

CHAPTER III MATRIX GROUPS

We begin this chapter by recalling the following notations of matrix groups where F is a field and n is a positive integer :

 $G_n(F)$ = the group of nonsingular $n \times n$ matrices over F,

 $U_n(F)$ = the group of nonsingular upper triangular $n \times n$ matrices over F,

 $L_n(F)$ = the group of nonsingular lower triangular $n \times n$ matrices over F,

 $P_n(F)$ = the group of permutation $n \times n$ matrices over F,

 $O_n(F)$ = the group of orthogonal $n \times n$ matrices over F,

 $V_n(F)$ = the group of all $n \times n$ matrices A over F with det $A = \pm 1$.

We shall characterize when these matrix groups admit a right nearring structure and a left nearring structure in terms of n and F. The following lemma is our main tool.

Lemma 3.1. Let G be a group with identity 1. If there are distinct $a, b \in G \setminus \{1\}$ such that $a^2 = b^2 = 1$, then $G \notin RNR$ and $G \notin LNR$.

Proof. Suppose that $G \in \mathcal{RNR}$. Since |G| > 1, G has no left zero, so there is an operation + on G such that $(G^0, +, \cdot)$ is a right nearring. Then 1 + a = c and 1 + b = d for some $c, d \in G^0$.

Case 1: $c \neq 0$. Then $ca = (1 + a)a = a + a^2 = a + 1 = 1 + a = c$. This implies that a = 1, a contradiction.

Case 2: c = 0. Then a is an inverse of 1 in $(G^0, +)$. But $b \neq a$, so $1 + b = d \neq 0$. Hence $db = (1 + b)b = b + b^2 = b + 1 = 1 + b = d$ which implies that b = 1, a contradiction.

Hence $G \notin \mathcal{RNR}$. We can show similarly that $G \notin \mathcal{LNR}$.

Theorem 3.2. (i) $G_n(F) \in \mathcal{RNR}$ if and only if n = 1. (ii) $G_n(F) \in \mathcal{LNR}$ if and only if n = 1.

Proof. Assume that n > 1. Let $A, B \in M_n(F)$ be defined by

$$A = \begin{bmatrix} 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Then $A, B \in G_n(F) \setminus \{I_n\}, A \neq B$ and $A^2 = I_n = B^2$. By Lemma 3.1, $G_n(F) \notin \mathcal{RNR}$ and $G_n(F) \notin \mathcal{LNR}$. This shows that if $G_n(F) \in \mathcal{RNR}$ or $G_n(F) \in \mathcal{LNR}$, then n = 1.

Since $G_1^0(F) = (F \setminus \{0\}, \cdot)^0 = (F, \cdot)$, it follows that $G_1(F) \in \mathcal{R} \subseteq \mathcal{RNR} \cap \mathcal{LNR}$. Hence the converses of (i) and (ii) hold.

From Theorem 3.2 and its proof, we have

Corollary 3.3. The following statements are equivalent.

(i) G_n(F) ∈ RNR.
(ii) G_n(F) ∈ LNR.
(iii) G_n(F) ∈ R.
(iv) n = 1.

Theorem 3.4. (i) $U_n(F) \in \mathcal{RNR}$ if and only if either n = 1 or n = 2 and $F \cong \mathbb{Z}_2$.

(ii) $U_n(F) \in \mathcal{LNR}$ if and only if either n = 1 or n = 2 and $F \cong \mathbb{Z}_2$.

Proof. Suppose that (1) n > 1 and (2) n > 2 or |F| > 2. This implies that (1') n > 2 or (2') n = 2 and |F| > 2.

Case 1 : n > 2. Let $A, B \in M_n(F)$ be defined by

$$A = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Then $A, B \in U_n(F) \setminus \{I_n\}, A \neq B$ and $A^2 = B^2 = I_n$. By Lemma 3.1, $U_n(F) \notin \mathcal{RNR}$ and $U_n(F) \notin \mathcal{LNR}$.

Case 2 : n = 2 and |F| > 2. Let $a \in F \smallsetminus \{0, 1\}$ and

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & a \\ 0 & -1 \end{bmatrix}.$$

Then $A, B \in U_n(F) \setminus \{I_2\}, A \neq B$ and $A^2 = B^2 = I_2$, so by Lemma 3.1, $U_2(F) \notin \mathcal{RNR}$ and $U_2(F) \notin \mathcal{LNR}$.

This proves that if $U_n(F) \in \mathcal{RNR}$ or $U_n(F) \in \mathcal{LNR}$, then either n = 1 or n = 2and $F \cong \mathbb{Z}_2$.

Since

$$U_1^0(F) \cong (F, \cdot) \quad \text{and} \quad U_2^0(\mathbb{Z}_2) \cong \left(\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}, \cdot \right)$$
$$\cong (\mathbb{Z}_3, \cdot),$$

it follows that $U_1^0(F), U_2^0(\mathbb{Z}_2) \in \mathcal{R} \subseteq \mathcal{RNR} \cap \mathcal{LNR}$. Then the converses of (i) and (ii) hold.

As a consequence of Theorem 3.4 and its proof, we have

Corollary 3.5. The following statements are equivalent.

- (i) $U_n(F) \in \mathcal{RNR}$.
- (ii) $U_n(F) \in \mathcal{LNR}$.
- (iii) $U_n(F) \in \mathcal{R}$.
- (iv) (a) n = 1 or (b) n = 2 and $F \cong \mathbb{Z}_2$.

The following theorem and corollary can be shown dually to Theorem 3.4 and Corollary 3.5, respectively.

Theorem 3.6. (i) $L_n(F) \in \mathcal{RNR}$ if and only if either n = 1 or n = 2 and $F \cong \mathbb{Z}_2$.

(ii) $L_n(F) \in \mathcal{LNR}$ if and only if either n = 1 or n = 2 and $F \cong \mathbb{Z}_2$.

Corollary 3.7. The following statements are equivalent.

- (i) $L_n(F) \in \mathcal{RNR}$.
- (ii) $L_n(F) \in \mathcal{LNR}$.
- (iii) $L_n(F) \in \mathcal{R}$.

(iv) (a) n = 1 or (b) n = 2 and $F \cong \mathbb{Z}_2$.

Theorem 3.8. (i) $P_n(F) \in \mathcal{RNR}$ if and only if $n \leq 2$. (ii) $P_n(F) \in \mathcal{LNR}$ if and only if $n \leq 2$.

Proof. Assume that $n \geq 3$. Let $A, B \in M_n(F)$ be defined by

	г				1		1	0	0	0		0	0 0 0 :
				•••									
	1	0	0										
	0	0	1		0	and $B =$: :	:	:	···· ···		
	:	:	÷	·.,	:		:						
	L	0					0	0	0	0		1	

Then $A, B \in P_n(F) \setminus \{I_n\}, A \neq B$ and $A^2 = B^2 = I_n$. Therefore we have that $P_n(F) \notin \mathcal{RNR}$ and $P_n(F) \notin \mathcal{LNR}$ by Lemma 3.1. Hence $P_n(F) \in \mathcal{RNR}$ or $P_n(F) \in \mathcal{LNR}$ implies that $n \leq 2$.

The converses of (i) and (ii) hold since

$$|P_1(F)| = 1 \quad \text{and} \quad P_2^0(F) \cong \left(\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}, \cdot \right) \cong (\mathbb{Z}_3, \cdot).$$

We have the following consequence, as before.

Corollary 3.9. The following statements are equivalent.

- (i) $P_n(F) \in \mathcal{RNR}$.
- (ii) $P_n(F) \in \mathcal{LNR}$.
- (iii) $P_n(F) \in \mathcal{R}$.
- (iv) $n \leq 2$.

Theorem 3.10. (i) $O_n(F) \in \mathcal{RNR}$ if and only if either n = 1 or n = 2 and $F \cong \mathbb{Z}_2$.

(ii) $O_n(F) \in \mathcal{LNR}$ if and only if either n = 1 or n = 2 and $F \cong \mathbb{Z}_2$.

Proof. Suppose that (1) n > 1 and (2) n > 2 or |F| > 2. Then (1') n > 2 or (2') n = 2 and $|F| \ge 3$.

Case 1 : n > 2. Let $A, B \in M_n(F)$ be as in the proof of Theorem 3.8. Since $A^t = A$ and $B^t = B$, we have that $AA^t = A^2 = I_n$ and $BB^t = B^2 = I_n$. Then $A, B \in O_n(F) \setminus \{I_n\}, A \neq B$ and $A^2 = B^2 = I_n$. By Lemma 3.1, $O_n(F) \notin \mathcal{RNR}$ and $O_n(F) \notin \mathcal{LNR}$.

Case 2 : n = 2 and $|F| \ge 3$.

Subcase 2.1 : char F = 2. Let $a \in F \setminus \{0, 1\}$. Let

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} a & 1+a \\ 1+a & a \end{bmatrix}.$$

Then $A^t = A$ and $B^t = B$, so $AA^t = A^2 = I_2$ and

$$BB^{t} = B^{2} = \begin{bmatrix} a^{2} + (1+a)^{2} & a(1+a) + (1+a)a \\ (1+a)a + a(1+a) & (1+a)^{2} + a^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

	สถาบันวีทยบงิคท ณ์มหาวิทธาลัย 🍂
	การการ์สาย
The second second	MANIE NOTES

21

since char F = 2. Hence A and B are two distinct elements of $O_2(F)$ with $A^2 = B^2 = I_2$. Thus $O_2(F) \notin \mathcal{RNR}$ and $O_2(F) \notin \mathcal{LNR}$ by Lemma 3.1.

Subcase 2.2: char $F \neq 2$. Then $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ are distinct elements

of $O_2(F)$ whose squares are I_2 . Hence $O_2(F) \notin \mathcal{RNR}$ and $O_2(F) \notin \mathcal{LNR}$ by Lemma 3.1.

This proves that if $O_2(F) \in \mathcal{RNR}$ or $O_2(F) \in \mathcal{LNR}$, then either n = 1 or n = 2and $F \cong \mathbb{Z}_2$.

We have that

$$O_1^0(F) \cong (\{0, 1, -1\}, \cdot) \cong \begin{cases} (\mathbb{Z}_3, \cdot) & \text{if } \operatorname{char} F \neq 2, \\ (\mathbb{Z}_2, \cdot) & \text{if } \operatorname{char} F = 2. \end{cases}$$

and

$$O_2^0(\mathbb{Z}_2) \cong \left(\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}, \cdot \right) \cong (\mathbb{Z}_3, \cdot).$$

These imply that $O_1^0(F), O_2^0(\mathbb{Z}_2) \in \mathcal{R} \subseteq \mathcal{RNR} \cap \mathcal{LNR}$. Hence the converses of (i) and (ii) hold.

As before, Theorem 3.10 and its proof yield the following result.

Corollary 3.11. The following statements are equivalent.

(i) O_n(F) ∈ RNR.
(ii) O_n(F) ∈ LNR.
(iii) O_n(F) ∈ R.
(iv) (a) n = 1 or (b) n = 2 and F ≅ Z₂.
Theorem 3.12. (i) V_n(F) ∈ RNR if and only if n = 1.

Theorem 5.12. (i) $v_n(r) \in \mathcal{M} \times \mathcal{H}$ if and only if it

(ii) $V_n(F) \in \mathcal{LNR}$ if and only if n = 1.

Proof. Assume that n > 1 and let $A, B \in M_n(F)$ be defined as in the proof of Theorem 3.2. Since det $A = -1 = \det B$, it follows that $A, B \in V_n(F)$. Then

Since

$$V_1^0(F) \cong (\{0, 1, -1\}, \cdot) \cong \begin{cases} (\mathbb{Z}_3, \cdot) & \text{if } \operatorname{char} F \neq 2, \\ (\mathbb{Z}_2, \cdot) & \text{if } \operatorname{char} F = 2, \end{cases}$$

we have that $V_1^0(F) \in \mathcal{R} \subseteq \mathcal{RNR} \cap \mathcal{LNR}$.

Therefore the theorem is proved.

From Theorem 3.12 and its proof, we also have

Corollary 3.13. The following statements are equivalent.

(i) V_n(F) ∈ RNR.
 (ii) V_n(F) ∈ LNR.
 (iii) V_n(F) ∈ R.

(iv) n = 1.

Remark 3.14. Let K be a subfield of F and

 $W_n(F,K) = \{A \in M_n(F) \mid \det A \in K \smallsetminus \{0\}\}.$

Then $W_n(F, K)$ is a group. Since $1, -1 \in K$, it follows from the proof of Theorem 3.12 that if $W_n(F, K) \in \mathcal{RNR}$ or $W_n(F, K) \in \mathcal{LNR}$, then n = 1. Also, we have that

 $W_1^0(F,K) \cong (K,\cdot) \in \mathcal{R} \subseteq \mathcal{RNR} \cap \mathcal{LNR}.$

Therefore we deduce that n = 1 is necessary and sufficient for $W_n(F, K)$ to be in \mathcal{RNR} [\mathcal{LNR}]. Moreover, the conditions that $W_n(F, K) \in \mathcal{RNR}$, $W_n(F, K) \in \mathcal{LNR}$, $W_n(F, K) \in \mathcal{R}$ and n = 1 are equivalent.