RESULTS

The results of the water samples studied are shown in Table 1a and show the total concentration of lead and mercury in the water, both the soluble and particulate fractions, for the January collections. The amount of lead and mercury concentration, both the soluble and particulate fractions for the May collections are shown in Table 1b. The values for the overall concentration of lead and mercury at each station are also presented.

The total lead content in wet sediments for each assigned layer is shown in Table 2. The totol mercury content in wet sediment for each assigned layer is shown in Table 3 .

The total lead and mereury residues in the biological samples for the January collections are show in Table 4 and for the May collections in Table 5.

The variation in total lead concentration for soluble and particulate fractions for the January collections are shown graphically in Figure 5, and the total concentration of mercury in the soluble and par-ticulate fractions are show graphicolly in Figure 6. The total concentration of lead and mercury in the soluble and particulate fractions May collections are show graphically in Figure 7 and 8 respectively. Representations of the relationship between the total concentration of both lead and mercury in each assigned sediment layer of the sediment cores sampled from the 9 stations are shown in Figure 9-16 inclusive.

The biological samples of selected species are presented graphically in Figure 17 a and $1^{\prime 7} 7 \mathrm{~b}$ according to their content of the total lead and mercury residues in the muscle. Figure 18 represents a comparison between the values of the total lead and nercury residues in the species studied from the various stations in respect of the three trophic levels for the January and May collections.

	Dissolved		Particulate		Total	
Station	Lead	Mercury	Lead	Mercury	Lead	Mercury
I	2.60	0.013	13.00	0.001	15.60	0.041
II	3.50	0.134	13.75	0.009	17.25	0.143
III	2.00	0.699	16.19	0.005	18.19	0.704
IV+V	2.00	0.634	14.19	0.073	16.19	0.707
VI	4.70	0.088	14.58	0.029	19.28	0.117
VII	5.20	0.023	20.27	0.032	25.57	0.055
VIII	3.90	0.069	48.13	0.021	52.03	0.090
IX	2.00	0.069	12.33	0.034	14.33	0.103

Table 1a: Concentration of Dissolved, Particulate and Total Content of Lead and Mercury in the Water Samples on the ppb Basis for January. Collections

| | Dissolved | Porticulate | | Total | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Station | Lead | Mercury | Lear | Mercury | Lead | Mercury |
| I | 3.00 | 0.028 | 15.60 | 0.001 | 18.60 | 0.029 |
| II | 3.50 | 0.460 | 12.00 | 0.016 | 15.50 | 0.476 |
| III | 4.70 | 0.325 | 20.90 | 0.009 | 25.60 | 0.334 |
| IV | 3.60 | 0.420 | 16.88 | 0.026 | 20.48 | 0.446 |
| V | 4.70 | 0.560 | 19.25 | 0.071 | 23.95 | 0.631 |
| VI | 3.00 | 0.650 | 14.75 | 0.037 | 17.75 | 0.687 |
| VII | 3.00 | 0.046 | 18.85 | 0.050 | 21.85 | 0.096 |
| VIII | 2.60 | 0.070 | 59.45 | 0.031 | 62.05 | 0.101 |
| IX | 2.00 | 0.050 | 16.63 | 0.017 | 18.63 | 0.073 |

Table 1b: Concentration of Dissolved, Particulate and Total Content of Lead and Mercury in the Water Samples on the ppb Basis for May. Collections.

Septhin (cm.)	I	II	III	IV V	VI	VII	VIII	IX
1	0.556	1.742	2.413	0.532	0.565	0.303	0.326	0.159
3	0.854	0.887	2.241	0.520	0.328	0.386	0.614	0.224
5	0.234	0.723	1.894	0.014	3.343	0.354	0.631	0.262
7	0.140	1.135	3.500	0.556	0.967	0.314	1.489	0.169
9	0.396	0.366	2.420	0.024	0.274	0.569	1.402	0.269
12	0.418	0.307	1.352	0.376	0.119	0.480	0.941	0.075
15	0.642	0.400	0.600	0.472	0.197	0.621	0.836	0.243
18	0.155	0.594	1.899	0.634	0.182	0.446	-	0.128
22	-	0.617	1.880	0.444	0.189	0.435	-	0.157
26	-	0.670	0.600	0.350	0.198	0.447	-	0.160
30	-	0.660	1.348	0.236	0.395	-	-	0.156
34	-	-	1.348	0.622	0.238	-	-	0.164
38	-	-	0.817	0.398	-	-	-	0.091
42	-	-	2.417	0.736	-	-	-	-
46	-	-19	1.897	0.360	-	-	-	-
50	-	-	1.349	0.247	-	-	-	-
54	-	-	1.349	-	-	-	-	-
58	-	-	-	-	-	-	-	-

Iable 2: Total Lead Concentration in Wet Sedinent on the ppm Basis.

Table 3: Total Mercury Concentration in Wet Sediment on the ppm Basis

Ho．	－Organiem	Weight （gm）	Length （cm）	Station	Trophic Level	Lead (ppm)	$\begin{gathered} \text { Mercury } \\ (\mathrm{ppm}) \end{gathered}$
1	Loligo 日p．	218	24.3	ItII	4	1.034	0.032
2	L611go sp．	186	22.7	I＋II	4	1.874	0.029
3	Loligo sp．	86	14.3	$\mathrm{I}+\mathrm{II}$	4	0.205	0.019
4	Loligo sp．	65	12.5	I 4 II	4	0.846	0.015
5	Loligo sp．	5	7.5	ItII	4	－	
6	Loligo 旦．	3.	6.7	H＋II	4	0.010	－
7	Sepia sp．	288	16.8	ItII	4	0.436	0.085
8	Sepia sp．	129	11.8	I＋II	4	0.224	0.011
9	Sepia sp．	37	7.2	I＋II	4	0.224	0.012
10	Caranx mate	35	17.4	ItII	4	0.236	0.027
11	Caranx mate	33	16.5	I 4 II	4	0.206	0.031
12	Caranx malan	113	21.5	I \ddagger II	4	1.009	0.058
13	Caranx malan	80	20	I＋II	4	0.784	0.037
14	Epinepherus tauvina	67	16	I＋II	5	0.613	0.294
15	Epinepherus tauvina	55	15	I＋II	5	0.410	0.269
16	Scatophagus argus（Blyth）	43	11.4	IFII	5	0.543	0.057
17	Scatophagus argus（Blyth）	34	10.5	ItII	5	0.881	0.043
18	Scatophagus argus（Blyth）	29	9.5	ItII	5	0.514	0.036
19	Pangasius pangasius（㿾的ilton）	115	24	IV＋V	4	0.687	0.126
20	Pangasius pangasius（Hamilion）	97	23	IV＋V	4	0.510	0.046
21	Scatophagus argus（Blyth）	75	12.7	IV＋V	5	0.417	0.084
22	Larus brunnicapholus	425	－	IV＋V	5	2.609	0.271
23	Larus brunnicephelus	368	－	IV＋V	5	0.842	0.160
24	Larus brunnicephelus	359		IV＋V	5	0.885	0.192
25	Larus brunnicephelus	357	－	IV＋V	5	－	0.188
26	Larus brunnicephelus	355	－	IV＋V	5	0，814	0.136
27	Larus brunnicephelus	352	－	IV＋V	5	1.054	0.102
28	Larus brunnicephelus	338	－	IV＋V	5	0.841	0.224
29	Larus brunnicephelus	333	－	IV＋V	5	0.651	0.040
30	Puntius gonionotus（Bleeker）	487	30.5	IX	3	1.416	0.024
31	Puntius Bonionotus（\＃leeker）	460	50	\cdots	3	1.243	0.042
32	Pluntioplites proctozyrion（Bleeker）	820	41.5	IX	4	0.693	0.014
33	Pluntioplites proctozyion（Bleeker）	650	37	IX	4	0.641	0.013
34	Pangasius nasatus（Hamilton）	2416	56	IX	4	0.841	0.118
35	Pangasiug nasatus（Eamilton）	1616	53	IX	4	0.622	0.032
36	Dasybatus imbricatus	600	26	IX	5	0.605	0.165
37	Xryptoterus bleakeri	910	53	IX	5	0.610	0.205
38 ）	Kryptotering bleeker1	230	34	IX	5	0.211	0.039

Table $4:$ Total Concentration of Lead and Feroury Reaidues inf Biologieal Samplea for January Colleotions．

Table 5: Total Concentration of Lead and Mercury Realdues in Biologioal Samplve For May Colleations.

Figure 5: Distribution of Dissolved, Particulate and Total Lead in the Water
Samples from the January Collections.

Figure 11: The Relationship between the Total Lead and Mercury Coneentration in Sediment Core with Depth at Station III.

Figure 19a: Calibration Curve for Lead

Figure 20: Accuracy Curves for Experimental and EPA Standards for Mercury

	Experimental	EPA
70 ng	17.0^{*}	
140 ng	36.0	
210 ng	54.5	35.5
		54.0

EPA: Environmental Protection Agency

* : Net Count

Figure 19 a and 19 b show the calibration curves for lead and mercury respectively. The graphical representation of the accuracy test for the determination of the total mercury is illustrated in Figure 20 showing the comparison for the experimental and the EPA standards.

The four samples of the same specimen were determined for the lead content giving the following results:

So for these four determinations the procision values is . $\bar{X} \pm 0.079$ at 95% confidence interval.

The recovery percentage of the method for the determination of lead was Ryo made with the following results:

Sample No.
1 (2,ug)
2 ($3 \mu \mathrm{~g}$)
3 ($4 \mu \mathrm{~g}$)
recovery percentage

85
93.3
116.7

The resulting recovery percentage was $\overline{\mathrm{x}} \pm 16.01$ at 95% confidence interval.

The accuracy test for lead was not made due to the unvailability of the recommended lead standard.

The four samples of the same specinen were analysed for the total mercury content with the following results:

From these results, the precision value of $\overline{\mathrm{X}} \mathbf{\pm} 0.08$ at 95% confidence interval was observed.

The recovery parcentage for the deturmination of mercury was also made with the following results:

Sample No.	Recovery percentage
$1(20 \mathrm{ng})$	112.5
$2(30 \mathrm{ng})$	90
$3(40 \mathrm{ng})$	107.5

So the resulting mercury percentage was $\bar{X} \pm 0.13$ at 95% confidence interval.

