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CHAPTER I

INTRODUCTION

1.1 Motivation

In recent years, there is an enormous attention to truly autonomous mobile robots, which are

capable of mapping its current environment, localizing itself relative to the built map and controlling

its motion in that environment. Once successfully doing so, robot is able to perform a lot of duties

instead of human, such as surveillance, search and rescue, security, transportation, remote exploration,

and cleaning. All of three capabilities, i.e. localization, mapping, and motion control or path planning

are not independent, but mutually correlated, meaning that we cannot solve each of them separately

but concurrently as one entire problem as depicted in Figure 1.1. Each coupling region, denoted

by (I), (II), and (III), represents a classified problem in autonomous mobile robots and the common

region (IV) indicates the state of truly autonomous of a mobile robot. In literature, there are actually

numerous different approaches to coping with coupling problems and also the whole one. This thesis

will primarily focus on key aspects to solve the integrated problem for an indoor mobile robot.

First of all, we are going to analyze further the characteristics of each coupling ones to see in

more detail the whole picture.

Simultaneous Localization and Mapping, mostly known as SLAM problem has received a great

deal of attention in both theory and practice since the 1980s, commenced by the seminal paper of

Smith and Cheeseman [9]. It brings a solution to a mobile robot moving in a previously unknown

place in order to incrementally build a map of that environment while at the same time specifies its

Figure 1.1: Classified tasks in autonomous mobile robotics [10]. The overlapping area (region IV)
will be addressed in this work.
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position in the map. Additionally, robot is asked to use on-board sensors only to implement its tasks.

There are many approaches extensively considered in indoor [2], outdoor [3], underwater [5] and air-

borne [7] environments. Active Localization is another problem in which the map of the environment

is provided. Robot then has to determine its pose in that map while performing the planned motion.

On the other hand, Exploration, by some means given the robot pose, utilizes path planning to obtain

an efficient map.

By going through the whole picture, we can realize more clearly that the integrated problem

is very essential in the field of autonomous mobile robot. Its complete solution is still open to future

research. This work makes an attempt to investigate a possible approach to the whole problem in

order to answer these questions

• how to model the problem including sensor, robot motion and environment

• how to deal with unknown data, noise and uncertainties to solve the SLAM problem

• how to integrate path planning into SLAM to obtain a better map

1.2 Literature Review

1.2.1 History of SLAM Problem

The first brick of SLAM problem was constructed at the IEEE Robotics and Automation Con-

ference held in San Francisco, California in 1986 [8]. At that time, researchers had just introduced

probabilistic theory into both robotics and artificial intelligence. During the conference, a lot of time

was spent on discussing about how to use estimation method to solve mapping and localization prob-

lem. Its participants, including Randall C. Smith and Peter Cheeseman, soon afterward published

the important papers on this direction. They attempted to represent locational relationship of land-

marks in the robot’s vicinity and then show that there exists a correlation between them, which can

be reduced its uncertainty by the use of some operations.

The landmark research was conducted shortly after that by Smith et. al [13]. This paper de-

scribed an efficient method based on Kalman filter to acquire the estimate of robot pose and landmark

position in case that robot is moving in the environment and taking observations of nearby landmarks.

Importantly, these landmark estimates are all correlated with each other due to the common error in

estimated vehicle location. This work proposed a solution to SLAM problem that opened many re-

lated researches on essential SLAM’s aspects later on. Its conclusion emphasized on two respects.

First, the correlations between landmarks are kept updated by repeatedly using Kalman filter. Second,

the full state composed of robot state and landmark states is maintained and updated following each

time of taking observation. However, one drawback of this method is that it carries a large state vector

with the order of the number of landmarks in the map and furthermore its computational cost is as ex-

pensive as the square of that order [8]. In addition, this work did not take into account the convergence
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properties of the map or its steady-state behavior. Instead, the method was assumed that the estimated

map errors would not converge but exhibit a random-walk behavior with unbounded error growth.

For this reason, the following researches was going along with these assumptions that the correla-

tions between landmarks would be eliminated and was only focusing on approximating the consistent

map. And then the full-estimation theoretic SLAM problem seemed to be temporarily forgotten until

the conceptual breakthrough came with the realization that the combined mapping and localization

problem, once formulated as a single problem, was eventually convergent [14]. Above all, the crucial

part of SLAM problem turned out to be the correlations between landmarks, which many researchers

previously attempted to minimize. Surprisingly, the more these correlations increased, the better the

solution.

SLAM problem afterward became an active area where both theory and application aspect have

been developed by many research groups around the world, notably at the Massachusetts Institute of

Technology, the Australian Centre for Field Robotics, University of Zaragoza in Spain. And also a lot

of significant implementations have been carried out in various types of environment, which include

indoor, outdoor, aerial and subsea. Besides, many conferences, such as International Symposium

on Robotics Research (ISRR), IEEE International Conference on Robotics and Automation (ICRA),

Intelligent Robots and Systems (IROS), and SLAM summer schools, held by KTH Stockholm in

2002, LAAS-CNRS Toulouse in 2004, and University of Oxford in 2006 attracted a huge number of

researchers coming and bringing a variety of grand ideas into the field. In recent years, researchers

have been working on improving computational efficiency and addressing vision-based SLAM in real

applications.

1.2.2 Review of Key Literature

In this section, we will highlight key references that have the most important influence on this

research’s motivation. Following the review of the flow of SLAM problem, we pay attention on

SLAM application, in other words, what robot is able to do after it completes SLAM task. In this

connection, we focus on how to apply the map obtained from SLAM for navigation problem.

The authors in [11] proposed the same idea of SLAM and navigation with the use of A* and

RRT path planning algorithm for navigation after the map is built by SLAM. In addition, a method of

extracting both point-landmarks and line-landmarks are introduced by employing an omni-directional

camera and laser range finder as the sensing system of the robot. However, it is appear that they com-

bine SLAM with those path planning algorithms in a sequential manner, meaning that path planning

is performed after the map is built from SLAM.

In [12], the adaptive method relies on a metric in terms of Fisher information that represents

the sum of the areas of the error ellipses of the vehicle and feature estimates in the map. With the

objective to maximize the robot’s information about its position and all the landmarks’ positions, a

motion control for the robot at each time step can be chosen.



4

The work [31] introduced the frontier based method of robot exploration, which defines fron-

tiers between explored and unexplored regions. The nearest frontier will be chosen to be the next

destination for the robot. As reaching the goal, the robot perform a new scanning sweep to continue

finding new frontiers. This work was then improved in [32] which took localization method into

account. However, the tasks of exploration and localization were considered separately.

The integrated SLAM exploration strategy introduced in [10] uses the tight integration between

every two elements of the tasks of localization, mapping, and motion control. This approach to

exploration calls for a balanced evaluation of alternative motion actions from the point of view of

information gain, localization quality, and navigation cost. These qualities will be described by their

specific utility function and the total utility will then decide the next destination for the robot. In the

same manner, the framework in [33] used Extended Kalman filter for robot localization and mapping

while constructing an occupancy grid map for the environment in which the robot is exploring based

on frontier method. Moreover, this work also concerns about the multi-robot exploration as well as

dynamic A* path planning algorithm, equipping the robot a capability to deal with dynamic objects

on the way to goal.

The extensive robotic mapping works in [22] have appeared to be the state-of-art techniques in

SLAM and Exploration which effectively exploit particle filter and grid-based map. In addition, active

loop closing and information gain are main objectives for the robot while exploring. The research also

presented how to face with dynamic environment as well as multi-robot coordination.

Let us take the work in [34] to be a typical example of exploration-based outdoor autonomous

mobile robot that was successfully manufactured and implemented. Therefore it covers many aspects

of robotics, from vision, state estimation, exploration, planning, control and so on. Robot also owns

behavior selection scheme in order to interact with people on the way. The obtained knowledge is

then integrated into the on-line reasoning system in order to enhance its autonomy. Overall, this

framework extensively exploits probabilistic robotics and Bayesian estimation field.

1.3 Thesis Objectives

1. Study SLAM solutions based on Extended Kalman filter (EKF), Unscented Kalman filter (UKF)

and Particle filter (PF) and make a comparison between them.

2. Investigate the convergence and consistency of these SLAM solutions in order to guarantee the

feasibility of the SLAM map’s application.

3. Develop an integration between SLAM problem with path planning algorithms in order for a

mobile robot to autonomously arrive at a prescribed destination.

4. Illustrate the usefulness of the developed method by carrying out MATLAB simulation.
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1.4 Scope of Thesis

1. Investigate the most well-known SLAM solutions and make a comparison between them in

terms of accuracy.

2. Study on A* path planning algorithm

3. Develop an integration between SLAM and the path planning algorithm.

4. Build a MATLAB simulation to test the proposed integration.

1.5 Methodology

1. Literature review on SLAM problem and existing techniques to solve this problem.

2. Literature review on path planning algorithms in order for robot to reach the desired destination

without any collision on the way.

3. Build a simulation tool for SLAM problem in combination with proposed path planning algo-

rithm.

1.6 Expected Outcomes

1. A simulation-based comparison between some existing SLAM solutions.

2. An integration between SLAM and path planning algorithm.

3. A simulation tool for SLAM problem combined with path planning.

1.7 Thesis Outline

The organization of the thesis is as follows. Chapter 2 presents basic background and concepts

that will be used throughout this work. Chapter 3 investigates the SLAM problem with three algo-

rithms, EKF-, UKF- and particle filter- based methods. Here we present one of the most important

aspects in SLAM, which is loop closing, together with illustrative simulations. The comparative sim-

ulations between these solutions are also provided. Chapter 4 considers the occupancy grid map to

represent the environment and to be used for navigation. It also takes into account how to evaluate

benefit function based on information gain, traveling and steering cost to equip the robot the decision

making capability of where to move next. Chapter 5 examines the whole framework by conducting

simulations for the robot exploring the previously unknown area. Conclusions and future works are

given in Chapter 6.



CHAPTER II

PROBLEM DESCRIPTION

This chapter provides a preliminaries on the configurations of the environment and robotic

system. The material presented here will be essential for all the algorithms mentioned in the following

chapters.

2.1 Introduction

Following the motivation aforementioned, we need to determine the techniques to be used

for our robot. Here in this description chapter, an overview of the entire scheme is given briefly.

Throughout the subsequent chapters, we will discover in a row these blocks of specialized knowledge

in mobile robotics and then see the connections between them as well as the underlying reasons why

we opt to these specializations.

Figure 2.1: Entire reference scheme of mobile robot used in this research

Figure 2.1 depicts the entire reference scheme that we exploit in this research. To classify it in

sub-groups, the Sense-Think-Act cycle [24] will be an appropriate representation, as shown in Figure

2.2. In this connection, Sense includes Sensing action using robotic sensors to perceive the current

environment; Think consists of i, SLAM problem to concurrently specify robot’s position and map, ii,

a technique to explore the environment and iii, a path planning algorithm to generate a path reaching

the desired goal; Act afterward produces reasonable motion controls to perform movements following

the specified path.
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Figure 2.2: Sense - Think - Act cycle

Now with that proposed scheme for our mobile robot, we can somewhat claim it makes the

robot autonomous. Before embarking upon the journey with each part of the scheme, let us define

essential preliminaries.

2.2 Uncertainties in Robotic Operation

In any system, from human to machines, there always exist noises that we cannot neglect.

These uncertainties result from, to name but a few, each physical operation of robot, i.e. sensing and

moving. Depending on what type of sensor and its price, the measurement ability of our robot varies

from large noise to high accuracy. The same applies for robot actuation, where noises arise from

wear and tear or mechanical failure. In either case, autonomous robot is supposed to manage itself

to handle these disturbances. Unfortunately, they are mostly unpredictable that it is unlikely to arrive

at a closed form of noises. The most common way is using probabilistic models to represent the

presence of noisy subjects in the system. In this way, we have to take some moments such as mean

and covariance of our state into account and overall the problems with robots turn to be recursive

estimation problems, which will play the core role in our algorithms presented in this thesis.

We will be going on with notations and concepts in each process step of our robot.

2.3 Robot Perception

Robot perception is a way robot interacts with its environment using sensors to extract useful

information. This task plays a vital role in achieving the necessary accuracy of robot actions. If for

some reason a sensory device becomes inaccurate while working, the whole system can afterward

act in a divergent manner, e.g. move uncontrollably far from the operating area. Therefore, robotic

vision has received considerable attention over the past decades and consequently has developed to an

advanced level, where machine with affordable cost can autonomously perform dangerous or tedious

tasks instead of human.

Today there is a wide range of sensory devices in the robotic field. Generally, these sensors

are classified into two groups based on their own functions, which are proprioceptive sensors and

exteroceptive sensors. The first group is used to measure values related to internal actions of robot

such as wheel revolution, load weight or battery voltage; whereas the latter is to take measurement
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Figure 2.3: A typical setup in a simulated environment, e.g. MATLAB. Robot (triangle) is observ-
ing landmarks nearby (stars) using a model of laser range finder where straight lines illustrate its
observing actions.

to external objects existing nearby such as distance to the wall in front or detecting the presence of

obstacles. We now need to choose appropriate sensors to fulfill particular purposes, usually pertaining

to technical objectives and economic constraints.

In our scenario, the robot basically needs not only to handle its motion but to perceive its

environment. This is like a person getting lost his way. He then has to be aware of how far or how fast

he has been moving while utilizing his vision to observe surrounding entities. Therefore, we need

to use both types of sensors mentioned above, two internal and one external, to acquire necessary

information. The first one, Encoder, is the most popular device to monitor the robot motion through

counting the revolution of the rear wheels by fitting it at the drive shaft. The second internal sensor

is Linear Variable Differential Transformer, attached in the steering rack to give a means of reading

robot heading. The other sensor, Laser Range finder, plays a role in taking measurements to the things

nearby. This is a very common sensor used to measure the distance between itself and an object by

projecting a beam into the target and calculating the time taken for the beam to be bounced off the

target’s surface and return to the instrument. This action is visualized via straight lines in Figure 2.3

where a robot (triangle) is observing landmarks nearby (stars).
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2.4 System Configuration

The robot in this thesis is confined to work in planar environments. The pose x of robot thus

comprises its location (xr, yr) and heading φ relative to a global coordinate system. Therefore we

have x = [xr, yr, φ]T .

Objects in robot’s environment are assumed to be static. In other words, under the scope of

this research we have not yet dealt with dynamic environments. In fact, we need to exploit land-

marks, which are distinct features placed in the environment so that the robot can recognize with

high reliability. Additionally, these landmarks will contribute into the system state via the form of

their locations relative to global coordinate frame and all landmarks’ state that robot has observed at

a certain point of time will create the map m of the environment.

m = [m1,m2, . . . ,mNt ]
T = [x1, y1, x2, y2, . . . , xNt , yNt ]

T (2.1)

We now can define the complete system state X in equation (2.2), which includes the robot

pose and the map m

X =

x
m

 (2.2)

As discussed in Section 2.3, the robot obtains information about its own motion and current

environment by using on-board sensors. In this way, the robot and the environment have two interac-

tions

• Control actions: robot is forced to move in the environment which lead to a change in the

system state. The control input is denoted by u = [V, γ]T , including velocity and steering

angle as aforementioned.

• Measurement (aka Observation) actions: Robot uses sensors to acquire measurement values

of objects in its environment and increase information it possesses. Each valid measurement

z = [r, θ]T consists of range r and bearing θ, which are the distance and relative angle between

the robot and a landmark.

We also note that the way we often separate control action and measurement due to the nature

of filtering algorithms that are discussed in the subsequent chapters. In fact, both actions are taken

place at the same time.

2.5 Process Model

In this thesis we are working with a car-like mobile robot in indoor environment, consisting

of two fixed standard wheels at the back and two steered standard wheels in front. Rear wheels

are actuated by one motor and the steering mechanism of front wheels requires another motor. It is

common to model this four-wheeled car-like robot by a bicycle model, which includes one fixed rear
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Figure 2.4: The robotic car rotates about its instantaneous center of rotation. The bicycle approxima-
tion is depicted in between left and right wheels.

wheel and one front wheel able to rotate about its vertical axis to steer the vehicle, as depicted in

Figure 2.4.

The process model investigated here is based on the robot’s kinematic model under some as-

sumptions [16]. First, the robot motion is restricted to a two-dimension plane. The second one is

that the said plane is fixed into the Earth ground so that we can neglect the effects caused by the

Earth’s motion. The next assumption, mostly known as nonholonomic constraint, is no slip occurring

between all the tyres and the ground so that the robot cannot move laterally along its axle. By these

assumptions, the system complexity and its motion characteristics have been relaxed to be:

• The degree of freedom (DOF) of the whole system decreases to two. The initial DOF without

constraints includes the drive velocities of all four wheels together with the steer angle of the

front wheels, whereas the constrained system has the translational velocity of the whole vehicle

and the steering angle, then resulting in 2 DOF.

• The whole system will rotate about the instantaneous center of rotation (ICR), determined by

the intersection of two straight lines perpendicular to the front and rear wheels respectively.

The whole system now can be modeled as a bicycle through the representation of two virtual

wheels as depicted in Figure 2.4.

For these reasons, we opt to use the translational velocity of the robot V and the steering angle

γ of the virtual front wheel as the control input without loss of generality.

Let B be the wheelbase of the vehicle, which is the distance between the front and rear wheels,

then, based on these assumptions and configurations, the process model in continuous time is written
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Figure 2.5: Robot is observing a nearby landmark (star) and obtains measurement value zi = [ri, θi]
T .

as follows
ẋr = V cos(φ+ γ)

ẏr = V sin(φ+ γ)

φ̇ =
V sin(γ)

B

(2.3)

This model needs to be discretized in order to be applicable in computer-based execution.

Within a very small period of time ∆t, assume that the control input, V and γ, is stationary. We now

can perform discretization to obtain the robot pose at time step k

xk+1,r = xk,r + Vk∆t cos(φk + γk)

yk+1,r = yk,r + Vk∆t sin(φk + γk)

φk+1 = φk +
Vk∆t sin(γk)

B

(2.4)

2.6 Measurement Model

A model of robot observing a landmark is depicted as Figure 2.5. For the sake of simplicity,

we assume that the sensor is attached at the center of the front axle without loss of generality. In fact,

at one time sensor is able to measure many landmarks depending on the density of landmarks in the

environment and the maximum length capability of the laser sensor. The range and bearing acquired

from sensing i-th landmark are computed asri
θi

 =

√(xi − xr)2 + (yi − yr)2

arctan( yi−yrxi−xr )− φ

 (2.5)
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Figure 2.6: Evolution of state, control input and measurement in this robotic system [36].

We also note that noises indeed affect both process and measurement model, which will arise

later when we discuss the solution to SLAM problem.

2.7 Markov Assumptions and Resulting Probabilistic Models

We now dive into probabilistic concepts for our robotic system by using probability theory. The

evolution of controls, states and measurements in the perturbed system are reflected by probability

distribution functions, as illustrated in Figure 2.6 where shaded nodes are what we want to estimate

and the others are given.

Let us first explore two Markov assumptions which will be presented as follows. The first

Markov property states that our state is complete. This means if we know the previous state xk−1

then past states x0:k−2, measurements z1:k−1 and control inputs u0:k−2 provide no information for

the current state xk. In addition, the previous state xk−1 is conditionally independent of future states

xk+1:k+τ , τ ≥ 1 given the current state xk. Therefore we obtain equations for probability distributions

as follows

p(xk|x0:k−1, z1:k−1, u0:k−1) = p(xk|xk−1, uk−1) (2.6)

p(xk−1|xk:k+τ , zk:k+τ ) = p(xk−1|xk) (2.7)

The second assumption accounts for the independence of the current measurement zk condi-

tioned on the current state

p(zk|x0:k, z1:k−1) = p(zk|xk) (2.8)

These main resulting models, p(xk|xk−1, uk−1) and p(zk|xk), in the world of uncertainties cor-

rupted by noises indeed interpret probabilistic models of the robot’s state transition and measurement

processes. The probability distribution p(xk|xk−1, uk−1) shows how the state evolves when robot

receives a new control input uk−1 at the state xk−1. Whereas the measurement probability p(zk|xk)

stochastically manifests the resulting measurement zk at the current state xk.
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2.8 Conclusions

This chapter highlights the key background and, especially, the whole framework description

that will be discussed in more detail in the following chapters. Two basic models of the robotic system

have been built together with their assumptions. We also introduce the nature of inevitable uncertainty

existing in both models, which then is governed by probabilistic theory.



CHAPTER III

SIMULTANEOUS LOCALIZATION AND MAPPING

3.1 Introduction

This section investigates the problem of Simultaneous Localization and Mapping, mostly known

as SLAM. This addresses both localization and mapping for mobile robot at the same time. Local-

ization determines robot pose in a given map. Mapping, on the other hand, is going to construct a

map of the environment in which a robot with known pose is maneuvering. In autonomous mobile

robotics, SLAM has been a major research topic attracting numerous extensive works for more than

two decades and also famous as a big motivation in approaching to probabilistic robotics. Since this

is a large problem, SLAM community has developed many insightful research directions. However,

there are still open challenges to continue on the journey [19].

In general, to re-emphasize, a mobile robot equipped with sensors to perceive the ambient

objects in its working area inevitably encounters noisy measurements. It also receives uncertainties

from its control inputs as well as dynamic environment. Unfortunately, these quantities cannot be

governed by concrete formulation. Instead, we treat these uncertainties like random variables by

using probability theory in a systematic and efficient manner.

There are two main forms of SLAM, which are known as the online SLAM and the full SLAM

problem. The first one attempts to estimate the posterior over the current pose and map

p(xk,m|z1:k, u0:k−1) (3.1)

The full SLAM problem aims to estimate the entire poses of the robot together with the map

p(x0:k,m|z1:k, u0:k−1) (3.2)

Because of the high dimensionality of the full SLAM, especially when the environment owns a

huge number of landmarks, in most cases people try to come up with the online SLAM problem and

approximate the full problem if needed. In this work, we will investigate both two problems as a base

for the further research.

The following parts present key solutions to SLAM, comprising the use of Gaussian filters and

Nonparametric filter. Along the way, we will see how these approaches can obtain relatively good

estimates for robot pose and map among ambiguous inputs. At the end, various simulations show

effectiveness of these techniques as well as the most important properties in this problem.
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3.2 EKF-SLAM

EKF-SLAM provides a solution to this problem based on Extended Kalman filter [25], which

linearizes the system models in order to apply the well-known Kalman filter. Historically speaking,

this technique is the earliest and most influential in the field.

As an estimation problem, importantly, EKF-SLAM take into account the first two moments

of probability distributions, recursively estimating the mean of the system state and its associated

covariance.

The EKF-SLAM maintains a feature-based map which governs each landmark via its Cartesian

location. In addition, each landmark will be treated as a point in the coordinate frame.

We now start the main procedure of SLAM problem that is aligned with the Bayesian filtering

manner in association with other specific techniques.

3.2.1 Prediction

The process model of the state will be considered separately corresponding to its structure as

in Equation (2.2), taken at time step k when the robot receives a new control input uk = [Vk, γk]
T to

achieve the next state at k + 1.

xk+1 =


xr,k+1

yr,k+1

φk+1

 =


xr,k + (Vk + δVk)∆t cos[φk + (γk + δγk)]

yr,k + (Vk + δVk)∆t sin[φk + (γk + δγk)]

φk + (Vk+δVk)∆t sin(γk+δγk)
B

 (3.3)

mk+1 = mk (3.4)

There always exists disturbance in sensor data, which is assumed to be additive zero-mean

Gaussian in this model, denoted by vk = [δVk, δγk]
T . Thus, equation (3.3) is necessarily extended

from equation 2.4. As a simplest formulation of disturbance, each element of vk is added directly into

each control input. Finally, the process model can be written in general form as

Xk+1 = f(Xk, uk, vk) (3.5)

Let X̂k|k and Pk|k denote the state estimate at time k and its associated covariance matrix. The

EKF linearizes the state equation using Taylor series expansion evaluated at X̂k|k. The prediction step

of EKF-SLAM is then given by

X̂k+1|k = f(X̂k|k, uk, 0) (3.6)

Pk+1|k = ∇fXPk|k∇fTX +∇fuQk∇fTu (3.7)

where Qk is the 2-by-2 covariance matrix of the control input noise and ∇fX , ∇fu are Jacobian
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matrices given by

∇fX =
∂f

∂X
(X̂k|k, uk) =

∇gXr 0

0 I



∇gx =
∂g

∂x
(x̂k|k, uk) =


1 0 −Vk∆t sin(φ̂k|k + γk)

0 1 Vk∆t cos(φ̂k|k + γk)

0 0 1


(3.8)

∇fu =
∂f

∂u
(X̂k|k, uk) =

∇gu 0

0 0


∇gu =

∂g

∂u
(X̂k|k, uk) =

∆t cos(φk|k + γk) −Vk∆t sin(φk|k + γk)

∆t sin(φk|k + γk) Vk∆t cos(φk|k + γk)

 (3.9)

where I and 0 are respectively identity and zero matrices with the corresponding size.

3.2.2 Measurement Update

We assume that robot receives a control input before observing landmarks. At time step k + 1

robot takes a new measurement to the i-th landmark. The measurement model corrupted by noise is

given as follows ri,k+1

θi,k+1

 =

√(xi − xr,k+1)2 + (yi − yr,k+1)2

arctan(
yi−yr,k+1

xi−xr,k+1
)− φk+1

+

δri,k+1

δθi,k+1

 (3.10)

This model can be rewritten in the general form

zi,k+1 =

ri,k+1

θi,k+1

 = hi(Xk+1,mi) + wi,k+1 (3.11)

where the noise wi is assumed to be Gaussian with zero mean and covariance matrix R.

Innovation term is the difference between the true and the predicted measurement, together

with its associated covariance, which are both given by

νk+1 = zi,k+1 − hi(X̂k+1|k,mi) (3.12)

Sk+1 = ∇hi,k+1Pk+1|k∇hTi,k+1 +Rk+1 (3.13)

The estimate of the state vector and its associated covariance can be updated as follows

X̂k+1|k+1 = X̂k+1|k +Kk+1νk+1 (3.14)

Pk+1|k+1 = (I−Kk+1∇hi,k+1)Pk+1|k (3.15)
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Figure 3.1: The validation gate is defined by ϑn, which is formed a gating ellipse. Any measurement
zi that falls inside this gate will be considered as a valid measurement associated to the predicted
measurement h(m̂j)

where Kk+1 is the Kalman gain which determines the influence of the innovation on the updated

estimate given by

Kk+1 = Pk+1|k∇hTi,k+1S
−1
k+1 (3.16)

and∇hi,k+1 is a Jacobian matrix of the measurement model with respect to the state and obtained by

∇hi,k+1 =
∂hi

∂Xk+1

∣∣∣∣
X̂k+1|k

=

−∆x
d −∆y

d 0 ∆x
d

∆y
d

∆y
d2

−∆x
d2
−1 −∆y

d2
∆x
d2

 (3.17)

∆x = xi,m − xr,k+1|k

∆y = yi,m − yr,k+1|k

d =
√

∆x2 + ∆y2

(3.18)

We note that, in Equation (3.17), all the columns of landmarks that are not currently observed are

neglected.

3.2.3 Data Association

It is often difficult to state which measurement corresponding to which landmark since, for

instance, the similar characteristics of landmarks in the environment. Data association therefore ad-

dresses the problem of matching a measurement to its correct landmark, which plays a very crucial

role in the SLAM implementations. In literature, there exist several algorithms as well as their ex-

tensions to address this problem. We will first come up with the most common technique which has

been used for our scenario, namely validation gating [3]. This technique defines a validation region

for a predicted measurement h(m̂j) of landmark mj in order to find a valid measurement based on

the normalized innovation squared (NIS), and also termed as Mahalanobis distance. Recall the inno-

vation term in equation (3.12), νij = zi−h(m̂j) and its corresponding covariance in equation (3.13),
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Figure 3.2: χ2 distribution with 1, 2, 3 and 4 degrees of freedom

Sij , then the NIS is stated as follows

Mij = νTijS
−1
ij νij (3.19)

The validation gate is employed as the maximum threshold ϑn for the NIS, given by

Mij < ϑn (3.20)

where n is the dimension of vector νij . Any measurement which satisfies the condition (3.20) will be

a valid measurement as illustrated in Figure 3.1.

In order to obtain the value of validate gate, we exploit the χ2 (chi-squared) distribution whose

shape changes according to the degree of freedom, or in this specified case, the dimension of n of

the innovation vector ν, as shown in Figure 3.2. The integral of χ2 distribution from 0 to the chosen

threshold ϑn gives the probability of how likely the observation zi associates with the target mj .

3.2.4 Landmark Augmentation

Once the robot discovers a new landmark which satisfies to be incorporated into the whole state

vector, the landmark augmentation will be taken place. As a result, the size of the state vector and its

covariance will increase considerably. First the state vector and covariance matrix are augmented as

follows [3]

X̂aug =

X̂
z

 (3.21)

Paug =


Pxx Pxm 0

P Txm Pmm 0

0 0 R

 (3.22)
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A transformation to convert the polar measurement z into the global Cartesian location is given by

g(x, z) =

xi
yi

 =

xr + ri cos(φ+ θi)

yr + ri sin(φ+ θi)

 (3.23)

The augmented state can then be corrected by linearizing function f using Taylor series as follows

X̂+ = f(X̂aug) =

 X̂

g(x̂, z)

 (3.24)

P+ = ∇fXaugPaug∇fTXaug
(3.25)

where the Jacobian∇fXaug is given by

∇fXaug =
∂f

∂Xaug

∣∣∣∣
X̂aug

(3.26)

3.2.5 EKF-SLAM: Simulation Results

We first introduce the environment settings that the simulation test is conducted, as depicted in

Figure 3.3. It is necessary to previously define

• A global coordinate frame

• Landmarks’ Cartesian locations in the environment as drawn by many stars (*).

• Initial pose at [0, 0, π/2]T and its associated covariance is P = 0.

• Pure SLAM is passive in the sense of robot motion. We need to provide a set of waypoints to

guide the robot where to go. In practice, for example, to implement SLAM for a car in outdoor

environment a person will manually drive the car around. The car controller performing SLAM

is then able to tell us where it is and also returns the map of the environment.

Before we go, also note that we use the solid line to depict the estimated path and dashed line to the

true path of the robot. Ellipsoid drawn in each object based on its covariance shows the uncertainty of

its estimate. Now let us get the car moved and see through characteristics and results of EKF-SLAM.

One of the most important property of SLAM is loop closing, where the robot re-visit and

recognize the place it has passed by before. From starting point to the moment before the loop, state

error increase according to the length of the loop, as we can see in Figure 3.4. Right after closing

the loop, uncertainties of both robot’s pose and landmarks’ locations collapse as in Figure 3.6. The

same thing happens when the robot runs to another loop towards the letters R and L shown in Figure

3.7 and 3.8, uncertainties keep increasing along with the run until closing the loop, which abruptly

shrinks all the ellipses.

Our remarks are confirmed when actual errors in robot pose estimates in x and y axis are plotted

by solid lines in Figure 3.9 together with the ±2σ (95%) confidence bounds (dotted lines). Along the

way, there are two loop closures where exist sudden changes of error towards zeros.
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EKF−SLAM Simulation Example

Figure 3.3: SLAM simulated environment setup. Landmarks are many small stars (*). Robot is
drawn by the triangle, which has initial pose at [0, 0, π/2]T . Straight lines originated from robot show
observation actions of robot’s laser sensor.
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Figure 3.4: Robot starts to move and the uncertainties are increasing as illustrated by covariance
ellipses on the observed landmarks and the robot.
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Figure 3.5: Robot continues moving and uncertainties continue going up. The later recognized land-
marks have bigger uncertainties. As can be noticed, robot is about to close its first loop.
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EKF−SLAM Simulation Example

Figure 3.6: After closing the loop, all uncertainties suddenly shrink. Robot continues running to the
second loop.
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Figure 3.7: Before closing the second loop. The same results obtained with increasing uncertainties.
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Figure 3.8: After closing the loop, all uncertainties collapse, which is shown by the sudden change in
size of all ellipses explored during the second loop.
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(a) Pose error in x-axis
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(b) Pose error in y-axis

Figure 3.9: Actual error in robot pose estimate in x and y axis (solid lines) together with two 95%

confidence bounds (dotted lines) derived from the estimated covariance
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3.3 UKF-SLAM

Another extension of the Kalman filter, Unscented Kalman filter (UKF) [26], which utilizes

Unscented transformation (UT) resulting the estimation more accurate than the EKF and at the same

complexity. A number of the UKF approaches to SLAM problem have also appeared in the literature

[27, 28]. Nevertheless the UKF is an approximation which can also lead to inconsistency.

3.3.1 Initialization

Start with storing the state vector and the noises into one augmented state vector as follows

Xa
k =

[
XT
k vTk wTk

]T
(3.27)

P ak =


Pk 0 0

0 Qk 0

0 0 Rk

 (3.28)

Perform the Unscented Transformation (UT) to obtain a set of so-called sigma points and ac-

companying weights

χak−1 =
[
Xa
k−1 Xa

k−1 + η
√
P ak−1 Xa

k−1 − η
√
P ak−1

]
(3.29)

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ 1− α2 + β

W
(m)
i = W

(c)
i =

1

2(L+ λ)
, i = 1, . . . , 2L.

(3.30)

where η =
√
L+ λ; λ = α2(L + κ) − L is a scaling parameter; L is the dimension of Xa

k ; κ

is a scaling parameter which is usually set to be 3 − L; α is a positive scaling parameter which

determines the spread of the sigma points around X̂a, usually set to be 1 ≥ α ≥ 10−4; β is a constant

used to incorporate prior knowledge of the distribution of Xa. β = 2 is optimal in case of Gaussian

distributions [29];
√
P a gives matrix square root of P a where lower-triangular Cholesky factorization

is the most widely used method.

3.3.2 Time Update

All the sigma points are propagated through the motion model f(.) of robot

χXk|k−1 = f(χXk−1, uk−1, χ
w
k−1) (3.31)

The mean and covariance of the predicted state is calculated as follows

X̂k|k−1 =

2L∑
i=0

W
(m)
i χXi,k|k−1 (3.32)
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Pk|k−1 =

2L∑
i=0

W
(c)
i (χXi,k|k−1 − X̂k|k−1)(χXi,k|k−1 − X̂k|k−1)T (3.33)

All the sigma points are propagated through the observation model h(.) of robot

Zk|k−1 = h(χXk|k−1, χ
v
k−1) (3.34)

The mean of the predicted observation is then computed as shown below

ẑk|k−1 =

2L∑
i=0

W
(m)
i Zi,k|k−1 (3.35)

3.3.3 Measurement Update

Compute the covariance of the predicted observation and the cross-covariance of the predicted

state and the predicted observation

Pz̃k z̃k =

2L∑
i=0

W
(c)
i (Zi,k|k−1 − ẑk|k−1)(Zi,k|k−1 − ẑk|k−1)T (3.36)

PXk z̃k =
2L∑
i=0

W
(c)
i (χi,k|k−1 − X̂k|k−1)(Zi,k|k−1 − ẑk|k−1)T (3.37)

The state estimate and and its error covariance are now able to be updated

Kk = PXk z̃kP
−1
z̃k z̃k

(3.38)

X̂k = X̂k|k−1 +Kk(zk − ẑk|k−1) (3.39)

Pk = Pk|k−1 −KkPz̃k z̃kK
T
k (3.40)

3.3.4 Landmark Augmentation

In this subsection, we will focus on how to perform landmark augmentation [30]. Generally,

this technique has the similar manner as EKF-SLAM’s landmark augmentation presented in Section

3.2.4. First, the position of a newly observed landmark zk and its covariance are simply added as

follows

X̂+
k =

X̂k

zk

 , P+
k =

Pk 0

0 Lk

 (3.41)

The dimension of the augmented state vector is now equal toL∗ = L+2. Using equation (3.29)

to perform the Unscented Transformation for the pair in equation (3.41) and acquire the following set

of sigma points

χ+
k =

[
X̂+
k X̂+

k + η∗
√
P+
k X̂+

k − η
∗
√
P+
k

]
(3.42)
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Each column of this matrix contains the transformed state vector, including the robot’s pose

and the already known landmarks, and the transformed newly-observed landmark

χ+
i,k =

χXk
χzk


i

(3.43)

Take a coordinate transformation to switch the new landmark position in the polar coordinate

to the global Cartesian coordinate by using a function g(.)

χi,k =

 χXk

g(χXk , χ
z
k)


i

(3.44)

With the sigma points available, we come to the end of this stage by computing the weighted

mean and covariance

X̂k =

2L∑
i=0

W
∗(m)
i χi,k (3.45)

Pk =
2L∑
i=0

W
∗(c)
i (χi,k − X̂k)(χi,k − X̂k)

T (3.46)

3.3.5 UKF-SLAM: Simulation Results

We run the simulation for UKF-SLAM in exactly the same environment and initial setups as

implementing with EKF-SLAM in previous section. We highlight that the loop closing occurs in the

same manner, there is a sudden change in uncertainties when robot is passing by a loop closure as can

be seen in Figure 3.10. This is reaffirmed in Figure 3.11, showing the actual error of robot pose in x

and y axis together with its 95% confidence bounds.

3.4 FastSLAM

So far, we have focused on Kalman filters in solving SLAM problem, producing a recursively

closed-form approximation of state and covariance. Now we come to nonparametric method with the

use of particle filter, which has become a preferable choice in today SLAM [37].

3.4.1 FastSLAM Factorization

In EKF-SLAM and UKF-SLAM, robot is required to estimate the on-line posterior distribution

p(xk,m|z1:k, u0:k−1), which is the probability of the whole robot trajectory and the map up to this

point in time given all measurements and control inputs received from on-board sensors.

We need to take advantage of SLAM property in regard to dynamic Bayesian network in order

to factorize the posterior, which in turn reduces the computational complexity and enable to apply
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(a) Before closing the second loop
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(b) After closing the second loop

Figure 3.10: The loop closing problem in UKF-SLAM which appears to be closely similar to EKF-
SLAM
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(a) Pose error in x-axis
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Figure 3.11: Actual error in robot pose estimate in x and y axis (solid lines) together with two 95%

confidence bounds (dotted lines) in UKF-SLAM
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particle filter [35]. In this connection, FastSLAM estimates the full SLAM problem over the robot

path from the beginning to current time and the map

p(x0:k,m|z1:k, u0:k−1) (3.47)

This term can be derived as follows based on the conditional probability definition

p(x0:k,m|z1:k, u0:k−1) = p(x0:k|z1:k, u0:k−1)p(m|x0:k, z1:k, u0:k−1) (3.48)

The first term of the above equation is the robot path posterior whereas the second term is the

map estimator given the entire robot path up to this time. From the evolution network of SLAM

problem, we observe that all the landmarks are conditionally independent if the robot trajectory is

given. Based on this observation and using product rule, the posterior over robot pose and map can

be factorized as follows

p(m|x0:k, z1:k, u0:k−1) =
N∏
i=1

p(mi|x0:k, z1:k, u0:k−1) (3.49)

Then equation 3.47 becomes

p(x0:k,m|z1:k, u0:k−1) = p(x0:k|z1:k, u0:k−1)

N∏
i=1

p(mi|x0:k, z1:k, u0:k−1) (3.50)

The interpretation is that SLAM posterior can be estimated via the product of robot path and N

landmarks posterior given the robot path.

This interpretation suggests that we can estimate the posterior of FastSLAM using a separate

manner. Each term in (3.50) will be governed by one filter, i.e. the first term will apply particle

filter whereas the N landmark posteriors will use N different EKF filters. The particle filter needs to

maintain a set of M particles and note that the posterior of each landmark is conditioned on the robot

path. Therefore each particle is required to possess both the robot pose estimate and a set of N EKFs

of N landmarks given by

Y [i]
k = {x[i]

0:k, µ
[i]
1,k,Σ

[i]
1,k, µ

[i]
2,k,Σ

[i]
2,k, . . . , µ

[i]
N,k,Σ

[i]
N,k} (3.51)

where i indicates i-th particle in the set of M particles at time k. x0:k is the robot estimated path.

A pair {µj ,Σj} describes mean and covariance of the Gaussian estimating the position of the j-th

landmark. Particle filter, in the same manner of the Bayesian filters, will update the particle set Yk to

Yk+1 when receiving new control signal and measurement. This procedure comprises four key steps

which are outlined as follows [35].

3.4.2 Sampling a New Pose

It is often intractable to draw a sample directly from the posterior since it may possess any

form. Therefore we need to do this sampling step via a so-called proposal distribution, which is
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chosen from the probabilistic motion model

x
[i]
k ∼ p(xk|uk, x

[i]
k−1) (3.52)

Here x[i]
k−1 describes the robot pose estimate at time k − 1 belonging to the i-th particle. We tem-

porarily put these samples into a set that will be used for the next steps.

3.4.3 Calculate Importance Weight

This step corrects the mismatch between proposal and target distribution which is represented

by importance weight. Intuitively, these weights will attempt to push back samples drawn in Section

3.4.2 to the posterior distribution.

The proposal distribution of the full path particles:

p(x
[i]
0:k|z1:k−1, u0:k−1) = p(x

[i]
k |x

[i]
k−1, uk−1)p(x

[i]
0:k−1|z1:k−1, u0:k−2) (3.53)

The target distribution incorporates the measurement at time k

p(x
[i]
0:k|z1:k, u0:k−1) (3.54)

The importance weight is calculated by the ratio between the target and proposal distribution

w
[i]
k =

target distribution
proposal distribution

= ηp(zk|x
[i]
k )

≈ η|2πS[i]
k |
− 1

2 exp{−1

2
(zk − ẑik)TS

[i]−1
k (zk − ẑik)}

(3.55)

where zk − ẑik and S[i]
k are innovation term and its associated covariance as defined in Equation 3.12

and 3.13.

3.4.4 Measurement Update

This update step will base on successfully observed landmarks while the others remain un-

changed. Each observed landmark will be updated using the standard EKF equations

ẑk = h(x
[i]
k , µj,k−1) (3.56)

Gmj ,k = ∇mjh(xk,mj)|xk=x
[i]
k ;mj=µ

[i]
j,k−1

(3.57)

Kk = Σ
[i]
mj ,k−1Gmj ,k(G

T
mj ,k

Σ
[i]
mj ,k−1Gmj ,k +Rk)

−1 (3.58)

µ
[k]
j,k = µ

[i]
j,k +Kk(zk − ẑ

[i]
k ) (3.59)

Σ
[i]
mj ,k

= (I −KkGmj ,k)Σ
[i]
mj ,k−1 (3.60)
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3.4.5 Adaptive Resampling

Adaptive resampling technique examines which particles best represent the true posterior to re-

main and delete the other particles. The most common procedure is computing the so-called effective

number of particles or effective sample size, denoted by Neff. This quantity indicates how well the

current set of particles characterize the true posterior, which is calculated as follows

Neff =
1∑N

i=1(w
[i]
k )2

(3.61)

where all the weights must be normalized before taking this computation.

This effective number is a way to estimate the variance of importance weights. The higher

the weight variance, the worse the approximation of the current particle set. Resampling will be

executed when this quantity is considerably less than the number of particles, for instance, N/10.

This technique presents a significant advantage in reducing depletion of good samples.

3.5 Comparison of EKF-SLAM, UKF-SLAM and FastSLAM

Now, with these solutions derived clearly, we attempt to make comparisons between these algo-

rithms in cases that one of the control noises is varied. We run the simulation of three aforementioned

algorithms of SLAM in the same environment with 150 landmarks and initial setups. The steering

control noise, range and bearing measurement noise are kept at 30, 0.1 m, and 10. Robot is moving at

3 m/s and its sensor has the maximum range of 30 m. The first comparative simulation is varying the

noise of a control signal, translational velocity as can be seen in Figure 3.12. Each algorithm was run

10 times at each noise level and different random seed were used at each run. Thus the results shown

here are the mean over those runs together with associated standard deviation as depicted by vertical

bars. In our scenario, it is appeared that the EKF-SLAM tends to be the preferable choise since it

gives smaller errors except one case at 0.3. FastSLAM tends to reduce its errors when increasing

noise. Overall, we would say all the algorithms return pretty good results with small errors.

The second comparative simulation is varying the steering control noise and record RMSE

errors of there algorithms. The final result are shown in Figure 3.13. Here all the errors are small and

tend to increase as rising the noise.

By these simulations, we can notice that the accuracy of the algorithm depends on many factors,

not only the control noise itself since we still receive better accuracy when increasing the noise.

However, the good thing is the errors we observe in these implementations still remain at low level

even the noise is considerably large (e.g. 0.5 m). Therefore we suppose that these algorithms are

applicable in integration with other tasks in mobile robotics.
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3.6 Conclusion

This chapter consider the SLAM problem together with its well-known solutions. The simula-

tion suggests the key aspect in closing the loop for SLAM mobile robot since it considerably decrease

the uncertainties of the whole state. In addition, we also investigate a comparison between those al-

gorithms in terms of root mean square error and receive small, acceptable error levels. To some extent

we claim the feasibility of these techniques for our integrated framework.
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Figure 3.12: RMSE pose error of robot when varying translational velocity noise
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Figure 3.13: RMSE pose error of robot when varying steering control noise



CHAPTER IV

EXPLORATION ALGORITHM

This chapter investigates the exploration-based problem for our mobile robot. In this connec-

tion, we need to construct an occupancy grid map in order to implement A* path planning algorithm,

which both will be presented here. In addition, to perform the framework, as mentioned in Figure 2.1,

we also introduce utility and cost functions to define a new destination for robot.

4.1 Occupancy Grid Map

In previous chapter, we have used the feature-based map to represent the vicinity of the robot,

which can be efficiently maintained and updated. However, this type of map still owns some draw-

backs since we do not know the space between these features. Therefore it would be risky if we let

the robot move freely within these partially undefined areas. For this reason, it is necessary to ex-

ploit another representation, occupancy grid map [36], to support the navigation part presented in the

subsequent sections.

Occupancy grid map is the way in which the world is discretized into many small cells each

of which contains its probabilistic occupancy information. This means we have to compute for each

cell a posterior probability if the corresponding area of that cell is occupied by an obstacle, which

also implies the probability of the cell is empty that can be traveled through. One advantage of this

approach is that it does not require any predefined landmarks and allows the constant time access to

the map. Importantly, this map provides the information of the environment, whether a certain place,

as small as the size of a cell, is occupied or empty, whether a place has already visited or unexplored.

Thus this technique become popular for the use in path planning and exploration tasks.

At first we define the interpretation that we can claim corresponding to occupancy probability

p(mi) =


1 occupied

0 unoccupied

0.5 no knowledge

(4.1)

In addition, we assume that the cells {mi}i=1:L of the occupancy map m are independent as

shown by

p(m|z1:k, x0:k) =

L∏
i=1

p(mi|z1:k, x0:k) (4.2)

By this assumption, if we know the probability of one cell, we do not know any information of its

adjacent cells. In this way, given a new measurement and current robot’s pose, we can estimate the



36

Figure 4.1: Exploration Reference Procedure for Robot

updated probability of cells individually as follows [17]

p(mi|z1:k, x0:k) = [1 +
1− p(mi|zk, xk)
p(mi|zk, xk)

1− p(mi|z1:k−1, x0:k−1)

p(mi|z1:k−1, x0:k−1)

p(mi)

1− p(mi)
]−1 (4.3)

4.2 Frontier-based Potential Destinations

Now we can start the exploration algorithm. The reference procedure is then provided in Figure

4.1, which is a part in the whole framework.

When the robot reach its goal, it will perform a step called frontier-based approach [31] in

order to propose new potential destinations. Frontiers are defined as the cells of the grid map that

in between already explored and unexplored regions. In this way, the robot will be guided towards

unexplored region to discover as much as area as possible. Of course, there frontiers lie in the edge

of the explored region, which is also that of the unexplored region.

4.3 Information Gain and Cost Functions

This section defines function for robot to make its own decision of where to go next by evalu-

ating all frontiers and pick up the “best” one. After the robot determines a list of new frontiers, it will

evaluate each single frontier by using these utility and cost function [33]

• Utility of Information Gain The purpose of exploration is to collect the information of the

world. Therefore we will exploit the information gain utility to define the amount of informa-

tion that robot will obtain at one specific frontier. Let pc be the occupancy probability of one

cell mi, the amount of information it possesses is measured by entropy

H(mi) = −p(mi) log(p(mi)) (4.4)

To evaluate the information if the robot moves to that frontier cell, we first determine the sensed

region W of that cell’s point of view corresponding to the maximum range of the laser sensor
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capability. The second step is to compute the total information of all the cells in W as follows

I =
∑
mi∈W

H(mi) (4.5)

We note that the higher entropy the more uncertain that region is and the more attractive it is to

explore. In addition, the type of sensor used for robot also play a crucial role in this task since

it will decide the shape and size of the sensed region W .

• Cost to Reach Goal Robot also takes into account the function that approximately evaluate the

cost to move from the current pose to the goal. In this work, it is simply determined by the

Euclidean distance between these two points, which is also the shortest distance. Hence, this

cost will be exact in the case that robot moves along the straight path connecting starting and

target point.

CG =
√

(xgoal − xstart)2 + (ygoal − ystart)2 (4.6)

• Steering Cost Generally, the initial orientation of the robot is different from that of the refer-

ence path. It takes robot a cost for steering to the desired direction. The steering cost function

CS defined here to describe this action, which is simply proportional to the different angle

between these orientations.

• Total Benefit is the weighted utility function subtracted by weighted cost functions. Let wI ,

wG and wS be the weights of the functions I , CG, CS respectively

ΣB = wII − (wGCG + wSCS) (4.7)

• Selecting the Destination Finally, the frontier with maximum benefit will be opted for the new

destination.

4.4 A* Path Planning

In order for the robot to navigate to a goal, A* search algorithm has been widely used to find

a path answering the question of path planning: “How can I reach there?”. Given a graph G(V,E)

with nodes and edges, A* will find the shortest path between any pair of a start position and a goal

defined in the graph beforehand, as illustrated in Figure 4.2. In particular, under some conditions this

path will be optimal meaning that A* eventually returns the minimum cost path.

A* was invented by Hart et al. [21] as an extension of the Dijkstra’s algorithm, which both have

had a widespread use in real applications to present day such as self-driving cars, game programming,

Google maps. By incorporating heuristics in its search process, A* attains better results in terms of

time performance.

In our scenario, after its decision process, the robot will perceive the goal where it has to reach

at that moment. Therefore, with the map and current pose gained from SLAM, and the goal returned
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Figure 4.2: Illustration of the A* path planning algorithm

from decision making, we now can apply A* algorithm to get the robot to the said destination. The

algorithm is described in more detail as follows and in Algorithm 1.

4.4.1 Algorithm Description

We are first going to explain notations of the A* algorithm. Throughout the search, A* main-

tains two lists: OPEN and CLOSED. The first list contains nodes in which we choose the next

one to be explored. The second list includes nodes that have been already considered and nodes seen

as obstacles added from the beginning. This means robot will never revisit its past nodes and are not

allowed to arrive at unreachable nodes, which both result in the CLOSED list. Other notations are

• NS , NG, NOBS , N∗ are respectively start node, goal , set of nodes occupied by obstacles, and

currently explored node

• d(N1, N2) is the distance of two nodes N1 and N2

• G(N) is the function indicating how far the robot has moved from NS to node N

• H(N) is the heuristic function estimating the distance cost of the shortest path from node N to

NG

• F(N) = G(N) + H(N) is the total estimated cost of the shortest path from NS to NG con-

taining node N

Starting by having NS become N∗ and NOBS stored in CLOSED. The main loop consists

of checking if each of the adjacent nodes of N∗ is feasible to be added into OPEN by the condition

that the node is inside the given map and have not yet been in CLOSED. The winning nodes will

either be added into OPEN if it does not match with any node of OPEN or will be updated the

accompanied cost if otherwise and the said one has smaller cost than the one already in OPEN. Note

that we need to compute G, H, and F of each node that, together with the information of its parent,

will be always accompanied with that node. Next in the loop, the priority check will be performed,
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Algorithm 1 Pseudo code of A* algorithm
1: Given(NS , NG, NOBS , G,H, d)

Add NS into OPEN
Add NOBS into CLOSED

2: while OPEN list is not empty do
3: find a node with the smallest F in OPEN , call it N∗

put N∗ in CLOSED
4: if N∗ = NG then
5: complete the search, exit while loop
6: end if
7: for each node N ′ adjacent to N∗ and not in CLOSED do
8: mark N∗ as their parent

G(N ′) = G(N∗) + d(N∗, N ′)

H(N ′) = d(N∗, N ′)

F(N ′) = G(N ′) +H(N ′)

9: if N ′ /∈ OPEN then
10: insert N ′ to OPEN
11: else if F(N ′old) > F(N ′new) then
12: update parent of N ′old in OPEN to be N∗

update G, F of N ′old to be N ′new’s
13: end if
14: end for
15: end while
16: return the minimum-cost path by tracing back the pointer from the NG to NS
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Figure 4.3: Illustration of heuristic and actual distance in a grid map. Heuristic distance = Euclidean
distance = SG. Actual distance = Manhattan distance = SI + IG

where the node possessing the smallest cost in OPEN will be chosen to be the new N∗, which is

then removed from OPEN and added to CLOSED. The loop continues on and terminates if N∗ is

NG, returning the optimal path, or OPEN is empty, meaning no solution for the problem.

4.4.2 Optimality of A*

A* algorithm will generate an optimal path from NS to NG, i.e. lowest-cost path, if the heuris-

tic function is admissible [20], which happens providing that the estimated cost between any node in

the graph to the goal given by the functionH is always less than or equal the actual cost.

In the grid map, the actual cost path is the Manhattan cost, measuring the total absolute dif-

ference between two points in every Cartesian dimension, whereas the heuristic cost is opted to be

the Euclidean distance, as depicted in Figure 4.3. That’s why we claim that using A* in our scenario

ensure the optimal solution.

4.4.3 Example of A* Path Planning

We conduct a simulation for A* algorithm presented in this section. Provided are an initial

robot location (square), a goal (polygon) and obstacles (many circles) depicted in Figure 4.3. As we

can see, robot can find the optimal path to reach the goal.

4.5 Control Algorithm for Robotic Vehicle

The path generated from A* includes a set of points that guide the robot to the goal. In fact,

it has a number of turning angle along the way so that the robot definitely needs a controller keeping

track to the planned path.

In this work, we use two proportional controllers with separate objectives. The first one aims

to minimize the robot’s distance d to the line whereas the second controller adjusts the orientation of
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Figure 4.4: An simulation example of A* algorithm

Figure 4.5: Diagram of the tracking controller

the robot to be parallel to the reference line. Therefore we obtain the equation for the steering angle

γ = −Kdd+K∆∆ = −Kdd+K∆(φr − φ) (4.8)

where Kd,K∆ > 0 are controller gains. φr is the orientation of the reference line and φ is the current

orientation of the robot.

4.6 Conclusions

This chapter has investigated the procedure for integrated approach by using exploration algo-

rithm. To apply path planning and exploration, it is necessary to maintain an occupancy grid map

where robot can perceive both empty space and occupied-by-obstacle space. The exploration algo-

rithm first let the robot define the frontier region between the unexplored and explored in the map.
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By using the total benefit function, based on information gain, cost to reach goal and steering cost

functions, the robot is able to decide the best destination to go by picking up the frontier with max-

imum benefit. After that, A* path planning algorithm will generate the path for robot to reach the

destination. Finally, a tracking control assist robot to track the planned path.



CHAPTER V

SIMULATION RESULTS

This chapter provides the main simulation results of the integrated algorithm on which we will

draw significant conclusions and discussions.

5.1 Integrated Approach

Revisit the whole framework in Figure 2.1, we are now able to perform the entire integrated

approach.

• SLAM is used for localization and feature-based mapping in which robot will have a means to

know its location.

• Building Occupancy grid map is essential for path planning and exploration. This map will be

updated and maintained in parallel with SLAM feature-based map. In general, two these maps

are complimentary to each other.

• The decision making process bases on proposing new frontiers whenever robot reaches its cur-

rent destination and applying benefit function in order to pick the best frontier (new destination).

• A* algorithm to plan path and a steering controller to keep track to that path.

Putting all algorithms together, we now can proceed the simulation test for the integrated ap-

proach.

5.2 Simulation Setup

We setup an environment with the size of 100cells x 100cells containing many landmarks in

which

• Each landmark takes up 1 cell of the map. In practice, the object smaller than the cell size is

also considered occupying one cell.

• Robot is assumed to have the size of one cell.

• Objects in the map except the robot are static.

• To visualize, the gray area indicates unexplored region (occupancy probability p = 0.5) whereas

the white color shows already explored region (p → 0) and the occupied area (landmarks) is

shown by small squares (p → 1) as can be seen in Figure 5.1. The frontiers will be shown by
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Figure 5.1: Initial occupancy grid map of the simulated environment

small circles while the path generated by A* is a solid line (usually, this is a line with many

turning angles)

The parameters for robot are set up as follows

• Robot is visualized by a triangle. Its velocity is 1cell/s. And the time interval is 0.05s.

• Robot wheelbase is 1cell.

• Maximum range of sensor is 15m. The shape of sensed region is a half circle.

• Controller parameters: Kd = 0.8,K∆ = 1

5.3 Simulation Results

The robot now starts exploring! During this simulation, we have captured videos of exploration

action that will be enclosed with this thesis.

The first scene in Figure 5.2 shows the frontiers between the explored (white) and the gray

regions. The best-benefit frontier will be chosen and a path to that frontier will afterward be generated

as shown by solid line. In fact, at this moment robot is steering to track the path. We also note that

only the landmarks (small squares) are already perceives by robot while the others remain unexplored.

When the robot reach the goal, it immediately defines a new list of frontiers and continues the

same procedure as can be seen in Figure 5.3.

Figure 5.4 shows the observation action is still taking place at the same time robot is moving

to the goal. That is the reason why we have the white area outside the closed area defined by the
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Figure 5.2: Robot defined the frontiers and picked a destination. Now robot is starting moving to the
planned path
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Figure 5.3: Robot reached the goal and continue the same procedure
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Figure 5.4: An example to illustrate the sensed region of robot corresponding to its sensor’s capability
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Figure 5.5: A snapshot showing the exploration process after some time. Robot is now moving to the
goal.
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Figure 5.6: A snapshot showing robot completed its exploration. The whole area have been fully
explored.
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Figure 5.7: The second implementation in dense environment. Robot eventually fully explores the
whole area



48

frontiers. As we can notice, the half-circle shape of robot’s sensor is demonstrated by the curved edge

between explored and unexplored regions.

Figure 5.5 depicts the scene after some time and the generated path has some turning angles.

The exploration procedure stops when the whole area is fully explored as in Figure 5.6, every place

has been whitened. Because robot is moving and observing at the same time so that in the last action

it even did not need to complete the planned path in order to explore the remaining area. That is why

some trace is still left in the top right corner of the figure.

We attempt to implement the second simulation in which we create a lot more landmarks as in

Figure 5.7. Robot eventually succeeded the exploration procedure with the whole area fully explored.

5.4 Summary and Discussion

Through simulation results we conclude that the integrated approach to SLAM and A* path

planning algorithm works well since robot is able to fully perform the required tasks shown by the

whole area totally explored. There are, however, several drawbacks in this technique

• There is a trade-off between the accurate representation of grid map and the velocity of the

robot. If the resolution of the map is small, then we have to slow down the robot to make sure

it is able to follow the path that generated in cell-to-cell basis. This issue can be improved by

using an smoothing algorithm to eliminate many turning points of the pure A* path.

• The benefit function that we used in this work only gives the local maxima. We need to consider

other approaches that further optimize the exploration algorithm.

• The robot still needs the aid from the landmarks, meaning that some information has to be

predefined which then decrease the concept of truly autonomous robots.



CHAPTER VI

CONCLUSIONS

6.1 Concluding Remarks

This work has been motivated by the framework that to some extent make the robot truly

autonomous. We then start to deal with tasks needed for mobile robot basically including localization,

mapping and path planning. We decide to study an approach that is able to integrate these tasks.

This work starts by investigating SLAM problem that provide robot the capability to construct

the map and localize itself in that environment. By exploiting two main branches of Bayesian filtering,

which are parametric and non-parametric approach, we have selected three solutions for SLAM to

take into account. We also show the key aspect of SLAM problem by simulating the affect of loop

closing without which SLAM will turn to be infeasible. The comparison between these algorithms

also give a sense in the accuracy to be able to apply SLAM in other works.

The bridge to connect SLAM with path planning algorithm is introduced based on the purpose

of autonomous mobile robot moving and collecting information of the world. The information utility

will guide the robot to reach the region with richer uncertainties to explore. On the other hand, we

also need to take into account the travelling cost function and steering cost in order to minimize the

time of motion. This approach also requires the frontier-based technique to determine the preferred

region to calculate the benefit and select the destination.

We also investigate the A* path planning algorithm to generate the path from the current point

of robot to its goal. Making sure the robot tracks the generated path requires a controller to generate

steering action, which has also been introduced.

The simulation results at the end prove the feasibility of our proposed frameworks. Robot

performs many required tasks as planned and eventually reach the state that the robot’s world is fully

discovered. There exist some drawbacks in this approach that are presented in the same chapter.

6.2 Future Works

This work consists of many basic tasks in robotics that open very many extensions if one

wishes. We now outline our own ideas and intentions that we will study after this thesis

• We wish to deal with challenging dynamic environment that is closer to what really happen in

real life. The obstacles now will be set moving with uncertainties!

• As mentioned earlier, the benefit function is not optimal, which will be a way for us to come.
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• We also would like to deal with dynamic programming for planning a path and being able to

deal with unpredictable objects appearing on the way.

• Regarding SLAM problem, handling the huge number of landmarks or big-size maps can be

extended to improve existing drawbacks of SLAM in this work. Moreover, 3D-SLAM with

camera will be very beneficial in our life.
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[18] U. Frese, R. Wagner, and T. Röfer, “A SLAM overview from a user’s perspective,” KI - Künstliche

Intelligenz, Springer-Verlag, 24, 3, (2010): 191–198.

[19] U. Frese, “Interview: Is SLAM Solved?,” KI - Künstliche Intelligenz, Springer-Verlag, 24, 3, (2010):

255–257.

[20] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun, Prin-

ciples of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Boston,

2005.

[21] E. P. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum

cost path,” IEEE Transactions on System Science and Cybernetics, 4, 2, (1968): 100–107.

[22] C. Stachniss, Robotic Mapping and Exploration. Springer Tracts in Advanced Robotics, Springer

Berlin Heidelberg, 55, 2009.
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APPENDIX



BAYES FILTER ALGORITHM

The aim of the algorithm is to estimate the state x given sets of measurements z and controls

u by taking into account the posterior distribution, or also known as belief distribution [36]. Let us

denote the belief distribution of our state xk at time k to be bel(xk) which is given as follows

bel(xk) = p(xk|z1:k, u0:k−1) (7.1)

The generalization of Bayesian filtering includes two main steps, Prediction and Measurement

Update, which are widely applied in the estimation problems. All the solutions of SLAM in this work

employ this procedure

• Prediction This step is the convolution of the previous posterior bel(xk−1) and the motion

model p(xk|xk−1, uk−1) of the robot

bel(xk−1) = p(xk|z1:k−1, u0:k−1) =

∫
p(xk|xk−1, uk−1) bel(xk−1)dxk−1 (7.2)

• Measurement Update This update step is the product of the prediction and the measurement

model

bel(xk) = η p(zk|xk) bel(xk−1) (7.3)

RANGE LASER SENSOR MODEL

Sensor model for a laser range finder [22] used for updating the occupancy grid map in Equa-

tion 4.3

p(mi|zk,n, xk) =


pprior mi is not covered by zk,n

pocc |zk,n − dist(xk,mi)| < r

pfree zk,n ≥ dist(xk,mi)

(7.4)

where dist(xk,mi) is the distance between the sensor and the cell mi; r is the resolution of the grid

map; and n indicates n-th beam of the sensor.

The cell from which the sensor receives measurement zk,n is marked as occupied. The cells in

between the sensor and the occupied cell are free. In addition, the assigned probabilities must hold

0 ≤ pfree < pprior < pocc ≤ 1 (7.5)
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