)
for all d + v,d +v" € R. Then Rv,, = R(0+ v,,) = 0 ® Du, for all m > 0 and
Rp® = R(p" +0) = Dp" @V for all n > 0 because V = p"V. Then R is a

commutative ring with ideal lattice
0=vwRCuvwRCwRC---CcV C---Cp*RCpRCR,

where p and v;, 1 > 0 satisfy pvy = vip_q for all k > 1 and V' is the only nonprincipal
ideal. But V' is not finitely generated because V =3 v, R = U, v, R. However,

R is p-injective; indeed every ideal is an annihilator. In fact one verifies that
vmR=7r(p"R) and p™R = r(v,,R) for all m > 0 and (V) = V.
However, R is not self-injective. Indeed v : V' — R is well-defined by
Y(0 4+ vpd) = 0 + vy _1d

because v,,p = v;,—1. Then v is an R-homomorphism but + cannot be extended



20

to an R-homomorphism from R to R. Then R is not self-injective. Since every
principal right ideal of R can be considered as a homomorphic image of R and vice
versa, Ry is an Rp-principally injective module. By Corollary 4.2.13, R is right
self-injective ring if and only if Ry is an Rg-slightly compressible injective module,

then Rp is not Rg-slightly compressible injective but is Rg-principally injective.

In fact, M-slightly compressible submodules of M and M-cyclic submodules of
M are different where M is a right R-module, that is, M-cyclic submodules of M

may not be M-slightly compressible submodules of M, for example, let F' be a

b b
ﬁeld,Rz{(a )|a,b,c€F},MR:{(a >|a,b€F}.FromExample
0 ¢ 0 0

3.2.1, M is not an M-slightly compressible submodule of M but M is an M-cyclic
submodule of M because Ip;(M) = M where I}, is the identity map on M.

On the other hand, M-slightly compressible submodules of M may not be M-
cyclic submodules of M, for example, let Z, be the set of all integers modulo p

where p is a prime number,

b 0
R:{(“ >|a,b,cEZp} andNR:{( a>|a,b€Zp}.
0 ¢ 0 b

By Theorem 3.2.11, N is an Rg-slightly compressible submodule of Rg.
Since any Rp-cyclic submodule of Rp can be considered as the image of an
endomorphism of Rg, we will show that every R-homomorphism from R to N is

not onto. Suppose there exists an R-epimorphism « from R to N. Then

—
(e
(@]
8

a = for some z,y € Z, ~ {0} .

=)

—_

)
<

0 a
Let € N\O0.
0 b
Case I : a#b.
m n m n 0 a
Since « is onto, there exists € R such that « =
0 g¢q 0 g¢q 0 b

Since « is an R-homomorphism,
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Then qr =a # b= qy, ¢ # 0 and x # y.
Case IT : a = 0.

) ) ) m n m n 0 a
Since « is onto, there exists € R such that « =

0 g¢q 0 g¢q 0 b

Since « is an R-homomorphism,

0 a m n 1 0\[m n
= X = X
0 b 0 g¢q 0 1/\O0 ¢
0 z\[m n 0 qx
0 y/\0 ¢ 0 qy

Then gqr =a=b=qy but a,b,z,y #0s0 q# 0 and x = y.
From two cases, « is not well-defined, which is a contradiction. Then N is not the
image of any endomorphisms of Ri. Hence N is not an Rg-cyclic submodule of
Rpg.

Moreover, we find a right R-module M which makes M-slightly compressible
injective modules and M-principally injective modules be the same.

In 2009, Ghorbani and Vedadi[5] introduced the concept of epi-retractable mod-
ule. A right R-module M is called epi-retractable if every submodule of Mp is

a homomorphic image of M.

Theorem 4.3.4. Let M be an epi-retractable right R-module and N a right-R-
module. Then N is an M -slightly compressible injective module if and only if N

15 an M -principally injective module.

Proof. (=) Assume that N is an M-slightly compressible injective module. Let A
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be an M-cyclic submodule of M and a an R-homomorphism from A to N. Since
submodules of A are also submodules of M, we have that every submodule of A is
a homomorphic image of M. By Theorem 3.2.17, A is an M-slightly compressible
submodule of M. Thus « can be extended to an R-homomorphism from M to N.
Therefore N is an M-principally injective module.

(<) Assume that N is an M-principally injective module. Let A be an M-
slightly compressible submodule of M and o : A — N an R-homomorphism.
By assumption, A is an M-cyclic submodule of M. Then « can be extended to
an R-homomorphism from M to N. Therefore N is an M-slightly compressible

injective module. O

Example 4.3.5. Let Z, be the set of all integers modulo p where p is a prime

0 0
R:{(a >|a,b€Zp},NR:{< a)|aezp}
0 b 0 0
0
andMR:{< >|a,b€Zp}.
a b

By Example 3.1.4(ii), R is an epi-retractable module and by Example 4.1.2(ii),

number,

M is an epi-retractable module, then

(i) from Example 4.1.2, N is an Rg-slightly compressible injective module. By

Theorem 4.3.4, N is an Rg-principally injective module,

(ii) from Example 4.1.2, M is an M-slightly compressible injective module. By
Theorem 4.3.4, M is an M-principally injective module.

Corollary 4.3.6. [9] If Qg is injective, then it is divisible, i.e., it is a p-injective
module. The converse holds if R is a principal right ideal ring, that is, a right in

which all right ideals are principal.

Recall in [1], a right R-module M is called semisimple if every submodule of

M is a direct summand of M.
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Theorem 4.3.7. Let M be a semisimple right R-module and N a right R-module.
Then N is an M -slightly compressible injective module if and only if N is an

M -principally injective module.

Proof. (=) Assume that N is an M-slightly compressible injective module. Let A
be an M-cyclic submodule of M and a an R-homomorphism from A to N. Since
submodules of A are also submodules of M, we have that every submodule of A
is a direct summand of M. Then every submodule of A is an M-cyclic submodule
of M. By Thorem 3.2.17, A is an M-slightly compressible submodule of M. Thus
a can be extended to an R-homomorphism from M to N. Therefore N is an M-
principally injective module.

(<) Assume that N is an M-principally injective module. Let A be an M-slightly
compressible submodule of M and « an R-homomorphism from A to N. By
assumption, A is a direct summand of M so A is an M-cyclic submodule of M.
Then a can be extended to an R-homomorphism from M to N. Therefore N is

an M-slightly compressible injective module. O]

Example 4.3.8. Let Z3 be the set of all integers modulo 3,

Zs 7 b
R = R ¢ la,b,c € Z3 ¢,
0 Zs 0 c
0 Z 0
IR: 3 :{( a)’aEZ;:,},
0 0 0 0
0 Z 0
and Mp = 7 = ¢ la,beZs ;.
0 Zs 0 b

Then R/I and M/I are right R-modules. We claim that R/I is a semisimple right

R-module, that is, every nonzero submodule of R/I is a direct summand of R/I.

Proof. All nonzero submodules of R/I are

Ls s

0 k
E'JI = /I, Ex/I = R | /I where k € Zs,
01

L
M/I = /I and R/I.
0 Zs
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It is clear that E’/I and Ej/I are simple modules for all k € Z3. Next, we claim
that E'/1, Ey/I and M/I are direct summands of R/I for all k € Zj.
Case I : E'/I.

Define s’ : R/I — E'/I by

a b a b
s +1|= + I for all +1e€R/I
0

It is easy to show that s" is an R-homomorphism. Next, we will show that s"ig/; =

a b
Igr. Let + 1 € E'/I where a,b € Zz. Then

, a b a b a b
S =+ I = + I = IE’/I + I
0 0 0 0 0 0
Thus s’ is an R-epimorphism and s'ig//; = I/, by Lemma 2.2.12, E'/I is a direct
summand of R/I.
Case II : Ei /I where k € Zs.

For each k € Zj3, define s, : R/I — Ei/I by

a b 0 ke a b
Sk +1] = + I for all +1eR/I

0 c 0 c 0 ¢

It is easy to show that s; is an R-homomorphism for all £ € Zz. Next, we will

0 ka
show that sig, ;1 = Ig, /1. Let + I € Ey/I where a € Z3. Then
0 a

0 ka 0 ka 0 ka
0 a 0 a 0 a

Thus sy, is an R-epimorphism and syig, ;1 = I, r for all k € Zs, by Lemma 2.2.12,
Ex/I is a direct summand of R/I for all k € Zs.
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Case IIT : M/I.
Define s” : R/I — M/I by

10 0 a
s” +1)] = + I for some a € Zs.
0 1 0 1
Ty 0 az Ty .
Then 5" +1] = + I for all +1 € R/I. It is easy to
0 =z 0 =z 0 =z

show that s” is an R-homomorphism. Next, we will show that s"iy;; = Iprr. Let

+ 1€ M/I. Then

0 y
0 x 0 ay 0 =z 0 x
s +1)|= +1= +1 = Iy + 1
0y 0 vy 0y 0y
0 ay 0 . . . .
because — € I. Thus s” is an R-epimorphism and s"iy;/;r = Inyr,
0 y 0 y

by Lemma 2.2.12, M/I is a direct summand of R/I. Hence R/I is a semisimple
right R-module.
Finally, we claim that M/I is a R/I-principally injective module.
Case I : E'/I.
We claim that every R-homomorphism from E’/I to M/I is zero.
Let s’ be an R-homomorphism from E’/I to M/I. Then

1 0 0 x
s +1| = + [ for some x,y € Zs.

0 0 0 y

0 10 1 0\(f1 O
+1=4 +1]| =4 + 1
0 vy 0 0 0 0/\O0 O
10 10 0 =z 10
+1 = +1
0 0 0 0 0 vy 0 0
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Then y = 0 and then ' = 0. Then every R-homomorphism from E'/I to M/I is
zero. Then we are done in this case.

Case II : Ei /I where k € Zs.
We claim that every R-homomorphism from Ej /I to M/I can be extended to an
R-homomorphism from R/I to M/I.

Let k € Z3 and s;, be an R-homomorphism from Ey/I to M/I. Then

Si, +1)] = + I for some xy, y € Zs.

01 0 Yk

0 0k
Then for + I € Ei/I, we have

0 k
0 0k 0 kY(O0 O
Sk + I = Sk + I
0 k 0 1/\0 o
0 =z 0 0 0 axb

Then we choose s : R/I — M/ defined by

a b 0 kyic a b
Sk +1|= + I for all +1eR/I

0 ¢ 0 wye 0 c

It is easy to show that sj is an R-homomorphism. Next, we claim that siig, ;1 = sp.

0 bk
Let + 1 € Ey/I where b € Z3. Then
0 b
0 bk 0 kyib 0 xzb 0 bk
Sk +1| = + 1= + 1= Sk +1
because — € I. Then every R-homomorphism from FEj /I
0 ykb 0 ykb

to M/I can be extended to an R-homomorphism from R/I to M/I.
Case IIT : M/I.
We claim that every R-homomorphism from M/I to M/I can be extended to an
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R-homomorphism from R/I to M/I.
Let aw: M/I — M/I be an R-homomorphism. Define s” : R/I — M/I by

" 10 0 a
s + 1] = + I for some a € Zs.
01 0 1
Ty 0 az r Yy :
Then s” +1| = + [ for all +1 € R/I. It is easy to
0 =z 0 =z 0 =z

show that s” is an R-homomorphism. We choose & = as”. Next, we claim that

0 =z
@iy = o Let + 1 € M/I where x,y € Z3. Then

)
0 =z " 0 x ” 0 =z
o) +1| =as +I ]l =als +1
0y 0y 0y
0 ay 0 =
=« +1| =« +1
0 vy 0 vy
0 ay
because + 1= + I and « is an R-homomorphism. Then every
0y 0y

R-homomorphism from M/I to M/I can be extended to an R-homomorphism
from R/I to M/I. Thus M/I is an R/I-principally injective module and R/I is
a semisimple module by Theorem 4.3.7, M/I is also an R/I-slightly compressible

injective module. ]



CHAPTER V
SUB-M-PRINCIPALLY INJECTIVE MODULES

From Chapter IV, the notion of M-slightly compressible injective modules and
M-principally injective modules are different, that is, there exists a right R-module

M

Y

M-principally injective module # M-slightly compressible injective module

M-principally injective module <= M-slightly compressible injective module.

In this chapter, we introduce the notion of sub-M-principally injective modules
which implies M-slightly compressible injective modules and M-principally injec-
tive modules seen in Proposition 5.3.2 and Proposition 5.3.1, respectively.

Moreover, we study some properties of sub-M-principally injective modules and
relationship between sub-M-principally injective modules, M-principally injective
modules and M-slightly compressible injective modules and also provide examples

of them.

5.1 Definition and Examples

Definition 5.1.1. Let M be a right R-module. A right R-module N is called a
sub-M -principally injective module if for any nonzero submodule A of M,
every R-homomorphism from A-cyclic submodule of A to N can be extended to

an R-homomorphism from M to N.

Example 5.1.2. Let Z, be the set of all integers modulo p where p is a prime

p={(s Yimserxa={(2 ioca)

number,



Then

(i)
(i)

29

0 0
andMR:{< )|a,b€Zp}.
a b

N is a sub-Rg-principally injective module,

M is a sub-M-principally injective module.

Proof. (i) All nonzero submodules of R are

A:z{(Z g)mezp}, B::{(g 2>1aezp} and R.

Then A and B are simple right R-modules so A is the only one A-cyclic
submodule of A and B is the only one B-cyclic submodule of B. Next, we
show that A and B are Rg-cyclic submodules of R. Define f; : R — A by

and define f5 : R — B by
0 0 a 0
fo = for all € R.

It is easy to check that f; and fy; are R-epimorphisms. Then A and B are
Rpg-cyclic submodules of R. Similarly in the proof of Example 4.1.2(i), we

can conclude that N is a sub- Rz-principally injective module.

Similarly in the proof of Example 4.1.2(ii), we can conclude that M is a

sub-M-principally injective module.
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5.2 Some Properties of Sub-M-Principally Injective
Modules

This section is concerned with sub-M-principally injective modules and the

main properties of these modules are derived in this section.

Proposition 5.2.1. Let M, N and K be right R-modules with N = K. If N
15 a sub-M -principally injective module, then K is a sub-M-principally injective

module.

Proof. Assume that N is a sub-M-principally injective module. Let A be a sub-
module of M, B an A-cyclic submodule of A and a an R-homomorphism from B
to K. Since N = K, there exists an R-isomorphism S from K to N. Then fa is an
R-homomorphism from B to N. Since N is a sub-M-principally injective module,
there exists an R-homomorphism ~ from M to N such that yi5 = fa where ip is
the inclusion map. We choose & = 717, so aig = ~'vig = B~ 'Ba = a. Hence

K is a sub-M-principally injective module. O]

Example 5.2.2. Let Z, be the set of all integers modulo p where p is a prime

we{ (s Yiasen b (0 iuez)

0 0
and Ap = {(0 |a€Zp}.

a

number,

From Example 5.1.2(i), N is sub-Rg-principally injective. Define o : N — A by
0 0 a
« = for all e N.

It is clear that « is an R-isomorphism so N = A. Hence A is also a sub-Rg-

principally injective module.

Proposition 5.2.3. Let M be a right R-module and A a submodule of M. If A is

a sub-M -principally injective module, then A is a direct summand of M.
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Proof. Assume that A is a sub-M-principally injective module. Then every R-
homomorphism from A-cyclic submodule of A to A can be extended to an R-
homomorphism from M to A. Since A is an A-cyclic submodule of A, the identity
map [, on A can be extended to an R-homomorphism « : M — A such that aiy =
I4. By Lemma 2.2.11(i), the short exact sequence 0 — A BENY VN M/A—0
splits where 74 is the canonical projection of M onto M/A and i, is the inclusion

map. Therefore A is a direct summand of M. n

Example 5.2.4. Let Z, be the set of all integers modulo p where p is a prime

0 0 0
R:{(“ >|a,b€Zp}andAR:{( )yaezp}.
0 b 0 a

From Example 5.2.2, A is a sub-Rg-principally injective module. Since A is a

number,

submodule of Rg and by Proposition 5.2.3, A is a direct summand of Rg.

On the other hand, the converse of Proposition 5.2.3 is not true in general, for
example, in the Z-module Z, we know that Zy is indecomposable so only 0 and Zy

are direct summands of Zz but Zz is not sub-Zgz-principally injective.

Theorem 5.2.5. Let M and N be right R-modules and AE. N. If N is a sub-
M -principally injective module, then A and N/A are sub-M -principally injective

modules.
Proof. Assume that N is a sub-M-principally injective module.

(i) Claim that A is a sub-M-principally injective module. Let B be a nonzero
submodule of M, C' a B-cyclic submodule of B and o an R-homomorphism

from C to A. Since AE N, the short exact sequence
0— A4 N4 N/A—0

splits where i 4 is the inclusion map and 74 is the canonical projection of N

onto N/A. By Lemma 2.2.11(i), there exists an R-homomorphism f': N —
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A with f"iy = I4 where I, is the identity map on A. Since N is a sub-M-
principally injective module, there exists an R-homomorphism f from M to
N such that fic = iqaa where ic : C'— M is the inclusion map. Let & = f'f.
Then aic = f'fic = fligqa = Ina = a. Therefore A is a sub-M-principally

injective module.

(ii) Claim that N/A is a sub-M-principally injective module. Since AE N, there
exists A" < N such that N = A@ A" so A/E N and A" = N/A. From (i),
A’ is a sub-M-principally injective module. By Proposition 5.2.1, N/A is a

sub-M-principally injective module.
O

Example 5.2.6. Let Z, be the set of all integers modulo p where p is a prime

0 0 0
R:{(“ >|a,b€Zp}andAR:{< >|aezp}.
0 b 0 a

We want to show that A and R/A are sub-Rg-principally injective modules.

number,

Proof. First, we claim that Rg is a sub-Rg-principally injective module. All

nonzero submodules of R are

0
A,B:z{(a )\aezp} and R.
0 0

Then A and B are simple right R-modules so A is the only one A-cyclic submodule
of A and B is the only one B-cyclic submodule of B by the identity map Ig on B.
By Example 5.1.2(i), A and B are Rg-cyclic submodules of Rg. Let f; : A — R
and f, : B — R be R-homomorphisms. Then

0 0 zy O 1 0 9 O
fi = and f5 =
01 0 0 0 0 s

for some 1, 22, Y1, Y2, € Zy.
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Since fi, fo are R-homomorphisms,

(o) ()

Then z; = 0,y = 0 so that

)

Define f, : R — R by
_ a 0 0 0 a 0
fi = for all €ER
_ a 0 roa 0 a 0
fa = for all € R.
0 b 0 0 0 b

It is easy to check that f; and f, are R-homomorphisms and

o)) 66 ) ()

—_
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a 0 1 0\[fa O 1 0 a 0
and fy = fo = fo
0 0 0 0/\O0 O 00 0 0
9 0 0 roa 0 _ a 0
= = = fa
0 0 00 0 0 0 0
a 0 _ _
for all € A and € B so fiia = f1 and foig = f5. Hence Ry is a

0 a 0 0
sub- Rp-principally injective module.
From Example 5.2.4, A& R, so by Theorem 5.2.5, A and R/A are sub-Rg-

principally injective modules. [

Proposition 5.2.7. Let M and N be right R-modules with N a sub-M -principally

injective module. Then
(i) N s sub-K-principally injective for all nonzero submodule K of M,

(il) H is sub-K-principally injective for all direct summand H of N and nonzero

submodule K of M.

Proof. (i) Let K be a nonzero submodule of M and A a nonzero submodule
of K. Then A — M. Let B be an A-cyclic submodule of A and o an
R-homomorphism from B to N. Since N is a sub-M-principally injective
module, there exists an R-homomorphism & : M — N such that aig = «
where i : B — M is the inclusion map. Since B — K, a|x : K — N is an
R-homomorphism, &|kip = . Therefore N is a sub-K-principally injective

module.

(ii) Let K be a nonzero submodule of M and HE N. From (i), N is sub-K-
principally injective. By Theorem 5.2.5, H is sub-K-principally injective.
[

Example 5.2.8. Let Z, be the set of all integers modulo p where p is a prime

number,
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a={(z ez bw={(

(i) clearly, A, B — Rpg. From Example 5.1.2, N is a sub- Rz-principally injective

Then

module. By Proposition 5.2.7(i), N is a sub-A-principally injective module

and N is a sub-B-principally injective module,

(ii) from Example 5.2.6, Rg is a sub-Rg-principally injective module and from
Example 5.2.4, BE& Ry so by Proposition 5.2.7(ii), B is a sub-A-principally

injective module and B is a sub-B-principally injective module.

The following result is a sufficient condition for a right R-module N is a sub-

M-principally injective module.

Theorem 5.2.9. Let M and N be right R-modules. If N is a sub-M -principally
injective module, then for each nonzero submodule A of M and s € Endg(A),

Hompg(A,N)s ={f € Homg(A,N) : f(Ker(s)) =0}.

Proof. Assume that N is a sub-M-principally injective module. Let A be a nonzero
submodule of M and s € Endg(A). We claim that Homg(A,N)s C {f €
Homp(A,N): f(Ker(s)) =0}. Let fs € Homg(A, N)s. Then fs € Hompg(A, N)
and fs(Ker(s)) = 0. Hence fs € {f € Homgr(A,N) : f(Ker(s)) = 0}. Then
Hompg(A,N)s C {f € Homg(A,N) : f(Ker(s)) = 0}. Next, we claim that
Hompg(A,N)s D {f € Homgr(A,N) : f(Ker(s)) = 0}. Let f € Homgr(A, N) be
such that f(Ker(s)) =0. Then Ker(s) C Ker(f). If f =0, we are done so sup-
pose f # 0. By Theorem 2.2.5(i), there exists a unique nonzero R-homomorphism
h:s(A) — N such that f = hs. Since N is a sub-M-principally injective and s(A)
is an A-cyclic submodule of A, there exists a nonzero R-homomorphism h : M — N
such that h = BiS(A) where g4y is the inclusion map from s(A) to M. Since
s(A) < A, h|s is a nonzero R-homomorphism from A to N and h|aisa) = h.

Hence f = hs = h|as so f € Homp(A, N)s. O
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5.3 Relationship between M-Principally, M-Slightly
Compressible and Sub-M-Principally Injective
Modules

In this section, we study relationship between sub-M-principally injective mod-
ules, M-principally injective modules and M-slightly compressible injective mod-

ules.

Proposition 5.3.1. Let M be a right R-module. Every sub-M -principally injective

module is an M -principally injective module.

Proof. Let N be a sub-M-principally injective module. Since M is a nonzero
submodule of M and by definition of sub-M-principally injective module, every
R-homomorphism from an M-cyclic submodule of M to N can be extended to an

R-homomorphism from M to N. Hence N is an M-principally injective module. [J

Proposition 5.3.2. Let M be a right R-module. Every sub-M -principally injective

module is an M -slightly compressible injective module.

Proof. Let N be a sub-M-principally injective module. Let A be an M-slightly
compressible submodule of M. Then A is an A-cyclic submodule of A, so every
R-homomorphism from A to N can be extended to an R-homomorphism from M

to N. Hence N is an M-slightly compressible injective module. O]

But the converse of Propositions 5.3.1 and 5.3.2 are not true in general shown

in the following example.
Example 5.3.3. Let F' be a field,

R:{(g i>|a,b,c€F},MR={<z Z)|a,bEF},NR={<3 O>|6F}

Then

(i) N is an M-principally injective module and

(ii) N is an M-slightly compressible injective module, but
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(iii) N is not a sub-M-principally injective module.

0 0
nonzero proper submodule of M but from Example 3.2.1, E is not an M-

0
Proof. (i) E := { ¢ |la € F'} is a simple right R-module and only one

cyclic submodule of M. Then only 0 and M are M-cyclic submodules of M.

Hence N is an M-principally injective module.

(ii) Since M has only two nonzero submodules, i.e., F, M and from Example
3.2.1, E, M are not M-slightly compressible submodules of M so only 0
is an M-slightly compressible submodule of M. Then N is an M-slightly

compressible injective module.

(iii) We claim there exists an R-homomorphism « from E to N which cannot be
extended to any R-homomorphisms from M to N, that is, pip # « for all
w € Homgr(M,N). Define o : E — N by

00 0 a
«a = for all e k.

It is easy to show that a is a nonzero R-isomorphism. Let ¢ be an R-

homomorphism from M to N. Then

10 0 0
© = for some x € F', so
00 0 =z
0 a 10 0 a 00 0 a 00
(p —= gp g =
0 0 0 0 0 0 0 x 0 0 0 0
0 a
for all € E. Hence pip = 0 # aforall p € Homg(M, N). Therefore

00
N is not a sub-M-principally injective module.

]

Next, we characterize relationship between sub-M-principally injective mod-
ules, M-principally injective modules and M-slightly compressible injective mod-

ules.
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Clearly, every X-cyclic submodule of X is an M-cyclic submodule of M for
every M-cyclic submodule X of M. Thus we have the following result.

Proposition 5.3.4. Let M be an epi-retractable right R-module and N a right
R-module. Then N is an M -principally injective module if and only if N is a

sub-M -principally injective module.

Proof. (<) By Proposition 5.3.1.

(=) Assume that N is an M-principally injective module. Let A be a nonzero
submodule of M, B an A-cyclic submodule of A and @ an R-homomorphism from
B to N. By assumption, A is an M-cyclic submodule of M so B is an M-cyclic
submodule of M. Then a can be extended to an R-homomorphism from M to N.

Therefore N is a sub-M-principally injective module. O]

Proposition 5.3.5. Let M and N be right R-modules. If N is a sub-M -principally
injective module, then N is an A-principally injective module for all nonzero sub-

module A of M.

Proof. Assume that N is a sub-M-principally injective module. Let A be a nonzero
submodule of M. Claim that N is an A-principally injective module. Let B be
an A-cyclic submodule of A and a an R-homomorphism from B to N. Since
N is a sub-M-principally injective module, there exists an R-homomorphism &
from M to N such that aig = a where ip is the inclusion map. Since B — A,
ala : A — N is an R-homomorphism and @|4ip = a. Hence N is an A-principally
injective module. Therefore N is an A-principally injective module for all nonzero

submodule A of M. ]

Corollary 5.3.6. Let M be an epi-retractable right R-module and N a right R-
module. Then N is an M-slightly compressible injective module if and only if N

18 a sub-M -principally injective module.

Corollary 5.3.7. Let N be a right R-module. Then N is an Rg-slightly compress-

wble injective module if and only if N is a sub-Rgr-principally injective module.
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Proof. (<) By Proposition 5.3.2.
(=) Assume that N is an Rg-slightly compressible injective module. By Theorem
4.2.11, N is an injective right R-module. Hence N is a sub- Rg-principally injective

module. O



[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, Graduate
Texts in Mathematics, Vol. 13, Springer-Verlag, New York (1974).

Baer, R., Nilpotent groups and their generalizations, Trans. Amer. Math.
Soc., 47(1940), 393 - 434.

Baupradist, S. and Asawasamrit, S., On fully-M-cyclic modules, J. Math.
Res., 3(2) (2011), 23 - 26.

Camillo, V.P., Commutative rings whose principal ideals are annihilators,
Port. Math., 46(1) (1989), 33 - 37.

Ghorbani, A. and Vedadi, M.R., Epi-retractable modules and some applica-
tions, Bull. Iranian Math. Soc., 35(1) (2009), 155 - 166.

Goodearl, K.R. and Warfield, R.B., Jr., An Introduction to Noncommuta-
tive Noetherian Rings, London Mathematical Society Student Texts, Vol. 61,
Cambridge University Press, Cambridge (1989).

Kasch, F., Modules and Rings, London Math. Soc. Monographs 17(C.U.P.)
(1982).

Khuri, S.M., The endomorphism ring of Nonsingular retractable modules,
Bull. Aust. Math. Soc., 43(1) (1991), 63 - 71.

Lam, T.Y., Lectures on Modules and Rings, Graduate Texts in Mathematics
No. 189, Springer-Verlag, New York (1998).

Lam, T.Y., Serre’s Problem on Projective Modules, Springer-Verlag, Berlin
(2006).

Lépez-Permouth, S.R., Shum, K.P. and Sanh, N.V., Kasch modules and pV-
rings, Algebra Collog., 12(2) (2005), 219 - 227.

Mao, L.X., Modules characterized by their simple submodules, Taiwanese J.
Math., 15(5) (2011), 2337 - 2349.

McConnell, J.C. and Robson, J.C., Noncommutative Noetherian Rings, Wiley-
Interscience, New York (1987).

Nicholson, W.K. and Yousif, M.F., Principally injective rings, J. Algebra, 174
(1995), 77 - 93.

Nicholson, W.K. and Yousif, M.F., Quasi-Frobenius Rings, Cambridge Uni-
versity Press, New York (2003).

Pandeya, B.M., Chaturvedi, A.K. and Gupta, A.J., Applications of epi-
retractable modules, Bull. IranianMath. Soc., 1(2012), 469 - 477.



71

Patel, M.K., Pandeya, B.M., Gupta, A.J. and Kumar, V., Quasi principally
injective modules, Int. J. Algebra, 4(26) (2010), 1255 - 1259.

Sanh, N.V. and Shum, K.P., Endomorphism rings of quasi-principally injective
modules, Comm. in Algebra, 29(4) (2001), 1437 - 1443.

Sanh, N.V., Shum, K.P., Dhompongsa, S. and Wongwai, S., On quasi-
principally injective modules, Algebra Collog., 6(3) (1999), 269 - 276.

Smith, P.F., Modules with many homomorphisms, J. Pure Appl. Algebra, 197
(2005), 305 - 321.

Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach,
Philadelphia (1991).

Wongwai, S.; On the endomorphism ring of a semi-injective module, Acta
Math. Univ. Comenianae, 71(1) (2002), 27 - 33.

Zelmanowitz, J.M., An extension of the Jacobson density theorem, Bull.
Amer. Math. Soc., 82(4) (1976), 551 - 553.

Zelmanowitz, J.M., Weakly semisimple modules and density theory, Comm.
Algebra, 21(1993), 1785 - 1808.

Zhanmin, Z., A note on principally quasi-injective module, Soochow J. Math.,

33(4) (2007), 885 - 889.

Zhanmin, Z., MP-injective rings and MGP-injective rings, Indian J. Pure
Appl. Math., 41(5) (2011), 627 - 645.

Zhou, Z.P., A lattice isomorphism theorem for nonsingular retractable mod-
ules, Canad. Math. Bull., 37(1) (1999), 140 - 144.



Name

Date of Birth

Place of Birth

Education

Conference

VITA

Miss Phatsarapa Janmuang
27 August 1985
Phuket, Thailand

B.Sc. (Mathematics)(First Class Honours),

Prince of Songkla University, 2008

Give a talk

e On Sub-M -Principally Injective Modules in The 18
Annual Meeting in Mathematics, 14 — 15 March 2013

Attend

e Annual Pure and Applied Mathematics Conference

2012, 28 — 29 May 2012

72



