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Chapter I

INTRODUCTION

Meson is a colorless bound state of a pair quark and anti-quark. The attrac-

tive force binding the constituent quarks is the strong nuclear force. We consider a

toy model of neutral mesons, its constituent quark and anti-quark have the same

color and flavor. Thus the quark and anti-quark have totally opposite electric

charge.

We suppose that there is a system of mesons at finite temperature. We con-

sider the system in situation that interaction of the constituent quarks is strong

coupling. In this situation, we may say that whole mesons are in strong coupling

medium. The system is a non-perturbative system. When the temperature is

high enough, the system is in deconfine phase, the phase that gluons decouple

from quarks and anti-quarks so they become free. For such system, the quan-

tum chromodynamics or QCD cannot directly make some predictions, because

the QCD is a gauge theory base on perturbative technique. There exist non-

perturbative approaches e.g. lattice QCD and bag-model which are used to make

better predictions for the strong coupling system. In this thesis, we use a new

non-perturbative method which is the AdS/CFT correspondence, motivated from

the superstring theory.

In this thesis, the system of interest is system of neutral mesons at finite

temperature with applied external electric field. Under the electric field, the con-

stituent quarks of mesons try to dissociate due to their opposite electric charge.

We hope to see that the dissociation can reduce the mesons binding energy. For

fixed temperature, the system becomes deconfine phase easier as result of stronger

electric field. The deconfine phase may be referred as mesons melting. The mesons

system with external electric field is also a non-perturbative system. In order to

study this system, it is necessary to apply the AdS/CFT correspondence. We re-

view this application of AdS/CFT correspondence to describe the phase transition

of mesons system by following the Ref. [1].

In Chapter 2, we will discuss the type IIA and type IIB superstring theories.
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There exist bosonic and fermionic fluctuations on open and closed superstrings

which they are very interesting. Dirichlet boundary conditions of open super-

strings give rise to the extended objects called Dirichlet p-brane, or Dp-branes.

The massless modes of open superstring, which their endpoints end on Dp-branes,

are matched to component fields of a supersymmetric gauge theory. So we can use

a configuration of Dp-branes and open superstrings to construct a supersymmetric

gauge theory of interested. Notice that, the most context of bosonic string and

superstring theories can be found in all superstring text books [2, 3, 4, 5].

We will discuss the AdS/CFT correspondence in Chapter 3. Originally,

the AdS/CFT correspondence is suggested by considering two descriptions of a

stack of D3-branes: gauge description and gravity description. We will show some

information how the two descriptions can be matched together [6, 7]. We modify

the original version of the correspondence by adding a stack of D7-branes under

probe limit [8]. The configuration now consists of both stacks of D3 and D7 branes

so called D3/D7 model. The discussion of the D3/D7 model are also included in

Chapter 3.

In Chapter 4, we will perform calculations of D7-branes equation of motion

which describes positions of the D7-branes in background space-time. Further-

more, we will illustrate shapes of the D7-branes, they play the crucial role in our

consideration. They describe behavior of phase transition of mesons system. We

will see that the phase transition is analogous to metal/insulator phase transition.

The melting mesons system is considered as a metal. As external electric field

is applied, we can find the relation between electric current density and electric

field, and we obtain the conductivity of the metal [9]. Finally, the conclusion of

this thesis is written in Chapter 5.



Chapter II

Background in String Theory

2.1 Bosonic String

String is a 1-spatial dimensional extended object. As a string evolving in time, it

spans a (1 + 1)-dimensional manifold in the space-time. This manifold is called

a world-sheet (or a string world-volume). We need two parameters, τ and σ, to

label a point on the world-sheet. The parameter τ determines world-sheet time. It

is natural to suppose that strings are lines of constant τ and points on the string

are labeled by σ.

An action for strings in (d+1)-dimensional space-time is proportional to the

area of its world-sheet. Note that, we may define D = d + 1. In order to obtain

string action we multiply the area by string tension to make it dimensionless

quantity. The string action is Nambu-Goto string action:

SNG = − 1

4πα′

∫
d2σ

√
−G . (2.1)

Here G is determinant of world-sheet induced metric, Gab, and d2σ is dτdσ. The

string tension is written in term of the Regge’s Slope α′: Ts = 1/4πα′.

The induced metric allows us to determine length between two separated

points on the world-sheet by using world-sheet coordinates, and it must be equal

to the length determined by space-time coordinates. Then, we have

ds2
∣∣∣
world sheet

= Gabdσ
adσb = gµνdx

µdxν ,

where a, b = 0, 1 are world-sheet indices and µ, ν = 0, 1, ..., d are space-time indices

(or Lorentzian indices). We define σ0 = τ and σ1 = σ. We denote that xµ are

components of a position vector in (d + 1)-dimensional space-time indicating a

point on the world-sheet. So xµ should be functions of world-sheet coordinates:

xµ ≡ xµ(τ, σ). Here gµν are components of space-time metric. By using the
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chain rule, components of the induced metric are related to components of the

space-time metric by

Gab = gµν
∂xµ

∂σa

∂xν

∂σb
or [Gab] =

(
ẋµẋµ ẋµx′µ

x′µẋµ x′µx′µ

)
. (2.2)

Note that “ ˙ ” and “ ′ ” denote the derivative with respect to τ and σ, respectively.

Now the Nambu-Goto action has the form:

SNG = − 1

4πα′

∫
d2σ
√

(ẋµẋµ)(x′νx′ν)− (ẋµx′µ)
2 . (2.3)

In addition to Lorentz invariance, the action has reparmeterization invariance. For

our convenience, we may choose the world-sheet grid such that line of constant

τ is perpendicular to line of constant σ. Consequently, the vector ẋµ is also

perpendicular to the vector x′µ which gives ẋµx′µ = 0. We can study string theory

by using the Nambu-Goto action with this world-sheet coordinates. However, the

Nambu-Goto action has field variable terms being under square root, it is difficult

to perform path integral quantization.

On the other hand, we may consider the Polyakov action which is equivalent

to the Nambu-Goto action in sense that they give the same equations of motion.

The Polyakov action gives two types of equations of motion. The first type de-

scribes dynamics of xµ and the second type is a set of constraint equations which

fix component of induced metric and world-sheet metric together. The Polyakov

string action is

SPolyakov = − 1

4πα′

∫
d2σ

√
−hhab∂x

µ

∂σa

∂xµ
∂σb

, (2.4)

where hab are components of a 2× 2 matrix called world-sheet metric tensor. We

can perform rising and lowering the world-sheet indices by using this metric.

2.1.1 Properties of String Action

Instead of the Numbu-Goto action, we may derive the equations of motion for

bosonic string from the Polyakov action, as in [4]. By varying the Polyakov action

with respect to hab, and using the definition for induce metric Eq. (2.2), we obtain

equations of motion of the second type,

Gab

√
−G

=
hab√
−h

. (2.5)
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We may choose the world-sheet metric to be

[hab] =

(
−1 0

0 1

)
.

Then substituting this into Eq. (2.5), the constraint equations are

ẋµx′µ = 0 ,

ẋµẋµ = −
√

(ẋµẋµ)(x′νx′ν)− (ẋµx′µ)
2 ,

x′µx′µ =
√
(ẋµẋµ)(x′νx′ν)− (ẋµx′µ)

2 .

Actually, there are only two constraint equations because the equations in the

second line and the third line are identical. Then, they can be simplified further

and combined into only one equation as

(ẋµ ± x′µ)
2
= 0 . (2.6)

Then we will calculate the first type of equation of motion. We can think that the

action is an action of D massless scalar fields denoted by xµ. We vary these scalar

fields by infinitesimal parameters ϵµ(τ, σ):

xµ → xµ + ϵµ ,

and substitute it back into the Polyakov action Eq. (2.4). Then we obtain

δS = − 1

2πα′

∫
d2σϵµ∂a∂

axµ , (2.7)

and non-trivial surface terms which we will discuss later. Let us first consider

the equation Eq. (2.7). If we assume the vanishing of the surface terms, we can

extract the conserved world-sheet current, J aµ. The current is defined by

J aµ ≡ ∂axµ which satisfy ∂aJ aµ = 0 .

Indeed, the conservation condition is string equation of motion which is (1 + 1)-

dimensional wave equation:

∂aJ aµ = 0 → −∂
2xµ

∂τ 2
+
∂2xµ

∂σ2
= 0 .

We can also define the conjugate momentum densities of the world-sheet coordi-

nates as

Paµ = gµν
∂L

∂(∂axν)
= − 1

2πα′J
aµ , (2.8)
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where L is the Lagrangian of the Polyakov action. The momentum densities also

satisfy the conservation condition like J aµ. The center of mass momentum of

moving strings is obtained by integrating P0µ overall σ.

Now, let us turn back to consider non-trivial surface term that can be shown

explicitly as,∫
dτdσ∂a (ϵ

µ∂axµ) =

∫
dσ
(
ϵµ∂0xµ

) ∣∣∣τf
τi
+

∫
dτ
(
ϵµ∂1xµ

) ∣∣∣σ∗

0
.

The above equation has been expanded by summation over world-sheet index a

and then are performed integral with respect to τ or σ. The ranges of integration

are following: from initial world-sheet time τi to final world-sheet time τf for τ .

The τ integration is vanished by setting both ϵµ(τi) and ϵµ(τf ) to be zero. The

range of σ integration for open string differs from closed string. For closed string,

the range of integration is just around a closed loop then the result vanishes.

For an open string, the σ integration starts from an endpoint σ = 0 to another

endpoint σ = σ∗. So the vanishing of the σ integration is achieved by employing

the following boundary conditions

boundary conditions


ϵµ = 0 Dirichlet boundary conditions with µ ̸= 0

∂xµ

∂σ
= 0 Neumann boundary conditions

.(2.9)

Each direction of endpoints can be separately subjected to either condition. Ex-

cept the µ = 0 direction, this time direction must be subjected to Neumann

boundary condition. For example, for an endpoint, we can have (p+1)-directions

satisfy the Neumann conditions while the rest (d− p)-directions satisfy Dirichlet

conditions. Then we may write

x0 x1 ... xp︸ ︷︷ ︸
Neumann

xp+1 ... xd︸ ︷︷ ︸
Dirichlet

. (2.10)

An endpoint that satisfies Eq. (2.10) can move freely with speed of light in p-

spatial direction and also evolving in time. On the other hand, the endpoint is

fixed in the (d−p)-spatial directions. This looks like the endpoint is freely moving

in an extended object which occupies time and p-spatial directions. This object

is called Dirichlet p-brane or Dp-brane.

2.1.2 Open String solutions

We will solve string equation of motion with corresponded boundary conditions

for open string solution, denoted by xµ. Let us start from the equation of motion:

−∂
2xµ

∂τ 2
+
∂2xµ

∂σ2
= 0 . (2.11)
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We assume that the solution should be a linear combination of left-moving and

right-moving. The general solution is

xµ(τ, σ) =
1

2
(xµL(τ + σ) + xµR(τ − σ)) , (2.12)

where xµL denotes left-moving part and xµR denotes right-moving part.

We consider the case that (p+1)-directions of both string endpoints satisfy

the Neumann boundary conditions Eq. (2.9). By performing the derivative with

respect to σ in Eq. (2.12) and employing the Neumann conditions at σ = 0, we

obtain

∂xµ

∂σ

∣∣∣
σ=0

= 0 → ∂xµL
∂(τ + σ)

∣∣∣
σ=0

=
∂xµR

∂(τ − σ)

∣∣∣
σ=0

. (2.13)

Now the index µ is running over 0, 1, ..., p. We may define u = τ+σ and v = τ−σ
where u = v at σ = 0 but u = v + 2π at σ = π.

Thus we can rewrite τ ± σ to be u and v for our convenience. The relation

in Eq. (2.13) implies the same in argument of x′µL and x′µR , then

x′µL (u) = x′µR (u) → xµL(u) = xµR(u)− Cµ .

This can be concluded that the right-moving is depending on the left-moving up

to a constant vector Cµ. So the solution Eq. (2.12) becomes

xµ(τ, σ) =
1

2
Cµ +

1

2
(xµL(τ + σ) + xµR(τ − σ)) . (2.14)

In case of open string, we can set range of σ as σ ∈ [0, π]. Now we consider the

Neumann conditions at σ = π by following

∂xµ

∂σ

∣∣∣
σ=π

= 0 → ∂xµL
∂(τ + σ)

∣∣∣
σ=π

=
∂xµR

∂(τ − σ)

∣∣∣
σ=π

.

Using the definition of u and v, we can see that x′µL are periodic function with 2π

period: x′µL (v) = x′µL (v + 2π). Thus, it is natural to expand the Fourier series for

the x′µL . Then performing the v integration, we obtain

xµL(v) = Cµ
2 +

√
2α′αµ

0v + i
√
2α′
∑
n̸=0

αµ
n

n
exp (−inv) .

The Cµ
2 is another constant of integration and oscillators, αµ

n, must satisfy (αµ
n)

† =

αµ
−n for all n. Notice that we wrote n ̸= 0 under the

∑
for short of the summation

starting form n = −∞ to n = ∞ but except n = 0. We substitute the Fourier

expansion of xµL(v) into Eq. (2.14) and conclude all constants into xµ0 . So we
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reach the solution for open string with both endpoints satisfying the Neumann

boundary conditions. The solution is following

xµ(τ, σ) = xµ0 +
√
2α′αµ

0τ + i
√
2α′
∑
n̸=0

αµ
n

n
exp (−inτ) cos (nσ) . (2.15)

Calculating the momentum conjugate as defined in Eq. (2.8), then

P0µ =
ẋµ

2πα′ =
1

2πα′

(
√
2α′αµ

0 +
√
2α′
∑
n̸=0

αµ
n exp (−inτ) cos (nσ)

)
. (2.16)

So the center of mass momentum is

pµ =

∫ π

0

dσ
ẋµ

2πα′ =
αµ
0√
2α

which gives

√
2α′pµ = αµ

0 . (2.17)

Eq. (2.17) gives a relation between momentum and αµ
0 . Thus we may rewrite the

solution Eq. (2.15) such that

xµ(τ, σ) = xµ0 + 2α′pµτ + i
√
2α′
∑
n̸=0

αµ
n

n
exp (−inτ) cos (nσ) . (2.18)

2.1.3 Dp-branes

An open string solution is a set of D-directions of xµ. The µth-direction as Eq.

(2.18) is arisen by assumption that both endpoints satisfy Neumann boundary

conditions. The cos(nσ) factor implies free motion of string endpoints along that

µth-direction.

Since both endpoints satisfy Dirichlet boundary conditions for some direc-

tions, such directions will have sin(nσ) factor instead of cos(nσ). This sin(nσ)

factor implies that endpoints are fixed. For a given rth-direction, one endpoint

satisfies Neumann condition but the other satisfies Dirichlet condition. In this

case, solutions for rth-direction have half integer modes.

We conclude that there are three possible types of directions including in

the open string solution: Neumann-Neumann type (NN type), Dirichlet-Dirichlet

type (DD type) and Dirichlet-Neumann type (DN type) (see Figure 2.1). The DD

type is,

xa(τ, σ) = xa0 + i
√
2α′
∑
n̸=0

αa
n

n
exp (−inτ) sin (nσ) , (2.19)
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Figure 2.1: The illustration of NN, DD and DN types.

where the index a is running overall DD directions. For DN directions, we solve

the equations of motion with imposing the Neumann condition for an endpoint at

σ = 0 and the Dirichlet condition for the other endpoint at σ = π.

xr(τ, σ) = xr0 + i
√
2α′

∑
s∈Z+ 1

2

αr
s

s
exp (−isτ) cos (sσ) , (2.20)

which the index r is running overall DN directions.

Let us consider some examples of open string solution. We suppose that an

open string is described by solution including the following directions

x0 x1 ... xp︸ ︷︷ ︸
NN type

xp+1 ... xd︸ ︷︷ ︸
DD type

. (2.21)

Eq. (2.21) gives a fact that the index µ appearing in equation Eq. (2.18) is

running as µ = 0, 1, 2, ..., p. While the rest directions are written by Eq. (2.19),

with a = p + 1, p + 2, ..., d. In this case, each endpoints ends on Dp-branes. This

open string may be referred as p-p string.

Another example, suppose that an open string is described by solution with

directions such that

x0 x1 ... xp︸ ︷︷ ︸
NN type

xp+1 ... xq︸ ︷︷ ︸
DN type

xq+1 ... xd︸ ︷︷ ︸
DD type

. (2.22)

This open string solution has (p + 1) NN-directions and (d − q) DD-directions.

Moreover, the solution also includes (q−p) DN-directions which satisfy Eq. (2.20)

with index r = q + 1, q + 2, ..., d. In this case, this open string has an endpoint

ending on Dp-brane while another endpoint ending on Dq-brane. Thus we may

refer this open string as p-q string (see Figure 2.2).

2.1.4 Closed String solutions

Because closed string has no endpoint, so the boundary condition is a set of

periodic conditions. In case of closed string, we choose a new range of σ as
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Figure 2.2: An open string stretches between Dp and Dq brane or p-q string. The

Dq-brane has more number of directions than Dp-brane, q > p.

σ ∈ [0, 2π]. Thus, the closed string solution contains a set of xµ(τ, σ) which

satisfies xµ(τ, σ) = xµ(τ, σ + 2π) for all µ = 0, 1, ..., d. We will find the explicit

form of the xµ(τ, σ). We start from a general solution

xµ(τ, σ) = xµL(τ + σ) + xµR(τ − σ) . (2.23)

The periodic conditions imply periodicity of σ derivative of xµ:

x′µL (u) = x′µL (u+ 2π) and x′µR (u) = x′µR (u+ 2π) . (2.24)

We wrote u = τ + σ and v = τ − σ, and we saw that the periodic condition does

not fix a relation between xµL and xµR. By expanding the x′µL,R using Fourier series

then performing integration over σ, we will get the forms of xµL,R. Those are

xµL(u) =
1

2
xµ0L +

√
α′

2
αµ
0u+ i

√
α′

2

∑
n̸=0

αµ
n

n
exp (−inu) (2.25)

xµR(v) =
1

2
xµ0R +

√
α′

2
ᾱµ
0v + i

√
α′

2

∑
n̸=0

ᾱµ
n

n
exp (−inv) . (2.26)

In this step, we can check that the periodic condition only fixes αµ
0 and ᾱµ

0 together

by αµ
0 = ᾱµ

0 . This fixing is called matching condition. In quantum theory of

closed string, the matching condition gives equality relation between number of

left-moving and right-moving.
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We substitute the summation xµL + xµR, where x
µ
L and xµR are respectively

shown by Eq. (2.25) and (2.26), into Eq. (2.23). Then we achieve

xµ(τ, σ) =
1

2
(xµ0L + xµ0R) +

√
2α′αµ

0τ

+i

√
α′

2

∑
n̸=0

1

n
exp (−inτ)

(
ᾱµ
n exp (inσ) + αµ

n exp (−inσ)
)
. (2.27)

We also calculate a component of the center of mass momentum

pµ =

∫ 2π

0

Pτµdσ ,

and then we obtain √
α′

2
pµ = αµ

0 . (2.28)

We may compare the momentum of closed string to open string (see Eq. 2.17).

Then we see that momentum of a closed string is double of momentum for an

open string. Closed string is described by solution as (d+1) copies of Eq. (2.28).

This should be concluded that for a given closed string, its solution is written

as a summation of left-moving modes and right-moving modes separately, except

for αµ
0 and ᾱµ

0 . The αµ
0 for left and right-moving are fixed with ᾱµ

0 by match

condition αµ
n = ᾱµ

n. If we put constraints that αµ
n = ᾱµ

n for all n ̸= 0, the solution

in Eq. (2.27) turns to be open string solutions in Eq. (2.18).

2.1.5 Quantum Open String

Now we consider quantization of string theory. We will start from classical string

solution. Then we will apply light-cone gauge xµ = (x+, x−, xI) with I = 2, 3, ..., d

and x± = x0±x1. We will do the same for any vector vµ. Note that the definitions

and some calculations of light-cone gauge are shown in Appendix A. Under such

directions, we can count physical degrees of freedom of quantum string states.

In order to reach the quantum theory, the quantities xµ, Pµ and etc. are

promoted to be operators. We use Heisenberg picture where operators are time

dependent. For simplicity, we consider NN-type of open string solution. In light-

cone gauge, we have

x+ = 2α′p+τ , (2.29)

x− = x−0 + 2α′p−τ + i
√
2α′
∑
n̸=0

α−
n

n
exp (−inτ) cos (nσ) , (2.30)

xI = xI0 + 2α′pIτ + i
√
2α′
∑
n̸=0

αI
n

n
exp (−inτ) cos (nσ) . (2.31)
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This reflects the fact that x+ becomes time parameter of string world-sheet. Thus

x+ dose not contribute to physical degrees of freedom. Under constraint equation,

Eq. (2.6), xI determines x−. Only xI contributes to physical degrees of freedom.

This should be concluded that there are D-directions in string solution but only

D − 2 of them give physical degrees of freedom.

The prove of fixing x− degree of freedom will be displayed. Rearranging Eq.

(2.6) by light-cone dot product, then the result is

2
(
ẋ+ ± x′+

) (
ẋ− ± x′−

)
=
(
ẋI ± x′I

)2
.

Notice that the definition of light-cone dot product is shown in Appendix A.

From the above equation, we replace τ and σ derivative of x+ by 2α′p+ and zero,

respectively. And we use Eq. (2.30) and (2.31) to rewrite the (ẋ ± x′) for both

“minus” and I directions in terms of its oscillators. We obtain

√
2α′α−

n =
1

2p+

∑
n

αI
nα

I
j−n . (2.32)

We define

Ln =
1

2

∑
n

αI
nα

I
j−n ,

so

√
2α′α−

n =
1

p+
Ln . (2.33)

We see that Eq. (2.32) fixes the oscillator α−
n with oscillator αI

n. This means

that all oscillating degrees of freedom of “minus” direction is determined by

oscillation in I-directions. The Ln is the Virasoro operator which we may use

p− = L0/(2α
′p+) as string Hamiltonian (see Appendix A).

We now perform canonical quantization. We establish the equal τ commu-

tation relations between components and its conjugate momentum as follows[
xI(τ, σ),P0J(τ, σ′)

]
= iηIJδ(σ − σ′) and

[
x−0 , p

+
]
= −i . (2.34)

The x+ commutes to all operators. We can reach commutation relation of oscil-

lator by calculating [ẋI(σ) + x′I(σ′), ẋJ(σ) + x′J(σ′)] with range σ ∈ [−π, π]. The
commutation relation of oscillators is

[αI
n, α

J
−n] = nηIJ → [aIn, a

J†
n ] = ηIJ . (2.35)

Here, we have introduced normalization of αI
n by

αI
−n =

√
n(aIn)

† and αI
n =

√
naIn . (2.36)
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The commutation relation Eq. (2.35) corresponds to commutation relation of

annihilation and creation operators.

Virasoro operators, Ln are written in terms of annihilation and creation

operators. Since the Hamiltonian is L0 although we see that L0 has summation of

normal ordering and non-normal ordering terms. We have to introduce a new well

defined Hamiltonian. The non-normal ordering terms are substituted by using the

commutation relation. The result includes a divergent summation that is
∑∞

n=1 n.

We use the zeta-regularization to deal with the summation. The regularization is

following

∞∑
n=1

n = ζ(−1) → − 1

12
where ζ(s) =

∞∑
n=1

1

ns
. (2.37)

Thus we obtain Hamiltonian as

H =
1

2
αI
0α

I
0 +

∞∑
n=0

αI
−nα

I
n −

(D − 2)

24
. (2.38)

In the similar way, we have other normal ordering operators such as mass squared

operator. Principally the mass squared operator is M2 = −pµpµ. The Lorentzian

dot product is expanded by using light-cone dot product, then the mass squared

operator is written in terms of Hamiltonian. This Hamiltonian is replaced by using

Eq. (2.38). Finally we obtain

M2 =
1

α′

(
∞∑
n=1

naI†n a
I
n −

(D − 2)

24

)
or M2 =

1

α′

(
N − (D − 2)

24

)
, (2.39)

where number operator is

N =
∞∑
n=1

naI†n a
I
n . (2.40)

Now we have the most important physical observable which is mass squared oper-

ator. We determine value of mass squared of any string state by acting this mass

squared operator to that state.

We now construct string phase space. We suppose that string vacuum is

written as |λ = 0; p+, p⃗T ⟩open. Value of center of mass momentum of vacuum

state is determined by p+ and pI . The λ is number of modes carrying by the

state. Moreover, the state is labelled by “open” meaning that this is open string

vacuum. This vacuum have to be annihilated by annihilation operators such

aIn|λ = 0; p+, p⃗T ⟩open = 0 with I = 2, 3, ..., 25 .
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We set D = 26 since we need to eliminate an anomaly which brakes the Lorentz

symmetry of quantum string theory. The general open string state is

|λ; p+, p⃗T ⟩open =
∞∏
n=1

25∏
I=2

(aI†n )λn,I |0; p+, p⃗T ⟩ with λ =
∞∑
n=0

25∑
I=2

λn,I .

We can check that aI†n |0; p+, p⃗T ⟩open and |0; p+, p⃗T ⟩open are massless state and

tachyon state. The massless states have D − 2 or 24 degrees of freedom which is

equal to photon state living in (25 + 1)-dimensional space-time.

In conclusion, the massless open string state identifies photon state. Since

the field corresponding to photon state is gauge field Aµ. There are possibilities

to write gauge field as Aµ = aµ†n |0; p+, p⃗T ⟩open with the space-time index µ =

0, 1, ..., 25. There should exist a polarization vector ξµ = (0, 0, ξ2, ξ3, ..., ξ25) that

projects the physical degrees of freedom. So far we calculate only 26 copies of NN

type but we will not quantize neither DD type or DN type. Assuming that we

have an open string which satisfies boundary condition in Eq. (2.21). So actually

the index µ is separated into NN type and DD type. Index running overall NN

directions is vector index for Dp-brane. While index running overall DD directions

counts the number of scalar representations of the string state.

2.1.6 Quantum Closed String

The context of closed string quantization is the same with open string quantization.

Closed string contains independent left-moving and right-moving modes which

result in two sets of creation, annihilation and Viresoro operators. At start, we

write the classical closed string solution in light-cone directions, x+, x− and xI .

Here x+ = α′p+τ differs from x+ in open string context. The x− and xI replace

Lorentz index µ in Eq. (2.27) by “minus” and I, respectively. In quantum theory,

all x+, x− and xI become Heisenberg operators. Then we establish commutation

relations [
xI(τ, σ),PτJ(τ, σ′)

]
= iηIJδ(σ − σ′) and

[
x−0 , p

+
]
= −i . (2.41)

We get the commutation of creation and annihilation operators by calculating[
ẋI(σ)± x′I(σ′), ẋJ(σ)± x′J(σ′)

]
. The commutation relations are[

αI
m, α

J
n

]
= mηIJδm,−n and

[
ᾱI
m, ᾱ

J
n

]
= mηIJδm,−n . (2.42)

(2.43)
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We note that [
αI
m, ᾱ

J
n

]
= 0 . (2.44)

We may perform the normalization on α operators such that for

αI
n =

√
naIn and αI

−n =
√
naI†n for left-moving modes,

ᾱI
n =

√
nāIn and ᾱI

−n =
√
nāI†n for right-moving modes. (2.45)

Then we obtain, [
aIn, a

J
m

]
= ηIJδm,n for left-moving modes , (2.46)[

āIm, ā
J
n

]
= ηIJδm,n for right-moving modes . (2.47)

For a closed string, left-moving modes are arisen by operating some creation op-

erators aI†n to closed string vacuum. On the other hand, the right-moving modes

on that string arisen by acting some creation operators āI†n to the vacuum.

In context of closed string, there are two Virasoro operators Ln and L̄n, for

left and right moving. We will use those Virasoro operators with n = 0 as the

string Hamiltonian. The left-Virasoro operators Ln are achieved by calculating

constraint equation (ẋµ+x′µ)2. The right-Virasoro operators L̄n are also obtained

by constraint equation (ẋµ−x′µ)2. Notice that the constraint equation is shown in

Eq. (2.6). The calculation for both Virasoro operators is the same in the case of

open string. We should notice that the constraint equation fixes oscillators in “mi-

nus” direction with I-directions. So the “minus” component does not contribute

to physical degrees of freedom. We show both Ln and L̄n here,

Ln =
1

2

∑
p

αI
pα

I
n−p and L̄n =

1

2

∑
p

ᾱI
pᾱ

I
n−p . (2.48)

The Ln and L̄n contribute to total Hamiltonian but they contain summation of

non-normal ordering terms. In order to obtain normal ordering Hamiltonian we

have to write them in normal order form. And we perform zeta-regularization to

get value of appearing infinite summations. Under the processes we obtain the

Hamiltonian as

H = α′p+p− = L0 + L̄0 − 2 . (2.49)

Notice that this equation is true only D = 26. This reflects the fact that left-

moving modes and right-moving modes independently give rise to total energy

(and mass). Here the normal ordering Virasoro operators are

L0 =
1

2
αI
0α

I
0 +

∞∑
n=1

αI
−nα

I
n and L̄0 =

1

2
ᾱI
0ᾱ

I
0 +

∞∑
n=1

ᾱI
−nᾱ

I
n . (2.50)
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Notice that the matching condition, which is α−
0 = ᾱ−

0 , fixes the equality of both

n = 0 Virasoro operators, L0 = L̄0. The total Hamiltonian in Eq. (2.49) is true

only (25 + 1)-dimensional space-time.

By using definition of the Hamiltonian which is written by Eq. (2.49), we

can also get mass squared operator as

M2 =
2

α′

(
L0 + L̄0 − 2

)
− pIpI or M2 =

2

α′

(
N + N̄ − 2

)
. (2.51)

We have defined the number operators:

N =
∞∑
n=1

naI†n a
I
n and N̄ =

∞∑
n=1

nāI†n ā
I
n .

We see that both number operators have to be equal, N = N̄ under matching

condition. This implies that, for a closed string, left-moving excitation must be

equal to right-moving excitation.

We now establish closed string phase space. The closed states are achieved

by acting any product of creation operators to closed string vacuum. The closed

string vacuum is constructed by

|λ = 0, λ̄ = 0̄; p+, v⃗T ⟩closed which satisfies aImā
J
n|0, 0̄; p+, v⃗T ⟩closed = 0 .

Closed string states have mode numbers λ and λ̄ counting left-moving modes

and right-moving modes, respectively. The matching condition gives constraint

relation that λ = λ̄. We show the general closed string state here,

|λ, λ̄; p+, v⃗T ⟩closed =
∞∏
n=1

25∏
I=2

(
aI†n
)λn,I ×

∞∏
m=1

25∏
J=2

(
āJ†m
)λ̄m,J |0, 0̄; p+, v⃗T ⟩closed,

where

λ =
∞∑
n=1

25∑
I=2

λn,I = λ̄ =
∞∑
n=1

25∑
I=2

λ̄n,I .

We are interested in massless closed string states. The possible massless states

are states that carry one left-moving mode and one right-moving mode excitation

in any I-directions. So the possible massless states are

aI1ā
J
1 |λ = 0, λ̄ = 0̄; p+, v⃗T ⟩closed .

We can check that the closed string vacuum is tachyon state. For D = 26, the

massless states contribute (D − 2)2 or 576 degrees of freedom. We may write the

massless state for Lorentzian indices as aµ1 ā
ν
1|λ = 0, λ̄ = 0̄; p+, v⃗T ⟩closed. The states
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should correspond to elements of a tensor field. We can introduce polarization

tensor with elements ξµν for µ, ν = 0, 1, ..., 25. The polarization tensor will project

the physical degrees of freedom. Since we use light-cone convention, the elements

of the tensor should be zero when one of µ or ν, or both equal to “plus” or

“minus”. The element which µ or ν equal to I or J are called transverse elements.

They can be decomposed into symmetric traceless element gµν , anti-symmetric

Bµν and trace ϕ such that ξµν = gµν + Bµν + ϕηµν under Lorentzian indices. The

gµν , Bµν and ϕηµν will respectively project the degrees of freedom for graviton,

Kalb-Ramond fields and dilation fields from massless states.

In conclusion the massless closed string states contain degrees of freedom

for three types of fields. Those are background metric tensor, Kalb-Ramond field

and a scalar diatonic field. The metric tensor corresponds to graviton field. An

open string is a source of Kalb-Ramond field and they play role as electromagnetic

ansatz for bosonic string theory. And diatonic field gives rise to string coupling

gs = expϕ.

2.2 Bosonic String with Charge

2.2.1 Kalb-Ramond Field Interaction

We now include an electromagnetic ansatz into our bosonic string theory. Since

strings are 1-dimensional objects, they are possible to interact with a two-form

field. We use the Kalb-Ramond field to write the interaction term between string

and two-form field. So we turn on an action such that

Scharge = −
∫

dτdσ
∂xµ

∂τ

∂xν

∂σ
Bµν .

From the Kalb-Ramond field, it gives rise to the three-form field strength Hµνρ

which

Hµνρ = ∂µBνρ+ ∂νBρµ+ ∂ρBµν . (2.52)

So we can turn on another action meaning that we add a dynamical term into our

string action. So the total action is

S = SPolyakov −
∫

dτdσ
∂xµ

∂τ

∂xν

∂σ
Bµν −

1

6κ2

∫
d26XHµνρHµνρ . (2.53)

Here, we use d26X = dX0dX1...dX25 and define Xµ to be space-time coordinates

which relates to vector xµ indicating to world-sheet by xµ = Xµ|world-sheet. Notice
that SPolyakov is the Polyakov action as shown in Eq. (2.4).
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We suppose the action describing an open string with its endpoints are

ending on Dp-branes. We may define the anti-symmetric conserved current jµν ,

jµν(X) =
1

2

∫
dτdσδ26(xα −Xα)

(
∂xµ

∂τ

∂xν

∂σ
− ∂xν

∂τ

∂xµ

∂σ

)
.

Here we can use the delta function to rewrite the integral overall dτdσ to be

integral overall d26X. And the charge action is written in terms of Bµνj
µν . Then,

by performing variation of Bµν , we obtain equation of motion

1

κ2
∂

∂xρ
Hµνρ = jµν . (2.54)

We identify some non-zero elements such j0i to be components of electric current

density which flows along the considering open string.

We also consider the gauge transformation of action Eq. (2.53). It is easy

to check that the gauge transformation such that

δBµν(x) =
∂Λν

∂xµ
− ∂Λµ

∂xν
,

which arises a non-trivial surface term. Here the surface term is

δScharge =

∫
dτ

[
Λm

∂xm

∂τ

]σ=π

σ=0

We have already used the Direchlet boundary conditions to fix ∂xr∂τ = 0, which

r is running over DD-directions. So the appearing index m is running over m =

0, 1, ..., p, the NN-directions. To cancel out the surface terms, we may introduce

an additional surface term. The Scharge with adding an additional surface term is

Scharge = −
∫

dτdσ
∂xµ

∂τ

∂xν

∂σ
Bµν +

∫
dτ

[
Am

∂xm

∂τ

]σ=π

σ=0

. (2.55)

Now the Scharge is invariant under the following gauge transformation

δBµν =
∂Λν

∂xµ
− ∂Λµ

∂xν
and δAm = Λm .

We see that the adding term looks like the interaction between point particles

and gauge potential Am. It is natural to introduce a two-form field strength

Fmn = ∂mAn − ∂nAm living on the Dp-branes. Under gauge transformation,

Fmn = ∂mAn − ∂nAm → δFmn = ∂mΛn − ∂nΛm = δBmn , (2.56)

we see that the δFmn completely cancels out all δBmn. This guarantee the gauge

invariant of the Scharge.
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Since two of open string endpoints are confined in Dp-branes, they appear

as opposite point charges and give rise the Maxwell theory on that Dp-branes.

We have already known that there exist electric density j0i. The current starts

at an endpoint which is a positive charge then flows along open string to another

endpoint which is a negative charge. This flow leads to the orientation degrees of

freedom which we will consider in Chapter 3.

2.2.2 Born-Infeld Electrodynamics

We again consider an open string which its endpoints ending on Dp-branes, more-

over the string endpoints play role as point charges. We assume that the Dp-branes

behaves like a medium which are affect by those point charges. In this situation,

it is difficult to calculate an explicit form of electric field E⃗, and magnetic field

B⃗. It is easier to calculate the electric displacement D⃗ and magnetization field H⃗.

We will apply the action principle to describe such electrodynamics system. Our

aim is explicit form of the action. Then we will use the action to find relations

between E⃗ and B⃗ with D⃗ and H⃗, respectively.

For obtaining some motivations, let us consider an electrodynamics system

in (3+1)-space-time. Suppose that there exists a field strength tensor, Gµν , which

its elements stand for D⃗ and H⃗. Note that the Lorentzian indices µ and ν run

over 0, 1, 2, 3. The tensor is

[Gµν ] =


0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dx Hy −Hx 0

 . (2.57)

Furthermore this field strength tensor satisfies equation of motion as

∂Gµν

∂Xν
= jµ , (2.58)

where jµ is an external source. Now we write an action for this system with an

assumption that Lagrangian should depend on field strength tensor F µν . Thus

the possible action is

S =

∫
d4XL(Fµν) +

∫
d4XAµj

µ . (2.59)

Here Aµ denotes the usual gauge potential which arises the field strength, F µν =

∂µAν − ∂νAµ. By varying the action with respect to Aµ, we obtain equation of
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motion. The equation of motion gives relations as

Di =
∂L
∂Ei

and H i =
∂L
∂Bi

. (2.60)

The Lagrangian must be Lorentz invariant and U(1) gauge invariant. The

possible terms in that Lagrangian are FµνF
µν ∼ (E2 − B2) and Fµν

∗F µν ∼ E⃗ · B⃗.
Here the ∗F µν denotes dual field strength which is defined by ∗F µν = ϵµνρσFρσ.

We choose a form of Lagrangian such that

L ∼ −
√
1− 2πα′(E2 − B2)− (2πα′)2(E⃗ · B⃗)2 + 1 . (2.61)

We write E and B terms under a square root because the Dp-brane must contain

finite value of norm of electric field, E2. This means that Dp-brane carries finite

energy. Moreover, since E2 is much smaller than string scale, α′, our system is

in weak field regime. 2πα′ = |E|max is the maximum value of electric field on the

Dp-branes, electric field with |E| > |E|max is not allowed on the Dp-branes, see

also T-duality written in [5]. In such regime our Lagrangian effectively become

usual Maxwell Lagrangian. We may rewrite Lagrangian in Eq. (2.61) as

L ∼ −
√
− det (ηµν + 2πα′Fµν) + 1 . (2.62)

Now we generalize the Lagrangian Eq. (2.61) to be Lagrangian for Dp-brane.

First we change the Lorentzian indices to be the indices of Dp-brane, m and n.

Then we introduce the Kalb-Ramond field to be under of square root. The result

is Lagrangian for Dp-brane, which is invariant under transformation Eq. (2.56).

Finally we achieve the Dirac-Born-Infeld Lagrangian (DBI Lagrangian):

L = −Tp
√
− det (ηmn +Bmn + 2πα′Fmn) . (2.63)

Here Tp is tension of Dp-brane. In Chapter 4, we will use this Lagrangian to write

an action for stack of D7-branes.

2.3 Superstring Theory

2.3.1 Superstring Action and Equations of Motion

Let us consider superstring theory in (d+1)-dimensional space-time. In context of

bosonic string, we consider only scalar field xµ. In order to achieve supersymmetry

on a world-sheet, we add a term of two components spinor field Ψµ into string
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action. We suppose that the Ψµ is superpartners of xµ. We note that Ψµ may

be called vector spinor, since it carries the Lorentzian index, µ. It is spinor in

world-sheet but vector in space-time.

To describe the dynamics of Ψµ, we add the (1+1)-Dirac action as an addi-

tional to the Polyakov action. Thus the superstring action is written as

S = − 1

4πα′

∫
d2σ

√
−h
(
hab∂ax

µ∂bxµ +
i

2
Ψ̄µΓa∂aΨµ

)
. (2.64)

Here Γa are world-sheet gamma matrices which satisfy the Clifford algebra

{Γa,Γb} = 2ηabI2×2 , (2.65)

where ηab = diag(−1, 1) and Ψ̄µ = (Ψµ)†Γ0 denotes the conjugate representation

of Ψµ. In this thesis, we use representation of the gamma matrix such that

Γ0 =

(
0 −1

1 0

)
and Γ1 =

(
0 1

1 0

)
. (2.66)

Indeed, the superstring action is not invariant under local supersymmetric trans-

formations δxµ = ξ̄(σ)Ψµ and δΨµ = −iΓa∂ax
µξ(σ). Here ξ(x) denotes the in-

finitesimal Glassmann parameter. It is necessarys to introduce some extra action,

Sex, to make string action becomes invariant under those transformations. The

Sex is proportional to gravitino field χ. However we may use superconformal in-

variant of superstring action to fix χ = 0. This fixing results the vanishing of the

Sex. Then superstring action is simplified and becomes the action shown in Eq.

(2.64). Furthermore, we may set hab = ηab by using Weyl transformation for our

convenience.

Superstring action as shown in Eq. (2.64) gives four sets of equations of

motion depending on which fields we vary the action with respect to. By varying

superstring action with respect to xµ and Ψµ and assuming the vanishing of surface

terms, we obtain the first and the second sets of equations of motion that are

(1 + 1)-dimensional wave equations and Dirac equations. The first two set of

equations of motion are

∂a∂
axµ = 0 for bosonic sector, (2.67)

iΓa∂aΨ
µ = 0 for fermionic sector . (2.68)

The bosonic sector was already discussed in the previous section so here we will

pay more attention on fermionic sector. The surface terms associating to the Dirac

equation Eq. (2.68) are

δΨS = − i

4πα′

∫
d2σ

√
−h
(
∂0(Ψ̄

µΓ0δΨµ) + ∂1(Ψ̄
µΓ1δΨµ)

)
.
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The first term becomes zero by setting δΨµ(τi) = δΨµ(τf ) = 0. And the vanishing

of second term depends on choices of boundary condition. The possible boundary

conditions are

Ψ̄µΓ1δΨµ

∣∣∣
0,π

= 0 for open string, (2.69)

Ψ̄µΓ1δΨµ

∣∣∣
σ=0

= Ψ̄µΓ1δΨµ

∣∣∣
σ=2π

for closed string , (2.70)

that we will explain them later in quantization section. At the moment, let us

consider the two remaining sets of equations of motion. The third set can be

obtained by varying the action with respect to hab (and set hab = ηab at the final

result) which yields the vanishing of energy momentum tensor, T ab = 0. To obtain

the fourth set, we perform supersymmetric transformation of fields in string action,

the result is the vanishing of supercurrent, ja = (1/2)ΓbΓaΨµ∂axµ = 0. Actually

the T ab = 0 and ja = 0 play the same role as constraint equations in context of

superstring theory.

Since Ψµ is a two components spinor and a solution of Dirac equation, we

may write the spinor by using Weyl basis as

Ψµ =

(
Ψµ

R

Ψµ
L

)
and Ψ̄µ = (Ψµ

L −Ψµ
R) (2.71)

Here Ψµ
R ≡ Ψµ

R(τ − σ) denotes right-moving and Ψµ
L ≡ Ψµ

L(τ + σ) denotes left-

moving. We suppose both Ψµ
R,L are real functions. The explicit form of both Ψµ

R

and Ψµ
L can be achieved by considering their boundary conditions.

2.3.2 Open Superstring Quantization

Let us consider the quantum theory for open superstrings. We will find the explicit

form of Ψµ
R and Ψµ

L. We employ the boundary conditions Eq. (2.69) and rewrite

it in terms of spinor components. So all possible boundary conditions become

Ψµ
R(τ) = ±Ψµ

L(τ) at σ = 0,

Ψµ
R(τ − π) = ±Ψµ

L(τ + π) at σ = π.

Similar to the bosonic case, fermionic boundary conditions can be classified as

NN, DD and DN types. This classification is according to a requirement that

superconformal symmetry must be preserved at boundary (see Ref. [2]). The

appropriate boundary conditions are divided into two sectors which are Ramond

sector (or R-sector) and Neveu-Schwarz sectors (or NS-sector). For R-sector, the
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world-sheet supercurrent is periodic at boundary so it has integer modes. On the

other hand, for NS-sector, the world-sheet supercurrent turns to be anti-periodic

at boundary thus it acquires half-integer modes.

We start with the NN type. The boundary conditions for each R- and NS-

sectors are

Ψµ
R(τ) = Ψµ

L(τ) and Ψµ
R(τ − π) = Ψµ

L(τ + π) for NN R-sector,

Ψµ
R(τ) = Ψµ

L(τ) and Ψµ
R(τ − π) = −Ψµ

L(τ + π) for NN NS-sector.

We see that conditions at σ = 0 fix the equality of Ψµ
R and Ψµ

L. Thus conditions

at σ = π are rewritten as Ψµ
R(τ − π) = Ψµ

R(τ + π) for R-sector and Ψµ
R(τ − π) =

−Ψµ
R(τ + π) for NS-sector (and similar for Ψµ

L). The conditions at σ = π enforce

the Ψµ
R,L to be either periodic (R-sector) or anti-periodic (NS-sector).

In case of NN type, for R-sector, the periodicity for Ψµ is the same as for

xµ because world-sheet supercurrent is periodic. In the NS-sector, the Ψµ is anti-

periodic and flips its sign as σ reaches π. This corresponds to the anti-periodic

supercurrent [3].

For the DD type, the boundary conditions are obtained by changing Ψµ
L for

NN-type to −Ψµ
L. Thus the conditions for R- and NS-sectors are

Ψµ
R(τ) = −Ψµ

L(τ) and Ψµ
R(τ − π) = −Ψµ

L(τ + π) for DD R-sector,

Ψµ
R(τ) = −Ψµ

L(τ) and Ψµ
R(τ − π) = Ψµ

L(τ + π) for DD NS-sector.

The conditions in R-sector and NS-sector enforce the Ψµ
R,L to become periodic and

anti-periodic functions, respectively, like the NN type. Thus the explicit form of

Ψµ
R,L for NN and DD types are the same.

The DN type boundary conditions are different from the NN and DD types.

In this case, the boundary conditions for R- and NS-sectors are

Ψµ
R(τ) = Ψµ

L(τ) and Ψµ
R(τ − π) = −Ψµ

L(τ + π) for DN R-sector,

Ψµ
R(τ) = −Ψµ

L(τ) and Ψµ
R(τ − π) = −Ψµ

L(τ + π) for DN NS-sector.

By such boundary conditions, the fermion Ψµ are anti-periodic in R-sector and

periodic in NS-sector. The modes expansion of Ψµ in R-sector acquires half-integer

modes which are the same to the xr as shown in Eq. (2.20). For R-sector, the

periodic supercurrent is satisfied by a product between two anti-periodic functions

of Ψµ and xr. For NS-sector, modes expansion of Ψµ is summation over integer
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modes. The anti-periodic supercurrent is satisfied by product between periodic

function of Ψµ and anti-periodic function of xr.

We now consider the solutions of Ψµ
R,L for NN type, which is the same as

DD type. These solutions are achieved by performing the Fourier expansion, so

they are

Ψµ
R(τ, σ) =

√
α′
∑
n∈Z

dµn exp (−in(τ − σ)) for R-sector, (2.72)

Ψµ
L(τ, σ) =

√
α′
∑
n∈Z

dµn exp (−in(τ + σ)) for R-sector. (2.73)

As we perform the canonical quantization, all fields xµ and Ψµ become operators.

The components Ψµ
R,L satisfy the anti-commutation relations

{Ψµ
R(τ, σ),Ψ

ν
R(τ, σ

′)} = ηµνδ(σ − σ′) , (2.74)

{Ψµ
L(τ, σ),Ψ

ν
L(τ, σ

′)} = ηµνδ(σ − σ′) . (2.75)

By substituting Ψµ
R,L from Eq. (2.72) and (2.73) into above anti-commutation

relations, we obtain

{dµm, dνn} = δm+n,0η
µν . (2.76)

This is the anti-commutation relation of annihilation and creation operator which

are denoted by dνn and dν−n, respectively (for n > 0).

For NS-condition, the Ψµ
R,L are anti-periodic. They can be written in terms

of Fourier expansion such that

Ψµ
R(τ, σ) =

√
α′
∑

r∈Z+ 1
2

bµr exp (−ir(τ − σ)) for NS-sector, (2.77)

Ψµ
L(τ, σ) =

√
α′
∑

r∈Z+ 1
2

bµr exp (−ir(τ + σ)) for NS-sector. (2.78)

They also satisfy the same anti-commutation relations Eq. (2.74) and (2.75) which

lead us to the anti-commutation relation

{bµr , bνs} = δr+s,0η
µν with r, s ∈ Z+

1

2
. (2.79)

Again, this is anti-commutation relation of annihilation and creation operators

which are labeled by bµr and bµ−r, respectively (for r > 0). We will use them to

construct NS-state.
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In case of DN type, Ψµ
R,L for R-sector gains half-integer modes due to its

anti-periodicity. The Fourier modes expansion is written by

Ψµ
R(τ, σ) =

√
α′
∑

r∈Z+ 1
2

dµr exp (−ir(τ − σ)) for R-sector, (2.80)

Ψµ
L(τ, σ) =

√
α′
∑

r∈Z+ 1
2

dµn exp (−ir(τ + σ)) for R-sector. (2.81)

And for NS-sector, the modes expansion turns to be summation over integer

modes;

Ψµ
R(τ, σ) =

√
α′
∑
n∈Z

bµn exp (−in(τ − σ)) for NS-sector, (2.82)

Ψµ
L(τ, σ) =

√
α′
∑
n∈Z

bµn exp (−in(τ + σ)) for NS-sector. (2.83)

Oscillators for both R and NS-sector have to satisfy the anti-commutation relations

as follow:

{dµr , dνs} = δr+s,0η
µν with r, s ∈ Z+

1

2
for R-secctor, (2.84)

{bµm, bνn} = δm+n,0η
µν with n,m ∈ Z for NS-secctor. (2.85)

Notice that the modes expansion in R-sector for NN and DD types have zero

modes dµ0 but not for DN type. For DN type, the zero modes bµ0 appear in modes

expansion in NS-sector instead.

At this time, we consider an open superstring which all of its solutions (xµ

and Ψµ) satisfy the NN boundary conditions. We will find the forms of Hamilto-

nian and mass squared operators. We apply the light-cone gauge to both xµ and

Ψµ. The “plus” and “minus” directions are defined by x± = (x0 ± x1)/
√
2 and

Ψ± = (Ψ0 ±Ψ1)/
√
2. For open string we choose the “plus” direction so

x+ = 2α′p+τ and Ψ+ = 0 . (2.86)

By using the light-cone gauge, we obtain the constraint equation jµ = 0 written

in terms of Ψ− and ΨI , then we find that Ψ− can be determined by ΨI . Similarly

we also express the other constraint equation T ab = 0, then we calculate the

combination elements as T 00 +2T 11. The substitution of Ψµ terms are depending

on choices of boundary conditions, either R or NS condition. Then we see that

oscillators of x− is determined by oscillators coming from both xI and ΨI . Since

we take the result as
√
2α′p+α−

0 = L0, we obtain the Virasoro operator L0. The

L0 contains summation of non-normal ordering terms. The non-normal ordering
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terms are substituted by usual commutation relation of αI
n oscillators and anti-

commutation relation of dIn oscillators. Thus we obtain the results that are either

L0 =
1

2
αI
0α

I
0 +

∞∑
n=1

αI
−nα

I
n +

∞∑
n=1

ndI−nd
I
n right-R-sector (2.87)

or

L0 =
1

2
αI
0α

I
0 +

∞∑
n=1

αI
−nα

I
n +

∞∑
r= 1

2

rbI−rb
I
r + aNS right-NS-sector. (2.88)

Actually the L0 is for either R or NS right-moving so we denoted “right” at the

end of equation. There exist the calculations for L0 for either R or NS left-moving

which give the same result. We can use L0 in either Eq. (2.87) or (2.88) as the

Hamiltonian for respectively R- or NS-sector. Note that, for R-sector, the zero

point energy arising from bosonic degrees of freedom is completely canceled by

the same arising from fermionic degrees of freedom. While the zero point energy

for NS-sector appears in a term denoted by aNS where aNS = −(D − 2)/16.

We will find the mass squared operator. Originally, the mass squared oper-

ator is defined by M2 = −pµpµ. The dot product can be expanded and written

in terms of light-cone directions. We substitute 2α′p+p− = L0 into the light-cone

expression. Thus we obtain that mass squared operator are either

M2 =
1

α′

(
∞∑
n=1

αI
−nα

I
n +

∞∑
n=1

ndI−nd
I
n

)
for open-R-sector (2.89)

and

M2 =
1

α′

 ∞∑
n=1

αI
−nα

I
n +

∞∑
r= 1

2

rbI−rb
I
r + aNS

 for open-NS-sector. (2.90)

Let us consider an open superstring (p-q string) which satisfies the boundary

conditions:

x2 x3 ... xp xp+1 ... xq xq+1 ... xd

Ψ2 Ψ3 ... Ψp︸ ︷︷ ︸
NN type

Ψp+1 ... Ψq︸ ︷︷ ︸
DN type

Ψq+1 ... Ψd︸ ︷︷ ︸
DD type

.

Notation #DN denotes number of DN-directions. When we calculate the mass

squared operator, we find that the zero point energy in R-sector is always zero.

And for NS-sector, the zero point energy is

aNS = −(D − 2)

16
+

#DN

8
. (2.91)
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For superstring theory in (9+1)-dimensional space-time, the NS-sector of a p-q

string acquires zero point energy aNS = −1/2 + (#DN)/8 [4]. For a specific

case where #DN = |p − q| = 4, aNS becomes zero, R and NS ground states are

degenerate. This happens in many string setups, for example D3/D7 model (we

will discuss this model in Chapter 3) and D4/D8 in Saki-Sugimoto model. Note

that the Dp/Dq is a D-branes configuration which consists of parallel Dp and Dq

branes.

2.3.3 Closed Superstring Quantization

Now we turn to consider quantum theory for closed superstring. Since most of the

calculations for closed superstring are the same as in the open superstring case.

We may quote some results from the open string context.

Let us first consider boundary conditions for closed string, as shown in Eq.

(2.70). We rewrite the boundary conditions in terms of right-moving and left-

moving components as

Ψµ
R(τ − σ) = ±Ψµ

R(τ − σ − 2π)

and

Ψµ
L(τ + σ) = ±Ψµ

L(τ + σ + 2π) .

The boundary conditions enforce that each component separately satisfies either

R-condition or NS-condition. Again, components which satisfy the R-condition

are periodic functions with period 2π. On the other hand, components satisfying

the NS-condition are periodicity with period 4π.

By performing the Fourier expansions, left-moving modes for both R and

NS conditions are the same as in open superstring case. So we can say that in

case of closed string, for left-moving component Ψµ
L are satisfied either Eq. (2.73)

or (2.78). Thus the Ψµ
L is in terms of either dµn or bµr up to choices of boundary

condition. The right-moving component Ψµ
R is in forms of Eq. (2.72) or (2.74).

Thus the Ψµ
R are written in terms of either d̄µn or b̄µr up to choices of boundary

condition. Note that the “bar” denotes right-moving modes.

We now perform the canonical quantization for closed superstring. The

components Ψµ
R,L become operators. Their anti-commutation relations lead to

anti-commutation relations between oscillators such that

{dµm, dνn} = {d̄µm, d̄νn} = δm+n,0η
µν (2.92)
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and

{bµr , bνs} = {b̄µr , b̄νr} = δr+s,0η
µν . (2.93)

We now perform the light-cone direction for xµ and Ψµ. In case of closed

string, we choose the “plus” direction such as x+ = α′p+τ and Ψ+ = 0. Then the

element T ab in the constraint equation Eq. (2.69) is expanded by light-cone dot

product. The combination T 00+2T 01 gives a Virasoro operator L̄0 for right-moving

modes. While the combination T 00 − 2T 01 gives a Virasoro operator L0 for left-

moving modes. Then we replace some non-normal ordering terms by commutation

relation for α oscillators and anti-commutation relations for fermionic oscillators.

After substituting the non-normal ordering terms, the form of L0 is the same as

either Eq. (2.87) or (2.88) up to choices of either R or NS conditions. L̄0 is

obtained by reproducing the L0 and place “bar” over αI
n, d

I
n and bIr. So L̄0 are

written in terms of ᾱI
n, d̄

I
n and b̄Ir.

We will identify L̄0 as the Hamiltonian for right-moving modes (or HR) and,

on the other hand, L0 as the Hamiltonian for left-moving modes (or HL). So

the total Hamiltonian is H = HR + HL. Forms of the HR and HL separately

depend on boundary condition of the left and right moving modes. There are four

distinct closed superstring sectors namely R-R sector, R-NS sector, NS-R sector

and NS-NS sector.

The mass squared operator for closed superstring can be written as M2 =

M2
R+M

2
L. Although the left-moving and the right-moving modes are independent,

there are the so-called matching condition M2
R =M2

L that fixes mass contribution

from left- and right-moving modes. The explicit form of the mass squared opera-

tors for right-moving modes are

M2
R =

4

α′

(∑
n=1

ᾱI
−nᾱ

I
n +

∑
n=1

nd̄I−nd̄
I
n

)
for R-sector (2.94)

or

M2
R =

4

α′

∑
n=1

ᾱI
−nᾱ

I
n +

∑
r= 1

2

rb̄I−rb̄
I
r + aNS

 for NS-sector . (2.95)

And mass squared operators for left-moving modes can be either

M2
L =

4

α′

(
∞∑
n=1

αI
−nα

I
n +

∞∑
n=1

ndI−nd
I
n

)
for R-sector (2.96)
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or

M2
L =

4

α′

 ∞∑
n=1

αI
−nα

I
n +

∞∑
r= 1

2

rbI−rb
I
r + aNS

 for NS-sector (2.97)

In order to avoid superconformal anomaly, the consistency condition for super-

string theory requires D = d + 1 = 10 and aNS = 1/2. Then the transverse

directions are denoted by index I = 2, 3, ..., 9. We will discuss the spectrum of

both open and closed superstrings in next subsection.

2.3.4 Superstring States and GSO Projection

We will establish string states for open and closed superstring, we follow Ref. [5].

Due to cancelation of superconformal anomaly, we have to set D = d + 1 = 10

that means our consideration is in (9+1)-dimensional space-time. We first define

an NS-string vacuum such |0NS⟩|0⟩ for strings in NS-sector. Slots |0NS⟩ and |0⟩
stand for world-sheet fermionic and bosonic vacuum states, respectively. The first

slot labeled by FNS = 0NS where FNS counts number of NS-fermionic modes on

a string. We can raise or lower the FNS by using NS-creation or annihilation

operators, respectively. And the latter slot denoted by λ = 0, λ counts bosonic

modes which rising by bosonic creation operators. Note that the vacuum must be

zero by acting an annihilation operator. We show the general NS-state, that is

|FNS⟩|λb⟩ =
∞∏
n=1

9∏
I=2

(αI
−n)

λn,I

∞∏
r= 1

2

9∏
J=2

(bJ−r)
Fr,J |0NS⟩|0b⟩ open/closed-NS .(2.98)

There are more subtle since we consider an R-string vacuum. The associating

fermionic creation operators for R-sector are dI−n for n > 0, and zero modes

operators, dI0. It is easy to show that the dI0 does not contribute to mass squared

value. So there exists the degeneracy for R-state, in the sense that we have different

R-state which give the same mass value e.g. dI0 and dI0d
J
0 acting on |R-vacuum⟩

have the same M2 = 0. We define new annihilation and creation operators such

ξi = (d2i0 + id2i+1
0 ) and ξ†i = (d2i0 − id2i+1

0 ), respectively, where i = 1, 2, 3, 4. Those

operators satisfy anit-commutation following {ξi, ξ†j} = δij. For a fundamental

R-vacuum |0R⟩, the degenerate states are

|0Ra⟩ =



|0R⟩

ξ1ξ2|0R⟩, ξ1ξ3|0R⟩, ξ1ξ4|0R⟩, ξ2ξ3|0R⟩, ξ2ξ4|0R⟩, ξ3ξ4|0R⟩

ξ1ξ2ξ3ξ4|0R⟩

.(2.99)



30

The degenerate R-vacuum states, which even number of ξ†, are denoted by extra

indices a, a = 1, 2, ..., 8. On the other hand,

|0Rā⟩ =


ξ1|0R⟩, ξ2|0R⟩, ξ3|0R⟩, ξ4|0R⟩

ξ1ξ2ξ3|0R⟩, ξ1ξ2ξ4|0R⟩, ξ1ξ3ξ4|0R⟩, ξ2ξ3ξ4|0R⟩
. (2.100)

The degenerate R-vacuum states with odd number of ξ† are labeled by index ā,

ā = 1̄, 2̄, ..., 8̄. Thus the general R-string states are

|FRa⟩|λb⟩ =
∞∏
n=1

9∏
I=2

(αI
−n)

λn,I

∞∏
m=1

9∏
J=2

(dJ−r)
Fn,J |0Ra⟩|0b⟩ open/closed-R(2.101)

and

|FRā⟩|λb⟩ =
∞∏
n=1

9∏
I=2

(αI
−n)

λn,I

∞∏
m=1

9∏
J=2

(dJ−r)
Fn,J |0Rā⟩|0b⟩ open/closed-R.(2.102)

The first slot of both string vacuum states is FR = 0R, where FR counts number

of fermionic creation operator except the ξ†i . There exists an operator such NFB =

(−1)F+1 with eigenvalue ±1. Notice that F in the NFB operator is valid for both

value of FNS and FR. Since a state is given value either +1 or −1 by NFB operator,

this state is either world-sheet boson or fermion. Thus we may write NS+ and

R+ for state which are given +1 by the NFB operator, and vice versa for NS− and

R−.

We determine mass squared for superstring states. We show some NS-states

as shown in the Table 2.1. We see that the ground state for NS− sector is tachyonic

State sector mass squared degree of freedom

|0NS⟩|0b⟩ NS− −1/2α′ 1

bI−1/2|0NS⟩|0b⟩ NS+ 0 8

αI
−1, b

I
−1/2b

J
−1/2 |0NS⟩|0b⟩ NS− 1/2α′ 8 + 8× 7

Table 2.1: Mass spectrum of an open superstring with all directions of its solution

satisfy the NN boundary condition.

state. Thus this NS− sector will be projected out by performing the Gliozzi,

Scherk and Olive projection (or GSO projection). We also see that the ground

state of NS+ sector carries a light-cone index and the state also has eight degrees

of freedom. Thus, in context of open superstring, we identify the bI−1/2|0NS⟩|0b⟩
as photon field with eight polarizations. And we have already said that the NS+

sector is space-time boson. The GSO projection applying on R-sector will project
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out either R+ or R−, depending on our choice. After the projection, the surviving

R-sector has eight degrees of freedom.

Since we define dI0 ≡ i
√
2γI where γI denotes space-time gamma matrix.

The states in sector of R+ and R- are arisen from products of combination of

the gamma matrix. Thus we can say that the R-sector is space-time fermion.

Moreover, in open string context, the surviving massless R-state after the GSO

projection are superpartner of photon states.

For the context of closed superstring, we will first project out the NS−
sector, both right-moving and left-moving have to be state in NS+ sector. For

R-sector, right-moving and left-moving are separately chosen to be state in either

R+ or R− sectors. There is specific name up to choices of R-sector for superstring

theories that are type IIA and type IIB superstring theories.

Type IIA superstring theory contains string states in NS+ sector, both R+

and R− sectors. We may choose left-moving modes being either NS+ or R− sector,

and right moving modes being either NS+ or R+ sector. Thus we have massless

state as shown in Table 2.2. Here the first and second slot in ( , ) are left-moving

Closed string sector Closed string state Degree of freedom

(NS+,NS+) bI−1/2|0NS⟩Lb̄J−1/2|0NS⟩R|0b⟩ 64B

(NS+,R+) bI−1/2|0NS⟩L|0Rb̄⟩R|0b⟩ 64F

(R-,NS+) |0Ra⟩Lb̄I−1/2|0NS⟩R|0b⟩ 64F

(R-,R+) |0Ra⟩L|0Rb̄⟩R|0b⟩ 64B

Table 2.2: Massless modes of closed superstring excitation in type IIA superstring

theory.

and right-moving, respectively. The massless states in (NS+,NS+) sector has 64

bosonic degrees of freedom and carries two light-cone indices. So they match to

graviton field gµν with traceless transverse degrees of freedom, Kalb-Ramond field

Bµν and dilaton field ϕ. Both (NS+,R−) and (R−,NS+) sectors have total 128

fermionic degrees of freedom thus they are superpartner for bosonic degrees of

freedom. The massless states in (R−,R+) sector also contain 64 bosonic degrees

of freedom and have different chirality due to different number of ξ†i . Actually,

the massless states carry one and three light-cone directions so they match to

one-form field, Aµ and three-form field, Aµνρ. The one and three form fields play

role as electrical gauge potentials which respectively interact with D0- and D2-

branes. Those form fields also magnetically interact with D4- and D6-branes. We

conclude that type IIA superstring theory contains usual graviton, Kalb-Ramond
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and dilaton fields. Type IIA theory also contains one and three-form fields. Stable

objects living in the type IIA theory are fundamental string and Dp-branes with

p =even number.

For type IIB superstring theory, we may choose left-moving modes being

either NS+ or R− sector, and right moving modes being either NS+ or R− sector.

Thus we show massless state as shown in Table 2.3. Type IIB theory also contains

Closed string sector Closed string state Degree of freedom

(NS+,NS+) bI−1/2|0NS⟩Lb̄J−1/2|0NS⟩R|0b⟩ 64B

(NS+,R-) bI−1/2|0NS⟩L|0Rb⟩R|0b⟩ 64F

(R-,NS+) |0Ra⟩Lb̄I−1/2|0NS⟩R|0b⟩ 64F

(R-,R-) |0Ra⟩L|0Rb⟩R|0b⟩ 64B

Table 2.3: Massless modes of closed superstring excitation in type IIB superstring

theory.

(NS+,NS+) sector so the theory contains the graviton, Kalb-Ramond and dilaton

fields, as in context of type IIA theory. The massless states in (R−,R−) sector

have the same chirality and actually carry zero, two and four light-cone indices.

So they match to zero-form field, A, two-form field, Aµν and four-form field Aµνρσ.

The zero-, two- and four-form fields can electrically interact with D(-1)-, D1- and

D3-branes, respectively. Those form fields also magnetically interact with D7-,

D5- and again D3-branes. We now conclude that the type IIB theory contains

graviton, Kalb-Ramond and dilaton fields as in type IIA theory. The differences

are that type IIB theory contains zero, two and four form fields which enforce the

theory to include Dp-brane with p = −1 and odd number.



Chapter III

Introduction to AdS/CFT correspondence

3.1 World-Volume theory

3.1.1 Stack of Dp-Branes

Let us discuss about open string ending on the same Dp-brane (p-p string) in

more detail. Quantum fluctuations of the open strings can be divided into two

sets acoording to their directions i.e. parallel and perpendicular to the Dp-brane.

We are most interested in the massless modes of these fluctuations. The massless

modes in parallel directions are components of a vector field Aa with a = 0, 1, ..., p

describing U(1) gauge theory in the world-volume of Dp-brane. On the other

hand, massless modes along perpendicular directions appear as 9 − p massless

scalar fields in the world-volume theory. The 9− p scalar fields are denoted by φr

with r = p+1, ..., 9 and transform as scalar under SO(1, p). To be more precise, we

introduce xa and xr to label the parallel and perpendicular directions to Dp-brane

world-volume, respectively. In this notation, xr = (xp+1, ..., x9) determine position

of Dp-brane. Notice that for supersymmetric theory, there exist fermionic modes

with equal degrees of freedom to those bosonic modes, but we will pay attention

to bosonic degrees of freedom. We note that fluctuations of p-p string along xr

directions may be considered as fluctuations of Dp-brane itself.

More complications arise when we consider the case that p-p strings attach

on two or more Dp-branes. For simplicity, we consider a spacial case when all

Dp-branes are completely parallel to each other. There exist additional degrees

of freedom for open string states, since endpoints of a p-p string may end at

two different Dp-branes. String states describing a p-p string stretching form ith

Dp-brane to jth Dp-brane are as |[i, j]⟩. The indices i, j = 1, 2, ..., N are called

Chan-Paton indices, N is total number of Dp-branes, see also [5].

Let us discuss a system with two copies Dp-branes which are separated by

transverse distance |xr| = L (see Figure 3.1). The possible of p-p string states are
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Figure 3.1: When the two Dp-branes are separated (left), there are four sector p-p

string. But when the two branes are coincided at the same xr (right), there are

only one sector of p-p string

|[1, 1]⟩, |[1, 2]⟩ |[2, 1]⟩ and |[2, 2]⟩. The lowest energy states for open string ending

on the same branes |[1, 1]⟩ and |[2, 2]⟩ are massless. These massless fluctuations are

still represented by the massless vector field (Aa)11 and (Aa)22, and massless scalar

fields (φr)11 and (φr)22. The lowest energy states for string ending on different

branes |[1, 2]⟩ and |[2, 1]⟩ are massive. Their masses are given by M = L/(2πα′),

see Ref. [5]. Thus, the fluctuations are represented by components of a massive

vector field and scalar fields. They are denoted by (Aa)12 and (Aa)21 for massive

vector fields, and (φr)12 and (φr)21 for massive scalar fields. The world-volume

has U(1)× U(1) gauge symmetry.

The above system becomes more interesting when two Dp-branes are coin-

cided at a same position in the transverse directions, L = 0. That conicidence

Dp-branes is called a stack of two Dp-branes. The lowest energy states of |[2, 1]⟩
and |[1, 2]⟩ now become massless, so all the lowest energy states are denoted by

massless vector field (Aa)ij and scalar fields (φr)ij. (Aa)ij and (φr)ij are in the

adjoint representations of U(2) gauge group. Consequently, (Aa)ij are identified as

gauge fields in U(2) gauge theory on Dp-brane world-volume. Altogether, bosons

and fermions form supersymmetry multiplet of supersymmetric Yang-Mills theory

(SYM theory) with U(2) gauge group. The number of supersymmetry depends

on the dimensions of Dp-branes.

Indeed, the symmetry of world-volume gauge theory is enhanced from U(1)×
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U(1) to U(2) when two Dp-branes move closed to each other and form a stack

of coincident Dp-branes. If the two Dp-branes move apart from each other, the

symmetry is broken from U(2) to U(1)× U(1) and the vectors (Aa)12 and (Aa)21

become massive. This is string theory version of the Higgs-mechanism.

We can make the system of two Dp-branes to become more general when

we add more Dp-branes and form a stack of N copies Dp-branes. In this system,

the vector field (Aa)ij becomes gauge field of a non-abelian U(N) gauge theory.

We can conclude that a system consisted of a stack of Dp-branes is possible to

construct a non-abelian U(N) gauge theory living in world-volume.

3.1.2 N = 4 Supersymmetric Yang-Mills theory

TheN = 4 supersymmetric Yang-Mills theory is a non-abelian U(N) gauge theory

with global U(4)R R-symmetry. The theory is consistent with (3 + 1) Minkowski

space-time, where 16 numbers of supercharges are allowed. Those supercharges

satisfy the Lie albegra of the Graded Poincaré group, a supersymmetric extension

of Poincaré group. Fields in supersymmetric theory form irreducible representa-

tions of supersymmetric algebra which is called supermultiplet. Fields from su-

permultiplet have the same mass but different spins. Massless fields in the N = 4

supersymmetric Yang-Mills theory are included in N = 4 vecter supermultiplet.

We show a list of physical degrees of freedom in N = 4 vector supermultiplet in

Table 3.1. Note that λ is helicity of fields. N = 4 vector supermultiplet includes

Helicity : λ 1 1/2 0 -1/2 -1

Degrees of freedom 1 4 6 4 1

Table 3.1: N = 4 vector supermultiplet.

two bosonic degrees of freedom with λ = ±1, correspond to the 2-polarization of

a massless vector field, six bosonic degrees of freedom with λ = 0 and fermionic

degrees of freedom with λ = ±1/2 correspond to 6 real scalar fields and 4 Weyl

spinor, respectively.

Next we consider a string configuration. In context of type IIB superstring

theory, the (3 + 1)-dimensional non-abelian gauge theory with U(Nc) can be con-

structed by a stack of Nc D3-branes in Minkowski (9+1)-dimensional space-time.

We suppose that (3 + 1)-directions of D3-brane world-volume coincide with the

t, x, y, z directions of the space-time. The remain directions, x4, ..., x9, are trans-

verse to the world-volume. We show the massless modes fluctuation of 3-3 string
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in Table 3.2. Massless modes of strings are 2 degrees of freedom for vector field, 6

Space-time coordinates t x y z x4 x5 x6 x7 x8 x9

D3-brane world-volume × × × ×
Bosonic modes 2 DOF of Aa 6 scalar fields φ4, ..., φ9

Fermionic modes 8 DOF → 4 Weyl spinors

Table 3.2: Directions of D3-brane world-volume and degrees of freedom of 3-3

string fluctuations.

scalar fields and 8 fermionic degrees of freedom. Those fermionic degrees of free-

dom are equal to degrees of freedom of 4 Weyl spinors. All degrees of freedom of

string fluctuation can match with fields in N = 4 vector supermultiplet. We can

conclude that fluctuations of 3-3 string give rise to field in vector supermultiplet.

In other words, the system with a stack of Nc D3-branes has N = 4 SYM theory

in D3-brane world-volume.

The gauge field and scalar fields are in adjoint representation of U(Nc) gauge

group. This gauge group may be identified with color gauge group, when we apply

this gauge theory to explain system of quarks. The gauge group U(Nc) can be

usually factorized into U(Nc) ∼ SU(Nc)×U(1), and U(1) is decoupled with fixing

position of D3-branes. The vector fields Aa plays a role as gauge field of SU(Nc)

gauge group. We can write an effective action which describes those massless open

string states. The effective action for N = 4 SYM theory is

SYM = − 1

g2YM

∫
d4xTr

(
1

4
F abFab +

1

2
Daφ

iDaφi + φiφi

)
+ ... . (3.1)

Here we show only massless bosonic fluctuation in the action. Terms in “...” are

massless fermionic and massive modes. gYM is dimensionless coupling constant of

our SYM theory which relates to string coupling gs by g
2
YM = 4πgs.

3.2 Type IIB Supergravity

The low energy limit of type IIB superstring theory contains only massless states

such as graviton gµν , Neveu-Schwarz two-form field Bµν , dilaton Φ and Ramond-

Ramond (p + 1)-form fields, where p is odd number. There are also fermionic

partners to those states but we can set them to zero at classical level. In other

words, we consider only bosonic background fields.
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In this subsection, we consider low energy effective action that describes

those fields. The action contains Einstein-Hilbert term, dilaton kinetic term,

as well as the terms associated with Neveu-Schwarz 2-form fields and Ramond-

Ramond (p+ 1)-form fields.

We consider p-brane solution of type IIB supergravity theory. Dp-brane is a

special case of p-brane which open string can end on. As massive charged object,

a p-brane causes the surrounding space-time to have more curvature. Mass and

charge of p-branes are denoted by M and Q. The metric that describes p-brane

is called black p-brane solution which is the solution of Einstein equation. The

black p-brane solutions can be classified by masses and charges into three cases:

G10M
2 > Q2, G10M

2 = Q2 and G10M
2 < Q2. We will consider the p-branes with

G10M
2 > Q2, that is non-extremal p-brane solution.

Since we are interested in D3-brane solution, only Ramond-Ramond 4-form

field will be turned on. Its kinetic terms can be written in a term of five-form field

strength F(5) = dC(4). The effective action in Einstein frame is

S =
1

16πG10

∫
dDx

√
−g
(
R− 1

2
∂µϕ∂

µϕ− 1

2 · 5!
F 2
(5)

)
, (3.2)

G10 is 10-dimensional Newton constant which relates to string coupling gs by

16πG10 = (2π)2g2sα
′4 [7]. F 2

(5) can be written in components form as Fα1...α5F
α1...α5 .

3.2.1 D3-Brane Solution

Equations of motion for type IIB supergravity can be obtained by varying action

in Eq. (3.2) for n = 5 with respect to graviton, dilaton and five-form fields. After

some rearrangements, the explicit form of equations of motion are

Rµν =
1

2
∂µϕ∂νϕ+

1

2 · 5!

(
5Fµλ2...λ5F

λ2...λ5
ν − 1

2
gµνF

2
5

)
, (3.3)

∂ρ∂
ρϕ =

1

2 · 5!
F 2
(5) , (3.4)

∇µ1 (F
µ1...µ5) = 0 (3.5)

∂[µ1Fµ2...µ6] = 0 . (3.6)

Note that Eq. (3.6) comes from the Bianchi identity and five-form field strength

is self-dual.

We are interested in the D3-branes solution of the above equations of motion.

It is convenient to assume a trial solution

ds2 = gµνdx
µdxν ,
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where

ds2 = −e2Bdt2 + e2Cδijdx
idxj + e2Fdr2 + e2Gr2dΩ2

5 . (3.7)

Here index i is running along D3-brane directions so i = 1, 2, 3. We imploded

some symmetries to our considering trial solution. A symmetry we imploded

is spherical symmetry on spatial directions perpendicular to the D3-brane. It is

natural to write those perpendicular directions to be five-sphere of variable radius.

Thus, in the above metric, the r denotes radial direction of the five-sphere. And

the dΩ2
5 determines infinitesimal length on the five-sphere. Other symmetries are

time translational symmetry and rotational symmetry in spatial directions parallel

to the D3-brane, xi.

Since the metric is classified by mass and charge, there should be only two

independent factors appearing in the metric. The above metric now have four

factors denoted by B, C, F and G, there should exist two constraints which

reduce those factors into two independent factors. By using this fact and solving

the equations of motion, we can find that C = −G and B = −F . And we finally

find that

e2B = e−2F =

(
1− b4

r4

)
H− 1

2 (3.8)

e2C = e−2G = H
1
2 , (3.9)

where

H =

(
1 +

R4

r4

)
.

H is harmonic function depended on a constant R, and b is extremal parameter.

Mass of the D3-brane is also determined by both Q and b (see Ref. [10]). However

we do not show form of the mass in this thesis. The constant R relates to charge

and b by

R4 =

√
Q2

16
+ b2 − b . (3.10)

By substituting those factors into trial solution Eq. (3.7), we end up with

ds2 = H− 1
2

(
−
(
1− b4

r4

)
dt2 + dx⃗2

)
+H

1
2

((
1− b4

r4

)−1

dr2 + r2dΩ2
5

)
, (3.11)

where dx⃗2 = (dx1)2+(dx2)2+(dx3)2. This is the non-extremal D3-brane solution.

It is easy to check that this metric has two horizons at r = 0 and r = b, two radial

values making g00 = 0.
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3.2.2 AdS5 × S5 Geometry

The extremal limit of metric Eq. (3.11) is obtained by setting b = 0. In fact,

the D3-brane satisfies the Bonomolnyi Pasad and Somenfield condition (BPS con-

dition), G10M
2 = Q2. Thus the space-time curvature affecting by D3-brane are

described by extremal solution. The extremal solution is following

ds2 = H− 1
2

(
−dt2 + dx⃗2

)
+H

1
2

(
dr2 + r2dΩ2

5

)
. (3.12)

Then, let us consider the near-horizon limit, r → 0, of metric Eq. (3.12). The

harmonic function may be rewritten into H = (r4 +R4)/r4, then we suppose that

r → 0 is equivalent to r ≪ R. Under such limit, the harmonic function behaves

like H → R4/r4. Then we obtain

ds2 =
r2

R2

(
−dt2 + dx⃗2

)
+
R2

r2
(
dr2 + r2dΩ2

5

)
. (3.13)

The next step, we perform a radial coordinate transformation with u = R2

r
. We

rewrite the metric Eq. (3.13) in u coordinate as

ds2 =
R2

u2
(
−dt2 + dx⃗2 + du2

)
+R2dΩ2

5 . (3.14)

We factorize metric Eq. (3.14) into two factors. Coordinates t, x⃗, u belong to the

(4 + 1)-dimensional Anti-de-Sitter space (AdS5) and other coordinates x5, ..., x9

are compacted into 5-dimensional sphere S5. Thus, the metric Eq. (3.14) describes

the AdS5 × S5 geometry, where constant R is now identified by the AdS radius.

3.3 The Correspondence

3.3.1 Two Descriptions

In the previous section, we saw that there are two descriptions which describe a

stack of D3-branes. In the first description, 3-3 string fluctuations give rise to the

N = 4 non-abelian SU(Nc) SYM theory. In the second description, D3-branes

are considered as source of space-time curvature. The two descriptions should be

equivalent, since they describe the same system. There exists an equivalent rela-

tion between those two descriptions namely gauge/gravity correspondence. The

AdS/CFT correspondence is the original version of the gauge/gravity correspon-

dence. In this section, we will discuss the key ideas which lead to statement

AdS/CFT correspondence.
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3.3.2 Matching Coupling Constants

Recall the action of N = 4 SYM theory Eq. (3.1) with only pure gauge, which is

SYM = − 1

g2YM

∫
d4xTr

(
1

4
F abFab

)
. (3.15)

The field strength tensor is given by Fab = ∂aAb − ∂bAa + [Aa, Ab]. Now we

identify SU(Nc) as the color gauge group. (Aa)ij is a Nc × Nc matrix, and color

indices i and j run over 1, 2, ..., Nc. The gauge fields can self-interact with strength

proportional to 1/g2YM [11]. Every closed loop (loop of one line) contributes N2
c .

We can write loop diagrams of self-interaction SYM theory in double lines

notation. There are two types of such diagrams. Diagrams which can be written

on the plane are called planar diagrams. On the other hand, diagrams which can

not be drawn on the plane without crossing line are called non-planar diagrams.

For non-planar diagrams with h crossing, they can be written as planar diagrams

on a two-dimensional surface with h number of hole. For example, a non-planar

diagram with 1 crossing can be illustrated as a planar diagram in a torus.

A planar diagram with v vertex and l loop (one line loop) has amplitude

proportional to (g2YM)
l−vN v

c . We may define the ’t Hooft coupling constant λ =

g2YMNc. By writing the amplitude in terms of the ’t Hooft coupling, we found that

its amplitude is proportional to λl−vN2
c . We see that planar diagram has N2

c factor

in their amplitude. For a non-planar diagrams with h crossing, we observe that

amplitude of such diagram is proportional to N2−h
c multiplied by some positive

powers of λ. We may say that the coupling λ controls strength of loop interactions

instead of coupling gYM, since positive powers of λ appears as amplitude.

When we calculate the total amplitude for collection of loops diagrams, we

find that the amplitude can be expressed in 1/Nc expansion. Form Ref. [7], the

1/Nc expansion is

total amplitude ∼ N2
c f0(λ) + f1(λ) +

1

N2
c

f2(λ) + ... . (3.16)

The function fn(λ) associates to loop diagrams with n number of crossing. In large

Nc limit, Nc → ∞, amplitude of non-planar diagrams are suppressed by negative

power of Nc while the amplitude of planar diagrams are dominated. Thus in the

large Nc limit, we can neglect all non-planar diagrams.

In context of perturbative theory, closed string interaction can also be writ-

ten in terms of loops expansion represented by summation of closed string world-

sheet diagrams. Diagrams with h closed string loops are a two-dimensional genus
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h surface. As shown in Ref. [7], the total closed string amplitude is written by α′

expansion such that

Amplitude ∼
∑
h=0

g2h−2
s Fh(α

′) =
1

g2s
F0(α

′) + F1(α
′) + g2sF2(α

′) + ... . (3.17)

The function Fh(α
′) are contribution from two-dimensional surface with h hole. In

limit that gs → 0, zero order of Eq. (3.17) is dominate, we can neglect all higher

order of loop interactions.

We see that the 1/Nc and α
′ expansion as shown in Eq. (3.16) and (3.17),

respectively, have the same structures. By matching fn to Fh with n = h ̸= 0, we

obtain a relation

gs ∼
1

Nc

. (3.18)

In subsection 3.1.2, we wrote the relation between Yang-Mills and string coupling

by g2YM = 4πgs. If we substitute g2Ym by g2Ym = λ/Nc, we obtain 4πgs = λ/Nc

which corresponds with Eq. (3.18).

3.3.3 Matching Symmetry Groups

Let us discuss N = 4 SYM theory in more detail. The Lagrangian for N = 4

SYM theory in 4-dimensional space-time given by [12] is invariant under N = 4

Poincaré supersymmetry. Classically it is also scale invariant. In relativistic field

theory, scale and Poincaré invariance can combine into a larger symmetry called

conformal symmetry. In (3+1)-dimension, it forms the group SO(2, 4) ∼= SU(2, 2).

There is an larger superconformal symmetry given by the supergroup SU(2, 2|4)
which is the combination of N = 4 supersymmetry and conformal invariance.

At quantum level, N = 4 SYM theory has a remarkable property. There is

no ultraviolet divergences in perturbative expansion. It is believed that the theory

is UV finite. The renormalization group β-function of the theory vanishes in all

order of perturbation i.e. scale invariant at quantum level. The superconformal

group SU(2, 2|4) is a full quantum symmetry of the theory.

One of the necessary requirement for AdS/CFT correspondence is that the

global symmetry of the two theories must be identical.

As explain above, the global symmetry for N = 4 SYM theory in its con-

formal phase is SU(2, 2|4). For simplicity, let us consider its maximum bosonic

subgroup SU(2, 2)×SU(4)R ∼= SO(2, 4)×SO(6)R. It is the product of conformal
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group SO(2, 4) to the N = 4 supersymmetry SU(4)R. The bosonic part matches

with isometry group of AdS5×S5 geometry. The full supergroup SU(2, 2|4) arises
on the AdS side because 16 of 32 supercharges are preserved by the stack of Nc

D3-branes.

3.3.4 AdS/CFT Conjecture

In previous subsection we provide some evidences supporting duality between

N = 4 SYM theory and type IIB supergravity theory. In this section, we discuss

this duality in more detail by following Ref. [6].

Consider a stack of Nc D3-branes. There are two kinds of perturbative string

states, closed string states and open string (3-3 string) states. If we consider the

system at low energy, only massless modes can survive. The closed string massless

states form gravity supermultiplet of (9 + 1)-dimensional type IIB supergravity.

Their dynamical evolutions are governed by low energy effective Lagrangian of type

IIB superstring theory. On the other hand, open string states give N = 4 vector

supermultiplet in (3+1)-dimensional world-volume. Their effective Lagrangian is

that of N = 4 U(Nc) SYM theory. The action for massless string modes have the

form

S = Sclosed + Sopen + Sint . (3.19)

Sclosed is the action of type IIB supergravity plus possible higher derivative terms,

defined on (9+1)-dimensional bulk. It is not renormalizable and serves as an

Wilsonian effective action. Sopen is defined on the (3+1)-dimensional D3-branes

world-volume. It contains N = 4 SYM Lagrangian and possible higher derivative

terms. Sint describes interactions between the brane modes and the bulk fields.

The coupling is proportional to the Newton constant which relates to string cou-

pling by 16πG10 = (2πα′2)2g2s .

When we take the low energy limit, α′ → 0 with gs and Nc fixed, we have

G10 → 0. The interaction action is effectively zero. We can say that both N = 4

SYM and type IIB supergravity theories are decouple.

Next we consider the same system by using a different description. D3-

branes are massive charged objects which can be geometrically represented by D3-

brane solution. We consider low energy effective theory in this background. For the

observer at infinity, there are two kinds of excitations. The first kind, there are the

massless bulk particles, the second kind are particles near the horizon of D3-brane
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solution. In observer point of view, the massless modes from near-horizon region

lose its energy due to redshift factor. Furthermore, massless modes from near-

horizon region are decouple with massless modes at asymptotic region since the

strength of interaction is proportional to 1/r8. Note that r is the radial coordinate

appearing in Eq. (3.13). Thus observer can say that type IIB supergravity theory

in flat space is free from interaction with the type IIB superstring theory in AdS5×
S5.

We compare those two low energy limit descriptions. Since both descriptions

have type IIB supergravity theory in flat space, it is natural to match the N = 4

SYM theory and type IIB superstring theory together. Actually the two theories

are living in different dimension of space-time - theN = 4 SYM theory is in (3+1)-

dimension while type IIB superstring theory is in (9+1)-dimensional space-time.

Matching of two theories can be done through holographic description.

Let us discuss about boundary of the AdS5 × S5. For our convenient, we

may fix ds2 to be a constant. We also define (infinitesimal) physical distance of

(3+1)-space by

dl2 =
R2

u2
(
−dt2 + dx⃗2

)
. (3.20)

Then the metric as shown in Eq. (3.14) becomes

ds2 = dl2 +
R2

u2
du2 +R2dΩ2

5 .

Now we perform conformal transformation as follows u → ϵu. When we take

ϵ→ 0 corresponding with going toward boundary, the (R2/u2)du2+R2dΩ2
5 remain

constant while the dl is very large. The AdS5 × S5 effectively becomes flat (3+1)-

dimensional space-time at its boundary. Thus we may say that the N = 4 is living

on boundary of the AdS5 × S5 space.

We end up with statement of AdS/CFT correspondence: N = 4 SYM theory

in boundary of AdS5×S5 corresponds with type IIB superstring theory AdS5×S5

space.

3.3.5 Strong/Weak Conjecture

Statements of the AdS/CFT correspondence have three versions according to limit

of two description [8]. The first version is the strongest version of statement.

This version claims correspondence between N = 4 SYM theory and type IIB
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superstring theory AdS5 × S5 space validing in general. However it is not possible

to test this version because no one knows how to quantize the type IIB superstring

theory on curved space-time. The second version is obtained in large Nc and ’t

Hooft limit, Nc → ∞ and λ is fixed. The third version of correspondence is

statement which is reached by taking large Nc limit and fixing ’t Hooft coupling

at large value, λ > 1. On this case the gauge description becomes strong coupling

N = 4 SYM theory due to strange of interaction (proportional to λ) is large.

On the other hand, the type IIB superstring theory is now perturbative type IIB

supergravity theory, since α′ → 0 as λ > 1.

In conclusion, the AdS/CFT correspondence states that non-perturbative

N = 4 SYM theory at boundary of AdS5 × S5 is dual to perturbative type IIB

supergravity theory on AdS5×S5. This statement realizes only large Nc limit and

fixing ’t Hooft at large value. By using this statement, we can make prediction for

a system in strongly couple gauge theory by performing parturbative calculation

in type IIB supergravity theory.

There exists the AdS/CFT dictionary which gives relations between calcula-

tion in gravity and gauge sides, see Ref. [9, 13]. The general form of the AdS/CFT

dictionary is

⟨e
∫
ϕ0Od4x⟩ = ZSUGRA[ϕboundary = ϕ0] . (3.21)

This is relation of partition function of gauge side (left handed side) and gravity

side (right handed side). Here ϕ denotes field in AdS5×S5 space and O denotes an

observable operator in gauge theory. The vacuum to vacuum expectation value of

the observable can be achieved by performing functional derivative at both sides

on the relation.

3.4 D3/D7 Model

3.4.1 Adding Probe D7-Branes

We add a stack of Nf copies of D7-branes into the original system so called D3/D7

model. The evolving D7-branes span (7+1)-dimensional world-volume. We choose

the (3+1)-directions of D7-brane world-volume completely parallel to all directions

of D3-brane world-volume, and the remain directions are all transverse to D3-

brane world-volume (see Table 3.3). Directions that transverse to D7-brane world-
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volume are x8 and x9. They determine positions of D7-branes. Stack of D3-

branes localizes at x8 = x9 = 0 and D7-branes may separate from the stack

D3-branes in x8 and x9 directions by L, L2 = (x8)2 + (x9)2 (see Figure 3.3).

Figure 3.2: D3/D7 configuration. There exist four possible sectors of open super-

string.

Space-time coordinates t x y z x4 x5 x6 x7 x8 x9

D3-brane world-volume × × × ×
D7-brane world-volume × × × × × × × ×

Table 3.3: The occupation of D3- and D7-brane world-volumes. The D7-branes

have freedom to move along the x8 and x9 directions.

Configuration that two stacks of D3 and D7 branes coincide in the same position is

called Higgs branch, while configuration with separation of two stacks is Coulomb

branch. As we add stack of D7-branes, we have more open strings in our system.

Now the system contains 3-3, 7-7, 3-7 and 7-3 string. There are two sets of

the Chan-Paton indices which we denote the first set by i, j = 1, 2, ..., Nc and

the second by ĩ, j̃ = 1̃, 2̃, ..., Ñf . States of fluctuations on 3-3 string and 7-7

string are included in sectors |[i, j]⟩ and |[̃i, j̃]⟩, respectively. Massless states from

|[i, j]⟩ sector correspond with massless fields that are shown in Table 2.2. So we

will consider the massless field from |[̃i, j̃]⟩ sector. Ground states in |[̃i, j̃]⟩ sector
contribute 6 degrees of freedom for a vector field and 2 degrees of freedom for

scalar fields in D7-brane world-volume, and 8 fermionic degrees of freedom as
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well. The arisen vector field plays a role as gauge field of U(Nf ) gauge group

which is factorized as U(Nf ) ≈ SU(Nf )×U(1)b. We can identify the U(1)b factor

to be group of Maxwell theory in D7-brane world-volume.

In case of 3-7 and 3-7 strings, they are different according to different orien-

tations. For the 3-7 string, its σ = 0 endpoint is on the stack of D3-branes while

σ = π endpoint is on stack of D7-branes, and vice versa for 7-3 string. Modes fluc-

tuation on the open string are Nc×Nf matrix which transform as bi-fundamental

under two gauge groups, fundamental under SU(Nc) and anti-fundamental under

SU(Nf ) gauge group.

States of fluctuations on 3-7 and 7-3 strings are included in |[i, ĩ]⟩ and |[̃i, i]⟩,
respectively. The lowerest energy states in these sectors are massive for Coulomb

branch and massless for Higgs branch. Fluctuations along t, x, y, z directions con-

tribute to 2 degrees of freedom of massive vector on both D3- and D7-brane

world-volumes. Fluctuations along x4, x5, x6, x7 directions contribute 4 degrees of

freedom to scalar and vector fields in D3- and D7-brane world-volumes, respec-

tively. Fluctuations along x8 and x9 directions contribute 2 degrees of freedom to

scalar fields for both world-volumes.

Because D7-branes are BPS objects, adding a stack of D7-branes breaks half

of supersymmetry. Only 8 supercharges are allowed on D3-brane world-volume,

so world-volume theory becomes N = 2 SYM theory. We can write fields in

the N = 4 vector supermultiplet to be 1 N = 2 vector supermultiplet with its

charge-parity-time reversal conjugation (CPT conjugation) and 2 N = 2 chiral

supermultiplets. Moreover, 2 additional N = 2 massive chiral supermultiplets

are also included in the world-volume theory. Fields content in those massive

supermultiplets are ground states in |[i, ĩ]⟩ and |[̃i, i]⟩ sectors. Mass of fields may

be written as Msep where Msep = 0 for Higgs branch but Msep ∼ L Coulomb

branch, with separation L (along transverse directions).

In order to construct Lagrangian for the N = 2 theory, we may write com-

ponent fields in N = 2 supermultiplets as component fields of N = 1 superfields.

In fact, the massless 1 N = 2 vector (and its CPT conjugation) and 2 N = 2 chiral

supermultiplets are alternatively written as 1 N = 1 vector and 3 N = 1 chiral

supermultiplets, with their CPT conjugations. We need at least 1 vector and 3

chiral superfields to write our Lagrangian. The N = 1 vector and three chiral

superfields are denoted by Wa and Φ1,Φ2,Φ3, respectively. Similarly, component

fields in N = 2 chiral supermultiplets are rewritten as component fields of N = 1

chiral superfields denoted by Q and Q̄, (see also [14]). In case of Higgs branch, we
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conclude fields in N = 2 theory in Table 3.4. As shown in Table 3.4, we factorize

N = 2 Component fields SU(2)Φ × SU(2)R U(1)R SU(Nf ) U(1)b

Φ1,Φ2 φ4, φ5, φ6, φ7 (1
2
, 1
2
) 0 singlet 0

λ1, λ2 (1
2
, 0) +1 singlet 0

Φ3,Wa φ8, φ9 (0, 0) +2 singlet 0

λ3, λ4 (0, 1
2
) +1 singlet 0

Aa (0, 0) 0 singlet 0

Q, Q̄ q, q̄ (0, 1
2
) 0 fundamental +1

ψ, ψ† (0, 0) -1, +1 fundamental +1

Table 3.4: The component fields in the N = 2 theory which are written by N = 1

superfields.

rotation group of x4, x5, x6, x7 into SU(2)Φ×SU(2)R, and rotation group of x8, x9

is isomorphic with U(1)R. Notice that the U(1)R is broken in Coulomb branch

because the stacks of D3- and D7-branes are separated from each others. Thus,

Q and Q̄ acquire mass Msep, corresponding to Higgs mechanism for N = 2 SYM

theory. As shown in reference [8]. Lagrangian of the N = 2 SYM theory in terms

of those N = 1 superfields is

L ∼
∫

d4θ
(
Φ†e2VΦ +Q†eVQ+ Q̄†eV Q̄

)
+

∫
d2θ (WaW

a +W ) + h.c.

Here W is superpotential, which is

W = ϵijkΦiΦjΦk + Q̄(Msep + Φ3)Q .

V denotes a vector superfield which governs non-abelian of this N = 2 theory.

Stack of D7-branes is treated as probe. The number of D3-branes is much

more than the number of D7-branes, Nc ≫ Nf . In addition, the 7-7 strings

decouple with other kinds of string hence the SU(Nf ) gauge symmetry becomes

global symmetry for D3-brane world-volume. The addition of D7-probe branes

does not break conformal symmetry of the N = 2 SYM theory effectively, since

beta function depending on Nf/Nc goes to zero.

3.4.2 D7-Branes on Background Five-Sphere

In gravity description, the adding D7-branes wrap on the AdS5×S5 without back-

reaction. The 7-7 strings are added into AdS5×S5 space; however, the 7-7 strings

decouple to other closed strings. Low energy fluctuation of 7-7 strings in transverse
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direction on the space can be represented as perturbative fluctuations of wrapping

D7-branes. There are two degrees of freedom of D7-branes fluctuations which are

fluctuated along x8 and x9, and so called scalar fluctuations. Furthermore, the

scalar fluctuations describe mass spectrum of scalar mesons:

Mass spectrum = Mass gap× Fluctuation modes of D7-branes . (3.22)

As D7-branes wrapping on background, since the first five directions of D7-

brane world-volume occupy all directions on the AdS5, and the remain directions

are compacted as S3. On the AdS5 × S5, the S3 part of D7-brane world-volume

appears as subspace of background S5 (see Figure 3.3). The x8 and x9 are trans-

formed into two angular coordinates defined by θ and ϕ. Thus we use that angular

coordinates to determine positions of D7-branes on the S5. Perturbative fluctua-

tions of θ and ϕ are approximately the same as fluctuation along x8 and x9. We

may perform fluctuations along x8 and x9 instead of θ and ϕ because calcula-

tions using terms of Cartesian coordinates are easier. Here, metric of D7-brane

world-volume is

dS2
D7 =

ρ2 + L2

R2

(
−dt2 + dx⃗2

)
+

R2ρ2

(ρ2 + L2)2
(
dρ2 + ρ2dΩ2

3

)
. (3.23)

ρ and L are radial directions of D7-brane world-volume and separation of two

stacks, respectively. Furthermore r2 = ρ2 + L2 and ρ = r cos θ, where r is radial

direction of the AdS5 × S5. Line element on S3 is determined by S3 with radius

Figure 3.3: This figure shows the five-dimensional sphere illustrated by red sphere.

The yellow circle represents the three-dimensional sphere. We can see clearly that

r cos θ determines size of three-sphere and r sin θ determines positions of three-

sphere along x8 and x9 directions.

ρ = r cos θ, simultaneously with D7-brane world-volume radial direction. For the

Coulomb branch, radial direction ρ does not fill full range of background radius
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defection but ends at the place where the radius of S3 shrink to zero, ρ = 0 as

θ = π/2. For the Higgs branch, because L = 0 as well as r = ρ, radial defection

of the D7-brane world-volume fills full range of background radial direction.

In gravity description, dynamics of D7-branes are described by D7-brane

action, SD7. Generally, the full action of wrapping D7-branes consists of DBI

action, Wess-Zumino terms and contribution form fields fluctuations. DBI action,

as shown in Chapter 2, describes S3 wrapping on S5 subspace. Wess-Zumino

action contains possible interaction between form-fields. Since four-form field A(4),

Kalb-Ramond field B(2) and two-form field strength all present in D7-brane world-

volume. The interaction terms are written in terms of wedge products of those

form-fields. And the last term explains scalar and vector fluctuations. Hence the

full D7-branes action is

SD7 = SDBI + SWess-Zumino + Sfluctuation ,

where

SDBI = −TD7Nf

∫
d8σ
√
− det (Gab +Bab + 2πα′Fab) . (3.24)

Here Gab is the induced metric corresponding to metric Eq. (3.23), Bab and Fab

denote components of Kalb-Ramond field B(2) and two-form field strength, respec-

tively.



Chapter IV

D7-branes calculations

4.1 Background Space-time

4.1.1 Background AdS5-Schwarzchild×S5

We focus on system with finite temperature. So space-time background is pro-

moted, from original AdS5×S5 to be AdS5-Schwarzchild×S5. This background is

near-horizon limit of non-extremal D3-brane solution. We use the non-extremal

solution in the sense of near-extremal limit, even though D3-branes satisfy the

BPS condition G10M
2 = Q2. In this subsection, we show how we achieve the

AdS5-Schwarzchild×S5 and how we obtain black hole temperature T .

At the beginning, we recall the non-extremal D3-brane solution as written

in Eq. (3.10):

dS2 =

(
1 +

R4

u4

)− 1
2
(
−
(
1− b4

u4

)
dt2 + dx⃗2

)
+

(
1 +

R4

u2

) 1
2

((
1− b4

u4

)−1

du2 + u2dΩ2
5

)
. (4.1)

Term 1 + R4/u4 is harmonic function; however, we denote radial direction by

u instead of r. R and b are identified with AdS radius and black hole radius,

respectively. The dΩ2
5 is line-element of unit five-sphere S5:

dΩ2
5 = dθ2 + cos2 θdΩ2

3 + sin2 θdϕ2 (4.2)

and dΩ2
3 = dΨ2 + cos2 Ψdβ2 + sin2Ψdγ2 . (4.3)

S5 contains three-sphere (S3) subspace where its line-element is denoted by dΩ2
3.

This choice of dΩ2
5 corresponds to D7-brane embedding, as we discussed in subsec-

tion 3.4.2. Angular coordinates on S5 are θ, ϕ,Ψ, β and ψ where θ and ϕ determine

positions of subspace S3 on S5 (see Appendix B). We consider the near-horizon
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limit of the metric Eq. (4.1). By performing the approximation as illustrated in

subsection 3.2.2, we obtain

ds2 =
u2

R2

(
−
(
1− b4

u4

)
dt2 + dx⃗2

)
+
R2

u2

((
1− b4

u4

)−1

du2 + u2dΩ2
5

)
.(4.4)

Factor (1 − b4/u4)−1 appearing at du2 makes us inconvenient when we analyze

shapes of D7-branes on five-sphere. That factor will be cancelled out by introduc-

ing coordinate transformation u→ r. The result is metric of AdS5-Schwarzchild×S5

written by Poincare′ coordinates with radial direction r. In the Poincare′ coordi-

nates, terms that contain black hole radius b emerging in factors of dt2 and dx⃗2

and the (1− b4/u4)−1 factor vanishes from radial direction r.

For D7-branes embedding on background AdS5-Schwarzchild×S5, fluctua-

tions of D7-branes can be explained by quantum field theory on the black hole

background. We can write the partition function for the field theory, and con-

sider that field theory in language of statistical theory. The partition function can

be written by performing Wick rotation t → tE = it, where t is time direction

of metric and tE is Euclidean time. Then the Euclidean time is compact into a

circle namely closed Euclidean time loop. Fields in this theory are also periodic

functions of tE. The black hole causes the conical deficit in closed Euclidean time

loop. In order to remove the conical singularity, it is necessary to introduce a

multiplicative factor to tE to redefine period of tE. And that factor determines the

black hole temperature (see also Ref. [15]).

We calculate the black hole temperature by a method which is easier than

the calculations performed in Ref. [15]. Before introducing a coordinate transfor-

mation, the metric Eq. (4.4) is easier to find the temperature. At this point, we

read off the time-time component metric tensor g00 from metric Eq. (4.4). Then,

g00 =
u2

R2

(
1− b4

R4

)
,

dg00
du

= 4
b4

u3R2
+

2u

R2

(
1− b4

u4

)
,

dg00
du

∣∣∣∣∣
u=b

=
4b

R2
.

Black hole temperature is defined by

T =
1

4π

dg00
du

∣∣∣∣∣
u=b

,

so we obtain

T =
b

πR2
. (4.5)
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We see that the temperature is determined by radius of black hole horizon b.

4.1.2 Coordinates Transformation

In this subsection, we derive metric of AdS5-Schwarzchild×S5 written in Poincare′

coordinates. Let’s introduce coordinate transformation

r2 =
1

2

(
u2 +

√
u4 − b4

)
.

We rewrite 1 − b4/u4 and u2/R2 factors to be new terms that depends on r. We

define f̃ and f by

f̃ = 4r4 + b4 = 2u4 + 2u2
√
u4 − b4

f = 4r4 − b4 = 2u4 + 2u2
√
u4 − b4 − 2b4 .

Then, we perform the following calculation

f

f̃
=
u4 − u2

√
u4 − b4 − b4

u4 − u2
√
u4 − b4

= 1− b4

u4 − u2
√
u4 − b4

,(
f

f̃

)2

= 1− 2b4

u4 − u2
√
u4 − b4

+
b8(

u4 − u2
√
u4 − b4

)2 . (4.6)

On the other hand,

f̃

r2
=

4
(
u4 − u2

√
u4 − b4

)
u2 − u

√
u4 − b4

= 4u2 ,

thus we obtain

u2

R2
=

f̃

4R2r2
. (4.7)

The component g00 is rewritten in terms of f̃ , f and r by doing the following

process

f̃

r2

(
f

f̃

)2

= 4u2

(
1− 2b4

u4 − u2
√
u4 − b4

+
b8(

u4 − u2
√
u4 − b4

)2
)

,

= 4u2

(
1− 2b4u4 − 2b4u2

√
u4 − b4 − b8(

u4 − u2
√
u4 − b4

)2
)

,

= 4u2

(
1− b4

u4
2u4 − 2u2

√
u4 − b4 − b4(

u2 −
√
u4 − b4

)2
)

,

f̃

r2

(
f

f̃

)2

= 4u2
(
1− b4

u4

)
.
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We obtain

u2

R2

(
1− b4

R4

)
=

f̃

4R2r2

(
f

f̃

)2

. (4.8)

The left-handed side of Eq.(4.8) is (−g00) of metric Eq. (4.4) and the right-handed

side is for the Poincare′ coordinates. Another calculations are

r2 =
1

2

(
u2 +

√
u4 − b4

)
,

2rdr = udu+
u3du√
u4 − b4

.

Consequently, we get

4r2dr2 =
u2
(
u2 +

√
u4 − b4

)2
u4 − b4

du2.

Next, we calculate the following process

1

r2
dr2 =

u2
(
u2 +

√
u4 − b4

)2
4r4(u4 − b4)

du2 =
u2
(
u2 +

√
u4 − b4

)2(
u2 +

√
u4 − b4

)2
(u4 − b4)

du2,

precisely

R2

r2
dr2 =

R2

u2

(
1− b4

u4

)−1

du2 . (4.9)

By substituting the transformations in Eq. (4.8) and (4.9) into metric Eq. (4.4),

the AdS5-Schwarzchild×S5 is written as

dS2 =
1

4r2R2

(
−f

2

f̃
dt2 + f̃dx⃗2

)
+
R2

r2
dr2 +R2dΩ2

5 , (4.10)

where f = 4r4 − b4 and f̃ = 4r4 + b4 as we defined above.

Note that when we set b = 0 that is f = f̃ = 4r4, the metric Eq. (4.10) is

simplified to be the metric as shown in (3.12) which describes the AdS5×S5. The

calculation for D7-branes action with induced metric of AdS5-Schwarzchild×S5 is

more benefit than AdS5-×S5. After we obtain the action for finite temperature

case, it is easy to fix b = 0 as well as f = f̃ = 4r4. If we do, we obtain action

for zero temperature case which corresponds to calculation from induced metric

of AdS5-×S5. This simplification is true at action level but not at equation of

motion level.
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4.2 D7-branes Action

At this time, components of AdS5-Schwarzchild×S5 induced metric will be com-

puted. Again, D7-branes action is

SD7 = −TD7Nf

∫
d8σ
√

− det (Gab +Bab + 2πα′Fab) . (4.11)

In this thesis, Bab is turned off because we are not interested in string with charge

for simplicity. Fab denotes U(1)b field strength tensor. The induced metric of

general space-time metric is defined by

Gab = gµν
∂xµ

∂σa

∂xν

∂σb
.

Here gµν are components of metric tensor of background space-time which is

AdS5-Schwarzchild×S5. The xµ is a set of space-time coordinates with index

µ = 0, 1, 2, ..., 9. For AdS5-Schwarzchild×S5, the coordinates are

xµ = (t, x, y, z, r, RΨ, Rβ,Rγ,Rθ,Rϕ) ,

where coordinates belonging to S5 are written in angular coordinates. For world-

volume coordinates (σa), they are fixed by static gauge which makes world-volume

coordinates become

σa = (t, x, y, z, r, RΨ, Rβ,Rγ) .

This coordinates choice corresponds to D7-brane occupation as showed in Table

3.2. For this choice, D7-brane world-volume is AdS5-Schwarzchild×S3 space. The

components of the induecd metric are

G00 = − f 2

4r2R2f̃
G11 =

f̃

4r2R2

G22 =
f̃

4r2R2
G33 =

f̃

4r2R2

G44 =
R2

r2
+R2θ′2 G55 = cos2 θ

G66 = cos2 θ cos2Ψ G77 = sin2 θ sin2 Ψ

. (4.12)

We have introduced θ ≡ θ(r) so the G44 has R
2θ′2 in an addition. The “ ′ ” means

derivative with respect to r. We introduce t and x components of gauge potential

as a function of r. These components are A0(r) and A1 ≡ −Et + B(r), where

B(r) is a function of r. Other components of the gauge potential are fixed to be

zero. The A1 gives rise to constant electric field E along x-direction. With this

gauge potential, the non-zero components of Fab are

F10 = E , F40 = A′
0 and F14 = −B′ .
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We may define

Mab ≡ Gab + 2πα′Fab .

The diagonal elements of matrix Mab are

Mab = Gab only if a = b . (4.13)

And non-zero off-diagonal elements of the matrix are

M01 = −M10 = −2πα′E , M04 = −M40 = −2πα′A′
0 (4.14)

and M14 = −M41 = −2πα′B′ . (4.15)

In order to compute matrix determinant for above [Mab], let’s consider

[Mab] =



M00 M01 0 0 M04 0 0 0

M10 M11 0 0 M14 0 0 0

0 0 M22 0 0 0 0 0

0 0 0 M33 0 0 0 0

M40 M41 0 0 M44 0 0 0

0 0 0 0 0 M55 0 0

0 0 0 0 0 0 M66 0

0 0 0 0 0 0 0 M77


.

Its determinant (M = det[Mab]) is

M = (M00M11 −M01M)M22M33M44M55M66M77

−(M00M14 −M04M10)M41M22M33M55M66M77

+(M01M14 −M04M11)M22M33M40M55M66M77 ,

M = M33M55M66M77

(
(M00M22 +M2

01)

+M00M22M
2
14 +M11M22M

2
04

)
.

The anti-symmetric property of off-diagonal elementsMab = −Mba have been used

to rearrange the above equations. The matrix determinant can be more simplified

by substituting M11 =M22 =M33. Thus we obtain

M =M55M66M77

(
(M00M

2
11 +M2

01M
2
11)M44 +M00M

2
11M

2
14 +M2

11M
2
04

)
.(4.16)

By substituting Eq. (4.13), (4.14) and (4.15) into Eq. (4.16), the determinant is

−M =
cos6 θ cos2 Ψsin2Ψ

256r10R6

((
f 2f̃ 2 − 16 (2πα′E)

2
r4R2f̃ 2

) (
1 + r2θ′2

)
+4r4f 2f̃ (2πα′B′)

2 − 4r4f̃ 3 (2πα′A′
0)

2
)

,

√
−M =

cos3 θ cosΨ sinΨ

16r5R3

((
f 2f̃2 − 16r4R2f̃2 (2πα′E)

2
) (

1 + r2θ′2
)

+4r4f 2f̃ (2πα′B′)
2 − 4r4f̃ 3 (2πα′A′

0)
2
) 1

2
. (4.17)
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D7-branes action is substituted by
√
−M and world-volume measure

d8σ = R3dtd3xdrdΨdβdγ . (4.18)

then the action becomes

SD7 = −TD7Nf

∫
dtd3xdrdΨdβdγ

cos3 θ cosΨ sinΨ

16r5

((
f 2f̃2 − 16r4R2f̃2 (2πα′E)

2
)

×
(
1 + r2θ′2

)
+ 4r4f 2f̃ (2πα′B′)

2 − 4r4f̃ 3 (2πα′A′
0)

2
) 1

2
. (4.19)

In this step, we can integrate out some coordinates such that∫
d3x ≡ V ,

∫ π
2

0

∫ π
2

0

dβdγ = 2π2 and

∫ π
2

0

sinΨ cosΨdΨ =
1

2
.

Hence the action Eq. (4.11) is rewritten as

SD7 = −2π2TD7NfV

∫
dtdr

cos3 θ

16r5

((
f 2f̃ 2 − 16r4R2f̃ 2 (2πα′E)

2
)

×
(
1 + r2θ′2

)
+ 4r4f 2f̃ (2πα′B′)

2 − 4r4f̃3 (2πα′A′
0)

2
) 1

2
. (4.20)

B′ and A′
0 become fields variable for the above action. Variables in the action may

be redefined to new dimensionless quantities;

r = br̃ , B(r) =
b

2πα′ B̃(r̃) , E =
b2

2πα′R2
Ẽ and A0(r) =

b

2πα′ Ã0(r̃) .

Consequently, we can rescale the black hole radius equal to 1/
√
2. Function θ(r)

is redefined and terms f and f̃ are rescaled to be dimensionless terms g and g̃,

respectively. Thus, we write

θ(r) ≡ θ(r̃) ,
f

b4
≡ g = 4r̃4 − 1 and

f̃

b4
≡ g̃ = 4r̃4 + 1 .

The derivative of B(r) and A0(r) with respect to r should be

B′(r) =
∂

∂r
B(r) =

1

2πα′
∂

∂r̃
B̃(r̃) =

1

2πα′ B̃
′(r̃) , (4.21)

A′
0(r) =

1

2πα′
∂

∂r̃
Ã0(r̃) =

1

2πα′ Ã
′
0(r̃) . (4.22)

The “ ′ ” also becomes derivative with respect to r̃. Action in form of new quan-

tities is

SD7 = −2π2TD7NfV b
4

∫
dtdr̃

cos3 θ

16r̃5

(
g̃2
(
g2 − 16r̃4Ẽ2

)
×
(
1 + r̃2θ′2

)
+ 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

. (4.23)
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It is natural to define Lagrangian in unit (−2π2TD7NfV b
4) by

L ≡ cos3 θ

16r̃5

(
g̃2
(
g2 − 16r̃4Ẽ2

) (
1 + r̃2θ′2

)
+ 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

.(4.24)

This Lagrangian should give three equations of motion corresponding to partic-

ular variables: θ, B and A0 (three degrees of freedom). We may calculate those

equations of motion by using radial Euler-Lagrange equations.

∂L
∂qi

− d

dr̃

∂L
∂q′i

= 0 with qi =


θ

B

A0

.

But, looking at the L carefully, it contains two cyclic variables which are B and

A0. The cyclic coordinates contribute its constant momentum (radial convention

momentum). Consider the radial convention equation of motion,

∂L
∂Ã′

0

≡ D̃ = a constant of motion , (4.25)

and
∂L
∂B̃′

≡ T̃ = another constant of motion . (4.26)

Straightforwardly, we can obtain the constants of motion

D̃ =
−g̃3Ã′

0 cos
3 θ

4r̃
(
g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) + 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

, (4.27)

T̃ =
g3g̃B̃′ cos3 θ

4r̃
(
g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) + 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

. (4.28)

From the above equations, we can write a relation between two momentums as

follows

− D̃

g̃2Ã′
0

=
T̃

g2B̃′
⇒ Ã′

0 = −g
2D̃

g̃2T̃
B̃′ . (4.29)

Straightforwardly solve for B′ and A′
0, we get

Ã′2
0 =

16r̃2g2D̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)

64r̃6
(
g2g̃D̃2 − g̃3T̃ 2

)
+ g2g̃4 cos6 θ

, (4.30)

B̃′2 =
16r̃2g̃3T̃ 2

(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)

64r̃6
(
g4D̃2 − g2g̃2T̃ 2

)
+ g4g̃3 cos6 θ

. (4.31)

Three degrees of freedom of Lagrangian can be reduced to only one by Routhian

procedure:

L
(
θ; θ′, B̃′, Ã′

0; r̃
)

→ R
(
θ; θ′; T̃ , D̃; r̃

)
. (4.32)
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R
(
θ; θ′; T̃ , D̃; r̃

)
is called Routhian which is depending on variable θ(r̃). Instead

of L, this is only one equation of motion associated to θ(r̃). The equation of

motion in convention of radial Euler-lagrange equation is

∂R
∂θ

− d

dr̃

∂R
∂θ′

= 0 . (4.33)

The precise transformation from L to R is the Legendre transform for two cyclic

variables:

R = L − T̃ B̃′ − D̃Ã′
0 . (4.34)

Form of R can be reached by following way

R = L+
cos3 θ

4r̃

g̃3Ã′
0 − g3g̃B̃′(

g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) + 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

,

=
cos3 θ

16r̃5

(
g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) + 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

)
(
g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) + 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

+
cos3 θ

16r̃5
4r̃4g̃3Ã′

0 − 4r̃4g3g̃B̃′(
g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) + 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

,

R =
cos3 θ

16r̃5

g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)(

g̃2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) + 4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2

0

) 1
2

. (4.35)

For simplicity, let us consider

4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2
0 =

64r̃6g̃4T̃ 2
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)

64r̃6
(
g2D̃2 − g̃2T̃ 2

)
+ g2g̃3 cos6 θ

−
64r̃6g2g̃2D̃2

(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)

64r̃6
(
g2D̃2 − g̃2T̃ 2

)
+ g2g̃3 cos6 θ

.

Then we write

4r̃4g2g̃B̃′2 − 4r̃4g̃3Ã′2
0 =

64r̃6
(
g̃4T̃ 2 − g2g̃2D̃2

)(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)

64r̃6
(
g2D̃2 − g̃2T̃ 2

)
+ g2g̃3 cos6 θ

.

By putting the above calculation into the denominator ofR, then the denominator

are

Deno2 = g̃2
(
g2 − 16r̃4Ẽ2

) (
1 + r̃2θ′2

)
+
64r̃6

(
g̃4T̃ 2 − g2g̃2D̃2

)(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)

64r̃6
(
g2D̃2 − g̃2T̃ 2

)
+ g2g̃3 cos6 θ

,
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so it can be written in form

Deno2 =

1−
64r̃6

(
g̃2T̃ − g2D̃2

)
64r̃6

(
g̃2T̃ − g2D̃2

)
+ g2g̃3 cos6 θ


×g̃2

(
g2 − 16r̃4Ẽ2

) (
1 + r̃2θ′2

)
.

Then, the denominator can be written as

Deno2 =
g2g̃5

(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2) cos6 θ

64r̃6
(
g̃2T̃ − g2D̃2

)
+ g2g̃3 cos6 θ

,

Deno =

gg̃2 cos3 θ

√
g̃
(
g2 − 16r̃4Ẽ2

)
(1 + r̃2θ′2)√

64r̃6
(
g̃2T̃ − g2D̃2

)
+ g2g̃3 cos6 θ

.

Thus, the Routhian Eq. (4.35) with help of the Deno simplifies and takes form as

R =

√
1 + r̃2θ′2

16r̃5g
√
g̃

√(
g2 − 16r̃4Ẽ2

)(
64r̃6

(
g2D̃2 − g̃2T̃ 2

)
+ g2g̃3 cos6 θ

)
. (4.36)

Don’t forget that this Routhian arisen form Lagrangian in unit (−2π2TD7NfV b
4)

so the Routhian have to be in unit (−2π2TD7NfV b
4), like the Lagrangian. We

may introduce a new action by using the Routhian. Thus

ID7 = −2π2TD7NfV b
4

∫
dtdr̃

√
1 + r̃2θ′2

16r̃5g
√
g̃

×
√(

g2 − 16r̃4Ẽ2
)(

64r̃6
(
g2D̃2 − g̃2T̃ 2

)
+ g2g̃3 cos6 θ

)
. (4.37)

The combination of two terms under square root must be positive, each term

must have the same sign and change their sign simultaneously at some radial

value, called vanishing locus r̃∗. Thus the two terms have to be zero at r̃ = r̃∗.

The first term is

g2∗ − 16r̃4∗Ẽ
2 = 0 or g∗ = 4r̃2∗Ẽ .

By using g∗ = 4r̃4∗ − 1, we get

4r̃4∗ − 4r̃2∗Ẽ − 1 = 0 ,

so we obtain

r̃2∗ =
4Ẽ +

√
Ẽ2 + 1

2
. (4.38)
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The second term evaluated at r̃ = r̃∗ is

64r̃6∗

(
g2∗D̃

2 − g̃2∗T̃
2
)
+ g2∗ g̃

3
∗ cos

6 θ0 = 0 ,

64r̃4∗Ẽ
2D̃2 − 4g̃2∗T̃

2 + 4g̃3∗Ẽ
2 cos6 θ0 = 0 .

This is a relation between two constants, T̃ and D̃, and electric field. Here,

g̃∗ = 4r̃4∗ + 1. Then the relation becomes

T̃ =

√
64r̃4∗D̃

2 + g̃3∗ cos
6 θ0

4g̃2∗
Ẽ . (4.39)

This relation is identified to Ohm’s law since T̃ is dual to electric vacuum expec-

tation value of current for gauge theory.

4.3 Equation of Motion

4.3.1 Exact Equation of Motion

In this section, we will calculate radial Euler-Lagrange equation for equation of

motion. Routhian contains only one degree of freedom, so there exists only one

equation of motion. The equation of motion associates with variable θ. Let’s start

with the Routhian,

R =

√
1 + r̃2θ′2

16r̃5g
√
g̃

√(
g2 − 16r̃4Ẽ2

)(
−64r̃6T̃ 2g̃2 + g2g̃3 cos6 θ

)
. (4.40)

The constant of motion D̃ has been set to zero since we are not interested in the

system with time-component gauge potential. We rewrite the Routhian as

R =

√
1 + r̃2θ′2

16r̃5g
√
g̃
A , (4.41)

where the factor A is defined by

A =

√(
g2 − 16r̃4Ẽ2

)(
−64r̃6T̃ 2g̃2 + g2g̃3 cos6 θ

)
. (4.42)

This definition of A makes our calculation more convenient. When A is operated

by derivatives with respect to r̃ or θ, it will repeat itself to denominator of the

result. After the Routhian is operated by derivatives, the calculation is easier if

we isolate Routhian as a factor. Thus the repetition of A is necessary. Let’s start
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with

∂R
∂θ

=

√
1 + r̃2θ′2

16r̃5g
√
g̃

∂A
∂θ

,

=

√
1 + r̃2θ′2

16r̃5g
√
g̃

1

2A

(
g2 − 16r̃4Ẽ2

) (
−6g2g̃3 cos5 θ sin θ

)
,

=

(√
1 + r̃2θ′2

16r̃5g
√
g̃
A

) (
g2 − 16r̃4Ẽ2

)
(−3g2g̃3 cos5 θ sin θ)(

g2 − 16r̃4Ẽ2
)(

−64r̃6T̃ 2g̃2 + g2g̃3 cos6 θ
) ,

∂R
∂θ

= R
(

−3g2g̃cos5θ sin θ

−64r̃6T̃ 2 + g2g̃ cos6 θ

)
. (4.43)

The derivative of Routhian with respect to θ has itself as a factor. Then, we

perform derivative with respect to θ′ to Routhian:

∂R
∂θ′

=
d

dθ′

(√
1 + r̃2θ′2

16r̃5g
√
g̃

)
A ,

=
θ′

16r̃3g
√
g̃
√
1 + r̃2θ′2

A ,

∂R
∂θ′

= BA . (4.44)

Factor B is defined by

B =
θ′

16r̃3g
√
g̃
√
1 + r̃2θ′2

. (4.45)

BA as shown in Eq. (4.44) may be called momentum associated to variable θ. By

taking a radial derivative to the momentum, we obtain

d

dr̃

∂R
∂θ′

= AB′ +A′B . (4.46)

Calculation for each terms will be shown in detail. It is useful to note that

dg

dr̃
=

dg̃

dr̃
= 16r̃3 . (4.47)

We calculate the derivative of B with respect to r̃,

AB′ = A

(
θ′′16r̃3g

√
g̃
√
1 + r̃2θ′2 − 16θ′ d

dr̃

(
r̃3g

√
g̃
√
1 + r̃2θ′2

)(
r̃3g

√
g̃
√
1 + r̃2θ′2

)2
)

,

and then we write

AB′ =

(√
1 + r̃2θ′2

16r̃5g
√
g̃
A

)(
θ′′r̃2

(1 + r̃2θ′2)
−
θ′ d

dr̃

(
r̃3g

√
g̃
√
1 + r̃2θ′2

)
r̃g
√
g̃ (1 + r̃2θ′2)3/2

)
.
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We isolate the R as factor hence the calculation is more simplicity. Then,

AB′ = R

(
θ′′r̃2

(1 + r̃2θ′2)
− θ′

r̃g
√
g̃ (1 + r̃2θ′2)3/2

(
r̃3g
√
g̃
r̃θ′θ′′ + r̃θ′2√

1 + r̃2θ′2

+r̃3g
√
1 + r̃2θ′2

8r̃3√
g̃
+ 16r̃6

√
g̃
√
1 + r̃2θ′2

+3r̃2g
√
g̃
√
1 + r̃2θ′2

))
,

= R
(

θ′′r̃2

(1 + r̃2θ′2)
− θ′r̃3 (r̃θ′θ′′ + θ′2)

(1 + r̃2θ′2)2
− 8θ′r̃5

g̃ (1 + r̃2θ′2)

− 16θ′r̃5

g (1 + r̃2θ′2)
− 3θ′r̃

(1 + r̃2θ′2)

)
,

AB′ = R
(
θ′′r̃2 − θ′3r̃3

(1 + r̃2θ′2)2
− θ′r̃

(1 + r̃2θ′2)

(
3 +

16r̃4

g
+

8r̃4

g̃

))
. (4.48)

We now calculate the derivative of A with respect to r̃,

A′B =
θ′

16r̃3g
√
g̃
√
1 + r̃2θ′2

1

2A
d

dr̃

((
g2 − 16r̃4Ẽ2

)
×
(
−64r̃6T̃ 2g̃2 + g2g̃3 cos6 θ

))
,

and then we write

A′B =

(√
1 + r̃2θ′2

16r̃5g
√
g̃
A

)
θ′r̃2

(1 + r̃2θ′2)

1

2A2

d

dr̃

((
g2 − 16r̃4Ẽ2

)
×
(
−64r̃6T̃ 2g̃2 + g2g̃3 cos6 θ

))
Similarly, we isolate the factor R, then

A′B = R θ′r̃2

(1 + r̃2θ′2)

1

A2

((
g2 − 16r̃4Ẽ2

)(
−64× 16r̃9T̃ 2g̃

−64× 3r̃5T̃ 2g̃2 + 24r̃3g2g̃2 cos6 θ + 16r̃3gg̃3 cos6 θ

−3g2g̃3θ′ cos5 θ sin θ
)
+
(
16r̃3g − 32r̃3Ẽ2

)
×
(
−64r̃6T̃ 2g̃2 + g2g̃3 cos6 θ

))
. (4.49)

The (−64r̃6T̃ 2 + g2g̃ cos6 θ) will be isolated as a factor. Finally,

A′B = R θ′r̃2

(1 + r̃2θ′2)

1(
−64r̃6T̃ 2 + g2g̃ cos6 θ

) (−64r̃5T̃ 2 (16r̃4 + 3g̃)

g̃

+8r̃3
(
3g2 + 2gg̃

)
cos6 θ − 3g2g̃θ′ cos5 θ sin θ

+16r̃3
(
g − 2Ẽ2

)(−64r̃6T̃ 2 + g2g̃ cos6 θ

g2 − 16r̃4Ẽ2

))
. (4.50)
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Now, we have all ingredients for equation of motion. Substituting them into

∂R
∂θ

= AB′ +A′B .

Factor R in each ingredients is cancelled out. The equation of motion should be

written in the from

−3g2g̃cos5θ sin θ =
θ′r̃2

(1 + r̃2θ′2)

(
−64r̃5T̃ 2 (16r̃4 + 3g̃)

g̃

+8r̃3
(
3g2 + 2gg̃

)
cos6 θ − 3g2g̃θ′ cos5 θ sin θ

+16r̃3
(
g − 2Ẽ2

)(−64r̃6T̃ 2 + g2g̃ cos6 θ

g2 − 16r̃4Ẽ2

))

+
(
−64r̃6T̃ 2 + g2g̃ cos6 θ

)(θ′′r̃2 − θ′3r̃3

(1 + r̃2θ′2)2

− θ′r̃

(1 + r̃2θ′2)

(
3 +

16r̃4

g
+

8r̃4

g̃

))
. (4.51)

This is a non-linear second order differential equation. In order to solve this,

it needs at least two conditions. Furthermore the equation has two singularities

at black hole radius r̃ = 1/
√
2 and vanishing locus r̃ = r̃∗. The singularity

at vanishing locus is removable by a condition which is later used as an initial

condition for the equation of motion.

4.3.2 Asymptotic Equation of Motion

We can analyze the asymptotic behavior of the exact equation of motion Eq.

(4.51). It is convenient to start at the Euler-Lagrange equation which consists

of Eq. (4.43), (4.48) and (4.51). The asymptotic equation of motion is obtained

by taking approximation such r̃ is much greater than r̃∗, T̃ and Ẽ, and θ → 0.

Consequently, we perform the approximation with the use of g ≈ g̃ ≈ 4r̃4 and

O(r̃a) + O(r̃b) ≈ O(r̃a) for a − b > 2. Euler-Lagrange consists of three terms:

∂R/∂θ, AB′ and A′B. We perform the approximation term by term. For the first

part, we start from Eq. (4.43) then we obtain

∂R
∂θ

≈ −3θR . (4.52)

Starting form the Eq. (4.48), the approximation of the second term is as follow

AB′ ≈ R
(
r̃2θ′′ − 9r̃θ′

(1 + r̃θ′2)
− r̃4θ′2θ′′ + θr3θ′3

(1 + r̃θ′2)2

)
,
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we write

AB′ ≈ R(r̃2θ′′ − 10θr3θ′3 − 9θrθ′)

(1 + r̃θ′2)2
. (4.53)

And from the Eq. (4.51), the approximation of the third term is given by

A′B ≈ R r̃2θ′

1 + r̃2θ′2

(
14

r̃
+ 3θθ′

)
,

so we write

A′B ≈ R(14r̃θ′ + 14r̃3θ′3 − 3θr2θθ′2 − 3θr4θθ′4)

(1 + r̃2θ′2)2
. (4.54)

It is not necessary to perform the asymptotic approximation for factor R because

this factor is cancelled in Euler-Lagrange equation. We substitute the Eq. (4.52),

(4.53) and (4.54) into Euler-Lagrange equation:

∂R
∂θ

= A′B +AB′ .

Then, we obtain the asymptotic equation of motion such that

θ′′r̃2 + 5θ′r̃ + 3θ + 3θθ′2r̃2 + 4θ′3r̃3 = 0 . (4.55)

The equation of motion can be more simplified. Let us introduce the asymptotic

solution as

θ(r̃) ∼ αn

r̃n
, θ′(r̃) ∼ − nαn

r̃n+1
and θ′′(r̃) ∼ n(m+ 1)αn

r̃n+2
.

By substituting them into Eq. (4.55), we see that

n(n+ 1)α

r̃n
− 5nα

r̃n
+

3α

r̃n
+

3n2α

r̃3n
+

4n3(n+ 1)3α3

r̃3n
= 0 .

We can ignore the terms which depend on r̃−3. Thus the equation of motion

becomes

θ′′r̃2 + 5θ′r̃ + 3θ = 0 . (4.56)

It is easy to solve for asymptotic solution, which is

θ(r̃) =
m̃

r̃
+

c̃

r̃3
. (4.57)

m̃ and c̃ are constants [1, 9, 16], (actually α1 and α3 respectively). The m̃ and c̃

are fixed to be quark mass and chiral condensate respectively.
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4.4 Initial Conditions

The solutions θ(r̃) is solved by numerical method. There exists many possible

solutions depending on choices of initial conditions. However, they can be grouped

into two types. One type is collection of solutions which are passing through

vanishing locus and falling into black hole horizon. This type is called black hole

embedding. Initial conditions of the black hole embedding are given by equation

of motion itself. And the other type is called Minkowski embedding. Collection

of solutions for this type does not pass through vanishing locus. Initial conditions

for the Minkowski embedding are analyzed by cancellation of a singularity in D7-

brane world-volume.

4.4.1 Initial Conditions of Black Hole Embedding

All solutions of this type are initiated at the vanishing locus r̃∗. Thus we use exact

equation of motion Eq. (4.51) evaluated at r̃∗ as initial conditions. Let us consider

the equation of motion at vanishing locus. We define ∆ as,

∆ ≡ −64r̃6T̃ 2 + g2g̃ cos6 θ

g2 − 16r̃4Ẽ2
.

This term behaves like 0/0 as r̃ → r̃∗, making the equation of motion become

singularity at vanishing locus. In order to remove this singular behavior, it is

necessary to find limit of ∆ as r̃ → r̃∗. Thus

∆∗ = lim
r̃→r̃∗

−64r̃6T̃ 2 + g2g̃ cos6 θ

g2 − 16r̃4Ẽ2
. (4.58)

From Eq. (4.40), each term under square root must have the same sign and change

their sign at the vanishing locus. So we have

T̃ 2 =
g2∗ g̃∗ cos

6 θ0
64r̃6∗

and Ẽ2 =
g2∗
16r̃6∗

.

We substitute these T̃ 2 and Ẽ2 into Eq. (4.58). Then, ∆∗ is resolved by using

L’Hôpital’s rule as follow

∆∗ = lim
r̃→r̃∗

d
dr̃

(
r̃6

r̃6∗
g2∗ g̃∗ cos

6 θ0 + g2g̃ cos6 θ
)

d
dr̃

(
g2 − r̃4

r̃4∗
g2∗

) ,

= lim
r̃→r̃∗

−6 r̃5

r̃6∗
cos6 θ0 + 32r̃3gg̃ cos6 θ + 16r̃3g2 cos6 θ − 6g2g̃θ′ cos5 θ sin θ

32r̃3g − 4g2∗
r̃4

r̃3∗

,

∆∗ =
(−3g∗g̃∗ + 16r̃4∗g̃∗ + 8r̃4∗g∗) cos

6 θ0 − 3r̃∗g∗g̃∗θ
′
0 cos

5 θ0 sin θ0
16r̃4∗ − 2g∗

. (4.59)
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Notice that the θ0 ≡ θ(r̃ = r̃∗) and θ
′
0 ≡ θ′|r̃=r̃∗ . As a result, the ∆∗ turns to be

finite. So singularity at vanishing locus is removed by ∆(r̃ = r̃∗) ≡ ∆∗. Other

terms in equation of motion are simply substituted by r̃ = r̃∗. It is easy to compute

16r̃3
(
g − 2Ẽ2

)
∆

∣∣∣∣∣
r̃=r̃∗

=
g∗
r̃∗

cos6 θ0
(
−3g∗g̃∗ + 16r̃4∗g̃∗ + 8r̃4∗g∗

)
−3g2∗ g̃∗θ

′
0 cos

5 θ0 sin θ0 . (4.60)

Another calculation is(
−64r̃5T̃ 2 (16r̃4 + 3g̃)

g̃
+ 8r̃3

(
3g2 + 2gg̃

)
cos6 θ

)∣∣∣∣∣
r̃=r̃∗

=
g∗
r̃∗

cos6 θ0
(
8r̃4∗g∗ − 3g∗g̃∗ + 16r̃4∗g̃∗

)
. (4.61)

With Eq. (4.60) and (4.61), the equation of motion Eq. (4.51) at vanishing locus

are

−3g2∗ g̃∗cos
5θ0 sin θ0 =

2θ′0r̃∗
(1 + r̃2∗θ

′2
0 )

(
g∗ cos

6 θ0
(
8r̃∗

4g∗ − 3g∗g̃∗

+16r̃4∗g̃∗
)
− 3g2∗ g̃∗θ

′
0 cos

5 θ0 sin θ0

)
,

−3g∗g̃∗ tan θ0 = 2r̃∗θ
′
0

(
8r̃4∗g∗ − 3g∗g̃∗ + 16r̃4∗g̃∗

)
− 3r̃2∗g∗g̃∗θ

′2
0 tan θ0 .

Then this may be rearranged to

3r̃2∗g∗g̃∗θ
′2
0 tan θ0 − 2r̃∗θ

′
0

(
8r̃4∗g∗ − 3g∗g̃∗ + 16r̃4∗g̃∗

)
− 3g∗g̃∗ tan θ0 = 0

then, 3r̃2∗
(
16r̃8∗ − 1

)
θ′20 tan θ0 − 2r̃∗θ

′
0

(
48r̃∗ + 8r̃4∗ − 3

)
− 3

(
16r̃8∗ − 1

)
tan θ0 = 0 .

It is just a binomial of the θ′0 which we can solve for. Thus we obtain

θ′0 =
(48r̃∗ + 8r̃4∗ − 3)−

√
(48r̃∗ + 8r̃4∗ − 3)2 + 9 (16r̃8∗ − 1)2 tan2 θ0

3r̃∗ (16r̃8∗ − 1) tan θ0
. (4.62)

By fixing the initial angle θ0, the θ′0 is determined. At the vanishing locus a

solution is initiated by a pair of θ0 and θ′0. In order to obtain solution with range

r̃ ∈ (1/
√
2,∞), it is necessary to divide the solution into two parts according to

ranges r̃ ∈ (r̃∗,∞) and r̃ ∈ (1/
√
2, r̃∗). For the first part, solution starts at near

vanishing locus (at r̃ = r̃∗ + ϵ as ϵ → 0) with a value of θ0 and moves toward

boundary r̃ → ∞. For the second part, solution starts at near vanishing locus

(at r̃ = r̃∗ − ϵ as ϵ → 0) with the same θ0 and moves backward to the black hole

horizon r̃ → 1/
√
2.
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4.4.2 Initial Condition of Minkowski Embedding

As we stated above, there exists a singular behavior on D7-brane world-volume,

which is conical singularity. The singularity appears when coordinate θ reaches to

π/2. The physical radial distance at that point seems to be blown up. The initial

conditions for this type is given from a condition that guarantees the smoothness

of D7-brane world-volume at θ → π/2 [17]. At the beginning, we will show the

appearance of the singularity. Let us consider metric of the D7-brane world-

volume, which is given by

dS2
D7 =

f 2

4r2R2

(
−f

2

f̃
dt2 + f̃dx⃗2

)
+

(
R2

r2
+R2θ′2

)
dr2 +R2 cos2 θdΩ2

3. (4.63)

This metric is derived from the induced metric where is metric of D7-brane

world-volume. Remember that r is the radial coordinate of background AdS5-

Schwarzchild×S5. Therefore we have to define world-volume radial coordinate

α = cos θ with used θ = θ(r). Hence, dα = − sin θθ′dr and then

dr2 =
dα2

sin2 θθ′2
.

Under the transformation, the physical distance on the S3 becomes

dl2 = R2

(
1

r2
+ θ′2

)
dα2

sin2 θθ′2
+R2α2dΩ2

3 .

In order to remove the conical singularity, we impose a condition such that(
1
r2

+ θ′2
)

sin2 θθ′2

∣∣∣∣∣
θ=π

2

= 1 ,

1

r2θ′2
= 0 only at θ = π/2.

Thus, the condition that removes the conical singularity at θ = π/2 is θ′(r)|θ=π/2 =

±∞ but we may choose

θ′(r)
∣∣∣
θ=π

2

= −∞ . (4.64)

We can use the initial condition regardless of r, θ(r) or r̃, θ(r̃). Solutions for

Minkowski embedding initiate at θ = π/2 with fixed θ′ = −∞ at possible radial

values, r̃ > r̃∗. Each solution starts at different values of r̃, and then they smoothly

move toward boundary.
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4.5 Solutions and Discussion

4.5.1 Shapes of D7-brane

Solutions of the equation of motion Eq. (4.51) are θr̃. They are solved with

choices of initial conditions by numerical method. Here, we are interested in

positions of wrapping D7-branes at various r̃, so we plot the solved solutions by

r̃ sin θ versus r̃ cos θ as shown in Figure 4.1. In the plot, we can see the separation

along x8, x9 plane of the D7-branes on S5 where r is varied, so called shapes of

D7-branes. The collection of D7-branes shapes are also shown. The Minkowski

Figure 4.1: This figure shows collection of D7-branes shapes, with fixing r̃b = 1/
√
2

and Ẽ = 0.9. The red lines represent the Minkowski embedding and the blue lines

represent the black hole embedding. The black and orange dash circles show black

hole horizon and vanishing locus, respectively.

embedding are represented by red lines. In this case, the D7-branes do not fill

all ranges of radial direction, but end at r̃|θ=π/2. Assuming states of the D7-

branes fluctuations propagate along radial direction, when the states reach the rim

where D7-branes end. The states hit the rim; they reflect, and then propagate

to boundary (r̃ → ∞). For this situation, modes of those states are quantized

topologically by the rim and the boundary. Thus, modes of the states are discrete

and stable. The discrete modes lead to discrete mesons mass spectrum which

imply the stability of mesons, (see Ref. [18]). On the other hand, the blue lines

are black hole embedding. For this case, the D7-branes are passing the vanishing

locus (orange dash circle), and touch the black hole horizon (black circle). States

on the D7-branes propagate and fall into black hole. They will not reflect [19].

Thus the D7-branes fluctuate by quasi-normal modes which implies instability and
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corresponds to unstable or melting mesons. However, there exists an edge where

blue lines stretch very close to red lines (see Figure 4.1). The phase transition of

mesons system is suggested by changing between two types of embedding through

the edge.

Let us see shapes of the D7-branes with various strength of applied electric

field. Figure 4.2 shows plotting of r̃ sin θ versus r̃ cos θ for Ẽ = 0.05, 0.5, 0.9 and

2.0, respectively. The value of r̃ sin θ represents quarks mass. Mesons binding

Figure 4.2: Shapes of wrapping D7-branes with different fixing of Ẽ. The radius

orange dash circles are bigger as values of Ẽ increase

energy is proportional to quarks mass. As the strength of electric field increases,

size of vanishing locus also increases as a result of Eq. (4.38). Furthermore, the

edge of phase transition is upper in r̃ sin θ direction as the Ẽ increases. Thus the

stronger electric field effects the instability of the stronger mesons binding energy.

In other words, the strong electric field can overcome and melt mesons that bound

pairs of quark and anti-quark by its strong binding energy.
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4.5.2 Quarks mass Versus Chiral Condensate

Shapes of D7-branes as illustrated in the Figure (4.1) and (4.2) satisfy the exact

equation of motion Eq. (4.51). However we also have the asymptotic equation

of motion Eq. (4.56) with its asymptotic solution Eq. (4.57). As shown in the

previous section, the m̃ and c̃ are actually constants of integration. They are fixed

by collection of numerical solutions. The assumption of fixing m̃ and c̃ is that at

far region (r̃ ≫ r̃∗) a numerical solution should be the same with an asymptotic

solution with corrected m̃ and c̃. With this assumption, we can numerically extract

for m̃ and c̃. A given initial condition, θ0 for the black hole embedding or r̃|θ=π/2

for the Minkowski embedding, gives a pair of m̃ and c̃. In order to see relation

between m̃ and c̃, we must extract them from all possible initial conditions. In

Figure 4.3: This figure shows relation of m̃ versus c̃ with various Ẽ. Again, the red

lines represent the Minkowski embedding and the blue lines represent the black

hole embedding. The top is for case of Ẽ = 0.9, the lowers are for Ẽ = 0.5 and

0.001 respectively.

Figure 4.3, we plot relation of m̃ and c̃ so called quark mass m̃ as a function of

chiral condensate c̃. For a value of Ẽ, each point on whatever red or blue line is

extracted from unique initial conditions. The red line represents the Minkowski

embedding while the blue line represents the black hole embedding. The red and

the blue lines join together and become multi-value relation, at some regions on

m̃, c̃ plane. The multi-value behaviors also imply the first-order phase transition
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Figure 4.4: The figure shows multi-value behavior for case of Ẽ = 0.9. The right

figure shows an example the critical mass value.

of mesons system. The accurate mass which mesons phase jumps from the red

line to the blue line can be found by analyzing the free energy, which we do not

perform in this thesis. That mass value is unique so called the critical mass. See

Figure 4.4 for an example. The critical mass m̃ is positioned where the purple

dash line intersects the m̃ axis. The line arise equality of two green area. This

property follows the Maxwell equal area law of phase transition. For a situation

that the mesons system reaches the critical mass, the system will jump upward or

downward between red line and blue line through the purple dash line where the

phase transition occurs.

4.6 Conductivity and Drag force

Here we consider conductivity for medium of our interest. We turn on the A0

in D7-brane action that correspond with introducing electric charge carriers with

finite density into system of mesons. After lighter mesons are melted due to

high temperature and strong electric field, quarks and anti-quarks are free from

mesons binding energy. The liberated quarks and anti-quark are also electric

charge carriers. Heavier mesons are still stable mesons and we suppose that they

are stationary in whole medium. The charge carriers respond to applied electric

field and give rise to electric current on the medium. There exists a relation which

is analogous to the Ohm’s law, we obtain the conductivity.
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4.6.1 Ohm’s Law

At this time, we will calculate for Ohm’s law for our medium and then read off

the conductivity of this system (see also [9]). We recall

T̃ =

√
64r̃4∗D̃

2 + g̃3∗ cos
6 θ0

4g̃2∗
Ẽ . (4.65)

This equation is analogous to Ohm’s law, since we can relate T̃ to the expectation

value of electric current density, denoted by ⟨Jx⟩. Furthermore, the D̃ should be

related to the expectation value of charge density which is ⟨J t⟩. The said relations

are given by the AdS/CFT dictionary, which is written as

Zgauge = ZSUGRA

∣∣∣
ϕ0

, (4.66)

in the other word

⟨e
∫
d4xϕ0(x)O(x)⟩ = eSD7

∣∣
ϕ=ϕ0

. (4.67)

The dictionary Eq. (4.67) is illustrated in general field ϕ(x) and operator O(x).

We can find the expectation value of the operator by taking functional derivative

with respect to ϕ(y). Following

δZgauge

δϕ0(y)
= Zgauge

⟨∫
d4xO(x)δ(x− y)

⟩
= Zgauge⟨O(y)⟩ (4.68)

δZSUGRA

δϕ0(y)
= ZSUGRA lim

r→∞

r∆√
−gAdS

δSD7

δϕ0

, (4.69)

we obtain

⟨O(x)⟩ = lim
r→∞

r∆√
−g

δSD7

δϕ(x, r)
. (4.70)

The factor r∆ is multiplicative counter term which is put by hand into above

relation to cancel out the divergence. We substitute full space-time metric by

g ∼ g4D, g4D is determinant of metric tensor for only (3+1)-dimensional subspace

of AdS5-Schwarzchild. Because the AdS5-Schwarzchild×S5 space becomes (3+1)-

dimensional space-time at its boundary, the g4D is

g4D = − 1

256r8R8
f2f̃2 = − 1

256r8R8
(16r8 − b8)2 ,

so

√
−g4D =

1

16R4

(
r4 − b8

r4

)
.
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Moreover we also put some counter terms and redefine SD7 = SDBI +Scounter since

we need the Scounter to cancel out some divergence terms when r → ∞.

At this time, we will find a relation between D̃ and ⟨J t⟩. We substitute the

dictionary by ⟨O(x)⟩ = ⟨J t(x)⟩ and ϕ(x, r) = At(x, r). Thus the dictionary now

becomes

⟨J t⟩ = lim
r→∞

r4√
−g4D

δSD7

δAt(y, r)
. (4.71)

We substitute r4/
√
−g4D ∼ 1 as r = Λ → ∞, then

⟨J t⟩ = δSD7

δAt(y,Λ)
= −N

∫
d4xdr

∂LD7

∂A′
t

δ∂rA(y, r)

δAt(y,Λ)
δ(x− y) ,

= −ND δ

δA(x,Λ)
(A(x,Λ)− A(x, b)) ,

⟨J t⟩ = −2πα′Nb3D̃ with N = 2π2NfTD7 . (4.72)

Next, we we will find a relation between T̃ and ⟨Jx⟩. We use the dictionary with

⟨O(x)⟩ = ⟨Jx(x)⟩ and ϕ(x, r) = Ax(x, r). The calculation is more subtle since

Scounter depends on A
′
x. The steps of calculations are

⟨Jx⟩ = δSD7

δAx(y,Λ)
,

= −N
∫

d4xdr

(
∂LD7

∂A′
x

δ∂rA(y, r)

δAx(y,Λ)
δ(x− y) +

∂LD7

∂Ȧx

δȦ(x, r)

δAx(y,Λ)

+
∂Lc

∂Ȧx

δȦ(x, r)

δAx(y,Λ)

)
,

⟨J t⟩ = −2πα′Nb3T̃ . (4.73)

Lc is counter Lagrangian depending on ln Ȧx. The terms
∫
dtȦx are vanishes at

Ax(ti) = Ax(tf ) = 0. Thus we have relations as Eq. (4.72) and (4.73) by using

AdS/CFT dictionary, they are substituted into Eq. (4.65).The result is precisely

a relation between electric current density and electric field. The relation written

in dimensionful parameters is

⟨Jx⟩ =

(
16r4∗⟨J t⟩2

f̃2
∗

+
(2πα′)2N2f̃∗ cos

6 θ0
4r2∗

) 1
2

(2πα′)R2E . (4.74)

This relation is analogous to Ohm’s law, ⟨Jx⟩ = σcE. Thus we obtain conductivity,

σc = 2πα′R2

(
16r4∗⟨J t⟩2

f̃2
∗

+
(2πα′)2N2f̃∗ cos

6 θ0
4r2∗

) 1
2

. (4.75)
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Moreover,

f̃∗
4r2∗

=
√
(2πα′)2R4E2 + b4 . (4.76)

We may rewrite equation Eq. (4.77) to

σc =
√
σ2
c,1 + σ2

c,2 , (4.77)

where

σc,1 =
2πα′R2⟨J t⟩√

(2πα′)2R4E2 + b4

σc,2 = (2πα′)2R2N
(
(2πα′)2R4E2 + b4

) 1
4 cos3 θ0 .

Thus the Eq. (4.74) is non-linear Ohm’s law because the conductivity depends

on E, charge density, cos θ0 and temperature (as the conductivity is determined

by b). The medium is better responsed to electric field when system has more

charge density. When mesons are melted, moving quarks and anti-quarks give rise

to current density with responsibility determined by cos θ0.

4.6.2 Drag Force

The charge carriers are accelerated by electric field, and then they collide with

stable mesons (if heavier mesons are included the system) and other charge carriers

randomly. The collision makes the charge carriers decelerate against the electric

force. Thus, the collision between charge carriers and other in the medium is

effectively drag force. This phenomena is similar with Drude model of metal,

where charge carriers experience the drag force due to their collision. Effectively,

whole charge carriers experience total force as

dp

dt
= µp+ F . (4.78)

F determines force applied by electric field. By rescaling the Eq. (4.78) by electric

charge, we substitute F = E. p is mean momentum of each charge carriers and µ

is friction coefficient. We consider the metal at equilibrium dp/dt = 0 and employ

the relativistic correlation of mass and momentum;

p =
mv√
1− v2

,

where m is rest mass of all charge carriers. By substituting this momentum into

Eq. (4.78) with dp/dt = 0, we reach

E =
µmv√
1− v2

. (4.79)
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The standard relation between charge density and electric current is ⟨Jx⟩ = ⟨J t⟩v
and we equate the ⟨Jx⟩ by using Ohm’s law. Thus we have σcE = ⟨J t⟩v and then

we obtain v = σc,1E/⟨J t⟩.

Let us look at the simplest case that whole mesons in the medium are stable,

cos θ0 ∼ 0. We calculate the relativistic factor with relation as shown in Eq. (4.77),

we obtain

v√
1− v2

=
(2πα′)R2E

b2
. (4.80)

We substitute v
√
1− v2 as obtained in Eq. (4.80) into the Eq. (4.79) with R4 =

4πα′2λ and T = b/4πR2. Then we obtain

µm =
√
4πλT 2 . (4.81)

This is the drag force which depends on ’t Hooft coupling and temperature.

The other case of interest, the medium contains only mesons as a result of

turning off At, corresponding to ⟨J t⟩ = 0. In conduction phase, charge carriers

are free quarks and anti-quarks. We can denote the melting mesons density by

ρ, so the charge density is 2ρ. We have v = σc,2E/2ρ. Here we may perform the

approximation that quarks and anti-quarks are massive so they move much slower

than speed of light, v ≪ c (h̄ = c = 1). Under this approximation,

E ≈ µmv or µm =
2ρ

σc,2
.

Thus, we achieve drag force of system being in melting phase as

µm =
64ρλ

(4πR2)4NfTD7

(
E2

256π3λ
+ T 4

) 1
4 cos3 θ0

. (4.82)

This drag force depends on the order of T −1 and E−1/2.



Chapter V

Conclusion

In this thesis, we study mesons at finite temperature with external electric

field by using the AdS/CFT correspondence. The correspondence originally sug-

gests an equivalent of two different theories; the N = 4 SU(Nc) super Yang-Mills

theory (N = 4 SYM theory) on flat (3+1)-dimensional space-time and the type

IIB superstring theory on AdS5×S5 space-time. Precisely, the N = 4 SYM theory

takes place on boundary of the AdS5×S5 space-time. The correspondence is a

strong/weak duality under a specific limit; large Nc limit and fixing the ’t Hooft

coupling at large value.

In this thesis, we discuss some information which is necessary to match up

the two theories. The first information is D3-branes system that can be viewed

by two descriptions. The N = 4 SYM theory is constructed from a stack of

Nc D3-branes with massless modes of 3-3 strings fluctuations. This is gauge de-

scription of D3-branes. On the other description, stack of D3-branes give rise

to its gravity description governed by the type IIB supergravity which defined

on AdS5×S5 space-time. The second one we show that the coupling parame-

ters of two descriptions are linked together by considering the loop correction of

the two theories. The third one is matching between superconformal group and

isometry group of the AdS5×S5 space-time. And finally, we consider conformal

transformation of AdS5×S5 space-time and we find that the space-time is effec-

tive (3+1)-dimensional Minkowski space at its boundary. However, this thesis is

lack of matching of entropy between two theories and discussion of the AdS/CFT

dictionary is unclear.

Another stack of Nf D7-branes is added into the original D3-branes system

under probe limit so called D3/D7 model. In gauge description, the adding cor-

responds to adding the quarks and anti-quarks and break half of supersymmetry.

Quarks and anti-quarks gain their masses from separation between stacks of D3

and D7 branes. This is similar to spontaneous system breaking as appearing in

the standard model. Now gauge description of D3/D7 model arises the N = 2
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SU(Nc) SYM theory with global SU(Nf ) flavor where the quarks and anti-quarks

are included into the theory. The quarks and anti-quarks are arisen from 3-7 and

7-3 string fluctuations. 7-7 strings fluctuations can be treated as probe mesons.

For gravity description of D3/7D model, as probe limit, the D7-branes do not

cause back-reaction to AdS5×S5 space-time. The 7-7 string also exist in this de-

scription and their fluctuation can be thought as D7-branes fluctuations. Classical

fluctuations of the D7-branes gives rise to mesons mass spectrum.

We modify the D3/D7 by exchange AdS5×S5 for AdS5-Schwarzchild×S5.

This corresponds to heating up the system by finite temperature. We also turn on

background current and external electric field into our system. Thus we reach the

model that we used to study the mesons system at finite temperature with external

electric field. In gravity description, there exists a black hole in background AdS5-

Schwarzchild×S5. The external electric field arises a virtual black hole (radius of

its horizon is equal to vanishing locus) covering the real black hole. Shapes of the

D7-branes consist of two types; Minkowski embedding and black hole embedding.

The Minsowski embedding is a collection of D7-branes shapes which never touch

the horizon of virtual or real black hole. The black hole embedding is a branch of

D7-branes shapes which always pass through the virtual black hole and then fall

into the real black hole. The physical interpretation of each embedding can be

done by consideration of mesons spectroscopy, which we do not consider in this

thesis.

We find that possibility of transition between two types of embedding corre-

sponding to phase transition of mesons system. In particular, we see the possibility

that stronger electric field can rip apart mesons with even stronger binding en-

ergy. The melted down of mesons system is analogous to metal/insulator phase

transition. Constituent quarks and anti-quarks become electric charge carrier, the

system of mesons is now conducting phase. In the conducting phase, there exists

a formula between electric current and electric field which is identified with Ohm’s

law. And we can calculate the conductivity and drag force of the medium.

We find that Ohm’s law is not precise, since the relation between electric

current and electric field is non-linear. Thus, we may say that we obtain the con-

ductivity which also depends on electric field. Moreover, the value of temperature,

background current and quarks mass are contribute to value of conductivity.
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Appendix A

Light-Cone Coordinates

We now discuss the light-cone coordinates which we use in entire Chapter

2 and Chapter 3. This coordinates system allows us to count physical degrees of

freedom of closed string and open string in string theory or even in superstring

theory. Here we suppose that we are in D = (d + 1)-dimensional flat space-

time. In stead of x0 and x1 directions included in (x0, x1, x2, ..., xd), the light-cone

coordinates use x+ and x− directions of (x+, x−, x2, ..., xd). They are defined by

x+ ≡ 1√
2
(x0 + x1) and x− ≡ 1√

2
(x0 − x1) , (A.1)

and we may conveniently denote the remaining directions by

xI = (x2, ..., xd) , (A.2)

where I is called transverse index, I = 2, 3, ..., d. The x+ and x− are coincident

with trajectory of light-ray moving along +x1 and −x1 directions. In other words,

we use trajectory of light-ray as axes. The definitions of light-cone directions as

defined in Eq. (A.1) and (A.2) can apply to any vectors. For example, V µ =

(V 0, V 1, V 2, ..., V d) can be written in light-cone directions such that

V + =
1√
2
(V 0 + V 1) and V − =

1√
2
(V 0 − V 1) . (A.3)

Thus, we write V µ = (V +, V −, V I) where V I = (V 2, V 3, ..., V d).

It is necessary to consider dot product of two vectors. Here, we use the

metric signature as follows: gµν = drag(−1, 1, ..., 1). For given vectors V µ and

W µ, the Lorentzian dot product between of two vectors is

VµW
µ = −V 0W 0 + V 1W 1 + V 2W 2 + ...+ V dW d . (A.4)

Let us calculate

V +W− =
1

2
(V 0W 0 − V 0W 1 + V 1W 0 − V 1W 1) ,

V −W+ =
1

2
(V 0W 0 + V 0W 1 − V 1W 0 − V 1W 1) .
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We find that

V +W− + V −W+ = V 0W 0 − V 1W 1

VIW
I = V 2W 2 + ...+ V dW d.

Thus we conclude that dot product of two vectors written in light-cone coordinates,

called light-cone dot product, takes form

V µWµ = −V +W− − V −W+ + V IW I . (A.5)

Consequently, norm of vector V µ is given by

|V |2 = V µVµ = −2V +V − + V IV I . (A.6)

This form of dot product leads to light-cone metric tensor, since the light-cone dot

product can be illustrated as V µWµ = g̃µνV
µW ν . g̃µν denotes light-cone metric

tensor. With help of the Eq. (A.5), we get

[g̃µν ] =



0 −1 0 0 . . . 0

−1 0 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 0
...

...
...

. . .
...

0 0 0 0 . . . 1


. (A.7)

We consider the Fourier transformation in convention of the light-cone co-

ordinates. For a given function f(x), generally, Fourier transformation of this

function is

f(x) =

∫
dDp

1

(2π)D
exp(ixµpµ)f̃(p) .

Since the light-cone dot product between a position vector and momentum is

xµpµ = −x+p− − x−p+ + xIpI ,

the Fourier transformation is written by

f(x) =

∫
dDp

1

(2π)D
exp(i(−x+p− − x−p+ + xIpI))f̃(p) . (A.8)

Suppose Xµ and P µ are operators which determine position and momentum, re-

spectively. When the f(x) is operated by X, we obtain

Xµf(x) = xµf(x) ,



83

where xµ is position eigenvalue of the operator Xµ, with µ = +,−, I. Form of the

operator P µ is more complicated. To see some hints, let us consider the Fourier

transformation for Lorentzian coordinates;

f(x) =

∫
dDp

1

(2π)D
exp(i(x0p0 − x1p1 − ...− xdpd))f̃(p) . (A.9)

In convention of Lorentzian coordinates, the momentum operator takes the form

P 0 = i
∂

∂x0
and P i = −i ∂

∂xi
for i = 1, ..., d .

When the elements of momentum operator operate to f(x) in Eq. (A.9), we obtain

P 0f(x) =

∫
dDp

p0

(2π)D
exp(i(−x0p0 + xipi))f̃(p) (A.10)

P if(x) =

∫
dDp

pi

(2π)D
exp(i(−x0p0 + xipi))f̃(p) . (A.11)

If f(x) is a physical field, we can fix p0 = energy and x0 = time. Thus the operator

P 0 correspond to the Hamiltonian. In order to find the forms of P+, P− and P I ,

we begin from the fact that

P+f(x) =

∫
dDp

p+

(2π)D
exp(i(−x+p− − x−p+ + xIpI))f̃(p) , (A.12)

P−f(x) =

∫
dDp

p−

(2π)D
exp(i(−x+p− − x−p+ + xIpI))f̃(p) (A.13)

P If(x) =

∫
dDp

pi

(2π)D
exp(i(−x+p− − x−p+ + xIpI))f̃(p) . (A.14)

Thus, we can observe that components of momentum operator of the light-cone

convention have to be

P+ = i
∂

∂x−
, P− = i

∂

∂x+
and P I = −i ∂

∂xI
(A.15)

Again, we assume that f(x) is a physical field and we choose to fix x+ = time. The

fixing x+ leads to an argument that P− = energy. Additionally, the light-cone

convention Hamiltonian is P−. In this thesis, we do not derive the light-direction

of the Lornetzian generator Mµν → M+−,M+I ,M−I and M IJ . In the book

[5], many discussions about light-cone gauge are discussed.



84

Appendix B

Metric of Five-Dimensional Sphere

Let us consider a stack of D3-branes in (9+1)-dimensional space-time. We

choose x4, x5, ..., x9 to be transverse to the stack D3-branes. It is possible to

compact transverse directions as a five-sphere S5. The stack of D3-branes is viewed

as a point at origin within a spherical symmetric space (coordinates of the space are

x4, ..., x9). The five-sphere has SO(6) isometry group, which is rotation group of

the transverse directions. When we add another stack of D7-branes, the rotational

symmetry is broken into SO(4)×SO(2). The rotation group SO(4) is rotation of

x4, x5, x6 and x7, while SO(2) is rotation of x8 and x9. The x4, x5, x6 and x7 are

compact to three-sphere S3 subspace on the S5. The line element which describes

the S5 for this case is more complicate. Let us look at the S3, we suppose that

the x6 and x7 form a circle S1 subspace on the S3. At this time, we may consider

the case of S3 with S1 subspace. This case is easier and then we extend this

consideration to the case of S5 with S3 subspace.

For the three-sphere of radius rS3, the directions x4, x5, x6 and x7 have to

satisfy the sphere equation such that

x24 + x25 + x26 + x27 = r2S3 . (B.1)

Then, supposing that the subspace S1 has radius equal to rS1. Hence x4 and x5

directions need to satisfy x26 + x27 = r2S1, so the Eq. (B.1) becomes

x24 + x25 + r2S1 = r2 . (B.2)

As following Eq. (B.2), the S3 can be illustrated as a two-sphere on background R3

with axes x4, x5 and rS1, like x, y and z (see Figure B.1). The compact directions x6

and x7 are now written in polar coordinates with an introduced angular coordinate,

named θ3. Thus,

x6 = rS1 sin θ3 and x7 = rS1 cos θ3 . (B.3)

Then, for S3 as shown in Figure B.1, the radius rS3 can be projected onto axes

x4, x5 and rS1. With introducing other two angular coordinates named θ1 and θ2,
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Figure B.1: Left is circle of radius rS1 and right is three-sphere of radius rS3. In

this view, the three-sphere can be thought as two-sphere on x4, x5, rS1 axes.

the projection of rS3 onto rS1 axis is rS1 = rS3 cos θ1. Together with projection of

rS3 onto x4 and x5 axes, the x4, x5, x6 and x7 directions takes forms

x4 = rS3 sin θ1 cos θ2 , x5 = rS3 sin θ1 sin θ2 , (B.4)

x6 = rS3 cos θ1 sin θ3 and x7 = rS3 cos θ1 cos θ3 . (B.5)

The value of θ2 and θ3 can take from 0 to 2π as usual, but only from 0 to π/2

for θ1 since the rS1 being S1 radius is positive definited. Thus we conclude that

θ2, θ3 ∈ [0, 2π] and θ1 ∈ [0, π/2].

The line element on the S3 may be written as dS2 = dx24+ ...+dx27. However

we write this line element in terms of rS3 and those angular coordinates. We

calculate the (dxi)2 with i = 4, ..., 7, each xi having forms as shown in Eq. (B.4)

and (B.5). For simplicity, we set rS3 = 1 making dS2 = dΩ2
3. Steps of the

calculations follow

dx4 = − sin θ1 sin θ2dθ2 + cos θ1 cos θ2dθ1 ,

dx24 = sin2 θ1 sin
2 θ2dθ

2
2 + cos2 θ1 cos

2 θ2dθ
2
1

−2 sin θ1 cos θ1 sin θ2 cos θ2dθ1dθ2 , (B.6)

dx5 = sin θ1 cos θ2dθ2 + cos θ1 sin θ2dθ1 ,

dx25 = sin2 θ1 cos
2 θ2dθ

2
2 + cos2 θ1 sin

2 θ2dθ
2
1

+2 sin θ1 cos θ1 sin θ2 cos θ2dθ1dθ2 . (B.7)
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Now we get dx24 + dx24 = cos2 θ1dθ
2
1 + sin2 θ1dθ

2
2. Then,

dx6 = cos θ1 cos θ3dθ3 − sin θ1 sin θ3dθ1 ,

dx26 = cos2 θ1 cos
2 θ3dθ

2
3 + sin2 θ1 sin

2 θ3dθ
2
1

−2 sin θ1 cos θ1 sin θ3 cos θ3dθ1dθ3 , (B.8)

dx7 = − cos θ1 sin θ3dθ3 − sin θ1 cos θ3dθ1 ,

dx27 = cos2 θ1 sin
2 θ3dθ

2
3 + sin2 θ1 cos

2 θ3dθ
2
1

+2 sin θ1 cos θ1 sin θ3 cos θ3dθ1dθ3 . (B.9)

Here, we reach dx26 + dx27 = cos2 θ1dθ
2
3 + sin2 θ1dθ

2
1. Finally, we achieve the line

element of the S3 such that

dΩ2
3 = dθ21 + cos2 θ1dθ

2
3 + sin2 θ1dθ

2
2 . (B.10)

This line element is written in a sense of unit S3. This can be generalized to line

element of three-ball (three solid-sphere) by

dS2
B3 = dr2S3 + r2S3dΩ

2
3 .

We then consider line element of S5 with S3, and we extend the idea from the

previous consideration. As we did for S3, we say that the directions x4, x5, ..., x9

have to satisfy

x24 + x25 + x26 + x27 + x28 + x29 = r2 . (B.11)

Because the direction x24 + x25 + x26 + x27 form S3, they satisfy Eq. (B.1). Thus Eq.

(B.11) becomes r2S3 + x28 + x29 = r2. In that notation, the S5 can be viewed as a

two-sphere on axes x8, x9, r
2
S3 of background R3, see Figure B.2. By introducing

other angular coordinates denoted by θ4 and θ5, projection of r to the axes are

just

rS3 = r cos θ4 , x8 = r sin θ4 cos θ5 and x9 = r sin θ4 sin θ5 .

The rS3 is again projected onto x4, ..., x7. Then we get

x4 = r cos θ4 sin θ1 cos θ2 , x5 = r cos θ4 sin θ1 sin θ2 , (B.12)

x6 = r cos θ4 cos θ1 sin θ3 , x7 = r cos θ4 cos θ1 cos θ3 , (B.13)

x8 = r sin θ4 cos θ5 and x9 = r sin θ4 sin θ5 . (B.14)

For more convenient, we may write xi = (r cos θ4)yi for i = 4, ..., 7 where yi are

coordinate of unit there-sphere, changing xi in equation from Eq. (B.1) to (B.9)

to be yi.
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Figure B.2: Left is three-sphere of radius rS3 and right is five-sphere of radius r.

In this view, the five-sphere can be seen as two-sphere on x8, x9, rS3 axes.

Line-element on the S5 is dS2 = dx24 + ...+ dx29 thus we need to find forms

of dx2a for a = 4, ..., 9. For simplicity, we consider unit S5 that is r = 1 and

dS2 = dΩ2
5. By performing derivative to xi;

dxi = cos θ4dyi − yi sin θ4dθ4 ,

we obtain

dx2i = cos2 θ4dy
2
i + y2i sin

2 θ4dθ
2
4 − 2yi cos θ4 sin θ4dθ4dyi . (B.15)

Thus,

dx24 + dx25 + dx26 + dx27 = cos2 θ4
(
dy24 + dy25 + dy26 + dy27

)
+
(
y24 + y25 + y26 + y27

)
sin2 θ4dθ4

−2 (y4dy4 + y5dy5 + y6dy6 + y7dy7)

× sin θ4 cos θ4dθ4 . (B.16)

We calculate the Eq. (B.16) term by term, the first term is

dy24 + dy24 + dy26 + dy27 = dΩ2
3 . (B.17)

The second term is

y24 + y25 + y26 + y27 = sin2 θ1 cos
2 θ2 + sin2 θ1 sin

2 θ2 + cos2 θ1 sin
2 θ3

+cos2 θ1 cos
2 θ3 ,

y24 + y25 + y26 + y27 = 1 . (B.18)
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The third term of Eq. (B.16) is reached by following the way

−y4dy4 = sin2 θ1 sin θ2 cos θ2dθ2 − sin θ1 cos θ1 cos
2 θ2dθ1 ,

−y5dy5 = − sin2 θ1 sin θ2 cos θ2dθ2 − sin θ1 cos θ1 sin
2 θ2dθ1 ,

−y6dy6 = − cos2 θ1 sin θ3 cos θ3dθ3 + sin θ1 cos θ1 sin
2 θ3dθ1 ,

−y7dy7 = cos2 θ1 sin θ3 cos θ3dθ3 + sin θ1 cos θ1 cos
2 θ3dθ1 .

Then we find that

y4dy4 + y5dy5 + y6dy6 + y7dy7 = 0 . (B.19)

So, the Eq. (B.16) now becomes

dx24 + dx24 + dx26 + dx27 = sin2 θ4dθ
2
4 + cos2 θ4dΩ

2
3 . (B.20)

For x8 and x9, calculations for them follow

dx8 = − sin θ4 sin θ5dθ5 + cos θ4 cos θ5dθ4 ,

dx28 = sin2 θ4 sin
2 θ5dθ

2
5 + cos2 θ4 cos

2 θ5dθ
2
4

−2 sin θ4 cos θ4 sin θ5 cos θ5dθ4dθ5 , (B.21)

dx9 = sin θ4 cos θ5dθ5 + cos θ4 sin θ5dθ4 ,

dx29 = sin2 θ4 cos
2 θ5dθ

2
5 + cos2 θ4 sin

2 θ5dθ
2
4

+2 sin θ4 cos θ4 sin θ5 cos θ5dθ4dθ5 . (B.22)

So we reach dx28 + dx29 = cos2 θ4dθ
2
4 + sin2 θ4dθ

2
5. Finally, line-element of S5 is

written by

dΩ2
5 = dθ24 + cos2 θ4dΩ

2
3 + sin2 θ4dθ

2
5 , (B.23)

where dΩ2
3 may or may not write as in Eq. (B.10). We can see that the S3 subspace

on unit S5 has radius cos2 θ4, so we conclude that size of the S3 is depending on

the θ4 which determines position of S3 on the S5. For five-ball, its line-element is

just

dS2
B5 = dr2 + r2dΩ2

5 .

The value of θ5 is from 0 to 2π while for θ4 is from 0 to π/2, or θ5 ∈ [0, 2π] and

θ4 ∈ [0, π/2].

In Chapter 4, the angular coordinates θ1, ..., θ5 are renamed by θ1 → Ψ,

θ2 → γ, θ3 → β, θ4 → θ and θ5 → ϕ. Thus, the dΩ2
5 takes form as

dΩ2
5 = dθ2 + cos2 θdΩ2

3 + sin2 θdϕ2 , (B.24)
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where

dΩ2
3 = dΨ2 + cos2Ψdβ2 + sin2Ψdγ2 . (B.25)

Here, the value of angular coordinates are ϕ, γ, β ∈ [0, 2π] and θ,Ψ ∈ [0, π/2].
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