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Substitutianal alloys are disorder crystalline structure. First-principles study of 
alloys is taken a large supercell that equivalent to a pure random structure. Structural 
models used in calculations of properties of substitutional random A1-xBx alloys are 
usually constructed by randomly occupying each of the N sites of a periodic supercell 
by A or B. However, this method is not efficient. It is possible to design “Special 
Quasirandom Structures” (SQS) that simulate the small periodic supercell. It can be 
compared to structures that have large number of configurations or large cell sizes. 
The proposed method optimizes the supercell with the occupation of the atomic sites 
(A or B). This technique uses the language of Ising models to define the product of spin 
variable for each atomic site. Then calculate a lattice average to construct special 
periodic quasirandom structures. The SQS can be used in the calculation of optical 
and thermodynamic properties. This thesis uses the SQS method integrated with 
Density Functional Theory (DFT) to investigate alloy Molybdenum Tungsten Disulfide 
(Mo1-xWxS2) monolayer. We found that SQS with 27 atoms to model 3x3x1 supercell 
structure is suitable for calculation of energy and band structure. Then the SQS of Mo1-

xWxS2 are studied by DFT calculations to evaluate band structures. We found tunability 
of band edges and band gaps by alteration of the W concentration. The results of the 
electronic structure studied by combination of DFT and SQS are in good agreement 
with experiment and Monte Carlo simulations from other works. We conclude that the 
model of alloy generated by SQS can be used to studies crystal structure behavior. 
This model uses low computational time but can achieve good result which agree well 
with the experiment report. 
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CHAPTER 1 

Introduction 

 

1.1 Computational modeling of solid state physics 

 The study conducted in solid state physics focuses on the states of matter 
formed by large numbers of strongly interacting atoms such as solids. For example, 
solution of many-body problem (e.g. Schrödinger equation in quantum mechanics) 
cannot be solved analytically. In such cases, numerical approximations are required. 
In computational activities, its execution of numerical analysis to solve problems. By 
using a quantitative theory already exists (e.g. Density Functional Theory for quantum 
model) [1]. This computational method is the subject that deals with these numerical 
approximations and then get results for matching up with experiment. In addition, the 
computational cost for many body problem tend to grow quickly. A macroscopic 
system typically has a size of the order of 1023 constituent particles, so it is somewhat 
of a problem. Solving quantum mechanical problems is generally exponential growth 
of computational cost and time depend on the size of the system. 

 The computational modeling of solid state physics is said to be ab-initio or first 
principle calculation, followed by computations of the interactions of many number 
groups of atoms, until the bulk properties of the system had been determined. The 
Density Functional Theory (DFT) is a computational quantum mechanical modeling 
method used to investigate the electronic structure of many body systems. The 
electronical and physical properties of a system (many electron and ion system) can 
be determined by using functional. This case is the spatially dependent electron 
density. But there are still difficulties in using DFT to properly describe a complex 
system especially dopant interactions, transition states, strongly correlated systems 
with disorder stated, van der Waals forces and alloy interactions system. 
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 By crystal structure prediction is the calculation of the crystal structures of 
solids from the first principles approach. With the DFT calculations on predicting the 
crystal structure of a compound based on its composition. The main goals of the 
computational modeling of solid state physics are to understand the properties of 
solid materials at the atomic level and predict both quantitative and theoretical data 
for the development of new materials. 

 

1.2 Modeling of substitutional alloy disorder state 

 The main difference between a disorder state in single crystal alloy considered 
in ordinary ab-initio simulations and a real material is the inherent disorder. The most 
common form of disorder is the breakdown of the long-range order (LRO) of the crystal 
lattice sites. Most real solid materials have a hierarchy of structures beginning with 
atoms and ascending through various crystalline grains. The misoriented single crystals 
are separated by grain boundaries, interphase boundaries, etc. The only way to 
establish parameters of these polycrystalline systems is first derive data of microscopic 
nature and then transform these data to macroscopic quantities by suitable averaging 
methods based on statistical mechanics [2,3]. In the single crystals, the atomic disorder 
appears because of the random distribution of the atoms on the lattice sites. 
Substitution atoms on the single crystal components, it become randomly oriented 
and a disordered phase formed by randomly distributed atomic arrangements. 

 The most straightforward way to simulate disordered state in single crystal alloy 
use large unit cells (or supercells) with randomly distributed atoms on lattice. In 
principle, within the supercell approach one can consider both the local relaxation 
and short-range order (SRO) effects. However, because of the extremely large number 
of atoms needed for an arbitrary composition, this method is very intricate, and so far, 
mainly semi empirical and empirical methods have adopted it [4,5]. However, when 
supercells of random alloys are combined. The computational time grows 
exponentially with number of atoms in supercells. That is the hardest problem of the 
computational modeling, which depends on the computational cost and time. 
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 For the substitutional alloys are designed by one metal substitutes for another 
in the structure. This case is called as binary or pseudo-binary alloys (𝐴1−𝑥𝐵𝑥 or 

𝐴1−𝑥𝐵𝑥𝐶). By the substitutes metals must have similar atomic radius and bonding 
characteristics. 

 

1.3 Two-dimensional materials Transition metal dichalcogenides (TMDC) 

 Since the isolation of graphene, a single-layer of graphite, in 2004. A large 
amount of research has been directed at isolating other two-dimensional (2D) materials 
due to their unusual characteristics and use in applications especially semiconductors 
[6]. The 2D materials, referred to single layer materials, are crystalline materials 
consisting of a single layer of atoms. But sometimes it refers to multiple layer materials. 
The multiple layers naturally form perfectly aligned stacks or layered combinations of 
different 2D materials. This feature can describe by van der Waals interaction between 
layers. While the first 2D material that has been discovered was graphene, then other 
2D materials have been predicted to be stable and many remain to be synthesized 
with a significant challenge. 

 
The 2D materials have attracted high interest from the research community. Graphene 
is the first example of such a 2D material. With its unique band structure in the limit 
of quantum confinement. This monolayer of carbon atoms has large number of 
applications in nanoelectronics and nanophotonics [7,8]. Recently, the research 
community has discovered a new family of 2D materials. That have unique band gap 
transition. Transition metal dichalcogenides (TMDC) have optical properties that can 

Figure 1.1 Substitutional pseudo-binary alloys model of structures, (left) is 𝐴𝐶2, 

(middle) is  𝐵𝐶2 and (right) shows substitutes by 𝐴 into 𝐵𝐶2. 
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construct to a semiconductor. A semiconductor can absorb photons with energy larger 
than or equal to its bandgap. If the minimum of the conduction band energy is at the 
same position in k-space as the maximum of the valence band called the direct band 
gap. Normally the band gap of bulk TMDC material down to a thickness multilayer is 
still indirect. Then separated TMDC to a monolayer the band gap now changes to 
direct [9]. The work on TMDC monolayers is an emerging research and development 
field since the discovery of the direct bandgap and the potential applications in 
electronics. The TMDC are often combined with other 2D materials like graphene and 
hexagonal boron nitride to make van der Waals heterostructure. These 
heterostructures need to be optimized to be possibly used as building blocks for a 
plenty of different devices such as transistors, solar cells, LEDs, photodetectors, fuel 
cells, photocatalytic and sensing devices. We will focus on crystal structure of TMDC 
later in Chapter 4. This section just to mention some information roughly for visualize 
about this works. 

 

1.4 Outline 

 Chapter 1 is intended to provide a brief introduction of modeling crystal 
structures, disorder state and TMDC materials. The following Chapter 2 provides a 
fundamental knowledge of density functional theory, which is mainly used to 
investigate properties of crystal structures. An approach for modeling disorder state of 
crystal structures, alloy materials, by Special Quasirandom Structure (SQS) is given in 
Chapter 3. Chapter 4 shows methodology of modeling crystal structure by the first 
principle based on Quantum ESPRESSO program and use the Special Quasirandom 
Structure method to develop the monolayer molybdenum tungsten disulfide crystal 
structure. Chapter 5 shows the calculation electronical property the SQS of monolayer 
molybdenum tungsten disulfide. The last chapter, Chapter 6 reviews the results, 
obtained from the investigations in this thesis and about future works.



 

 

 

CHAPTER 2 

DENSITY FUCTIONAL THEORY 

 

2.1 Mathematical background of many-body problem 

 Quantum mechanics with the concept of wave-particle duality is used to 
describe the microscopic properties of condensed matters by solving the time 
dependent Schrödinger equation. 

𝑖
𝜕Ψ

𝜕𝑡
= 𝐻̂Ψ (2.1) 

where Ψ is the wave function containing all information of any system under 
consideration. Since all matter is composed of many microscopic particles, usually 
electrons and ions, interaction with each other, the Hamiltonian 𝐻̂ of the system can 
be given by 

  𝐻̂ = −
1

2
∑ 𝛻𝑖

2

𝑛

𝑖=1

−
1

2
∑

1

𝑀𝐼
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1
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1
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+
1

2
∑

𝑍𝐼𝑍𝐽

|𝑹𝑰 − 𝑹𝑱|
𝐼≠𝐽

. (2.2) 

The first two terms in Eq. (2.2) are the kinetic energy of elections and ions respectively, 
where 𝑀𝐼 denotes the mass of the ion at site 𝐼. Since both the ions and electrons are 
charged particles, the following three terms represent the potential energy due to the 
Coulomb interactions between electron & ion, electron & electron, and ion & ion. 𝒓𝒊 
is the electron position at site 𝑖, meanwhile 𝑹𝑰 and 𝑍𝐼 are the position and the charge 
number of the ion at site 𝐼. 

By solving Eq. (2.1) for a general system of condensed matters is impractical, since a 
macroscopic system consists of a number of particles in the order of Avogadro’s 
number. The wave function that describing the system thus depends on a huge 
number of degrees of freedom, and can be expressed by 

Ψ = Ψ(𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏, 𝑹𝟏, 𝑹𝟐, … , 𝑹𝑵, 𝑡). (2.3) 
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To deal with difficulties problem, several approximations are involved in order to 
simplify the problem. Generally, the stationary ground state properties of the system 
are main interest. In this case, there is no explicit time dependence in the Hamiltonian. 
So, only the time independent Schrödinger equation should be significant to describe 
the system. The time independent Schrödinger equation can be written as 

𝐻̂Ψ = 𝐸𝑡𝑜𝑡Ψ (2.4) 
so that, the wave function is change to time independent. 

Ψ = Ψ(𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏, 𝑹𝟏, 𝑹𝟐, … , 𝑹𝑵) (2.5) 
A set of solutions for the eigenvalue equation Eq. (2.4), which represents the stationary 
states of 𝐻̂ with the corresponding total energy 𝐸𝑡𝑜𝑡. Then we simplify the problem by 
Born-Oppenheimer approximation [10]. The approximation is based on the fact that 
the electrons are moving greatly faster than the ions because of their several orders 
of magnitude larger masses. At this point, we can assume that the ions are fixed form 
the electrons point of view. So, the kinetic term of the ions can be separated from Eq. 
(2.2) and also the ion & ion interaction term becomes a constant. The problem now 
reduces to the system of interaction electrons, meanwhile the electron & ion 
interaction term is treated as an external field acting on the electrons. So, the equation 
is reduced to the electron system can be written as 

𝐻̂𝑒𝑙𝑒𝑐Ψ𝑒𝑙𝑒𝑐 = 𝐸𝑒𝑙𝑒𝑐Ψelec (2.6) 
now the problem reduces to the system of 𝑛-interacting electrons that can be describe 
by 

𝐻̂𝑒𝑙𝑒𝑐 = −
1

2
∑ 𝛻𝑖

2

𝑛

𝑖=1

− ∑
𝑍𝐼

|𝒓𝒊 − 𝑹𝑰|
𝑖,𝐼

+
1

2
∑

1

|𝒓𝒊 − 𝒓𝒋|
𝑖≠𝑗

(2.7) 

Ψ𝑒𝑙𝑒𝑐 = Ψ𝑒𝑙𝑒𝑐(𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏) (2.8) 
the eigenvalues 𝐸𝑒𝑙𝑒𝑐 represents the corresponding energies of the electronic system. 
So, the total energy 𝐸𝑡𝑜𝑡 of the system in Eq. (2.4) can thus be easily compute from 

𝐸𝑡𝑜𝑡 = 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑖𝑜𝑛𝑠 , (2.9) 

 

where 𝐸𝑖𝑜𝑛𝑠 is constant; 𝐸𝑖𝑜𝑛𝑠 = −
1

2
∑

1

𝑀𝐼
𝛻𝐼

2𝑁
𝐼=1 +

1

2
∑

𝑍𝐼𝑍𝐽

|𝑹𝑰−𝑹𝑱|𝐼≠𝐽  . 

The problem can be further simplified if the system under consideration is periodic, 
e.g. crystalline solids. Demonstrated by Bloch [11] that, due to the periodicity of the 
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crystal, it is sufficient to consider only the primitive unit cell consisting of a few 
particles, rather than taking into account a large number of particles in the macroscopic 
crystal. In this case, the wave function Ψ𝑒𝑙𝑒𝑐 are taking the form 

Ψ𝑒𝑙𝑒𝑐 = 𝜓𝑛𝑘(𝒓) = 𝑒𝑖𝒌⋅𝒓𝑢𝑛𝑘(𝒓) , (2.10) 
where 𝑛 is the band index and takes number 𝑛 = 1, 2, 3, … and 𝒌 is a reciprocal vector, 
principally in the first Brillouin zone, 𝑢𝑛𝑘(𝒓) is a function with periodicity of the crystal 
lattice and 𝑒𝑖𝒌⋅𝒓 describes a plane wave. 

Even though the problem is much simplified through the above approximation, it is 
still insufficient to directly solve Eq. (2.6). This is because solving the Schrödinger 
equation for a system containing more than a few particles is in fact practically 
formidable.  

 

2.2 The Hohenberg-Kohn theorems 

 Instead of solving for the many electron wave function Ψ𝑒𝑙𝑒𝑐, one preferably 
uses the electron density 𝑛(𝒓) as a basic variable. For a system of 𝑛-interacting 
electrons which is described by electron density so the number of spatial coordinates 
reduces from 3𝑛 to 3, thus substantially simplify the problem. Hohenberg and Kohn 
formulated two theorems [12], based on 𝑛(𝒓) that has been seen at the starting point 
of modern density functional theory (DFT). The two theorems are stated as follows 

Theorem I; For any system of interaction particles in an external potential 𝑉𝑒𝑥𝑡(𝒓), the 
potential 𝑉𝑒𝑥𝑡(𝒓) is determined uniquely, except for a constant, by the ground state 
particle density 𝑛0(𝒓).  

Theorem II; A universal function for the energy 𝐸[𝑛] in term of the density 𝑛(𝒓) can 
be defined, valid for any external potential 𝑉𝑒𝑥𝑡(𝒓). For any particular 𝑉𝑒𝑥𝑡(𝒓), the exact 
ground state energy of the system is the global minimum value of this functional, and 
the density 𝑛(𝒓) that minimizes the functional is the exact ground state density 𝑛0(𝒓). 

The two theorems are clear that if the total energy functional 𝐸[𝑛] was known, all the 
ground state properties of any electronic system could be exactly determined by the 
ground state density 𝑛0(𝒓). The total energy functional can be expressed 

𝐸[𝑛] = 𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛] + ∫ 𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑3𝑟 + 𝐸𝑖𝑜𝑛𝑠 , (2.11) 
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where the first term is the kinetic energy of the interacting electrons, meanwhile the 
following three terms represent the potential energies due to the Coulomb interaction 
between the electrons, the Coulomb interaction of the electron density 𝑛(𝒓) with the 
external field 𝑉𝑒𝑥𝑡(𝒓), and the interaction between the ions respectively. However, the 
problem now reduces from solve for the system of 𝑛-interacting electrons to solve 
the exact forms of 𝑇[𝑛] and 𝐸𝑖𝑛𝑡[𝑛]. 

 

2.3 Kohn-Sham equations 

 Main idea is to replace the real system of interacting many-particle by an 
artificial system of non-interacting particles. The idea was proposed a practical 
approach by Kohn and Sham [13] to overcome the difficulties in solving for the ground 
state properties of the interacting many-particle problem. The density 𝑛(𝒓) is the real 
one. Rather than the external potential 𝑉𝑒𝑥𝑡(𝒓), each non-interacting particle is 
subjected to the effective potential 𝑉𝑒𝑓𝑓(𝒓), given by 

𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) + ∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ + 𝑉𝑥𝑐(𝒓) . (2.12) 

The second term in Eq. (2.12) is the Coulomb interaction between the electrons, that 
is called Hartree potential. The term 𝑉𝑥𝑐(𝒓) is defined as the exchange correlation 
potential, accounting all the quantum many-particle interactions and can be 
calculated from the exchange-correlation energy functional 𝐸𝑥𝑐[𝑛(𝒓)] by 

𝑉𝑥𝑐(𝒓) =  
𝜕𝐸𝑥𝑐[𝑛(𝒓)]

𝜕𝑛(𝒓)
 . (2.13) 

Therefore, the non-interacting particles can be described by the Kohn-Sham wave 
functions 𝜓𝑖, which are the eigenstates of the single particle, of Schrödinger like 
equation. 

(−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝒓)) 𝜓𝑖(𝒓) = 𝜖𝑖𝜓𝑖(𝒓) . (2.14) 

This equation is called as Kohn-Sham equation. Where 𝜖𝑖 is the eigenvalue of the non-
interacting single particle, corresponding to the Kohn-Sham eigenstate 𝜓𝑖. By under the 
Kohn-Sham scheme, the particle density 𝑛(𝒓) of a system with 𝑁 noninteracting 
particles can be easily obtained as 
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𝑛(𝒓) = ∑|𝜓𝑖(𝒓)|2

𝑁

𝑖=1

 . (2.15) 

The Kohn-Sham total energy functional is given by 

𝐸𝐾𝑆[𝑛] = 𝑇𝑠[𝑛] + ∫ 𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑3𝑟 + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] + 𝐸𝑥𝑐[𝑛] + 𝐸𝑖𝑜𝑛𝑠 , (2.16) 

where 𝑇𝑠[𝑛] is the kinetic energy functional of the non-interacting particles express by 

𝑇𝑠[𝑛] = −
1

2
∑⟨𝜓𝑖|∇2|𝜓𝑖⟩

𝑁

𝑖=1

(2.17) 

and 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] is the classical Coulomb energy functional due to a particle density 
𝑛(𝒓), with self-interacting. The expression of the 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] functional is given by 

𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] =
1

2
∫

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′  . (2.18) 

 

2.4 Exchange correlation functional 

 Although the problem is changed to non-interaction system, but the major 
problem to solve the Kohn-Sham equation Eq. (2.14) is that the form of the exchange 
correlation functional 𝐸𝑥𝑐[𝑛] is not solved exactly. However, it is still possible to 
formulate the functional with some approximations. Many way approaches to estimate 
𝐸𝑥𝑐[𝑛] have been proposed and constantly developed to improve the accuracy 
compare with experiments. The most approaches are extensive used for 
approximations, that are given as follows; 

Local density approximation (LDA) 

The local density approximation (LDA) is the simplest way to derive 𝐸𝑥𝑐[𝑛]. LDA was 
first suggested in 1965 [13]. In practice, LDA approximates 𝐸𝑥𝑐[𝑛] by assuming that the 
exchange correlation energy density at each point 𝒓 in space is in the same form as 
the homogeneous electron gas 𝜖𝑥𝑐

hom(𝑛(𝒓)), which has been well studied using 
quantum Monte Carlo simulations [14]. The expression of 𝐸𝑥𝑐

𝐿𝐷𝐴[𝑛] is thus given by 
𝐸𝑥𝑐

𝐿𝐷𝐴[𝑛] = ∫ 𝑛(𝒓)𝜖𝑥𝑐
ℎ𝑜𝑚(𝑛(𝒓))𝑑𝒓 . (2.19) 

Unfortunately, LDA was supposed to work well only for system with slowly varying 
density. However, it was found to be successful also for systems with high density 
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gradient. The explanations to the relative success of LDA have been described 
elsewhere [15, 16]. 

Generalized gradient approximation (GGA) 

GGA was improve the accuracy by considering not only the density 𝑛(𝒓) but also the 
gradient of the density at the same point 𝒓 to approximate 𝐸𝑥𝑐[𝑛], were proposed [17-
19] as an extension of LDA. Therefore, 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛] = ∫ 𝑛(𝒓)𝜖𝑥𝑐

𝐺𝐺𝐴(𝑛(𝒓), ∇𝑛(𝒓))𝑑𝒓 . (2.20) 
The calculations in this thesis were performed using GGA in the form of Perdew, Burke, 
and Ernzerhof (PBE) [19], as implemented in the Quantum ESPRESSO package [20]. 

 

2.5 Plane-wave basis sets 

 Explanation solve the Kohn-Sham equations in Eq. (2.14) by numerical method. 
The electron wave functions 𝜓𝑖(𝒓) need to be expanded in a basis set. Different 
choices of basis sets are available, e.g. Gaussians, plane-waves and atomic orbitals. 
According to the Bloch’s theorem [11], the plane-wave is considered as the first choice 
among the others, as he demonstrated that the wave functions of systems with 
periodicity can in principle be expanded in term of a plane-wave basis set likes Eq. 
(2.10). Practically, the basis set needs to be truncated at a finite cutoff energy. Based 
on the characteristic of the electron wave functions, it may be splitting in space into 
an interstitial and core region. In the interstitial region between atoms, the valence 
electrons, the wave function is rather smooth and only a small number of plane-waves 
is already sufficient to well reproduce the wave function. In addition, a large number 
of plane-waves with very high energy cutoff is required to accurately represent the 
oscillating wave function inside the core region due to the strong Coulomb interactions 
between the localized core electrons and the nucleus, so resulting in an extremely 
high computational cost. 

 To implement the plane-wave basis sets practically, one employs a 
pseudopotential approach, that was suggested by Hellmann [21, 22]. The 
pseudopotential approach substitutes the real Coulomb potential by a smooth 
effective potential, specially designed in order to smoothen the rapidly oscillating part 
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of the wave function within a pseudo wave function, thus substantially reducing both 
the basis sets (imply to the computational demand). Inspired by the fact that only the 
valence electrons in the interstitial region are taking part in the bonding formation, 
elimination of the oscillating part within the core region thus should not be affecting 
the bonding properties. Within the pseudopotential approach, the pseudo wave 
function is determined by a certain cutoff radius from the nucleus. A few criteria to 
construct the pseudopotential is given by the pseudopotential need to reproduce the 
scattering properties of the core region. And outside the cutoff radius, the behavior of 
the pseudopotential and the pseudo wave function must be the same to the real 
ones. Among numerously developed versions of the pseudopotentials suggested in 
the literature, Norm-conserving [23] and Ultrasoft [24] pseudopotentials are most used 
in plane-wave basis set based on DFT calculations. 

 

2.6 Solving the Kohn-Sham equations 

 The ground state density 𝑛0(𝒓) is searched by minimizing the Kohn-Sham total 
energy functional in Eq. (2.16). The Kohn-sham equations Eq. (2.14) must be solved 
self-consistently. Since the effective potential 𝑉𝑒𝑓𝑓 and the Kohn-Sham orbitals 𝜓𝑖 in 
Eq. (2.14) are determined by the density 𝑛(𝒓), which is not known yet, several iterative 
cycles of solving the Kohn-Sham equations must be performed as self-consistently 
calculations by guess density (illustrated in Fig.2.1). The first step to solve the equation 
is to guess the initial density 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝒓) in order to construct 𝑉𝑒𝑓𝑓, according to Eq. 
(2.12). After solving the Kohn-Sham equations one obtains a set of 𝜓𝑖, which is in turn 
used to calculate a new density  𝑛̃𝑘+1(𝒓). If the convergence criterion is not fulfilled, 
𝑛̃𝑘+1(𝒓) will be mixed with the input density 𝑛𝑘(𝒓) using different numerical mixing 
schemes to get 𝑛𝑘+1(𝒓) as a new input to construct a new 𝑉𝑒𝑓𝑓, and then another 
iterative cycle of solving Kohn-Sham equation is performed. Such a process continues 
until the density converges and self-consistency is thus reached. 
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Figure 2.1 Flowchart of the self-consistent loop for solving Kohn-Sham equations.

Guess initial electron density 

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝒓) 

Calculate effective potential 

𝑉𝑒𝑓𝑓(𝒓) 

Solve Kohn-Sham equation 

(−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝒓)) 𝜓𝑖(𝒓) = 𝜖𝑖𝜓𝑖(𝒓) 

Calculate new electron density 

𝑛̃𝑘+1(𝒓) = ∑|𝜓𝑖(𝒓)|2 

Self-consistent? 

Calculate new electron density by 
mixing old electron density 

𝑛̃𝑘+1(𝒓) = 𝑛𝑒𝑤(𝑛̃𝑘, 𝑛̃𝑘+1) 

Calculate eigenvalues, total 
energy, Fermi energy, etc. 

Yes 

No 



 

 

 

CHAPTER 3 

MODELING ALLOY MATERIALS BY SPECIAL QUASIRANDOM STRUCTURE 
METHOD 

 

3.1 Primitive unit cell to supercell approach 

 The Bloch’s theorem [11], that suggests alternative way to dealing with many 
particles in the macroscopic crystal, allows one to consider only a small primitive unit 
cell consisting of a few particles due to the periodicity in the crystal. However, 
considering effects of configurational disorder in modeling substitutionally disordered 
alloys, for example alloying material destroys the periodicity in the crystal, thus the 
Bloch’s theorem is no longer valid. In this case, one can implement a supercell 
approach, consist of several primitive unit cells depend on the supercell’s size. That 
can introduce different degrees of configurational disorder state. The periodicity of the 
introduced configurational disorder is represented by the supercell. 

 

3.2 Structural theories of alloys 

 3.2.1 Direct sampling methods 

  A binary 𝐴1−𝑥𝐵𝑥 substitutional alloy with a lattice of 𝑁 sites can occur 
in 2𝑁 possible atomic arrangements, denoted as “configurations” 𝜎. Each configuration 
exhibits certain physical properties (e.g., total energy, band gap, etc.) denoted 
symbolically by 𝐸(𝜎). The measurable property ⟨𝐸⟩ represents an ensemble average 
over all 2𝑁 configurations 𝜎 

⟨𝐸⟩ = ∑ 𝜌(𝜎)𝐸(𝜎)

2𝑁

𝜎

, (3.1) 

where the density matrix 𝜌(𝜎) denotes the probability to find configuration 𝜎 in an 
ensemble of systems. The obvious difficulty with structural theories of alloys based 
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on Eq. (3.1) lies in the need to relax, then average over many configurations. In practice, 
one proceeds by either (1) selecting a smaller number of representative configurations, 
such as in the Monte Carlo method [25], or by (2) using a single, sufficiently large 
configuration. While by the principle of spatial ergodicity, all possible finite 
environments are realized in a single, 𝑁 → ∞ sample, in practice far smaller supercells 
have been used. The first example utilized highly simplified Hamiltonians, current first-
principle with classical model, self-consistent theories of the electronical degrees of 
freedom are restricted to  𝑁 ≲ 50 atoms [26]. This direct sampling approach explicitly 
specifies the alloy structure, and can hence incorporate atomic relaxations. However, 
it approaches the statistical limit as slowly as 𝑁−1/2. Therefore, it involves a rather 
large number of different configurations or large cell sizes. That make self-consistent 
theories are still impractical. 

 3.2.2 Mathematical model of cluster expansions 

  Rather than address directly the property 𝐸(𝜎) of configuration 𝜎. In 
order to account for a contribution of configurational disorder in any crystalline 
material. It is necessary to understand the concept of cluster expansion of the 
configurational part of the total energy for a given alloy, as developed by Sanchez, 
Ducastelle, and Gratias for multicomponent alloy systems [27]. In this section, a brief 
introduction to the concept of cluster expansion will be given, based on the review 
article by Ruban and Abrikosov [28]. 

 For simplicity, one considers a binary alloy, 𝐴1−𝑥𝐵𝑥. The atomic configuration 
of the alloy, 𝐴1−𝑥𝐵𝑥, is described by pseudo spin variables 𝜎𝑖, where 𝜎𝑖 takes the values 
+1, (−1) if site 𝑖 is occupied by A, (B) type atom, respectively. For an alloy system, 
consisting of 𝑁 atomic sites, the atomic configuration of that alloy can be specified by 
the vector 𝝈 = {𝜎1, 𝜎2, 𝜎3, … , 𝜎𝑁}. The product of spin variables 𝜎𝑖 in turn determines a 
basis function for a given 𝑛-site cluster 𝑓 (call as figures). The figure is defined by the 
number 𝑘 of atoms located on its vertices (𝑘 = 1,2 are sites, pairs), the order 𝑚 of 
neighbor distances separating them (𝑚 = 1,2 are first, second neighbors, etc.), thus the 
figures can define by the number 𝑘 and 𝑚 (𝑓 ≡ (𝑘, 𝑚)). By using the language of Ising 
models, then Φ𝑓

(𝑛)
(𝝈) given by 
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Φ𝑓
(𝑛)(𝝈) = ∏ 𝜎𝑖

𝑖∈𝑓

. (3.2) 

These functions form a complete and orthonormal set with the inner product between 
two functions, given by 

⟨Φ𝑓
(𝑛)

(𝝈), Φ𝑔
(𝑛)

(𝝈)⟩ =
1

2𝑛
∑ Φ𝑓

(𝑛)
(𝝈)Φ𝑔

(𝑛)
(𝝈)

𝝈 

= 𝛿𝑓,𝑔 . (3.3) 

The sum in Eq. (3.3) runs over all atomic configuration 𝝈, and 𝛿𝑓,𝑔 is the Kronecker’s 
delta. The scalar product, obtained from Eq. (3.3), is thus equal to 1 only if Φ𝑓

(𝑛)
(𝝈) 

and Φ𝑔
(𝑛)

(𝝈) are specifying the exactly same 𝑛-site clusters in the crystal, while the 
product of any two clusters with different numbers of atoms is always equal to 0. 

As the basis set is complete and orthonormal, one can expand any alloy’s property 
𝐸(𝝈), which is a function of the configuration in this basis set 

𝐸(𝝈) = ∑ 𝜖𝑓
(𝑛)

Φ𝑓
(𝑛)(𝝈)

𝑓

(3.4) 

The discretization of a configuration into a hierarchy of figures affords a corresponding 
hierarchy of approximations for measurable properties, for example the ensemble 
average over configurations. In Eq. (3.4) 𝜖𝑓

(𝑛) denotes the contribution of figure 𝑓 at 𝑛-
sites cluster to a physical property 𝐸 for configuration 𝝈 (𝐸(𝝈), where the sum is 
running over all clusters in the considered alloy system. The expansion coefficients 
𝜖𝑓

(𝑛), call as effective cluster property is given by the projections Eq. (3.3) on the Eq. 
(3.4) as 

𝜖𝑓
(𝑛)

=
1

2𝑛
∑ 𝐸(𝝈)Φ𝑓

(𝑛)(𝝈)

𝝈

 . (3.5) 

Since 𝐸(𝝈) depends on composition, 𝜖𝑓 does too. 

Note that 𝜖𝑓
(𝑛) does not depend on 𝑛-sites cluster, since Eq. (3.5) indicates that 𝜖𝑓 ≡

𝜖𝑓
(𝑛) has full symmetry of the crystal. Using Eq. (3.2), the cluster expansion of Eq. (3.4) 

can be written as 

𝐸(𝝈) = ∑ ∏ 𝜎𝑖

𝑖∈𝑓

𝜖𝑓

𝑓

 . (3.6) 

So, the ensemble average of the physical property 𝐸 is 

⟨𝐸⟩ = ∑ ⟨∏ 𝜎𝑖
𝑖∈𝑓

⟩ 𝜖𝑓

𝑓

 . (3.7) 
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The basic problem of a direct sampling of 𝐸(𝝈) over 2𝑁 terms (Eq. (3.1)) is reduced to 
sum over specific 𝑛-sites cluster. Where one needs to calculate the effective cluster 
properties 𝜖𝑓 and sum over all types of figures 𝑓. Note that the expansions in Eq. (3.2) 
– Eq. (3.7) are rigorous as long as the sum is not truncated. For a perfectly random 
infinite alloy (denote configuration 𝝈 as 𝑅), the correlation functions are known in 
advance [29]. They are 

∏ 𝑅

𝑓

= ∏ 𝑅

𝑘,𝑚

= ⟨∏ 𝑅

𝑘,𝑚

⟩ = (2𝑥 − 1)𝑘  , (3.8) 

where 𝑓 has been replaced by the equivalent indices (𝑘, 𝑚). For example, at 𝑥 =
1

2
 , 

the correlation function of configuration perfectly random vanish to all orders, except 
𝑓 = (𝑘, 𝑚) = (0,1) the correlation function equal 1. So, the ensemble average of 
physical property 𝐸 can easy compute by 

⟨𝐸⟩𝑅 = ∑(2𝑥 − 1)𝑘𝜖𝑘,𝑚

𝑘,𝑚

 . (3.9) 

Now, the ensemble average of physical property 𝐸 is calculated by summation of the 
effective cluster properties weight by the correlation functions for each figure. Practical 
application of lattice models assumes that the cluster expansion of Eq. (3.9) for the 
physical property 𝐸 is rapidly convergent, so that only a few terms need to be kept. 
Therefore, only a few of the effective cluster properties for each figure must be 
knowns. By under this assumption, we can find a method that utilize for modeling 
alloy materials. That method suggested by Zunger et al. [30] is called as the Special 
Quasirandom Structure (SQS).  In the case of completely random alloys (as Eq. (3.9)), 
they are practically often defined by The Warren-Cowley short range order (SRO) 
parameters that represent the 2-site correlation functions (𝑘 = 2) [28]. For a binary 
alloy, 𝐴1−𝑥𝐵𝑥, the SQS approach constructs a supercell by distributing 𝐴 and 𝐵 atoms 
in a way that the SRO parameters between both kinds of atoms are zero, or close to 
zero for as many coordination shells as possible with focus on the short-range shells 
to mimic the configuration. The next sections will describe the SQS approach idea and 
provides an unbiased starting point for modeling random substitutionally disordered 
alloys. 
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3.3 Special Quasirandom Structure 

 3.3.1 The idea of the SQS approach 

  Instead of attempting to approach cluster expansion by calculate the 
random correlation functions (𝜖𝑘,𝑚). We will instead design a 𝑁-atom periodic supercell 
structure (a special configuration structure), whose distinct correlation functions best 
match the ensemble average of the random alloy in Eq. (3.8). The cluster expansion 
in previous section shows that the amount by which the physical property 𝐸(𝝈 = 𝑆) 
of a given structure 𝑠 fails to reproduce the ensemble average ⟨𝐸⟩ of the perfectly 
random alloy can be represented in terms of a hierarchy of figures. By combine Eq. 
(3.6) and Eq. (3.9), 

⟨𝐸⟩𝑅 − 𝐸(𝑆) = ∑ [(2𝑥 − 1)𝑘 − ∏ 𝑆

𝑘,𝑚

] 𝜖𝑘,𝑚

𝑘,𝑚

 . (3.10) 

From Eq. (3.10), it obviously can be concluded that, we model the special configuration 
structure 𝑆 based on the results of the correlation functions ∏ 𝑆𝑘,𝑚 . If the special 
configuration structure 𝑆 is designed by looking cases to obtain zero value of Eq. (3.10). 
Its means that the physical property of the special configuration structure 𝐸(𝑆) is equal 
to the ensemble average of the perfectly random alloy ⟨𝐸⟩𝑅, then the special 
configuration structure 𝑆 can be used instead for any calculation physical properties 
(e.g., total energy, band gap, etc.). In addition, we do not necessary calculate the 
effective cluster property 𝜖𝑘,𝑚, reduce computational cost and time for calculation 
physical properties. 

 
Especially problem of modeling alloy method now is changed to find a structure that 
has correlation function value close to a disordered system we investigate or are 

𝑹 

𝑹′ 

|𝑹 − 𝑹′| 

𝐿 
Inside  Outside 

Figure 3.1 The characteristic length scale 𝐿 of property 𝐸, that use for scaling size 
of figure. Indicate value of (𝑘, 𝑚) sufficient for the disordered system studied. 
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interested.  In turn, the contribution 𝜖𝑘,𝑚 to the property 𝐸 is expected to fall off with 
size of figure. Indeed, in disordered systems the physical characteristic 𝐸 at point 𝑹 
depends primarily on the environment inside a neighborhood |𝑹 − 𝑹′| < 𝐿 (the effect 
of more distant neighbors falls off exponentially with |𝑹 − 𝑹′|/𝐿), where 𝐿 is a 
characteristic length scale of property 𝐸. It is hence natural to select the occupations 
by 𝐴 and 𝐵 for the special configuration structures 𝑆 so that Eq. (3.10) is minimized in 
a hierarchical manner. 

 

 3.3.2 Programing of SQS 

  The previous section shows the basic idea of SQS approach thats 
represent how to model alloy materials by using cluster expansion, and then with 
some approximation of perfectly random alloy. Now we will design a 𝑁-atom periodic 
supercell structure, whose distinct correlation functions best match the ensemble 
average of the random alloy in Eq. (3.10). And the result of the characteristic length 
scale that forces the property 𝐸 is expected to fall off with size of figure. From those 
requirements that are mentioned above. The expectation for modeling alloy materials 
are used by computation programing, which is how to program to follow the idea of 
SQS approach with many conditions that match on any disorder systems. According to 
the first step of modeling materials, the first thing that we need is a primitive cell 
structure (a cell parameter and atomic positions). That information obviously infers 
that cell is a periodic cell. The information (cell parameters and atomic positions), 
which have been inputted into the program, be converted to a new one that represent 
a large number of atoms in the macroscopic crystals. 
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Form the previous section, the figure determines by scale of multiple the cell structure, 
if we need a huge figure then multiple the cell structure three or four time. It depends 
on the size of input cell structure and the neighbors atomic distance. In fact, the pair 
correlation functions with spanning distance up to the ninth atomic neighbor shells 
shall be sufficient for many pseudo-binary alloy materials (by result of characteristic 
length scale). In Figure 3.3 describe a relevance about the figure (𝑘, 𝑚) where k is the 
number of vertices in the figures and the m is the distance order of the nearest 
neighbors. 

Input 

information 

Storing information on program 

Figure 3.2 An idea for the input information converted to the storing information 
on program by multiple the cell structure. 
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The example of the pair figure (in Figure 3.3) shows that if we need to span distance 
up to the ninth atomic neighbor shells some information (the number of nearest 
atomic neighbor at some shells) may be lost. Because the program multiple the cell 
structure (two atoms per cell) too little to apply for the pair figure up to the ninth 
atomic neighbor. As mentioned above the program must manage storing information 
of atomic position to appropriate the disorder system being studied.   

 The second step of programing, modeling alloy materials (binary or pseudo-
binary alloy 𝐴1−𝑥𝐵𝑥), assign a pseudo-spin 𝑆𝑖 = -1 (+1) to each occupation site, if 𝐴(𝐵) 
atom occupies at site 𝑖. This configuration depends on the disorder system being 
studied, which are the number of atoms and the concentration of the substitutional 
atoms (𝑥 compositions). For this action in the second step of programing is simply to 

( (b) 

(c) (d) 

Figure 3.3 Example of the pair figure (𝑘 = 2) for (a) the first nearest atomic neighbor 
(𝑚 = 1, first shell), (b) the second nearest atomic neighbor (𝑚 = 2, second shell), (c) 
the third nearest atomic neighbor (𝑚 = 3, third shell), (d) the fourth nearest atomic 
neighbor (𝑚 = 4, fourth shell). For each shell in this diagram shows the number of 
nearest atomic neighbor are 3, 6, 3 and 6 respectively. 
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compute. Now taking the product of the pseudo-spin variables over all the sites of the 
figures and then averaging over all symmetry equivalent figures of the lattice. The 
result of this compute is what we need, the correlation functions ∏ 𝑺𝑘,𝑚  of the 
interested figure. A diagram of assign a pseudo-spin and compute the product of the 
pseudo-spin here in Figure 3.4 

  
The correlation functions for each site are calculated by ∏ 𝑺𝑘,𝑚  . The Figure 3.4(b) 
value of the correlation functions depends on type of pseudo-spin. Each occupation 
sites on the figure (2,1) at site 𝐴1, which is computed by 

(∏ 𝑺

2,1

)

𝐴1

=
[(−1 ∗ 1) + (−1 ∗ 1) + (−1 ∗ 1)]

3
= −1 . (3.11) 

-1 
1 

1 

1 

(a) (c) 

(b) (d) 

Figure 3.4 Example lattice cell contain 4 atoms. (a) assign pseudo-spin on all atoms 
in the lattice 𝐴1𝐵3 atom A, B is -1, 1 then consider at site 𝐴1 and 𝐵1 (b) compute 
correlation function (𝑘 = 2, 𝑚 = 1) at site 𝐴1 (c) compute correlation function (𝑘 =

2, 𝑚 = 3) at site 𝐴1(d) compute correlation function (𝑘 = 2, 𝑚 = 2) at site 𝐵1. 

𝐴1 

𝐵1 
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Now from this example lattice cell 𝐴1𝐵3, the averaging over all symmetry figures (2,1) 
consist of 4-sites (𝐴1, 𝐵1, 𝐵2, 𝐵3) be obviously calculated by 

∏ 𝑺

2,1

̅̅ ̅̅ ̅̅ ̅
=

[−1 +
1
3 + 1 −

1
3]

4
= 0 , (3.12) 

and value of the ensemble average of the correlation functions 𝐴1𝐵3 equal 0.25 
(compute by (2𝑥 − 1)2, 𝑥 = 3/4). From the calculation above means the correlation 
function ∏ 𝑺2,1  of this lattice doesn’t match on perfectly random by comparison. In 
this section, the program should be calculating the correlation functions up to the 
ninth atomic neighbor for each site on the lattice studied. Then take the result into 
consideration, that is the best periodic supercell approximation to the perfectly 
random state for a given number of atoms per supercell. 

 In fact, although it can be programed to calculate the correlation functions and 
approximation to the perfectly random. But how the program can find or predict “the 
best periodic supercell”, which is really need for study alloy materials. Because 
modeling alloy materials by SQS method does not need to calculate any physical 
property so, we do a brute force method. The last step performs by looping the second 
step with every configuration atomic arrangement for a given number of atoms per 
supercell. And then compare every result from the second step for choosing the best 
periodic supercell, which is used by DFT calculation to studies behavior of physical 
and electronical property (likes the formation enthalpies, density of states, optical 
properties, and band gaps) see also Appendix C. The concept of the SQS method to 
overcome the prohibitive computational cost associated with directly constructing a 
large supercell with random occupancies of large number of atoms. The SQS is 
designed for a rather small periodic supercell that concept as follows. 
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Input Information 

a cell parameter, atomic positions 

Calculate a number of atom used on the 

system, then calculate distance between 

atoms that generate figure for calculation of 

the correlation function 

Assign a pseudo-spin on every site of atom, 

and compute the correlation functions up to 

ninth atomic neighbor shell for each site  

Generate configuration of atomic 

arrangement, assign type of atom depend on 

the system 

Output Information 

the configuration of atomic arrangement that 

be used for modeling alloy material 

Repeat step 

with different 

configuration 

Figure 3.5 Flowchart of the basic idea for programing of Special Quasirandom 
Structure method.  



 

 

 

CHAPTER 4 

STUDY OF ALLOY MOLYBDENUM TUNGSTEN DISULFIDE (𝑀𝑜1−𝑥𝑊𝑥𝑆2) 2D 
MATERIAL 

 

4.1 Ab-initio study of 𝑀𝑜𝑆2 and 𝑊𝑆2 monolayers 

 Transition metal dichalcogenides (TMDC) are a class of a material with the 
composition 𝑀𝑋2 , where 𝑀 denotes a transition metal such as molybdenum (Mo), 
tungsten (W), niobium (Nb), rhenium (Re), or Titanium (Ti), and 𝑋 is a chalcogen such 
as sulfur (S), selenium (Se), or tellurium (Te). TMDC materials have been studied largely 
by experiments and ab-initio calculations. The TMDC semiconductors have the energy 
band-gap ranging from below 1 𝑒𝑉 to above 2.5 𝑒𝑉 [31, 32]. This behavior opens new 
opportunities for constructing devices that feature light generation functions, such as 
light-emitting diodes (LEDs). Additionally, the valley coherence and valley-selective 
circular dichroism, observed in various monolayer TMDCs, offer novel physical 
phenomena that can be explored for novel applications in optical computing and 
communications.  
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 Molybdenum disulfide (𝑀𝑜𝑆2) is a prototypical TMDC, which is composed of 2D 
𝑆, 𝑀𝑜, 𝑆 sheets stacking on top of one another, as shown in Figure 4.1. The inter-layer 
interaction of 𝑀𝑜𝑆2 is mediated by the weak van der Waals force, while the in-plane 
bonding is the strong covalent bond. Thus, bulk 𝑀𝑜𝑆2 can be exfoliated down to a 
single or few-layer nanosheets like graphene. Also, it has an indirect bandgap in its 
multi-layer forms, however it becomes a direct-bandgap semiconductor in its 
monolayer form. The direct bandgap of the 𝑀𝑜𝑆2 monolayer leads to efficient light 
emission. This is similar to tungsten-based dichalcogenides (for example 𝑊𝑆2) [9, 33], 
making them suitable for developing optoelectronic devices. Recently, there have 
been a few studies on alloying between 𝑀𝑜𝑆2 and 𝑊𝑆2. They found that, the resultant 
bandgap can be continuously tuned [34]. 

 In this thesis, we performed the first-principle study on a TMDC monolayer of 
𝑀𝑜𝑆2 and 𝑊𝑆2 to calculate the bonding distance, cell parameter and band structure. 
Then we modelled the alloying 𝑀𝑜1−𝑥𝑊𝑥𝑆2 monolayer supercells by using the Special 
Quasirandom Structures (SQS) method. The development of the band gap and band 
alignment of 𝑀𝑜(1−𝑥)𝑊𝑥𝑆2 for each variation as a function of the W concentration will 
be extensively investigated. 

 

Figure 4.1 Lattice structure of 𝑀𝑜𝑆2 layer (side view and top view), where red atoms 
represent 𝑀𝑜 and yellow atoms represent 𝑆. A typical isotropic sandwich structure 
and honeycomb structure of TMDC. And inter-layer interaction is mediated by the 
weak van der Waals force. 

side 
view 

top view 

layer 

layer 
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 4.1.1 Calculation parameters for the first-principle calculation 

  The hexagonal structure of 𝑀𝑜𝑆2 monolayer with a lattice parameter 
and atomic positions as Table 1, that was taken as the starting point for the first-
principle calculations. The first-principle calculations were performed within the 
density functional theory (DFT) as mention in Chapter 2. The exchange correlation 
functional using the generalized gradient approximation (GGA), as implemented in the 
Quantum ESPRESSO package (see Appendix A). The atomic cores of the TMDC were 
represented by using ultrasoft pseudopotentials [24]. The electronic wavefunctions 
were described by the plane-wave basis sets. So, when we make a DFT calculation 
with plane-waves basis sets, the electronic wavefunction is represented by the infinite 
summation of plane waves, which must be truncated, to be able to handle them 

Table 1 The primitive cell structure of hexagonal 𝑀𝑜𝑆2 monolayer  

The lattice parameter of 𝑀𝑜𝑆2 
monolayer (vector) 

The atomic positions of 𝑀𝑜𝑆2 monolayer 

 a b c 

a 3.1500 0.0000 0.0000 𝑀𝑜 0.333333 0.666667 0.125000 

b -1.5750 2.7279 0.0000 𝑆 0.666667 0.333333 0.189255 

c 0.0000 0.0000 24.5900 𝑆 0.666667 0.333333 0.060750 

Figure 4.2 Side view (left) and Top view (right) of the primitive cell structure of 
hexagonal 𝑀𝑜𝑆2 monolayer with line of unit cell.  

𝑴𝒐 

𝑺 
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computationally. So, the more plane waves, the more accuracy, but also higher 
computational cost. 

 

 
The technique for speeding up the calculations relies on the fact that the plane waves 
with less kinetic energy have higher contribution to the totality, so the plane waves 
with lower energy are the most important. But, up to which point should we increase 
the cutoff, so that we get a good balance between computational cost and accuracy. 
That is precisely the optimum cutoff choice. The convergence test by optimum energy 
cutoff wavefunction show in Figure 4.3 

 The next parameter for setup DFT calculation on Quantum ESSPRESSO package 
is kinetic energy cutoff (ecutrho) for charge density and potential with ultrasoft 
pseudopotentials. By default, ecutrho is set to 4 times of energy cutoff, but in this 
studied system the exchange correlation functional using GGA functional, especially in 

Figure 4.3 Graphs of the convergence test by optimum energy cutoff wfc from 20 
to 80 Ry. As shown in the figure, the best choice for the energy cutoff wfc value 
seems to be 60 Ry (because energy difference between 60 to 80 Ry is close to 
zero) for this pseudo potential. 



28 

 

 

cells with vacuum usually requires higher values of ecutrho to be accurately 
converged. So, the convergence test by optimum ecutrho show in Figure 4.4 

 
And one should look for convergence at small values of the broadening. For a periodic 
system, integrals in real space over the infinitely extended system are replaced by 
integrals over the finite first Brillouin zone in reciprocal space, by virtue of Bloch's 
theorem in Chapter 2. The integrals are performed by summing the function values of 
the integrand the charge density at a finite number of points in the Brillouin zone, 
called the k-point mesh.  Choosing a sufficiently dense mesh of integration points is 
crucial for the convergence of the results, and is therefore one of the major objectives 
when performing convergence tests. Here it should be noted that there is no 
variationally principle governing the convergence with respect to the k-point mesh. 
This means that the total energy does not necessarily show a monotonous behavior 
when the density of the k-point mesh is increased. Here a rather arbitrary but standard 
choice of uniform Monkhorst-Pack mesh grids. By choosing automatic k-point mesh, 
the calculation automatically generated uniform grid of k-points. The first Brillouin 

Figure 4.3 Graphs of the convergence test by optimum ecutrho from 300 to 720 
Ry. As shown in the figure, the energy difference converges at 540 Ry. The best 
choice for the ecutrho value should be 540 Ry for this system. 
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zone is sampled with a nk × nk × 1 Monkhorst-Pack grid for the monolayer system. So, 
the convergence test by k-point show in Figure 4.5 

    
Now, we have the necessary calculation parameters for the first principle calculation 
on Quantum ESPREESO package likes a physical structure and a band structure. In 
addition, the Tungsten disulfide 𝑊𝑆2 also use the same calculation parameters due to 
the similar structure of the material. By the way, the next section will show the result 
of the calculation, which will show that 𝑀𝑜𝑆2 and 𝑊𝑆2 can alloying together. 

 4.1.2 Structural relaxation and band structure calculation 

  The hexagonal structure of 𝑀𝑜𝑆2 and 𝑊𝑆2 with the lattice parameters 
from previous section was taken as the starting point for the geometry relaxation. The 
optimization of initial structures was performed using analytical energy gradients with 
respect to atomic coordinates and unit cell parameters within a quasi-Newton scheme 
combined with the BFGS (Broyden-Fletcher-Goldfarb-Shanno) scheme for Hessian. The 

Figure 4.5 Graphs of the convergence test by number of k-point from nk = 5 to 
10. As shown in the figure, the energy difference converges at nk = 8. The choice 
for the nk value be 8 for this system. So, the first Brillouin zone is sampled with a 
8 x 8 x1 Monkhorst-Pack grid. 
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optimized lattice parameters are given in previous section (Table 1). By calculating the 
total forces acting on each atom until the total forces overall the cell are less than 
10−6eV/Å. And with variable-cell optimization (vc-relax), that vc-relax are performed 
with plane waves and G-vectors calculated for the starting cell. Because we aiming to 
study monolayer (2D), thus for convenience the band structures were calculated along 
the high symmetry points following the K − Γ − M − K path as shown in Figure 4.6. The 
results of the lattice parameters, bond angle and energy gap are shown in Table2. 

  
 

Table 2 Calculated structural parameters (atom distances 𝑑𝑀𝑜−𝑆, 𝑑𝑊−𝑆; separation 
of the metal and sulfur layers 𝑑𝑡ℎ𝑖𝑐𝑘; bond angle, 𝜃𝑆−𝑀𝑜−𝑆, 𝜃𝑆−𝑊−𝑆) and energy 
band gap, 𝐸𝑔 of the 𝑀𝑜𝑆2 and 𝑊𝑆2 monolayers. Comparable with the other work 
(in bracket) and experiment result [35, 36, 37,38] 

 Calculation Experiment 

𝑀𝑜𝑆2 
𝑎(Å) 𝑑𝑀𝑜−𝑆(Å) 𝑑𝑡ℎ𝑖𝑐𝑘(Å) 𝜃𝑆−𝑀𝑜−𝑆 𝐸𝑔(𝑒𝑉) 𝑎(Å) 𝐸𝑔(𝑒𝑉) 

3.19(3.19) 2.42(2.43) 1.56(1.56) 80.67(80.68) 1.80(1.72) 3.17 1.90 

𝑊𝑆2 
𝑎(Å) 𝑑𝑊−𝑆(Å) 𝑑𝑡ℎ𝑖𝑐𝑘(Å) 𝜃𝑆−𝑊−𝑆 𝐸𝑔(𝑒𝑉) 𝑎(Å) 𝐸𝑔(𝑒𝑉) 

3.19(3.19) 2.42 1.56(1.56) 80.95 2.00(2.10) 3.162 2.07 

 

K-SPACE 

Figure 4.6 First Brillouin zone of hexagonal structure and its high symmetry points. 
The following path for band calculation as shown by red arrows. 
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𝑑𝑀𝑜𝑆2
 

𝜃𝑆−𝑀𝑜−𝑆 2𝑑𝑡ℎ𝑖𝑐𝑘 2𝑑𝑡ℎ𝑖𝑐𝑘 

𝑑𝑊𝑆2
 

𝜃𝑆−𝑊−𝑆 

(𝑎) (𝑏) 

(𝑐) (𝑑) 



32 

 

 

(𝑒) 

(𝑓) 

Figure 4.7 (𝑎), (𝑏) characteristic of 𝑀𝑜𝑆2 and 𝑊𝑆2 respectively (𝑐), (𝑑) hexagonal 
structure of 𝑀𝑜𝑆2 and 𝑊𝑆2 (𝑒) band structure and project density of state (PDOS) 
of 𝑀𝑜𝑆2 (𝑓) band structure and PDOS of 𝑊𝑆2, There are direct band gap at K-
point both 𝑀𝑜𝑆2 and 𝑊𝑆2   
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We have obtained a remarkable result. The computed energy band gaps (𝐸𝑔) of the 
𝑀𝑜𝑆2 and 𝑊𝑆2 monolayers (1.80 𝑒𝑉 and 2.00 𝑒𝑉) are in good agreement with 
experimental results [35,36]. 

4.2 Modeling of 𝑀𝑜1−𝑥𝑊𝑥𝑆2 using Special Quasirandom Structure method 

 Our model structure of 𝑀𝑜1−𝑥𝑊𝑥𝑆2 is generated by the SQS, using the pair 
correlation functions with spanning distance up to the ninth atomic neighbor shells. 
First, we investigate suitable size of supercell by comparable the pair correlation 
functions and total correlation error between various sizes of supercells (2x2x1, 3x3x1 
and 4x4x1). In Table 3, There are obviously noticeable that 2x2x1 supercell is preferred 
order atomic arrangement. And we found 3x3x1 supercell is suitable size of supercell, 
because the total correlation error values are not much difference than 4x4x1 
supercell. So, we chose a 3x3x1 supercell with 27 atoms per supercell. By comparison 
of the ensemble average of the pair correlation functions 〈Π̅2,𝑚(𝑆)〉 for each 
arrangement of atoms in the model structure with 〈Π̅2,𝑚〉𝑅 , we can choose any 
structure that gives the best match. Some 〈Π̅2,𝑚(𝑆)〉 of chosen configurations are 
shown in Table 4. The crystal structures of 𝑀𝑜1−𝑥𝑊𝑥𝑆2 at 𝑥 = 0.11 of the 3x3x1 
supercell have all possible 9!

1!8!
= 9 configurations. The SQS shows that every 

configuration has the same value for pair correlation functions up to the ninth atomic 
neighbor shells, so we choose one of them, and denoted by SQS-1. In the same way, 
as 𝑥 = 0.22 , the supercell has all possible 9!

2!7!
= 36 configurations and the SQS can be 

distributed into 2 groups by the value of correlation functions, denoted by SQS-2 and 
SQS-3. For 𝑥 = 0.33,0.44 the SQS can be distributed into 3 groups. The result shows 
that most of the pair correlation functions are closed to random except for the pair 
correlation function of fifth atomic neighbor shell. Note that the fifth atomic neighbor 
shell is far from perfect random configuration, which probably happens because we 
use small periodic supercell. However, the total correlation error is comparable with 
the random correlation. For the 3x3x1 supercell, our chosen structures produce the 
value of pair correlation function 〈Π̅2,𝑚〉(𝑆) closed to the perfect random configuration 
〈Π̅2,𝑚〉𝑅. Thus, the 3x3x1 supercell is reasonable for the small periodic unit cell that 
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can represent the perfect random alloy, and can be used to study the formation 
energy and band gaps in the next section. 
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For 𝑥 = 0.56, 0.67, 0.78 and 0.89, we have used the same arrangement of atoms but 
swap the positions of 𝑀𝑜 and 𝑊 atom. So that, the SQS reduce all possible 
configurations for 3x3x1 supercell (510 configurations) to the 9 SQS groups of atomic 
arrangements in the model structure. This reduces the number of the model structure 
to be used in the density functional theory calculations. There is no need to examine 
all possible configurations of the atomic arrangements. 

Figure 4.8 Top view on the structure of the configuration SQS of 3x3x1 supercell 
𝑀𝑜1−𝑥𝑊𝑥𝑆2 at 𝑥 = 0.11, 0.22, 0.33, 0.44 , where 𝑀𝑜 are red atoms, 𝑊are blue 
atoms and 𝑆 are yellow atoms. 
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The total energy (𝐸𝑡𝑜𝑡) for each arrangement of 𝑀𝑜1−𝑥𝑊𝑥𝑆2 alloy is calculated as well 
as the alloy formation energy for each 𝑊 concentration, 𝐸𝑓(𝑥) =  𝐸𝑡𝑜𝑡 − (1 − 𝑥)𝐸𝑀𝑜𝑆2
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Figure 4.9 An alternative point of view of the periodic supercell 𝑀𝑜1−𝑥𝑊𝑥𝑆2 at 𝑥 =

0.44 From the Table 4 that the fifth atomic neighbor shell is far from perfect random 
configuration, which probably happens because we use small periodic supercell. 

Figure 4.10 Chart of the formation energy as a function of 𝑊 concentration. Each 
point is the formation energy of the model structure 𝑀𝑜1−𝑥𝑊𝑥𝑆2 that was 
generated by SQS method from Table 4. 
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𝑥𝐸𝑊𝑆2
 where 𝑥 is the concentration of 𝑊, 𝐸𝑀𝑜𝑆2

 and 𝐸𝑊𝑆2
 are the total energies per 

formula unit of 𝑀𝑜𝑆2 and 𝑊𝑆2 calculated from the previous section. The formation 
energy as a function of 𝑊 concentration is shown in Figure 4.10. The negative values 
suggest that the miscible alloys can be formed. Then, we take the structure with the 
lowest formation energy to examine the band structure in the next chapter.



 

 

CHAPTER 5 

ELECTRONICAL PROPERTY OF ALLOY 𝑀𝑜1−𝑥𝑊𝑥𝑆2 MATERIALS BY USING 
SPECIAL QUASIRANDOM STRUCTURE 

 

Results and Discussion 

 The electronic band structure of the supercell is quite complex. Hence the 
unfolding of the bands needs to be performed (see Appendix B) [39, 40]. Then we 
investigate the results of the band gaps and band edges of the 𝑀𝑜1−𝑥𝑊𝑥𝑆2 alloys. The 
results show that the band gap moderately decreases from 𝑥= 0 to 0.33 and 
moderately increases from 𝑥=0.33 to 0.67 and then the band gap is rising more rapidly 
from 𝑥=0.67 to 1 (see Figure 5.1). The results resemble a parabolic characteristic or a 
bowing effect of the band gap. The modification of the band gap by variating the 𝑊 
concentration can expand into the application of nanoelectronics and optoelectronics.  

 



40 

 

 

 
For the band edges of the conduction band and the valence band from 𝑥=0 to 0.44, 
the conduction band minimum (below Fermi level) shifts only a little whereas the 
valence band (above Fermi level) shifts significantly. In contrast, from 𝑥=0.56 to 1, the 
results show that the conduction band shifts more significantly than that of the valence 
band (see Figure 5.2). From the results of the band edges, it can be concluded that if 
the 𝑊 concentration is dominating the 𝑀𝑜 concentration in the 𝑀𝑜1−𝑥𝑊𝑥𝑆2 alloys, 
then the conduction band is swung by 𝑊𝑆2, and vice versa if 𝑀𝑜𝑆2 dominates then 
the valence band is swung. Since the valence band maxima of 𝑀𝑜𝑆2 and 𝑊𝑆2 originate 
from the 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals of the metal, doping a 𝑊 atom in 𝑀𝑜𝑆2 instantly 
shifts them up in energy. In contrast, the conduction band minimum is dominated by 
the 𝑑𝑧2 of the metal in the case of 𝑀𝑜𝑆2 but the 𝑑𝑥𝑦, 𝑑𝑥2−𝑦2, and 𝑑𝑧2 states in the 
case of 𝑊𝑆2 , which is described by density of states for the valence and conduction 
bands in these works [41, 42]. For 𝑥=0 to 0.33 𝑊 contributes slightly to the conduction 
band minimum, resulting in small energetic upshifts. For 𝑥=0.33 to 1, the 𝑊 
contribution becomes dominant and thus the upshifts are enhanced. This feature can 
be described by the different positions of the band edges in 𝑀𝑜𝑆2 and 𝑊𝑆2. 

Figure 5.1 Band gap variation shows that the electronic property, energy band 𝐸𝑔, 
which are calculated from the special supercell generated by SQS method give 
comparable results with other method and experiment. 



41 

 

 

 

 
 In conclusion, the atomic distributions in the monolayer semiconducting 
transition metal dichalcogenide 𝑀𝑜1−𝑥𝑊𝑥𝑆2 alloys have been investigated by using the 
density functional theory and modeling by the special quasi-random structure 
customized for the 2D material. We showed that this model can describe the nature 
of the 2D band structure and is in good agreement with the result from the first-
principle calculation by Monte Carlo simulations [43], a large supercell calculation [41], 
and experimental results [42, 44]. This is remarkable that using small periodic cell 
(3x3x1 with 27 atoms in the model structure) generated by the SQS can be used very 
well. Although this model only exists at low temperature according to the SQS and 
the DFT simulation. The Negative formation energies suggest a good miscibility for the 
𝑀𝑜1−𝑥𝑊𝑥𝑆2 alloys. Our results demonstrate that the band gaps and band edges can 
be varied continuously in the 𝑀𝑜1−𝑥𝑊𝑥𝑆2 monolayer alloys, with the minimum gap 
appearing at around 𝑥 = 0.33. The tunable band gap by alloying could strongly broaden 
the range of possible applications of the transition metal dichalcogenide monolayers. 

Figure 5.1 The band alignment (eV) of the 𝑀𝑜1−𝑥𝑊𝑥𝑆2, the Fermi level is set to 0 
eV for all the W concentration varies by 𝑥 = 0,
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9
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9
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As mentioned above the 2D SQS 𝑀𝑜1−𝑥𝑊𝑥𝑆2 is one of the interesting ways that using 
for studies another physical and electronical properties. With using small periodic cell 
that suitable for DFT calculations that explain the goods meaning of physics than 
another method likes Monte Carlo simulations. In addition, by decreasing the number 
of atoms in supercell (likes large supercell approach), cause decrease the 
computational cost and calculation time. This SQS method increase performance for 
any condensed matter studied that using computation explicitly. 

 From the above results, the Special Quasirandom Structure (SQS) method 
works well for 2D material (Transition metal dichalcogenides in this thesis), especially 
with the band structure. In the Chapter 6, we will summarize the results and discuss 
about limitation of the SQS method. 



 

 

CHAPTER 6 

CONCLUSION 

 

 This thesis has shown that it is possible to model special periodic supercells 
structure with binary atoms arrangement (𝐴1−𝑥𝐵𝑥) such that the correlation functions 
closely reproduce those in a perfectly random infinite pseudo-binary alloy. Physical 
and electronical properties that depend on the local atomic structure of the alloy can 
be described by using DFT calculation on the Special Quasirandom Structure. The 
characteristic of SQS has those features: (1) short-periodic supercell in unusual 
orientations, with (2) just a few atoms per cell, and with (3) site symmetries that are 
distinctly lower than another order structure likes constituent solids (charcoal pyrite 
or copper-gold structure). For the electronical property that represent by the SQS is 
within the local density formalism reveals significant atomic relaxations consistent with 
the lower symmetry of atoms in the alloy (using periodic supercell on DFT). This leads 
to (1) substantial lowering of the alloy’s formation enthalpies, (2) the band structure 
of the sample structure and (3) optical bowing of the band gaps (TMDC alloy materials 
in this work). Those structure are generated by the SQS method can be readily 
generalized to other compositions, symmetries, and to imperfectly disordered alloys 
and affords accurate descriptions of physical and electronical properties of alloys 
within any DFT based calculation. 

 In addition, the SQS method is possible to design special structures with small 
number of atom. This mean that computational cost and time are rapidly decrease for 
DFT calculation. Both results imply that we are possible to manage or design other 
problems (experiment and simulation) that are more difficult than ever. For example, 
the model of many-layers with trapping molecule or atoms need a lot of 
computational cost to simulate its besides if that model increases other complexity 
likes disorder effect, then computational cost goes up. So, the SQS with small number 
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of atom can match up this problem by decrease number of atom on model that are 
used for calculation. 

 By the way, the SQS has some limitation, this method is not available in all 
cases especially the model structure with higher symmetry of atoms. Other than that, 
it cannot be used for complex alloy (like interstitial alloy or more than binary 
compound). But if the system studied is binary or pseudo-binary substitution alloy, the 
SQS method work wells for generate the special structure which is used by DFT 
calculation.
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APPENDICES 

 



 

 

APPENDIX A 

QUANTUM ESPRESSO 

 

 This section will talk about software, which is an integrated suite of Open-
Source computer codes for electronic structure calculations and materials modeling 
at the nanoscale. It is based on the Density Functional Theory with plane-waves basis 
set and pseudopotentials, call as “Quantum ESPRESSO”.  The Quantum ESPRESSO has 
evolved into a distribution of independent and inter-operable codes in the spirit of an 
open source project. The Quantum ESPRESSO distribution consists of a “historical” 
core set of components, and a set of plug-ins that perform more advanced tasks, plus 
a number of third-party packages designed to be inter operable with the core 
components. Researchers active in the field of electronic structure calculations are 
encouraged to participate in the project by contributing their own codes or by 
implementing their own ideas into existing codes [20]. 

 A lot of things about electronical and physical properties was been calculated 
by the Quantum ESPRESSO. But in this work, we will focus on ground state calculations, 
structural optimization and band structure calculation. This section shows about input 
file description and required input data for any calculations on this thesis. By program: 
pw.x on Quantum ESPRESSO. The required structure of input data on pw.x are 

(1) &CONTROL, which is general variables controlling the run to point out what the 
program pw.x should do. The most important part is task, that determine what the 
program will calculate. For this thesis, the tasks to be performed are (1.1) ‘scf’ performs 
a single-point (fixed-ion) calculation, this task should be the first thing to do for any 
first-principle studies. (1.2) ‘nscf’ performs a non-SCF calculation with the desired k-
point grid that lead to further processing, bands and density of state calculation. (1.3) 
‘bands’ performs a bands structure calculation that base on the desired k-point. (1.4) 
‘vc-relax’ performs a variable-cell relaxation for studied system. 
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(2) &SYSTEM, structural information on the system under investigation. It is specified 
depend on the studied system (likes Bravais-lattice index, Kinetic energy cutoff for 
wave functions, Kinetic energy cutoff for charge density and potential etc.) 

(3) &ELECTRONS, which is input variables that control the algorithms used to reach the 
self-consistent solution of Kohn-Sham equations for the electrons in the system. 

And there are three mandatories for specify the system. 

(4) ATOMIC_SPECIES describe name, mass and pseudopotential used for each atomic 
species present in the system. 

(5) ATOMIC_POSITIONS describe type and coordinates of each atom in the unit cell of 
the system. 

(6) K-POINTS describe coordinates and weights of the k-points used for the Brillouin 
zone integration. If it is set to ‘automatic’ then automatically generated uniform grid 
of k-points as in Monkhorst Pack grids. 

There are a lot of description of pw.x for more information please visit, 

http://www.quantum-espresso.org/wp-
content/uploads/Doc/INPUT_PW.html#idm140629871987664 

The next page shows structure of the input data with minimal require for program pw.x 
calculation on the Quantum ESPRESSO package.

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html#idm140629871987664
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html#idm140629871987664
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Structure of the input data 

_____________________________________________________________________________________________________ 

&CONTROL 

  ... 

/ 

&SYSTEM 

  ... 

/ 

&ELECTRONS 

  ... 

/ 

ATOMIC_SPECIES 

 X  Mass_X  PseudoPot_X 

 Y  Mass_Y  PseudoPot_Y 

ATOMIC_POSITIONS { alat | bohr | crystal | angstrom | crystal_sg } 

  X 0.0  0.0  0.0  {if_pos(1) if_pos(2) if_pos(3)} 

  Y 0.5  0.0  0.0 

K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } 

if (automatic) 

   nk1, nk2, nk3, k1, k2, k3 

if (not automatic) 

   𝑛𝑘𝑠 

  𝑥𝑘𝑥, 𝑥𝑘𝑦, 𝑥𝑘𝑧  wk (weight of k-points) 



 

 

APPENDIX B 

BAND STRUCTURE UNFOLDING 

 

 In chapter 5, we need to construct electronic band structure from 𝑀𝑜1−𝑥𝑊𝑥𝑆2 
(3x3x1 supercell). For plane-wave based calculations the band structure obtained by 
the supercell calculation was represented by the Brillouin zone of a primitive cell so 
that the periodicity of calculated band structure may be completely different from the 
primitive cell. The band structure of the supercell calculation is in general quite 
cluttered. However, the band structure of supercell calculations is usually performed 
in order to allow for slight reformation of the crystal structure (likes alloy in this thesis). 
The electronic band structure of the primitive cell is preserved. To this extent, 
unfolding the band structure of the supercell to the one of the primitive cell by 
consider the case where the basis vector of the supercell and primitive cell satisfy 

𝑨 = 𝑀 ∙ 𝒂 (𝐴. 1) 
where 𝑨 and 𝒂 are matrices with the cell basis vectors and 𝑀 is the transformation 
matrix. Likewise, so in reciprocal space should be 

𝑩 = 𝑀−1 ∙ 𝒃 (𝐴. 2) 
Then given a 𝒌 in the primitive Brillouin zone there is only a 𝑲 in the supercell Brillouin 
zone to which it folds into. The two vectors are related by a reciprocal lattice vector 
𝑮 in the supercell Brillouin zone describe by 

𝒌 = 𝑲 + 𝑮 (𝐴. 3) 
The spectral function of the primitive cell calculation evaluates from eigenvalues and 
eigenfunctions of the supercell calculation one. Such a spectral function can be 
calculated as follow 

𝐴(𝒌, 𝜖) = ∑ 𝑃𝑲𝑚
(𝒌)𝛿(𝜖𝑲𝑚

− 𝜖)

𝑚

(𝐴. 4) 

and from delta function, 𝑃𝑲𝑚
(𝒌) are the weights defined by 

𝑃𝑲𝑚
(𝒌) = ∑|⟨𝑲𝑚|𝒌𝑛⟩|2

𝑛

(𝐴. 5) 
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Obviously shows that given information about how much |𝒌𝑛⟩ is preserved |𝑲𝑛⟩. From 
the expression above, it seems that calculating the weights requires the information of 
primitive cell eigenstates. However, V.Popescu and A.Zunger [45] show that weights 
can be found using only supercell quantities, now using Fourier transformation we get 

𝑃𝑲𝑚
(𝒌) = ∑|𝐶𝑲𝑚

(𝑮 + 𝒌 − 𝑲)|
2

𝑮

(𝐴. 6) 

where 𝐶𝑲𝑚
 are the Fourier coefficients of the eigenstate 𝑲𝑚 and 𝑮 is reciprocal space 

vectors of the supercell, specifically the ones that match the reciprocal space vectors 
of the primitive cell. 

 Band structure calculation in this thesis was unfolded. The unfolding has been 
performed using the BandUP code. The BandUP is a code that allows you to obtain a 
primitive cell representation of the band structure of systems simulated using 
supercells. The unfolding of the bands is performed as described in the following works 
[39, 40]. No explicit calculations involving the reference primitive cell are needed. One 
only needs to know the primitive cell vectors to determine the geometric unfolding 
relations. BandUP checks the symmetries of both supercell and reference primitive 
cell to (1) reduce the number of necessary k-points to a minimum thus reducing the 
space required to store wavefunction files, and (2) produce properly symmetry-
averaged effective unfolded band structures (EBS) when the symmetry of the supercell 
is different from the one of the primitive cell. This is handy when defects, impurities 
and/or other types of perturbations are present.



 

 

 

APPENDIX C 

SQS WITH PYTHON 

 

 According to the Chapter 3, the basic idea for programing of Special 
Quasirandom Structure method. In this section, we will introduce a programing 
language that was used for design SQS method. By using python, a programing language 
with dynamic semantics, provides a high-level built in data structures. That easy to 
learn syntax emphasizes and therefore reduces the time of program construction. 
Comparing python to other language such as Java or C++. In practice, the choice of a 
programming language is often dictated by time to develop code, speed of program 
running and convenience for apply coding program to solve problem. For Java, python 
programs are generally expected to run slower than Java programs, but they also take 
much less time to develop. Python programs are typically 3 times shorter than 
equivalent Java programs. This difference can be attributed to Python's built-in high-
level data types and its dynamic typing. As same as C++, even C++ run faster than 
python but python is often 10 times shorter than equivalent C++ code because of 
C++ has not a high-level built in data structures. Python shines as a glue language, 
used to combine components written in C++. Python is used in many application 
domains, now we will integrate python language and idea of SQS method. 

 The first step of modeling materials. We store input information (a cell 
parameter and atomic positions) by using dictionary data type. Python “dictionary” is 
a data structure. It is best to think of a dictionary as an unordered set of {key: value} 
pairs, with the requirement that the keys are unique (within one dictionary). A pair of 
braces creates an empty dictionary: {}. Placing a comma-separated list of {key: value} 
pairs within the braces adds initial {key: value} pairs to the dictionary; this is also the 
way dictionaries are written on output. The main operations on a dictionary are storing 
a value with some key and extracting the value given the key. For example, in Figure 
C. 1 if we call A or B keys then we will know every number of atom that are same type 
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as A (e.g. call A keys then the program return value [1, 2, 3, 7, 8, 9, 13, 14, 15] that are 
list of atoms). Then we can collect or calculate data that we need (distance of each 
atoms, assign pseudo-spin, construct figures, etc.).   

 The next step, we want the SQS program compute the product of the pseudo-
spin by figures call as correlation function ∏ 𝑺𝑘,𝑚 .  The correlation function for each 
figure is calculate by assign value on atom in the previous step. Then matching up with 
the same figures for each atom in the primitive cell. Those data have been used by 
calculation average of the correlation functions. 

Figure C. 1 A representation of data structure in python, (left) input information as 
keys, (right) values of dictionaries that represent number of atom in the system 
studies. 
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Figure C. 2 An example diagram of calculate average correlation function of 
figure (2,1). 



59 

 

 

 

 

 
VITA 

VITA 

 

Mr. Wirunti Pungtrakoon was born on 18 November 1992. He graduated 
from Nakprasith school. Then he got Bachelor of Science in physics (B.Sc. Physics) 
from Chulalongkorn University in 2014. His senior project in B.Sc. is on the hydrogen 
storage on the 2D materials using first-principle calculation. Afterwards, he 
continued Master of Science in physics (M.Sc. physics) and worked in the Extreme 
Condition Physics Research Laboratory (ECPRL) at Chulalongkorn University. The 
advisor in M.Sc. is assoc. prof. Thiti Bovornratanaraks and the co-advisor assoc. prof. 
Udomsilp Pinsook in the subject of model of alloy molybdenum tungsten disulfide 
structure using Special Quasirandom Structure method. 

 



60 

 

 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER 1
	Introduction
	1.1 Computational modeling of solid state physics
	1.2 Modeling of substitutional alloy disorder state
	1.3 Two-dimensional materials Transition metal dichalcogenides (TMDC)
	1.4 Outline

	CHAPTER 2
	DENSITY FUCTIONAL THEORY
	2.1 Mathematical background of many-body problem
	2.2 The Hohenberg-Kohn theorems
	2.3 Kohn-Sham equations
	2.4 Exchange correlation functional
	2.5 Plane-wave basis sets
	2.6 Solving the Kohn-Sham equations

	CHAPTER 3
	MODELING ALLOY MATERIALS BY SPECIAL QUASIRANDOM STRUCTURE METHOD
	3.1 Primitive unit cell to supercell approach
	3.2 Structural theories of alloys
	3.2.1 Direct sampling methods
	3.2.2 Mathematical model of cluster expansions

	3.3 Special Quasirandom Structure
	3.3.1 The idea of the SQS approach
	3.3.2 Programing of SQS


	CHAPTER 4
	STUDY OF ALLOY MOLYBDENUM TUNGSTEN DISULFIDE (𝑀,𝑜-1−𝑥.,𝑊-𝑥.,𝑆-2.) 2D MATERIAL
	4.1 Ab-initio study of 𝑀𝑜,𝑆-2. and 𝑊,𝑆-2. monolayers
	4.1.1 Calculation parameters for the first-principle calculation
	4.1.2 Structural relaxation and band structure calculation

	4.2 Modeling of 𝑀,𝑜-1−𝑥.,𝑊-𝑥.,𝑆-2. using Special Quasirandom Structure method

	CHAPTER 5
	ELECTRONICAL PROPERTY OF ALLOY 𝑀,𝑜-1−𝑥.,𝑊-𝑥.,𝑆-2. MATERIALS BY USING SPECIAL QUASIRANDOM STRUCTURE
	Results and Discussion

	CHAPTER 6
	CONCLUSION
	REFERENCES
	APPENDICES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	VITA

