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CHAPTER I

Introduction

Quantum electrodynamics (QED) is the most precise physical theory that human
ever constructed. Another theory that is similarly constructed and embeds QED
into its framework, the standard model, have been also constantly tested and in
agreement with experiments over the past decades. These theories give us a much
more advancing in understanding the fundamental laws of nature. Besides its
precision and predictive power, the standard model explains three fundamental
forces of nature: electromagnatic, weak and strong nuclear forces, into a single
framework. This gives us hope to find the theory of everything – a single the-
ory that can explain all fundamental laws of nature in one idea or framework.
Unfortunately, the standard model does not include gravity. The obstacle is the
unrenormalization of quantum field theory of gravity – the inability to get rid of
the infinities during calculating scattering amplitudes systematically. During the
success of the standard model, a new idea of physics had been being developed –
it is supersymmetry. It was introduced as a mathematical idea and had no exper-
imental guidance. It is customary that the theoretical physics in this century can
drive by beauty of mathematics. This is quite distinctive when compare to the
theories constructed before the early age of quantum mechanics. Supersymmetry
is basically a symmetry that relates bosons to fermions. When apply this idea
to particle physics, it suggests a new partner with spin difference by half integer.
For example, a photon (a spin-1 particle) has a partner which is a fermion called
photino (spin 1/2). The idea of supersymmetry became more interesting because
it may solve the hierarchy problem. The hierarchy problem involves in the curios-
ity that why the gravitational force is 1032 times weaker than the weak nuclear
force. Technically speaking, this problem is also referred to as the question of
why the Higgs mass is so much lighter than the Plank mass. Supersymmetry can
hopefully provide a solution by giving the explanation of how the Higgs mass is
protected from the quantum correction. The simple answer is that supersymme-
try can remove the divergence of some loop diagrams by the exact amount of the
contribution from its superpartner. To the best of my knowledge, there are still
no solid evidences for the existence of supersymmetry.

Around 1960s, another quantum theory was proposed as an alternative ap-
proach of field theory. It was called string theory. String theory abandons the
notion of point-like particles and replaces them with string-like objects. The in-
teractions can be visualized as joining and splitting of strings. It originally was
constructed to explain strong nuclear force, since a number of mesons and hadrons
were discovered in that period. The stringy concept was indeed succeed in describ-
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ing the relation between masses and spin of particles. However, QCD (Quantum
chromodynamics) turned out to be the correct framework for strong nuclear force.
QCD is a non-abelian gauge theory with color gauge group SU(3) and the mesons
and hadrons in the description of QCD are made of quarks which carry color
degrees of freedom. The string theory began to fade but it could not be totally
abandoned because it has an very interesting feature that most physicists had not
paid much attention in the first place. String theory can naturally explain massless
spin-2 particles (graviton) and the only consistent spin two theory is gravity, so
the string theory can be a good candidate for quantum gravity. Since graviton is
a mode of the oscillation along with all particles known to us, string theory is also
a perfect candidate for a theory of everything. However, there are still glitches. In
order to get rid of inconsistency in the theory the spacetime have to be ten dimen-
sional. The four dimensional spacetime theory can be achieved by compactifying
the additional 6-dimensional spacetime. The low energy interactions are given
by the geometrical profiles of the 6-dimensional compact manifold. Phenomeno-
logically, Calabi-Yau manifold is the most promising, but still we cannot get the
standard model at low energy limit.

At low energy limit, strings behave like point particle and we can rely on
field theory framework. Supergravity can be considered as a low energy limit of
string theory. For examples, the type IIB string theory can be approximated by
the type IIB supergravity at low energy and the eleven dimensional supergrav-
ity is low energy limit of M theory. In order to get the lower D dimensional
supergravity from the eleven dimensional supergravity, we need to compactify
spacetime on 11 − D dimensional compact manifold. The shape of the compact
manifold characterizes the supergravity theory. For examples, if the manifold is
11−D-dimensional torus, we get the D-dimensional ungauged supergavity. If the
manifold is 11 − D-dimensional sphere, we get SO(12 − D) gauged supergravity
in D dimensions.

The correct prediction of mass-spin relation from string theory may not be an
accident. There exists somehow the interrelation between string theory and gauge
theory. It was t’Hooft who inspired the identification the large color N theory to
a string theory [1]. To summarize: a string theory with some backgrounds which
include gravity is dual to a quantum field theory. In 1997, it was Maldacena [2] who
elaborated the idea and made a revolutionary conjecture of duality between the
two theories. This conjecture was widely known as the AdS/CFT correspondence.
Within a year, Witten [3] elaborated on this conjecture and proposed a prescription
for connecting the partition function of the two worlds. Although the calculation
was performed in the level of classical gravity, it paved the way to a large new
field of research. The applications in AdS/CFT have grown tremendously in more
than two decades, and seem likely to continue to grow at unreceding rate.

The AdS/CFT correspondence originally conjectured as a duality between
the two very different theories, i.e. the N = 4 super Yang-Mills conformal
quantum field theory (SYM) in four dimensions and a type IIB string theory
in AdS5 × S5 background geometry. It relates two very different theories living
in different spacetime dimensions, one lives in the bulk and the other lives in the
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boundary. The degree of validity may be divided into many levels; the lower the
energy, the stronger the evidences we found. The conjecture allows us to calculate
quantum phenomena in strongly coupled quantum field theory by performing cal-
culation from classical gravitational theory. In some level of the conjecture, the
calculations in gravity side give us the information of strong coupling limit of its
dual in which the perturbation quantum field theory cannot be achievable. Up
until now, the validity of the duality cannot be proved unconditionally. However,
the convincing results are widely justified by their the low energy limits at which
the string theory can be substituted by supergravity. It is quite bizarre that infor-
mation of a quantum theory without gravity can be provided by a classical theory
with gravity in one higher spacetime dimension. This also raises some philosoph-
ical questions whether it is a simply mathematical tool or new perspective of the
universe. Excellent reviews on AdS/CFT can be found in [4, 5, 6, 7, 8, 9, 10, 11].

According to AdS/CFT correspondence, both theories shares the same sym-
metry. On the gravity side, the isometry group of AdS5 and S5 are SO(4, 2) and
SO(6) ∼ SU(4), respectively. The superstring background has the superalgebra
SU(2, 2|4) where SO(4, 2) and SO(6) ∼ SU(4) are its compact subgroups. On the
field theory side, the conformal group is SO(4, 2) and the R-symmetry of N = 4
super Yang-Mills is also SU(4); they can be combined into superconformal group
SU(2, 2|4), so the symmetries on both side are equal. Not only the symmetries
can be matched, but also some dynamics of theories can be related. One of the
key ideas in the correspondence is matching between local fields in gravity side
and composite gauge invariant operators of the boundary dual. The by-product of
this correspondence is that masses of local field on the gravity side relate to scale
dimension of the conformal ones. The other dynamical quantity such as n-points
functions of the field theory can be calculated from the on-shell action of the bulk
theory. Nowadays the term AdS/CFT correspondence is coined in a far more
generalized fashion than in the old days. The correspondence can be extended
to theories with less symmetries non-conformal theory. The relaxed condition of
its dual for non-conformal is that the background space now merely asymtoti-
cally AdS. The non-conformal field theory associates with the bulk region and
approaches the conformal theory at boundary. A well-known application of such
non-conformal theory is the study of the so-called holographic renormalization
group flow (RG flow).

An important concept of duality is that one theory can be explained by
the other. Holographic renormalization group flow is an attempt to describe RG
flow of field theory by a phenomenon from bulk theory. In conformal field theory,
if the theory is deformed by an operator or the operator itself has non-vanishing
expectation value, the conformal symmetry of the theory would be broken and the
theory is driven to another conformal theory characterized by a different central
charge. In the language of quantum field theory we can say that the theory is
driven from a fixed point at higher energy to another fixed point at lower energy.
If the theory is deformed by an operator, the conformal symmetry is explicitly
broken because the effective Lagrangian no longer has conformal symmetry while
non-vanishing expectation value case leads to spontaneously broken. According
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to AdS/CFT correspondence, this phenomenon has a dual picture and it can be
described by a classical solution of the bulk theory. The solution is composed of a
Poincaré invariant metric and kink-like solution of scalar field which is a function
of solely radial coordinate. The metric must approach an AdS solution as radial
coordinate goes to boundary and another AdS space characterized by different
length as it goes to deep interior region. In order to identify different theories in
distinct dimension of spacetime, the excess radial coordinate should be identified
with a parameter of the boundary theory, so we identify the radial coordinate
with energy scale of the field theory. Alternatively, we can say that each radial
slice can portray a snapshot of a quantum field theory at specific energy scale.
The RG flow solution can be either supersymmetric or non-supersymmetric. The
supersymmetric flow can be obtained by solving the so-called BPS equations. As
a result, a set of first order differential equations is given. On the other hand,
if we pursue the other path which is more general, we have to tackle the second
order differential equations derived from Euler-Lagrange equations. In this case,
supersymmetric solutions are not guaranteed and the BPS solutions merely are
sub-solutions.

Gauged supergravities necessitate the scalar potentials. They allow super-
symmetric AdS backgrounds as implied by negative value of critical points of the
potential, so the AdS/CFT correspondence can be established in the gauged super-
gravity framework. The very first attempt was the AdS5/CFT4 correspondence. It
is strongly believed that D = 5, N = 8 supergravity is a consistent truncation1 of
D = 10 type IIB supergravity, then the study RG flows from D = 5, N = 8 super-
gravity is interesting in its own right. Some studies work directly in D = 10 type
IIB supergravity which is more complex than those in D = 5 since some branes
and some complicated geometries involve. The AdS5 space can be achieved by
critical solutions of N = 8 gauged supergravity in five dimensions with gauge
group SO(6) [12, 70, 93]. This theory can be embedded in ten dimensional type
IIB supergravity [15]. Some AdS critical points were found by exploring a section
of the manifold [71, 17]. The RG flows from those critical points are studied in
[18, 19, 20, 21].

After they had reached the peak, the studies of RG flow from five dimen-
sional supergravity began to decline. Meanwhile the studies in three dimensions
were performed since the construction of gauged supergravity in three dimensions
was fully developed and completely classified [37]. Superficially, three dimensional
supergravity seems to be the last one picked since the higher dimensional counter-
part had been already extensively explored. The reason why the theories in higher
dimensions are quite popular is obvious, one of which is that they can obviously
connect to four dimensional theories by dimensional reduction.

Since in this dissertation we focus on three dimensional gauged supergravi-
ties and their application on AdS/CFT. We allocate some space to elaborate some
aspects of theories in three dimensions. Those include non-supersymmetric as well

1Consistent truncation means that a classical solution of lower dimensional theory can be
uplifted to a solution of the higher one.
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as non-gravitational theories. The AdS/CFT aspects are postponed to the end of
the discussion.

Gravity as well as pure supergravity in three dimensions have a well-known
feature – they are topological and their propagating degrees of freedom are zero.
Consequently, there are no gravitational waves. The gravity coupling to point-
particle was studied by Staruszkiewicz back in 1963 [23]. The source-free regions
are flat as determined by Einstein equation. The localized sources can affect global
geometry, as a result; the conserved quantities such as total energy-momentum is
related to topological invariants [24]. Once the cosmological constant is taken
into account, the curvature is simply constant outside the sources. Both positive
and negative cosmological constant cases are discussed in [25]. All the classical
system above can be exactly solved [26]. The three dimensional gravity can be
alternatively formulated in the Chern-Simons formalism [46, 27]. Unlike higher
dimensional gravity, this feature is exclusive for three dimensional case since it is
topological. Note that this Chern-Simons formulation is not the same as those
we discuss in this dissertation. The quantum version is also shown to be exactly
solved [27]. A thorough review on classical as well as quantum theories in 2 + 1
dimensions can be found in [28].

In the early period of the construction, two dimensional supersymmetric
theories were exploited as prototype for building three dimensional supergravity
theories since their structures are quite similar. The supersymmetric field theory
in two dimensions was first constructed in [41] by superfield formalism. One of
the theory constructed is N = 1 supersymmetric non-linear sigma model with a
scalar manifold parametrizing 2-sphere where all scalar fields are real. The N = 1
two dimensional theories with Kähler manifold especially complex projective plane
CP n−1 and Grassmann manifold Gp,q = U(p + q)/U(p) ⊗ U(q) are discussed in
[42]. A classification of extended supersymmetric non-linear sigma models is given
in [43]. The presence of almost complex structures is required to preserve super-
symmetry. The scalar manifold of Kähler and hyperkähler type are extensively
discussed as required manifolds for N = 2 and N = 4 theories, respectively. The
gauge invariant supersymmetric non-linear sigma model in two dimensions is ex-
plored in [44]. Superfield formalism is used and gauge fields are introduced via
vector superfield. The gauge groups are subgroup of isometry group of the Kähler
manifold. Deser and Kay [47] constructed N = 1 pure supergravity in three di-
mensions with Chern-Simons term added. The resulting theory contains a massive
gravitino. The topological nature of the theory such as gauge invariant with the
presence of mass is discussed.

A. Achúcarro and P.K. Townsend [46] proposed an arbitrary N supergravity
in three dimensions which is composed of graviton, massive gravitini and Chern-
Simons (CS) vectors. This theory described AdS ground state with supergroup
OSp(p|2;R) ⊗ OSp(q|2;R) where N = p + q and the variations of p− q can give
different theories for some fixed N . The CS vectors transform as gauge fields
of gauge group O(p) ⊗ O(q). Since the whole theory is topological they can be
recasted as a new CS theory with supergroup OSp(p|2;R)⊗OSp(q|2;R).
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The ungauged supergravity coupled to matter fields for maximal and half-
maximal supersymmetries was originally explored by N. Marcus and J. H. Schwarz
[45]. The half-maximal supergravity has N = 8 local supersymmetries with
SO(8, n) global symmetry. Another theory is the maximal supergravity with
N = 16 local supersymmetries and E8,8 global symmetry. Later ungauged super-
gravity in three dimensions are systematically and exhausively catagorized by B.
de Wit and A. K. Tollstén [36]. The supergravity theories for distinct N local
supersymmetry are characterized by various class of scalar manifolds or alterna-
tively called target space. The maximum supersymmetry is N = 16 which relied
on mathematical rather than physical argument. For N = 1, the scalar manifold
is Riemannian and for N = 2, it is Kähler manifold. For N = 3, it is quaternionic
and for N = 4 it is a product of two quaternionic. For N > 4, they are symmetric
space and written the coset space G/H. For N = 5, 6, 8, the theories can be com-
posed of arbitrary k multiplets. For N = 9, 10, 12 and 16, the theories are very
unique and can have at most only one multiplet. The details will be discussed in
the content of this chapter.

In three spacetime dimensions a vector field can be dualized to a scalar via
Hodge duality, so all bosonic degrees of freedom is realized by solely scalar fields
and the theory can be constructed without vector fields. Since the supersymme-
try is so restricted, no random vectors are allowed to be added without spoiling
supermultiplet. This seems to be a huge problem when we try to gauge theory
because there are no vector fields to become gauge fields. Unlike any other higher
dimensional theories, fortunately, a class of vector fields can be added via Chern-
Simons term with proper modifications on transformations and Lagrangian. This
term is topological in the sense that the vectors contains no on-shell degrees of
freedom and has vanishing field strength tensors.

Gauged supergravity can be constructed by promoting global symmetry to
local symmetry while leaving supersymmetry unspoiled. The gauging is carried
out by employing the embedding tensor method. This technique replaces the tra-
ditional gauging which is non-G-covariant and quite clumsy when we are dealing
with many gaugings. It would not be a problem when we specifically study a
particular gauge group. In order to classify all spectra of possible theories, it
seems to be complicated and labour intensive tasks. However, group representa-
tion theory is intensively used compared to the traditional one. In the embedding
tensor formalism, the consistent gaugings are implied by the so-called linear and
quadratic constraints (on the embedding tensors). The linear constraint is orig-
inated from the closure of gauge algebra while supersymmetry necessitates the
quadratic constraint.

In three dimensions, CS gauging provides a special class of theory beyond
the common YM type. With a certain gauge group, both theories are shown on-
shell equivalent. The YM gauged supergravity with semisimple gauge group G is
equivalent to a CS gauged supergravity with non-semisimple gauge group G n T
where T is a translation group. The gauged supergravity with non-semisimple
gauge groups can be obtained by dimensional reduction from higher dimensional
gauged supergravity. However, this is not the case for other gauge groups. The
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existence of these theories may give us a clue for the new Physics beyond M-theory
or at least a new variation thereof.

Some updates on gauged supergravity in three dimensions can be found in
[38]. Here we summarize some important issues concerning gauged supergravity
in three dimensions in general. Gauged supergravities in three dimensions are
abundant since the global symmetry group can be very large. For example, N = 16
theory has E8 global symmetry, so the number gauged theories with subgroups
thereof can be large as well. The situation is reversed in higher dimensional
theories such as for D = 4 the global symmetry is E7 and for D = 5 the global
symmetry is E6. The higher the dimensions, the smaller the global symmetry
group.

The first gauged supergravity in three dimensions is maximal supersymmet-
ric (N = 16). The compact and non-compact gauge groups are classified and
superconformal groups are identified in [48, 49]. The compact gauge groups are
in the form of SO(p, 8 − p) × SO(p, 8 − p) and many the non-compact gauge
groups are in the form of exceptional Lie groups. The extension of this work
which covers the non-semisimple and complex gauge groups are done by [50].
They also discussed the connection to IIA/IIB supergravity in ten dimensions
reduction of 7-sphere. The half-maximal theory N = 8 with coset manifold
SO(8, n)/(SO(8) × SO(n)) is gauged in [51]. The compact gauge groups are
in the form of SO(p, 4 − p) × SO(q, 4 − q) where p and q are either 0 or 2. The
various non-compact gauge groups are also specified. The authors also linked the
relation between N = (4, 4) theory with gauge group SO(4) = SO(3)L × SO(3)R
to supergravity in six dimensions with supersymmetry N = (2, 0) compactified on
AdS3 × S3.

Not so long after the construction of the theories and the classification of
some admissible gauge groups, the series of studies started to focus on searching
the critical points led by [52]. Vacua of N = 16 gauged supergravity are intensively
studied. Many critical points from various gauge groups such as compact, non-
compact and exceptional are found, and some of which admit AdS vacua; some
admit Minkowskian and dS vacua. The mass spectra of bosonic and fermionic
around the vacua are computed. The superconformal symmetry at critical points
are also identified as well as their irreducible representation under subgroup of
superconformal groups.

The gauged supergravity in three dimensions are completely categorized in
[37]. The admissible gauge groups are dictated by a group theoretical argument;
it is that it must not contain a particular representation in the T-tensor. For
compact gauging, all the embedding tensors are given including N = 5, 6 which
is the main subject of our study. Since this paper plays a crucial part for this
dissertation, the details will be intensively explored in the content of this chapter.
The connection between AdS3 and SCFT2 was traced back in 1986 before the
Maldacena conjecture. J. D. Brown and Marc Henneaux [29] have shown that
a gravitational theory in AdS3 corresponds to a two dimensional conformal field
theory with two commuting Virasoro algebra. After the year of Maldacena con-
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jecture, the supersymmetric version of [29], the connection of N = (1, 1) AdS3

supergravity and SCFT2 was established and they [30] found the same central
charge c = 3L/2G as in non-supersymmetric case. The study for extended super-
gravity case can be found in [31].

A very first evidence for AdS3/CFT2 correspondence is the type IIB string
theory on AdS3×S3×M4 conjectured by Maldacena. It has been shown by [32, 33]
that it is equivalent to N = (4, 4) superconformal field in two dimensions when
exploring in the IR limit (near-horizon) of D1-D5 system for M4 = K3 or T 4. In
the supergravity realm, H. Nicolai and H. Samtleben [34] constructed the non-
semisimple gauge group SO(4) × T∞ from N = 8 supergravity with coset space
SO(8,∞)/(SO(8) × SO(∞)) where T∞ is an infinite dimensional translational
subgroup of SO(8,∞). This theory can be linked, like the theory mentioned
above, to N = (2, 0) supergravity in six dimensions compactified on AdS3 × S3

with Kaluza-Klien towers left untruncated.
In three dimensions, the very first analytic RG flow was studied in [53]. In

the AdS side, it is described by N = 8 gauged supergravity with gauge group
SO(4)× SO(4). The UV fixed points is N = (4, 4) supersymmetric; and the flow
is driven by relevant operator of scale dimension ∆ = 3/2 and sends the theory
to IR fixed point with residual supersymmetry N = (1, 1). The ratio of central
charges cUV /cIR = 2. For N = 2, some RG flows are studied in [35]. The manifold
of the theory is Kählerian, so there are some degrees of arbitrariness in choosing
the target space manifold. This work focused on Kähler manifold of SU(n +
1)/SU(n)×U(1) and SU(n, 1)/SU(n)×U(1) type. In particular he consider only
for n = 1 cases, so they are S2 = SU(2)/U(1) and H2 = SU(1, 1)/U(1).

The vacua in N = 10 theory are provided by [54]. They are the ground states
of gauged supergravity with the compact gauge groups : SO(p)× SO(10− p) for
p = 6, · · · , 10 and SO(5) × SO(5). For non-compact gauge groups, they are
SU(4, 2) × SU(2), G2(−14) × SU(2, 1) and F4(−20). Many trivial and non-trivial
AdS3 critical points are found and superconformal groups are identified at each
critical point. Subsequent study for N = 10 is the study of Chern-Simons gauged
supergravity with non-semisimple gauge group SO(5) n T10 [57]. This theory is
on-shell equivalent to SO(5) Yang-Mills gauged supergravity which can be derived
from N = 5 gauged supergravity in four dimensions compactified on a circle. The
author also found out that the theory admits 1

4
-BPS domain wall solution rather

than 1
2
-BPS domain wall solution which is usually found in other cases.

For N = 9 theory, the vacua as well as their RG flow are investigated in
[55]. They explored the compact gauge groups of the type SO(p) × SO(9 − p)
for p = 0, 1, 2, 3 and 4; for non-compact, they are as follows: G2(−14) × SL(2) and
Sp(1, 2) × SU(2). Many supersymmetric and non-supersymmetric AdS ground
states are found and some of which can be used to study RG flow. The RG flow
solutions are obtained analytically and numerically for compact gauge groups:
SO(7) × SO(2), SO(6) × SO(3), SO(5) × SO(5) and non-compact gauge group
G2(−14) × SL(2).

In N = 8 gauged supergravity, some supersymmetric AdS3 vacua are found
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in [56]. They studied the theory with (SO(4)nT6)2 non-semisimple gauge group
in the context of Chern-Simons gauging. In that paper they also studied the
vacua for N = 4 with the SO(4)n T6 gauge group and in particular the RG flow
interpolates between two AdS3 vacua. As examples, two flows are studied; both
of which are associated with vacua that have the same amount supersymmetry.
First, N = (3, 1) supersymmetry flow, the analytical solutions are found whereas
in another flow (N = (2, 0)) the solutions are numerically obtained. In both cases,
the flows are driven by vacuum expectation values (v.e.v) of some operators. The
authors also claimed that these flows were the very first examples of v.e.v flows in
the context of gauged supergravity. There is a subsequent study for N = 4 and
N = 8 [58]. Its objectives are to construct gauged supergravity for non-semisimple
gauge group N = 4 and N = 8 supersymmetry. For N = 4 case, the gauge groups
is SO(3)n (T3, T̂3) in the context of Chern-Simons gauging and it is equivalent to
Yang-Mills type with gauge group SO(3) coupled to three massive vector fields.
It is also the resulting theory of N = (1, 0) six dimensional supergravity reduced
on an SU(2) group manifold. For N = 8 case, the gauge group is SO(8) n T28

and it can be truncated from SO(8)nT28 gauged supergravity in N = 16 theory.
Moreover, it also can be considered as a theory obtained by compactification of
type I supergravity on 7-sphere. In application to Domain wall/QFT, the domain
walls solutions of both theories are analytically found and they can be uplifted to
the solutions of higher dimensional theories.

The dissertation is based on the works in [39, 40]. We study N = 5 and N =
6 Chern-Simons gauged supergravities in three dimensions. They are classified into
three categories: compact, non-compact and non-semisimple gauge groups. For
N = 5 case, the manifold is in the form of G/H = USp(4, k)/USp(4) × USp(k),
whereas we restrict to k = 2, 4. For N = 6 case, the manifold is in the form
of G/H = SU(4, k)/S(U(4) × U(k)), whereas we restrict to k = 1, 2, 3, 4. The
gauge groups G0 are subgroups of isometry group G. The gauging is executed
by the technique of embedding tensors and the various gaugings are characterized
by distinct embedding tensors. For the compact cases, the embedding tensors
are already determined by [37]. For non-compact cases, the additional task is
the consistency checking and it has to be done case by case. For non-semisimple
gauging, the gauge group is in the form of SO(N) n TdimSO(N) where SO(N)
is R-symmetry group of N theory, so we consider SO(5) n T10 for N = 5 and
SO(6) n T15 for N = 6. For N = 5 case, we study four RG flows, two of
which are the flow between AdS vacua in SO(5) × USp(2) gauging. The other
two are the flows between AdS vacua in non-compact gauging with gauge group
USp(2)×USp(2, 2). For N = 6 case, all four RG flows we studied are of compact
case because in non-compact gauging there is no non-trivial AdS critical point.
The first two flows interpolate between supersymmetric critical points of the theory
with gauge group SO(6)×SU(4)×U(1) while the other two corresponding gauge
group SO(4)× SO(2)× SU(4)× U(1).

We devote this section to discuss the outline for each chapter. In chapter
2, we review the structure gauged supergravity in three dimensions, holographic
RG flows, Weyl anomaly and c-theorem. We start the chapter with a discussion
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on massless Poincaré supermultiplet. The supersymmetric algebra form a Clifford
algebra and some mathematical properties thereof are discussed. The by-products
are that the number of irreducible multiplets and centralizer for each supersym-
metry N are specified. These ingredients play an important role in determining
the shape of the scalar manifold. Next, we explore the ungauged supergravity
in three dimensions. We first discuss the pure supergavity which is composed
of graviton and gravitini and the theory exists for arbitrary supersymmetry N .
Since in three dimensions both particles carry no on-shell degrees of freedom, the
pure supergravity is simply topological. The matter supermultiplet can be in the
form of supersymmetric non-linear sigma model and it exists for some value of N .
The ungauged supergravity can be constructed by coupling the supersymmetric
non-linear sigma model with the pure supergravity. The mathematical argument
sets the bound of supersymmetry N to 16 as well as excludes some theories with
N = 7, 11, 13, 14, 15. The supersymmetry puts severe constraint on scalar mani-
fold, so it is fairly to say that supersymmetry shape up the scalar manifold. The
more value of N , the more restricted the manifold is. For N > 4, the scalar man-
ifolds are symmetric space and they can be specified in the coset G/H. Next, we
discuss their symmetry beyond general coordinate transformation, local Lorentz
and supersymmetry. The symmetry is isometries of scalar manifold generated by
Killing vectors that take value in Lie algebra g. This symmetry is global because
the parameters of transformation do not depend on spacetime. Then we move on
to the discussion on equivalence between CS and YM gauging. In order to convert
from YM to CS, a vector field in YM is exchanged for two CS vector fields and
a scalar. In the next step, we will gauge this theory by promoting global to local
symmetry. In doing so, we deviate from the traditional routine by introducing the
notion of embedding tensor. In the gauging, the gauge fields are introduced via CS
terms along with modification of some expressions and introduction of fermionic
masslike term as well as a scalar potential. Not all subgroup of isometries can be
gauged without sacrificing supersymmetry. In order to preserve supersymmetry
the so-called T-tensor for a particular gauging must satisfies a constraint. Vacua
of the theory are determined by the critical points of the scalar potential and we
will discuss their symmetry at those points as well. The discussion on supergravity
in three dimensions ends here and then we move on to holographic RG flows. We
begin with the general concept of renormalization group in quantum field theory
and then discuss RG flow in the context of AdS/CFT correspondence. We end
this chapter with discussions on Weyl anomaly and c-theorem.

In the chapter 3, we study N = 5 Chern-Simons gauged supergravity in
three dimensions. The gauge groups are classified into three classes: compact,
non-compact and non-semisimple gauge groups. The scalar manifold is in the
form of coset space USp(4, k)/USp(4)×USp(k) where, in general, k is even inte-
ger. Due to the complication in calculation, we restrict ourselves to only k = 2, 4
cases. We obtained many AdS3 critical points via extremization the scalar poten-
tial. In each critical point we determine the unbroken supersymmetry as well as the
residual gauge symmetry. Moreover, the scalar mass spectra are specified in the
representation of unbroken gauge group. The non-semisimple group is in the form
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of SO(5)nT10 and it can be related to higher dimensional theories via dimensional
reduction. In chapter 4, we study N = 6 CS gauged supergravity in three dimen-
sions. The scalar manifold is in the form of coset G/H = SU(4, k)/S(U(4)×U(k)),
whereas we restrict to k = 1, 2, 3, 4. The non-semisimple case is in the form of
SO(6)nT15. The format of this chapter is similar to the chapter 3. In the chapter
5, we study RG flow for N = 5, 6 using the results of chapter 3 and 4. For N = 5
theory, we explore four cases; the first two are of compact cases and the other
two are of non-compact gaugings. For N = 6 theory, we consider four cases in
compact gaugings. The solutions are analytical and exact. However, the approx-
imated solutions also are required to determined some dynamical contents of the
theory such as scale dimension. The ratio of central charges is also specified in
each case and in agreement with c-theorem.

The conclusion and comments for this dissertation are given in the last
chapter as well as open problems and future works are discussed. In the appendix,
there are three sections. In the first section, we overview basic supersymmetry and
supergravity. In the second section, we give the details of branching of T-tensors
for N = 5, 6 theory. In the last section, we review the mathematical structure
of Euler parametrization. Two examples are explicitly given, the first one is from
parametrizing a coset in N = 5 theory and the other is in N = 6 theory.



CHAPTER II

3D Supergravity and RG Flow

This chapter is devoted to a review on the construction of three dimensional
ungauged and gauged supergravity. We begin with an introduction to the subject
and then we move on to massless Poincaré supermultiplets and Clifford modules.
Next, we discuss the ungauged theory and present the ungauged Lagrangian as
well as explore its target spaces. We then discuss the global symmetry of the
theory. Before we jump into the gauged theory, we compare and contrast between
Chern-Simons and traditional Yang-Mills gauging. Next, we explore the gauged
theory which is achieved by the notion of embedding tensors. We also devote
a section on studying the vacua and their symmetry. Moreover, we discuss the
application of AdS/CFT on holographic renormalization group flow. For more
information on ungauged and gauged supergravity, we refer the readers to the
original papers [36, 37, 38] and a concise review on RG flow, Weyl anomaly and
c-theorem, we refer to [5].

2.1 General aspects

In three dimensions, pure supergravity contains a graviton and a specific num-
ber of gravitini where the number of gravitini is equal to number of arbitrary N
supersymmetries. The matter sector theory which is composed of scalar fields
parametrizing a target space and spin one-half fermions can be described by a
supersymmetric non-linear sigma model. For rigidly supersymmetric non-linear
sigma model, the theories are bounded to N ≤ 4, whereas in locally supersym-
metric cases the bound does not exist. Once a non-linear sigma model is coupled
to extended supergravity, the resulting theories are bounded to N ≤ 16 and exist
for some values of N . The argument that restricts the number of supersymmetries
is purely mathematical and it makes the theories in three dimensions special com-
pared higher dimensional theories. For example, in four dimensinal spacetime, the
extended supergravity is bound to N ≤ 8 because we require no massless particles
with spin more than two since the consistent interacting theories does not exist.
The physical argument above cannot apply to the three dimensional cases since
helicity is not well-defined in three dimensions. The on-shell degrees of freedom of
various particles in three dimensional spacetime is given in the table I. According
to the table I graviton and gravitino have no propagating degrees of freedom. That
agrees with the fact that pure supergravity is topological. Another unique feature
in three dimensional case is that vector fields can be dualized to scalar fields, as a



13

Spin Particle On-shell d.o.f.
0 Scalar 1
1
2

Fermion 1
1 Vector (via CS term) 0
3
2

Gravitino 0
2 Graviton 0

Table I: On-shell degrees of freedom for each particle in three dimensions

result the bosonic degrees of freedom can be solely described by scalar fields. On
the fermionic side, the degrees of freedom are counted solely from spin one-half
fermions.

Local supersymmetry coupled to supersymmetric non-linear sigma model
restricts the class of target space manifolds as shown in [36]. The argument is
geometrical and can be briefly summarized in the diagram below.

local SUSY → almost complex structure → curvature tensor →
holonomy → target space

The N extended local supersymmetry requires the existence of N −1 almost com-
plex structure. Moreover, the local supersymmetry put constraints on the Rie-
mann curvature tensor Rijkl and this tensor is related to holonomy via Ambrose-
Singer’s theorem on holonomy [60]. If the holonomy group is determined, the
target space manifold can be specified. The key results of [36] is the classifica-
tion of target space for each supersymmetry N . We discuss them in detail in the
section 2.4.

2.2 Massless D = 3 Poincaré supermultiplets

In three dimensional spacetime, irreducible representation of supercharges are
Majorana with SO(N) automorphism group or R-symmetry group. The anti-
commutator of supercharges of three dimensional rigid supersymmetry is{

QI
α , Q̄

J
β

}
= −2i δIJγµαβ Pµ , (I, J = 1, . . . , N) (2.2.1)

where QI
α are Majorana supercharges and Pµ is the translation generator. Recall

Dirac conjugate Q̄I
α = i QI†

β γ0βα and Majorana condition, we pick the massless
states in a particular frame of reference where P 0 = P 1 = ω, P 2 = 0; the algebra
now takes the form {

QI
α , Q

J
β

}
= 2ω δIJ

(
1 + σ3

)
αβ
. (2.2.2)
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The QI
2 must annihilate states, QI

2 |pµ, s⟩ = 0, so the leftover real supercharges QI
1

now act as the creation operator acting on Hilbert space. The non-trivial part of
the algebra now is { QI

1

2
√
ω
,
QJ

1

2
√
ω

}
= δIJ . (2.2.3)

It is N -dimensional Clifford algebra with signature (p, q) where q = 0. In order
to construct a supermultiplet, fermion number operator F satisfying F2 = 1 and
{F, QI

1} = 0 is required. All in all a massless supermultiplet are representations
of a real (N + 1)-dimensional Clifford algebra with signature (p, q) = (N + 1, 0)
or Spin(N + 1). Now we will use ΓI instead of QI

α in discussing representation of
Clifford algebra. The explicit form of ΓI and F real representation are chosen to
be

ΓI =

(
0 ΓI

AḊ

ΓI
ḂC

0

)
, F =

(
1 0
0 −1

)
(2.2.4)

where ΓI and F are (2d × 2d)-dimensional matrices and A,B, . . . = 1, . . . , d are
bosonic indices and Ȧ, Ḃ, . . . = 1, . . . , d are fermionic indices. As a result the
Clifford algebra can be written as

ΓI
AĊ

ΓJ
BĊ

+ ΓJ
AĊ

ΓI
BĊ

= 2δIJδAB . (2.2.5)

Another mathematical concept that is needed to be specified is centralizer. Roughly
speaking, it can be defined as elements in G that commutes with a particular sub-
set (or subgroup) S. In our case, they are a set of matrices that commute to ΓI

and fermion number operator F. According to Shur’s lemma, they form a divi-
sion algebra1 and by Frobenius theorem they are isomorphic to fields as follows:
real numbers R with basis {I} where I is an identity matrix, complex numbers
C with basis {I, j} where j2 = −1 and quaternions H with basis {I, e1, e2, e3}
where e2i = −1 and ei ej = −δij +

∑3
k=1 ϵijk ek [61]. For C, the centralizer corre-

sponds to group U(1) and for H, the centralizer corresponds to group SU(2). As
an example, some constructions of representation has been worked out in [36]. It
builds up from N = 1 to N = 8, i.e. N = 1, 2, 4, 8, by tensor product with Pauli
matrices. The procedure requires no further analysis since the pattern repeats
itself for N > 8. An intermediate values of N can be constructed by embedding
in larger N representation.

Note that, at this stage, there is no limitation on the value of N as we
mentioned earlier; however, the value of N is bounded and restricted to some
values once we discuss local supersymmetry coupled to non-linear sigma model.
So far we have discussed irreducible representation and it corresponds to a single
multiplet. In order to extend the results to arbitrary k multiplets, the reducible
representations are sufficient. The centralizers generate group SO(k), U(k) or
USp(k) corresponding to the division algebra of R, C or H, respectively. The
dimension d of manifold is related to number k of supermultiplets and number

1It requires the following properties : addition, subtraction, multiplication and division.
Division requires a unique element of x that satisfies a = b x where a, b and x are all elements
in division algebra, for example, R, C, H and O.
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N dN Centralizer
1 1 R
2 2 C
3 4 H
4 4 H
5 8 H
6 8 C
7 8 R
8 8 R

8 + n 16dn same as n

Table II: Irreducible massless supermultiplets where dN is the number of bosonic states
and n = 1, 2, . . . , 8.

dN of bosonic states of an irreducible supermultiplet by d = kdN . The content
discussed above not only tells us about degrees of freedom for each multiplet, it
also helps us to determine the holonomy group and then the shape of target space
manifold as we will discuss later in the forthcoming sections.

2.3 The Ungauged Theory

Before we consider a pure supergravity coupled to supersymmetric non-linear
sigma model, let us discuss them separately. Pure supergravity is composed of
a graviton and gravitini whose fields are dreibein eµ

a and Rarita-Schwinger fields
ψI
µ. In three dimensions they are topological and both type of particles in theory

have no on-shell degrees of freedom. It exists for any number of supersymmetries
N . The resulting Lagrangian is composed of two sectors: the Einstein-Hilbert
action written in an alternative form and Rarita-Schwinger Lagrangian modified
to couple to graviton.

Ls.g. = −1

2
iϵµνρ(eµ

aRνρa(ω) + ψ̄
I
µDν(ω)ψ

I
ρ). (2.3.1)

where ωa
µ is the spacetime spin connection. For the whole dissertation, we use the

Pauli-Källén metric with hermitean gamma matrices γa satisfying
γaγb = δab + iεabcγc ,

γ[aγbγc] = iεabc ,

γab ≡ γ[aγb] = iεabc γ
c , (2.3.2)

The covariant derivative acting on Rarita-Schwinger field is given by

Dµ(ω)ψ
I
ρ = (∂µ +

1

2
ωa
µγa)ψ

I
ρ (2.3.3)
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The Lagrangian (2.3.3) is locally supersymmetric and the supersymmetric trans-
formations are as follows:

δeµ
a = 1

2
ϵ̄Iγa ψI

µ ,

δψI
µ = Dµ(ω)ϵ

I , (2.3.4)

where ϵI is a supersymmetry transformation parameter. It also has other symme-
try such as, spacetime diffeomorphism and local Lorentz invariance.

The Lagrangian of supersymmetric non-linear sigma model is composed of
scalar fields ϕi acting as coordinates in target space and their superpartner spin
1/2 fermions χi with i = 1, ..., d. Now we are discussing the rigidly supersymmetric
theory and the locally supersymmetric non-linear sigma model will be discussed
later in this chapter. The rigidly supersymmetric non-linear sigma model some-
times is called matter sector and it is given by

Lmatter = −1

2
gij(ϕ)[∂µϕ

i ∂µϕj + χ̄i/D(Γ)χj] + Lχ4 , (2.3.5)

where Γ is the Christoffel symbol for rigid supersymmetry but it can be arbitrary
connection for locally symmetric theory. The covariant derivative is given by

Dµ(Γ)χ
i ≡ ∂µχ

i + Γi
jk(ϕ) ∂µϕ

j χk ; (2.3.6)

and this definition can be applicable to any connection Γ. The four fermion term
is quadratic in bilinear term of fermions and it is proportional to Riemann tensor
of the target space,

Lχ4 = − 1

24
Rijkl(ϕ) χ̄

iγaχ
j χ̄kγaχl . (2.3.7)

A geometrical quantity which also plays an important role in analyzing manifold of
the target space is the so-called almost complex structure2 fPi

j(ϕ). It is originally
introduced to the theories via rigid supersymmetric transformation ansatz [43]. In
order to preserve supersymmetry, these tensors satisfy many identities so that they
have a natural interpretation as almost complex structures. They are introduced
to the theory when N > 1 therefore P = 2, ..., N and i, j = 1, .., d where d is the
dimension of the target space. They are hermitean in the sense that

gij f
Pj

k + gkj f
Pj

i = 0 . (2.3.8)

The supersymmetry algebra (2.2.1) implies

fPi
k f

Qk
j + fQi

k f
Pk

j = −2 δPQ δij . (2.3.9)

which can be considered as Clifford algebra. Consequently, we can construct
1
2
N(N − 1) SO(N) generators f IJ

ij via the definition

fPQ = f [P fQ] , f 1P = −fP1 = fP . (2.3.10)
2An almost complex structure f on a manifold M is a smooth tensor rank (1,1) with the

propery f2
p = −idTpM . If this tensor can be defined globally, the manifold is a complex manifold.
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They are anti-symmetric tensor for both pair indices i, j and I, J :

f IJ
ij = −fJI

ij = −f IJ
ji . (2.3.11)

The SO(N) commutation relation (in obvious matrix form) can be written as

f IJ fKL − fKL f IJ = 4 δK[I fJ ]L − 4 δL[I fJ ]K , (2.3.12)

Moreover, they satisfy the following identities

f IJ fKL = f [IJ fKL] − 4 δ[I[K fL]J ] − 2 δI[K δL]J 1 ,

f IJ ij fKL
ij = 2d δI[K δL]J − δN,4 ε

IJKL Tr(J) . (2.3.13)

J tensor is relevant for onlyN = 4 theory and its definition is J = 1
6
εPQR f

P fQ fR.
Other identities and a discussion for J are mentioned in [36]. Once pure supergrav-
ity coupled to supersymmetric non-linear sigma model, the covariant derivative
is modified by SO(N) target-space connection QIJ

i (ϕ) as will be given later. Its
role is quite similar to a gauge field in gauge theory when IJ is replaced by gauge
group index and i is traded for spacetime indices.

Note that the vanishing of variation on ∂ϕ ∂ϕχ ϵ and ∂ϕ ∂ϕψ ϵ requires that
the SO(N) curvature must satisfy the following condition

RIJ
ij (Q) ≡ ∂iQ

IJ
j − ∂jQ

IJ
i + 2Q

K[I
i Q

J ]K
j =

1

2
f IJ
ij . (2.3.14)

The equation above shows the relation between SO(N) connections QIJ
i (ϕ) and

f IJ
ij where RIJ

ij (Q) is SO(N) field strength tensor. The tensor f IJ are covariantly
constant in the sense that

Di (Γ, Q) f
IJ
jk ≡ ∂if

IJ
jk − 2 Γi[k

l f IJ
j]l + 2Q

K[I
i f

J ]K
jk = 0 . (2.3.15)

From (2.3.15) and (2.3.14) one can derive the integrability condition

Rijmk f
IJ m

l −Rijml f
IJ m

k = −fK[I
ij f

J ]K
kl (2.3.16)

Contracting (2.3.16) with fMNkl, one gets

Rijkl f
IJ kl = 1

4
d f IJ

ij . (2.3.17)

Contracting (2.4.1) with gjl and using cyclicity of Riemann tensor and (2.3.17),
one can derive Ricci tensor as the following

Rij ≡ Rikjl g
kl = c gij , (2.3.18)

with constant
c = N − 2 + 1

8
d > 0 , (2.3.19)

so we are dealing with Einstein space (Rij ∝ gij). In order to solve for the
Riemann tensor, we introduce antisymmetric tensor hαij that commute with the
complex structure, i.e.,

hαik f
IJ k

j − hαjk f
IJ k

i = 0 . (2.3.20)
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The tensor hαij is called centralizer subgroup H′ ⊂ SO(d) which obviously com-
mutes with the group SO(N). Let fαβ

γ is structure constant for H′ subgroup, so
the Lie algebra is the following

hα hβ − hβ hα = fαβ
γ h

γ . (2.3.21)

The normalization is chosen to be

hαijh
β ij = 2dNδ

αβ . (2.3.22)

They are covariantly constant in the following sense

Di(Γ)h
α
jk − Ωα

i β h
β
jk = 0 , (2.3.23)

where Ωαβ
i is a connection associated with hαij. After a some more analysis, one

conclude that

Rijkl =
1

8

(
f IJ
ij f IJ

kl + Cαβ h
α
ij h

β
kl

)
, (2.3.24)

where Cαβ is a symmetric tensor and it varies with N . Cαβ plays an important
role in analysis of manifold. A solution for Cαβ is in the form of Cαβ ∝ δαβ. The
detailed discussion about Cαβ can be found in [36] and the solutions of Cαβ for
the orther cases are discussed in the appendix of the reference thereof.

Having obtained the explicit form of Rijkl in term of f IJ
ij and hαij, many

identities can be derived. Contracting (2.4.1) with metric as in (2.3.18) and using
c in (2.3.19), one gets

Cαβ h
αk
i hβkj =

[
N(N − 1)− 8c

]
gij . (2.3.25)

From above equation, we can derive the condition involving H ′-invariant tensor 3

on Cαβ:
Cδ(α f

δγ
β) h

αhβ = 0 . (2.3.26)

The constraint on cyclicity of Reimann curvature tensor (2.4.1) implies

f IJ
[ij f

IJ
kl] + Cαβ h

α
[ij h

β
kl] = 0 . (2.3.27)

Since the holonomy group can be determined from the Riemann tensor,
equation (2.3.27) tells us that the holonomy group should be in SO(N) × H′ ⊂
SO(d) and also acts irreducibly on the target space manifold. Similar to SO(N)
curvature tensor (2.3.14), the H′ curvature tensor can be defined by

Rα
βij ≡ 2(∂[iΩj]

α
β − Ω[i

α
γ Ωj]

γ
β) =

1
8
fαγ

β Cγδ h
δ
ij , (2.3.28)

We devote the rest of this section to discuss the ungauged Lagrangian and its
supersymmetry transformations; in this theory no matter fields are charged under

3Ci1,··· ,im is an invariant tensor if it satisfies
∑m

s=1 f
α
βis

Ci1,··· ,̂isα,··· ,im = 0 , where the hatted
component is omitted.
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some gauge groups. Before we proceed, it is useful to define a new set of matter
fermions in an SO(N) covariant

χiI =
(
χi, fPi

j χ
j
)
, (2.3.29)

which is subject to projection constraint

χiI = PI
J
i
j χ

jJ ≡ 1

N

(
δIJδij − f IJ i

j

)
χjJ , (2.3.30)

where PI
I
i
i = d. The projection above reduces the independent part from dN to d

so the number d of the fermion is left unchanged. This SO(N) covariant notation
helps us treat both matter fermions and gravitini on the same ground. It is a
matter of convenience and it does not imply SO(N) invariance of theory even
though the SO(N) tensors of Lagrangian itself appear in the contracted form.

The ungauged Lagrangian can be obtained by combining pure supergravity
with supersymmetric non-linear sigma model and adding a Noether term which is
required by supersymmetry. The covariant derivative is modified by SO(N) target
space connection QIJ

i . The target space Christoffel connection is replaced by a
more general connection Γ. We give the final form of the ungauged Lagrangian
here,

L0 = −1

2
i εµνρ

(
eµ

aRνρa + ψ̄
I
µDνψ

I
ρ

)
− 1

2
e gij

(
gµν ∂µϕ

i ∂νϕ
j +N−1χ̄iI/DχjI

)
+

1

4
e gij χ̄

iIγµγνψI
µ (∂νϕ

j + ∂̂νϕ
j)− 1

24
eN−2Rijkl χ̄

iIγaχ
jI χ̄kJγaχlJ

+
1

48
eN−2

(
3 (gij χ̄

iIχjI)2 − 2(N − 2) (gij χ̄
iIγaχjJ)2

)
. (2.3.31)

The covariant derivatives for gravitini and spin-1/2 fermions are given by

Dµψ
I
ν =

(
∂µ +

1
2
ωa
µ γa
)
ψI
ν + ∂µϕ

iQIJ
i ψ

J
ν ,

Dµχ
iI =

(
∂µ +

1
2
ωa
µ γa
)
χiI + ∂µϕ

j
(
Γi
jk χ

kI +QIJ
j χ

iJ
)
. (2.3.32)

Supersymmetry transformations for the ungauged lagrangian are

δeµ
a = 1

2
ϵ̄Iγa ψI

µ ,

δψI
µ = Dµϵ

I − 1
8
gij χ̄

iIγνχjJ γµν ϵ
J − δϕiQIJ

i ψ
J
µ ,

δϕi = 1
2
ϵ̄I χiI ,

δχiI = 1
2

(
δIJ1−f IJ

)i
j /̂∂ϕj ϵJ − δϕj

(
Γi
jk χ

kI +QIJ
j χ

iJ
)
, (2.3.33)

where supercovariant derivative ∂̂µϕi of scalar and covariant derivative Dµ(ω,Q) ϵ
I

of supersymmetry parameter are defined by

∂̂µϕ
i = ∂µϕ

i − 1
2
ψ̄I

µχ
iI ,

Dµϵ
I =

(
∂µ +

1
2
ωa
µ γa
)
ϵI + ∂µϕ

iQIJ
i ϵJ . (2.3.34)
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2.4 Target space geometry

In this section, we continue the analysis from the previous section and discuss
some important geometrical constraints and the classes of solution of target space
geometry. Since holonomy groups is related to curvature tensors by [60], the re-
striction governs the holonomy groups as well. For convenience, we recall Riemann
curvature tensor

Rijkl =
1

8

(
f IJ
ij f IJ

kl + Cαβ h
α
ij h

β
kl

)
, (2.4.1)

with a proper of Cαβ; we can conclude that the holonomy group must be contained
in SO(N) ×H ′. If the target space is in the form of coset space G/H, Riemann
curvature tensor (2.4.1) would associate with Lie algebra of subgroup H. Once H
is specified along with N and number of scalar fields d = kdN = dimG/H, dimG
and then coset G/H can be determined by looking it up in the categorized coset
space [63, 62]. After a long discussion in [36] we get the condition that determine
whether the theories should exist are the following equation

N(N − 1)

8c
=


dN−1

dN+k−2
for N = 7, 8, 9 mod 8 ,

d2N−4

dN (dN+2k)
for N = 6 mod 4 ,

dN+2
dN+4k+4

for N = 3, 5, 12 mod 8 .

(2.4.2)

The equations above imply that there is no theory beyond N = 16. As mentioned
earlier, mathematical arguments govern the bound of supersymmetries rather than
physical arguments like higher dimensional theory. The constraints above also
imply that there is no theory with supersymmetry N = 7, 11, 13, 14, 15.

To summarize: pure supergravity coupled to supersymmetric non-linear
sigma model shapes up geometry of scalar manifolds. B. de Wit and A.K. Tollstén
[36] show that for some supersymmetry N there exists theories and each super-
symmetry N associates with a particular class of manifold. The exhaustive list
for possible supersymmetry N is given in the table III. Here are some comments
on the target space listed in the table. For N = 1, the target space is Riemannian
with dimension d equals to number of matter supermultiplet and the holonomy
group is SO(d). For N = 2, the target space is a Kähler manifold with a complex
structure f 12 and vanishing of Nijenhuis tensors. The complex structure is also co-
variantly constant. Like any Käler manifold, number of dimension is even d = 2k
with holonomy group U(k). For N = 3, the target space is a quaternion Kähler
manifold with number of dimension mulipled of four d = 4k. Three covariantly
constant almost complex structure f 12, f 23 and f 31 are required. The holonomy
group is contained in USp(2)×USp(k). The N = 4 theory is special and requires
a careful treatment. Since this dissertation focuses on N = 5, 6, so we skip the
details and recommend the enthusiast to consult the original work. For theories
N > 4, the target spaces are homogeneous spaces and can be written in the form
of coset G/H. They are also symmetric spaces except for N = 9. For theories
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N Target Space d H ′

1 Riemannian k 1
2 Kählerian 2k U(1)

3 Quaternionic Kählerian 4k USp(k)

4 Two Quaternionic Kählerian 4(k1 + k2) USp(k1)× USp(k2)

5 USp(4,k)
USp(4)×USp(k) 4k USp(k)

6 SU(4,k)
SU(k)×SU(4)×U(1)

8k U(k)

8 SO(8,k)
SO(8)×SO(k)

8k SO(k)

9 F4(−20)

SO(9) 16 1

10 E6(−14)

SO(10)×U(1) 32 U(1)

12 E7(−5)

SO(12)×Sp(1) 64 USp(2)

16 E8(8)

SO(16) 128 1

Table III: Target space or scalar manifold for D = 3 supergravities for each N . The
number of independent supermultiplets is given by k. For N = 5, in our convention k
is an even integer, so the number of independent supermultiplets is k/2.

with 4 < N ≤ 8, we are left with freedom in selecting number of supermultiplet
k. For N > 8, the theory is very unique since only one supermultiplets is allowed.

Before we end this section, we would like to elaborate some arguments on
target space behind the table III. It shows that the target space for high value
of N must be homogenous and symmetric which are in the form of a coset space
G/H. There are two theorems involving in classifying holonomy groups here, the
first one is proposed by M. Berger [65] and another one belongs to Simon[64]. We
recite only Simon’s version as follows

Theorem 1(Simon’s version): Let M be an irreducible Riemannian manifold with
dimension d. M is a symmetric space of rank ≥ 2, if the restricted holonomy group
Hol0(M) does not act transitively on the unit sphere Sd−1 in TpM.

As discussed earlier the holonomy group is contained in SO(N) ⊗ H ′, if
SO(N) ⊗ H ′ does not act transitively on Sd−1 so does the smaller group like
holonomy group. On the other hand, if SO(N) ⊗ H ′ acts transitively on Sd−1,
then M is not symmetric. Once H is specified together with N and number of
scalar fields d = kdN = dimG/H, dimG and then the G/H can be determined by
looking it up in the categorized symmetric coset space [63, 62]. This is how we
apply the theorem. For N ≤ 4, they are not symmetric space because SO(N)⊗H ′

acts transitively on Sd−1. For N > 4 except for N = 9, SO(N) ⊗ H ′ does not
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act transitively on Sd−1, so they are symmetric space and we can look them up
to specify the exact form of coset G/H. For N = 9 case, SO(9) acts transitively
on S15 so it is either non-symmetric or symmetric rank 1. According to [62],
F4/SO(9) is a symmetric space rank 1 so the theorem cannot directly apply;
however, F4/SO(9) is still a valid solution.

Note that goup H can factorize into actual holonomy group SO(N)⊗ Ĥ ⊂
SO(d), where Ĥ ⊂ H ′. In our case the target space given in the table III, the
factor group coincide with H ′, i.e. Ĥ ≃ H ′. We end this section here and the
group-theoretical aspects on coset manifold will be discussed later in other section.

2.5 The Global Symmetry

Apart from local supersymmetry, local general coordinate transformations and
local Lorentz transformations, there is a global symmetry associated with the
isometries of target space manifold and SO(N) R-symmetry rotations. The target
space may have isometries – metric or distance preserving transformations. The
question is: Can we extend the isometries to the symmetry of the Lagrangian? The
answer is Yes; however, with the help of some tricks. The SO(N) R-symmetry
rotations solely cannot be an invariance of Lagrangian. The invariance of the
Lagrangian can be established if isometries and SO(N) R-symmetry rotations are
combined and the parameters of transformation are properly compensated. The
scenario is quite similar to comformal symmetry in bosonic string theory which is
constituted by world sheet diffeomorphism compensated by Weyl transformation.

The fields that transform under SO(N) R-symmetry rotations are ψI
µ, χiI

and QIJ
i . The infinitesimal transformations are as follows

δψI
µ = ΛIJ(ϕ)ψJ

µ , δχiI = ΛIJ(ϕ)χiJ , δQIJ
i = −DiΛ

IJ(ϕ) . (2.5.1)

The ΛIJ(ϕ) is the field-dependent SO(N) rotation parameter. Since f IJ
ij depends

on QIJ
i , one obtains

δf IJ = 2ΛK[I(ϕ) fJ ]K . (2.5.2)

Those SO(N) transformations above cannot establish the invariance of Lagrangian.
Next, we will discuss isometries and then we will see that with those transforma-
tions combined the invariance can magically appear.

The isometries generated by Killing vectors denoted by X(ϕ) which are the
solutions of

LX gij = 0 . (2.5.3)
They can be written as X(ϕ) = X i(ϕ)∂i and the component is X i(ϕ) = XMi(ϕ)ΛM

where ΛM is spacetime independent parameter of transformaion. The Calligraphic
typeface style denotes element of isometry group G. In term of basis of generators,
we have XM = XMi(ϕ)∂i. The Killing vectors realizes Lie algebra g which is

XMi ∂iX
N −XN i ∂iX

M = fMN
KX

K , (2.5.4)
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with structure constants fMN
K.

The target space isometries acting on QIJ
i and f IJ

ij via Lie derivative LXQ
IJ
i

and LXf
IJ
ij , respectively. In order to set up an invariance, the cancellation requires

LXQ
IJ
i = −DiSIJ(ϕ,X) ,

LXf
IJ
ij = 2SK[I(ϕ,X) f

J ]K
ij . (2.5.5)

We now use SIJ(ϕ,X) to replace the old parameter ΛIJ(ϕ) because it is also
explicitly a function of Killing vectors X.

To summarize: the Lagrangian (2.3.31) is then invariant under the combined
transformations,

δϕi = X i(ϕ) , δψI
µ = SIJ(ϕ,X)ψJ

µ , δχiI = χjI∂jX
i + SIJ(ϕ,X)χiJ .(2.5.6)

The fermion transformations can be covariantly rewritten as

δψI
µ = VIJ(ϕ,X)ψJ

µ − δϕiQIJ
i ψ

J
µ ,

δχiI = DjX
i χjI + VIJ(ϕ,X)χiJ − δϕj

(
Γi
jk χ

kI +QIJ
j χ

iJ
)
, (2.5.7)

where VIJ(ϕ,X) ≡ XjQIJ
j (ϕ)+SIJ(ϕ,X). The merit of this definition will become

clear later. From equations (2.3.14) and (2.3.15), one can show that the second
equation of (2.5.5) can be written as,

DiVIJ(ϕ,X) = 1
2
f IJ
ij (ϕ)Xj(ϕ) . (2.5.8)

This equation has a natural interpretation as a the moment map associated with
the isometry X i. The second equation of (2.5.5) now become

f IJk
[i(ϕ) Dj]Xk(ϕ) = f

K[I
ij (ϕ) VJ ]K(ϕ,X) . (2.5.9)

This is merely the integrability condition of (2.5.8). If we contract (2.5.9) with
fMNij, we get

f IJ ij DiXj =

{
1
2
dVIJ , for N ̸= 2, 4

(d+ PIJ,KL
+ + d− PIJ,KL

− )VKL , for N = 4
(2.5.10)

One can derive

DiDiVIJ =

{
1
2
dVIJ , for N ̸= 2, 4

1
2
(d+ PIJ,KL

+ + d− PIJ,KL
− )VKL , for N = 4

(2.5.11)

According to the discussion above, we can extend an isometry of target space to
a symmetry of the Lagrangian as long as equations above are satisfied. However,
there is an exception for N = 2 where the discussion can be found in [37]. Let
SM IJ ≡ SIJ(ϕ,XM) and VM IJ ≡ VIJ(ϕ,XM), the closure of the algebra implies

[SM,SN ]IJ = −fMN
K SK IJ +

(
XMi ∂iSN IJ −XN i ∂iSM IJ

)
. (2.5.12)
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One can derive

[VM, VN ]IJ = −fMN
K VK IJ + 1

2
f IJ
ij XMiXNj , (2.5.13)

Since the equation (2.5.9) implies that DiXj − 1
4
fMN
ij VMN commutes with the

almost complex structures f IJ
ij , combined with the fact that hαij tensors commute

with the almost complex structure , i.e. (2.3.20), this suggests that we can de-
compose as the following

DiX
M
j − 1

4
f IJ
ij VM IJ ≡ hαij VM

α . (2.5.14)

Note that, for a generic Killing vector property, we have

DiDjXk = RjkilX
l , (2.5.15)

together with VM i ≡ XM i, we can derive a set of differential equations,

DiVM IJ = 1
2
f IJ
ij VM j ,

DiVM
j = 1

4
f IJ
ij VM IJ + hαij VM

α ,

DiVM
α = 1

8
Cαβ h

β
ij VM j , (2.5.16)

where the covariant derivative contains the Christoffel connection and the SO(N)×
H′ connections, i.e. Di(Γ, Q,Ω). From equations above, we can derive two equa-
tions that is proved to be crucial in algebraic structure analysis:

fMN
K VK

i = 1
4
f IJ
ij (VM IJ VN j − VN IJ VM j) + hαij(VM

α VN j − VN
α VM j) ,

fMN
K VK

α = fβγ
α VM

β VN
γ +

1
8
Cαβ h

β
ij VM i VN j . (2.5.17)

In order to extract the algebraic structure from the equations (2.5.17), we first
define the algebra a ≡ {tA} ≡ {tIJ , tα, ti}, as an extension of so(N) ⊕ h′ with
commutation relations,[
tIJ , tKL

]
= −4 δ I[K tL]J ,

[
tα, tβ

]
= fαβ

γ t
γ ,

[
tIJ , ti

]
= 1

2
f IJ

j
i tj ,[

tα, ti
]

= hαj
i tj ,

[
ti, tj

]
= 1

4
f ij
IJ t

IJ + 1
8
Cαβh

β ij tα . (2.5.18)

If Cαβ is an H′-invariant tensor, the algebra a is associative. In addition, we define
the map

V : g → a , V(XM) := VM
A t

A = 1
2
VM

IJ t
IJ + VM

α t
α + VM

i t
i . (2.5.19)

We also define a Lie algebra homomorphism, i.e.

V([XM, XN ]) = [V(XM),V(XN )] . (2.5.20)

In general, the image of g under V is an associative subalgebra of a. If the target
space is symmetric space (N > 4), the algebra a and g coincide. Note that (2.5.16)
can have a compact form by the new notation (2.5.19),

DiV(XM) =
[
gij t

j,V(XM)
]
. (2.5.21)
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The target space of N > 4 theories are a symmetric space represented by
coset space G/H. The material discussed above work well for both symmetric and
non-symmetric space, but the coset space formalism that we are about to discuss is
more convenient when it comes to symmetric space. In this formalism, the scalar
fields are described by G-valued matrix L(ϕ), so the kinetic term of the Lagrangian
is in the trace of the derivative of the matrices thereof instead of the old-fashioned
non-linear sigma model. The action of the scalar fields is invariant under a group
operation that act globally from the left of L(ϕ) and act locally from the right.
Global means that group elements g ∈ G do not depend on the coordinates or in
this case the scalar fields themselves. And local means that group elements g ∈ G
depend on the coordinates. The degrees of freedom of the G-valued matrix L(ϕ)
could be redundant and the exceeding degrees of freedom can be eliminated by
gauge fixing condition such as unitary gauge. Once the gauge is fixed, the G-valued
matrix L(ϕ) is simply a coset representative L(ϕ). From now on we use L(ϕ) as
a coset representative instead of generic G-valued matrix. Number of scalar fields
corresponds to dimension of coset space d = dim(G/H) = dim G − dim H. We
can decompose isometry group G into H = SO(N)× H′ and its complements; the
generators can be written as {tM ε g} = {XIJ , Xα, Y A}. The XIJ generate SO(N)
and the Xα generate the group H′. These generators are the basis of subalgebra
h. The noncompact generators (or coset generators) Y A transform in a spinor
representation of SO(N).

Since we are dealing with symmetric space, we can replace Killing vectors
which are differential operators that realize algebra with matrix representation of
algebra G. The algebra (2.5.18) now become

[XIJ , XKL] = δJKXIL − δIKXJL − δJLXIK + δILXJK = −4 δ I[K XL]J ,

[Xα, Xβ] = fαβ
γ X

γ , [XIJ , Xα] = 0 ,

[XIJ , Y A] = −1
2
ΓIJ
AB Y

B , [Xα, Y A] = −hαAB Y
B ,

[Y A, Y B] = 1
4
ΓIJ
ABX

IJ + 1
8
Cαβ h

α
ABX

β , (2.5.22)

where ΓIJ
AB ≡ Γ

[I

AȦ
Γ
J ]

BȦ
. The matrices 1

2
ΓIJ
AB are generator of the spinor represen-

tation of SO(N). Analogous to the general case (not necessary symmetric), the H′

generators now satisfy

hαACΓ
I
CḂ

+ hα
ḂĊ

ΓI
AĊ

= 0

hαAC h
β
CB − hβAC h

α
CB = fαβ

γ h
γ
AB . (2.5.23)

The tensor Cαβ is the same as used previously. The Jacobian identity obtained
from the commutator [[Y A, Y B], Y C ] is given by

ΓIJ
[AB ΓIJ

CD] + Cαβ h
α
[AB h

β
CD] = 0 , (2.5.24)

which is in the same form of (2.3.27) with f IJ
ij and hαij are replaced byΓIJ

AB and
hαAB, respectively.
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In the coset space formalism, we define a Lie-algebra-valued one-form g ×
T ∗
pM

L−1dL = L−1∂iL dϕi (2.5.25)

Its components read

L−1∂iL = 1
2
QIJ

i XIJ +Qα
i X

α + ei
A Y A , (2.5.26)

where , QIJ
i and Qα

i are SO(N) and H′ target space connections respectively. eiA
is vielbein for target space manifold. The relation to the metric is the following

gij = ei
A ej

B δAB . (2.5.27)

Note that in performing real calculation we usually operate in flat basis, the equa-
tions above can transform nicely from curved basis to flat basis by using vielbein.
The hαij tensor can be related to the tensor in orthonormal basis by

hαij = hαABe
A
i e

B
j . (2.5.28)

Note that the curvature tensor on G/H is given by

Rijkl = −eAk eBl
(
1
4
RIJ

ij Γ
IJ
AB +Rα

ij h
α
AB

)
, (2.5.29)

which is an alternative form of (2.4.1).
The antisymmetric tensor that are derived from complex structure f IJ

ij re-
lates to SO(N) Γ-matrices ΓIJ

AB by

f IJ
ij = −ΓIJ

AB e
A
i e

B
j , (2.5.30)

Now the spin-1/2 fields can be defined as the conjugate spinor representation of
SO(N)

χȦ ≡ 1

N
eAi ΓI

AȦ
χiI . (2.5.31)

If one multiplies a constant element g0 ∈ G from the left of the coset
representative L(ϕ), the coset representative changes and no longer is in the same
form. In order to bring back coset representative in the same form but it is now
written in a new coordinate system ϕ′, we compensate them by multiplying a
proper ϕ-dependent matrix which is an element in h, denoted h(ϕ), to the right.
In explicit expression, we have

L(ϕ) −→ g0L(ϕ) = L(ϕ′)h(ϕ) (2.5.32)

The infinitesimal transformation is generated by Killing vectors as follows ϕi →
ϕ′i = ϕi+X i(ϕ). The infinitesimal group element is g0 ≈ 1+ t and h ≈ 1+S(ϕi).
In term of component M, we obtain

XM i ∂iL = tML− LSM(ϕi) , SM(ϕi) ∈ h . (2.5.33)
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SM decomposes into SMIJ and SMα, so it is useful to define the quantity

VM ≡ SM +XMiQi , (2.5.34)

which is the generalized version of the parameter previously given.
The map V mentioned in (2.5.19) can be written as

L−1tML ≡ VM
A t

A = 1
2
VM IJ XIJ + VM

αX
α + VM

A Y
A . (2.5.35)

where VM i = gijej
AVM

A. This equation allows us to obtain VM’s once the coset
representative L is chosen by exploiting orthogonality of the generators with some
proper normalization. The trick is multiplying both side with one of the genera-
tors that associate with the desired component of VM and then take trace. The
orthogonality leaves us only the desired component. For example,

VM
α = 1

k
tr (L−1tMLXα) , (2.5.36)

where the normalization is defined by tr (XαXβ) = k δαβ and k is a proper nor-
malization constant.

2.6 Yang-Mills and Chern-Simons Gauging

The formalism used throughout this dissertation is called Chern-Simons gauging
where vector fields are introduced to the theories via Chern-Simons (CS) terms
instead of the traditional Yang-Mills (YM) terms. The YM gauging commonly
emerges via dimensional reduction. On the other hand, the CS theory can be
constructed by freely adding some CS terms to a well-established theory without
changing the number of dynamic degrees of freedom. There is a possible conversion
between those two if we manage the total degrees of freedom of both theories to
be equal. We give an overview on this subject. Some serious discussions can be
found in [66].

In the conversion from YM to CS, a vector field in YM is replaced by two
CS vector fields and a new scalar field. Schematically, it reads

1YM Vector ⇒ 2CS Vectors + 1 Scalar. (2.6.1)

Although there is a mismatch between field content of the two theories, the number
of dynamic degrees of freedom of both theories are the same because the vectors
in CS are topological and occupy zero degrees of freedom, that is left with the
YM vectors and a new scalar which have the same number of degrees of freedom
in three dimensions.

In this analysis, we start with a YM kinetic term which the general form
thereof can interact with some scalar fields Φ which transform in some represen-
tation of the gauge group GYM. The Lagrangian reads

L = −1
4

√
g
(
FA
µν(A)+O

A
µν(A,Φ)

)
MAB(Φ)

(
FBµν(A)+OBµν(A,Φ)

)
(2.6.2)

+L′(A,Φ) .
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OA
µν is a gauge covariant object which is depends on both vector and scalar field

forming the so-called moment interaction. AA
µ is the non abelian gauge field and

FA
µν is its field strength tensor. Gauge group indices are A,B,C, .... The definition

of field strength is conventional and fAB
C denotes structure constant, so it reads

FA
µν(A) = ∂µA

A
ν − ∂νA

A
µ − fBC

AAB
µA

C
ν .

The scalar symmetric tensor MAB(Φ) is a function of only scalar fields. L′(A,Φ)
is an allowed term that is separately gauge invariant. We can avoid discussing the
exact form of this term here, since it plays a minor role in our discussion. The
equation of motion and the Bianchi identity are the following:

DµF̃
Aµ(A) = 0 , D[µ

(
MAB(Φ) (F̃

B
ν] (A) + ÕB

ν](A,Φ))
)
− JAµν(A,Φ) = 0 ,(2.6.3)

where
JAµν(A,Φ) = 1

2
i
√
g εµνρ

∂L′(A,Φ)

∂AA
ρ

. (2.6.4)

The dual field strength take the form

F̃A
µ (A) = 1

2
i
√
g εµνρ F

Aνρ(A) ,

ÕA
µ (A,Φ) = 1

2
i
√
g εµνρO

Aνρ(A,Φ) .

Before we proceed, we first denote the final form of the new Lagrangian

Ln = −1
2

√
g D̂µϕAM

AB(Φ)D̂µϕB + 1
2

i εµνρ (FA
µνBAρ −OA

µν D̂ρϕA) (2.6.5)
+L′(A,Φ) ,

where the covariant derivative is given by

D̂µϕA ≡ DµϕA −BAµ = ∂µϕA − fAB
C AB

µ ϕC −BAµ . (2.6.6)

With this goal in mind, we can walk through the analysis a lot easier. In this
scenario, we write the field strength in term of a new vector field BAµ and the
compensating scalar field ϕA, and all of which transform in adjoint representation
of the gauge group. This setting also has an interpretation as a field equation of
the new Lagrangian. Such field equation reads

1
2

i√g εµνρ(FAνρ(A) +OAνρ(A,Φ)) = MAB(BB µ −DµϕB) , (2.6.7)

From equation of motion (2.6.7), one observes that they have additional abelian
gauge symmetry,

δBAµ = DµΛA , δϕA = ΛA . (2.6.8)

We call this abelian group T . It contains nilpotent generators (A ̸= 0, A2 = 0)
and transform in adjoint representation of gauge group GYM. The full gauge
symmetry now becomes a semidirect product GYM n T which its dimension is
doubled compared to the original. In order to restore the original Lagrangian
(2.6.2), we impose gauge fixing condition ϕA = 0 and integrates out the vector
fields BAµ.
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2.7 Gauged Theory, Embedding Tensors and Con-
straints

In this section, we construct a gauged supergravity from the ungauged from the
previous section. A subgroup of the isometries group G0 ⊂ G can be gauged by
promoting global symmetry (spacetime independent parameters) to local symme-
try (spacetime dependent parameters). The gauging is not trivial. Only some
gauge groups are allowed because of the constraints due to supersymmetries. The
technique we use here is the notion of embedding tensor originally introduced in
theories in three dimensions [37]. Theories with different gauge groups are charac-
terized by their unique embedding tensors. The embedding tensor method allows
us to threat theories G-covariantly. Each theory with different gauge groups share
the same structure such as Lagrangian and supersymmetry transformations, but
they have different embedding tensor. The applications to higher dimensions such
as four dimensional spacetime can be found in [67] and five dimensional spacetime
are presented by the same author in [68].

The embedding tensors ΘMN are constant rank-2 symmetricG tensors. They
can be considered as a projection operator on the isometry group G to the gauge
group G0. If the gauge group is the isometry group itself, the embedding tensor is
simply identity operator. The Killing vectors that generate the gauge group are
defined by

X i = gΘMN ΛM(x)XN i , (2.7.1)
with spacetime dependent parameters ΛN (x) and a gauge coupling constant g.
Dimension of gauge group is rank of matrix constructed from embedding tensor,
i.e.,

dim g0 = rankΘ . (2.7.2)

Subset of Killing vectors of a gauged theory must generate a group, the
embedding tensors must satisfy the following condition,

ΘMP ΘNQ f
PQ

R = f̂MN
P ΘPR , (2.7.3)

where constants f̂MN
P are the structure constants of the gauge group. The con-

straint above is derived by requiring that the gauge generators JM form an algebra
g0

[JM, JN ] = f̂MN
PJP . (2.7.4)

Note that the G algebra g is

[tM, tN ] = fMN
P t

P , (2.7.5)

and the gauge generators are the projection under the embedding tensor of gen-
erators in g:

JM = ΘMN t
N . (2.7.6)
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The embedding tensors are gauge invariant, i.e. δgaugeΘMN = 0. It gives rise to
the following constraint

f̂MP
Q ΘQN + f̂NP

Q ΘMQ = 0 . (2.7.7)

Using equation (2.7.3), it can be written in G-covariant form as

ΘPL (f
KL

MΘNK + fKL
NΘMK) = 0 . (2.7.8)

The Jacobi identity for the gauge group structure constants are also satisfied.
The gauge fields AM

µ are introduced to Lagrangian via two channels: mod-
ifying covariant derivative and adding Chern-Simons term to the Lagrangian in
order to restore supersymmetry. In the new definition of covariant derivatives, the
gauge fields attach to embedding tensors. For example, for scalar field we define

Dµϕ
i = ∂µϕ

i + gΘMN A
M
µ XN i . (2.7.9)

The transformation of gauge fields is traditional but valid when attach to embed-
ding tensors

ΘMN δgaugeA
M
µ = ΘMN

(
−∂µΛM + g f̂PQ

MAP
µ Λ

Q
)
. (2.7.10)

So is the field strength tensor

ΘMN F
M
µν = ΘMN

(
∂µA

M
ν − ∂νA

M
µ − g f̂PQ

MAP
µA

Q
ν

)
. (2.7.11)

The commutator of two covariant derivatives is

[Dµ,Dν ]ϕ
i = gΘMN F

M
µν X

N i . (2.7.12)

The covariant derivatives for fermions are found to be

Dµψ
I
ν =

(
∂µ +

1
2
ωa
µγa
)
ψI
ν + ∂µϕ

iQIJ
i ψJ

ν + gΘMNA
M
µ VN IJ ψJ

ν ,

Dµϵ
I =

(
∂µ +

1
2
ωa
µ γa
)
ϵI + ∂µϕ

iQIJ
i ϵJ + gΘMN A

M
µ VN IJ ϵJ ,

Dµχ
iI =

(
∂µ +

1
2
ωa
µγa
)
χiI + ∂µϕ

j
(
Γi
jk χ

kI +QIJ
j χ

iJ
)

+ gΘMNA
M
µ

(
δij VN IJ − δIJgikDkVN

j

)
χjJ . (2.7.13)

Modifying covariant derivatives with gauge fields is a cause of supersymmetry
breaking. One of terms that leads to this violation is proportional to the field
strength tensors. It takes the form

(δL)1 = −1
2
i gΘMNF

N
νρ ϵ

µνρ
(
VN IJ ψ̄I

µϵ
J + 1

2
VN

i χ̄
iIγµϵ

I
)
. (2.7.14)

It can be cancelled by introducing a Chern-Simons term [69] which is topological4

LCS = 1
4

ig εµνρAM
µ ΘMN

(
∂νA

N
ρ − 1

3
g f̂PQ

N AP
νA

Q
ρ

)
, (2.7.15)

4In the general context, it means that it does not rely on notions of geometrical structure of
manifold, i.e. metric independent.
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Its supersymmetry transformation is,

ΘMN δA
M
µ = ΘMN

[
2VM IJ ψ̄I

µϵ
J + VM

i χ̄
iIγµϵ

I
]
. (2.7.16)

According to many higher dimensional gauged supergravities studied previously,
it is useful to define the so-called T-tensors even though the embedding tensors
technique did not emerge. In our case, we can define T-tensors as the images of
the map V ×Θ× V → T

T IJ,KL ≡ VM IJΘMNVN KL , T IJi ≡ VM IJΘMNVN i ,

T ij ≡ VM iΘMNVN j , Tα
i ≡ VM

αΘMNVN i ,

Tαβ ≡ VM
αΘMNVN

β , T IJ
α ≡ VM IJΘMNVN

α .

(2.7.17)

The virtues of these definitions will become clear later when we discuss about the
constraints on T-tensors forced by supersymmetry.

Even though we can get rid off term (2.7.14), still there is another exceeding
term that is a consequence of adding vector fields. It emerges from introducing
supersymmetry variation of vector fields. It is in the first order of the coupling
constant g:

(δL)2 = −egΘMN

(
2VM IJ ψ̄I

µϵ
J + VM

i χ̄
iIγµϵ

I
)
VN

j Dµϕj . (2.7.18)

In order to cancel this term, we postulate mass-like terms

Lg = eg
{

1
2
AIJ

1 ψ̄I
µ γ

µν ψJ
ν + AIJ

2 j ψ̄
I
µ γ

µχjJ + 1
2
A3

IJ
ij χ̄

iIχjJ
}
, (2.7.19)

together with additional modifications of the supersymmetry transformation rules
of fermions

δgψ
I
µ = g AIJ

1 γµ ϵ
J , δgχ

iI = −gN AJiI
2 ϵJ . (2.7.20)

The unknowns now reside in the tensors A1, A2 and A3. The shape of A’s tensors
should be revealed as we continue to construct the supersymmetric Lagrangian.
Note that tensors A1 and A3 are symmetric,

AIJ
1 = AJI

1 , A3
IJ
ij = A3

JI
ji . (2.7.21)

After some calculations, for N > 2, the tensors A1, A2 and A3 are written in terms
of the T -tensor and tensor f IJ

ij

AIJ
1 = − 4

N−2
T IM,JM +

2

(N−1)(N−2)
δIJ TMN,MN ,

AIJ
2 j =

2

N
T IJ

j +
4

N(N−2)
fM(I

j
m T J)M

m +
2 δIJ

N(N−1)(N−2)
fKL

j
m TKL

m ,

A3
IJ
ij =

1

N2

{
− 2D(iDj)A

IJ
1 + gij A

IJ
1 + A

K[I
1 f

J ]K
ij

+2Tij δ
IJ − 4D[iT

IJ
j] − 2Tk[i f

IJk
j]

}
. (2.7.22)
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It is obvious that A1, A2 and A3 become undetermined when N = 1 or N = 2, so
N = 1, 2 cases need special treatment as discussed in [37].

The analysis above is valid up to the first order in coupling constant g. In
order to preserve supersymmetry to order g2 we need to add more term to the
Lagrangian, it reads

Lg2 = − eV ≡ 4 eg2

N

(
AIJ

1 A
IJ
1 − 1

2
N gij AI J

2i A
I J
2j

)
. (2.7.23)

It is proportional to g2 and depends only on scalar field so it is called the scalar
potential. Not only we add scalar potential, we also need more constraints on A’s
tensors to eliminate the unwanted terms coming from varying the scalar potential.
They read

2AIK
1 AKJ

1 −N AIiK
2 AJ K

2i =
1

N
δIJ
(
2AKL

1 AKL
1 −N AKiL

2 AKL
2i

)
,

3AIK
1 AK J

2j +N gklAIK
2k A3

KJ
lj = PI

J
i
j

(
3AKL

1 AKL
2i +N gklALK

2k A3
KL
li

)
.

(2.7.24)

There are still many constraints that we do not mention, all of which can
be found in [37]. Setting supersymmetry as a main goal and manipulating many
constraints, it boils down to one master equation that justifies validity of gauging
without spoiling supersymmetry,

T IJ,KL − T [IJ,KL] − 4

N−2
δ I[K TL]M,MJ − 2 δI[KδL]J

(N−1)(N−2)
TMN,MN = 0 .

(2.7.25)

There is a more compact way to represent the constraint (2.7.25) by exploiting
group representation theory:

P T IJ,KL = 0 . (2.7.26)

The symbol denotes the Young tableaux for a vector representation of SO(N).
This notation comes from an observation that

×sym = 1 + + + , (2.7.27)

Note that the dimension of each Young tableaux for SO(N) is as follows , 1
2
N(N+

1)− 1, 1
12
N(N−3)(N+1)(N+2), and

(
N
4

)
.

For symmetric space (N > 4), the constraint on T-tensor (an SO(N) ten-
sors) can be uplifted to constraint on embedding tensor (a group G tensors). As
a result, we deal with constraint on constant tensor instead of field-dependent
constraint. In order to uplift SO(N) to G constraint we simply project out the
representation in SO(N) that contain in a representation R0 in G of T-tensor
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and the projection is a G-covariant condition, so it also work for the embedding
tensor.

PR0
TAB = 0 −→ PR0

ΘMN = 0 . (2.7.28)
The T-tensor is decomposed under G as symmetrized tensor product of the adjoint
representation of G as follows

Radj ×sym Radj = 1 ⊕
[⊕

iRi

]
, (2.7.29)

where 1 and Radj are the singlet and the adjoint representation of G, respectively,
and “×sym” denotes the symmetrized tensor product. According to the branching
above, it can be written as

TAB = g1θ ηAB +
∑

i gi+1 PRi
TAB , (2.7.30)

where ηAB is the Cartan-Killing form of G, θ is constant that we will identify later
, g1 and gi+1 are the gauge coupling constants and PRi

denotes the G-invariant
projector onto the representation Ri.

To summarize: the key equation whose solutions are called admissible gaug-
ing G0 is

PR0
ΘMN = 0 . (2.7.31)

Analogous to T-tensor, the embedding tensor can be decomposed as

ΘMN = g1θ ηMN +
∑

i gi+1 PRi
ΘMN . (2.7.32)

Finding exhaustive solutions of equation (2.7.31) may give us a complete clas-
sification of gauged theories for N > 4; therefore, it is purely group-theoretical
argument which distinguish itself from higher dimensional theories. The trivial
solution is the pure singlet which corresponds to gauging full isometry group G.
According to (2.7.32) the solution is simple Cartan-Killing form of G. The non-
trivial solutions are classified into four classes: compact gauge group, non-compact
gauge groups, non-semisimple gauge groups and complex gauge groups. Only the
last one that is excluded from the study in this dissertation.

For compact gauge groups, the solutions are provided by [37] for arbitrary
N > 5 and N ̸= 8; we simply give the results here

ΘIJ A = 0

ΘIJ α = 0

ΘAB = 0

ΘIJ,KL = θ δKL
IJ + δI[K ΞL]J . (2.7.33)

The traceless symmetric tensor ΞIJ and θ are chosen to be

ΞIJ =

{
2(1− p

N
)δIJ for I ≤ p

−2 p
N

for I > p
, θ =

2p−N

N
. (2.7.34)



34

This embedding tensor corresponds to the gauge group of the type

SO(p)× SO(N−p) ⊂ SO(N) , (2.7.35)

with relatively opposite charges between two subgroups; the embedding tensor
reads

Θ = ΘSO(p) −ΘSO(N−p) . (2.7.36)
Note that the overall coupling constant is omitted. In this dissertation, for the one
coupling theories, the coupling appear as g1. For some cases with more than two
couplings the embedding tensor is written in the explicit form with couplings g1,
g2,.... Not all compact subgroup of G can be gauged; for example, the SO(p1) ×
SO(p2)×SO(p3)× . . . gauge groups with more than two factors are excluded from
admissible gauge groups because they are not solutions of (2.7.31).

Since this dissertation studies only on N = 5, 6 cases, we limit ourselves dis-
cussing only those two. For N = 5 with G = USp(4, k), the adjoint representation
Radj is (2, 0, . . . ) and

Radj ×sym Radj −→ (0, . . . ) + (0, 1, . . . ) + (0, 2, . . . ) + (4, 0, . . . ) (2.7.37)

Note that the underlined representation contains R0 and the three dots . . . is filled
with zeros where the number of zero depends on the rank of the group. We use
Dynkin label instead of conventional notation since they share the same form for
arbitrary k.

For N = 6 with G = SU(4, k), the adjoint representation Radj is (1, . . . , 1)
and

Radj ×sym Radj −→ (0, . . . , 0) + (1, . . . , 1) + (0, 1, . . . , 1, 0) + (2, . . . , 2) (2.7.38)

To summarize: we list the full Lagrangian, covariant derivatives, supersym-
metry transformation rules and gauge transformations below. The full Lagrangian
reads

L = −1
2

i εµνρ
(
eµ

aRνρa + ψ̄I
µDνψ

I
ρ

)
− 1

2
e gij

(
gµν Dµϕ

iDνϕ
j +N−1χ̄iI /DχjI

)
+ 1

4
ig εµνρAM

µ ΘMN

(
∂νA

N
ρ − 1

3
g f̂PQ

N AP
νA

Q
ρ

)
+ 1

4
e gij χ̄

iIγµγνψI
µ (Dνϕ

j + D̂νϕ
j)− 1

24
eN−2Rijkl χ̄

iIγaχ
jI χ̄kJγaχlJ

+ 1
48
eN−2

(
3 (gij χ̄

iIχjI)2 − 2(N−2) (gij χ̄
iIγaχjJ)2

)
+ eg

(
1
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AIJ

1 ψ̄I
µ γ

µν ψJ
ν + AIJ

2 j ψ̄
I
µ γ

µχjJ + 1
2
A3

IJ
ij χ̄

iIχjJ
)

− 2 eg2
(
gij AI J

2i A
I J
2j − 2N−1AIJ

1 A
IJ
1

)
. (2.7.39)
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The covariant derivatives are given by

Dµϕ
i = ∂µϕ

i + gΘMN A
M
µ XN i , D̂µϕ

i = Dµϕ
i − 1

2
ψ̄I

µχ
iI ,

Dµψ
I
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(
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1
2
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)
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iQIJ
i ψJ

ν + gΘMNA
M
µ VN IJ ψJ

ν ,

Dµχ
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χiI + ∂µϕ

j
(
Γi
jk χ

kI +QIJ
j χ

iJ
)

+ gΘMNA
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δij VN IJ − δIJgikDkVN
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Dµϵ
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1
2
ωa
µγa
)
ϵI + ∂µϕ

iQIJ
i ϵJ + gΘMNA

M
µ VN IJ ϵJ .

(2.7.40)

The supersymmetry transformations are

δeµ
a = 1

2
ϵ̄Iγa ψI

µ ,

δAM
µ = 2VM IJ ψ̄I

µϵ
J + VM

i χ̄
iIγµϵ

I ,

δψI
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I − 1
8
gij χ̄

iIγνχjJ γµν ϵ
J − δϕiQIJ

i ψ
J
µ + g AIJ

1 γµ ϵ
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ϵ̄I χiI
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δIJ1−f IJ

)i
j /̂Dϕj ϵJ − δϕj
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Γi
jk χ

kI +QIJ
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iJ
)
− gN AJiI

2 ϵJ ,(2.7.41)

The gauge transformations read

δgaugeϕ
i = gΘMN ΛMXN i ,

δgaugeψ
I
µ = gΘMN ΛMVNIJ ψJ

µ − δϕiQIJ
i ψ

J
µ ,

δgaugeχ
iI = gΘMN ΛM(χjI DjVN i + VNIJ χiJ)− δϕj

(
Γi
jk χ

kI +QIJ
j χ

iJ
)
,

ΘMN δgaugeA
M
µ = ΘMN (−∂µΛM + g f̂PQ

MAP
µ Λ

Q) . (2.7.42)

2.8 Vacua and their symmetries

In the previous section, we have discussed the construction of theory and the
constraints. In this section, we discuss how to obtain the vacua of theories as well
as their symmetries. At this stage, the dynamical quantity that concerns us the
most is the scalar potential V (ϕ). Once being obtained, many things can be drawn
from such as critical points or vacua. The computational codes are written and
run by the computer application Mathematica whereby the scalar potentials and
many quantities are symbolically solved. The very first task in the computation is
to identify the explicit form of various generators such as isometry group, SO(N)
R-symmetry group, etc. Next, the gauge group in question is chosen and we
construct coset representative accordingly. The coset representatives represent
the manifold of the scalars and we construct them under either unitary gauge or
Euler’s angle parametrization. A short review on Euler’s angle parametrization
is given in the appendix. The constraints on T-tensor are also checked for non-
predefined gaugings. And finally, the scalar potential is produced for further
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analysis. The detailed discussions for N = 5 and N = 6 theories will be given in
chapter 3 and 4, respectively.

The jargon critical point is mentioned constantly throughout this disserta-
tion, so it is crucial that we should elaborate this term. The critical points are
the loci where ∂V (ϕ)/∂ϕi = 0. In general, they may contain maxima, minima
or saddle points. They can be normally obtained via traditional multi variables
calculus; or other branches of Mathematics, if they are available. If the critical
points admit the AdS vacua and there are at least two supersymmetric points, an
RG flow can be calculated as we will encounter in chapter 5.

In some cases, we can parametrize full manifold without any problems. How-
ever, in some cases, to deal with many scalar fields (more than 8) all at once seems
to be a daunting task. Armed with the brilliant trick by Warner [71, 72], it al-
lows us search for critical points by analyzing much smaller manifold. The trick
originally was applied to D = 5, N = 8 gauged supergravity case. Because it is
based on group theoretical argument, there are no problems if we apply it to other
dimensional theories. The strategy can be break down as follows: first, we pick
a subgroup H0 of the group G. Next, we find the set of generators that are sin-
glets of H0. This means that some scalars ψ form singlets while the other scalars
ξ transform non-trivially under group H0. The expansion around critical point
should take the form V (ψ, ξ) = V0(ψ) + V2(ψ)ξ

2 + (O)(ξ3). One can see that if ψ0

is a critical point of V0(ψ), then ψ = ψ0 and ξ = 0 is also the critical point of the
potential.

In order to study supersymmetry of the vacua, we consider the so-called BPS
solution. It can be determined by considering differential equations originated
from vanishing of supersymmetry transformation of fermionic fields together with
setting those fields to zero. Schematically, the equation reads

Dµ ϵ(x) = 0 . (2.8.1)

These are necessary and sufficient condition for invariant of spacetime under su-
persymmetry [59]. The discussion on BPS solutions is closely related to studying
RG Flow which will be explored in more details in the chapter 5. According to
the proof in [49], the unbroken supersymmetries are determined by the equation

AIK
1 AKJ

1 ϵJ = − V0
4g2

ϵI =
1

N
(AKJ

1 AKJ
1 − 1

2
NgijAKJ

2i A
KJ
2i )ϵI . (2.8.2)

which is derived from the BPS equation mentioned above. The number of residual
symmetries corresponds to the number of eigenvalue of AIJ

1 . The positive and the
negative eigenvalues correspond to left nL and right nR chirality of supersymmetry,
respectively. The total supersymmetry is then nL + nR. In practice, we simply
check whether eigenvalue of AIJ

1 at critical points equals to
√
−V0

4
up to sign.

It is also pointed out in [49] that at the origin where all scalars are turn-off,
the supersymmetry is maximal and the residual gauge symmetry is the maximal
compact subgroup of gauge group G0. The argument is originally developed for
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N = 16 theory in three dimensions [48, 49]. However, for the other value of N ,
the same argument is equivalently applicable. At the origin, the vacua undergo
the Brout-Englert-Higgs mechanisms and the non-propagating vector fields from
Chern-Simons theory in non-compact direction acquire mass. Subsequently, the
vector fields split into two sector which are dim (G0/H0) = d0 massive self-dual
vectors and dimH0 non-propagating vector fields from Chern-Simons theory.

Next, we discuss supergroup at critical points. The supergroup at vacua is
the superextension of the product of maximal gauge groups and isometry group
of AdS3, i.e. H0 × SO(2, 2). Note that the group SO(2, 2) is homomorphic to
SU(1, 1)L × SU(1, 1)R and sometimes we often use this group as an isometry
group since it explicitly splits left and right chirality. Subsequenctly, the extended
supergroup can be written as GL×GR; H0 can be factorized into HL×HR and the
supersymmetry generators are split into N = (nL, nR). According to classification
in [70], the supergroup GL and GR is given by one of the following

1. OSp(N |2,R) ⊃ O(N)× Sp(2,R)

2. SU(N |1, 1) ⊃ U(N)× SU(1, 1) for N ̸= 2 ,
SU(2|1, 1) ⊃ SU(2)× SU(1, 1) for N = 2

3. OSp(4∗|2N) ⊃ O∗(4)× USp(2N) ≃ SU(2)× USp(2N)× SU(1, 1)

4. G(3) ⊃ G2 × SU(1, 1)

5. F (4) ⊃ Spin(7)× SU(1, 1)

6. D1(2, 1, α) ⊃ SU(2)× SU(2)× SU(1, 1)

Note that the fermionic generators of the supergroups listed above transform as
(2, 0)⊕ (0,2) of isometry group SO(2, 2) ≃ SU(1, 1)× SU(1, 1).

The discussion on the stability of gauged supergravity can be found in [92,
59]. The stability of gauged supergravity with AdS background is required for
a sensible quantum field theory. The stability in this context roughly means the
positivity of energy of fluctuations around background. Even though the condition
is proved in the context of gauged supergravity in four dimensions but it also works
in three dimensional cases or even non-supersymmetric theories with scalar fields
coupled to gravity.

2.9 Holographic RG flow

The AdS/CFT correspondence is more attractive when we go beyond conformal
world since the physical world we live in is non-conformal. Holograpic RG flow is
coined to describe the duality between a gravitational theory with scalar potential
and renormalization group flows of deformed comformal field theories. Note that
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RG flows throughout this paper mostly means holographic RG flows. The word
holographic occasionally is dropped for the sake of brevity.

Physical systems depend on scale. We describe nature defined at a different
energy scale or a distance (sometimes both are called a scale) by distinct theories
with a different dynamics and degrees of freedom. We will consider this phe-
nomenon in the context of quantum field theory. In quantum field theory, renor-
malization groups play an important role in describing the change in the behavior
of the physical system when the scale is changed. Different physics at different
scales emerge because a scale parameter is inevitably introduced via mass scale
parameter attached to coupling constant in dimensional regularization scheme or
cut-off momentum parameter. We call this parameter a scale µ. Most often, the
prescription for renormalizations is arbitrary. Obviously Physics must not depend
on those prescriptions, so two distinct discriptions are related and share the same
Physics. However, their relations somehow might form abelian group (actually this
is not necessary true), so they are called renormalization group due to partially
historical reason.

The spirit of renormalization group is captured by renormalization group
equation (RGE). It is constructed by an observation that the bare n-points Green’s
functions Γ do not depend on scale parameter. Consequently, we get a differential
equation describing how renormalized quantities change with scale parameter. It
is given by

µ
dΓR[µ, g]

dµ
= µ

∂ΓR[µ, g]

∂µ
+ β(g(µ))

∂ΓR[µ, g]

∂g
= 0 . (2.9.1)

According to equation above, a quantity that play a major role in the study of
RG flow is called beta function defined by

β(g(µ)) ≡ µ
dg(µ)

dµ
, (2.9.2)

where g is coupling constant of the theory. The g∗ ∈ g when β(g∗) = 0 is called
fixed points. At g∗ ̸= 0, it is called non-trivial fixed point. Quantum field theories
defined at fixed point do not depend on scale, in other words they are conformal.
g∗ is called an ultra-violet (UV) fixed point when the coupling is driven to this
point when increasing in µ. On the other hand, we call g∗ an infra-red (IR) fixed
point when the coupling is driven to this point when decreasing in µ. According
to flow equation, the theories would be driven along a trajectory in the coupling
space changing in energy scale µ visualized as a flow, so this process deserves
the name. Note that there is a theory whose beta function vanishes identically,
it is N = 4 SYM and of course it is conformal. There is no RG flow for such
theory; however, the scenario is changed once it is perturbed by some operators
with specific scale dimension. As a result, the conformal symmetry would break
and RG flow can be triggered.

We continue by elaborating the discussion above with a conformal field the-
ory in d dimensions. If the original action of a conformal theory is deformed by
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an operator with scale dimension ∆ such that:

SCFT → SQFT = SCFT +

∫
ddxϕ(x)O∆(x). (2.9.3)

The conformal symmetry could be broken and the theory would be driven along
a trajectory in the coupling space changing in energy scale µ. This process is
commonly called RG flow as we discussed earlier.

The operators above are classified into three classes:

• relevant operator : an operator that increasingly deforms the theory as µ
flow to IR.

• maginal operator : an operator that leaves the theory remain conformal.

• irrelevant operator: an operator that decreasingly deforms the theory as µ
flow to IR.

The theory at UV contains more information than at IR. If a theory makes
a transition from UV to IR, some degrees of freedom are discarded or integrated
out. Once the process undergoes the transitions, it cannot retrieve all the lost
information back. This is referred to as irreversibility. Special to two dimensional
spacetime, there is a theorem called Zamolodchikov c-theorem that can guarantee
the irreversibility. We will discuss this issue again in the section 2.11.

2.9.1 RG flow via Supergravity

In the AdS/CFT context the holographic renormalization group flow is the renor-
malized group flow of the boundary theory narrated by a particular class of clas-
sical solutions of the bulk theory. The boundary theory in this context is a con-
formal field theory perturbed by specific operators or the operators themselves
acquiring non-vanishing expectation value. In the perturbing operator scenario,
the additional terms may cause conformal symmetry breaking. As a result the
deformed theory induces RG flow between fixed points. In our study we narrow
down to a class of RG flow that is a flow between two conformal fixed points
identified as UV and IR fixed points. In the bulk theory this can be interpreted
as a class of solution of gauged supergravity which contains a scalar potential.
The solution contains a metric of domain wall type and a kink-like solution of
scalars. The critical points of scalar potential are identified with specific AdS so-
lutions characterized by distinct AdS radii. For simplicity, we are now considering
flows associating with two critical points, so there are AdS spaces of two regions
in the bulk; the first one is at the boundary and the second one is in the deep
interior region identified by radial coordinate r associated with limit r → +∞ and
r → −∞. In our convention the two AdS radii characterized by LUV and LIR

correspond to r → +∞ and r → −∞, respectively. In general, there are various
classes of flows, for example, the flow can also undergo from a UV fixed point to a
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new non-conformal field theory that associates with non-AdS geometry inside the
bulk. Unfortunately, in this dissertation we will not discuss this case.

The flow solutions can be either analytical or numerical. They can be either
approximated or exact. Even though the flow solution is exact, the asymptotic
analysis of the flow solutions is still very useful in determining the scale dimension
∆ of perturbed operator. They are considered in two limit at which AdS spaces
are specified, so the AdS with radii LUV and LIR correspond to scale dimensions
∆UV and ∆IR, respectively.

One of key concepts of holographic renormalized group flow is that the radial
coordinate r in the bulk theory has a dual picture as an energy scale µ in QFT.
At intermediate radius r, it can be interpreted as a specific quantum field theory
defined at a particular energy scale. This interpretation gives us a wonderful
discription between a single theory in higher dimensions and a spectrum of theories
defined in a range of energy scales formulated in lower dimensions.

The other dynamical quantity such as central charges can be obtained as
well. According to AdS/CFT, the AdS with radii LUV and LIR are identified with
conformal field theories characterized by central charge cUV and cIR, respectively.
The detailed discussion is mention in the section 2.10

There are many ways to study flow solutions. For example, one can com-
pletely abandons fermionic sector and obtains flows from Euler-Lagrange equation
like a toy model we about to discuss or one can solve for equations of motion via
Cartan structure equations. In this dissertation we only interested in supersym-
metric flow whereby a sub-solution of full Euler-Lagrange equations is considered.
It can be obtained by solving the so-called BPS solutions which are set up by van-
ishing of supersymmetry transformations on fermions with vanishing of fermions
themselves. The equations are first order derivative rather than second order
derivative which obtained from full Euler-Lagrange equations and they preserve
some supersymmetries of the original Lagrangian. The detailed discussion on BPS
solutions for 3D gauged supergravity will be addressed in the end of this section.

In order to obtain RG flow manifestation from gravity dual, it is easier to
consider a toy model of a supergravity. It simplifies the gauged supergravity by
considering only gravity and a single scalar with a scalar potential. The vectors,
matter fermions and gravitini are neglected. It is easier if we work in d + 1
dimensional Euclidean space instead of Minkowskian. The results in this section
are in the form of general d + 1 dimensions; therefore, in three dimensions we
simply set d = 2. The action is given by

S =
1

4πG

∫
dd+1x

√
g

(
−1

4
R +

1

2
∂µϕ∂

µϕ+ V (ϕ)

)
(2.9.4)

This simple model still serves our purpose quite well since throughout this disser-
tation we study flows from a single scalar. We explore only the supersymmetric
flows associated two different AdS vacua. The dual picture is the UV CFT is
perturbed by a particular operator O and drive a flow to another IR CFT. That
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amounts to the scalar potential V (ϕ) should have at least two critical points, i.e.
solution of V ′(ϕ) = 0 and we label the distinct critical points by the abbreviated
notation ϕi. The scalar potential may have a local maximum and a local minimum
critical points as shown in figure 2.1. In order to get AdS geometry profile, we
identify the value of the scalar potential as follows

Λi ∼ V (ϕi) ∼ − 1

L2
i

, (2.9.5)

so another requirement is that V (ϕi) < 0. The sketch of the profile of scalar
potential is shown in figure 2.1. Note that we may shift the maximum to ϕ = 0

Figure 2.1: Scalar Potential V (ϕ).

without loss of generality.
The equation of motions obtained from extremizing the action (2.9.4) or

Euler-Lagrange are given by

1
√
g
∂µ(

√
ggµν∂νϕ)− V ′(ϕ) = 0 (2.9.6)

Rµν −
1

2
gµνR = 2

[
∂µϕ∂νϕ− gµν

(
1

2
(∂ϕ)2 + V (ϕ)

)]
= 2Tµν (2.9.7)

At critical points ϕi, the first equation trivially satisfies. The second equation
reduces to Einstein equation with cosmological constant. Using the identification
in (2.9.5), we get the connection between the critical points and AdS radii or
cosmological constant. We now need a proper ansatz to study renormalized group
flow. Since conformal symmetry would break down to the non-conformal one
and the symmetry should match on both side, so AdS geometry now become less
symmetric, i.e. Poincaré invariance. The generalized Poincaré invariant metric in
some literature is called domain wall solution. It reads

ds2 = e2A(r)δijdx
idxj + dr2, (2.9.8)

ϕ = ϕ(r) , (2.9.9)
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where r is radial coordinate and xi are transverse coordinates. Note that the
scalar field is a function of radial coordinate only. The role played by the radial
coordinate of the bulk field is crucial. It can practically be identified as an energy
scale of the boundary theory. This seems to be a perfect way to interpret the
additional coordinate in the context of lower dimensional theory. We are looking
for solutions that interpolate between two conformal fixed points of the dual the-
ory. The boundary region of AdS (r → +∞) corresponds to the UV regime of
conformal field theory, whereas the deep interior region (r → −∞) is associated
with the IR. So we must have

lim
r→∞

A(r) =
r

LUV

, lim
r→−∞

A(r) =
r

LIR

(2.9.10)

As explained in [5], the solution can be alternatively solved by Cartan structure
equations. Having equipped with the ansatz above, we finally get three coupled
second order differential equations and they are not independent. They read

A′2 =
2

d(d− 1)

(
ϕ′2 − 2V (ϕ)

)
, (2.9.11)

ϕ′′ + dA′ϕ′ =
dV (ϕ)

dϕ
, (2.9.12)

A′′ = − 2

d− 1
ϕ′2. (2.9.13)

The differential equations above are more interesting when we evaluate at critical
points, i.e. ϕ(r) = ϕi. Using (2.9.5), the solution from the A′2 equation is

A(r) = ± r

Li

+ a0 (2.9.14)

The integration constant is not important here since we can always relabel the
coordinates. The positivity of solution is purely conventional, and we choose the
positive signature. The solution above now corresponds to the AdS space as we
have identified in (2.9.10).

We have discussed only the solution at the boundary and the deep interior
region. The next task is to discuss the interpolated solution between the two limits.
The solution may be exact; however, it is also useful to obtain the expansion
around the critical points themselves. As mentioned earlier, this section is crucial
in determining the scale dimension ∆. At critical points, the scalar field ϕ(r) and
the warped factor of the metric A(r) can be written as

ϕ(r) = ϕi + h(r) , A′ =
1

Li

+ a′(r) . (2.9.15)

The equation of motion reduces from non-linear and coupled differential equation
of motion to a second order homogeneous ordinary differential equation :

h′′ +
d

Li

h′ − m2
i

L2
i

h = 0 (2.9.16)



43

The general solution is given by

h(r) = B e(∆i−d)r/Li + C e−∆ir/Li . (2.9.17)

From Witten’s prescription [3], scale dimension ∆i is identified with scale dimen-
sion and it relates with mass of bulk field and bulk dimension by

∆iLi =
1

2

(
d+

√
d2 + 4m2

i

)
or (2.9.18)

m2
iL

2
i = ∆i(∆i − d) (2.9.19)

Note that a′ is in order O(h2), so the contribution from this factor is ne-
glected since we consider only linear order. The asymptotic solutions in the limit
r → ±∞ are given by

ϕ(r → +∞) ≈ ϕ1 +B1 e
(∆1−d)r/L1 + C1 e

−∆1r/L1 , (2.9.20)
ϕ(r → −∞) ≈ ϕ2 +B2 e

(∆2−d)r/L2 + C2 e
−∆2r/L2 . (2.9.21)

Note that the scalar potential around the critical points can be expanded such
that

V (ϕ) ≈ V (ϕi) +
1

2

m2
i

L2
i

h2 +O(h3) (2.9.22)

In the context of AdS/CFT, h is the fluctuation of the bulk field which is dual to
some operator O∆ where the mass of the bulk field mi is given by

m2
i = L2

iV
′′(ϕi) (2.9.23)

which is equal to (2.9.19).
As mentioned earlier, the solution approaching critical points (constant val-

ues) in the limit r → ±∞ is a kink-like solution and its sketch is given by figure
2.2. Some constants in (2.9.21) need to be specified to get sensible solutions. The

Figure 2.2: A sketch of a kink solution.
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first boundary condition is that the fluctuation field must vanish in both limit.
Using the fact that the scale dimension ∆i is always positive and negative mass
squared is allowed, one can obtain the valid range of the scale dimension. For
r → +∞, B1 and C1 can be non-vanishing but the scale dimension must take
value within some domain. From the solution, it requires ∆1 < d and (2.9.19)
implies d

2
< ∆1 with m2

1 < 0, so it should take value within the range

d

2
< ∆1 < d . (2.9.24)

Since the mass squared is negative and the local maximum has V ′′ < 0, so this
critical point is at local maximum. The generic solution with C1 = 0 corresponds
to deformation of relevant operator. On the other hand, the solution with C1 ̸= 0
and B1 = 0 corresponds to the deformation of conformal field theory (in UV) by
a non-vanishing vacuum expectation value, ⟨O∆1⟩ ∼ C1 ̸= 0. In the context of
holographic RG flow this critical point corresponds to a conformal field theory
(UV fixed point) perturbed by relevant operator of dimension ∆1 and it induces
the flow to drive to other field theory. This interpretation fits perfectly well for
identifying radial coordinate to energy scale in field theory, i.e., the larger the
r, the higher the energy in dual theory. We may set L1 to LUV including other
parameters with subscript 1.

For r → −∞, C2 must vanish. According to the asymptotic solution, it
requires ∆2 > d and from (2.9.19) we get m2

2 > 0 which is consistent to the
fact that this critical point should be local minimum. In view of dual theory,
this can be interpreted as an IR fixed point deformed by irrelevant operator with
scale dimension ∆2 > d. We may set L2 to LIR including other parameters with
subscript 2.

There are alternative ways to obtain equation of motion, many of which are
in the form of a collection of coupled first order differential equations. One way
to achieve this is that we exploit Hamilton-Jacobi formalism instead of Lagrange-
Euler formalism. It requires introduction of auxiliary function such as Hamilton-
Jacobi function W (ϕ) where its explicit form may reveal once we solve the system
of equations. In some literatures W (ϕ) may be called superpotential. In our
example, two second order flow equations are replaced by three first order flow
equations with introducing superpotential W (ϕ). They read

1

2

(
dW

dϕ

)2

− d

d− 1
W 2 = V (ϕ) (2.9.25)

dϕ

dr
=

dW (ϕ)

dϕ
(2.9.26)

dA

dr
= − 2

d− 1
W (ϕ(r)) . (2.9.27)

The first order equations are also originated from BPS equations sometimes
called Killing spinor equations. Since their mathematical structures are quite
similar, so two names can be used interchangeably throughout the literatures. As
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mentioned earlier, Killing spinors also tell us about the residual supersymmetry
of the solution via eigenvalue of A1 tensor. In order to get the idea how equations
for solving Killing spinors are set up, consider a variation of a generic supergravity
action

δS =

∫ (
δS

δB
δB +

δS

δF
δF

)
≡ 0, (2.9.28)

where B are collections of bosonic fields in the theory and F are collections of
bosonic fields. It satisfies equations of motion if δS = 0. Since δB ∼ F and clas-
sical background requires F = 0, so it is left with vanishing of fermions equation.

From this point forward, we discuss RG flows from gauged supergravity
in three dimensions via BPS equations. This material is crucial in obtaining
all flows in chapter 5. For convenience, we present the transformations of the
fermions δψI

µ and δχiI here (they appears once when we discussed supersymmetry
transformation of the Lagrangian in the beginning of chapter 2).

δψI
µ = Dµϵ

I + gAIJ
1 γµϵ

J = 0

δχiI =
1

2
(δIJ1 − f IJ)i jD/ ϕjϵJ − gNAJIi

2 ϵJ = 0 (2.9.29)

where Dµϵ
I =

(
∂µ +

1
2
ωa
µγa
)
ϵI for vanishing vector fields. In three dimension, the

domain wall ansatz is of the form

ds2 = e2A(r)dx21,1 + dr2 (2.9.30)

where dx21,1 is the compact form of −dx20 + dx21. It obviously preserves Poincaré
symmetry in two dimensions. The ansatz for scalar is

ϕ = ϕ(r) , (2.9.31)

which depends only on radial coordinate r. According to AdS/CFT correspon-
dence, the radial coordinate r is identified to energy scale of the dual theory. The
ansatz for Killing spinor is

ϵI = e
A(r)
2 ϵI0 , (2.9.32)

with constant spinor satisfying projection condition γrϵ
I
0 = ϵI0 which reduces the

supersymmetry by half. From the domain wall metric given above, the spin con-
nection is defined by

ωµ̂
ν̂r̂ = A′δνµ (2.9.33)

where µ̂, ν̂ = 0, 1 which are flat basis indices. The covariant derivative for scalar
reduce to ordinary derivative with respect to r. Note that, given coset represen-
tative, we can obtain the derivative of scalar field by

dϕA

dr
= Tr(TAL−1L′) . (2.9.34)

The analysis above can give us analytical solution, then we can expand solution
around critical point to obtain scale dimension ∆ as previously discussed.
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2.10 Weyl anomaly

The calculation of conformal anomaly or Weyl anomaly from gravity side is one of
the successful prediction from AdS/CFT correspondence. The very first evidence
is the agreement in calculations of conformal anomaly of D = 5 AdS supergravity
dual to D = 4 SYM. The conformal anomaly reveals the failure of conformal
symmetry at quantum level. Note that the criterion for conformal symmetry of
classical system is

T i
i = gij

δS

δgij
= 0 (2.10.1)

The conformal anomaly can be expressed as the non-vanishing of the trace of
energy-momentum tensor, i.e. ⟨

T i
i

⟩
̸= 0 . (2.10.2)

A very first example of conformal anomaly from a gauge theory coupled to non-
dynamical metric was done by [74] for D = 4 and in an appendix for D = 2 where
in those theories the scale is inevitably introduced via dimensional regularization.
Soon after string theory had become a mainstream, much efforts were paid for
calculation of anomaly in string world sheet D = 2. Polyakov [76] showed that
Weyl anomaly-free condition for bosonic string corresponds to 26 dimensional
spacetime. For superstring, he proved that critical spacetime dimensions is 10 [77].
A nostalgic review with a slightly sarcastic tone on Weyl anomaly can be found in
[75]. An approach in the AdS/CFT context called the holographic Weyl anomaly
and the paper itself goes by this name is done by Henningson and Skenderis [73].
The calculation gives a correct values of the central charges and proposes a possible
monotonic c-function 5.

Let us first consider the conformal anomaly for D = 4 since it is widely
discussed among many literatures. In quantum field theory the conformal anomaly
in general is given by ⟨

T i
i

⟩
=

c

16π2
W 2

ijkl −
a

16π2
R̃2

ijkl (2.10.3)

where a and c are central charges which characterize the theories and of course
they are model-dependent. The Wijkl is Weyl tensor and it relates to Reimann
tensor and Ricci tensor via

W 2
ijkl = R2

ijkl − 2R2
ij +

1

3
R2 (2.10.4)

and the second contribution is Euler density

R̃2
ijkl =

(
1

2
ϵmn
ij R

2
mnkl

)2

= R2
ijkl − 4R2

ij +R2 (2.10.5)

whose integral gives rise to a topological term which is Gauss-Bonnet term and it
is proportional to Euler characteristic χ of manifold, i.e.

∫
d4x

√
gR̃2

ijkl = 4πχ.
5The monotonic function is a function which is either increasing or decreasing.
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We have discussed the general structure of D = 4 field theory. Now we
discuss the special case which plays an important role in justifying AdS/CFT
correspondence and it is of course N = 4 SYM. We simply give the important
results since the detailed discussions can be found in many reviews on AdS/CFT
correspondence. The central charges a and c relate to the number of degrees of
freedom via N in gauge group SU(N) as follows

a = c =
1

4
(N2 − 1) −−→N→∞

1

4
N2 . (2.10.6)

The equality of a and c is a unique feature of conformal field theory that is involving
in AdS/CFT correspondence. The conformal anomaly is given by

⟨
T i
i

⟩
=

c

8π2

(
RijRij −

1

3
R2

)
(2.10.7)

This anomaly can be derived in the context of AdS/CFT correspondence as we
will discuss in the next topic.

The next task is calculating the conformal anomaly via AdS/CFT corre-
spondence. For D = 2, 4, 6 the holographic Weyl anomalies are calculated in [73].
We discuss the D = 5 AdS dual to D = 4 SYM case. First, one considers the
action of pure AdS gravity in five dimensions,

S =
−1

16πG

[∫
d5z

√
g(R +

12

L2
) +

∫
d4z2

√
γK

]
. (2.10.8)

Note that the surface term called Gibbons-Hawking is added.
Replacing the radial coordinate ρ = e−

2r
L , the metric for asymptotic AdS

(AAdS) becomes

ds2 = L2(
dρ2

4ρ2
+

1

ρ
gij(x, ρ)dx

idxj) (2.10.9)

Note that the boundary is replaced from r → ∞ to ρ = 0 and the boundary metric
is given by

gij(x, ρ)
−→
ρ→0 ḡij(x) . (2.10.10)

The expansion around flat background can be written as ḡij(x) = δij + hij. The
flat metric associates with background metric for conformal theory at boundary
and hij can be interpreted as the source term for the energy-momentum tensor
Tij.

The metric is divergent at boundary ρ = 0. In order to regularize it we need
to introduce the cutoff at ρ = ϵ. The integration of the action above is bounded
to the range ρ > ϵ and we evaluate the boundary integral at ρ = ϵ. The induced
metric at ρ = ϵ is given by

γij =
gij(x, ρ = ϵ)

ϵ
. (2.10.11)
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The K in the surface term in the action is given by

K = γijKij − gijρ
∂

∂ρ

(
gij(x, ρ)

ϵ

)
|ρ=ϵ (2.10.12)

The Weyl transformation at boundary is given by

ḡij(x) → ḡ′ij(x) = (1 + 2σ(x))ḡij(x) . (2.10.13)

It induces the diffeomorphism called Penrose-Brown-Henneaux transformation in
the bulk, i.e.

ρ = ρ′(1− 2σ(x′)) (2.10.14)
xi = x′i + ai(x′, ρ′) , (2.10.15)

where
ai(x, ρ) =

L2

2

∫ ρ

0

dρ̂ gij(x, ρ̂)∂jσ(x) . (2.10.16)

The next task is to derive on-shell renormalized action Sren[ḡ] from which
the anomaly can be derive via⟨

T i
i

⟩
= ḡij ⟨Tij⟩ = −δSren[ḡ]

δσ
, (2.10.17)

where Weyl transformation is given by δḡij = −2ḡijδσ. The renormalized on-shell
action is defined by

Sren[ḡ] ≡ lim
ϵ→0

(Sϵ[ḡ]− Sϵ[ḡ]ct) , (2.10.18)

where Sϵ[ḡ] is the on-shell action with cutoff ϵ and Sϵ[ḡ]ct is the counter term
constructed to cancel the divergent terms as the ϵ → 0. In order to evaluate the
Sϵ[ḡ]ct, we need the data near boundary. According to Fefferman-Graham theorem
[79], we can expand the metric near the boundary as

gij(x, ρ) = ḡij + ρg(2)ij + ρ2g(4)ij + ρ2 ln ρ h(4)ij + · · · (2.10.19)

Note that if we are working in odd dimensions, the expansion above is defined
differently, for instance; there is no ln ρ term. We substitute (2.10.19) to the
action (2.10.8) and identify the divergent terms. At the lowest order, we simply
give the result here,

Sϵ[ḡ]ct =
1

4πG

∫
d4x

√
γ

(
3

2L2
− R̂

8
− L2 ln ϵ

32
(R̂ijR̂ij −

1

3
R̂2)

)
. (2.10.20)

where R̂ij is the Ricci tensor and R̂ is the Ricci scalar of induced metric γij. We
can associate divergences above to its UV divergences of its dual field theory if
we identify ϵ with 1/Λ2 in field theory. Finally, we can calculate the conformal
anomaly, ⟨

T i
i

⟩
=

L3

8πG
(
1

8
RijRij −

1

24
R2) (2.10.21)
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In order to make AdS/CFT a correct framework, we compare the result with
(2.10.7) and identify central charge as follows

c =
πL3

8G
(2.10.22)

Note that the identification above depends on dimensions of spacetime, so it is
valid for bulk theory in D = 5. For D = 3 case, the central charge is given by

c =
3L

2G
. (2.10.23)

The equation (2.10.23) is crucial in justifying c-theorem in our context from RG
flows analysis in chapter 5.

2.11 c-theorem

It is worth mentioning the relation between central charges and degrees of freedom
of a system. The insight is influenced by Wilson approach of renormalization. The
central charges c measure the degrees of freedom of the conformal field theory.
This is shown by the explicit form of central charges which can be written in
term of number of particles as discussed in the previous section. As a matter of
fact, not only it applies to conformal fixed points, it can be used to measure the
degrees of freedom of the intermediate states with particular energy scales. The
constant central charges are replaced by a monotonic function which approaches
central charge in a particular limit. As it undergoes the transition to long distance
physics, the heavy particles will decouple from the low energy dynamics in some
literatures sometimes is referred to as integrating out the heavy particles degrees
of freedom. If the theory has two fixed points in short distance and long distance
identified by two conformal theories with central charges cUV and cIR, respectively,
a direct outcome is that cUV > cIR. This inequality plays an important role of
this section, since this observation help establish the so-called c-theorem.

The Zamolodchikov c-theorem [90] states that there exists a monotonic func-
tion c(g) of the coupling constant g in a two dimensional renormalizable field
theory. This function has a constant value only at fixed points and the c(g∗) at
that point is the central charge of the conformal theory in two dimensions which
coincides with central charge in Virasoro algebra. Alternatively, Zamolodchikov
c-theorem can also be encapsulated by three properties as follows

• c(g) is a monotonic function along renormalized group flow.

• c(g) is exactly a central charge of a conformal field theory at fixed point.

• c(g) is stationary at fixed points g = g∗ where ∂c(g)/∂g|g∗ = 0.
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For a theory with two conformal fixed points, a major consequence of Zamolod-
chikov c-theorem is that

cUV > cIR (2.11.1)
which is in agreement with the argument from Wilsonion renormalization discussed
in the beginning of this section.

The question of generalization to higher dimensions was firstly proposed by
Cardy [82] and also discussed the difficulties in the extending. This paper was
titled Is there a c-theorem in Four Dimensions? and around that time short
answer is Probably No. However, until 2011, the proof for four dimensional case
was proposed by [83] and it is widely accepted among physicists. For a general
proof for arbitrary dimensions, to the best of my knowledge, it may not exist.

It is important to note that the monotonic function c(g) has an interpretation
as central charges only at fixed points. At UV conformal fixed point and IR
conformal fixed point, they are c(g∗1) = cUV and c(g∗2) = cIR, respectively. The
intermediate value of c along the flow depends on what regularization scheme we
choose. This interpretation concurs with c function calculated from AdS/CFT
correspondence, since there is generally no unique way to identify a monotonic
function interpolating between two AdS spaces characterized by LUV and LIR. In
our case for four dimensions, the obvious candidate for holographic c-function is
given by c(r) = π/8GA′3. However, this does not mean that we have only this
choice.

The next task is to find a description for c-theorem from gravitational theory
side via AdS/CFT correspondence. The c-theorem obtained in this way is called
the holographic c-theorem. According to the identification (2.10.22) for four di-
mensinal conformal fields, the central charges in UV and IR relate to radius of
AdSUV and AdSIR by

cUV =
πL3

UV

8G
, cIR =

πL3
IR

8G
, (2.11.2)

so we have LUV > LIR. It corresponds to label local maximum as VUV and the
minimum as VIR,

VUV = −d(d− 1)

4L2
UV

> VIR = −d(d− 1)

4L2
IR

. (2.11.3)

Recall that the scale factor A(r) is concave downward because A′′(r) < 0 as
sketched in the figure 2.3 and the slopes A′(r) at the two fixed points are related
by 1/LIR > 1/LUV , so as the deeper we go, the steeper A(r) we get.

Let us consider a candidate for c-function in four dimensional case,

c(r) =
π

8GA′3 . (2.11.4)

it gives the correct value of central charges at fixed points. The first order deriva-
tive c′(r) ≥ 0 since A′′(r) ≤ 0. Note that for arbitrary dimension d, it is given by
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Figure 2.3: Profile of the scale factor A(r).

c(r) = c0
A′D−2 and for D = 3, it is given by

c(r) =
3

2GA′ . (2.11.5)

The function c(r) is suitable for c-function since it satisfies the properties listed
above.

Before we end this section we note that the RG flows studied in this dis-
sertation are all in agreement of c-theorem, i.e. cUV > cIR. We will discuss the
results in details in chapter 5.



CHAPTER III

N = 5 Theory

In this chapter, we study N = 5 gauged supergravity in three dimensions [39].
They are categorized by gauge group type: compact, non-compact and non-
semisimple groups. The scalar manifold is a symmetric space with coset mani-
fold USp(4, k)/USp(4) × USp(k) where k is an even integer. For compact and
non-compact gaugings, we explore k = 2 and k = 4 cases which are the sub-
group of USp(4, k). And for non-semisimple case, the gauge group we studied is
SO(5)nT10 corresponding to USp(4, 4)/USp(4)×USp(4) scalar manifold. Among
all the gaugings we considered, non-semisimple case has a special aspect, since it
can be described by dimensional reduction on an orbifold S1/Z2 from four space-
time dimensional theory as previously pointed out in [57]. Moreover, according to
Yang-Mills and Chern-Simons equivalency [66], this theory is equivalent to SO(5)
gauged supergravity of Yang-Mills type.

The dimension of scalar manifold of k = 2 and k = 4 case correspond to 8
and 16 respectively. For compact gauging in k = 2 case, we can parametrize full
8-dimensional manifold by Euler angles which is discussed in the appendix. On
the other hand, we cannot parametrize full manifold for k = 4 in compact case
since it is too complex for personal computer to handle. We have to parametrize
submanifold which is invariant under a certain subgroup of the gauge group in-
stead. According to argument in [71, 72] and review in chapter 2, a critical point
found from this submanifold is also a critical point of the full manifold.

Many supersymmetric critical points for each case are reported together with
their unbroken supersymmetry and unbroken gauge symmetry. The scalar mass
spectra are identified as a representation of unbroken gauge group. Breitenlohner-
Freedman stability condition (BF bound)[92] is checked and no violation is found
if the gauge couplings belong to specific domain. Moreover, we determine the
mass spectrum of the scalar around background at which we expand and present
their irreducible representation of supergroup extension of AdS isometry group
SO(2, 2). At each critical point, the A1 tensors are reported. The study of RG
flows from discovered vacua are postponed to chapter 5.

This chapter is organized as follows. We discuss some theoretical as well as
technical aspects for N = 5 theory. We identify group generators for USp(4, k)
and R-symmetry group SO(5). In exploring vacua we start with compact gauging
of k = 2 case which is split into three subcases:

• SO(5)× USp(2)
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• SO(4)× USp(2)

• SO(3)× SO(2)× USp(2).

Next, for compact gauge group of k = 4 case we consider:
• SO(5)× USp(4)

• SO(4)× USp(4)

• SO(3)× SO(2)× USp(4).

Then we move on to the non-compact gauge groups. For k = 2, we study
gauge group USp(2, 2). For k = 4, we study gauge group USp(2, 2) × USp(2, 2).
Finally, non-semisimple SO(5)n T10 case is explored.

Before we proceed, it is important to identify the generators used in N = 5
theory. We define USp(8) generators from Gell-Mann matrices for SU(8) labelled
by λi. For analysis of k = 2 case we need USp(6) subgroup which are identified
by the first 21 generators given below.

J1 =
iλ1√
2
, J2 =

iλ2√
2
, J3 =

iλ3√
2
,

J4 =
iλ13√
2
, J5 =

iλ14√
2
, J6 = − iλ8√

6
+
iλ15√
3
,

J7 =
iλ6
2

+
iλ9
2
, J8 = − iλ7

2
+
iλ10
2
, J9 =

iλ4
2

− iλ11
2
,

J10 = − iλ5
2

− iλ12
2
, J11 =

iλ33√
2
, J12 =

iλ34√
2
,

J13 = − iλ24√
5
+

√
3

10
iλ35, J14 =

iλ18
2

+
iλ25
2
, J15 = −iλ19

2
+
iλ26
2
,

J16 =
iλ16
2

− iλ27
2
, J17 =

iλ22
2

+
iλ29
2
, J18 = − iλ23

2
+
iλ30
2
,

J19 =
iλ20
2

− iλ31
2
, J20 = −iλ17

2
− iλ28

2
, J21 = −iλ21

2
− iλ32

2
,

J22 =
iλ61√
2
, J23 =

iλ62√
2
, J24 = −

√
3

14
iλ48 +

√
2

7
iλ63,

J25 =
iλ38
2

+
iλ49
2
, J26 = − iλ39

2
+
iλ50
2
, J27 =

iλ36
2

− iλ51
2
,

J28 =
iλ42
2

+
iλ53
2
, J29 = − iλ43

2
+
iλ54
2
, J30 =

iλ40
2

− iλ55
2
,

J31 =
iλ46
2

+
iλ57
2
, J32 = −iλ47

2
+
iλ58
2
, J33 =

iλ44
2

− iλ59
2
,

J34 = −iλ37
2

− iλ52
2
, J35 = −iλ41

2
− iλ56

2
, J36 = − iλ45

2
− iλ60

2
.(3.0.1)
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The SO(5)R R-symmetry generators, labeled by a pair of anti-symmetric
indices T IJ = −T JI , can be identified as follow

T 12 =
1√
2
(J3 − J6) , T 13 = − 1√

2
(J1 + J4) , T 23 =

1√
2
(J2 − J5) ,

T 34 =
1√
2
(J3 + J6) , T 14 =

1√
2
(J2 + J5) , T 24 =

1√
2
(J1 − J4) ,

T 15 = −J9, T 25 = −J10, T 35 = J8, T 45 = J7 . (3.0.2)

The non-compact generators Y A are identified by

Y 1 = iJ14, Y 2 = iJ15, Y 3 = iJ16, Y 4 = iJ17,

Y 5 = iJ18, Y 6 = iJ19, Y 7 = iJ20, Y 8 = iJ21,

Y 9 = iJ25, Y 10 = iJ26, Y 11 = iJ27, Y 12 = iJ28,

Y 13 = iJ29, Y 14 = iJ30, Y 15 = iJ31, Y 16 = iJ32 . (3.0.3)

For k = 2 case corresponding to 8 scalars, the associated non-compact generators
are given by the first 8 generators, Y A with A = 1, . . . , 8.

3.1 Compact gauge groups

In this section, we study N = 5 gauged supergravity with compact gauge groups.
The gauge groups are subgroups of maximal subgroup G0 ⊂ H ⊂ G. We classify
them into three cases: SO(p) × SO(5 − p) × USp(k) where p = 5, 4, 3. Since
SO(0) and SO(1) are ill-defined, so they can explicitly be written as the following:
SO(5) × USp(k) , SO(4) × USp(k) and SO(3) × SO(2) × USp(k). The sector
SO(p)×SO(5−p) can be embedded in USp(4) ∼ SO(5)R as in the representation
5 → (p,1) + (1,5 − p). For convenience, we repeat the embedding tensor below

ΘIJ,KL = θδKL
IJ + δ[I[KΞL]J ] (3.1.1)

where
ΞIJ =

{
2
(
1− p

5

)
δIJ , I ≤ p

−2p
5
δIJ , I > p

, θ =
2p− 5

5
. (3.1.2)

Then the full embedding tensor for SO(p) × SO(5 − p) × USp(k) schematically
written as

Θ = g1ΘSO(p)×SO(5−p) + g2ΘUSp(k) (3.1.3)
where g1 and g2 are gauged coupling constants. At this stage, we treat them
independently but in the study of mass spectrum and RG flow, they are related
and bounded to some domain. ΘSO(p)×SO(5−p) and ΘUSp(k) are the Killing forms
of SO(p)× SO(5− p) and USp(k) respectively.
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3.1.1 The k = 2 case

As mentioned earlier, the number of the scalar of the theory is 4k. For k =
2, the scalar sector of the theory is parametrized by 8 scalars of coset space
USp(4, 2)/USp(4) × USp(2). We choose Euler angle parametrization with full
8-dimensional manifold for SO(5) × USp(2) and SO(4) × USp(2). For SO(3) ×
SO(2)×USp(2), we parametrize merely submanifold as we will discuss this issue
in SO(3)× SO(2)× USp(2) gauging section.

In this case, the theory contains 8 scalars parametrized by USp(4, 2)/USp(4)×
USp(2) coset space. The full 8-dimensional manifold can be conveniently parametrized
by the Euler angles of SO(5) × USp(2) ∼ USp(4) × USp(2). The details of the
parametrization can be found in the appendix.

SO(5)× USp(2) gauging

In this case, we use Euler angle parametrization with USp(4) × USp(2) Euler
angles. The full USp(4, 2)/USp(4) × USp(2) coset can be parametrized by the
coset representative

L = ea1X1ea2X2ea3X3ea4J7ea5J8ea6J9ea7J10ebY
7 (3.1.4)

where Xi’s are defined by

X1 =
1√
2
(J1 − J11), X2 =

1√
2
(J2 − J12), X3 =

1√
2
(J3 − J13). (3.1.5)

According to L we have 7 scalar fields associated with generators which are ele-
ments in compact generators and a scalar associated to non-compact generator.
The scalar potential is found to be

V =
1

32

[
64
(
g22 − 12g21 + 4g1g2

)
cosh b− 1076g21 − 180g1g2 − 45g22

−4
(
52g21 + 20g1g2 + 5g22

)
cosh(2b) + (2g1 + g2)

2 cosh(4b)
]
. (3.1.6)

The scalar potential V depends only on scalar field b associated with non-
compact generator Y 7. This feature is a result of gauge invariance. Note that the
scalar potential should not depend on how we parametrize manifold, we expect
the same result as in unitary gauge parametrization.

The exhaustive list of critical points is given in the table I. We found three
critical points, they are labelled by roman number in the first column of the table.
Note that b in the second column represents the value of scalar at their critical
point and V0 is the value of the potential associated with each critical point.
Unbroken supersymmetries at critical points are listed in the forth column. We
use two dimensional dual CFT to represent the number of supersymmetry; i.e.,
(n−, n+) where n− and n+ are the number of supersymmetry of different chirality
of supercharge. This also can be realized in three dimensional theory via the
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b V0 unbroken unbroken
SUSY gauge symmetry

I 0 −64g21 (5, 0) SO(5)× USp(2)

II cosh−1
[
g2−2g1
2g1+g2

]
−64g21(g1+g2)2

(2g1+g2)2
(4, 0) USp(2)× USp(2)

III cosh−1
[
6g1+g2
2g1+g2

]
−64g21(3g1+g2)2

(2g1+g2)2
(1, 0) USp(2)× USp(2)

Table I: Critical points of SO(5)× USp(2) gauging.

numbers of negative and positive eigenvalues of AIJ
1 tensor where the eigenvalues

of A1 tensor is given by ±
√

−V0

4
.

It is well-known that at L = I (all scalars are turned off) is a trivial critical
point and automatically preserves full supersymmetries and full gauge symmetry.
The other two traditionally called non-trivial critical points preserve USp(2) ×
USp(2) guage symmetry and preserve only a subset of full supersymmetry. Note
that we will consider RG flow in this case later in next chapter. Since A1 tensor
also plays many roles in the analysis such as counting supersymmetry, so we give
the A1 tensor explicitly at each critical point below

A
(I)
1 = −4g1I5×5,

A
(II)
1 = diag

(
α, α, α, α,

4g1(g1 − g2)

2g1 + g2

)
,

A
(III)
1 = diag

(
β, β, β, β,

−4g1(3g1 + g2)

2g1 + g2

)
, (3.1.7)

where
α =

−4g1(g1 + g2)

2g1 + g2
, β =

−4g1(5g1 + g2)

2g1 + g2
. (3.1.8)

The superscript of A1 tensor denote the critical point at which it is calculated.
Note that α and β are local parameters which are defined independently for each
gauging.

In order to compute the mass spectrum at each critical point, we simply
perform Taylor expansion around the critical point and set vector fields to zero.
The quadratic term implies mass squared of the scalar particle. The coset repre-
sentative must be calculated in unitary gauge, i.e.,

L =
8∏

i=1

eaiY
i

. (3.1.9)

The scalar mass spectrum at the trivial critical point (I) is given in the table
below.

m2L2 SO(5)× USp(2)
−3

4
(4,2)
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All scalars have the same mass m2L2 = −3
4

with L being the AdS3 radius at this
critical point. There are no massless scalars or Goldstone bosons, since the ground
states preserves full symmetry. The full symmetry of the background corresponds
to Osp(5|2,R)× Sp(2,R) superconformal group.

The mass spectrum at (4, 0) critical point is shown below. We have one
massive particle in the singlet and seven massless scalars corresponding to (2,2)+
(1,3). Those massless scalar are called Goldstone bosons. The number of massless
scalars is confirmed by dimG0 − dimĜ = dim(SO(5)× USp(2))− dim(USp(2)×
USp(2)) corresponding to symmetry breaking SO(5) × USp(2) → USp(2) ×
USp(2). Since we set the vector fields to zero and consider only composite sym-
metry, therefore no vector fields eat up scalar and become massive. The example
for non-vanishing vectors whereas the traditional Higgs mechanism can happen
can be found in [93].

m2L2 USp(2)× USp(2)
g2(2g1+3g2)
(g1+g2)2

(1,1)
0 (2,2) + (1,3)

The mass spectrum at (1, 0) critical point are as follow. The result is similar to
the (4,0) case except for different massive scalar. We have the same number of
Goldstone bosons corresponding to the same symmetry breaking.

m2L2 USp(2)× USp(2)
(4g1+g2)(10g1+3g2)

(3g1+g2)2
(1,1)

0 (2,2) + (1,3)

This SO(5)×USp(2) gauging case has two non-equal-supersymmetric vacua,
so we are capable of discussing their RG flow in the chapter 5.

SO(4)× USp(2) gauging

We parametrize full manifold and the coset representative is the same as SO(5)×
USp(2) case. The smaller the gauge group, the more complicated the calculation.
The scalar potential in this case turns out to be very complex even though it
depends only 5 from 8 scalars; i.e., they are a4, a5, a6, a7 and b. The scalar potential
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for compact gauge group SO(4)× USp(2) is given by

V = 2g22(3 + cosh b) sinh6 b

2
+

1

16
g1g2 [68 + 4 cos(2a4) + 2 cos(2(a4 − a5))

+4 cos(2a5) + 2 cos(2(a4 + a5)) + 2 cos(2(a4 − a6)) + cos(2(a4 − a5 − a6))

+2 cos(2(a5 − a6)) + cos(2(a4 + a5 − a6)) + 4 cos(2a6) + 2 cos(2(a4 + a6))

+ cos(2(a4 − a5 + a6)) + 2 cos(2(a5 + a6)) + cos(2(a4 + a5 + a6))

+32 cos2 a4 cos2 a5 cos2 a6 cos(2a7)
]
(3 + cosh b) sinh6 b

2

−4g21

[
cos2 a5 cos2 a6 cos2 a7 cosh2 b

2
(3 + cosh b)2 sin2(2a4)

+64 cos2 a4 cosh4 b

2
sin2 a4 sin2 a5 + 64 cos2 a4 cos2 a5 cosh4 b

2

sin2 a4 sin2 a6 + 64 cos2 a4 cos2 a5 cos2 a6 cosh4 b

2
sin2 a4 sin2 a7

+
1

16384

[
51 + 259 cos(2a4) + 4(−17 + 63 cos(2a4)) cosh b+ (17 + cos(2a4))×

cosh(2b) + 16 cos2 a4 cos(2a5) sinh4 b

2
+ 32 cos2 a4 cos2 a5 cos(2a6) sinh4 b

2

+64 cos2 a4 cos2 a5 cos2 a6 cos(2a7) sinh4 b

2

]2
+

1

2

[
−4 cos4 a4 cos2 a5 cos2 a6

cos2 a7 sin2 a5 sinh6 b

2
− 4 cos4 a4 cos4 a5 cos2 a6 cos2 a7 sin2 a6 sinh6 b

2

−4 cos4 a4 cos4 a5 cos4 a6 cos2 a7 sin2 a7 sinh6 b

2
− 4 sin2(2a4) sin2 a5 sinh2 b

−16 cos2 a4 cos2 a5 sin2 a4 sin2 a6 sinh2 b− 16 cos2 a4 cos2 a5 cos2 a6 sin2 a4

sin2 a7 sinh2 b− 1

16
cos2 a5 cos2 a6 cos2 a7 sin2(2a4)

[
7 sinh b

2
+ 3 sinh 3b

2

]2

− 1

4096

[
16 cos2 a4

[
cos(2a5) + 2 cos2 a5

(
cos(2a6) + 2 cos2 a6 cos(2a7)

)]
×

cosh b
2

sinh3 b

2
+ 2[63 cos(2a4) + 17 cosh b− 17] sinh b

+ cos(2a4) sinh(2b)
]2]]

. (3.1.10)

The trivial critical point is traditional which is defined by requiring all scalar
fields to vanish. Because of the complication of the computed scalar potential,
we need to put some scalars to zero for keeping it manageable. For non-trivial
critical points, for simplicity we pick a4 = a5 = a6 = a7 = 0, therefore the final
potential depends only on b. All critical points are listed in the table II along with
their unbroken supersymmetry and unbroken gauge symmetry. The corresponding
superconformal symmetry is Osp(4|2,R)× Osp(1|2,R). The A1 tensor for trivial
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b V0 unbroken unbroken
SUSY gauge symmetry

I 0 −64g21 (4, 1) SO(4)× USp(2)

II cosh−1
[
g2−2g1
2g1+g2

]
−64g21(g1+g2)2

(2g1+g2)2
(4, 1) USp(2)× USp(2)

III cosh−1
[
6g1+g2
2g1+g2

]
−64g21(3g1+g2)2

(2g1+g2)2
(0, 0) USp(2)× USp(2)

Table II: Critical points of SO(4)× USp(2) gauging.

critical point is given by

A
(I)
1 = −4g1diag (1, 1, 1, 1,−1) , (3.1.11)

The mass spectrum for trivial critical point are given below

m2L2 SO(4)× USp(2) ∼ SU(2)× SU(2)× USp(2)
−3

4
(2,1,2) + (1,2,2)

The trivial critical point preserves full gauge symmetry. On the other hand,
critical points II and III preserve USp(2)diag × USp(2) gauge group. Note that in
the table shown below the subscript ’diag’ is omitted. The USp(2)diag is a diagonal
subgroup which is a sector in USp(2) × USp(2) ∼ SO(4). The other USp(2) is
generated by the linear combination J1+J11,J2+J12 and J3+J13. The A1 tensor
of the critical point II is the following

A
(II)
1 = −4g1(g1 + g2)

2g1 + g2
diag (1, 1, 1, 1,−1) . (3.1.12)

At critical point II, we have three massless scalars, a massive scalar with mass
g2(2g1+3g2)
(g1+g2)2

, and another four massive scalars with mass − g1g2(g1+2g2)
(g1+g2)2(2g1+g2)

as shown
in the table below.

m2L2 USp(2)× USp(2)
0 (1,3)

g2(2g1+3g2)
(g1+g2)2

(1,1)
− g1g2(g1+2g2)

(g1+g2)2(2g1+g2)
(2,2)

Critical point III is non-supersymmetric with residual USp(2)diag ×USp(2) gauge
symmetry. The mass spectrum is given by

m2L2 USp(2)× USp(2)
0 (1,3)

(4g1+g2)(10g1+3g2)
(3g1+g2)2

(1,1)
−g1(4g1+g2)(5g1+2g2)

(2g1+g2)(3g1+g2)2
(2,2)

.
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The stability of the critical point III can be checked by verifying with Breitenlohner-
Freedman (BF) bound m2L2 ≥ −1. According to the table II, and using x > 1
for cosh−1x, we have g1 > 0 and g2 > −2g1 or g1 < 0 and g2 < −2g1. We pick
the condition that g1 > 0. Consequently, the BF bound for (1,1) scalar becomes
g1 > 0 and g2 > −3g1. The mass of (2,2) scalars satifies the BF bound when
g2 > 0.21432g1 and g1 > 0. All in all, the condition for stability of the critical
point II is g1 > 0 and g2 > 0.21432g1. Since the residual gauge symmetry of the
critical points II and III are the same; therefore, they both have three goldstone
bosons associated with symmetry breaking SO(4)×USp(2) → USp(2)×USp(2).

SO(3)× SO(2)× USp(2) gauging

In this case, it requires too much computer resources to tackle the scalar potential
for full coset manifold USp(4, 2)/USp(4)×USp(2). The complication is not less-
ened even we employ Euler angle parametrization and the situation is even worse
in the unitary gauge due to the fact that it has many uncancelled variables. The
situation is opposite to the SO(5)×USp(2) case, recall that it has only one scalar
left as a result of a larger gauge symmetry group. However, the obstacle does
not refrain us from searching for the scalar potential. Equipped with a powerful
technique discussed in the chapter 2, we can study the potential but from sub
manifold.

The technique employs the fact that the critical points of submanifold are
also critical points of the full one. In this case, we consider a submanifold of
USp(4, 2)/USp(4) × USp(2) that is invariant under U(1)diag which is a linear
combination T 12 + T 45. In order to obtain the generators for constructing the
coset representative, we have to find all possible of linear combination of non-
compact generators that commute with U(1)diag. Four singlets are found and
given by

X1 =
1√
2
(Y 1 + Y 6), X2 =

1√
2
(Y 2 + Y 8),

X3 =
1√
2
(Y 4 − Y 3), X4 =

1√
2
(Y 7 − Y 5). (3.1.13)

We now have four generators that associate with four scalars. A manifold with
four scalar is manageable, so the unitary gauged coset representative is adequate
and it is given by

L = ea1X1ea2X2ea3X3ea4X4 . (3.1.14)
The potential is a function of four scalar fields and it is not too long, so we present
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a1 V0 unbroken unbroken
SUSY gauge symmetry

I 0 −64g21 (3, 2) SO(3)× SO(2)× USp(2)

II 1
2

ln
[
g2−8g1−4

√
g1(4g1−g2)

g2

]
−64g21(g1−g2)2

g22
(2, 0) U(1)× U(1)

III 1
2

ln
[
g2+8g1−4

√
g1(4g1+g2)

g2

]
−64g21(g1+g2)2

g22
(1, 2) U(1)× U(1)

Table III: Critical points of SO(3)× SO(2)× USp(2) gauging.

it here,

V =
1

128
[3 + cosh a1 cosh a2 cosh a3 cosh a4]

[
−2
(
512g21 + 19g22

)
+
(
99g22 − 1024g21

)
cosh a1 cosh a2 cosh a3 cosh a4 + 3g22 cosh(2a1)×

(cosh a1 cosh a2 cosh a3 cosh a4)− 2− 12g22 cosh2 a1 [cosh(2a2)
+2 cosh2 a2

(
cosh(2a3) + 2 cosh2 a3 cosh(2a4)

)]
+ 2g22 cosh3 a1×

cosh a2 cosh a3
(
3
(
cosh(2a2) + 2 cosh2 a2 cosh(2a3)

)
cosh a4

+4 cosh2 a2 cosh2 a3 cosh(3a4)
)]
. (3.1.15)

Even though we are dealing with four variables function, it is not easy to find
all critical points without additional conditions In order to make the potential
more tractable, we simply set a2 = a1 and a3 = a4 = 0. Consequently, the
problem reduced to one variable function of a1. The critical points are given in
the table III and the value at critical point labeled uniquely by value of a1. The
trivial critical point is expectedly found with V0 = −64g21 which is equal to the
other cases. It has a maximal supersymmetric critical point with N = (3, 2) and
SO(3)×SO(2)×USp(2) unbroken gauge symmetry. The eigenvalues of A1 tensor
at a critical point imply number of its unbroken supersymmetry and it is

A
(I)
1 = −4g1diag (1, 1, 1,−1,−1) . (3.1.16)

The superconformal group Osp(3|2,R)×Osp(2|2,R) is a symmetry group of this
ground state. The mass spectrum at trivial critical point is presented below. In the
group representation column, the regular typeface denotes U(1) ∼ SO(2) charge.

m2L2 SO(2)× SO(3)× USp(2)
−3

4
(1,2,2) + (−1,2,2)

The critical point II and III preserve the same residual gauge symmetry. The un-
broken supersymmetry corresponds to eigenvalue

√
−V0

4
of A1 tensor. The critical

points and the A1 tensors are the following:

A
(II)
1 = = diag (α, α, β,−β,−β) ,

A
(III)
1 = diag (γ, γ,−δ, δ, δ) , (3.1.17)
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where

α =
4g1(g1 − g2)

g2
, β = −4g1(g2 − 3g1)

g2
,

γ = −4g1(3g1 + g2)

g2
, δ =

4g1(g1 + g2)

g2
. (3.1.18)

For A(II)
1 , α is equal to

√
−V0

4
while β is not, so it corresponds to (2,0) supersym-

metry. For A(III)
1 , γ is equal to

√
−V0

4
while δ is not, so it corresponds to (1,2)

supersymmetry. The mass spectra are shown in the table below with properly
normalized U(1) charge.

The other two critical points preserve U(1) × U(1) symmetry. The corre-
sponding A1 tensor at these points is given by

A
(II)
1 = = diag (α, α, β,−β,−β) ,

A
(III)
1 = diag (γ, γ,−δ, δ, δ) , (3.1.19)

where

α =
4g1(g1 − g2)

g2
, β = −4g1(g2 − 3g1)

g2
,

γ = −4g1(3g1 + g2)

g2
, δ =

4g1(g1 + g2)

g2
. (3.1.20)

Having normalizd the U(1) charges, the scalar mass spectra can be computed as
shown in the tables below. The original four singlets under U(1)diag correspond
to one massless and three massive modes in the tables. The U(1)diag is given by a
combination of the two U(1)’s in the unbroken symmetry U(1)×U(1). Therefore,
the (0,±4) and (±4, 0) modes, which are singlets under one of the two U(1)’s, will
not be invariant under U(1)diag.

• (2, 0) point:

m2L2 U(1)× U(1)
0 (0, 4) + (0,−4) + (4, 0) + (−4, 0) + (0, 0)

32g21−32g1g2+6g22
(g1−g2)2

(0, 0)

−2g1(g1−2g2)
(g1−g2)2

(−2,−2) + (2, 2)

• (1, 2) point:

m2L2 U(1)× U(1)
0 (0, 4) + (0,−4) + (4, 0) + (−4, 0) + (0, 0)

32g21+32g1g2+6g22
(g1+g2)2

(0, 0)
2g1(3g1+2g2)

(g1+g2)2
(−2,−2) + (2, 2)
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b V0 unbroken unbroken
SUSY gauge symmetry

I 0 −64g21 (5, 0) SO(5)× USp(4)

II cosh−1
[
g2−2g1
2g1+g2

]
−64g21(g1+g2)2

(2g1+g2)2
(4, 0) USp(2)3

III cosh−1
[
6g1+g2
2g1+g2

]
−64g21(3g1+g2)2

(2g1+g2)2
(1, 0) USp(2)3

Table IV: Critical points of SO(5)× USp(4) gauging.

3.1.2 The k = 4 case

In this section, we study k = 4 case of USp(4,k)
USp(4)×USp(k)

coset manifold. The USp(4,4)
USp(4)×USp(4)

is parametrized by 16 scalars. The dimension of the manifold is twice the size of
the k = 2 case. This can lead to be more problematic in practical computation. It
is that we cannot directly analyze full 16 scalars theory. The solution is the same
as the previous cases, we simply study their submanifold and apply the powerful
technique mentioned earlier. Compact gauge groups in this case are as follows:
SO(5) × USp(4), SO(4) × USp(4) and SO(3) × SO(2) × USp(4) and we study
them in order. The methodology is similar to the k = 2 case, so many steps will
be omitted including A1 tensors.

SO(5)× USp(4) gauging

The submanifold we chose is invariant under USp(2) ⊂ USp(4). We found eight
singlets under this invariant. The corresponding non-compact generators reside
in USp(4, 2) ⊂ USp(4, 4). We employ Euler angle paremetrization, so the coset
representative now becomes

L = ea1X̃1ea2X̃2ea3X̃3ea4K1ea5K2ea6K3ea7K4ebY
8 (3.1.21)

where

X̃1 =
1√
2
(J4 − J11), X̃2 =

1√
2
(J5 − J12), X̃3 =

1√
2
(J6 − J13),

K1 = J31, K2 = J32, K3 = J33, K4 = J36 . (3.1.22)

Even though we do not study the full manifold and the gauge group is larger than
the k = 2 SO(5) × USp(2) case, we found out that the scalar potential is same
as in (3.1.6). The critical points are shown in table IV. The critical points also
have the same structure but the residual symmetries are larger. The scalar mass
spectrum for each critical points are as follows

• (5, 0) point:

m2L2 SO(5)× USp(4)
−3

4
(4,4)
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b V0 unbroken unbroken
SUSY gauge symmetry

I 0 −64g21 (4, 1) SO(4)× USp(4)

II cosh−1
[
g2−2g1
2g1+g2

]
−64g21(g1+g2)2

(2g1+g2)2
(4, 1) USp(2)3

III cosh−1
[
6g1+g2
2g1+g2

]
−64g21(3g1+g2)2

(2g1+g2)2
(0, 0) USp(2)3

Table V: Critical points of SO(4)× USp(4) gauging.

• (4, 0) point:

m2L2 USp(2)× USp(2)× USp(2)
0 (2,2,1) + (1,2,2) + (1,3,1)

g2(2g1+3g2)
(g1+g2)2

(1,1,1)
−4g21+8g1g2+3g22

4(g1+g2)2
(2,1,2)

• (1, 0) point:

m2L2 USp(2)× USp(2)× USp(2)
0 (2,2,1) + (1,2,2) + (1,3,1)

40g21+22g1g2+3g22
(3g1+g2)2

(1,1,1)

−3(12g21+8g1g2+g22)
4(3g1+g2)2

(2,1,2)

It can be easily checked that the number of Goldstone bosons corresponding to
symmetry breaking SO(5)× USp(4) → USp(2)× USp(2)× USp(2) for (4,0) and
(1,0) critical points.

SO(4)× USp(4) gauging

The coset representative is the same as in the previous case k = 5 SO(5)×USp(4).
The scalar potential is exactly the same for k = 2 SO(4) × USp(4) case as well
as the structure of the critical points, except for the unbroken gauge symmetry as
listed in the table V. The trivial critical point and critical point II preserve full
supersymmetry while critical point III is non-supersymmetric. According to BF
bound, the non-supersymmetric critical point III is stable if and only if g1 > 0
and g2 > 0.21432g1. The scalar mass spectra are given below.

• (4, 1) point:

m2L2 SO(4)× USp(2) ∼ SU(2)× SU(2)× USp(4)
−3

4
(2,1,4) + (1,2,4)

• (4, 1) point:
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a1 V0 unbroken unbroken
SUSY gauge symmetry

I 0 −64g21 (3, 2) SO(3)× SO(2)× USp(4)

II 1
2

ln
[
g2−8g1−4

√
g1(4g1−g2)

g2

]
−64g21(g1−g2)2

g22
(2, 0) U(1)× U(1)× USp(2)

III 1
2

ln
[
g2+8g1−4

√
g1(4g1+g2)

g2

]
−64g21(g1+g2)2

g22
(1, 2) U(1)× U(1)× USp(2)

Table VI: Critical points of SO(3)× SO(2)× USp(4) gauging.

m2L2 USp(2)× USp(2)× USp(2)
0 (1,2,2) + (1,3,1)

g2(2g1+3g2)
(g1+g2)2

(1,1,1)
− g1g2(g1+2g2)

(g1+g2)2(2g1+g2)
(2,1,2)

− (2g1+g2)(2g1+3g2)
4(g1+g2)2

(2,2,1)

• Non-supersymmetric point:

m2L2 USp(2)× USp(2)× USp(2)
0 (1,2,2) + (1,3,1)

40g21+22g1g2+3g22
(3g1+g2)2

(1,1,1)
−3(2g1+g2)(6g1+g2)

4(3g1+g2)2
(2,1,2)

−g1(20g21+13g1g2+2g22)
(2g1+g2)(3g1+g2)2

(2,2,1)

SO(3)× SO(2)× USp(4) gauging

In this case, we choose USp(2)× U(1)diag-singlet submanifold, so the coset repre-
sentative is the same as k = 2 SO(3)×SO(2)×USp(2) case which is (3.1.14). The
dimension of submanifold is four which corresponds to four singlets of USp(2) ×
U(1)diag. The scalar potential is the same as in k = 2 SO(3) × SO(2) × USp(2)
case. The critical points and their unbroken supersymmetry and gauge symmtery
are given in the table VI. The scalar mass spectra are given in the following tables.

• (3, 2) point:

m2L2 SO(3)× USp(4)
−3

4
(2,4) + (2,4)

• (2, 0) point:
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m2L2 U(1)× U(1)× USp(2)
0 (4, 0,1) + (−4, 0,1) + (0, 4,1) + (0,−4,1) + (0, 0,1)

+(1,−1,2) + (−1, 1,2)
32g21−32g1g2+6g22

(g1−g2)2
(0, 0,1)

−2g1(g1−2g2)
(g1−g2)2

(−2,−2,1) + (2, 2,1)
−4g21−8g1g2+3g22

4(g1−g2)2
(−1,−1,2) + (1, 1,2)

• (1, 2) point:

m2L2 U(1)× U(1)× USp(2)
0 (4, 0,1) + (−4, 0,1) + (0, 4,1) + (0,−4,1) + (0, 0,1)

+(1,−1,2) + (−1, 1,2)
32g21+32g1g2+6g22

(g1+g2)2
(0, 0,1)

−2g1(3g1+2g2)
(g1+g2)2

(−2,−2,1) + (2, 2,1)
−4g21+8g1g2+3g22

4(g1+g2)2
(−1,−1,2) + (1, 1,2)

Note that critical points in this case is similar to the k = 2 case because USp(4, 2)/USp(4)×
USp(2) scalar manifold can be embedded in the theory with USp(4, 4)/USp(4)×
USp(4) scalar manifold. This is confirned by the fact that USp(2) singlets are
parametrized by non-compact generators of USp(4, 2) which is a subgroup of
USp(4, 4).

3.2 Non-compact gauge groups

In the previous section, compact gaugings are all possible because they satisfied
two constraints on T-tensor mentioned earlier. On the other hand, viable non-
compact gaugings are not priori classified, so the additional task here is to test
them with constraint on T-tensors. Like compact cases, the embedding tensors
are defined by Cartan-Killing form and will be elaborated in subsections. It is well
known that at critical points the unbroken gauge groups are compact subgroups,
especially at trivial critical points the unbroken gauge groups are their maximal
gauge groups. The unbroken gauge symmetry and the unbroken supersymmetry
are presented in the tables for each case as well as their A1 tensor. As in the
compact case, we study two categories: k = 2 and k = 4 and the studies here are
similar to the compact cases. For k = 2 case, we will study its RG flow in the
chapter 5.

The k = 2 case

In this case, we have two possible gauge groups namely the whole isometry group
USp(2) × USp(4, 2) itself and USp(2) × USp(2, 2). However, the potential of
USp(2) × USp(4, 2) gauging simply gives rise to a cosmological constant. As
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b V0 unbroken unbroken
SUSY gauge symmetry

I 0 −4(g1 + g2)
2 (4, 1) USp(2)3

II cosh−1
(

g2−g1
g1+g2

)
−4g21(2g1+g2)2

(g1+g2)2
(4, 0) USp(2)× USp(2)

III cosh−1
(
−g1+3g2

g1+g2

)
−4g21(2g1+3g2)2

(g1+g2)2
(1, 0) USp(2)× USp(2)

IV ln(2 +
√
3) −1

4
(27g21 + 54g1g2 + 19g22) (0, 0) USp(2)× USp(2)

Table VII: Critical points of USp(2)× USp(2, 2) gauging.

a result, the only non-trivial admissible gauging is USp(2) × USp(2, 2). The
embedding tensor reads

Θ = g1ΘUSp(2) + g2ΘUSp(2,2) (3.2.1)

where g1 and g2 are two independent coupling constants. The factor ΘUSp(2,2) and
ΘUSp(2) are the Cartan-Killing forms of USp(2, 2) and USp(2), respectively.

The overlapped non-compact generators of the coset representative with the
generators of gauge groups do not appear in the final form of scalar potential. It
allows us to neglect this part in the coset representative. Consequently, this leaves
us with four scalars associated with non-compact directions of another USp(2, 2)
in USp(4, 2). The submanifold now becomes USp(2, 2)/USp(2) × USp(2). With
Euler angles of USp(2)× USp(2), the coset representative reads

L = ea1X1ea2X2ea3X3ebY
7 (3.2.2)

where Xi are given in (3.1.5). The scalar potential depends only on b and it reads

V =
1

16

[
8(g1 − g2 + (g1 + g2) cosh(b))2 sinh2 b

− (3g1 + 11g2 + 4(g1 − g2) cosh b+ (g1 + g2) cosh(2b))2
]
. (3.2.3)

Some of the critical points are shown in table VII. The A1 tensor at each symmetric
critical point is given by

A
(I)
1 = (g1 + g2)diag (−1,−1,−1,−1, 1) ,

A
(II)
1 = diag

(
β, β, β, β,

g2(−2g1 + g2)

g1 + g2

)
,

A
(III)
1 = diag

(
γ, γ, γ, γ,−g2(2g1 + 3g2)

g1 + g2

)
(3.2.4)

where
β = −g2(2g1 + g2)

g1 + g2
, γ = −g2(2g1 + 5g2)

g1 + g2
. (3.2.5)

We found four critical points and three of which preserve (4,1), (4,0) and (1,0)
supersymmetry, respectively. The last critical IV is non-supersymmetric with the
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value of scalar b independent of coupling constants. Note that at critical point
I, if g2 = −g1, then V0 = 0 and we have Minkowskian vacuum; otherwise, we
get AdS groundstate. As in the other cases, trivial critical point I preserves full
supersymmetry, in this case, N = (4, 1). However, the gauge symmetry is not fully
preserved as in those compact cases. The unbroken gauge symmetry is its maximal
compact subgroup USp(2)×USp(2)×USp(2). The number of massless Goldstone
bosons is four corresponding to non-compact generators of gauge group. The
superconformal group at trivial critical point is Osp(4|2,R) × Osp(1|2,R). This
comes from the fact that the supercharges transform under USp(2) × USp(2) ⊂
SO(5)R as (2,2) + (1,1).

Scalar mass spectra at all four critical points are given below.

• (4, 1) point:

m2L2 USp(2)× USp(2)× USp(2)
0 (1,2,2)

−g1(g1+2g2)
(g1+g2)2

(2,1,2)

• (4, 0) point:

m2L2 USp(2)× USp(2)
0 (2,2) + (1,3)

4g1(3g1+g2)
(2g1+g2)2

(1,1)

• (1, 0) point:

m2L2 USp(2)× USp(2)
0 (2,2) + (1,3)

4(g1+2g2)(3g1+5g2)
(2g1+3g2)2

(1,1)

• Non-supersymmetric point:

m2L2 USp(2)× USp(2)
0 (2,2) + (1,3)

12(3g1+g2)(3g1+5g2)

27g21+54g1g2+19g22
(1,1)

At supersymmetric critical point II and III, massless Goldstone bosons corre-
sponding to symmetry breaking USp(2) × USp(2) → USp(2)diag. The non-
supersymmetric critical point IV satisfies BF bound if g2 > 3

79
(2
√
210− 45)g1.
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The k = 4 case

Roughly speaking, there are three possible cases which are subgroups of USp(4, 4):
USp(2, 2)×USp(2, 2), USp(2)×USp(4, 2) and USp(2)×USp(2)×USp(2, 2), but
two from all three fail the T-tensor constraint test. The only admissible gauge
group is USp(2, 2)× USp(2, 2), and its embedding tensors reads

Θ = g1ΘUSp(2,2) + g2ΘUSp(2,2) , (3.2.6)

where g1 and g2 are independent coupling constants. ΘUSp(2,2) is given by the
Cartan-Killing form of USp(2, 2). The manifold is parametrized by

(
USp(2,2)

USp(2)×USp(2)

)2
coset space with the two USp(2, 2) non-compact groups which are different from
those in the gauge group. We use Euler angle parametrization, the coset repre-
sentative reads

L = ea1X1ea2X2ea3X3eb1Y
7

ea4X4ea5X5ea6X6eb2Y
16 (3.2.7)

where

X1 =
1√
2
(J1 − J11), X2 =

1√
2
(J2 − J12), X3 =

1√
2
(J3 − J13),

X4 =
1√
2
(J4 − J22), X5 =

1√
2
(J5 − J23), X6 =

1√
2
(J6 − J24).(3.2.8)

The scalar potential depends on two scalar and is given by

V =
1

16
[(g1 + g2)(6 + cosh(2b1))− (4(g1 − g2) cosh b1 + 4(g2 − g1) cosh b2

+(g1 + g2) cosh(2b2))2 + 8(g1 − g2 + (g1 + g2) cosh(b1))2 sinh2 b1

+8(g2 − g1 + (g1 + g2) cosh b2)2 sinh2 b2
]
. (3.2.9)

The calculation of critical points can be simplified if we simply turn off scalar b2.
As a result, the critical points are solely determined by the value of b1. We found
four critical points; three of which are supersymmetric with (4,1), (4,0) and (1,0).
The critical point IV is non-supersymmetric and b1 is independent of couplings. As
in the previous case, if g2 = −g1, we simply get V0 = 0 or Minkowskian vacuum for
trivial critical point. They are shown in the table VIII below. The scalar masses
at all critical points are also given below.

• (4, 1) point:

m2L2 USp(2)× USp(2)× USp(2)× USp(2)
0 (1,2,2,1) + (2,1,1,2)

−g2(2g1+g2)
(g1+g2)2

(1,2,1,2)
−g1(g1+2g2)

(g1+g2)2
(2,1,2,1)

• (4, 0) point:
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b1 V0 unbroken unbroken
SUSY gauge symmetry

I 0 −4(g1 + g2)
2 (4, 1) USp(2)4

II cosh−1
(

−g1+g2
g1+g2

)
−4g21(2g1+g2)2

(g1+g2)2
(4, 0) USp(2)3

III cosh−1
(

−g1−3g2
g1+g2

)
−4g21(2g1+3g2)2

(g1+g2)2
(1, 0) USp(2)3

IV cosh−1 2 −1
4
(27g21 + 54g1g2 + 19g22) (0, 0) USp(2)3

Table VIII: Critical points of USp(2, 2)× USp(2, 2) gauging.

m2L2 USp(2)× USp(2)× USp(2)
0 (2,2,1) + (2,1,2) + (3,1,1)

4g1(3g1+g2)
(2g1+g2)2

(1,1,1)
− (g1+g2)(3g1+g2)

(2g1+g2)2
(1,2,2)

• (1, 0) point:

m2L2 USp(2)× USp(2)× USp(2)
0 (2,2,1) + (2,1,2) + (3,1,1)

4(3g21+11g1g2+10g22)
(2g1+3g2)2

(1,1,1)

−3(g21+4g1g2+3g22)
(2g1+3g2)2

(1,2,2)

• Non-supersymmetry point:

m2L2 USp(2)× USp(2)× USp(2)
0 (2,2,1) + (2,1,2) + (3,1,1)

12(3g1+g2)(3g1+5g2)

27g21+54g1g2+19g22
(1,1,1)

− 24g2(3g1+g2)

27g21+54g1g2+19g22
(1,2,2)

Note that at trivial critical point I, the SO(5)R R-symmetry is broken to SU(2)×
SU(2) ∼ USp(2) × USp(2). The supercharges transform under this subgroup
as (2,2) + (1,1). The corresponding superconformal group is Osp(4|2,R) ×
Osp(1|2,R). The stability condition for non-supersymmetric point is g2 > 3

79
(2
√
210−

45)g1 which is the same condition as in the previous case.

3.3 Non-semisimple N = 5, SO(5) n T10 gauged
supergravity

The aspect that makes non-semisimple gaugings outshine the others is that it can
obviously be identified as a dimensional reduction theory from higher dimensional
sibling on an orbifold. In this section, we study non-semisimple gauge group that
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is in the form of G0 n TdimG0 where G0 is a semisimple group and TdimG0 is
translational group with dimension of dimG0. Additionally, TdimG0 transform in
the adjoint representation of G0 and mutually commute. Specifically, we consider
k = 4 case with non-semisimple group SO(5)n T10 which is a subgroup of global
symmetry group USp(4, 4). The embedding tensor can be defined by

Θ = g1Θab + g2Θbb . (3.3.1)

where g1 and g2 are, at this stage, the independent coupling constants. The
roman indices a and b denotes semisimple SO(5) and translation sections T10,
respectively. The supersymmetric condition is checked by verifying constraint on
T-tensors. We now discuss the explicit form of the generators SO(5)nT10. Note
that the semisimple SO(5) subgroup is a diagonal subgroup of SO(5)× SO(5) ∼
USp(4) × USp(4) ⊂ USp(4, 4). For brevity, we simply neglect subscript ”diag”.
Their generators, labelled J ij, can be defined by summation of the generic SO(5)
R-symmetry generators T ij and another USp(4) generators that can be identified
as of replica of T ij generators which live in orthogonal subspace, i.e., T̃ ij. They
read

J ij = T ij + T̃ ij, i, j = 1, 2, ..., 5 . (3.3.2)
The translational generators are built from a linear combination of T ij − T̃ ij and
some non-compact generators. The generators of T10 are given by

tij = T ij − T̃ ij + Ỹ ij, i, j = 1, 2, ..., 5 . (3.3.3)

The explicit form of the SO(5)diag are given by T ij + T̃ ij in which

T̃ 12 =
1√
2
(J13 − J24) , T̃ 13 = − 1√

2
(J11 + J22) , T̃ 23 =

1√
2
(J12 − J23) ,

T̃ 34 =
1√
2
(J13 + J24) , T̃ 14 =

1√
2
(J12 + J23) , T̃ 24 =

1√
2
(J11 − J22) ,

T̃ 45 = J31, T̃ 15 = −J33, T̃ 25 = −J36, T̃ 35 = J32 .

(3.3.4)

The generators Ỹ ij in T10 are given by

Ỹ 12 = i(J16 − J30), Ỹ 13 = −i(J14 + J28), Ỹ 23 = i(J15 + J29),

Ỹ 34 = i(J16 + J30), Ỹ 14 = i(J15 + J29), Ỹ 24 = i(J14 − J28),

Ỹ 45 = i(J17 + J25), Ỹ 15 = −i(J19 + J27), Ỹ 25 = i(J21 − J34),

Ỹ 35 = i(J18 + J26). (3.3.5)

Note that in this k = 4 theory the 16 scalar fields transform as (4,4) under
SO(5)×SO(5). On the other hand, under SO(5)diag, they transform as 1+5+10.
The scalars in the 10 representation are associated with T10 generators.

We parametrize submanifold which is SO(5)diag singlet. Only one scalar
corresponds to this singlet and the linear combination of the generators is Y 7+Y 16,
so the coset representative is

L = ea(Y
7+Y 16) . (3.3.6)
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The scalar potential is found to be

V = −64g1e
−3a (3eag1 + 2g2) . (3.3.7)

As mentioned earlier, at the level of Lagrangian, g1 and g2 are arbitrary and
independent to preserve supersymmetry. However, at trivial critical point, to
preserve maximally supersymmetry this relation must be satisfied, i.e., g2 = −g1.
The same condition occurs in N = 4, 8 gauged supergravity [34, 94]. Applying
this condition and relabelling g1 to g, now we have the potential

V = −64g2e−3a (3ea − 2) . (3.3.8)

The scalar potential is plot in Figure 3.1 with g = 1 and the critical point is easy
to spot. There is only trivial critical point with a = 0, V0 = −64g2 and N = (5, 0)
supersymmetry. Note that the vacuum is similar to the ground state in N = 16
gauged supergravity with SO(4)×SO(4)n (T12, T̂34) gauge group [95]. The mass
spectra and their representation are given below

m2L2 SO(5)
3 1
3 5
0 10

1 2 3 4 5
a

-50

50

100

V

Figure 3.1: The scalar potential of N = 5, SO(5) n T10 gauged supergravity for
SO(5) singlet scalar with g = 1.

The superconformal group is Osp(5|2,R) × Sp(2,R). There are ten Goldstone
bosons associated with the symmetry breaking SO(5) n T10 → SO(5) at trivial
critical point. In order to find more critical points, we explore a larger manifold.
We choose the manifold that is invariant under SO(3)diag. The 16 scalars transform
under this group as (2 + 2) × (2 + 2) = 4 × (1 + 3). Four singlets are found, so
the coset representative is given by

L = ea1Y
4

ea2Y
7

ea3Y
9

ea4Y
16

. (3.3.9)
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The scalar potential is given by

V = −8g21

(
cosh

(a3
2

)
cosh

(a4
2

)
sinh

(a2
2

)
− cosh

(a4
2

)
sinh

(a1
2

)
sinh

(a3
2

)
+ cosh

(a2
2

)
sinh

(a4
2

)
− cosh

(a1
2

)(
cosh

(a2
2

)
cosh

(a3
2

)
cosh

(a4
2

)
+ sinh

(a2
2

)
sinh

(a4
2

)))2
(13− cosh(a3) + cosh(a4)− cosh(a3) cosh(a4)

+ cosh(a2)(−1 + 3 cosh(a4) + cosh(a3)(1 + cosh(a4)))
−4 cosh

(a2
2

)
sinh(a1) sinh(a3)− 4 cosh

(a2
2

)
cosh(a4) sinh(a1) sinh(a3)

−4 cosh
(a3
2

)
sinh(a2) sinh(a4) + 8 sinh(a1) sinh

(a2
2

)
sinh

(a3
2

)
sinh(a4)

+ cosh(a1) (1− 3 cosh(a4) + 3 cosh(a3)(1 + cosh(a4))
+ cosh(a2)(−1 + 3 cosh(a4) + cosh(a3)(1 + cosh(a4)))
−4 cosh

(a3
2

)
sinh(a2) sinh(a4)

))
. (3.3.10)

The potential is too complicated to find critical points, so the study of this po-
tential will not be further analyzed in this work.



CHAPTER IV

N = 6 Theory

In this chapter we study the vacua of N = 6 gauged supergravity in three di-
mensions whose target space is in the form of SU(4,k)

S(U(4)×U(k))
1 where k = 1, 2, 3, 4.

The discussion is based on paper in [40]. As in the N = 5 theory, we classify
the studied gauge groups into: compact, non-compact and non-semisimple. The
compact gauge groups are in the form of SO(p)× SO(6− p)× SU(k)× U(1) for
p = 3, 4, 5, 6. For non-compact gauging, the admissible gauge groups are non-
compact subgroups of SU(4, k). It is in the form of SO(6) n T15 where T15 is
translational group with 15 generators and the scalar manifold is SU(4,4)

S(U(4)×U(4))
. We

also obtain the domain wall solution for this theory and present it in the last
section.

The analysis and format is quite similar to N = 5 case. We start the
chapter by identifying the generators such as R-symmetry group SO(6). Then
we parametrize the coset manifold. Some cases we parametrize full manifold and
the others we paremetrize submanifold thereof. In parametrization, we employ
Euler angle parametrization interchangeably with the traditional unitary gauge
for some cases. The complicated scalar potential with too many variables can be
simplified by turning some of them off or setting them to be the same variable. The
scalar potential can be computed by coding and running the computer application
Mathematica. Next, we identify critical points, unbroken supersymmetry and
residual gauge symmetry at that points. The mass spectra at trivial critical points
are given along with their representation under residual gauge group.

Now we present the generators we use for this chapter. Note that this
convention is local, i.e. the non-compact generators Y As are not identical to
those of N = 5 theory. However, for some generators such as generalized Gell-
Mann matrices λi, we intentionally connect between those two. The non-compact
generators constructed by Weyl unitary trick of SU(4, 4) in terms of generalized
Gell-Mann matrices, λi, i = 1, . . . , 63, are given by

Y A =


1√
2
cA+15, A = 1, . . . , 8

1√
2
cA+16, A = 9, . . . , 16

1√
2
cA+19, A = 17, . . . , 24

1√
2
cA+24, A = 25, . . . , 32

. (4.0.1)

In our convention, cis are given by
ci = −iλi (4.0.2)

1S(U(4)× U(k)) is isomorphic to SU(4)× SU(k)× U(1)
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The SO(6)R R-symmetry generators are identified to be

T̄ 12 =
1

2
c3 +

1

2
√
3
c8 −

1√
6
c15, T̄ 13 = −1

2
(c2 + c14), T̄ 23 =

1

2
(c1 − c13),

T̄ 34 =
1

2
c3 −

1

2
√
3
c8 +

1√
6
c15, T̄ 14 =

1

2
(c1 + c13), T̄ 35 = −1

2
(c6 + c9),

T̄ 56 =
1√
3
c8 +

1√
6
c15, T̄ 36 = −1

2
(c7 + c10), T̄ 24 =

1

2
(c2 − c14),

T̄ 45 =
1

2
(c7 − c10), T̄ 46 =

1

2
(c9 − c6), T̄ 15 =

1

2
(c4 − c11),

T̄ 16 =
1

2
(c5 − c12), T̄ 25 =

1

2
(c5 + c12), T̄ 26 = −1

2
(c4 + c11) . (4.0.3)

The generators used for constructing non-semisimple gauge group SO(6) n T15

will be discussed in the non-semisimple gauging section.

4.1 Compact gauge groups and their vacua

In this section, we study N = 6 theories with compact gauge group of the form
SO(p) × SO(6 − p) × SU(k) × U(1). The integer p helps us classify subgroup of
R-symmetry group SO(6). It has four possible choices which are 0, 1, 2 and 3.
Note that when p = 1, the SO(p)×SO(6−p) factor is simply SO(5) and for p = 0
is SO(6). The integer k denotes the number of independent matter multiplets. It
also labels the group SU(k) it can range from 1 to infinity but in this work we
consider only for k = 1, 2, 3 and 4. All in all, we consider 16 cases.

In each section we study for a specific k and the subsections thereof we ex-
plore for a particular number p starting from p = 1 all the way to p = 3. We
start by parametrizing the full manifold or, in some cases, submanifolds. The
technique mentioned in the N = 5 theories allows us to deal with submanifold
instead of the larger full manifold. Then we calculate the scalar potential along
with some important quantities such as A1 tensor. The critical points can be cal-
culated by optimization problem in one or multi variables calculus. The unbroken
supersymmetry and residual gauge symmetry are specified at each critical point.
The mass spectrum at trivial critical point are presented along with their resid-
ual gauge group representation. Note that we will not study mass spectrum for
non-trivial critical points since the calculations are much more complicated than
N = 5 theories.

The pre-classified admissible gauge groups of compact type are discussed in
[37]. The embedding tensors for this case is given by

Θ = ΘSO(p) −ΘSO(6−p) + αΘSU(k) −
4α(k − 1) + k(p− 3)

4 + k
ΘU(1) (4.1.1)

where the free parameter α is a relative coupling constant between the factor
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SU(k) and the factor SO(p)× SO(6− p). The ΘSO(p) −ΘSO(6−p) is given by

ΘIJ,KL = θδKL
IJ + δ[I[KΞL]J ], (4.1.2)

ΞIJ =

{
2
(
1− p

N

)
δIJ , I ≤ p

−2p
N
δIJ , I > p

, θ =
2p−N

N
(4.1.3)

with N = 6.

4.1.1 The k = 1 case

This case is the simplest since we are dealing with only one matter multiplet. The
manifold is in the form of coset SU(4,1)

SU(4)×U(1)
parametrized by eight scalars. In the

traditional unitary gauge parametrization, the calculation might be intractable for
some computer. With the help of Euler angle parametrization, this problem can
be partly resolved. In this case, we choose the Euler angle parametrization and
the coset representative reads

L = ea1c3ea2c2ea3c3ea4c5ea5c8ea6c10ea7c15e
i√
2
b1c17 . (4.1.4)

The gauge group in the general form SO(p) × SO(6 − p) × SU(k) × U(1)
may not straightforwardly apply to k = 1 case, since the actual gauge group for
k = 1 is SO(p)×SO(6− p)×U(1). The exhaustive list of possible gauging is the
following

• SO(6)× U(1)

• SO(5)× U(1)

• SO(3)× SO(3)

Note that there is no U(1) factor for k = 3 case. The SU(k) factor for k = 1 is
neglected. As a result, no free parameter α in k = 1 theory. Together with simple
manifold structure, we get a simple result for all p = 0, 1, 2, 3 cases with the same
coset representative (4.1.4). The potential depends on one scalar field and it reads

V = −8g2[5 + 3 cosh(
√
2b1)]. (4.1.5)

The reason why the other seven scalars ai’s do not appear in the final form of
the scalar potential is that the potential is gauge invariant, and the generators
of parametrization (4.1.4) overlapped with some gauge groups. Consequently, the
cancelation occur during the calculation process.

Obviously, we have only one critical point and it is of course trivial. At trivial
critical point b1 = 0 the value of potential is V0 = V (b1 = 0) = −64g2. It preserves
full gauge symmetry and full supersymmetry. The preserved supersymmetry at
this point is given by two number (p, 6−p) originated from SO(p)×SO(6−p). That
number can also be written with notation (n−, n+) as in the previous chapter where
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n− and n+ are number of negative and positive eigenvalues of the corresponding
A1 tensor at that critical point. This is the same number of supersymmetries as
the dual two dimensional conformal field theory where n− and n+ represent the
chirality of spinor in two dimensions. We do not present the explicit value of A1

tensors from now on, since only number of negative and positive eigen values are
used to determine type of supersymmetry.

The mass spectrum at trivial critical point can be computed by using unitary
gauge, so the coset representative is given by

L = eϕ1Y1eϕ2Y2eϕ3Y3eϕ4Y4eϕ5Y5eϕ6Y6eϕ7Y7eϕ8Y8 . (4.1.6)

The unitary gauge is preferred to Euler angle parametrization since it give the
correct interpretation of mass via canonically normalization. The scalar potential
computed from this coset is quite messy compared to (4.1.5); therefore, in other
gaugings in N = 5 and N = 6, we omitted the results. It depends on full eight
scalars instead of one and it is given by

VM = −g2
[
19 + 3 cosh(

√
2ϕ5) cosh(

√
2ϕ6) + 3 cosh(

√
2ϕ7) cosh(

√
2ϕ8)

+3 cosh(
√
2ϕ5) cosh(

√
2ϕ6) cosh(

√
2ϕ7) cosh(

√
2ϕ8) + 3 cosh(

√
2ϕ3)×

cosh(
√
2ϕ4)

[
1 + cosh(

√
2ϕ5) cosh(

√
2ϕ6)

] [
1 + cosh(

√
2ϕ7) cosh(

√
2ϕ8)

]
+3 cosh(

√
2ϕ1) cosh(

√
2ϕ2)

[
1 + cosh(

√
2ϕ3) cosh(

√
2ϕ4)

]
×[

1 + cosh(
√
2ϕ5) cosh(

√
2ϕ6)

] [
1 + cosh(

√
2ϕ7) cosh(

√
2ϕ8)

]]
. (4.1.7)

The mass spectrum is given in table below. In the table we present m2L2, confor-
mal group SO(2, 2) representation and residual gauge symmetry representation.

m2L2 (h, h̄) SO(6)
−3

4

(
3
4
, 3
4

)
4

−3
4

(
1
4
, 1
4

)
4̄

The relations between scale dimension ∆, (h, h̄) and m2L2 is given by the well-
known equation

∆ = h+ h̄,

m2L2 = ∆(∆− 2). (4.1.8)

Note that scalar field has spin s = 0, so we have h = h̄.
Recall that the second order derivative of potential is related to the mass of

a scalar. The scalar potential (4.1.5) seems correspond to mass of one scalar while
keeping the other seven scalar massless. The caveat is that the scalar potential
from coset (4.1.5) does not give rise to the correct interpretation of mass since
the scalar kinetic term are not canonically normalized as mentioned earlier. The
explanation is quite simple in term of cartesian and polar coordinates analog.
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The scalar fields in unitary gauge ϕi are metaphorically cartesian coordinates and
the scalar field b is analogous to radial coordinate and seven angle variables θi
for i = 1, . . . , 7. This allows us to define relation between fields by the relation∑8

i=1 ϕ
2
i = b2 and ϕi(θi, b).

Note that all compact gauge groups for k = 1 have the same scalar potential
even in the unitary gauge. In general it is not necessarily the case; however, this
mystery is still not solved even at the time of writing. The scalar mass spectrum
for the other three cases are given below

• For SO(5)×U(1) gauge group, the scalar mass spectrum at the trivial critical
point is given below.

m2L2 (h, h̄) SO(5)
−3

4

(
3
4
, 3
4

)
4

−3
4

(
1
4
, 1
4

)
4

• For SO(4) × SO(2) × U(1) gauge group, the scalar mass spectrum at the
trivial critical point is given below.

m2L2 (h, h̄) SO(4) ∼ SU(2)× SU(2)
−3

4

(
3
4
, 3
4

)
(2,1) + (1,2)

−3
4

(
1
4
, 1
4

)
(2,1) + (1,2)

• For SO(3) × SO(3) gauge group, the scalar mass spectrum at the trivial
critical point is given below.

m2L2 (h, h̄) SO(3)× SO(3)
−3

4

(
3
4
, 3
4

)
(2,2)

−3
4

(
1
4
, 1
4

)
(2,2)

To summarize: the k = 1 case is the simplest since they are parametrized by
eight scalars which much smaller compared to higher k (number of scalars is 8k).
They all share the exact form of scalar potential. There is exactly one critical
point which is, of course, trivial. No Goldstone bosons are found, since full gauge
symmetry is preserved at that critical point.

4.1.2 The k = 2 case

The k = 1 theories studied in the previous section have only one coupling constant.
The situation is slightly different for k > 1 case, they all have another coupling
for the SU(k) factor. In our convention it is relative coupling the gauge group
SO(p) × SO(6 − p) and SU(k). This is different from the N = 5 case since we
keep both couplings g1 and g2 unmodified. To tackle all 16 scalars is beyond
our capability. Fortunately, some of the critical can be found by the help of the
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method discussed in the previous chapter. This technique reduces the complexity
by considering submanifold instead of full manifold SU(4,2)

SU(4)×SU(2)×U(1)
.

The submanifold we used is invariant under U(1)diag group. It can be em-
bedded in submanifold SU(2,2)

SU(2)×SU(2)×U(1)
, so the number of scalars reduce to eight

which is as small as the full manifold of k = 1 cases. The possible gauge groups
we will study are the following

• SO(6)× SU(2)× U(1)

• SO(5)× SU(2)× U(1)

• SO(4)× SO(2)× SU(2)× U(1)

• SO(3)× SO(3)× SU(2)× U(1)

The U(1)diag is generated by X12 +X56 where XIJ are generators of SO(6). With
the Euler angle parametrization, the coset representative is given by

L = ea1c33ea2c34ea3K3ea5M1ea6M2ea4M3e
i√
2
b1c18e

i√
2
b2c31 (4.1.9)

where

K3 =
1√
2
[c33, c34] , M1 = − 1

2
√
2
[c18, c22] ,

M2 = − 1

2
√
2
[c19, c22] , M3 =

1√
2
[M1,M2] . (4.1.10)

Note that the SO(5) × SU(2) × U(1) case need a special treatment. The
generators X56 is not an element in SO(5); therefore, the coset representative
(4.1.9) cannot be used. However, we can parametrize U(1)diag invariant manifold
by replacing the generators to X12 +X34. Consequently, the coset representative
exclusively to this case is given by

L = ea1κea2c14ea3κea4c33ea5c34ea6λe
i√
2
b1c20e

i√
2
b2c31 (4.1.11)

where
κ =

1√
2
[c13, c14] , λ =

2√
10
c24 −

3√
15
c35 . (4.1.12)

Having established the explicit form of various generators and coset representative,
we now ready to find the scalar potential and their critical points starting from
SO(6)× SU(2)× U(1) gauging.
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b V0 unbroken SUSY
I 0 −64g2 (6, 0)

II 1√
2

cosh−1
(
α−1
α+1

)
, α < −1 −16g2(1+2α)2

(1+α)2
(4, 0)

III 1√
2

cosh−1
(
α+3
α+1

)
, α > −1 −16g2(3+2α)2

(1+α)2
(2, 0)

Table I: Critical points of SO(6)× SU(2)× U(1) gauging for the k = 2 case.

SO(6)× SU(2)× U(1) gauging

Recall that we parametrize U(1)diag invariant submanifold with the coset repre-
sentative (4.1.9). The scalar potential V is a function of two variables reduced
from eight and is given by

V =
1

8
g2
[
−222 + 32(−3 + 2α + α2) cosh(

√
2b1)− 2(1 + α)2 cosh(2

√
2b1)

−48 cosh[
√
2(b1 − b2)]− 32α cosh[

√
2(b1 − b2)]− 16α2 cosh[

√
2(b1 − b2)]

+ cosh[2
√
2(b1 − b2)] + 2α cosh[2

√
2(b1 − b2)] + α2 cosh[2

√
2(b1 − b2)]

−96 cosh(
√
2b2) + 64α cosh(

√
2b2) + 32α2 cosh(

√
2b2)− 2 cosh(2

√
2b2)

−4α cosh(2
√
2b2)− 2α2 cosh(2

√
2b2)− 48 cosh[

√
2(b1 + b2)]

−32α cosh[
√
2(b1 + b2)]− 16α2 cosh[

√
2(b1 + b2)] + cosh[2

√
2(b1 + b2)]

+2α cosh[2
√
2(b1 + b2)] + α2 cosh[2

√
2(b1 + b2)]− 60α− 30α2

]
. (4.1.13)

There are three critical points found and they are shown in Table I. We use the
roman number to label different critical point. The number I in this case and
the others to come is always tagged as trivial critical point. In order to simplify
problem, we put constraint b1 = b2 = b on the potential and we simply give the
value of b at each critical point in the second column. In the third column V0 is the
value of the potential at the corresponding critical point. The next column is the
unbroken supersymmetries at that particular critical point labelled by two number
which is N+ and N− for different chirality of supercharges in its dual theory in two
dimensions. The unbroken gauge symmetries at each critical point are as follows

• Critical point I : SO(6)× SU(2)× U(1)

• Critical point II : SU(2)× SU(2)× U(1)diag

• Critical point III : SU(2)× SU(2)× U(1)diag

The scalar mass spectrum at the trivial critical point is given in the table below.

m2L2 (h, h̄) SO(6)× SU(2)
−3

4

(
3
4
, 3
4

)
(4,2)

−3
4

(
1
4
, 1
4

)
(4̄,2)
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b V0 unbroken SUSY
I 0 −64g2 (5, 1)

II 1√
2

cosh−1
(
α−1
α+1

)
, α < −1 −16g2(1+2α)2

(1+α)2
(4, 1)

III 1√
2

cosh−1
(
α+3
α+1

)
, α > −1 −16g2(3+2α)2

(1+α)2
(1, 0)

Table II: Critical points of SO(5)× SU(2)× U(1) gauging for the k = 2 case.

SO(5)× SU(2)× U(1) gauging

As mentioned before, this case is special and we use different coset from the others
(4.1.11). The scalar potential is exactly the same as in SO(6) × SU(2) × U(1)
case (4.1.13). The critical points resembles the previous case except for unbroken
supersymmetry as shown in the table II.

The unbroken gauge symmetries at each critical point are as follows

• Critical point I : SO(5)× SU(2)× U(1)

• Critical point II : SU(2)diag × SU(2)

• Critical point III : SU(2)diag × SU(2)

The SU(2)diag is a diagonal subgroup of the SU(2) from SU(k) and one of the
SU(2) in the SO(4) ⊂ SO(5) subgroup of R-symmetry group. The scalar mass
spectrum at the trivial critical point is given below.

m2L2 (h, h̄) SO(5)× SU(2)
−3

4

(
3
4
, 3
4

)
(4,2)

−3
4

(
1
4
, 1
4

)
(4,2)

SO(4)× SO(2)× SU(2)× U(1) gauging

The coset representative for this case is the same as SO(6)×SO(2)×SU(2)×U(1)
case and given in (4.1.9). The scalar potential is different from the previous two
cases and it has the following form

V = −1

8
g2
[
192 + 30α2 − 32(−4 + α2) cosh(

√
2b1) + 2α2 cosh(2

√
2b1)

+32 cosh[
√
2(b1 − b2)] + 16α2 cosh[

√
2(b1 − b2)]− α2 cosh[2

√
2(b1 − b2)]

+128 cosh(
√
2b2)− 32α2 cosh(

√
2b2) + 2α2 cosh(2

√
2b2)

+32 cosh[
√
2(b1 + b2)] + 16α2 cosh[

√
2(b1 + b2)]

−α2 cosh[2
√
2(b1 + b2)]

]
. (4.1.14)

Three critical points are found. We again set b1 = b2 = b at the critical points as
we did in the previous cases. The critical points in this cases used primed roman
number to distinguish from previous cases.



82

b V0 unbroken SUSY
I′ 0 −64g2 (4, 2)

II′ 1√
2

cosh−1
(
α+2
α

)
, α > 0 −16g2(1+2α)2

α2 (2, 2)

III′ 1√
2

cosh−1
(
α−2
α

)
, α < 0 −16g2(1−2α)2

α2 (2, 0)

Table III: Critical points of SO(4)×SO(2)×SU(2)×U(1) gauging for the k = 2
case.

b V0 unbroken SUSY
I′ 0 −64g2 (3, 3)

II′ 1√
2

cosh−1
(
α+2
α

)
, α > 0 −16g2(1+2α)2

α2 (1, 2)

III′ 1√
2

cosh−1
(
α−2
α

)
, α < 0 −16g2(1−2α)2

α2 (2, 1)

Table IV: Critical points of SO(3)×SO(3)×SU(2)×U(1) gauging for the k = 2
case.

The unbroken gauge symmetries at each critical point are as follows

• Critical point I′ : SO(4)× SO(2)× SU(2)× U(1)

• Critical point II′ : U(1)diag × U(1)× U(1)

• Critical point III′ : U(1)diag × U(1)× U(1)

The scalar mass spectrum at the trivial critical point is given below.

m2L2 (h, h̄) SO(4)× SU(2) ∼ SU(2)× SU(2)× SU(2)
−3

4

(
3
4
, 3
4

)
(1,2,2) + (2,1,2)

−3
4

(
1
4
, 1
4

)
(1,2,2) + (2,1,2)

SO(3)× SO(3)× SU(2)× U(1) gauging

In this case, we use the coset representative as in SO(4)× SO(2)× SU(2)×U(1)
and SO(6) × SO(2) × SU(2) × U(1) gauging. The scalar potential is the same
as in the two cases. The primed roman number indicates the similarity of critical
point compared to previous one. and distinctiveness compared to the first two
cases. The critical points are listed in the table IV.

The unbroken gauge symmetries at each critical point are as follows

• Critical point I′ : SO(3)× SO(3)× SU(2)× U(1)

• Critical point II′ : U(1)diag × U(1)

• Critical point III′ : U(1)diag × U(1)
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The scalar mass spectrum at the trivial critical point is given in the table below.

m2L2 (h, h̄) SO(3)× SO(3)× SU(2)
−3

4

(
3
4
, 3
4

)
(2,2,2)

−3
4

(
1
4
, 1
4

)
(2,2,2)

Note that there are some remarks worth mentioning here. It involves SU(k)
coupling associated with the relative coupling constant α. For α = 0, no SU(k)
coupling, SO(6) × SU(2) × U(1) and SO(5) × SU(2) × U(1) gaugings contain
only one non-trivial critical point. In addition, for the others, SO(3) × SO(3) ×
SU(2)×U(1) and SO(4)×SO(2)×SU(2)×U(1) gaugings, there is no non-trivial
critical point at all. This pattern repeats itself for k = 3 and k = 4 cases as we will
present in the next sections. This glitch might be rooted from our specific form of
coset representative. Even though many additional attempts are made under the
restriction on computational complexity , the statement about non-trivial critical
point above is not altered.

4.1.3 The k = 3 case

The number of scalar of N = 6 theory is 8k, so in this case we are dealing
with 24 scalar. The submanifold we picked is invariant under U(1)diag as in the
previous cases. There are two coset representatives corresponding to various gauge
groups. The criteria is the same as the previous cases; therefore, we have one for
SO(5)×SU(3)×U(1) and the other for SO(6)×SU(3)×U(1), SO(4)×SO(2)×
SU(3) × U(1), and SO3) × SO(3) × SU(3) × U(1). As a result, we have coset
representative SU(2,3)

SU(3)×SU(2)×U(1)
parametrized by 12 scalars.

For SO(5)× SU(3)× U(1) case, U(1)diag generator is given by X12 +X34 .
As a result, the coset representative is given by

L = ea1Λ3ea2c34ea3Λ3ea4c45ea5Λ8ea6Λ3ea7c34ea8Λ3ea9κea10c14e
i√
2
b1c20e

i√
2
b1c31 (4.1.15)

where

Λ3 =
2√
10
c24 −

3√
15
c35, Λ8 =

2√
30
c24 +

2

3
√
5
c35 −

7

3
√
7
c48, (4.1.16)

and κ is given by (4.1.12).
For the other three cases, the submanifold is invariant under U(1)diag which

the generator is given by X12 +X56. Consequently, the coset representative is the
following

L = ea1Λ3ea2c34ea3Λ3ea4c45ea5Λ8ea6Λ3ea7c34ea8Λ3ea9M3ea10M2e
i√
2
b1c18e

i√
2
b1c42 (4.1.17)

where M2 and M3 are given in (4.1.10).
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The scalar potential and values at critical points is similar to k = 2 case, so
are the residual supersymmetries. The only difference, of course, is the residual
gauge symmetry. Note that the trivial critical point always preserve full compact
gauge symmetry. The non-trivial points II, III, II′ and III′ have the following
residual symmetries.

• SO(6)× SU(3)× U(1) gauge group: SU(2)× SU(2)× U(1)× U(1)

• SO(5)× SU(3)× U(1) gauge group: SU(2)× SU(2)× U(1)

• SO(4)× SO(3)× SU(2)× U(1) gauge group: U(1)× U(1)× U(1)× U(1)

• SO(3)× SO(3)× SU(3)× U(1) gauge group: U(1)× U(1)× U(1)

The scalar mass spectra are given below.

• For SO(6) × SU(3) × U(1) gauge group, the scalar mass spectrum at the
trivial critical point is given below.

m2L2 (h, h̄) SO(6)× SU(3)
−3

4

(
3
4
, 3
4

)
(4, 3̄)

−3
4

(
1
4
, 1
4

)
(4̄,3)

• For SO(5) × SU(3) × U(1) gauge group, the scalar mass spectrum at the
trivial critical point is given below.

m2L2 (h, h̄) SO(5)× SU(3)
−3

4

(
3
4
, 3
4

)
(4, 3̄)

−3
4

(
1
4
, 1
4

)
(4,3)

• For SO(4)× SO(2)× SU(3)× U(1) gauge group, the scalar mass spectrum
at the trivial critical point is given below.

m2L2 (h, h̄) SO(4)× SU(3) ∼ SU(2)× SU(2)× SU(3)
−3

4

(
3
4
, 3
4

)
(2,1, 3̄) + (1,2, 3̄)

−3
4

(
1
4
, 1
4

)
(1,2,3) + (2,1,3)

• For SO(3)× SO(3)× SU(3)× U(1) gauge group, the scalar mass spectrum
at the trivial critical point is given below.

m2L2 (h, h̄) SO(3)× SO(3)× SU(3)
−3

4

(
3
4
, 3
4

)
(2,2, 3̄)

−3
4

(
1
4
, 1
4

)
(2,2,3)
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4.1.4 The k = 4 case

The k = 4 full scalar manifold contains 32 scalar. To tackle problem with 32
variables is impossible. Reducing to U(1)diag invariant submanifold is still not easy
to deal with. One way to subdue the difficulty is reducing the size of submanifold.
Consequently, we pick the submanifold that is invariant under U(1)diag × SU(2).
The U(1)diag sector is the same as in the previous cases. The additional SU(2)
sector is a subgroup of SU(k) = SU(4). The α → 0 limit is meaningless here,
α is always included, since the residual gauge symmetry contains subgroup of
SU(2) ⊂ SU(4). The manifold reduces to eight scalars. We use the same coset
representative as in k = 2 case. For p = 3, 4, 6, the coset representative is (4.1.9)
and for p = 5, the coset representative is (4.1.11).

The scalar potential and structure of the critical points are similar to the k =
2 case except for residual gauge symmetries of the non-trivial critical points. The
non-trivial points II, III, II′ and III′ have the following unbroken gauge symmetries.

• SO(6)×SU(4)×U(1) gauge group: SU(2)×SU(2)×SU(2)×U(1)×U(1)

• SO(5)× SU(4)× U(1) gauge group: SU(2)× SU(2)× SU(2)

• SO(4)×SO(2)×SU(4)×U(1) gauge group: SU(2)×U(1)×U(1)×U(1)×U(1)

• SO(3)× SO(3)× SU(4)× U(1) gauge group: SU(2)× U(1)× U(1)× U(1)

Other properties are the same as those given in table in k = 2 case. The scalar
mass spectra are given below.

• For SO(6) × SU(4) × U(1) gauge group, the scalar mass spectrum at the
trivial critical point is given below.

m2L2 (h, h̄) SO(6)× SU(4)
−3

4

(
3
4
, 3
4

)
(4, 4̄)

−3
4

(
1
4
, 1
4

)
(4̄,4)

• For SO(5) × SU(4) × U(1) gauge group, the scalar mass spectrum at the
trivial critical point is given below.

m2L2 (h, h̄) SO(5)× SU(4)
−3

4

(
3
4
, 3
4

)
(4, 4̄)

−3
4

(
1
4
, 1
4

)
(4,4)

• For SO(4)× SO(2)× SU(4)× U(1) gauge group, the scalar mass spectrum
at the trivial critical point is given below.

m2L2 (h, h̄) SO(4)× SU(4) ∼ SU(2)× SU(2)× SU(4)
−3

4

(
3
4
, 3
4

)
(2,1, 4̄) + (1,2, 4̄)

−3
4

(
1
4
, 1
4

)
(1,2,4) + (2,1,4)
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• For SO(3)× SO(3)× SU(4)× U(1) gauge group, the scalar mass spectrum
at the trivial critical point is given below.

m2L2 (h, h̄) SO(3)× SO(3)× SU(4)
−3

4

(
3
4
, 3
4

)
(2,2, 4̄)

−3
4

(
1
4
, 1
4

)
(2,2,4)

4.2 Non-compact gauge groups and their vacua

We have discussed the compact gauging of the form SO(p)×SO(6−p)×SU(k)×
U(1) with limit to k ≤ 4. We now take turn the non-compact gauge groups.
All the compact gauging cases are already proved to be admissible [37], so to
check their consistency is redundant. However, the story is quite different for the
non-compact cases, since they are not checked The T-tensors constraint must be
satisfied to justify gauging.

For non-compact gauging, at the trivial critical point, the gauge group
cannot remain in full gauge symmetry but broken into maximal compact sub-
group. At non-trivial point, the residual symmetry gauge group is even smaller.
In non-compact gaugings, the scalar sector that overlapped to the gauge group will
drop out from the scalar potential, so the non-compact generators that used to
paremetrize the manifold are all non-compact generators living outside the gauge
group.

The reporting format is quite similar to the compact cases except for the
beginning part. In the non-compact cases, we list all possible gaugings via the em-
bedding tensors before we proceed. The format of the rest is similar to the compact
cases. After we categorize the embedding tensors, we then parametrize the man-
ifold or submanifold thereof via Euler angle parametrization or unitary gauge.
Then the scalar potential are computed and their critical points are searched af-
terwards. Supersymmetries and residual gauge symmetry are be identified at each
critical point. The mass spectrum at each trivial critical point are given together
with their representation under residual gauge symmetry. Unlike the compact
gauging cases, none of which will be studied in RG flow section.

At the trivial critical point where all scalars are zero, the gauge group is
broken down to its maximal compact subgroup which constitutes the residual
symmetry of the associated critical point. Furthermore, this point preserves full
supersymmetry namely N = 6 in three dimensions. It is convenient to express the
number of supersymmetries in the case of AdS critical points in the two dimen-
sional language of the corresponding dual CFT’s in the form (n−, n+) as in the
compact gaugings.

4.2.1 The k = 1 case

This is the smallest manifold to deal with. The global symmetry group G is
SU(4, 1). The non-compact subgroups thereof that pass the T-tensors constraint
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are the following:

SU(3, 1)× U(1) : Θ = ΘSU(3,1) −
3

5
ΘU(1) (4.2.1)

SU(2, 1)× SU(2)× U(1) : Θ = ΘSU(2,1) −ΘSU(2) −
1

5
ΘU(1)

SU(1, 1)× SU(3)× U(1) : Θ = ΘSU(1,1) −ΘSU(3) +
1

5
ΘU(1) .

SU(3, 1)× U(1) gauging

Recall that the number of non-compact generator of SU(n,m) is 2nm, so in this
case there are six non-compact generators in the gauge group. We are left with
only two from eight non-compact generators that can parametrize coset mani-
fold. This is good for calculation process since we are dealing with two variables
while parametrizing full manifold. The left-over non-compact generators are in
SU(1, 1) ⊂ SU(3, 1). We choose the parametrization

L = eaXe
i√
2
bc16e−aX , X = − 1√

2
[c16, c17] . (4.2.2)

The scalar potential is given by

V = 8g2(3 cosh(
√
2b)− 5). (4.2.3)

Obviously there is no non-trivial critical point. At trivial critical point, b = 0,
the value of the potential is V0 = −16g2. The eigenvalue of A1 tensor at this
point implies that the N = (0, 6) supersymmetry is preserved. The scalar mass
spectrum is given below

m2L2 (h, h̄) SU(3)
3

(
3
2
, 3
2

)
2× 1

There are two massive particles with mass m2L2 = 3. They are singlet under
SU(3). The other six particles are massless and drop out from the potential.
They correspond to Goldstone bosons. According to Higgs mechanism, there are
six massive vector bosons corresponding to symmetry breaking SU(3, 1) → SU(3).
The right moving sector supercharges N = (0, 6) transforms as 3 + 3̄ under
R-symmetry U(3) ∼ SU(3) × U(1) ⊂ SU(4). Its superconformal algebra is
SU(1, 1|3) where SU(1, 1) ∼ SO(2, 1) ∼ SL(2,R) is a part of AdS3 isometry
group SO(2, 2) ∼ SO(2, 1) × SO(2, 1). The twelve supercharges of supercon-
formal group transform as (2,3) + (2, 3̄) under full non-compact bosonic subal-
gebra SU(1, 1) × SU(3) × U(1). Consequently the (0, 6) supersymmetric AdS3

vacuum has a background isometry group SU(1, 1) × SU(1, 1|3) where SU(1, 1)
is non-supersymmetric left moving part. Note that if the full SU(4) ∼ SO(6)
R-symmetry is preserved, the associated superconformal algebra now becomes
OSp(6|2,R).
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SU(2, 1)× SU(2)× U(1) gauging

The coset manifold is parametrized by four scalar associated with non-compact
generators SU(2, 1) ⊂ SU(4, 1) which is not the subgroup of the gauge group.
The coset representative we define to be

L = ea1q1ea2q2ea3q3e
− i√

2
bc16e−a3q3e−a2q2e−a1q1 (4.2.4)

where
qi =

1

2
ci . (4.2.5)

The scalar potential is a function of one variable, it reads

V = 8g2
[
−1 + cosh(

√
2b)
]
. (4.2.6)

There is only one critical point and it is trivial. The value at trivial critical point
is V0 = 0 when b = 0, so we have Minkowskian background. It preserves N = 6
supersymmetry. The scalar mass at this point is given by the table below

m2 SU(2)× SU(2)
16g2 2× (1,2)

SU(1, 1)× SU(3)× U(1) gauging

The coset representative is defined by six scalars corresponding to non-compact
generators of SU(3, 1) ⊂ SU(4, 1). Under U(3) Euler angle parametrization, the
coset representative is given by

L = ea1c3ea2c2ea3c3ea4c5ea5c8e
i√
2
bc17 . (4.2.7)

The scalar potential is found to be

V = −8g2
(
1 + cosh(

√
2b)
)
. (4.2.8)

No non-trivial critical point is found. At trivial critical point b = 0 the value of
the potential is V0 = −16g2. The scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(3)
−1

(
1
2
, 1
2

)
3 + 3̄

The trivial critical point is N = (0, 6) supersymmetric. The residual gauge sym-
metry is SU(3) × U(1) × U(1) with the first two factors being a subgroup of the
SU(4) R-symmetry. The corresponding superconformal group is SU(1, 1|3).
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4.2.2 The k = 2 case

For k = 2 the global symmetry group of the theory is SU(4, 2). The admissible
gauge groups are among subgroup thereof. There are six gauge groups that satisfy
T-tensor constraint, their embedding tensors are the following:

SU(3, 2)× U(1) : Θ = ΘSU(3,2) −
2

3
ΘU(1) (4.2.9)

SU(2, 2)× SU(2)× U(1) : Θ = ΘSU(2,2) −ΘSU(2) −
1

3
ΘU(1)

SU(1, 2)× SU(3) : Θ = ΘSU(1,2) −ΘSU(3)

SU(3, 1)× SU(1, 1)× U(1) : Θ = ΘSU(3,1) −ΘSU(1,1) −
1

3
ΘU(1)

SU(2, 1)× SU(2, 1) : Θ = ΘSU(2,1) −ΘSU(2,1)

SU(4, 1)× U(1) : Θ = ΘSU(4,1) −
2

3
ΘU(1) .

We now proceed to the study of the critical points and the mass spectrum.

SU(3, 2)× U(1) gauging

This manifold SU(2,1)
SU(2)×U(1)

is parametrized by four scalars and its coset representative
is given by

L = ea1Q1ea2Q2ea3Q3e
i√
2
bc16 (4.2.10)

where

Q1 =
1

2
c33, Q2 =

1

2
c34, Q3 =

1

2

(
2√
10
c24 −

3√
15
c35

)
. (4.2.11)

The computation gives us the scalar potential

V = 8g2
(
−5 + 3 cosh(

√
2b)
)

(4.2.12)

Like the previous cases, there is only one critical point and it is trivial. At b = 0
the value of the critical point is V0 = −16g2 with (0, 6) supersymmetry. The
superconformal group for this vacuum is SU(1, 1|3) with the R-symmetry group
SU(3) × U(1) being a subgroup of the SU(4) ∼ SO(6) R-symmetry. The scalar
mass spectrum is given in the table below.

m2L2 (h, h̄) SU(3)× SU(2)
3

(
3
2
, 3
2

)
2× (1,2)

SU(2, 2)× SU(2)× U(1) gauging

This coset manifold SU(2,2)
SU(2)×SU(2)×U(1)

is parametrized by eight non-compact gener-
ators outside gauge groups. The coset representative is given by

L = ea1P1ea2P2ea3P3ea4Q1ea5Q2ea6Q3e
i√
2
b1c16e

i√
2
b2c27 , (4.2.13)
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where Pi =
1
2
ci and Qi’s are given in (4.2.11). After the computation, we get the

scalar potential with two variables

V = −8g2
[
3 + cosh(

√
2b1)(−2 + cosh(

√
2b2))− 2 cosh(

√
2b2)

]
(4.2.14)

Two critical points are found:

• Trivial critical point at b1 = b2 = 0 with V0 = 0 and N = 6 supersymmetry

• at b1 = b2 =
1√
2

cosh−1 2 with V0 = 8g2. The residual symmetry is SU(2)diag×
SU(2)×U(1) symmetry. The SU(2)diag is a diagonal subgroup of the SU(2)
factor in the full gauge group and one of the SU(2)’s in SU(2, 2).

The scalar mass spectrum at the trivial critical point is given in the table below.

m2 SU(2)× SU(2)× SU(2)
16g2 2× (1,2,2)

SU(1, 2)× SU(3) gauging

From 8k = 16 scalars, there are four non-compact generators in gauge groups,
so the coset representative can be parametrized by twelve scalars. They are non-
compact generators SU(3, 2) ⊂ SU(4, 2). It reads

L = ea1c3ea2c2ea3c3ea4c5e
1√
3
a5c8ea6c3ea7c2ea8c3ea9Q3ea10Q2e

i√
2
b1c16e

i√
2
b2c27 , (4.2.15)

where Qi’s are given in (4.2.11). The scalar potential is found to be

V = −8g2
[
1 + cosh(

√
2b1) cosh(

√
2b2)

]
. (4.2.16)

In this case, we have solely a trivial critical point given by b1 = b2 = 0 with
V0 = −16g2 The residual supersymmetry is (0, 6) and the conformal group is
SU(1, 1|3). The scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(3)× SU(2)
−1

(
1
2
, 1
2

)
(3,2) + (3̄,2)

SU(3, 1)× SU(1, 1)× U(1) gauging

The gauge group has eight non-compact generators, six from SU(3, 1) and two
from SU(1, 1), so there are eight scalars parametrized by coset SU(1,1)

U(1)
× SU(3,1)

SU(3)×U(1)

The coset representative is parametrized by

L = e
− 1

2
√
2
a1[c16,c17]e

i√
2
b1c16ea2w3ea3w2ea4w3ea5w5e

1√
3
a6w8e

i√
2
b2c28 , (4.2.17)
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where

w2 =
1

2
c7, w3 = −1

4
(c3 −

√
3c8),

w5 =
1

2
c12, w8 =

1

4
(
√
3c3 + c8 − 4

√
2c15). (4.2.18)

The scalar potential is given by

V = 8g2
[
−3− 2 cosh(

√
2b2) + cosh(

√
2b1)(2 + cosh(

√
2b2))

]
. (4.2.19)

Only one critical point is found at b1 = b2 = 0 with V0 = −16g2. It is (0, 6)
supersymmetric as determined by eigenvalue of A1 tensor. The superconformal
algebra is given by SU(1, 1|3). The scalar mass spectrum is given in the table
below.

m2L2 (h, h̄) SU(3)
−1

(
1
2
, 1
2

)
3 + 3̄

3
(
3
2
, 3
2

)
2× 1

SU(2, 1)× SU(2, 1) gauging

The coset manifold is SU(2,1)
SU(2)×U(1)

× SU(2,1)
SU(2)×U(1)

parametrized by eight scalars. Note
that the two SU(2, 1) ⊂ SU(4, 2) is not the same as a subgroup in gauge group.
The coset representative can be written as

L = ea1q1ea2q2ea3q3e
i√
2
b1c16ea4w̃1ea5w̃2ea6w̃3e

i√
2
b2c29 , (4.2.20)

where qi’s are given in (4.2.5) and

w̃1 =
1

2
c13, w̃2 =

1

2
c14, w̃3 =

1

2

(
− 1√

3
c8 +

2√
6
c15

)
. (4.2.21)

The scalar potential is given by

V = 2g2
[
cosh[

√
2(b1 + b2)]− sinh[

√
2(b1 + b2)](1 + cosh(2

√
2b1) + cosh(2

√
2b2)

−4 cosh(
√
2(b1 + b2)) + cosh(2

√
2(b1 + b2)) + sinh(2

√
2b1) + sinh(2

√
2b2)

−4 sinh(
√
2(b1 + b2)) + sinh(2

√
2(b1 + b2))

]
. (4.2.22)

There is only one critical point and it is trivial. It is located at b1 = b2 = 0 with
V0 = 0 and preserves N = 6 supersymmetry. The scalar mass spectrum is given
in the table below.

m2 SU(2)× SU(2)
16g2 2× (2,1) + 2× (1,2)
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SU(4, 1)× U(1) gauging

There are eight non-compact generators of gauge group SU(4, 1) × U(1). We
are left with another eight non-compact generators to parametrize coset manifold

SU(4,1)
SU(4)×U(1)

. The corresponding coset representative is

L = ea1c3ea2c2ea3c3ea4c5e
1√
3
a5c8ea6c10e

1√
6
a7c15e

i√
2
bc26 . (4.2.23)

As a result, the scalar potential is a function of one variable:

V = −8g2
(
5 + 3 cosh(

√
2b)
)

(4.2.24)

Obviously it admits only trivial critical point. The potential has value V0 = −64g2

at b = 0. This critical point, like the other cases, is (0, 6) supersymmetric. This
vacuum preserves residual gauge symmetry SU(4) ⊂ SU(4, 1) which is also full
R-symmetry group. In this case, the superconformal algebra is OSp(6|2,R). The
scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(4)
−3

4

(
1
4
, 1
4

)
4

−3
4

(
3
4
, 3
4

)
4̄

4.2.3 The k = 3 case

For k = 3, the gauge groups are subgroup of SU(4, 3) which satisfy constraint on
T-tensors, they are as follows

SU(3, 3)× U(1) : Θ = ΘSU(3,3) −
5

7
ΘU(1) (4.2.25)

SU(2, 3)× SU(2)× U(1) : Θ = ΘSU(2,3) −ΘSU(2) −
3

7
ΘU(1)

SU(1, 3)× SU(3)× U(1) : Θ = ΘSU(1,3) −ΘSU(3) −
1

7
ΘU(1)

SU(3, 2)× SU(1, 1)× U(1) : Θ = ΘSU(3,2) −ΘSU(1,1) −
3

7
ΘU(1)

SU(2, 2)× SU(2, 1)× U(1) : Θ = ΘSU(2,2) −ΘSU(2,1) −
1

7
ΘU(1)

SU(1, 2)× SU(3, 1)× U(1) : Θ = ΘSU(1,2) −ΘSU(3,1) +
1

7
ΘU(1)

SU(4, 1)× SU(2)× U(1) : Θ = ΘSU(4,1) −ΘSU(2) −
3

7
ΘU(1)

SU(4, 2)× U(1) : Θ = ΘSU(4,2) −
5

7
ΘU(1) .

We are now in the position to study the critical points and their properties for
each case.
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SU(3, 3)× U(1) gauging

For full scalar manifold, there are 3k = 24 scalars. Since there are 18 non-compact
generators from gauge group SU(3, 3) × U(1), so they are left with six scalars
parametrizing the coset SU(3,1)

SU(3)×U(1)
. The coset representative is then given by

L = ea1L3ea2L2ea3L3ea4L5e
1√
3
a5L8e

i√
2
bc17 , (4.2.26)

where

L2 =
1

2
c34, L3 =

1

10

(√
10c24 −

√
15c35

)
,

L5 =
1

2
c45, L8 = − 1

40

(
2
√
15c24 + 2

√
10c35 − 5

√
14c48

)
. (4.2.27)

The scalar potential now takes the form

V = 8g2(3 cosh(
√
2b)− 5). (4.2.28)

There is only one critical point found. It is trivial critical point at b = 0 with
V0 = −16g2 and (0, 6) supersymmetric. The superconformal algebra is given by
SU(1, 1|3). The scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(3)× SU(3)
3

(
3
2
, 3
2

)
(3,1) + (3̄,1)

SU(2, 3)× SU(2)× U(1) gauging

The coset SU(2,3)
SU(2)×SU(3)×U(1)

is parametrized by twelve scalars associated with non-
compact generators that do not overlap with the gauge group in question. The
coset representative reads

L = ea1L3ea2L2ea3L3ea4L5e
1√
3
a5L8ea6L3ea7L2ea8L3ea9c3ea10c2e

i
2
b1c16e

i
2
b2c27 , (4.2.29)

where Li’s are given in (4.2.11). The scalar potential is given by

V = −8g2[3 + cosh(
√
2b1)(−2 + cosh(

√
2b2))− 2 cosh(

√
2b2)] . (4.2.30)

In this case, two critical points are found:

• b1 = b2 = 0 with V0 = 0 and (0, 6) supersymmetry

• b1 = b2 =
1√
2

cosh−1 2 with V0 = 8g2 and residual gauge symmetry SU(2)diag×
SU(2) × U(1) × U(1). The SU(2)diag is a diagonal subgroup of the SU(2)
and the SU(2) in the SU(3) ⊂ SU(2, 3).

The scalar mass spectrum at the trivial critical point is given in the table below.

m2 SU(3)× SU(2)× SU(2)
16g2 (3,1,2) + (3̄,1,2)
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SU(1, 3)× SU(3) gauging

The coset SU(3,3)
SU(3)×SU(3)×U(1)

is parametrized by eighteen scalars associated with non-
compact generators that do not overlap with the gauge group SU(1, 3) × SU(3).
The coset representative in this case is given by

L = ea1q3ea2q2ea3q3ea4q5e
1√
3
a5q8ea6q3ea7q2ea8q3ea9L3ea10L2ea11L3ea12L5e

1√
3
a13L8ea14L3 ×

ea15L2e
i√
2
b1c16e

i√
2
b2c27e

i√
2
b3c40 , (4.2.31)

where qi’s and Li’s are the same as those given in (4.2.5) and (4.2.27), respectively.
The scalar potential is given by

V = −4g2
[
3

2
− 1

2
cosh(2

√
2b1)−

1

2
cosh(2

√
2b2) +

1

4

(
−2 + 2 cosh(

√
2b1)

+2 cosh(
√
2b2) + 2 cosh(

√
2b3)

)2
− 1

2
cosh(2

√
2b3)

]
. (4.2.32)

Even though the potential is more complicated than many cases, there exists only
trivial critical point. It is (0, 6) supersymmetric and located at b1 = b2 = b3 = 0
with V0 = −16g2. The superconformal group for this trivial critical point is
SU(1, 1|3). The scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(3)× SU(3)
−1

(
1
2
, 1
2

)
(3, 3̄) + (3̄,3)

SU(3, 2)× SU(1, 1)× U(1) gauging

Since there is twelve and two non-compact gauge group generators from SU(3, 2)
and SU(1, 1), respectively, we are left with another ten non-compact generators
to parametrize coset manifold. It is in the form of SU(2,1)

SU(2)×U(1)
× SU(3,1)

SU(3)×U(1)
whose

the coset representative is given by

L = ea1c33ea2c34e
1√
2
a3[c33,c34]e

i√
2
b1c16ea4w3ea5w2ea6w3ea7w5e

1√
3

a8√
3
w8e

i√
2
b2c39 , (4.2.33)

where wi’s are given in (4.2.18). The scalar potential is given by

V = 2g2
[
cosh(

√
2(b1 + b2))− sinh(

√
2(b1 + b2)))(1− 4 cosh(

√
2b1) + cosh(2

√
2b1)

+4 cosh(
√
2b2) + cosh(2

√
2b2)− 12 cosh(

√
2(b1 + b2)) + cosh(2

√
2(b1 + b2))

+4 cosh(
√
2(2b1 + b2))− 4 cosh(

√
2(b1 + 2b2))− 4 sinh(

√
2b1) + sinh(2

√
2b1)

+4 sinh(
√
2b2) + sinh(2

√
2b2)− 12 sinh(

√
2(b1 + b2)) + sinh(2

√
2(b1 + b2))

+4 sinh(
√
2(2b1 + b2))− 4 sinh(

√
2(b1 + 2b2))

]
. (4.2.34)

The potential above has only one critical point, and obviously it is trivial one.
Like many cases previously found, it is (0, 6) supersymmetric critical point. At
b1 = b2 = 0 its value is V0 = −16g2. The superconformal algebra at this point is
given by SU(1, 1|3). The scalar mass spectrum is given in the table below.
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m2L2 (h, h̄) SU(3)× SU(2)
3

(
3
2
, 3
2

)
2× (1,2)

−1
(
1
2
, 1
2

)
(3,1) + (3̄,1)

SU(2, 2)× SU(2, 1)× U(1) gauging

In this case, the coset SU(2,2)
SU(2)×SU(2)×U(1)

× SU(2,1)
SU(2)×U(1)

is described by twelve scalars.
The corresponding coset representative is

L = ea1q1ea2q2ea3q3ea4Q1ea5Q2ea6Q3e
i√
2
b1c16e

i√
2
b2c27ea7Zea8c14ea9Ze

i√
2
b3c40 , (4.2.35)

where qi = 1
2
ci,

Z =
1√
2
[c13, c14], (4.2.36)

and Qi’s are given in (4.2.11). The scalar potential is given by

V = −g2
[
6− 2 cosh(2

√
2b1)− 2 cosh(2

√
2b2)− 2 cosh(2

√
2b3)

+4
(
−1 + cosh(

√
2b1) + cosh(

√
2b2)− cosh(

√
2b3)

)2]
. (4.2.37)

There exists two critical point corresponding the scalar potential above:

• Trivial critical point at b1 = b2 = b3 = 0 with V0 = 0 and (0, 6) supersym-
metry

• at b1 = b2 =
1√
2

cosh−1 2, b3 = 0 with V0 = 8g2 and residual gauge symmetry
SU(2)diag × SU(2)×U(1)×U(1) where SU(2)diag is a diagonal subgroup of
the SU(2) ⊂ SU(2, 1) and one of the SU(2) ⊂ SU(2, 2).

The scalar mass spectrum at the trivial critical point is given in the table below.

m2 SU(2)× SU(2)× SU(2)
16g2 2× (1,2,1) + 2× (2,1,2)

SU(1, 2)× SU(3, 1)× U(1) gauging

In this case, fourteen scalars parametrizes the coset SU(1,1)
U(1)

× SU(3,2)
SU(3)×SU(2)×U(1)

whose
coset representative is

L = ea1c3ea2c2ea3c3ea4c5e
1√
3
a5c8ea6c3ea7c2ea8c3ea9Q3ea10Q2e

i√
2
b1c16e

i√
2
b2c27 ×

e
1√
2
a11[c23,c24]e

i√
2
b3c42 , (4.2.38)

where Qi’s are given in (4.2.11). The scalar potential is given by

V = −g2
[
6− 2 cosh(2

√
2b1)− 2 cosh(2

√
2b2)− 2 cosh(2

√
2b3)

+4
(
1 + cosh(

√
2b1) + cosh(

√
2b2)− cosh(

√
2b3)

)2]
. (4.2.39)
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Only trivial critical point is found and located at b1 = b2 = b3 = 0 with V0 =
−16g2. It is (0, 6) supersymmetric critical point and its superconformal algebra is
found to be SU(1, 1|3). The scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(3)× SU(2)
−1

(
1
2
, 1
2

)
(3,2) + (3̄,2) + 2× (1,1)

SU(4, 1)× SU(2)× U(1) gauging

There are eight non-compact generators associated with gauge group SU(4, 1) ×
SU(2) × U(1), so the sixteen scalars corresponding to the other non-compact
generators parametrize coset SU(4,2)

SU(4)×SU(2)×U(1)
whose coset representative is given

by

L = ea1q3ea2q2ea3q3ea4q5e
1√
3
a5q8ea6q10ea7q3ea8q2ea9q3ea10q5e

1√
3
a11q8ea12q̃3ea13q̃2 ×

ea14q̃3e
i√
2
b1c25e

i√
2
b2c38 (4.2.40)

where qi = 1
2
ci and

q̃2 =
1

2
c47, q̃3 = − 1

12

(√
15c35 −

√
21c48

)
. (4.2.41)

The scalar potential is found to be

V = −8g2
(
3 + 2 cosh(

√
2b2) + cosh(

√
2b1)(2 + cosh(

√
2b2))

)
. (4.2.42)

In this case, non-trivial critical point does not exist. The trivial critical point
at b1 = b2 = 0 with V0 = −64g2 is (0, 6) supersymmetric. The superconformal
symmetry at this critical point is given by OSp(6|2,R) since the full SO(6) ∼
SU(4) R-symmetry is preserved. The scalar mass spectrum is given in the table
below.

m2L2 (h, h̄) SU(4)× SU(2)
−3

4

(
1
4
, 1
4

)
(4,2)

−3
4

(
3
4
, 3
4

)
(4̄,2)

SU(4, 2)× U(1) gauging

There are eight scalars parametrizing coset SU(4,1)
SU(4)×U(1)

with the coset representative
is given by

L = ea1q3ea2q2ea3q3ea4q5e
1√
3
a5q8ea6q10e

1√
6
a7q15e

i√
2
bc37 , (4.2.43)

where qi’s are given in (4.2.5). The scalar potential is obtained to be

V = −8g2
(
5 + 3 cosh(

√
2b)
)
. (4.2.44)

The potential is so simple and obviously admits no non-trivial critical point. The
trivial one at b = 0 with V0 = −64g2 is (0, 6) supersymmetric and OSp(6|2,R) is
its superconformal algebra. The scalar mass spectrum is given in the table below.
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m2L2 (h, h̄) SU(4)× SU(2)
−3

4

(
1
4
, 1
4

)
(4,1)

−3
4

(
3
4
, 3
4

)
(4̄,1)

4.2.4 The k = 4 case

In this case, we consider k = 4 cases whose number of full scalars is 32. The actual
coset representative is smaller since some non-compact generators may overlap
gauge generators. We rule out some of gauge groups that cannot pass T-tensor
constraint test, so the admissible gauge groups are as follows:

SU(3, 4)× U(1) : Θ = ΘSU(3,4) −
3

4
ΘU(1) (4.2.45)

SU(2, 4)× SU(2)× U(1) : Θ = ΘSU(2,4) −ΘSU(2) −
1

2
ΘU(1)

SU(1, 4)× SU(3)× U(1) : Θ = ΘSU(1,4) −ΘSU(3) −
1

4
ΘU(1)

SU(3, 3)× SU(1, 1)× U(1) : Θ = ΘSU(3,3) −ΘSU(1,1) −
1

2
ΘU(1)

SU(2, 3)× SU(2, 1)× U(1) : Θ = ΘSU(2,3) −ΘSU(2,1) −
1

4
ΘU(1)

SU(1, 3)× SU(3, 1) : Θ = ΘSU(1,3) −ΘSU(3,1)

SU(2, 2)× SU(2, 2) : Θ = ΘSU(2,2) −ΘSU(2,2) .

We are ready to study the critical points and some of their properties for each
case.

SU(3, 4)× U(1) gauging

In this case, there are 24 non-compact generators corresponding to SU(3, 4) ×
U(1) gauge group. The 32 non-compact generators of full global symmetry are
deducted by the number of non-compact generators of gauge group, so there are
eight generators left to construct the coset SU(4,1)

SU(4)×U(1)
whose coset representative

is defined as follows

L = ea1j3ea2j2ea3j3ea4j5e
1√
3
a5j8ea6j10e

1√
6
a7j15e

i√
2
bc17 , (4.2.46)

where

j2 =
1

2
c34, j3 =

1

2
√
2
[c33, c34] , j5 =

1

2
c45,

j8 =
1

15
(3
√
10c24 + 2

√
15c35 − 5

√
21c48), j10 =

1

2
c58,

j15 =
1

105
(21

√
10c24 + 14

√
15c35 + 10

√
21c48 − 90

√
7c63). (4.2.47)
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After running the code, we find the scalar potential

V = 8g2
(
−5 + 3 cosh(

√
2b)
)
. (4.2.48)

There is a critical point found which is trivial and located at the origin b = 0
whose value at that point is V0 = −16g2. Furthermore, it is a (0, 6) supersymmetric
critical point with OSp(6|2,R) superconformal algebra. The scalar mass spectrum
is given in the table below.

m2L2 (h, h̄) SU(4)× SU(3)
3

(
3
2
, 3
2

)
(4,1) + (4̄,1)

SU(2, 4)× SU(2)× U(1) gauging

In this case, we dealing with coset SU(4,2)
SU(4)×SU(2)×U(1)

whose parametrized by sixteen
scalars associated with leftover non-compact generators. The coset representative
takes the form

L = ea1j3ea2j2ea3j3ea4j5e
1√
3
a5j8ea6j3ea7j3ea8j2ea9j3ea10j5e

1√
3
a11j8ea12c3ea13c2 ×

ea14c3e
i√
2
b1c16e

i√
2
b2c27 , (4.2.49)

where ji’s are given in (4.2.47). The scalar potential is given by

V = −8g2
[
3 + cosh(

√
2b1)(−2 + cosh(

√
2b2))− 2 cosh(

√
2b2)

]
. (4.2.50)

Two critical points are found, they are as follows:

• Trivial critical point at b1 = b2 = 0 with V0 = 0 and (0, 6) supersymmetry

• at b1 = b2 = 1√
2

cosh−1 2 with V0 = 8g2 and residual gauge symmetry
SU(2)diag × SU(2) × SU(2) × U(1) × U(1). The SU(2)diag is a diagonal
subgroup of the SU(2) and an SU(2) in the SU(4) ⊂ SU(2, 4).

The scalar mass spectrum at the trivial critical point is given in the table below.

m2 SU(4)× SU(2)× SU(2)
16g2 (4,1,2) + (2̄,1,2)

SU(1, 4)× SU(3)× U(1) gauging

The coset SU(4,3)
SU(4)×SU(3)×U(1)

is parametrized by twenty four scalars whose coset rep-
resentative takes the form

L = ea1c3ea2c2ea3c3ea4c5e
1√
3
a5c8ea6c3ea7c3ea8j3ea9j2ea10j3ea11j5e

1√
3
a12j8ea13j10ea14j3 ×

ea14j3ea15j2ea16j3ea17j5e
1√
3
a18j8ea19j3ea20j2ea21j3e

i√
2
b1c16e

i√
2
b2c27e

i√
2
b3c40 , (4.2.51)
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where ji’s are given in (4.2.47). The scalar potential is given by

V = −8g2
[
2 + cosh(

√
2b2)(−1 + cosh(

√
2b3))− cosh(

√
2b3) + cosh(

√
2b1)×

(−1 + cosh(
√
2b2) + cosh(

√
2b3))

]
. (4.2.52)

Even though we have quite complicated potential with three variables, there exists
only trivial critical point which is at b1 = b2 = b3 = 0 with V0 = −16g2 and (0, 6)
supersymmetric. The superconformal algebra for this critical point is OSp(6|2,R).
The scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(4)× SU(3)
−1

(
1
2
, 1
2

)
(4, 3̄) + (4̄,3)

SU(3, 3)× SU(1, 1)× U(1) gauging

In this case, we parametrize the product of coset manifold SU(3,1)
SU(3)×U(1)

× SU(3,1)
SU(3)×U(1)

with twelve scalars associated with non-overlapped non-compact generators. The
coset representative takes the following form

L = ea1w3ea2w2ea3w3ea4w5e
1√
3
a5w8e

i√
2
b1c52ea6L3ea7L2ea8L3ea9L5e

1√
3
a10L8e

i√
2
b2c17 ,
(4.2.53)

where wi’s and Li’s are given in (4.2.18) and (4.2.27), respectively. The scalar
potential is found to be

V = 8g2[−3 + cosh(
√
2b1)(−2 + cosh(

√
2b2)) + 2 cosh(

√
2b2)]. (4.2.54)

There is only one critical point for this potential. It is trivial critical point with
(0, 6) supersymmetry. Furthermore, it is specified by b1 = b2 = 0 with V0 = −16g2

whereas its superconformal algebra is SU(1, 1|3). The scalar mass spectrum is
given in the table below.

m2L2 (h, h̄) SU(3)× SU(3)
3

(
3
2
, 3
2

)
(1,3) + (1, 3̄)

−1
(
1
2
, 1
2

)
(3,1) + (3̄,1)

SU(2, 3)× SU(2, 1)× U(1) gauging

The sixteen scalars described by the coset SU(2,1)
SU(2)×U(1)

× SU(3,2)
SU(3)×SU(2)×U(1)

are parametrized
by the coset representative

L = ea1L3ea2L2ea3L3ea4L5e
1√
3
a5L8ea6L3ea7L2ea8L3ea9q3ea10q2e

i√
2
b2c16e

i√
2
b3c27 ×

ea11z1ea12z2ea13z3e
i√
2
b1c44 , (4.2.55)

where

z1 =
1

2
c13, z2 =

1

2
c14, z3 =

1

2

(
−1√
3
c8 +

2√
6
c15

)
, (4.2.56)
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and qi’s and Li’s are given in (4.2.5) and (4.2.27), respectively. We find the
potential

V = 8g2
[
−2 + cosh(

√
2b3) + cosh(

√
2b1)(−1 + cosh(

√
2b2) + cosh(

√
2b3))

−2 cosh(
√
2b2) sinh2

(
b3√
2

)]
. (4.2.57)

There are two critical points:

• at b1 = b2 = b3 = 0 with V0 = 0 and N = 6 supersymmetry

• at b1 = 0, b2 = b3 = 1√
2

cosh−1 2 with V0 = 8g2 and residual symmetry
SU(2)diag×SU(2)×U(1)×U(1)×U(1). The SU(2)diag is a diagonal subgroup
of the SU(2) ⊂ SU(2, 1) and the SU(2) subgroup of the SU(3) ⊂ SU(2, 3).

The scalar mass spectrum at the trivial critical point is given in the table below.

m2 SU(3)× SU(2)× SU(2)
16g2 2× (1,2,1) + (2,1,3) + (2,1, 3̄)

SU(1, 3)× SU(3, 1) gauging

In this case, we are dealing with the coset SU(1,1)
U(1)

× SU(3,3)
SU(3)×SU(3)×U(1)

which is
parametrized by twenty scalars. The coset representative is given by

L = e
1√
2
a1[c31,c32]e

i√
2
b1c56ea2c3ea4c3ea5c5e

1√
3
a6c8ea7c3ea8c2ea9c3ea10L3ea11L2ea12L3ea13L5 ×

e
1√
3
a14L8ea15L3ea16L2e

i√
2
b2c16e

i√
2
b3c27e

i√
2
b4c40 , (4.2.58)

where Li’s are given in (4.2.27). The scalar potential is found to be

V = −g2
[
6− 2 cosh(2

√
2b2)− 2 cosh(2

√
2b3) + 4

(
− cosh(

√
2b1) + cosh(

√
2b2)

+ cosh(
√
2b3) + cosh(

√
2b4)

)2
− 2 cosh(2

√
2b4)− 4 sinh2(

√
2b1)

]
. (4.2.59)

From the potential above, we found only one critical point which is at b1 = b2 =
b3 = 0 with V0 = −16g2. It is (0, 6) supersymmetric with superconformal algebra
SU(1, 1|3) The scalar mass spectrum is given in the table below.

m2L2 (h, h̄) SU(3)× SU(3)
3

(
3
2
, 3
2

)
2× (1,1)

−1
(
1
2
, 1
2

)
(3, 3̄) + (3̄,3)
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SU(2, 2)× SU(2, 2) gauging

This is the last case for non-compact gauging. In this case, the sixteen scalars char-
acterized by the coset SU(2,2)

SU(2)×SU(2)×U(1)
× SU(2,2)

SU(2)×SU(2)×U(1)
. Note that SU(2, 2) ⊂

SU(4, 4) is not the same as those appear in the gauge group. The coset represen-
tative for this gauging is

L = ea1q1ea2q2ea3q3ea4Q1ea5Q2ea6Q3e
i√
2
b1c16e

i√
2
b2c27ea7z1ea8z2ea9z3ea10z̃1ea11z̃2 ×

e
1√
2
a12[z̃1,z̃2]e

i√
2
b3c40e

i√
2
b4c55 , (4.2.60)

where
z̃13 =

1

2
c61, z̃14 =

1

2
c62, (4.2.61)

and qi’s, zi’s and Qi’s are given in (4.2.5), (4.2.56) and (4.2.11), respectively. The
scalar potential is given by

V = −g2
[
8− 2 cosh(2

√
2b1)− 2 cosh(2

√
2b2)− 2 cosh(2

√
2b3)− 2 cosh(2

√
2b4)

+4
(

cosh(
√
2b1) + cosh(

√
2b2)− cosh(

√
2b3)− cosh(

√
2b4)

)2]
. (4.2.62)

In this cases, two critical points are found and they are characterized as follows:

• at Trivial critical point b1 = b2 = b3 = b4 = 0 with V0 = 0 and (0, 6)
supersymmetry

• at b1 = b2 =
1√
2

cosh−1 2, b3 = b4 = 0 with V0 = 8g2 which is equivalent to the
critical point at b3 = b4 =

1√
2

cosh−1 2, b1 = b2 = 0 with the same V0. In both
cases, the residual gauge symmetry is SU(2)diag×SU(2)×SU(2)×U(1). The
SU(2)diag is a diagonal subgroup of the SU(2) factors from each SU(2, 2).

The scalar mass spectrum at the trivial critical point is given in the table below.

m2 SU(2)× SU(2)× SU(2)× SU(2)
16g2 2× (2,1,2,1) + 2× (1,2,1,2)

4.3 Non-semisimple N = 6, SO(6) n T15 gauged
supergravity

In this case, we consider non-semisimple case for N = 6 with gauge group SO(6)n
T15. Originally, this section is not a part in [40], but it is later added to [39] as an
important supplement since the non-semisimple gauging has a direct relation to
higher dimensional theories on compactified on some manifolds or orbifolds. Recall
that the full coset manifold for this gauge group is SU(4,4)

S(U(4)×U(4))
. Non-semisimple

group SO(6)nT15 is a subgroup of global symmetry group SU(4, 4). The SO(6)
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subgroup (or SO(6)diag) is defined by the diagonal subgroup of SO(6)× SO(6) ∼
SU(4)× SU(4) ⊂ SU(4, 4). The 32 scalar transform as

(4, �4) + ( �4,4) (4.3.1)
under SU(4)× SU(4) and

(4 × �4) + ( �4 × 4) = 1 + 15 + 1 + 15. (4.3.2)
under SO(6)diag. There are two singlets and two 15. The 15 is adjoint represen-
tation of SO(6) and they are used to construct T15.

The SO(6)n T 15 generators are given by

SO(6) : J ij
a = T̄ ij + ˜̄T ij, i, j = 1, . . . , 6

T15 : J ij
b = T̄ ij − ˜̄T ij + ˜̄Y ij (4.3.3)

where

˜̄T 12 = i

(
1√
10
λ24 −

√
3

20
λ35 −

√
3

28
λ48 +

1√
7
λ63

)
,

˜̄T 34 = i

(
1√
10
λ24 −

√
3

20
λ35 +

√
3

28
λ48 −

1√
7
λ63

)
,

˜̄T 56 = i

(
1√
10
λ24 +

1√
15
λ35 −

2√
21
λ48 −

1√
7
λ63

)
,

˜̄T 13 =
i

2
(λ34 + λ62) ,

˜̄T 23 = − i

2
(λ33 − λ61) ,

˜̄T 14 = − i

2
(λ33 + λ61) ,

˜̄T 24 =
i

2
(λ62 − λ34) ,

˜̄T 45 =
i

2
(λ58 − λ47) ,

˜̄T 15 =
i

2
(λ59 − λ44) ,

˜̄T 25 = − i

2
(λ45 + λ60) ,

˜̄T 35 =
i

2
(λ46 + λ57) ,

˜̄T 16 =
i

2
(λ60 − λ45) ,

˜̄T 26 =
i

2
(λ44 + λ59) ,

˜̄T 36 =
i

2
(λ47 + λ58) ,

˜̄T 46 =
i

2
(λ46 − λ57) (4.3.4)

and
˜̄Y 12 = −1

2
(λ27 − λ16 + λ40 − λ55) ,

˜̄Y 34 = −1

2
(λ55 − λ16 + λ27 − λ40) ,

˜̄Y 56 = −1

2
(λ55 − λ16 − λ27 + λ40) ,

˜̄Y 13 = −1

2
(λ54 − λ19 + λ26 − λ43) ,

˜̄Y 23 = −1

2
(λ53 − λ18 − λ25 + λ42) ,

˜̄Y 14 =
1

2
(λ18 + λ25 + λ42 + λ53) ,

˜̄Y 24 = −1

2
(λ19 − λ26 − λ43 + λ54) ,

˜̄Y 45 = −1

2
(λ50 − λ23 + λ30 − λ39) ,

˜̄Y 15 = −1

2
(λ31 − λ20 − λ36 + λ51) ,

˜̄Y 25 = −1

2
(λ21 + λ32 − λ37 − λ52) ,

˜̄Y 35 = −1

2
(λ22 + λ29 + λ38 + λ49) ,

˜̄Y 16 = −1

2
(λ21 − λ32 − λ37 + λ52) ,

˜̄Y 26 = −1

2
(λ20 + λ31 + λ36 + λ51) ,

˜̄Y 36 = −1

2
(λ50 − λ23 − λ30 + λ39) ,

˜̄Y 46 = −1

2
(λ29 − λ22 + λ38 − λ49) . (4.3.5)
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The embedding tensor is in the same form as in N = 5 theory discussed in
the previous chapter. However, the constraint on the embedding tensor PR0Θ = 0
requires g2 = 0. This structure is similar to N = 16, 10, 8 theories [50, 57, 58].
Consequently, the embedding tensor reduces to Θ = g1Θab. The two singlets under
SO(6)diag discussed above correspond to the non-compact generators

Ys1 =
1

2
(Y 1 + Y 11 + Y 21 + Y 31), (4.3.6)

Ys2 =
1

2
(Y 2 + Y 12 + Y 22 + Y 32).

In this case, the coset representative is given by

L = e
√
2b1Ys1e

√
2b2Ys2 (4.3.7)

where
√
2 is the normalization constant that is required so that the scalar potential

contains no multiplicative constant. The scalar potential is found to be

V = −224g2 (cosh b1 cosh b2 − sinh b2)2 . (4.3.8)

Note that we have only one coupling constant, so we redefine g = g1. There is no
critical point for this scalar potential, so the vacuum must be half-supersymmetric
domain wall. The next and the last task is to find the domain wall solution
corresponding to this theory.

The process in searching for domain wall solution is quite similar those used
to obtain flows in chapter 5. The BPS equations for this problem are given by
the vanishing of supersymmetry transformation of δψI

µ and δχiI together with
the traditional domain wall ansatz in chapter 5. We obtain a set of differential
equations as follows

b′1 = 8gsechb2 sinh b1, (4.3.9)
b′2 = −8g (cosh b2 − cosh b1 sinh b2) , (4.3.10)
A′ = −16g (cosh b1 cosh b2 − sinh b2) (4.3.11)

where ′ denotes d
dr

. These equations are not easy to solve in the exact form, so
simply consider subclass of general solution. We simply set b1 = 0. The equation
(4.3.10) now becomes

b′2 = −8ge−b2 . (4.3.12)
After integration, the solution is simply given by

b2 = ln (−8gr + c1) (4.3.13)

where c1 is an integration constant. With b1 = 0 and b2 given by (4.3.13), equation
(4.3.11) becomes

A′ =
−16g

c1 − 8gr
(4.3.14)
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whose solution is easily found to be

A = 2 ln (−8gr + c1) + c2 (4.3.15)

with another integration constant c2. As in the RG flow cases, the integration
constants are not significant, since we can redefine the coordinates. We can write
the metric in the form of a warped AdS3 as

ds2 =
1

(8g)4ρ2

(
dx21,1 + dρ2

ρ2

)
(4.3.16)

where ρ = − 1
(8g)2r

.



CHAPTER V

RG Flow Solutions for N=5 and
N=6 Theory

In this section, we solve RG flow solutions interpolating between a pair of AdS
critical points obtained from previous sections. We study only supersymmetric
flows, so the critical points we picked must be supersymmetric. One of the critical
points is trivial and preserves maximal supersymmetry, and another critical point
is non-trivial and preserves some supersymmetry. Recall that gauged supergravity
requires the existence of a scalar potential whose critical points may give rise to
AdS background solution. According to AdS/CFT, the bulk theory with AdS space
characterized by radius L is dual to conformal theory at boundary characterized
by central charges c. If the conformal field theory is perturbed by an operator
with a particular scale dimension, the theory will make a transition (in the space
of coupling) to another fixed points called IR CFT, so we name the unperturbed
theory UV CFT. Another scenario that can initiate the flow is that the operator
acquires non-vanishing expectation value and from all flows we study, this case is
not found. In dual picture, this process is illustrated by the domain wall solution
of the bulk theory. The near boundary limit of the bulk field corresponds to UV
CFT and the deep interior limit associates with IR CFT. We study four flows for
both N = 5 and N = 6 theory

We solve not only analytical flow solutions but also identify the scale dimen-
sion of operator ∆ that perturbed theory by expanding the scalar field around the
critical point and comparing to asymptotic solution discussed in chapter 2. More-
over, we calculate the ratio of central charges cUV /cIR for every case and they
are all larger than one as predicted by c-theorem. Our study of holographic RG
flows are quite similar to those in other gauged supergravities in three dimensions
[53, 94, 56, 55].

5.1 RG flow solutions for N=5 theory

We consider only RG flows in k = 2 case because the structure of critical points of
k = 4 cases are quite similar. We do not study RG flow solutions for all possible
cases since the methodology is the same. In this work, we explore RG flows in
compact gauge group SO(5) × USp(2) and non-compact one with USp(2, 2) ×
USp(2). In order to investigate the flow, AdS3 critical points from chapter 3



106

are required. Since we are interested in supersymmetric RG flows, each critical
point must preserve some supersymmetry. Nonsupersymmtric critical points are
automatically excluded from consideration. We study flow from only one active
scalar denoted b(r). This analysis is legitimate since BPS equations are still valid
when some scalars are turned off.

5.1.1 An RG flow between (5, 0) and (4, 0) CFT’s in SO(5)×
USp(2) gauging

Recall that in this case the two critical points are b = 0 and b = cosh−1(−2g1+g2
2g1+g2

)

corresponding to supersymmetry (5, 0) and (4, 0) respectively. Our study involves
only one scalar and the potential depends on b associated with generator Y 7, so
the coset representative can be given by

L = eb(r)Y
7

. (5.1.1)

The vanishing of variation of fermions , i.e. δχiI = 0, give us a flow equation:

db

dr
= [2g1 − g2 + (2g1 + g2) cosh b] sinh b. (5.1.2)

Because on the r.h.s. of the equation is a function of b(r) only, so we can integrate
for r. The solution becomes

r =
1

8g1g2

[
4g1 ln cosh b

2
− (2g1 + g2) ln[2g1 − g2 + (2g1 + g2) cosh b]

+2g2 ln sinh b
2

]
. (5.1.3)

The integration constant is ignored; this does not affect the analysis here, because
we can redefine a new r that differ from the old one by the constant.

By Taylor expanding around b = 0, we obtain

b(r) ∼ e4g1r = e
− r

2LUV , LUV =
1

8|g1|
. (5.1.4)

For g1 < 0, the solution is valid for r → ∞, i.e. near boundary; therefore we can
identify this point with UV point. From asymptotic analysis, we can extract the
scale dimension of operator that drives the flow. We refer reader to chapter 2 for
detailed discussion. Now we simply give you an important equation:

b(r) ∼ c1e
(∆−d)r

L + c2e
−∆r

L (5.1.5)

where
∆ =

1

2

(
d+

√
d2 + 4m2L2

)
. (5.1.6)

c2 is zero because the solution must be finite at large r. After we substitute
m2L2 = −3

4
, we have ∆UV = 3

2
, so the operator is relevant. In the dual theory,
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the interpretation is that the flow is driven by relevant operator of dimension
∆UV = 3

2
. The other critical point can be identify with IR point, by Taylor

expansion around that point we get

b(r) ∼ e
− 8g1g2r

2g1+g2 = e
g2r

(g1+g2)LIR , LIR = − 2g1 + g2
8g1(g1 + g2)

> 0. (5.1.7)

In order to make this solution valid for deep interior region, r → −∞, now we
need additional constraint, i.e. g2 > −2g1. At IR point, c2 in equation (5.1.5) is
always 0. Consequently, ∆IR is 3g2+2g1

g1+g2
which is always greater than two; so it is

irrelevant operator. The ratio of the central charges is

cUV

cIR
=
LUV

LIR

=

√
V0IR
V0UV

=
g1 + g2
2g1 + g2

> 1 (5.1.8)

for g1 < 0 and g2 > −2g1. The equation above satisfies the holographic c-theorem:
cUV > cIR.

The vanishing of variation of gravitini , i.e. δψI
µ = 0, give us another flow

equation solving for metric part A(r):

dA

dr
=

1

4
[4g2 cosh b− 22g1 − 3g2 − 8g1 cosh b

−2g1 cosh(2b)− g2 cosh(2b)] (5.1.9)

Applying chain rule, it becomes

dA

db
= − [22g1 + 3g2 + (8g1 − 4g2) cosh b+ (2g1 + g2) cosh(2b)] cschb

8g1 − 4g2 + 4(2g1 + g2) cosh b . (5.1.10)

This equation is easily solved by merely integrating; as mentioned before we neglect
integration constant. It reads

A =
1

g2

[
(g1 + g2) ln [2g1 − g2 + (2g1 + g2) cosh b]− (2g1 + g2) ln cosh b

2

−2g2 ln sinh b
2

]
. (5.1.11)

5.1.2 An RG flow between (5, 0) and (1, 0) CFT’s in SO(5)×
USp(2) gauging

In this case, we study the other RG flow in SO(5) × USp(2) gauging which in-
terpolating between critical points b = 0 and b = cosh−1(6g1+g2

2g1+g2
) corresponding to

residual supersymmetry (5, 0) and (1, 0). With the analysis previously discussed,
we obtain an RG flow equation:

db

dr
= [6g1 + g2 − (2g1 + g2) cosh b] sinh b (5.1.12)
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Following the same strategy as in the previous section, we obtain the solution

r = − 1

8g1(4g1 + g2)

[
4g1 ln cosh b

2
+ (2g1 + g2) ln [(2g1 + g2) cosh b

−6g1 − g2]− 2(4g1 + g2) ln sinh b
2

]
. (5.1.13)

The fluctuation around b = 0, UV point, it reads

b(r) ∼ e4g1r = e
− r

2LUV , LUV =
1

8|g1|
(5.1.14)

which is equal to (5, 0) to (4, 0) case. It is a UV point for g1 < 0 when r approaching
the boundary. The flow is driven by a relevant operator with scale dimension
∆UV = 3

2
. Near the other critical point which is identified as an IR, b(r) is

approximately

b(r) ∼ e
− 8g1(4g1+g2)r

2g1+g2 = e
(4g1+g2)r

(3g1+g2)LIR , LIR = − 2g1 + g2
8g1(3g1 + g2)

. (5.1.15)

Note that g1 < 0 and g2 < −2g1. The constraint on g2 is not the same as in the
previous case. The operator has scale dimension ∆IR = 10g1+3g2

3g1+g2
. The ratio of the

central charges is

cUV

cIR
=

3g1 + g2
2g1 + g2

> 1, for g1 < 0 and g2 < −2g1 . (5.1.16)

The equation above satisfies the holographic c-theorem: cUV > cIR.
The differential equation for A(r) in this case is

dA

dr
=

1

4
[3g2 − 10g1 − 4(6g1 + g2) cosh b+ (2g1 + g2) cosh(2b)] . (5.1.17)

The technique applied to the case at hand is analogous to the previous one, now
the equation becomes

dA

db
=

[10g1 − 3g2 + 4(6g1 + g2) cosh b− (2g1 + g2) cosh(2b)] cschb
4(2g1 + g2) cosh b− 4(6g1 + g2)

(5.1.18)

It is easily solved by Mathematica. The solution is

A =
1

4g1 + g2
[(3g1 + g2) ln ((2g1 + g2) cosh b− 6g1 − g2)

−(2g1 + g2) ln cosh b
2
− 2(4g1 + g2) ln sinh b

2

]
. (5.1.19)
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5.1.3 An RG flow between (4, 1) and (4, 0) CFT’s in USp(2)×
USp(2, 2) gauging

In the last section, we present two examples of the RG flow in compact gauging
case. Now we turn our attention to the non-compact case; we choose USp(2) ×
USp(2, 2) gauging case. Recall that in this case we have found four critical points.
For breivity, we identify each with their residual supersymmetry: (4,1),(4,0),(1,0)
and (0,0). Note that (4,1) is the trivial one and (0,0) is non-supersymmetric.
Because we focus on supersymmetric flows, the nonsupersymmetric one is ruled
out. The flow between (4,0) and (1,0) is also ruled out because the killing spinor
generating both cases cannot be the same. Therefore, we consider two cases of
flows between (4,1) and (4,0) and between (4,1) and (1,0).

The scalar potential in this case has two scalar fields, but all critical points
we have found are of the form (b1, b2 = 0). So, in the analysis of the flows, we need
only one scalar. b2 is set to zero and we replace b1 to b for the sake of convenience.
The coset representative is given by

L = eb(r)Y7 (5.1.20)

for both cases. The strategies are analogous to the previous two cases, so from
now on we merely present the results and discuss about some constraints that may
occur.

In this section, we start with studying flow interpolating between b = 0 to
b = cosh−1(−g1+g2

g1+g2
). From δχiI = 0, we get a differential equation

db

dr
= (g1 − g2 + (g1 + g2) cosh b) sinh b (5.1.21)

where the solution is

r =
1

4g1g2

[
2g2 ln sinh b

2
+ 2g1 ln cosh b

2

− (g1 + g2) ln [g1 − g2 + (g1 + g2) cosh b]
]
. (5.1.22)

The fluctuation around b = 0 in the limit r → ∞ is

b(r) ∼ e2g1r = e
g1r

(g1+g2)LUV , LUV =
1

2(g1 + g2)
(5.1.23)

where g1 < 0 and g2 > −g1. We obtain the relevant operator with dimension
3g1+2g2
g1+g2

< 2. The other critical point can be identify with IR point, by Taylor
expansion around that point we get

b(r) ∼ e
− 4g1g2r

g1+g2 = e
2g2r

|2g1+g2|LIR , LIR =
g1 + g2

2|g1(2g1 + g2)|
. (5.1.24)
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In IR the operator is irrelevant with dimension ∆ = 2g2
|2g1+g2| + 2. The ratio of the

central charge is given by

cUV

cIR
=

|g1(2g1 + g2)|
(g1 + g2)2

. (5.1.25)

The equation from δψI
µ = 0 reads

dA

dr
= −2

[
g2 + g1 cosh4 b

2
+ g2 sinh4 b

2

]
. (5.1.26)

From chain rule, A as a function of b is

dA

db
= −

2 cschb
(
g2 + g1 cosh4 b

2
+ g2 sinh4 b

2

)
g1 − g2 + (g1 + g2) cosh b . (5.1.27)

The solution is easily found to be

A =
1

2g1

[
(2g1 + g2) ln [g1 − g2 + (g1 + g2) cosh b]− 4g1 ln cosh b

2

−2(g1 + g2) ln sinh b
2

]
. (5.1.28)

5.1.4 An RG flow between (4, 1) and (1, 0) CFT’s in USp(2)×
USp(2, 2) gauging

In this last case, we investigate flow interpolating between b = 0 with (4,1) super-
symmetry to b = cosh−1(−g1−3g2

g1+g2
) with (1, 0) supersymmetry critical point. The

equation δχiI = 0 leads to a differential equation:

db

dr
= − [g1 + 3g2 + (g1 + g2) cosh b] sinh b, (5.1.29)

The corresponding solution takes the following form

r = − 1

4g2(g1 + 2g2)
[(g1 + g2) ln [g1 + 3g2 + (g1 + g2) cosh b]

+2g2 ln sinh b
2
− 2(g1 + 2g2) ln cosh b

2

]
, (5.1.30)

The fluctuation around b = 0 at r → ∞ is

b(r) ∼ e−2(g1+2g2)r = e
(g1+2g2)r

(g1+g2)LUV , LUV = − 1

2(g1 + g2)
, (5.1.31)

where g1 < 0 and −g1
2
< g2 < −g1 or g1 + g2 < 0 which are different from the

previous case. We obtain the relevant operator with dimension g1
g1+g2

. The flow
is driven by the relevant operator with scale dimension ∆ = 3g1+4g2

g1+g2
. The other
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critical point can be identified with IR point and by Taylor expansion around that
point the solution becomes

b(r) ∼ e
− 4g2(g1+2g2)r

g1+g2 = e
2g2(g1+2g2)r

|g1(2g1+3g2)|LIR , LIR = − (g1 + g2)

2|g1(2g1 + 3g2)|
. (5.1.32)

In the IR, the operator becomes irrelevant with scale dimension ∆ = 2g2
|2g1+g2| + 2.

The ratio of the central charge is given by

cUV

cIR
=

|g1(2g1 + 3g2)|
(g1 + g2)2

. (5.1.33)

The vanishing of the gravitini leads to a flow equation

dA

dr
=

1

4
[3g1 − 5g2 + 4(g1 + 3g2) cosh b+ (g1 + g2) cosh(2b)] . (5.1.34)

Using chain rule, the equation now reads

dA

db
= − [3g1 − 5g2 + 4(g1 + 3g2) cosh b+ (g1 + g2) cosh(2b)] cschb

−4(6g1 + g2) + 4(2g1 + g2) cosh b . (5.1.35)

The solution is the following

A =
1

2(g1 + 2g2)

[
(2g1 + 3g2) ln [g1 + 3g2 + (g1 + g2) cosh b]

−4(g1 + 2g2) ln cosh b
2
− 2(g1 + g2) ln sinh b

2

]
. (5.1.36)

5.2 RG flow solutions for N = 6 theory

In this section, we study RG flows for N = 6 theories. The methodology is
similar to N = 5 case, so we may neglect some steps and simply present the
final results. We study only the flow of k = 4 in compact gauge group; they are
SO(6)×SU(4)×U(1) and SO(4)×SO(2)×SU(4)×U(1). In each gauge group,
we consider two flows from different supersymmetric critical points obtained from
chapter 4. As a results, we study four cases in total. We give the full list below:
SO(6)× SU(4)× U(1) case

• RG flow between (6,0) and (4,0) points

• RG flow between (6,0) and (2,0) points

SO(4)× SO(2)× SU(4)× U(1) case

• RG flow between (4,2) and (2,2) points
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• RG flow between (4,2) and (2,0) points

Note that the flows studied here are constructed from two identical scalars which
are different from N = 5 cases. We are looking for supersymmetric RG flows that
interpolate between two critical points with (b1, b2) = (0, 0) and (b1, b2) = (b, b) in
which the two scalar fields b1 and b2 take the same value. According the argument
on the ansatz in the beginning of this chapter, the scalar b(r) depends solely on
radial coordinate. The coset representative of the form

L = eb(r)Y3eb(r)Y15 = eb(r)(Y3+Y15) (5.2.1)

where all the Y A’s generators are non-compact generators for N = 6 case. Note
that the expression is derived by using [Y3, Y15] = 0.

In the SO(6)× SU(4)× U(1) case, there are two singlet which are Y3 + Y15
itself and Y6 + Y16 under residual symmetry SO(4)× SU(2)× U(1)× U(1). The
coset representative above with Y6+Y16 sector truncated is verified as a consistent
truncation. For SO(4)×SO(2)×SU(4)×U(1) gauge group, there are four singlet
under residual symmetry SU(2)× U(1)4 which are

Y3 + Y15, Y3 − Y15, Y4 + Y16, Y4 − Y16 .

As in the previous case, the consistent truncation is checked.

5.2.1 RG Flows in SO(6)× SU(4)× U(1) gauging

We explore the RG flows for the theory with SO(6)×SU(4)×U(1) gauge group. Its
critical points and other properties are discussed in the previous section. In order
to complete the analysis on RG flows, the constraint on the relative coupling α have
to be specified. It is divided into two classes either α < −1 or α > −1. The trivial
critical point with supersymmetry (6, 0) and SO(6)×SU(4)×U(1) residual gauge
symmetry is identified with UV point. The critical points with supersymmetry
(4, 0) and (2, 0) points with SU(2)3×U(1)2 residual gauge symmetry are identified
with IR points.

An RG flow between (6, 0) and (4, 0) critical points

The vanishing of the fermions δχiI = 0 gives rise to a differential equation as
follows

db(r)

dr
=

√
2g
[
1− α + (1 + α) cosh(

√
2b(r))

]
sinh(

√
2b(r)). (5.2.2)

Note that in this case α < −1. The differential equation above can easily be solved
by integration. The result is given by

r =
1

4gα
ln
[
cosh b√

2

]
− 1 + α

8gα
ln
[
1− α + (1 + α) cosh(

√
2b)
]

+
1

4g
ln
[
sinh b√

2

]
. (5.2.3)
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As mentioned in the N = 5 case, the additive constant from integration can be ne-
glected without any problem since we can always redefine a new radial coordinate
which is different from the original r by a constant.

The solution near b = 0 is

b(r) ∼ e4gr ∼ e
− r

2LUV , LUV =
1

8|g|
. (5.2.4)

We identify this critical point with the UV point in which r → ∞, so there must be
g < 0. The scale dimension of the operator that drives the flow can be determined
by asymptotic analysis. From the same analysis we applied for N = 5 case, we
conclude that this flow is driven by relevant operator with dimension ∆ = 3

2
.

We identify another point 1√
2

cosh−1 α−1
α+1

with IR. By expanding around this
point, we get an asymptotic equation

b(r) ∼ e−
8gαr
1+α = e

2α
(1+2α)

r
LIR , LIR =

1 + α

4|g|(1 + 2α)
. (5.2.5)

In this IR, the operator is irrelevant with scale dimension ∆ = 2(1+3α)
1+2α

> 2 for
α < −1. The ratio of the central charge is given by

cUV

cIR
=
LUV

LIR
=

√
V0IR

V0UV
=

1 + 2α

2(1 + α)
> 1, for α < −1 . (5.2.6)

The next task is determining the metric of the domain wall ansatz char-
acterized by A(r). The vanishing of the gravitini, δψI

µ = 0, can provide us the
solution and it reads

dA(r)

dr
= −g

[
5 + α− (α− 1) cosh(

√
2b(r))

+ cosh(
√
2b(r))

{
1− α+ (1 + α) cosh(

√
2b(r))

}]
. (5.2.7)

Using chain rule, we can derive above equation as follows

dA(b)

db
= −5 + α− (α− 1) cosh(

√
2b) + cosh(

√
2b)(1− α + (1 + α) cosh(

√
2b))√

2
[
1− α+ (1 + α) cosh(

√
2b)
]

sinh(
√
2b)

.

(5.2.8)
According to the reason we have given earlier, the additive constant are neglected.

If the scalar is canonically normalized, we must get the correct dimension of
the operator by simply reading mass squared from the scalar potential at quadratic
order. In our case, to check whether

√
2b(r) is canonically normalized we simply

read off the value of the mass squared from the the scalar potential at quadratic
order. At UV point, the potential (4.1.13) expanded up to quadratic order is given
by

V = −64g2 − 48g2b2. (5.2.9)
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This potential gives m2L2
UV = −3

4
and according to the relation between mass

and scale, it provides the correct scale dimension at UV ∆ = 3
2

obtained from
asymptotic analysis of b(r). In the same way as UV case, we obtain the correct
scale dimension ∆ = 2(1+3α)

1+2α
and mass m2L2

IR = 4α(1+3α)
(1+2α)2

from from quadratic order
of the scalar potential

V = −16g2(1 + 2α)2

(1 + α)2
+

64g2α(1 + 3α)

(1 + α)2
(b− b0)

2 (5.2.10)

where b0 = 1√
2

cosh−1 α−1
α+1

.

An RG flow between (6, 0) and (2, 0) critical points

In this case, we study flow between the same UV point as the previous case to
another supersymmetri critical point (2,0). The strategy is analogous to precedent
case. Note that this case is valid only if α > −1 which is distinct from the (6, 0)
and (4, 0) flow analysis.

The scalar field b(r) can be obtained via the BPS equation δχiI = 0 as
follows

db(r)

dr
= −

√
2g
[
−3− α + (1 + α) cosh(

√
2b(r))

]
sinh(

√
2b(r)). (5.2.11)

We can solve the equation above and get the undesired form r as a function of b:
db(r)

dr
= −

√
2g
[
−3− α + (1 + α) cosh(

√
2b(r))

]
sinh(

√
2b(r)). (5.2.12)

Asymptotic expansion near the UV point b = 0, the scalar field becomes

b(r) ∼ e4gr = e
− r

2LUV , LUV =
1

8|g|
. (5.2.13)

The equation above is justified with a requirement g < 0 when r → ∞. After
matching parameters with the general solution, we conclude that it is a relevant
operator with dimension ∆ = 3

2
that drives the flow.

In the vicinity of IR point b = 1√
2

cosh−1 α+3
α+1

, the solution is approximately

b(r) ∼ e−
8g(2+α)r

1+α = e
2(2+α)r

(3+2α)LIR , LIR =
1 + α

4|g|(3 + 2α)
. (5.2.14)

This leads to the conclusion that the operator has dimension ∆ = 2(5+3α)
3+2α

> 2, for
α > −1.

The geometrical quantity A(r) can be derived from equation δψI
µ = 0 where

its solution is given by
dA(r)

dr
= g

[
α− 3− (3 + α) cosh(

√
2b(r))

+ cosh(
√
2b(r)){−3− α + (1 + α) cosh(

√
2b(r))}

]
(5.2.15)
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Having utilized chain rule, we can rearrange the more desired differential equation
as follows

dA

db
= −

α− 3− (3 + α) cosh(
√
2b) + cosh(

√
2b)
[
−α− 3 + (1 + α) cosh(

√
2b)
]

√
2
[
−3− α + (1 + α) cosh(

√
2b)
]

sinh(
√
2b)

.

(5.2.16)
After integration and discarding integration constant, A(r) now becomes

A = −1 + α

2 + α
ln
[
2 cosh b√

2

]
+

3 + 2α

2(2 + α)
ln
[
−3− α+ (1 + α) cosh(

√
2b)
]

−2 ln
[
2 sinh b√

2

]
. (5.2.17)

The holographic c-theorem can be checked by considering the ratio

cUV

cIR
=

3 + 2α

2(1 + α)
> 1, for α > −1 , (5.2.18)

so it perfectly concurs with the c-theorem.

5.2.2 RG Flows in SO(4)× SO(2)× SU(4)× U(1) gauging

We dedicate the rest of this chapter to RG Flows in SO(4)×SO(2)×SU(4)×U(1)
gauging. Two RG flows of this gauging are studied. They are the flow between
trivial critical point to the other two non-trivial ones with supersymmetry (2,2)
and (2,0). Recall that the trivial critical point is located at b1 = b2 = 0 has
(4, 2) supersymmetry. The two non-trivial critical points are given by b1 = b2 =
1√
2

cosh−1 2+α
α

with (2, 2) supersymmetry and b1 = b2 =
1√
2

cosh−1 α−2
α

with (2, 0)
supersymmetry. The methodology is the same as in the previous cases, so some
detailed steps are omitted and only key results are presented.

An RG flow between (4, 2) and (2, 2) critical points

In (4, 2) critical points the left-handed preserved supercharges is outnumbered the
right, but for (2, 2) case they are equal. We are dealing with the flow between
a chiral supersymmetric theory to a non-chiral one. A constraint for this flow is
α > 0. The equation δχiI = 0 gives us the flow equation

db(r)

dr
= −

√
2g
[
2 + α− α cosh(

√
2b(r))

]
sinh(

√
2b(r)). (5.2.19)

Solving for r by integration, we found

r =
1

4g(1 + α)
ln
[
cosh b√

2

]
+

α

8g(1 + α)
ln
[
α cosh(

√
2b)− α− 2

]
− 1

4g
ln
[
sinh b√

2

]
. (5.2.20)
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At the UV point, for validity of the solution, we pick g > 0. The asymptotic
solution for scalars now becomes

b(r) ∼ e−4gr = e
− r

2LUV , LUV =
1

8g
. (5.2.21)

As commonly found in many cases, the flow is driven by the relevant operator of
dimension 3

2
.

At the IR point, the solution is given by

b(r) ∼ e
8g(1+α)r

α = e
2(1+α)r

(1+2α)LIR , LIR =
α

4g(1 + 2α)
. (5.2.22)

The dimension of this operator is given by ∆ = 2(2+3α)
1+2α

which is larger than two
when α > 0.

The flow solution from δψI
µ = 0 equation is given by

dA

dr
= −1

2
g
[
8− 3α+ 4(2 + α) cosh(

√
2b(r))− α cosh(2

√
2b(r))

]
(5.2.23)

written in term of b as
dA(b)

db
= −8− 3α + 4(2 + α) cosh(

√
2b(r))− α cosh(2

√
2b(r))

2
√
2
[
2 + α− α cosh(

√
2b)
]

sinh(
√
2b)

. (5.2.24)

Its solution is given by

A =
α

1 + α
ln
(
2 cosh b√

2

)
− 1 + 2α

2(1 + α)
ln
[
α cosh(

√
2b)− α− 2

]
+2 ln

(
2 sinh b√

2

)
. (5.2.25)

The ratio of the central charges is given by
cUV

cIR
=

1 + 2α

2α
> 1, for α > 0 . (5.2.26)

An RG flow between (4, 2) and (2, 0) critical points

We are now at the end of our journey on RG flow. This last example is the flow
between chiral supersymmetric theories. The equation δχiI = 0 gives us the flow
equation

db(r)

dr
= −

√
2g
[
α− 2− α cosh(

√
2b(r))

]
sinh(

√
2b(r)) (5.2.27)

After integration the solution is found to be

r =
1

4g(α− 1)
ln
(

cosh b√
2

)
− α

8g(α− 1)
ln
[
2− α + α cosh(

√
2b)
]

+
1

4g
ln
(

sinh b√
2

)
. (5.2.28)
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At the UV point, we have found the asymptotic solution

b(r) ∼ e4gr = e
− r

2LUV , LUV =
1

8|g|
(5.2.29)

The constraint g < 0 must satisfy in order to identify this point with UV point
corresponding to r → ∞. The flow is again driven by a relevant operator of
dimension 3

2
.

At the IR point, b = 1√
2

cosh α−2
α

corresponding to r → −∞, we have found

b(r) ∼ e−
8g(α−1)r

α = e
(2α−1)r

(2α−1)LIR , LIR =
α

4|g|(2α− 1)
. (5.2.30)

The operator becomes irrelevant in the IR with dimension ∆ = 2(2−3α)
1−2α

> 2 for
α < 0.

The A(r) function obtained from δψI
µ = 0 equation is as follows

dA(r)

dr
= −1

2
g
[
8 + 3α− 4(α− 2) cosh(

√
2b(r)) + α(2

√
2b(r))

]
(5.2.31)

Applying chain rule, it becomes

dA(b)

db
=

8 + 3α− 4(α− 2) cosh(
√
2b(r)) + α(2

√
2b(r))

2
√
2
[
α− 2− α cosh(

√
2b)
]

sinh(
√
2b)

. (5.2.32)

The solution is found to be

A =
α

α− 1
ln
[
2 cosh b√

2

]
+

1− 2α

2(α− 1)
ln
[
2− α + α cosh(

√
2b)
]

−2 ln
(
2 sinh b√

2

)
. (5.2.33)

The ratio of the central charges is given by

cUV

cIR
=

2α− 1

2α
> 1, for α < 0 . (5.2.34)

It perfectly satisfies c-theorem.



CHAPTER VI

Conclusion

In this dissertation, we have studied N = 5 and N = 6 gauged supergravity in
three dimensions and the applications thereof. The scalar manifolds are in the
form of USp(4,k)

USp(4)×USp(k)
and SU(4,k)

S(U(4)×U(k))
where k is an integer for N = 6 and an even

integer for N = 5. We limit ourselves to study only small number in k; for N = 5
we study k = 2, 4 and for N = 6 we study k = 1, 2, 3, 4. The larger number in k,
the larger the manifold and the more complex the problem. Moreover, to the best
of our knowledge, studying the large k may not lead to any interesting features.

The gauge groups we studied are classified as the followings: compact, non-
compact, and non-semisimple gaugings. For compact gauge groups, the embedding
tensors have been identified in [37]. On the other hand, for non-compact gauge
groups, we identified some of which via the criteria on constraint on T-tensors.
Non-semisimple gaugings deserve a special attention since they are directly con-
nected to higher dimensional theory via dimensional reduction on an orbifold. For
non-semisimple gauging, we study the gauge groups in the form of G0 n TdimG0

where G0 is a semisimple group and TdimG0 is translational group with dimension
of dimG0. For N = 5 Chern-Simons gauging, the gauge group is SO(5)nT10 and
it is equivalent to SO(5) Yang-Mills gauged supergravity. The theory with this
gauge group also can be obtained by dimensional reduction of N = 5 gauged su-
pergravity in four dimensions on the orbifold S1/Z2. With identifying g2 = −g1,
we obtain maximally supersymmetric critical point at origin. In the dual the-
ory, it corresponds to a two dimensional superconformal theory with supergroup
Osp(5|2,R)×Sp(2,R). For N = 6 gauged supergravity theory, it is a theory with
non-semisimple gauge group SO(6) n T15. It is equivalent to SO(6) Yang-Mills
gauged supergravity and can be obtained from dimensional reduction of four di-
mensional N = 6 gauged supergravity theory on the orbifold S1/Z2. There is
no critical points for the resulting scalar potential, so maximally supersymmetric
AdS3 background does not exist. However, the half-maximal domain wall solution
is admitted, so it is useful in the context of DW/QFT.

We focus on the study of the critical points of the scalar potential. In order
to obtain the scalar potential we first need to parametrize the coset manifold.
There are two ways to parametrization used in this dissertation. The first one
is the traditional unitary gauge; it is easy for setup but it put a heavy load on
computer while running. In Euler angle parametrization, on the other hand, the
setup is much more complicated but it consumes less computer resources. Another
reason why the Euler angle parametrization is preferred to the others is that the
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resulting scalar potential is in a very compact form due to gauge invariant and
this parametrization has some sectors that overlap with the gauge group.

We have found many supersymmetric AdS vacua which are indispensable
for study RG flows. Having identified critical points, we explore further some of
their properties. They include the residual supersymmetry and residual gauge
symmetry at each critical point. The mass spectra at both trivial and non-trivial
critical points are also determined for N = 5 theory. For N = 6 theory, we present
the mass spectra only at trivial critical points.

In application to AdS/CFT, holographic RG flows are studied. In order to
study the RG flow, one of the basic requirement is that the gauging in question
must have at least two supersymmetric critical points, so the gaugings that have
only trivial critical points are not considered here. For N = 5 theory, we pick two
cases from compact gaugings and the other two from non-compact cases. For N =
6 theory, all four cases are in compact gaugings since non-compact gaugings do
not admit non-trivial critical points. RG flow solutions are analytically obtained
via solving BPS equations. All flows we study for both N = 5 and N = 6
theories, at UV point, are driven by relevant operator with dimension 3

2
while at

IR the operators become irrelevant with dimensions varied among cases. We obtain
cUV /cIR > 1 for every case, so it is in agreement with the c-theorem. In 2011 the
new method for obtaining critical points has been suggested in the study of N = 8
gauged supergravity in four dimensions [96]. By using the variation of embedding
tensor instead of extremization on the scalar potential, some new critical points are
found. We hope that this technique can be useful in searching for more critical
points from many previous works, since it might overcome the complication of
computation within the framework of extremization of multivariables function.

Although the construction gauged supergravity was firmly established in
2003 and the applications thereof have been sprung since then; nowadays, its
construction still is in favor of the theoretical physicists. Recently, a sector of N =
4 gauged supergravity is constructed via dimensional reduction from N = (1, 0)
in six dimensional supergravity coupled to a chiral tensor multiplet on AdS3 × S3

[97]. It relates to the previous work done by our colleague [98] on SU(2) manifold
reduction of N = 1 supergravity in six dimensions. The authors also point out
that it is possible to embed N = 8 gauged supergravity in three dimension to
N = (1, 1) and N = (2, 0) theories in six dimensions.

The research on solution of supergravity in three dimensions have made
some progress as well. In [99], all timelike supersymmetric solutions of N = 8
ungauged supergravity in three dimensions are classified. This paper elaborated
the work in [100] published by the same authors. They also pointed out that the
success on this work can extend to N = 16 case. We hopefully extend the series
of this work to the other Ns as well as the gauged version thereof.

Recently, only three weeks before the time of writing, a major breakthrough
in AdS/CFT correspondence was made. A persistent unsolved problem in AdS/
CFT is unraveled. The problem of whether the truncation of type IIB supergravity
to maximal supergravity in five dimensions is consistent was simply a conjecture
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without a solid proof, even though many evidences supported the claim. All the
evidences were explored only some sectors by setting some fields to vanish or pos-
tulating some symmetries on them. In [101], they show that, with the help of
exceptional field theory, the full non-linear reduction ansatz for the AdS5 × S5

and AdS5 × Hp,6−p in type IIB supergravity can reduce to the maximal super-
gravity in five dimensions with gauge groups SO(6) and SO(p, q), respectively.
And more importantly the resulting theory is a consistent truncation. Note that
the corresponding exceptional group is E6(6), since it is global symmetry group for
maximal supergravity in five dimensions. The key idea of exceptional field theory
is that spactime is extended to exceptional groups and various fields are covariant
with respect to those groups. For exceptional group E6(6) [102], those fields are of
M-theory and Type IIB supergravity. The exceptional group E7(7) case which can
be useful in studying the reduction to four dimensional supergravity can be found
in [103]. Analogous to the previous cases, E8(8) [104] hopefully can be applied
to supergravity in three dimensions. The consistent Kaluza-Klien truncations of
those exceptional field theories are outlined in [105]. This research might open a
new door to abundant of new research on consistent truncation including those
theories in involving in supergravity in three dimensions.
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APPENDIX A

Supersymmetry and Supergravity

In this appendix, we briefly review Supersymmetry and Supergravity in four di-
mensions. It is intended to be sketchy and conceptual, so many technical details
are omitted. The excellent reviews are as follows [7, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115].

It is well-known that Supersymmetry is the only non-trivial way to combine
space-time symmetry with internal symmetries of S-matrix. It unites particles
with various spins into sets called supermultiplets. Bosons and fermions are min-
gled in such a way that every particle has its superpartner, a particle with the
same mass but opposite spin statistic. Supersymmetry necessitates the additional
generators to the conventional Lorentz group. The spacetime algebra is now ex-
tended and we call the new generators supercharges. These supercharges make
senses only when they are fermionic and the algebra for spacetime symmetry is
now graded Lie algebra rather than Lie algebra. Besides the mathematical affec-
tionate reason mentioned above, there are some physical reasons that cherish the
existence of supersymmetry. It is well known that supersymmetry can tame the
divergence coming from loop diagrams in quantum field theory. It is naturally
done by cancelation of fermionic loops to bosonic loops and vice versa. If super-
symmetry exists and is unbroken, there must be superpartners of those known
particles with the same mass but different spin. However, a sensible reason of
why we do not observe those particles in nature because supersymmetry might
be broken and renders the superpartners very massive. To detect those massive
particles, it requires a powerful particle collider. As the time of the writing, no
direct evidences support the claim of the existence of supersymmetry in nature
even in the promising LHC.

We follow the mainstream in the discussion of Poincaré supersymmetry by
starting with the algebra of the theory. The algebra is established by two classes
of generators: bosonic (we label B) and fermionic (F). The supercharges Qs are
fermionic while the others are bosonic. Schematically, the structure of the algebra
are as follows [B,B] ∼ F , {F, F} ∼ B and [F,B] ∼ F . The irreducible represen-
tation of Q depends on spacetime in which they are constructed. For example, in
four dimensions, the irreducible representation can be either Majorana or Weyl.
The N = 1 supersymmetry algebra involving Q given below will be presented in
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Majorana representation:

{Qα, Q̄
β} = −1

2
(γµ)α

β P µ , (A.0.1)

[Mµν , Qα] = −1

2
(γµν)α

β Qβ , (A.0.2)

[Pµ, Qα] = 0 . (A.0.3)

A one-particle representation is represented by |p, λ⟩ where p is momentum and λ
is helicity. A supercharge acting on a state leads to the helicity reduced by 1/2,
i.e. Qα|p, λ⟩ = |p, λ − 1/2⟩, so Qα changes boson to fermion or vice versa. The
operator P 2 has m2 as an eigenvalue, since [Pµ, Qα] = 0 bosons and fermions in
the same multiplet must have the same mass.

The algebra alone is not enough to construct a theory. A supersymmet-
ric theory is established by a field theory that realizes supersymmetry. Under
supersymmetry, a generic field Φ(x) transforms as follows

δΦ(x) = [ϵ̄αQα,Φ(x)] , (A.0.4)

where ϵ is a fermionic parameter of supersymmetry transformation which does
not depend on spacetime, so sometimes we may called global supersymmetry as
opposed to local supersymmetry in which the parameter becomes spacetime de-
pendent ϵ(x). The local supersymmetry is synonymous to supergravity as we will
explained more later. Supersymmetry can be realized by considering commuta-
tion relation of variations of a generic field. The variations δ1, δ2 correspond to
parameters ϵ1, ϵ2, respectively. The commutation reads

[δ1, δ2] Φ(x) = δ1 δ2Φ(x)− δ2 δ1Φ(x) (A.0.5)
= ϵ̄α1 [{Qα, Q̄

β},Φ(x)] ϵ2β

= −1

2
(ϵ̄1γ

µϵ2) ∂µΦ(x) ,

where we replace momentum generator Pµ with a partial derivative ∂µ and (ϵ̄1γ
µϵ2) =

aµ is a constant parameter of translation. We can say that the transformation
above realizes supersymmetry. However, in general, this is not the case. If the
supersymmetry of a particular theory is realized without requiring equations of
motion, we say that the algebra of the theory is closed off-shell. If equations of
motion are required, we say that the algebra of the theory is closed on-shell.

Supersymmetry can have more than one set of supercharge; we denote the
addition degrees of freedom by indices i, j = 1, ..., N , so the supercharges now
become Qiα. Combining with ordinary Poincaré algebra and defining relations
among supercharged, we call them extended superalgebra. An operation that
rotates among supercharges and commutes with Poincaré generators is called R-
symmetry. Mathematically speaking, R-symmetry is an automorphism of super-
symmetry algebra. We denote them by generators TAs and those generators can
form a group . The commutation relation with supercharges are as follows

[TA, Qαi] = (UA)i
j Qαj , (A.0.6)



132

where (UA)i
j is an element of matrix U which is a particular representation of TA as

can be shown by Jacobi identity. Note that R-symmetry is an optional symmetry
of the theory which may not be realized as symmetry of the action. However in
AdS superalgebra, we can add R-symmetry group with other generators to form
a single supergroup. This scenario cannot happen in other algebra such as dS.

Recall that supersymmetry parameters is spacetime independent, if we pro-
mote those parameters to become spacetime dependent

(ϵ̄1γ
µϵ2)(x) = aµ(x) , (A.0.7)

so we get a spactime dependent of translation parameter or infinitesimal trans-
formation of general coordinate transformation on spacetime (diffeomorphism) .
This new transformation embraces diffeomorphism as a new invariance, so does
Einstein’s general relativity. As a result, we have supersymmetry with theory
of gravity and we call it supergravity. Sometimes it is also referred to as local
supersymmetry due to spacetime dependent of supersymmetry parameters.

There are many ways to construct a supergravity theory. We give a brief
review on the four widely used methods. The first method is called the Noether
method which is the most wildly used. This method starts from linearised theory
of terms in the action and transformation rules and then modifies them systemat-
ically until reach the final form of the theory. The second is superspace formalism
which is a generalization of superspace in supersymmetry. It makes use of the su-
persymmetric version of vielbein called supervielbein along with spin connection
defined in superspace. Unfortunately, this formalism is valid for a small number of
theories. The third method is the conformal approach which is constructed from
various superconformal multiplets and then the redundant fields are removed by
gauge fixing to get the final form of supergravity with correct multiplets. The
forth method is achieved by dimensional reduction. This method is very powerful
in construction of supergravity from higher dimensional supergravity, since su-
pergravity in higher dimensions are much more simple than those theories in the
lower ones. The resulting theories may vary depending on the shape of compact-
ified manifold. The trivial cases are the compactification on n-dimensional torus
which gives rise to ungauged theories in the lower dimensional theories. For non-
trivial case, if we do the dimensional reduction from 11-dimensional supergravity
on 7-sphere, we get N = 8 D = 4 gauged supergravity with gauge group SO(8).

Apart from those particles contained in global supersymmetric theory, su-
pergravity introduces two new types of particles into the theory: particle spin-2
called graviton (gµν or eµa) which is responsible for gravitational interaction and
spin-3/2 particle called gravitino (ψµ). In the language of gauge theory, super-
gravity is considered as a gauged global supersymmetry. Analogous to typical
gauge theory, there must be gauge fields; in this case, it is gravitino as implying
by its vector index. Moreover, since parameters of supersymmetry transformation
are spinors as a result gravitino must be spinor as well.

In the discussion on supergravity below, we will employ the vielbein for-
malism instead of the traditional one since we are dealing with spinors which are
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spinorial representation associating with local Lorentz group which is obviously
used in vielbein formalism. As an example, we will discuss the simplest form of
supergravity, i.e. D = 4 N = 1 pure supergavity. Its Lagragian is composed of
Einstein-Hilbert action (Palatini’s action, to be exact), kinetic term of spin-3/2
field also known as Rarita-Schwinger term and the other modification that keeps
the theory supersymmetric. We discuss only some important steps and some im-
portant features. Note that we will use the so-called the 1.5th order formalism.
Recall that the first order formalism treats spin connection ωµab as an independent
variable whereas the second order formalism is set up by treating spin connection
as a function of vielbein and torsion tensors and then puts it back to the action,
therefore, the action is very complicated in terms of vielbein and gravitino. As the
name implies, the 1.5th order formalism is somewhere between those two. First,
let’s consider the action in the first order formalism:

S = S2 + S3/2 =

∫
d4xL[e, ω, ψµ] , (A.0.8)

S2 =
1

2κ2

∫
d4x eeaµebνRµνab(ω) ,

S3/2 = − 1

2κ2

∫
d4x ϵµνρσψ̄µγ5γσDνψρ .

Then we search for equation of motion of spin connection via δS[e, ω, ψµ]/δω = 0.
The solution is given by

ω̂µab = ωµab(e) +Kµab , (A.0.9)
ωµab(e) = 2eν[a∂[µeν]b] − eν[aeb]

σeµc∂νeσ
c ,

Kµνρ = −1

4

(
ψ̄µγρψν − ψ̄νγµψρ + ψ̄ργνψµ

)
.

The variation of the action with evaluating at ω = ω̂ can be written as

δS =
δS

δe

∣∣∣∣
ω=ω̂

+
δS

δψ

∣∣∣∣
ω=ω̂

+
δS

δω

∣∣∣∣
ω=ω̂︸ ︷︷ ︸

=0

(
δω

δe
δe+

δω

δψ
δψ

)
. (A.0.10)

In 1.5th order formalism, we can neglect the contribution from variation of spin
connection, since it is identically zero by construction. Consequently, it reduces
complications involving spin connection. The supersymmetry transformations are:

δeµ
a =

1

2
ϵ̄γaψµ , (A.0.11)

δψµ = Dµ(ω̂) ϵ(x) = ∂µϵ(x) +
1

4
ω̂µabγ

abϵ(x) .

Note that in the first order formalism, we need supersymmetric transformation
of spin connection δω as well. The commutation relation of two variations on
vielbein is found to be

[δ1, δ2] e
a
µ = (δξ − δλ̂ − δϵ̂) e

a
µ , (A.0.12)
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where ξa = 1/2 ϵ̄2γ
aϵ1 and its variation corresponds to infinitesimal of diffeomor-

phism which is as follows

δξe
a
µ = ξρ∂ρe

a
µ + ∂µξ

ρeaρ . (A.0.13)

The second term δλ̂e
a
µ = ξρω̂ρ

a
be

b
µ is infinitesimal of local Lorentz transformation

with parameter λ̂ab = ξρωρab. The last term δϵ̂e
a
µ = ξρψ̄ργ

aψµ is local supersym-
metry transformation with parameter ϵ̂ = ξρψρ. As a result, the commutation in
(A.0.12) implies closure of local symmetries of the theory, so this theory, at this
stage, is justified as a supergravity theory. However, the commutation on grav-
itino [δ1, δ2]ψµ requires equation of motion of ψµ itself to furnish the closure of
algebra, so this theory is closed only on-shell. The off-shell theory that equations
of motion are unnecessary for closure of the algebra requires more fields called
auxiliary fields into the multiplet. The discussion on off-shell theory can be found
in various literatures on supergravity.

In addition to graviton multiplet previously discussed, there are also other
multiplets such as chiral multiplet (ϕi, χi) and vector multiplets (χA, AA

µ ) and
both of which sometimes are referred as matter multiplets. The chiral multiplet
contains two particles which are a spin-1/2 fermion and a complex scalar whereas
the vector multiplet is composed of a vector and another spin-1/2 fermion. To
construct more realistic supergravity theory, one can couple matter multiplets
to graviton multiplet. In this discussion, we simply restrict ourselves to some
important terms in bosonic sector. The kinetic term of scalar sector is in the form
of non-linear sigma model with scalar manifold metric Gjk(ϕ

i). Another important
term of this sector is the scalar potential which plays important role in studying
RG flows this dissertation. The Lagrangian is given by

Lscalar = −1

2

√
ggµν∂µϕ

i ∂νϕ
kGjk(ϕ

i)−√
gV (ϕi) . (A.0.14)

In vector sector, the important terms are the kinetic term and a topological term
which does not depend on spacetime metric gµν . Its Lagrangian is given by

Lvector = −1

4

√
ggµρgνσFA

µνF
B
ρσ IAB(ϕ

i)− 1

4
ϵµνρσFA

µνF
B
ρσ RAB(ϕ

i) . (A.0.15)

The vector fields at this stage are abelian, and scalars and fermions are not charged
under these abelian groups. However, these vector fields can be extended to
non-abelian gauge group with leaving supersymmetry unspoiled and scalars and
fermions are now charged under this group. This theory is called gauged su-
pergravity which is the central aspect of this dissertation. Note that the scalar
dependent quantities IAB(ϕ

i), RAB(ϕ
i) and scalar potential V (ϕi) are restricted

by supersymmetry as well as scalar manifold metric Gjk(ϕ
i), so supersymmetry

restricts the shape of manifold. In this case, the scalar manifold is a Kähler man-
ifold.

We have discussed theories with N = 1 supersymmetry so far and now we
will briefly discuss theories with N > 1 which are referred as extended supergrav-
ity. Supersymmetry is very restrict; however, there are some arbitrariness that
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gives rise to variety of theories such as central charges and number of supersym-
metry N . The more number of supersymmetry N , the more number of particles
in the multiple. Of course, the simplest case is N = 1. For D = 4 dimensional
spacetime, the maximal number of N is 8. The number of supersymmetry is
bound to this number because we require that particle spin-2 or graviton is the
highest spin. The situation is quite different for D = 3 case since it relies on purely
mathematical argument. For N = 2 supergravity, there are three multiplets: su-
pergravity, vector and hyper multiplets. The scalar manifold for hyper multiplets
is quaternion Kähler manifold. The N = 2 supergravity is thoroughly discussed in
[7] via the conformal approach. For N = 4 supergravity, there are two multiplets:
supergravity and vector multiplet. The matter coupled theory can be constructed
by a gravity multiplet and n vector multiplets. As a result, the scalar manifold is
in the form of coset space:

SO(6, n)

SO(6)× SO(n)
× SL(2)

SO(2)
. (A.0.16)

There are other theories with other N such as 5 and 6 but they are not widely
discussed. Last but not least, it is the maximal (or N = 8) supergravity. It is a
unique theory because there is only a gravity multiplet which contains a graviton,
8 gravitini, 28 vectors, 56 spin-1/2 fermions and 70 scalars. The scalar manifold
is in the form of coset space:

E7(7)

SU(8)
. (A.0.17)

This theory also can be constructed from dimensional reduction of 11-dimensional
supergravity on 7-dimensional torus T 7. At this stage, the theory is an ungauged
supergravity since all vectors are abelian and none of matter fields are charged. It
was early 1980s that there was an attempt to promote D = 4 N = 8 supergravity
into the theory of everything but later it was realized that maximal possible gauge
group is SO(8) which is impossible to embed gauge group of standard model.

There are many topics that we do not discuss here such as ungauged and
gauged supergravity in higher dimensions, dimensional reduction and various ap-
plications thereof. We encourage enthusiastic readers to study from references
given in the beginning of this appendix.
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APPENDIX B

Branching of T-tensor for N = 5, 6

We devote this section to discuss the representation of T-tensor branching under
maximal compact subgroup H = SO(N)×H ′. The representation of the embed-
ding tensor coincides with the T-tensor at Θ = TV=I, so this section is crucial in
specifying the embedding tensor. According to [37], they are given in Dynkin label;
however, since we deal explicitly with k = 2, 4 for N = 5 theory and k = 1, 2, 3, 4
for N = 6 theory, we give them in conventional form with the help from [116].

B.1 N = 5 with USp(4, k) ⊃ USp(4)× USp(k)

The adjoint representation of G = USp(4, k), under USp(4) × USp(k), can be
decomposed into

XIJ : (10 , (0, 0, 0, . . . )) , Xα : (1 , (2, 0, 0, . . . )) , Y A : (4 , (1, 0, 0, . . . )) .

The T -tensor representations are given by

T IJ,KL = (1 + 5 + 14 , (0, 0, 0, . . . )) ,
Tαβ = (1 , (0, 0, 0, . . . ) + (0, 1, 0, . . . ) + (0, 2, 0, . . . )) ,

T IJα = (10 , (2, 0, 0, . . . )) ,
TAB = (1 + 5 , (0, 0, 0, . . . ) + (0, 1, 0, . . . )) + (10 , (2, 0, 0, . . . )) ,
T IJ,A = (4 + 16 , (1, 0, 0, . . . )) ,
TαA = (4 , (1, 0, 0, . . . ) + (1, 1, 0, . . . )) . (B.1.1)

Note that the two representations (10, (2, 0, 0, . . . )) in T IJα and TAB coincide.
Next we give them for each k starting with k = 2. In conventional notaion, for
k = 2, the adjoint representation of G = USp(4, 2), under USp(4) × USp(2) ≃
SO(5) × SU(2), can be decomposed into 21 = (10,1) + (1,3) + (4,2). For
k = 4, the adjoint representation of G = USp(4, 4), under USp(4) × USp(4) ≃
SO(5)× SU(2), can be decomposed into 21 = (10,1) + (1,10) + (4,4).
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k SU(4,k) SU(4)× SU(k)× U(1)
1 SU(4, 1) SU(4)× U(1)

24 150 + 10 + 4−5 + 45

2 SU(4, 2) SU(4)× SU(2)× U(1)
35 (15,1)0 + (1,1)0 + (1,3)0 + (4,2)−3 + (4,2)3

3 SU(4, 3) SU(4)× SU(3)× U(1)
48 (15,1)0 + (1,1)0 + (1,8)0 + (4,3)−a + (4,3)a

4 SU(4, 4) SU(4)× SU(4)× U(1)
63 (15,1)0 + (1,1)0 + (1,15)0 + (4,4)−b + (4,4)b

Table I: The decomposition of adjoint representation of SU(4, k) under its maximal
subgroup SU(4) × SU(k) for k = 1, 2, 3, 4 where the elements of decompositions corre-
spond to an element of XIJ , two elements of Xα and two elements of Y A, respectively
Note that for k = 1 the maximal compact subgroup is SU(4)× U(1). a and b are some
U(1) charges which are not relevant in our analysis.

B.2 N = 6 with SU(4, k) ⊃ SU(4)× SU(k)

The adjoint representation of G = SU(4, k), under SU(4) × SU(k), can be de-
composed into

XIJ : (15 , (0, 0, . . . , 0, 0)) , Xα : (1 , (0, 0, . . . , 0, 0) + (1, 0, . . . , 0, 1)) ,

Y A :
(
4 , (1, 0, . . . , 0, 0)

)
+ (4 , (0, 0, . . . , 0, 1)) .

The T -tensor representations are given by

T IJ,KL = (1 + 15 + 20′ , (0, 0, . . . , 0, 0)) ,

Tαβ = (1 , 2 · (0, 0, . . . , 0, 0) + 2 · (1, 0, . . . , 0, 1) + (0, 1, . . . , 1, 0)) ,

T IJα = (15 , (0, 0, . . . , 0, 0) + (1, 0, . . . , 0, 1)) ,

TAB = (1 + 15 , (0, 0, . . . , 0, 0) + (1, 0, . . . , 0, 1))

+ (6 , (0, 1, . . . , 0, 0) + (0, 0, . . . , 1, 0)) ,

T IJ,A =
(
4 + 20 , (1, 0, . . . , 0, 0)

)
+
(
4 + 20 , (0, 0, . . . , 0, 1)

)
,

TαA = (4 , (1, 0, . . . , 1, 0) + 2 · (0, 0, . . . , 0, 1)) ,
+
(
4 , (0, 1, . . . , 0, 1) + 2 · (1, 0, . . . , 0, 0)

)
, (B.2.1)

Note that the two representations (15 , (1, 0, . . . , 0, 1)) in T IJα and TAB coincide.
For k = 1, 2, 3, 4 the adjoint representation SU(4, k) are given in the table I.
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APPENDIX C

On the Euler angle
parametrization

In this section, the topic of discussion is on the Euler angle parametrization which
is used throughout this dissertation. This is a generalized concept of the Euler
angles used in the study rotation of rigid body in classical mechanics. In many
cases, this parametrization is preferred to the traditional unitary gauge due to the
reason we mentioned earlier. We review it in an elementary and sketchy fashion.
The completed discussion can be found in [118].

Let G be a Lie group and H be its subgroup. The elements of group are
given by g ∈ G and h ∈ H, and the algebra of G and H are given by g and h,
respectively. We choose H to be maximal compact subgroup. We denote the non-
compact generators τi ∈ p, then [h, p] ⊂ p. We first parametrize g ∈ G and the
coset space G/H is simply the result after modding out the H factor. In general
the parametrization of g ∈ G is in the form of

g = eaeb , a ∈ p, b ∈ h. (C.0.1)

If we parametrize a = a1τ1 + a2τ2 + · · ·+, we get the unitary gauge. Now we will
parametrize ea by Euler angle. The first task is to construct a subspace V ⊂ p
that all elements in p are generated by commutation relation [V, h] ⊂ p. In the
language of Mathematics, it is that the whole space p is generated from V via the
adjoint action of H, i.e. p = AdH(V ) = hV h−1. Now g can be written as

g = eb̃eveb, b, b̃ ∈ h, v ∈ V (C.0.2)

Note that eb̃ contains redundancy. We can get rid of the redundancy generators
by first seeking for the set generators that generates the automorphisms of V , we
denote them H0. The automorphism of space V can be written as

AdH0 : V → V . (C.0.3)

The final form of G now is
G = BeVH , (C.0.4)

where B = H/H0.

For example, we parametrize full coset manifold USp(4,2)
USp(4)×USp(2)

for k = 2 in
N = 5 theory. We pick Y 7 which is the only one member in minimum set of non-
compact generators that generates the other generators by adjoint action. The
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redundancy H0 is given by the generators in USp(4)×USp(2) that commute with
Y 7. They are as follows: j4, j5, j6, j1 + j11, j2 + j12, j3 + j13. As a result, B = H

H0
is

composed of j1 − j11, j2 − j12, j3 − j13, j7, j8, j9, j10. With a proper normalization
factor, we get the coset representative

L = ea1X1ea2X2ea3X3ea4J7ea5J8ea6J9ea7J10ebY
7 (C.0.5)

where Xi’s are defined by

X1 =
1√
2
(J1 − J11), X2 =

1√
2
(J2 − J12), X3 =

1√
2
(J3 − J13). (C.0.6)

The next example is taken from N = 6 theory. We parametrize 24 scalars
by the coset G/H = SU(4,3)

SU(4)×SU(3)×U(1)
for k = 3 with gauge group SU(1, 4) ×

SU(3)×U(1). The subspace V is chosen to be Y1, Y11, Y21. The elements of H that
commute with Y1, Y11, Y21 are U(1)×U(1)×U(1), so we have B = SU(4)×SU(3)×U(1)

U(1)×U(1)×U(1)
.

We can identify one of the U(1) in U(1) × U(1) × U(1) with the U(1) factor in
H. Moreover, we also choose to remove the remaining U(1) × U(1) in H0 by
modding out one U(1) factor from SU(4) and the other one from SU(3). Finally,
we are now left with B = SU(4)

U(1)
× SU(3)

U(1)
. Note that there are other possible ways

to getting rid of the redundancy, but they are equivalent after redefinition of the
scalars. Finally, the coset is given by

L = ea1c3ea2c2ea3c3ea4c5e
1√
3
a5c8ea6c3ea7c3ea8j3ea9j2ea10j3ea11j5e

1√
3
a12j8ea13j10 ×

ea14j3ea14j3ea15j2ea16j3ea17j5e
1√
3
a18j8ea19j3ea20j2ea21j3eb1Y1eb2Y11eb3Y21 , (C.0.7)

where the SU(4) generators ji’s are defined in (4.2.47). The SU(3) generators
is labelled by ci. The explicit parametrization of both SU(4) and SU(3) can be
found in [117].
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