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CHAPTER I

INTRODUCTION

Ring theorists began to concentrate more on special areas of subject such as

representation theory of finite dimensional algebras, Noetherian rings and group

rings since fifties to seventies of the last century. Afterward, questions in general

module theory continue to be interested by people worldwide. Here the emphasis

has been on the structure of modules themselves, independent of the structure of

underlying rings.

In 1976, Zelmanowitz[23] introduced the notion of compressible modules. Ac-

cording to Zelmanowitz, let R be an associative ring with identity, a right R-module

M is called compressible provided for each nonzero submodule N of M there

exists an R-module monomorphism from M to N . For example, if R is a domain,

i.e., a ring which has no zero divisors, then the right R-module R is compressible.

Generalizations of compressible modules have been studied in many papers [8],

[13], [27]. Recently, Smith[20] introduced the concept of a slightly compressible

module which is a generalization of compressible module. According to Smith, let

R be an associative ring with identity, a right R-module M is called slightly com-

pressible if for a nonzero submodule N of M , there exists a nonzero R-module

homomorphism from M to N and he also studied the properties of slightly com-

pressible modules. For example [[20], Example 1.2], let S be any nonzero ring and

let R denote the ring of 2 × 2 upper triangular matrices over S. Then the right

R-module R is slightly compressible.

Moreover, we are interested in the injectivity of modules. Injective modules

became familiar to any module theoretics from the work of Baer[2] in 1940 and

had many applications in characterization some classes of rings.

In 1940, Bear[2] established a very useful test for injectivity. This test called
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the Baer’s Criterion , said that let R be an associative ring with identity and

Q a right R-module, any R-module homomorphism of a right ideal I of R into Q

can be extended to an R-module homomorphism of R into Q if and only if Q is

injective.

The Baer Criterion has been generalized by many authors. For example, in

1989, Camillo[4] introduced the notion of principally injective modules for com-

mutative rings. Let R be an associative ring with identity. A right R-module M

is called principally injective (or p-injective) if every R-module homomor-

phism from a principal right ideal of R to M can be extended to an R-module

homomorphism from R to M . Next in 1999, Sanh, Shum, Dhompongsa and

Wongwai[19] extended the notion of principally injective modules for commuta-

tive rings to M -principal injectivity for a given right R-module M . Let R be an

associative ring with identity and M a right R-module. A right R-module N is

called M-principally injective if every R-module homomorphism from an M -

cyclic submodule of M to N can be extended to an R-module homomorphism from

M to N.

The first chapter of this thesis, we determine a general form of slightly com-

pressible modules. Let R be an associative ring with identity and M a right

R-module. A right R-module N is called M-slightly compressible if, for every

nonzero submodule A of N , there exists a nonzero R-module homomorphism from

M to A. In the case that M = N , N is, in fact, a slightly compressible module.

Moreover, we provide conditions for any right R-module to be an M -slightly com-

pressible module and examples of M -slightly compressible modules.

In the second chapter of this thesis, we introduce the concept of M -slightly

compressible injective modules, which extended from the Baer Criterion. Let R be

an associative ring with identity and M a right R-module. A right R-module N

is called M-slightly compressible injective if every R-module homomorphism

from an M -slightly compressible submodule of M to N can be extended to an

R-module homomorphism from M to N . Moreover, we study some properties of

M -slightly compressible injective modules and relationship between M -principally
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injective modules and M -slightly compressible injective modules and we provide

examples of them.

In the third chapter of this thesis, we introduce the concept of sub-M -principally

injective modules. Let R be an associative ring with identity and M a right R-

module. A right R-module N is called sub-M-principally injective if for any

nonzero submodule A of M , any R-module homomorphism from A-cyclic submod-

ule of A to N can be extended to an R-module homomorphism from M to N .

Moreover, we study some properties of sub-M -principally injective modules and

relationship between M -principally injective modules, M -slightly compressible in-

jective modules and sub-M -principally injective modules and we provide examples

of them.



CHAPTER II

PRELIMINARIES

In this chapter, we present basic definitions, notations and theorems on rings

and modules which will be used for this thesis.

2.1 Modules and Submodules

Throughout this thesis, unless otherwise stated, let R and S be associative

rings with identities 1R and 1S, respectively.

Definition 2.1.1. [7] Let M be a nonempty set. A unital right R-module M

is

(i) an additive abelian group M together with

(ii) a mapping

M ×R→M with (m, r) 7→ mr,

called the module multiplication, for which we have

(a) Associative law: (mr1)r2 = m(r1r2),

(b) Distributive laws: (m1 +m2)r = m1r +m2r, m(r1 + r2) = mr1 +mr2,

(c) Unitary law: m1R = m

for all m,m1,m2 ∈M and r, r1, r2 ∈ R.

An analogous definition holds for left R-modules. Moreover, by a right R-

module we mean a unital right R-module. We write MR for a right R-module

M . We denote 0M the identity under addition of a right R-module M and 0R the
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identity under addition of a ring R. Then 0Mr = 0M = m0R for all r ∈ R and

m ∈M .

Example 2.1.2. [1]

(i) For every abelian group M , there is a unique right Z-module structure on

M . This is simply the structure given by the usual multiple function

(x, n) 7→ xn for all x ∈M,n ∈ Z

where xn =



x+ · · ·+ x︸ ︷︷ ︸
n terms

for n ∈ Z+

−

x+ · · ·+ x︸ ︷︷ ︸
|n| terms

 for n ∈ Z−

0M for n = 0.

(ii) Let ϕ : R → S be a ring homomorphism. Then ϕ induces a left and a

right R-module structure on the additive group of S. Indeed, the module

multiplication, for the left R-module S, is given by

(r, s) 7→ ϕ(r)s for all r ∈ R, s ∈ S

where the product ϕ(r)s is computed in the ring S. The right R-module

structure on S is defined similarly.

(iii) Each ring R induces a left R-module L structure on its additive group and a

right R-module M structure on its additive group via the module multipli-

cations

(a, x) 7→ ax for all a ∈ R, x ∈ L and (x, a) 7→ xa for all x ∈M,a ∈ R

where ax and xa denote the products in the ring R. These modules induced

on the additive group of a ring R are called the regular left and regular

right modules of R, respectively. Then every left ideal of R is a regular left
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module of R and every right ideal of R is a regular right module of R. The

RR is a left R-module and RR is a right R-module by product in R.

Definition 2.1.3. [21] Let M be a right R-module. A subgroup N of (M,+) is

called a submodule of M if N is closed under multiplication with elements in R,

i.e., nr ∈ N for all r ∈ R, n ∈ N . We write N ↩→M for a submodule N of M .

Then N ↩→M is also a right R-module by the operations induced from M :

N ×R→ N, (n, r) 7→ nr for all r ∈ R, n ∈ N.

The subset {0M} of a right R-module M is clearly a submodule of M . We call

it the zero submodule and usually denote it by 0 alone.

Remark. Every submodule of RR is a left ideal of R and every submodule of RR

is a right ideal of R.

Definition 2.1.4. [21] A right R-module M is called simple if M ̸= 0 and it has

no submodules except 0 and M .

For nonempty subsets N , N1, N2 of a right R-moduleM and a nonempty subset

A of a ring R we define:

N1 +N2 = {n1 + n2 |n1 ∈ N1, n2 ∈ N2} ,

NA =

{
k∑

i=1

niai | ni ∈ N, ai ∈ A, k ∈ N

}
.

If N1 and N2 are submodules of a right R-module M , then N1 + N2 is also a

submodule of M . For a right ideal A of R, the product NA is always a submodule

of M .

For any finite family {Nλ}λ∈Λ of submodules of MR, the sum
∑
λ∈Λ

Nλ is defined

by ∑
λ∈Λ

Nλ =

{∑
λ∈Λ

nλ |nλ ∈ Nλ for all λ ∈ Λ

}
.
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This is a submodule of M .

For any infinite family {Nλ}λ∈Λ of submodules ofMR, the sum
∑
λ∈Λ

Nλ is defined

by ∑
λ∈Λ

Nλ =

{
r∑

k=1

nλk
| r ∈ N, λk ∈ Λ, nλk

∈ Nλk

}
.

This is a submodule of M . Also the intersection
∩
λ∈Λ

Nλ is a submodule of M .∑
λ∈Λ

Nλ is the smallest submodule of M which contains all Nλ and
∩
λ∈Λ

Nλ is the

largest submodule of M which is contained in all Nλ.

Proposition 2.1.5. [1] Let M be a right R-module and let X be a nonempty subset

of M . Then XR is a submodule of M .

Proposition 2.1.6. [1] Let M be a right R-module and N a nonempty subset of

M . Then the followings are equivalent:

(i) N is a submodule of M .

(ii) NR = N .

(iii) For all a, b ∈ R and all x, y ∈ N ,

xa+ yb ∈ N.

Definition 2.1.7. [21] Let M be a right R-module and {Bi | i ∈ I} a nonempty

family of submodules of M . If

(i) M =
∑
i∈I

Bi and (ii) ∀j ∈ J

[
Bj ∩

∑
i∈I,i ̸=j

Bi = 0

]
,

then M is called the (internal) direct sum of the family of submodules

{Bi | i ∈ I}. This is written as M =
⊕
i∈I

Bi and the Bi are called direct sum-

mands of M .

If only (ii) is satisfied, then {Bi | i ∈ I} is called an independent family of

submodules.
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In the case of finite index set, say I = {1, 2, . . . , n}, M is also written as

M = B1 ⊕B2 ⊕ · · · ⊕ Bn.

Lemma 2.1.8. [7] Let M be a right R-module with M =
∑
i∈I

Bi where Bi ↩→ M

for all i ∈ I. Then (ii) of the previous definition is equivalent to :

For x ∈ M, the representation x =
∑
i∈I′

bi with bi ∈ Bi, I ′ ⊂ I, where I ′ is

finite, is unique in the following sense :

If

x =
∑
i∈I′

bi =
∑
i∈I′

ci with bi, ci ∈ Bi,

then it follows that

∀i ∈ I ′ [bi = ci] .

Definition 2.1.9. [7]

(i) A submodule B of a right R-module M is called a direct summand of M

if there exists C ↩→M such that M = B ⊕ C.

(ii) A nonzero right R-module M is called directly indecomposable if 0 and

M are the only direct summand of M .

We write B⊂⊕−−−−>M for a direct summand B of M .

Example 2.1.10. [21]

(i) Let K be a field, V a vector space over K and let {xi | i ∈ I} be a basis of

V . Then clearly we have

V =
⊕
i∈I

xiK.

Further every submodule of V is a direct summand.

(ii) Let Z be the set of all integers. Then Z is a right Z-module. Hence the ideal

nZ is not a direct summand of ZZ for all n ∈ Zr{−1, 0, 1}.
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Proof. Suppose there exists n ∈ Z r {−1, 0, 1} such that Z = nZ ⊕ V for

some submodule V of ZZ. Thus V = mZ for some m ∈ Z and Z = nZ⊕mZ.

Then nm ∈ nZ ∩ mZ = {0}. Since Z does not have zero divisors, m = 0.

Then Z = nZ, i.e., n = −1 or n = 1 which is a contradiction. It follows that

ZZ is directly indecomposable.

(iii) Every simple module M is directly indecomposable because it has only 0

and M as submodules.

Let M be a right R-module and let K be a submodule of M . Then it is easy

to see that the set of cosets

M/K = {x+K |x ∈M}

is a right R-module relative to the addition and the scalar multiplication defined

via

(m1 +K) + (m2 +K) = (m1 +m2) +K, (m+K)r = mr +K

where m,m1,m2 ∈ M, r ∈ R. Of course, the additive identity and inverse are

given by

K = 0 +K and − (x+K) = −x+K.

In order to show that M/K is a right R-module, it is sufficient to show that

M/K ×R→M/K with (m+K, r) 7→ mr +K

is a mapping since the other module properties follow directly from those of M .

Let m1+K,m2+K ∈M/K with m1+K = m2+K. Then m1−m2 ∈ K. Since

K ↩→M, (m1−m2)r ∈ K. Hence m1r−m2r ∈ K, so we have m1r+K = m2r+K.

The resulting module M/K is called the right R-factor module of M modulo

K.

Definition 2.1.11. [21] A submoduleK of a right R-moduleM is called essential

or large in M if, for every nonzero submodule L of M, we have K ∩ L ̸= 0.
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Example 2.1.12. [21]

(i) Every right R-module M is an essential submodule in M .

(ii) In ZZ, every nonzero submodule is essential.

Definition 2.1.13. [21] A right R-module M is called a uniform module if,

every nonzero submodule is essential in M , i.e., the intersection of any two nonzero

submodules is nonzero.

Example 2.1.14. In ZZ, since every nonzero submodule is essential, Z is a uniform

Z-module.

It is easy to check that every nonzero submodule of a uniform right R-module

is uniform.

Definition 2.1.15. [21] A subset L of a right R-module M is called a generating

set of M if LR = M . We also say L generates M or M is generated by L.

If there is a finite generating set of M, then M is called finitely generated .

If M is generated by one element, then it is called cyclic.

Example 2.1.16. [21]

(i) Every ring is generated by its unit.

(ii) Every principal right ideal of a ring R is just the cyclic submodule of RR.

Definition 2.1.17. [21] A right R-moduleM is called divisible if, for every s ∈ R

which is not a zero divisor and every n ∈M, there exists m ∈M with ms = n.

Example 2.1.18. [21] Let Q be the set of all rational numbers and R the set of

all real numbers. Then Q and R are divisible Z-modules.

2.2 Homomorphisms of Modules

Definition 2.2.1. [7] Let M and N be right R-modules. A map f : M → N is

an R-module homomorphism provided
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(i) f : M → N is a homomorphism of abelian groups and

(ii) if r ∈ R and m ∈M, then f(mr) = f(m)r.

In this thesis, we write R-homomorphism instead of R-module homomorphism.

We denote HomR(M,N), the abelian group of the R-homomorphism from M to

N and EndR(M) is used to denote the endomorphism ring of M .

For f ∈ HomR(M,N), we define the kernel and image by

Ker (f) = {m ∈M | f (m) = 0N} and Im (f) = {f (m) ∈ N |m ∈M}.

Theorem 2.2.2. [21] For f ∈ HomR(M,N), Ker (f) is a submodule of M and

Im (f) is a submodule of N .

The coimage of f and the cokernel of f are defined, respectively, by

Coim (f) = M/Ker (f) and Coker (f) = N/Im (f) .

Definition 2.2.3. [1] Let M and N be right R-modules and f : M → N an

R-homomorphism.

(i) f : M → N is called an R-epimorphism in case it is surjective.

(ii) f : M → N is called an R-monomorphism in case it is injective.

(iii) f : M → N is called an R-isomorphism in case it is injective and surjec-

tive.

Definition 2.2.4. [1] Let M and N be right R-modules. Then M and N are said

to be isomorphic if there is an R-isomorphism between M and N . We write

M ∼= N to represent that M is isomorphic to N .

Remark. [1]

(i) If M is a right R-module, then every submodule of M is actually the image

of some monomorphism. Let K be a submodule of M, then the inclusion
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map iK : K →M , defined by

iK(k) = k

for all k ∈ K, is an R-monomorphism, also called the natural embedding

of K in M , with image K.

(ii) Every submodule of a right R-module M is also the kernel of an epimorphism.

Let K be a submodule of M . Then the mapping πK : M → M/K from M

onto the factor module M/K defined by

πK(x) = x+K

for all x ∈M is seen to be an R-epimorphism with kernel K. We call πK the

natural epimorphism of M onto M/K or canonical homomorphism

(projection) of M onto M/K.

Theorem 2.2.5. [1] Let M,M ′, N and N ′ be right R-modules and f : M → N an

R-homomorphism.

(i) If g : M → M ′ is an R-epimorphism with Ker (g) ⊆ Ker (f) , then there

exists a unique R-homomorphism h : M ′ → N such that the diagram

M N

M ′

-f

?

g p p p p p
p p p�
h

commutes, i.e., f = hg. Moreover, Ker (h) = g(Ker (f)) and Im (h) =

Im (f), so

(a) h is an R-monomorphism if and only if Ker (g) = Ker (f) and

(b) h is an R-epimorphism if and only if f is an R-epimorphism.
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(ii) If g : N ′ → N is an R-monomorphism with Im (f) ⊆ Im (g), then there

exists a unique R-homomorphism h : M → N ′ such that

N ′ N

M

-g

6
fppppp

pppI
h

commutes, i.e., f = gh. Moreover, Ker (h) = Ker (f) and Im (h) =

g−1(Im (f)), so

(a) h is an R-monomorphism if and only if f is an R-monomorphism and

(b) h is an R-epimorphism if and only if Im (g) = Im (f).

Example 2.2.6. [7]

(i) Let A and B be right R-modules. The zero R-homomorphism of A into B is

defined by

0 : A→ B

a 7→ 0 for all a ∈ A.

(ii) Let M be a right R-module. The identity map IM on M defined by

IM : M →M

m 7→ m for all m ∈M .

(iii) Let B be a right R-module and A a submodule of B. The inclusion map

iA of A is defined by

iA : A→ B

a 7→ a for all a ∈ A.

(iv) Let A be a right R-module and B a submodule of A. The natural(canonical)

R-homomorphism of A onto the factor module A/B is defined by
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πB : A→ A/B

a 7→ a+B for all a ∈ A.

Theorem 2.2.7. [7] If α : A→ B is an R-homomorphism, then α̂ : A/Ker (α)→

Im (α), defined by

α̂ (a+Ker (α)) = α (a)

for all a+Ker (α) ∈ A/Ker (α), is an R-isomorphism, thus we have

A/Ker (α) ∼= Im (α) .

Definition 2.2.8. [1] Let M , M ′ and M ′′ be right R-modules. A pair of R-

homomorphisms M ′ f→M
g→M ′′ is said to be exact at M if Im (f) = Ker (g).

Definition 2.2.9. [1] Let Mj be a right R-module and fj an R-homomorphism

from Mj−1 to Mj for all j ∈ {n± i | i ∈ N ∪ {0}} where n ∈ Z. Let

A = . . .
fn−1→ Mn−1

fn→Mn
fn+1→ Mn+1 → . . .

be a sequence(finite or infinite) ofR-homomorphisms fj where j ∈ {n± i | i ∈ N ∪ {0}}

and n ∈ Z.

(i) A is called an exact sequence if each pair of R-homomorphisms

Mj−1
fj→Mj

fj+1→ Mj+1

is exact at Mj, i.e., Im (fj) = Ker (fj+1) for all j ∈ {n± i | i ∈ N ∪ {0}}.

(ii) An exact sequenceA is called a split exact sequence if Im (fj) = Ker (fj+1)

is a direct summand of Mj for all j ∈ {n± i | i ∈ N ∪ {0}}.

Definition 2.2.10. [1] Let M , M ′ andM ′′ be right R-modules. An exact sequence

of the form

0→M ′ f→M
g→M ′′ → 0

is called a short exact sequence . This means that f is an R-monomorphism, g

is an R-epimorphism and Ker (g) = Im (f).
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Lemma 2.2.11. [7] Let N , M and W be right R-modules and A = 0 → N
f→

M
g→ W → 0 a short exact sequence.

(i) The followings are equivalent :

(a) A splits.

(b) There exists an R-homomorphism f ′ : M → N with f ′f = IN .

(c) There exists an R-homomorphism g′ : W →M with gg′ = IW .

(ii) If A splits, then f ′ and g′ exist as in above and the sequence

0← N
f ′
←M

g′← W ← 0

is exact and splits.

Lemma 2.2.12. [7] Let M and N be right R-modules. For an R-homomorphism

α : M → N the followings are equivalent:

(i) Ker(α) is a direct summand of M and Im(α) is a direct summand of N .

(ii) There exists an R-homomorphism β : N →M with α = αβα.

Proposition 2.2.13. [1] Let M and N be right R-modules. If f : M → N is an

R-homomorphism, then

0→ Ker (f)
i→M

f→ N
π→ Coker (f)→ 0

is exact where i is the inclusion map and π is the natural epimorphism from N to

N/Im (f).

Definition 2.2.14. [21] Let M be a right R-module. An R-module N is called

M-cyclic if it is isomorphic to M/L for some submodule L of M .

Example 2.2.15. [21] Factor modules of M are M -cyclic modules.

Remark. [19] Any M-cyclic submodule X of M can be considered as the image

of an R-endomorphism of M .
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2.3 Injective Modules

In this section, we present the definition and the basic properties of injective

modules.

Definition 2.3.1. [9] Let A and B be right R-modules.

A right R-module I is injective if, for any R-monomorphism g : A → B and

any R-homomorphism h : A → I, there exists an R-homomorphism h′ : B → I

such that the diagram

A B

I

-
g

1−1

?
h

ppppppp	 h′ (*)

commutes, i.e., h = h′g.

We refer to this property informally by saying that any h : A → I can be

extended to B, or to an R-homomorphism h′ : B → I.

Example 2.3.2.

(i) Trivially, the zero module is injective.

(ii) QZ and RZ are injective because QZ and RZ are divisible.

The following remarkable criterion for injectivity, due to R. Baer, says that it

is sufficient to test the extendibility condition in (∗) with B chosen to be the right

regular module, RR.

Theorem 2.3.3. Baer’s Criterion or Baer’s Test [2] A right R-module I is

injective if and only if, for any right ideal U of R, any R-homomorphism f : U→ I

can be extended to an R-homomorphism f ′ : R→ I.

Remark. An R-homomorphism f ′ : R → I is uniquely determined by specifying

the image f ′(1R) ∈ I. If we can find an element i ∈ I such that f(r) = ir for every

r ∈ U, then f can be extended to f ′ : R→ I where f ′(1R) = i.
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For most rings R, RR is simply not injective. But there exists a ring R for

which RR is injective; we say that such rings are right self-injective . Some

examples are given below.

Example 2.3.4.

(i) Let F be a field and R =

{(
a b

0 0

)
| a, b ∈ F

}
. Then R is a right self-

injective ring because R has no proper right ideal.

(ii) Let R be the set of all n × n upper triangular matrices over a ring K ̸= 0,

where n ≥ 2. Then R is not right self-injective. To simplify the notations,

we work in the case n = 2. Consider the ideal U =

{(
0 a

0 0

)
| a ∈ K

}

and define f : U→ R by f

0 a

0 0

 =

0 0

0 a

 for all

0 a

0 0

 ∈ U.

This is easily checked to be an R-homomorphism. If f can be extended

to R, there exists a matrix

x y

0 z

 ∈ R such that

f

0 a

0 0

 =

x y

0 z

0 a

0 0

 =

0 xa

0 0

 (a ∈ K),

which is clearly impossible. This shows that RR is not injective.

Proposition 2.3.5. [9] For any right R-module Q, the followings are equivalent :

(i) Q is a divisible module.

(ii) For any a ∈ R, any R-homomorphism f : aR → Q extends to an R-

homomorphism from RR to Q.

In [4], a module QR satisfying the condition (ii) in Proposition 2.3.5 is said to

be principally injective .

Theorem 2.3.6. [7] The following properties of a right R-module Q are equivalent:
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(i) Q is injective.

(ii) Any short exact sequence 0→ Q→M → N → 0 splits.

(iii) Q is a direct summand of every right R-module containing it as a submodule.

Theorem 2.3.7. [7] Let A and Q be right R-modules. If Q is injective and Q ∼= A,

then A is injective.

Remark. Every vector space over a field F is injective.

Proof. Let Q be a vector space over a field F . By Proposition 18.6[1], Q can

be embedded in an injective left F -module, say V . Then Q is isomorphic to a

subspace V ′ of V . Since every vector space has a basis, there exists a basis of V ′

and extend it to a basis of V . Then V is the internal direct sum of V ′ and K for

some subspace K of V . By Theorem 5.3.4[7], V ′ is injective. Since Q ∼= V ′, by

Theorem 2.3.7, Q is injective.



CHAPTER III

M-SLIGHTLY COMPRESSIBLE MODULES

In this chapter, we determine a general form of slightly compressible modules

which subsequently are called M-slightly compressible modules for a right R-

module M . Moreover, we provide conditions for any right R-module to be an M -

slightly compressible module and also provide examples of M -slightly compressible

modules.

3.1 Definitions and Examples

First, we begin with the concept of compressible modules which was introduced

by Zelmanowitz in 1976.

Definition 3.1.1. [23] A right R-module M is called compressible if, for every

nonzero submodule N of M there exists an R-monomorphism from M to N .

Example 3.1.2. Every simple right R-module is compressible. Since any sim-

ple right R-module M has only one nonzero submodule that is M, so an R-

monomorphism from M to M is the identity map of M .

Next in 2005, Smith[20] introduced the concept of a slightly compressible mod-

ule, which is a generalization of compressible modules.

Definition 3.1.3. [20] A right R-module M is called slightly compressible if,

for every nonzero submodule N of M, there exists a nonzero R-homomorphism

from M to N .

Example 3.1.4.

(i) Let I be any proper ideal of R. Then the right R-module R/I is slightly

compressible.
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Proof. Claim that a right R-module R/I is slightly compressible. Note that

any nonzero submodule of R/I has the form E/I for some nonzero right

ideal E of R properly containing I. Let a ∈ E r I. Then the mapping

f : R/I → E/I defined by

f(r + I) = ar + I for all r ∈ R

is a nonzero R-homomorphism. Hence the right R-module R/I is slightly

compressible.

(ii) Let Z3 be the set of all integers modulo 3 and R =

{(
a 0

0 b

)
| a, b ∈ Z3

}
.

Then RR is a slightly compressible module.

Proof. Note that all nonzero submodules of R are{(
a 0

0 0

)
| a ∈ Z3

}
,

{(
0 0

0 a

)
| a ∈ Z3

}
and R.

Define f1 : R→

{(
a 0

0 0

)
| a ∈ Z3

}
by

f1

a 0

0 b

 =

a 0

0 0

 for all

a 0

0 b

 ∈ R

and define f2 : R→

{(
0 0

0 a

)
| a ∈ Z3

}
by

f2

a 0

0 b

 =

0 0

0 b

 for all

a 0

0 b

 ∈ R.

It is easy to check that f1 and f2 are R-homomorphisms. Next, we claim that

RR is not a compressible module by showing that every R-homomorphism

from RR to E :=

{(
a 0

0 0

)
| a ∈ Z3

}
is not one to one. Suppose there exists
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an R-monomorphism α from RR to E. Then Ker (α) =


0 0

0 0

 and

α

1 0

0 1

 =

a 0

0 0

 for some a ∈ Z3r{0}. Then

α

0 0

0 a

 = α

1 0

0 1

0 0

0 a

 =

a 0

0 0

0 0

0 a

 =

0 0

0 0

 so

0 0

0 a

 ∈ Ker (α), which is a contradiction. Hence every R-homomorphism

from RR to E is not one to one. Therefore RR is a slightly compressible

module but not a compressible module.

Next, we determine a general form of slightly compressible modules called an

M-slightly compressible modules for a right R-module M .

Definition 3.1.5. Let M be a right R-module. A right R-module N is called an

M-slightly compressible module if, for every nonzero submodule A of N , there

exists a nonzero R-homomorphism from M to A.

In the case that N = M , N is, in fact, a slightly compressible module.

Example 3.1.6.

(i) Let M be a right R-module. The zero right R-module is an M -slightly

compressible module.

(ii) From [3], for right R-modules M and N , N is called a fully-M-cyclic

module if, every submodule A of N, there exists s ∈ HomR(M,N) such

that A = s(M). It is clear that every fully-M -cyclic module is an M -slightly

compressible module but an M -slightly compressible module may not be a

fully-M -cyclic module, for example, RZ is Z-slightly compressible but not

fully-Z-cyclic module because RZ is not cyclic Z-module.

(iii) Let Zp be the set of all integers modulo p where p is a prime number,
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R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, MR =

{(
a b

0 0

)
| a, b ∈ Zp

}

and NR =

{(
a 0

b 0

)
| a, b ∈ Zp

}
.

Then N is an M -slightly compressible module.

Proof. Note that all nonzero submodules of N are{(
a 0

0 0

)
| a ∈ Zp

}
, Ek :=

{(
ak 0

a 0

)
| a ∈ Zp

}
where k ∈ Zp and N.

Define g : M →

{(
a 0

0 0

)
| a ∈ Zp

}
by

g

a b

0 0

 =

a 0

0 0

 for all

a b

0 0

 ∈M,

and for each k ∈ Zp, define fk : M → Ek by

fk

a b

0 0

 =

ka 0

a 0

 for all

a b

0 0

 ∈M.

It is easy to check that g and fk are nonzero R-homomorphisms for all k ∈ Zp

and g, fk are also R-homomorphisms from M to N . Then N is an M -slightly

compressible module.

(iv) Let Zm and Zn be the set of all integers modulo m and n, respectively, where

m,n ∈ Z+. Then a right Z-module Zn is a Zm-slightly compressible module

for all n |m.

Proof. Letm,n ∈ Z+ be such that n |m and ϕ : Zm → Zn a Z-homomorphism.

Then we must have mϕ([1]m) = [0]n. Since n |m, all elements [y]n ∈ Zn sat-

isfy m[y]n = [my]n = [0]n. There are n−1 nonzero Z-homomorphisms, given

by [1]m 7→ [1]n, [1]m 7→ [2]n, . . ., [1]m 7→ [n − 1]n. Hence every nonzero
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submodule E of Zn, there exists a nonzero Z-homomorphism from Zm to

E.

3.2 Some Properties of M-Slightly Compressible Modules

In general, the class of slightly compressible R-modules is not closed under

taking submodules.

Example 3.2.1. [20] Let F be a field,

R =

{(
a b

0 c

)
| a, b, c ∈ F

}
and A =

{(
a b

0 0

)
| a, b ∈ F

}
.

Then A is a cyclic right R-module which is not slightly compressible.

Proof. First, A =

1 0

0 0

R. Thus A is cyclic. Let B =

{(
0 a

0 0

)
| a ∈ F

}
. Then

B ↩→ A. Next, we show that every R-homomorphism from A to B is zero. Let

f : A→ B be an R-homomorphism. Then

f

1 0

0 0

 =

0 x

0 0

 for some x ∈ F.

Since f is an R-homomorphism,0 x

0 0

 = f

1 0

0 0

 = f

1 0

0 0

1 0

0 0


=

0 x

0 0

1 0

0 0

 =

0 0

0 0

 .

Then x = 0 so that f = 0. Hence every R-homomorphism from A to B is zero.

Therefore A is not slightly compressible. But from Example 1.2[20], RR is slightly

compressible.

On the other hand, let M be a right R-module, every submodule of M -slightly

compressible module is also an M -slightly compressible module.
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Theorem 3.2.2. Let M and N be right R-modules. Then N is M-slightly com-

pressible if and only if every nonzero submodule of N is M-slightly compressible.

Proof. (⇐) It is obvious.

(⇒) Assume that N is M -slightly compressible. Let A be a nonzero submodule of

N and B a nonzero submodule of A. Then B is also a nonzero submodule of N .

There exists a nonzero R-homomorphism from M to B. Hence A is an M -slightly

compressible module.

Example 3.2.3.

(i) Let F be a field, R =

{(
a b

0 c

)
| a, b, c ∈ F

}
andAR =

{(
a b

0 0

)
| a, b ∈ F

}
.

By Example 3.2.1, RR is a slightly compressible module, i.e., RR is an RR-

slightly compressible module. Since A ↩→ RR, by Theorem 3.2.2, A is RR-

slightly compressible and every nonzero submodule of A is also an RR-slightly

compressible module.

(ii) Let Z3 be the set of all integers modulo 3,

R =

{(
a 0

0 b

)
| a, b ∈ Z3

}
, MR =

{(
a b

0 0

)
| a, b ∈ Z3

}

and NR =

{(
a 0

b 0

)
| a, b ∈ Z3

}
.

From Example 3.1.6(iii), we have N is an M -slightly compressible module.

By Theorem 3.2.2, every nonzero submodule of N is an M -slightly compress-

ible module.

Corollary 3.2.4. Let M be a right R-module. Then M is slightly compressible if

and only if every submodule of M is M-slightly compressible.

We can change from submodules to essential submodules which is shown in the

following result.

Proposition 3.2.5. Let M and N be right R-modules. Then N is M-slightly com-

pressible if and only if every essential submodule of N is M-slightly compressible.
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Proof. (⇒) From Theorem 3.2.2, we are done.

(⇐) Assume that every essential submodule of N is M -slightly compressible. Since

N is an essential submodule of N , N is an M -slightly compressible module.

Example 3.2.6. Let Z3 be the set of all integers modulo 3,

R =

{(
a b

0 c

)
| a, b, c ∈ Z3

}
, MR =

{(
a b

0 0

)
| a, b ∈ Z3

}

and AR =

{(
0 a

0 0

)
| a ∈ Z3

}
.

Clearly, only A and M are essential submodules of M . Since RR is an RR-slightly

compressible module and M is a submodule of RR, by Theorem 3.2.2, M is an

RR-slightly compressible module. By Proposition 3.2.5, A is an RR-slightly com-

pressible module.

Proposition 3.2.7. Let M , P and Q be right R-modules with P ∼= Q. If P is an

M-slightly compressible module, then Q is an M-slightly compressible module.

Proof. Assume that P is an M -slightly compressible module. Let L be a nonzero

submodule of Q. Since P ∼= Q, there exists an R-isomorphism f : Q → P and

f |L : L→ P is an R-monomorphism. Then f |L (L) ↩→ P . Since P is an M -slightly

compressible module, there exists a nonzero R-homomorphism g : M → f |L (L).

Since f |L is an R-momonorphism, the R-homomorphism f |−1
L from f |L (L) to L

exists and f |−1
L g is an R-homomorphism from M to L. Hence Q is an M -slightly

compressible module.

Example 3.2.8. Let Z3 be the set of all integers modulo 3,

R =

{(
a b

0 c

)
| a, b, c ∈ Z3

}
,MR =

{(
0 0

0 a

)
| a, b ∈ Z3

}

and AR =

{(
0 a

0 0

)
| a ∈ Z3

}
.

From Example 3.2.6, A is an RR-slightly compressible module. Define f : A→M

by

f

0 a

0 0

 =

0 0

0 a

 for all

0 a

0 0

 ∈ A.
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It is easy to check that f is an R-isomorphism so A ∼= M . By Proposition 3.2.7,

M is an RR-slightly compressible module.

Theorem 3.2.9. Let M , M ′ and N be right R-modules which N is an M-slightly

compressible module.

(i) If M is an R-epimorphic image of M ′, then N is an M ′-slightly compressible

module.

(ii) If M is an M ′-slightly compressible module, then N is also an M ′-slightly

compressible module.

Proof. (i) Assume that M is an R-epimorphic image of M ′. There exists an

R-epimorphism α from M ′ to M , so α(M ′) = M . Let A be a nonzero

submodule of N . Since N is M -slightly compressible, there exists a nonzero

R-homomorphism s from M to A. Then sα is a nonzero R-homomorphism

from M ′ to A. Therefore N is an M ′-slightly compressible module.

(ii) Assume that M is an M ′-slightly compressible module. Let A be a nonzero

submodule of N . Since N is an M -slightly compressible module, there exists

a nonzero R-homomorphism g from M to A. Since M is an M ′-slightly

compressible module, there exists a nonzero R-homomorphism g′ from M ′ to

M . Then gg′ is a nonzero R-homomorphism from M ′ to A. Hence N is an

M ′-slightly compressible module.

Example 3.2.10. Let Zp be the set of all integers modulo p where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, MR =

{(
a b

0 0

)
| a, b ∈ Zp

}

and NR =

{(
a 0

b 0

)
| a, b ∈ Zp

}
.
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From Example 3.1.6(iii), N is M -slightly compressible. Define f : R→M by

f

a 0

0 b

 =

a b

0 0

 for all

a 0

0 b

 ∈ R.

It is easy to check that f is an R-epimorphism and f (R) = M . By Theorem

3.2.9(i), M is an RR-slightly compressible module. By Theorem 3.2.9(ii), N is an

RR-slightly compressible module.

The following theorem indicates that every right R-module is an RR-slightly

compressible module.

Theorem 3.2.11. Every right R-module is an RR-slightly compressible module.

Proof. Let M be a right R-module and A a nonzero submodule of M . There exists

a ∈ Ar {0A}. Then aR ↩→ A. Define f : R→ A by

f (r) = ar for all r ∈ R.

Since M is a unital right R-module, f (1R) = a1R = a ̸= 0A, f is a nonzero R-

homomorphism from R to A. Hence M is an RR-slightly compressible module.

Example 3.2.12.

(i) Let Zp be the set of all integers modulo p where p is a prime number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
and NR =

{(
a 0

b 0

)
| a, b ∈ Zp

}
.

By Theorem 3.2.11, N is an RR-slightly compressible module.

(ii) Every right ideal of R is an RR-slightly compressible submodule of RR be-

cause every right ideal of R is a right R-module.

The following results show the characteristics of essential submodules and uni-

form submodules ofM -slightly compressible modules whereM is a right R-module.
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Theorem 3.2.13. Let M and N be right R-modules which N is M-slightly com-

pressible and A is a submodule of N .

(i) A is essential in N if and only if for each t ∈ HomR(M,N)r{0},

t(M) ∩ A ̸= 0.

(ii) A is uniform if and only if for each t ∈ HomR(M,A)r{0}, t(M) is essential

in A.

Proof. (i) (⇒) It is obvious.

(⇐) Assume that for each t ∈ HomR(M,N)r{0}, t(M) ∩ A ̸= 0. Let B be

a nonzero submodule of N . Since N is an M -slightly compressible module,

there exists a nonzero R-homomorphism s from M to B. Thus s is also a

nonzero R-homomorphism from M to N . By assumption, s(M) ∩ A ̸= 0.

Since s(M) ↩→ B, B ∩ A ̸= 0. Therefore A is essential in N .

(ii) (⇒) It is obvious.

(⇐) Assume that for each t ∈ HomR(M,A)r{0}, t(M) is essential in A. Let

B and C be nonzero submodules of A. Since N is an M -slightly compressible

module, there exists a nonzero R-homomorphism u from M to B and a

nonzero R-homomorphism v from M to C. Thus u, v are also nonzero R-

homomorphisms from M to A. By assumption, we have u(M) and v(M) are

essential in A. Then u(M) ∩ v(M) ̸= 0. Since u(M) ↩→ B and v(M) ↩→ C,

B ∩ C ̸= 0. Therefore A is uniform.

Example 3.2.14. Let Z3 be the set of all integers modulo 3,

R =

{(
a b

0 c

)
| a, b, c ∈ Z3

}
, MR =

{(
a b

0 0

)
| a, b ∈ Z3

}

and AR =

{(
0 a

0 0

)
| a ∈ Z3

}
.

(i) Since M is a right R-module by Theorem 3.2.11, M is an RR-slightly com-

pressible module. Clearly, all nonzero submodules of M are only A and M ,
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so A is essential in M . Since A is simple, for each t ∈ HomR(R,M)r{0},

t(R) = M or t(R) = A. Then t(R) ∩ A ̸= 0 for all t ∈ HomR(R,M)r{0}.

(ii) Since A is simple, A is an uniform submodule of M . Then for each t ∈

HomR(R,A)r{0}, t(R) = A and t(R) is essential in A.

Proposition 3.2.15. Let M and N be right R-modules with HomR(M,N) ̸= {0}.

Then N is a simple module if and only if N is an M-slightly compressible module

with every nonzero R-homomorphism from M to N is an R-epimorphism.

Proof. (⇒) It is obvious.

(⇐) Assume that N is a M -slightly compressible module with every nonzero R-

homomorphism from M to N is an R-epimorphism. Let A be a nonzero submodule

ofN . There exists a nonzero R-homomorphism s fromM to A so s is also a nonzero

R-homomorphism from M to N . By assumption, we have N = s(M) and hence

N = A. Therefore N is a simple module.

Example 3.2.16. Let F be a field,

R =

{(
a b

0 c

)
| a, b, c ∈ F

}
and NR =

{(
0 a

0 0

)
| a ∈ F

}
.

Clearly, NR is a simple module. Define f : R→ N by

f

a b

0 c

 =

0 c

0 0

 for all

a b

0 c

 ∈ R.

It is easy to check that f is a nonzero R-homomorphism so HomR(R,N) ̸= {0}.

By Proposition 3.2.15, N is an RR-slightly compressible module with every nonzero

R-homomorphism from R to N is an epimorphism.

Following result is a neccesary and sufficient condition for any right R-modules

to be M -slightly compressible modules where M is a right R-module.

Theorem 3.2.17. Let M and N be right R-modules. Every nonzero submodule of

N contains a nonzero M-cyclic module if and only if N is M-slightly compressible.
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Proof. (⇒) Assume that every nonzero submodule of N contains a nonzero M -

cyclic module. Let A be a nonzero submodule of N . By assumption, there exists

a nonzero submodule B of A such that B ∼= M/C for some submodule C of

M , so there exists an R-isomorphism α from M/C to B. Let πC be the natural

epimorphism of M onto M/C. Thus απC : M → B is an R-epimorphism and

απC is also a nonzero R-homomorphism from M to A. Hence N is M -slightly

compressible.

(⇐) Assume that N is M -slightly compressible. Let A be a nonzero submodule

of N . There exists a nonzero R-homomorphism s from M to A. Then s(M) is

a nonzero submodule of A. By Theorem 2.2.7, s (M) ∼= M/Ker (s), so s (M)

is a nonzero M -cyclic module. Hence every nonzero submodule of N contains a

nonzero M -cyclic module.

Example 3.2.18. Let Zp be the set of all integers modulo p where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, MR =

{(
a b

0 0

)
| a, b ∈ Zp

}

and NR =

{(
a 0

b 0

)
| a, b ∈ Zp

}
.

From Example 3.1.6(iii), N is an M -slightly compressible module. By Theorem

3.2.17, every nonzero submodule of N contains a nonzero M -cyclic module.

Corollary 3.2.19. Let M be a right R-module. Every nonzero submodule of M

contains a nonzero M-cyclic submodule of M if and only if M is slightly compress-

ible.



CHAPTER IV

M-SLIGHTLY COMPRESSIBLE INJECTIVE MODULES

In 1940, Bear[2] established a very useful test for injectivity. This test called

the Baer’s Criterion said that for any right R-module Q,

any R-homomorphism of a right ideal U of R into Q

can be extended to an R-homomorphism of R into Q

if and only if

Q is injective.

If RR satisfies the Baer Criterion, that is, any R-homomorphism of a right ideal

I of R into R can be extended to an R-homomorphism of R into R, then R is called

a right self-injective ring .

Since every right ideal of R is a right R-module and by Theorem 3.2.11, we see

that every right ideal of R is an RR-slightly compressible submodule of RR and

every RR-slightly compressible submodule of RR is a right ideal of R because every

submodule of RR is a right ideal of R. We use this fact to generalize the notion of

injectivity to M -slightly compressible injective module for a given right R-module

M .

Moreover, we investigate some properties of M -slightly compressible injective

modules and also provide examples of them.

4.1 Definition and Examples

Definition 4.1.1. Let M be a right R-module. A right R-module N is called an

M-slightly compressible injective module if every R-homomorphism from

an M -slightly compressible submodule of M to N can be extended to an R-

homomorphism from M to N .



32

In other words, given any diagram

M -slightly compressible submodule of M M

N

-i

?

g

where i is the inclusion map of an M -slightly compressible submodule of M and g

is an R-homomorphism from that M -slightly compressible submodule of M to N ,

there exists an R-homomorphism h : M → N such that the diagram

M -slightly submodule of M M

N

-i

?

g

ppppppppppppppppppppppp� h

commutes, i.e., hi = g.

Example 4.1.2. Let Zp be the set of all integers modulo p, where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, NR =

{(
0 a

0 0

)
| a ∈ Zp

}

and MR =

{(
0 0

a b

)
| a, b ∈ Zp

}
.

Then

(i) N is an RR-slightly compressible injective module,

(ii) M is an M -slightly compressible injective module.

Proof. (i) From previous chapter, RR is a slightly compressible module and by

Corollary 3.2.4, every submodule of RR is an RR-slightly compressible mod-

ule. All nonzero proper submodules of R are
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{(
a 0

0 0

)
| a ∈ Zp

}
=

1 0

0 0

R and

{(
0 0

0 a

)
| a ∈ Zp

}
=

0 0

0 1

R.

Case I : A1 :=

1 0

0 0

R
We claim that every R-homomorphism from A1 to N is zero. Let α : A1 → N

be an R-homomorphism. Then

α

1 0

0 0

 =

0 x

0 0

 for some x ∈ Zp.

Since α is an R-homomorphism,0 x

0 0

 = α

1 0

0 0


= α

1 0

0 0

1 0

0 0


=

0 x

0 0

1 0

0 0

 =

0 0

0 0

 .

Then x = 0 so that α = 0. Hence every R-homomorphism from A1 to N is

zero. Then every R-homomorphism from A1 to N can be extended to the

zero R-homomorphism from R to N .

Case II : A2 :=

0 0

0 1

R
Let α : A2 → N be an R-homomorphism. Then

α

0 0

0 1

 =

0 x

0 0

 for some x ∈ Zp.
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Define ᾱ : R→ N by

ᾱ

a 0

0 b

 =

0 xb

0 0

 for all

a 0

0 b

 ∈ R.

It is easy to check that ᾱ is an R-homomorphism from R to N and

α

0 0

0 a

 = α

0 0

0 1

0 0

0 a

 = α

0 0

0 1

0 0

0 a


=

0 x

0 0

0 0

0 a

 =

0 xa

0 0

 = ᾱ

0 0

0 a



for all

0 0

0 a

 ∈ A2. Hence ᾱiA2 = α.

Therefore N is an RR-slightly compressible injective module.

(ii) All nonzero M -slightly compressible submodules of M are

A1 :=

{(
0 0

0 a

)
| a ∈ Zp

}
=

0 0

0 1

R,

A2 :=

{(
0 0

a 0

)
| a ∈ Zp

}
=

0 0

1 0

R
and M =

0 0

1 1

R
where the R-homomorphism f1 : M → A1 defined by

f1

0 0

a b

 =

0 0

0 b

 for all

0 0

a b

 ∈M

and the R-homomorphism f2 : M → A2 defined by

f2

0 0

a b

 =

0 0

a 0

 for all

0 0

a b

 ∈M.
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Let α1 : A1 →M and α2 : A2 →M be R-homomorphisms. Then

α1

0 0

0 1

 =

0 0

a b

 for some a, b ∈ Zp,

α2

0 0

1 0

 =

0 0

c d

 for some c, d ∈ Zp.

Since α1, α2 are R-homomorphisms,0 0

a b

 = α1

0 0

0 1


= α1

0 0

0 1

0 0

0 1


=

0 0

a b

0 0

0 1

 =

0 0

0 b



and

0 0

c d

 = α2

0 0

1 0


= α2

0 0

1 0

1 0

0 0


=

0 0

c d

1 0

0 0

 =

0 0

c 0

 .

Then a = 0, d = 0 so that

α1

0 0

0 1

 =

0 0

0 b

 and α2

0 0

1 0

 =

0 0

c 0

 .

We define ᾱ1 : M →M by

ᾱ1

0 0

x y

 =

0 0

0 by

 for all

0 0

x y

 ∈M
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and define ᾱ2 : M →M by

ᾱ2

0 0

x y

 =

 0 0

cx 0

 for all

0 0

x y

 ∈M.

Then ᾱ1 and ᾱ2 are R-homomorphisms from M to M .

Thus α1

0 0

0 x

 = α1

0 0

0 1

0 0

0 x

 = α1

0 0

0 1

0 0

0 x


=

0 0

0 b

0 0

0 x

 =

0 0

0 bx

 = ᾱ1

0 0

0 x



and α2

0 0

x 0

 = α2

0 0

1 0

x 0

0 0

 = α2

0 0

1 0

x 0

0 0


=

0 0

c 0

x 0

0 0

 =

 0 0

cx 0

 = ᾱ2

0 0

x 0



for all

0 0

0 x

 ∈ A1 and

0 0

x 0

 ∈ A2. Hence ᾱ1iA1 = α1 and ᾱ2iA2 = α2.

Therefore M is an M -slightly compressible injective module.

4.2 Some Properties of M-Slightly Compressible Injective

Modules

This section is concerned with M -slightly compressible injective modules and

the main properties of these modules are derived in this section.

Proposition 4.2.1. Let M, N and K be right R-modules with N ∼= K. If N is

an M-slightly compressible injective module, then K is an M-slightly compressible

injective module.

Proof. Assume that N is an M -slightly compressible injective module. Let A be
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an M -slightly compressible submodule of M and α an R-homomorphism from A

to K. Since N ∼= K, there exists an R-isomorphism β from K to N . Then βα is an

R-homomorphism from A to N . Since N is an M -slightly compressible injective

module, there exists an R-homomorphism γ from M to N such that γiA = βα

where iA is the inclusion map. We choose ᾱ = β−1γ, so ᾱiA = β−1γiA = β−1βα =

α. Hence K is an M -slightly compressible injective module.

Example 4.2.2. Let Zp be the set of all integers modulo p, where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, NR =

{(
0 a

0 0

)
| a ∈ Zp

}

and MR =

{(
0 0

0 a

)
| a, b ∈ Zp

}
.

From Example 4.1.2, N is an RR-slightly compressible injective module. Define

α : N →M by

α

0 a

0 0

 =

0 0

0 a

 for all

0 a

0 0

 ∈ N.

It is clear that α is an R-isomorphism, so M ∼= N . By Proposition 4.2.1, M is also

an RR-slightly compressible injective module.

Proposition 4.2.3. Let M be a right R-module. If M is a simple module, then

every right R-module is M-slightly compressible injective.

Proof. Suppose that M is a simple module. Then there is only one M -slightly

compressible submodule of M , i.e., M . Hence every right R-module is M -slightly

compressible injective.

Example 4.2.4. Let Z be the set of all integers and Zp the set of all integers

modulo p, where p is a prime number. Since Zp is a simple Z-module, every right

Z-module is Zp-slightly compressible injective.

Next result is concerned with the necessary condition for an M -slightly com-

pressible submodule of M is an M -slightly compressible injective module.
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Proposition 4.2.5. Let M be a right R-module and N an M-slightly compressible

submodule of M . If N is an M-slightly compressible injective module, then N is a

direct summand of M .

Proof. Assume thatN is anM -slightly compressible injective module. There exists

α : M → N such that αiN = IN where IN is the identity map. By Lemma 2.2.11

(i), the short exact sequence

0→ N
iN−→M

πN−→M/N → 0

splits where πN is the canonical projection of M onto M/N and iN is the inclusion

map. Therefore N is a direct summand of M .

Example 4.2.6. Let Zp be the set of all integers modulo p, where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
and MR =

{(
0 0

0 a

)
| a ∈ Zp

}
.

From Theorem 3.2.11, RR is an RR-slightly compressible module. Since M ↩→ RR,

by Theorem 3.2.2, M is an RR-slightly compressible submodule of RR. From

Example 4.2.2, M is an RR-slightly compressible injective module. By Proposition

4.2.5, M⊂⊕−−−−>RR.

On the other hand, the converse of Proposition 4.2.5 is not true in general, for

example, in the Z-module Z, we know that ZZ is indecomposable so only 0 and ZZ

are direct summands of ZZ and ZZ is a ZZ-slightly compressible submodule of ZZ

but ZZ is not ZZ-slightly compressible injective.

Indeed, mZZ is a ZZ-slightly compressible submodule of ZZ where m ∈ Zr{0},

let f : mZ→ Z be the Z-homomorphism defined by f(ma) = a for all ma ∈ mZ.

Suppose there is a Z-homomorphism δ : Z→ Z which extends f . Then

1 = f(m) = δ(i(m)) = δ(m) = mδ(1),

which cannot hold. Therefore ZZ is not ZZ-slightly compressible injective.
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Theorem 4.2.7. Let M and N be right R-modules and A⊂⊕−−−−>N . If N is an M-

slightly compressible injective module, then A and N/A are M-slightly compressible

injective modules.

Proof. Assume that N is an M -slightly compressible injective module.

(i) Claim that A is an M -slightly compressible injective module. Let B be an

M -slightly compressible submodule of M and α an R-homomorphism from

B to A. Since A⊂⊕−−−−>N , the short exact sequence

0→ A
iA−→ N

πA−→ N/A→ 0

splits where iA is the inclusion map and πA is the canonical projection of

N onto N/A. By Lemma 2.2.11(i), there exists an R-homomorphism f ′ :

N → A with f ′iA = IA where IA is the identity map on A. Since N is an

M -slightly compressible injective module, there exists f : M → N such that

fiB = iAα where iB : B → M is the inclusion map. Let ᾱ = f ′f . Then

ᾱiB = f ′fiB = f ′iAα = IAα = α. Hence A is an M -slightly compressible

injective module.

(ii) Claim thatN/A is anM -slightly compressible injective module. SinceA⊂⊕−−−−>N ,

there exists A′ ↩→ N such that N = A⊕A′ so A′⊂⊕−−−−>N and A′ ∼= N/A. From

(i), A′ is an M -slightly compressible injective module. By Proposition 4.2.1,

N/A is an M -slightly compressible injective module.

Example 4.2.8. Let Zp be the set of all integers modulo p, where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, MR =

{(
0 0

0 a

)
| a ∈ Zp

}

and NR =

{(
a 0

0 0

)
| a ∈ Zp

}
.
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We want to show that M , N , R/M and R/N are RR-slightly compressible injective

modules.

Proof. First, we claim that RR is an RR-slightly compressible injective module.

By Theorem 3.2.11, RR is an RR-slightly compressible module so all nonzero RR-

slightly compressible submodules of RR are N , M and RR. Let α1 : N → R and

α2 : M → R be R-homomorphisms. Then

α1

1 0

0 0

 =

a 0

0 b

 for some a, b ∈ Zp,

α2

0 0

0 1

 =

c 0

0 d

 for some c, d ∈ Zp.

Since α1, α2 are R-homomorphisms,a 0

0 b

 = α1

1 0

0 0


= α1

1 0

0 0

1 0

0 0


=

a 0

0 b

1 0

0 0

 =

a 0

0 0



and

c 0

0 d

 = α2

0 0

0 1


= α2

0 0

0 1

0 0

0 1


=

c 0

0 d

0 0

0 1

 =

0 0

0 d

 .

Then b = 0, c = 0 so that

α1

1 0

0 0

 =

a 0

0 0

 and α2

0 0

0 1

 =

0 0

0 d

 .
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We define ᾱ1 : R→ R by

ᾱ1

x 0

0 y

 =

ax 0

0 0

 for all

x 0

0 y

 ∈ R

and define ᾱ2 : R→ R by

ᾱ2

x 0

0 y

 =

0 0

0 dy

 for all

x 0

0 y

 ∈ R.

Then ᾱ1 and ᾱ2 are R-homomorphisms from R to R and

α1

x 0

0 0

 = α1

1 0

0 0

x 0

0 0

 = α1

1 0

0 0

x 0

0 0


=

a 0

0 0

x 0

0 0

 =

ax 0

0 0

 = ᾱ1

x 0

0 0



and α2

0 0

0 x

 = α2

0 0

0 1

0 0

0 x

 = α2

0 0

0 1

0 0

0 x


=

0 0

0 d

0 0

0 x

 =

0 0

0 dx

 = ᾱ2

0 0

0 x



for all

x 0

0 0

∈ N and

0 0

0 x

∈M . Hence ᾱ1iN = α1 and ᾱ2iM = α2. Therefore

RR is an RR-slightly compressible injective module. By Example 4.2.6, M⊂⊕−−−−>RR,

so N⊂⊕−−−−>RR. By Theorem 4.2.7, M , N , R/M and R/N are RR-slightly compressible

injective modules.

Theorem 4.2.9. Let M, N be right R-modules and A an M-slightly compressible

submodule of M . If N is an M-slightly compressible injective module, then N is

A-slightly compressible injective.

Proof. Assume that N is an M -slightly compressible injective module. Let B be

an A-slightly compressible submodule of A and α an R-homomorphism from B to
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N . Since A is an M -slightly compressible submodule of M , by Theorem 3.2.2, B

is an M -slightly compressible submodule of M . There exists ᾱ : M → N such that

ᾱiB = α. Then we choose ᾱ|A : A→ N which extends α.

Example 4.2.10. Let Zp be the set of all integers modulo p, where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
and NR =

{(
0 a

0 0

)
| a ∈ Zp

}
.

From Example 4.1.2(i), N is an RR-slightly compressible injective module and

A :=

1 0

0 0

R is an RR-slightly compressible submodule of RR. By Theorem

4.2.9, N is an A-slightly compressible injective module.

The converse of Theorem 4.2.9 is not true in general, for example, let Zp and

Zp2 be the set of all integers modulo p and p2, respectively, where p is a prime

number.

Let R = Z, N = Zp and A = {[0]p2 , [p]p2 , [2p]p2 , . . . , [(p − 1)p]p2}. Thus A is

a Zp2-slightly compressible submodule of Zp2 because there is a Z-homomorphism

γ : Zp2 → A given by

γ ([n]p2) = [np]p2

for all [n]p2 ∈ Zp2 . Clearly, A is simple by Proposition 4.2.3, Zp is A-slightly

compressible injective but Zp is not Zp2-slightly compressible injective because any

Z-homomorphism λ : Zp2 → Zp satisfies λ (A) = 0.

Theorem 4.2.11. Let Q be a right R-module. Then Q is injective if and only if

Q is RR-slightly compressible injective.

Proof. (⇒) It is obvious.

(⇐) Assume that Q is an RR-slightly compressible injective module. We claim

that Q is injective by using the Baer’s Criterion that is, we show that any R-

homomorphism of a right ideal U of R into Q can be extended to an R-homomor-

phism of R into Q. Let U be a right ideal of R and α an R-homomorphism from



43

U to Q. From Example 2.1.2(iii), U is a right R-module. By Theorem 3.2.11, U

is an RR-slightly compressible submodule of RR. Then α can be extened to an

R-homomorphism from R into Q. By Baer’s Criterion, Q is injective.

Example 4.2.12. Let Zp be the set of all integers modulo p, where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
and NR =

{(
0 a

0 0

)
| a ∈ Zp

}
.

From Example 4.1.2(i), N is an RR-slightly compressible injective module. By

Theorem 4.2.11, N is an injective right R-module.

Corollary 4.2.13. RR is an RR-slightly compressible injective module if and only

if R is a right self-injective ring.

4.3 Relationship between M-Slightly Compressible and

M-Principally Injective Modules

Recall that a rightR-moduleM is called principally injective (or p-injective)

if, every R-homomorphism from a principal right ideal of R to M can be extended

to an R-homomorphism from R to M .

If RR is an injective module, then RR is a principally injective module. By

Theorem 4.2.11, an RR-slightly compressible injective module implies a princi-

pally injective module.

In 1999, Sanh and his group[19] introduced the notion of M -principally injec-

tive module which extended from principally injective module.

In this section, we study relationship between M -slightly compressible injective

modules and M -principally injective modules where M is a right R-module.

Recall that a right R-module N is called M-cyclic if it is isomorphic to M/L

for some submodule L of M .

Definition 4.3.1. [19] Let M be a right R-module. A right R-module N is called

an M-principally injective module if every R-homomorphism from an M -
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cyclic submodule of M to N can be extended to an R-homomorphism from M to

N .

In other words, given any diagram

M -cyclic submodule of M M

N

-i

?

g

where i is the inclusion map of an M -cyclic submodule of M and g is an R-

homomorphism from that M -cyclic submodule of M to N , there exists an R-

homomorphism g′ : M → N such that the diagram

M -cyclic submodule of M M

N

-i

?

g

pppppppppppppppppppppp� g′

commutes, i.e., g′i = g.

Note that every principally injective module is an RR-principally injective mod-

ule so an RR-slightly compressible injective module implies an RR-principally in-

jective module. However, in case MR ̸= RR, an MR-slightly compressible injective

module may not be an MR-principally injective module.

Example 4.3.2. Let Z2 be the set of all integers modulo 2,

R =


Z2 Z2 Z2

0 Z2 Z2

0 0 Z2

 :=


a b c

0 d e

0 0 f

 | a, b, c, d, e, f ∈ Z2

,

MR =


Z2 Z2 Z2

0 Z2 Z2

0 0 0

 :=


a b c

0 d e

0 0 0

 | a, b, c, d, e ∈ Z2

,
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and NR =


0 Z2 Z2

0 0 0

0 0 0

 :=


0 a b

0 0 0

0 0 0

 | a, b ∈ Z2

 .

We claim that

(i) N is an M -slightly compressible injective module, but

(ii) N is not an M -principally injective module.

Proof. (i) Note that all nonzero submodules of M are
0 0 Z2

0 0 0

0 0 0

 =


0 0 1

0 0 0

0 0 0

R, Ek :=


0 0 k

0 0 1

0 0 0

R where k ∈ Z2,


0 Z2 Z2

0 0 0

0 0 0

 ,


0 0 Z2

0 0 Z2

0 0 0

 ,


0 0 0

0 Z2 Z2

0 0 0

 ,


0 0 Z2

0 Z2 Z2

0 0 0

,


Z2 Z2 Z2

0 0 0

0 0 0

 ,


0 Z2 Z2

0 0 Z2

0 0 0

 ,


0 Z2 Z2

0 Z2 Z2

0 0 0

 ,


Z2 Z2 Z2

0 0 Z2

0 0 0

,



0 a b

0 a b

0 0 0

 | a, b ∈ Z2

 and M .

It is clear that E ′ :=


0 0 Z2

0 0 0

0 0 0

 , and Ek :=


0 0 k

0 0 1

0 0 0

R are simple right

R-modules for all k ∈ Z2. First, we claim that E ′ and Ek are not M -cyclic

submodules of M for all k ∈ Z2, that is, every R-homomorphism from M to

E ′ and every R-homomorphism from M to Ek are zero for all k ∈ Z2.

Step I : Claim that every R-homomorphism from M to E ′ is zero.

Let f : M → E ′ be an R-homomorphism. Then
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f



1 0 0

0 1 0

0 0 0


 =


0 0 x

0 0 0

0 0 0

 for some x ∈ Z2.

Since f is an R-homomorphism,
0 0 x

0 0 0

0 0 0

 = f



1 0 0

0 1 0

0 0 0


 = f



1 0 0

0 1 0

0 0 0



1 0 0

0 1 0

0 0 0




=


0 0 x

0 0 0

0 0 0



1 0 0

0 1 0

0 0 0

 =


0 0 0

0 0 0

0 0 0

 .

Then x = 0, and f : M → E ′ is the zero R-homomorphism. Hence every

R-homomorphism from M to E ′ is zero.

Step II : Claim that every R-homomorphism from M to Ek is zero for all

k ∈ Z2. Let k ∈ Z2 and f : M → Ek be an R-homomorphism. Then

f



1 0 0

0 1 0

0 0 0


 =


0 0 kx

0 0 x

0 0 0

 for some x ∈ Z2.

Since f is an R-homomorphism,
0 0 kx

0 0 x

0 0 0

 = f



1 0 0

0 1 0

0 0 0


 = f



1 0 0

0 1 0

0 0 0



1 0 0

0 1 0

0 0 0




= f



1 0 0

0 1 0

0 0 0




1 0 0

0 1 0

0 0 0



=


0 0 kx

0 0 x

0 0 0



1 0 0

0 1 0

0 0 0

 =


0 0 0

0 0 0

0 0 0

 .
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Then x = 0 so that f : M → Ek is the zero R-homomorphism. Hence every
R-homomorphism from M to Ek is zero for all k ∈ Z2. Since

E ′ is a submodule of


0 Z2 Z2

0 0 0

0 0 0

 ,


0 0 Z2

0 0 Z2

0 0 0

 ,


Z2 Z2 Z2

0 0 0

0 0 0

 ,


0 Z2 Z2

0 0 Z2

0 0 0

,


0 0 Z2

0 Z2 Z2

0 0 0

,


0 Z2 Z2

0 Z2 Z2

0 0 0

 and


Z2 Z2 Z2

0 0 Z2

0 0 0

,

E0 =


0 0 0

0 0 Z2

0 0 0

 ↩→


0 0 0

0 Z2 Z2

0 0 0

,

and E1 =



0 0 b

0 0 b

0 0 0

 | b ∈ Z2

 ↩→



0 a b

0 a b

0 0 0

 | a, b ∈ Z2

,

every nonzero submodule of M is not an M -slightly compressible submodule

of M . Hence N is an M -slightly compressible injective module.

(ii) First, we show that NR =


0 Z2 Z2

0 0 0

0 0 0

 is an M -cyclic submodule of M .

Define f : M → N by

f



x y z

0 w u

0 0 0


 =


0 w u

0 0 0

0 0 0

 for all


x y z

0 w u

0 0 0

 ∈M.

It is clear that f is an R-homomorphism. Next, we show that f is onto.

Let


0 a b

0 0 0

0 0 0

 ∈ N where a, b ∈ Z2. We choose


0 0 0

0 a b

0 0 0

 ∈M . Then
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f



0 0 0

0 a b

0 0 0


 =


0 a b

0 0 0

0 0 0

 .

Then f is an R-epimorphism, i.e., f(M) = N so N is an M -cyclic submodule

of M . Next, we claim that there exists a nonzero R-homomorphism α from

N to N such that ᾱiN ̸= α for all ᾱ ∈ HomR(M,N). We choose α = IN , the

identity map on N , and we show that ᾱiN ̸= IN for all ᾱ ∈ HomR(M,N).

Let ᾱ ∈ HomR(M,N). Then

ᾱ



1 0 0

0 1 0

0 0 0


 =


0 a b

0 0 0

0 0 0

 for some a, b ∈ Z2.

Then ᾱ



x y z

0 w u

0 0 0


 = ᾱ



1 0 0

0 1 0

0 0 0



x y z

0 w u

0 0 0




= ᾱ



1 0 0

0 1 0

0 0 0




x y z

0 w u

0 0 0



=


0 a b

0 0 0

0 0 0



x y z

0 w u

0 0 0

 =


0 aw au

0 0 0

0 0 0



for all


x y z

0 w u

0 0 0

 ∈M so ᾱ



0 y z

0 0 0

0 0 0


 =


0 0 0

0 0 0

0 0 0



for all


0 y z

0 0 0

0 0 0

 ∈ N . Hence ᾱiN = 0 ̸= IN for all ᾱ ∈ HomR(M,N).

Therefore, N is not an M -principally injective module.
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In the following example, we can show that an M -principally injective module

may not be an M -slightly compressible injective module.

Example 4.3.3 ([15], Example 6.6 (Clark Example)). Let D be a discrete

valuation ring, that is a commutative integral domain with ideal lattice

0 ⊂ · · · ⊂ pnD ⊂ · · · ⊂ p2D ⊂ pD ⊂ D.

[For example, D = Z(p) = {
a

b
∈ Q | p - b} is the ring of integers localized at the

prime p where p is a prime number or D = F [x] is the set of all polynomials over

F where F is a field (we take p = x)]. Let U be the group of units of D. Then

pn+1D − pnD = pnU and the field of quotients is Q =
{
upk | k ∈ Z and u ∈ U

}
.

Define VD = Q/D and vm = p−m + D ∈ V,m ≥ 0 (so v0 = 1 + D = 0). Then

pvk = vk−1 for each k ≥ 1. Let R be the trivial extension of D by V that is

R = D⊕V where the multiplication is defined by (d+v)(d′+v′) = dd′+(dv′+d′v)

for all d + v, d′ + v′ ∈ R. Then Rvm = R(0 + vm) = 0 ⊕ Dvm for all m ≥ 0 and

Rpn = R(pn + 0) = Dpn ⊕ V for all n ≥ 0 because V = pnV . Then R is a

commutative ring with ideal lattice

0 = v0R ⊂ v1R ⊂ v2R ⊂ · · · ⊂ V ⊂ · · · ⊂ p2R ⊂ pR ⊂ R,

where p and vi, i ≥ 0 satisfy pvk = vk−1 for all k ≥ 1 and V is the only nonprincipal

ideal. But V is not finitely generated because V =
∑

m vmR = ∪mvmR. However,

R is p-injective; indeed every ideal is an annihilator. In fact one verifies that

vmR = r(pmR) and pmR = r(vmR) for all m ≥ 0 and r(V ) = V.

However, R is not self-injective. Indeed γ : V → R is well-defined by

γ(0 + vmd) = 0 + vm−1d

because vmp = vm−1. Then γ is an R-homomorphism but γ cannot be extended
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to an R-homomorphism from R to R. Then R is not self-injective. Since every

principal right ideal of R can be considered as a homomorphic image of R and vice

versa, RR is an RR-principally injective module. By Corollary 4.2.13, R is right

self-injective ring if and only if RR is an RR-slightly compressible injective module,

then RR is not RR-slightly compressible injective but is RR-principally injective.

In fact, M -slightly compressible submodules of M and M -cyclic submodules of

M are different where M is a right R-module, that is, M -cyclic submodules of M

may not be M -slightly compressible submodules of M , for example, let F be a

field, R =

{(
a b

0 c

)
| a, b, c ∈ F

}
, MR =

{(
a b

0 0

)
| a, b ∈ F

}
. From Example

3.2.1, M is not an M -slightly compressible submodule of M but M is an M -cyclic

submodule of M because IM(M) = M where IM is the identity map on M .

On the other hand, M -slightly compressible submodules of M may not be M -

cyclic submodules of M , for example, let Zp be the set of all integers modulo p

where p is a prime number,

R =

{(
a b

0 c

)
| a, b, c ∈ Zp

}
and NR =

{(
0 a

0 b

)
| a, b ∈ Zp

}
.

By Theorem 3.2.11, N is an RR-slightly compressible submodule of RR.

Since any RR-cyclic submodule of RR can be considered as the image of an

endomorphism of RR, we will show that every R-homomorphism from R to N is

not onto. Suppose there exists an R-epimorphism α from R to N . Then

α

1 0

0 1

 =

0 x

0 y

 for some x, y ∈ Zp r {0} .

Let

0 a

0 b

 ∈ Nr0.

Case I : a ̸= b.

Since α is onto, there exists

m n

0 q

 ∈ R such that α

m n

0 q

 =

0 a

0 b

 .

Since α is an R-homomorphism,
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0 a

0 b

 = α

m n

0 q

 = α

1 0

0 1

m n

0 q


=

0 x

0 y

m n

0 q

 =

0 qx

0 qy

 .

Then qx = a ̸= b = qy, q ̸= 0 and x ̸= y.

Case II : a = b.

Since α is onto, there exists

m n

0 q

 ∈ R such that α

m n

0 q

 =

0 a

0 b

 .

Since α is an R-homomorphism,0 a

0 b

 = α

m n

0 q

 = α

1 0

0 1

m n

0 q


=

0 x

0 y

m n

0 q

 =

0 qx

0 qy

 .

Then qx = a = b = qy but a, b, x, y ̸= 0 so q ̸= 0 and x = y.

From two cases, α is not well-defined, which is a contradiction. Then N is not the

image of any endomorphisms of RR. Hence N is not an RR-cyclic submodule of

RR.

Moreover, we find a right R-module M which makes M -slightly compressible

injective modules and M -principally injective modules be the same.

In 2009, Ghorbani and Vedadi[5] introduced the concept of epi-retractable mod-

ule. A right R-module M is called epi-retractable if every submodule of MR is

a homomorphic image of M .

Theorem 4.3.4. Let M be an epi-retractable right R-module and N a right-R-

module. Then N is an M-slightly compressible injective module if and only if N

is an M-principally injective module.

Proof. (⇒) Assume that N is an M -slightly compressible injective module. Let A
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be an M -cyclic submodule of M and α an R-homomorphism from A to N . Since

submodules of A are also submodules of M , we have that every submodule of A is

a homomorphic image of M . By Theorem 3.2.17, A is an M -slightly compressible

submodule of M . Thus α can be extended to an R-homomorphism from M to N .

Therefore N is an M -principally injective module.

(⇐) Assume that N is an M -principally injective module. Let A be an M -

slightly compressible submodule of M and α : A → N an R-homomorphism.

By assumption, A is an M -cyclic submodule of M . Then α can be extended to

an R-homomorphism from M to N . Therefore N is an M -slightly compressible

injective module.

Example 4.3.5. Let Zp be the set of all integers modulo p where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, NR =

{(
0 a

0 0

)
| a ∈ Zp

}

and MR =

{(
0 0

a b

)
| a, b ∈ Zp

}
.

By Example 3.1.4(ii), RR is an epi-retractable module and by Example 4.1.2(ii),

M is an epi-retractable module, then

(i) from Example 4.1.2, N is an RR-slightly compressible injective module. By

Theorem 4.3.4, N is an RR-principally injective module,

(ii) from Example 4.1.2, M is an M -slightly compressible injective module. By

Theorem 4.3.4, M is an M -principally injective module.

Corollary 4.3.6. [9] If QR is injective, then it is divisible, i.e., it is a p-injective

module. The converse holds if R is a principal right ideal ring, that is, a right in

which all right ideals are principal.

Recall in [1], a right R-module M is called semisimple if every submodule of

M is a direct summand of M .
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Theorem 4.3.7. Let M be a semisimple right R-module and N a right R-module.

Then N is an M-slightly compressible injective module if and only if N is an

M-principally injective module.

Proof. (⇒) Assume that N is an M -slightly compressible injective module. Let A

be an M -cyclic submodule of M and α an R-homomorphism from A to N . Since

submodules of A are also submodules of M , we have that every submodule of A

is a direct summand of M . Then every submodule of A is an M -cyclic submodule

of M . By Thorem 3.2.17, A is an M -slightly compressible submodule of M . Thus

α can be extended to an R-homomorphism from M to N . Therefore N is an M -

principally injective module.

(⇐) Assume that N is an M -principally injective module. Let A be an M -slightly

compressible submodule of M and α an R-homomorphism from A to N . By

assumption, A is a direct summand of M so A is an M -cyclic submodule of M .

Then α can be extended to an R-homomorphism from M to N . Therefore N is

an M -slightly compressible injective module.

Example 4.3.8. Let Z3 be the set of all integers modulo 3,

R =

Z3 Z3

0 Z3

 =

{(
a b

0 c

)
| a, b, c ∈ Z3

}
,

IR =

0 Z3

0 0

 =

{(
0 a

0 0

)
| a ∈ Z3

}
,

and MR =

0 Z3

0 Z3

 =

{(
0 a

0 b

)
| a, b ∈ Z3

}
.

Then R/I and M/I are right R-modules. We claim that R/I is a semisimple right

R-module, that is, every nonzero submodule of R/I is a direct summand of R/I.

Proof. All nonzero submodules of R/I are

E ′/I =

Z3 Z3

0 0

 /I, Ek/I =

0 k

0 1

R
 /I where k ∈ Z3,

M/I =

0 Z3

0 Z3

 /I and R/I.
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It is clear that E ′/I and Ek/I are simple modules for all k ∈ Z3. Next, we claim

that E ′/I, Ek/I and M/I are direct summands of R/I for all k ∈ Z3.

Case I : E ′/I.

Define s′ : R/I → E ′/I by

s′

a b

0 c

+ I

 =

a b

0 0

+ I for all

a b

0 c

+ I ∈ R/I.

It is easy to show that s′ is an R-homomorphism. Next, we will show that s′iE′/I =

IE′/I . Let

a b

0 0

+ I ∈ E ′/I where a, b ∈ Z3. Then

s′

a b

0 0

+ I

 =

a b

0 0

+ I = IE′/I

a b

0 0

+ I

 .

Thus s′ is an R-epimorphism and s′iE′/I = IE′/I , by Lemma 2.2.12, E ′/I is a direct

summand of R/I.

Case II : Ek/I where k ∈ Z3.

For each k ∈ Z3, define sk : R/I → Ek/I by

sk

a b

0 c

+ I

 =

0 kc

0 c

+ I for all

a b

0 c

+ I ∈ R/I.

It is easy to show that sk is an R-homomorphism for all k ∈ Z3. Next, we will

show that skiEk/I = IEk/I . Let

0 ka

0 a

+ I ∈ Ek/I where a ∈ Z3. Then

sk

0 ka

0 a

+ I

 =

0 ka

0 a

+ I = IEk/I

0 ka

0 a

+ I

 .

Thus sk is an R-epimorphism and skiEk/I = IEk/I for all k ∈ Z3, by Lemma 2.2.12,

Ek/I is a direct summand of R/I for all k ∈ Z3.
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Case III : M/I.

Define s′′ : R/I →M/I by

s′′

1 0

0 1

+ I

 =

0 a

0 1

+ I for some a ∈ Z3.

Then s′′

x y

0 z

+ I

 =

0 az

0 z

+ I for all

x y

0 z

+ I ∈ R/I. It is easy to

show that s′′ is an R-homomorphism. Next, we will show that s′′iM/I = IM/I . Let0 x

0 y

+ I ∈M/I. Then

s′′

0 x

0 y

+ I

 =

0 ay

0 y

+ I =

0 x

0 y

+ I = IM/I

0 x

0 y

+ I


because

0 ay

0 y

−
0 x

0 y

 ∈ I. Thus s′′ is an R-epimorphism and s′′iM/I = IM/I ,

by Lemma 2.2.12, M/I is a direct summand of R/I. Hence R/I is a semisimple

right R-module.

Finally, we claim that M/I is a R/I-principally injective module.

Case I : E ′/I.

We claim that every R-homomorphism from E ′/I to M/I is zero.

Let s′ be an R-homomorphism from E ′/I to M/I. Then

s′

1 0

0 0

+ I

 =

0 x

0 y

+ I for some x, y ∈ Z3.

Since s′ is an R-homomorphism,0 x

0 y

+ I = s′

1 0

0 0

+ I

 = s′

1 0

0 0

1 0

0 0

+ I


= s′

1 0

0 0

+ I

1 0

0 0

 =

0 x

0 y

+ I

1 0

0 0


=

0 0

0 0

+ I = I.
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Then y = 0 and then s′ = 0. Then every R-homomorphism from E ′/I to M/I is

zero. Then we are done in this case.

Case II : Ek/I where k ∈ Z3.

We claim that every R-homomorphism from Ek/I to M/I can be extended to an

R-homomorphism from R/I to M/I.

Let k ∈ Z3 and sk be an R-homomorphism from Ek/I to M/I. Then

sk

0 k

0 1

+ I

 =

0 xk

0 yk

+ I for some xk, yk ∈ Z3.

Then for

0 bk

0 k

+ I ∈ Ek/I, we have

sk

0 bk

0 k

+ I

 = sk

0 k

0 1

0 0

0 b

+ I


= sk

0 xk

0 yk

+ I

0 0

0 b

 =

0 xkb

0 ykb

+ I.

Then we choose s̄k : R/I →M/I defined by

s̄k

a b

0 c

+ I

 =

0 kykc

0 ykc

+ I for all

a b

0 c

+ I ∈ R/I.

It is easy to show that s̄k is an R-homomorphism. Next, we claim that s̄kiEk/I = sk.

Let

0 bk

0 b

+ I ∈ Ek/I where b ∈ Z3. Then

s̄k

0 bk

0 b

+ I

 =

0 kykb

0 ykb

+ I =

0 xkb

0 ykb

+ I = sk

0 bk

0 b

+ I



because

0 kykb

0 ykb

−
0 xkb

0 ykb

 ∈ I. Then every R-homomorphism from Ek/I

to M/I can be extended to an R-homomorphism from R/I to M/I.

Case III : M/I.

We claim that every R-homomorphism from M/I to M/I can be extended to an
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R-homomorphism from R/I to M/I.

Let α : M/I →M/I be an R-homomorphism. Define s′′ : R/I →M/I by

s′′

1 0

0 1

+ I

 =

0 a

0 1

+ I for some a ∈ Z3.

Then s′′

x y

0 z

+ I

 =

0 az

0 z

+ I for all

x y

0 z

+ I ∈ R/I. It is easy to

show that s′′ is an R-homomorphism. We choose ᾱ = αs′′. Next, we claim that

ᾱiM/I = α. Let

0 x

0 y

+ I ∈M/I where x, y ∈ Z3. Then

ᾱ

0 x

0 y

+ I

 = αs′′

0 x

0 y

+ I

 = α

s′′

0 x

0 y

+ I


= α

0 ay

0 y

+ I

 = α

0 x

0 y

+ I



because

0 ay

0 y

+ I =

0 x

0 y

+ I and α is an R-homomorphism. Then every

R-homomorphism from M/I to M/I can be extended to an R-homomorphism

from R/I to M/I. Thus M/I is an R/I-principally injective module and R/I is

a semisimple module by Theorem 4.3.7, M/I is also an R/I-slightly compressible

injective module.



CHAPTER V

SUB-M-PRINCIPALLY INJECTIVE MODULES

From Chapter IV, the notion of M -slightly compressible injective modules and

M -principally injective modules are different, that is, there exists a right R-module

M ,

M -principally injective module ; M -slightly compressible injective module

M -principally injective module : M -slightly compressible injective module.

In this chapter, we introduce the notion of sub-M -principally injective modules

which implies M -slightly compressible injective modules and M -principally injec-

tive modules seen in Proposition 5.3.2 and Proposition 5.3.1, respectively.

Moreover, we study some properties of sub-M -principally injective modules and

relationship between sub-M -principally injective modules, M -principally injective

modules and M -slightly compressible injective modules and also provide examples

of them.

5.1 Definition and Examples

Definition 5.1.1. Let M be a right R-module. A right R-module N is called a

sub-M-principally injective module if for any nonzero submodule A of M,

every R-homomorphism from A-cyclic submodule of A to N can be extended to

an R-homomorphism from M to N .

Example 5.1.2. Let Zp be the set of all integers modulo p where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, NR =

{(
0 a

0 0

)
| a ∈ Zp

}
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and MR =

{(
0 0

a b

)
| a, b ∈ Zp

}
.

Then

(i) N is a sub-RR-principally injective module,

(ii) M is a sub-M -principally injective module.

Proof. (i) All nonzero submodules of R are

A :=

{(
a 0

0 0

)
| a ∈ Zp

}
, B :=

{(
0 0

0 a

)
| a ∈ Zp

}
and R.

Then A and B are simple right R-modules so A is the only one A-cyclic

submodule of A and B is the only one B-cyclic submodule of B. Next, we

show that A and B are RR-cyclic submodules of R. Define f1 : R→ A by

f1

a 0

0 b

 =

a 0

0 0

 for all

a 0

0 b

 ∈ R,

and define f2 : R→ B by

f2

a 0

0 b

 =

0 0

0 b

 for all

a 0

0 b

 ∈ R.

It is easy to check that f1 and f2 are R-epimorphisms. Then A and B are

RR-cyclic submodules of R. Similarly in the proof of Example 4.1.2(i), we

can conclude that N is a sub-RR-principally injective module.

(ii) Similarly in the proof of Example 4.1.2(ii), we can conclude that M is a

sub-M -principally injective module.
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5.2 Some Properties of Sub-M-Principally Injective

Modules

This section is concerned with sub-M -principally injective modules and the

main properties of these modules are derived in this section.

Proposition 5.2.1. Let M, N and K be right R-modules with N ∼= K. If N

is a sub-M-principally injective module, then K is a sub-M-principally injective

module.

Proof. Assume that N is a sub-M -principally injective module. Let A be a sub-

module of M, B an A-cyclic submodule of A and α an R-homomorphism from B

to K. Since N ∼= K, there exists an R-isomorphism β from K to N . Then βα is an

R-homomorphism from B to N . Since N is a sub-M -principally injective module,

there exists an R-homomorphism γ from M to N such that γiB = βα where iB is

the inclusion map. We choose ᾱ = β−1γ, so ᾱiB = β−1γiB = β−1βα = α. Hence

K is a sub-M -principally injective module.

Example 5.2.2. Let Zp be the set of all integers modulo p where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, NR =

{(
0 a

0 0

)
| a ∈ Zp

}

and AR =

{(
0 0

0 a

)
| a ∈ Zp

}
.

From Example 5.1.2(i), N is sub-RR-principally injective. Define α : N → A by

α

0 a

0 0

 =

0 0

0 a

 for all

0 a

0 0

 ∈ N.

It is clear that α is an R-isomorphism so N ∼= A. Hence A is also a sub-RR-

principally injective module.

Proposition 5.2.3. Let M be a right R-module and A a submodule of M . If A is

a sub-M-principally injective module, then A is a direct summand of M .
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Proof. Assume that A is a sub-M -principally injective module. Then every R-

homomorphism from A-cyclic submodule of A to A can be extended to an R-

homomorphism from M to A. Since A is an A-cyclic submodule of A, the identity

map IA on A can be extended to an R-homomorphism α : M → A such that αiA =

IA. By Lemma 2.2.11(i), the short exact sequence 0 → A
iA−→ M

πA−→ M/A → 0

splits where πA is the canonical projection of M onto M/A and iA is the inclusion

map. Therefore A is a direct summand of M .

Example 5.2.4. Let Zp be the set of all integers modulo p where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
and AR =

{(
0 0

0 a

)
| a ∈ Zp

}
.

From Example 5.2.2, A is a sub-RR-principally injective module. Since A is a

submodule of RR and by Proposition 5.2.3, A is a direct summand of RR.

On the other hand, the converse of Proposition 5.2.3 is not true in general, for

example, in the Z-module Z, we know that ZZ is indecomposable so only 0 and ZZ

are direct summands of ZZ but ZZ is not sub-ZZ-principally injective.

Theorem 5.2.5. Let M and N be right R-modules and A⊂⊕−−−−>N . If N is a sub-

M-principally injective module, then A and N/A are sub-M-principally injective

modules.

Proof. Assume that N is a sub-M -principally injective module.

(i) Claim that A is a sub-M -principally injective module. Let B be a nonzero

submodule of M , C a B-cyclic submodule of B and α an R-homomorphism

from C to A. Since A⊂⊕−−−−>N , the short exact sequence

0→ A
iA−→ N

πA−→ N/A→ 0

splits where iA is the inclusion map and πA is the canonical projection of N

onto N/A. By Lemma 2.2.11(i), there exists an R-homomorphism f ′ : N →
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A with f ′iA = IA where IA is the identity map on A. Since N is a sub-M -

principally injective module, there exists an R-homomorphism f from M to

N such that fiC = iAα where iC : C →M is the inclusion map. Let ᾱ = f ′f .

Then ᾱiC = f ′fiC = f ′iAα = IAα = α. Therefore A is a sub-M -principally

injective module.

(ii) Claim that N/A is a sub-M -principally injective module. Since A⊂⊕−−−−>N , there

exists A′ ↩→ N such that N = A ⊕ A′ so A′⊂⊕−−−−>N and A′ ∼= N/A. From (i),

A′ is a sub-M -principally injective module. By Proposition 5.2.1, N/A is a

sub-M -principally injective module.

Example 5.2.6. Let Zp be the set of all integers modulo p where p is a prime

number,

R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
and AR =

{(
0 0

0 a

)
| a ∈ Zp

}
.

We want to show that A and R/A are sub-RR-principally injective modules.

Proof. First, we claim that RR is a sub-RR-principally injective module. All

nonzero submodules of R are

A, B :=

{(
a 0

0 0

)
| a ∈ Zp

}
and R.

Then A and B are simple right R-modules so A is the only one A-cyclic submodule

of A and B is the only one B-cyclic submodule of B by the identity map IB on B.

By Example 5.1.2(i), A and B are RR-cyclic submodules of RR. Let f1 : A → R

and f2 : B → R be R-homomorphisms. Then

f1

0 0

0 1

 =

x1 0

0 y1

 and f2

1 0

0 0

 =

x2 0

0 y2


for some x1, x2, y1, y2,∈ Zp.
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Since f1, f2 are R-homomorphisms,x1 0

0 y1

 = f1

0 0

0 1

 = f1

0 0

0 1

0 0

0 1


=

x1 0

0 y1

0 0

0 1

 =

0 0

0 y1



and

x2 0

0 y2

 = f2

1 0

0 0

 = f2

1 0

0 0

1 0

0 0


=

x2 0

0 y2

1 0

0 0

 =

x2 0

0 0

 .

Then x1 = 0, y2 = 0 so that

f1

0 0

0 1

 =

0 0

0 y1

 and f2

1 0

0 0

 =

x2 0

0 0

.

Define f̄1 : R→ R by

f̄1

a 0

0 b

 =

0 0

0 y1b

 for all

a 0

0 b

 ∈ R

and define f̄2 : R→ R by

f̄2

a 0

0 b

 =

x2a 0

0 0

 for all

a 0

0 b

 ∈ R.

It is easy to check that f̄1 and f̄2 are R-homomorphisms and

f1

0 0

0 a

 = f1

0 0

0 1

0 0

0 a

 = f1

0 0

0 1

0 0

0 a


=

0 0

0 y1

0 0

0 a

 =

0 0

0 y1a

 = f̄1

0 0

0 a


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and f2

a 0

0 0

 = f2

1 0

0 0

a 0

0 0

 = f2

1 0

0 0

a 0

0 0


=

x2 0

0 0

a 0

0 0

 =

x2a 0

0 0

 = f̄2

a 0

0 0



for all

0 0

0 a

 ∈ A and

a 0

0 0

 ∈ B so f̄1iA = f1 and f̄2iB = f2. Hence RR is a

sub-RR-principally injective module.

From Example 5.2.4, A⊂⊕−−−−>R, so by Theorem 5.2.5, A and R/A are sub-RR-

principally injective modules.

Proposition 5.2.7. Let M and N be right R-modules with N a sub-M-principally

injective module. Then

(i) N is sub-K-principally injective for all nonzero submodule K of M ,

(ii) H is sub-K-principally injective for all direct summand H of N and nonzero

submodule K of M .

Proof. (i) Let K be a nonzero submodule of M and A a nonzero submodule

of K. Then A ↩→ M . Let B be an A-cyclic submodule of A and α an

R-homomorphism from B to N . Since N is a sub-M -principally injective

module, there exists an R-homomorphism ᾱ : M → N such that ᾱiB = α

where iB : B → M is the inclusion map. Since B ↩→ K, ᾱ|K : K → N is an

R-homomorphism, ᾱ|KiB = α. Therefore N is a sub-K-principally injective

module.

(ii) Let K be a nonzero submodule of M and H⊂⊕−−−−>N . From (i), N is sub-K-

principally injective. By Theorem 5.2.5, H is sub-K-principally injective.

Example 5.2.8. Let Zp be the set of all integers modulo p where p is a prime

number,
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R =

{(
a 0

0 b

)
| a, b ∈ Zp

}
, NR =

{(
0 a

0 0

)
| a ∈ Zp

}
,

AR =

{(
0 0

0 a

)
| a ∈ Zp

}
and BR =

{(
a 0

0 0

)
| a ∈ Zp

}
.

Then

(i) clearly, A,B ↩→ RR. From Example 5.1.2, N is a sub-RR-principally injective

module. By Proposition 5.2.7(i), N is a sub-A-principally injective module

and N is a sub-B-principally injective module,

(ii) from Example 5.2.6, RR is a sub-RR-principally injective module and from

Example 5.2.4, B⊂⊕−−−−>RR so by Proposition 5.2.7(ii), B is a sub-A-principally

injective module and B is a sub-B-principally injective module.

The following result is a sufficient condition for a right R-module N is a sub-

M -principally injective module.

Theorem 5.2.9. Let M and N be right R-modules. If N is a sub-M-principally

injective module, then for each nonzero submodule A of M and s ∈ EndR(A),

HomR(A,N)s = {f ∈ HomR(A,N) : f(Ker(s)) = 0}.

Proof. Assume that N is a sub-M -principally injective module. Let A be a nonzero

submodule of M and s ∈ EndR(A). We claim that HomR(A,N)s ⊆ {f ∈

HomR(A,N) : f(Ker(s)) = 0}. Let fs ∈ HomR(A,N)s. Then fs ∈ HomR(A,N)

and fs(Ker(s)) = 0. Hence fs ∈ {f ∈ HomR(A,N) : f(Ker(s)) = 0}. Then

HomR(A,N)s ⊆ {f ∈ HomR(A,N) : f(Ker(s)) = 0}. Next, we claim that

HomR(A,N)s ⊇ {f ∈ HomR(A,N) : f(Ker(s)) = 0}. Let f ∈ HomR(A,N) be

such that f(Ker(s)) = 0. Then Ker(s) ⊂ Ker(f). If f = 0, we are done so sup-

pose f ̸= 0. By Theorem 2.2.5(i), there exists a unique nonzero R-homomorphism

h : s(A)→ N such that f = hs. Since N is a sub-M -principally injective and s(A)

is an A-cyclic submodule of A, there exists a nonzero R-homomorphism h̄ : M → N

such that h = h̄is(A) where is(A) is the inclusion map from s(A) to M . Since

s(A) ↩→ A, h̄|A is a nonzero R-homomorphism from A to N and h̄|Ais(A) = h.

Hence f = hs = h̄|As so f ∈ HomR(A,N)s.
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5.3 Relationship between M-Principally, M-Slightly

Compressible and Sub-M-Principally Injective

Modules

In this section, we study relationship between sub-M -principally injective mod-

ules, M -principally injective modules and M -slightly compressible injective mod-

ules.

Proposition 5.3.1. Let M be a right R-module. Every sub-M-principally injective

module is an M-principally injective module.

Proof. Let N be a sub-M -principally injective module. Since M is a nonzero

submodule of M and by definition of sub-M -principally injective module, every

R-homomorphism from an M -cyclic submodule of M to N can be extended to an

R-homomorphism fromM toN. HenceN is anM -principally injective module.

Proposition 5.3.2. Let M be a right R-module. Every sub-M-principally injective

module is an M-slightly compressible injective module.

Proof. Let N be a sub-M -principally injective module. Let A be an M -slightly

compressible submodule of M . Then A is an A-cyclic submodule of A, so every

R-homomorphism from A to N can be extended to an R-homomorphism from M

to N. Hence N is an M -slightly compressible injective module.

But the converse of Propositions 5.3.1 and 5.3.2 are not true in general shown

in the following example.

Example 5.3.3. Let F be a field,

R =

{(
a b

0 c

)
| a, b, c ∈ F

}
,MR =

{(
a b

0 0

)
| a, b ∈ F

}
,NR =

{(
0 0

0 a

)
| a ∈ F

}
.

Then

(i) N is an M -principally injective module and

(ii) N is an M -slightly compressible injective module, but
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(iii) N is not a sub-M -principally injective module.

Proof. (i) E :=

{(
0 a

0 0

)
| a ∈ F

}
is a simple right R-module and only one

nonzero proper submodule of M but from Example 3.2.1, E is not an M -

cyclic submodule of M . Then only 0 and M are M -cyclic submodules of M .

Hence N is an M -principally injective module.

(ii) Since M has only two nonzero submodules, i.e., E,M and from Example

3.2.1, E, M are not M -slightly compressible submodules of M so only 0

is an M -slightly compressible submodule of M . Then N is an M -slightly

compressible injective module.

(iii) We claim there exists an R-homomorphism α from E to N which cannot be

extended to any R-homomorphisms from M to N , that is, φiE ̸= α for all

φ ∈ HomR(M,N). Define α : E → N by

α

0 a

0 0

 =

0 0

0 a

 for all

0 a

0 0

 ∈ E.

It is easy to show that α is a nonzero R-isomorphism. Let φ be an R-

homomorphism from M to N . Then

φ

1 0

0 0

 =

0 0

0 x

 for some x ∈ F , so

φ

0 a

0 0

 = φ

1 0

0 0

0 a

0 0

 =

0 0

0 x

0 a

0 0

 =

0 0

0 0


for all

0 a

0 0

 ∈ E. Hence φiE = 0 ̸= α for all φ ∈ HomR(M,N). Therefore

N is not a sub-M -principally injective module.

Next, we characterize relationship between sub-M -principally injective mod-

ules, M -principally injective modules and M -slightly compressible injective mod-

ules.
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Clearly, every X-cyclic submodule of X is an M -cyclic submodule of M for

every M -cyclic submodule X of M . Thus we have the following result.

Proposition 5.3.4. Let M be an epi-retractable right R-module and N a right

R-module. Then N is an M-principally injective module if and only if N is a

sub-M-principally injective module.

Proof. (⇐) By Proposition 5.3.1.

(⇒) Assume that N is an M -principally injective module. Let A be a nonzero

submodule of M, B an A-cyclic submodule of A and α an R-homomorphism from

B to N . By assumption, A is an M -cyclic submodule of M so B is an M -cyclic

submodule of M . Then α can be extended to an R-homomorphism from M to N .

Therefore N is a sub-M -principally injective module.

Proposition 5.3.5. Let M and N be right R-modules. If N is a sub-M-principally

injective module, then N is an A-principally injective module for all nonzero sub-

module A of M .

Proof. Assume that N is a sub-M -principally injective module. Let A be a nonzero

submodule of M . Claim that N is an A-principally injective module. Let B be

an A-cyclic submodule of A and α an R-homomorphism from B to N . Since

N is a sub-M -principally injective module, there exists an R-homomorphism ᾱ

from M to N such that ᾱiB = α where iB is the inclusion map. Since B ↩→ A,

ᾱ|A : A→ N is an R-homomorphism and ᾱ|AiB = α. Hence N is an A-principally

injective module. Therefore N is an A-principally injective module for all nonzero

submodule A of M .

Corollary 5.3.6. Let M be an epi-retractable right R-module and N a right R-

module. Then N is an M-slightly compressible injective module if and only if N

is a sub-M-principally injective module.

Corollary 5.3.7. Let N be a right R-module. Then N is an RR-slightly compress-

ible injective module if and only if N is a sub-RR-principally injective module.
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Proof. (⇐) By Proposition 5.3.2.

(⇒) Assume that N is an RR-slightly compressible injective module. By Theorem

4.2.11, N is an injective right R-module. Hence N is a sub-RR-principally injective

module.
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