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Well log data is one of the most abundant data sources for subsurface
characterization since almost all drilled wells are logged. Subsurface characterization
requires correlated well log information. Processes to help perform well-to-well log
correlation have been developed in this study based on the two approaches: pattern

matching and pattern discovery.

Pattern matching focuses on finding a known pattern of interest in uncorrelated
wells. The use of Euclidean, Hamming, and Levenshtein distances in similarity measurement,
Piecewise Aggregate Approximation (PAA), and Symbolic Aggregate approXimation (SAX) data
representation helps create reduced-resolution while maintains the main characteristics of
the signals. Multi-resolution analysis provides the most probable match from different data
resolutions obtained by different discretization levels. The results show that multi-resolution
analysis can identify the most probable match from the most frequent data window
promoted. The results also show that Levenshtein distance is far superior to Hamming and

Euclidean distances in finding the best match even when local variations are present.

Pattern discovery focuses on finding repeating patterns without any prior
knowledge of patterns that might exist in the well logs. MK (Motif Kymatology) is used as the
base algorithm in this study. For the data sets tried in this study, the proposed algorithm can
successfully identify repeating patterns. A modified step is incorporated in order to help

increase stability of the final correlated well sections.

In summary, pattern matching and pattern discovery can be formed as an
integrated workflow to support well log correlation task and subsurface characterization.
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CHAPTER 1
INTRODUCTION

One of the data acquisition techniques used to obtain data for subsurface
characterization is well logging. Well logging is probably the most attractive method to
collect basic lithological data and fluid type as the method can provide data within
moderate range from the wellbore deep into the formation depending on depth of
investigation of logging tools used. Its usefulness is also the time used to obtain
required data is relatively small as multiple logging tools for varying properties can run
into the wellbore at the same time. According to the benefits aforementioned, well
logging is usually performed on multiple wells in order to capture possible deviation
of properties across different wells even though their locations are relatively close and

their depths are on the same range.

Added values from having multiple well logs are not only for data collection
and their interpretation on a well-by-well basis, but it also provides crucial subsurface
characterization benefit from a process called correlation. Correlation, or more
frequently called well log correlation, is a process aiming to match a similar portion of
interest using the same log type across one or more log responses from different wells.
These similar portions obtained from well log correlation process are usually used for
many purposes and one crucial purpose is to use them for modelling connections of
rock and their properties across depth ranges. The similar portions drawn from multiple
wells are generally thought to have certain degree of similarity in terms of properties
recorded and their inferences. For example, similar gamma ray log responses (in API
degree) behind a potential reservoir section may be used to indicate quality of that
potential reservoir rock in this section of interest and the quality may not be on the
same degree assuming that lower gamma ray means a better quality of the section of

interest since it has lower shale content and is more preferable.

There are efforts trying to perform well log correlation using many techniques

apart from conventional well log correlation involving manual process of locating



similar sections across multiple wells. The sections may be in the form of log values
falling in the same range, having the similar trend with or without scale variation®.
Owing to advancement of data processing in computing realm and the use of digital
well log, there has been interests to digitally process well log data and perform well
log correlation using different techniques such as extension of moments method and
polynomial regression [1], dynamic wave matching [2], signal processing and other
related methods (Wavelet Transform, Hilbert Huang Transformation, and Empirical
Mode Decomposition and Variational Mode Decomposition) [3-6], artificial intelligence
techniques [7, 8]. These techniques listed are not meant to be comprehensive but it

is to provide a list of recent advances in well log correlation.

Since well log data is a value on depth scale, different techniques may treat
the data differently. For example, polynomial regression is a technique that typically
works directly on real domain (value versus depth) while signal processing and related
techniques typically works on frequency domain (amplitude versus frequency).
Therefore, well log data has to be converted from real domain to frequency domain

in order to use signal processing methods.

Ability to process well log data directly on real domain possesses benefits as
there is no requirements to change its domain to process, thereby reducing error and

bias due to changing domain, and it is simpler to understand with less computation.
1.1 Problem Statement

To date, it may still be able to say that conventional well log correlation is the
main practice performed. Conventional well log correlation typically involves
approximating a portion of well log response to match another portion of a different
well log response. Sometimes, this approximation matching is, unfortunately, arbitrary.

At one time, one small deviation from the main trend may be neglected and the

! Scale variation in well log is a variation where certain log responses from two wells
show some degrees of extension or contraction along the depth axis while major

trends of those logs are similar.



match is treated as a satisfactory match, thereby correlating two sections one from
each well together. At another time, small deviation is chosen to be included in the
correlation. Admittedly, inconsistency of this practice may be masked as an engineer’s
judgement. Instead of arbitrary inclusion or exclusion of a portion of well log response,
it is better to quantify the match before making any judgement on a correlation based

on those quantifiable numbers.

Finding interested stratigraphic units that are small sections spread along an
ultra-deep well using convention method can be a daunting task and there can be a
lot of mistake involved. For example, less similar sections may likely be chosen instead
of more similar section since there is no quantifiable figures. In fact, one could actually
calculate some basic statistical figures such as mean and standard deviation for all
possible sections. Then selection of the sections can be made based on comparisons

of the calculated figures. This is by far not the best method that can be done.

Well log interpretation may be done on a certain objective, which may result
in looking for a certain pattern or trend in a well log. This means it is possible that
some patterns may unintentionally be neglected, thereby overlooking valuable
information. This overlooked information may have a significant effect to the reservoir

modelling.

Problems aforementioned alone are sufficient to promote more systematic and
quantifiable approach to well log correlation task since those problems are crucial to
the correlation result. In addition, ability to extract all patterns and make quantifiable

match will result in great benefits for any future subsurface study.
1.2 Objectives
As previously mentioned, study objectives are to develop a systematic workflow to

meet the requirements as follows:

— To semi-automatically find interested well sections of all lengths using
gamma ray los.

— To correlate well sections across multiple wells



1.3 Expected Usefulness

Data-adaptive pattern discovery method requires little priori knowledge of a

pattern. This approach is more beneficial especially when data pool is small,

which is a situation when a model-based pattern discovery method is hard to

be applied and statistical-based pattern discovery may give high uncertainty.

— Development in time series motif discovery has opened a new way of extracting
repeating patterns in a well log. Meaningful repeating patterns are crucial to
modern well log analysis.

— Combination of motif discovery techniques can be used on non-linear and non-
stationery nature of well log data to extract repeating patterns that may be
meaningful and beneficial for modern well log analysis.

— Subsequences extracted from a well log are important to well log analysis as

they contain useful information such as lithologic sequence, level of energy as

a log response, and etc. These information drawn from the subsequences, in

turns, can be used as fundamental elements for classification of local

characteristic of accumulation and correlation of similar patterns across

spatially-connected wells.

1.4 Methodology

There are, normally, more than one well drilled in a particular area as part of
data acquisition for reservoir characterization. One of the challenges is how to correlate
similar stratigraphic unit across multiple well logs. Oftentimes, similar stratigraphic unit
in one depth interval may not necessarily be correlated with the similar unit in another
depth interval. This challenge is, therefore, not entirely easy to tackle. Owing to
advances in data mining techniques for pattern discovery, there are methods to help
correlating two similar but different series together. This study will illustrate how to

apply those techniques to tackle well log correlation challenge.



Conventional well log correlation, typically, involves finding 2 characteristic
marks on the top and at the bottom one each that covers the interested zone to see
if those logs being correlated are on-depth relative to each other [9]. After the marks
are found, the real process of conventional well log correlation starts. These 2 steps
may be done repetitively for the entire log depth for more than one zone of interest
as all zones correlated are crucial for reservoir modelling in the later stages of a
reservoir simulation study. In this study, however, it is more preferable to use a more

heuristic method to digitally correlate well logs of all possible sections.

In data mining literatures, there are many techniques that can find a pair of
sections that are the most similar compared to the rest of the logs. The nature of well
log data considered, it is possible to say that time series pattern discovery or, more
specifically, motif discovery can be applied to well log correlation problem. Motif
discovery involves trying to find recurrent patterns in a time series data. Ability to find
recurrent patterns in a time series is beneficial and there has been numerous
application in other industries. In this well log correlation problem, if it is possible to
identify two sections one from each well as a motif pair, it is also reasonable to
correlate those sections from those wells together, provided that those are located
on relatively the same depth interval. This process may be referred to as motif

discovery.

Depending on motif discovery strategy, there may be some cases where similar
patterns to a motif are still on the well log data undiscovered. In these cases, it may
be necessary to perform a search routine in order to capture all those similar patterns
to a particular motif. One method that is used as a search routine is Nearest Neighbor

Search. This process may be referred to as nearest neighbor search.

In order to perform well log correlation as previously mentioned, there is an
absolute requirement to perform similarity measurement. While similarity
measurement seems to be a simple process, there are, however, challenges in defining
degree of similarity between 2 sections which, in this case, is 2 well logs. Similarity
measurement may be done directly on real domain. Alternatively, it may be done on

a discretized domain using a certain representation applied to data on real domain



before performing similarity on that discretized domain. It is considered to be vital to

well log correlation results. This process may be referred to as similarity measurement.

The following steps are steps performed in this study. They are intended to
give a more concrete example of aforementioned conceptual steps. Since this study
involves substantial amount of software programming task, the outlined steps may, at

times, be highly dependent on the implemented programs in this study.
1.5 Well Log Correlation Approaches

Well-log correlation may be divided into two approaches based on well-log

correlation strategies.

1.5.1 Approach A: Pattern Matching

This approach primarily focuses on finding a known pattern, which may be from
a known section having the pattern of interest, in other well logs that have not been
correlated such as well logs from recently drilled wells. The main strategy of this
approach is to find if there is the pattern of interest in those well logs. It is also used
to determine the best match of the pattern to those well logs. In order to identify the

best match, similarity measurement is employed in the matching process.

1.5.2 Approach B: Pattern Discovery
This approach focuses on finding repeating patterns across well logs without
any prior knowledge of patterns that might be existed in the well logs. As the name

implies, the approach aims at extracting inherent patterns from the well logs.



CHAPTER 2
LITERATURE REVIEW

As mentioned in Chapter 1, there are many techniques that can be used to
perform well log correlation. This section provides a review of previous works relating

to digital processing of well log for correlation.

Lineman et al. [10] presented a system employing Dynamic Time Warping
(DTW), a technique used in speech recognition, together with a specific knowledge
base of geological information to perform well-to-well log correlation from domain
experts commonly found in development of expert system. The system developed
would try to first establish a local cost from comparing between two logs. Then
representation of the log data to discrete data was performed. Before using DTW to
establish warping paths indicating correlations between two well logs, a distance matrix
was created using string matching technique where insertion, deletion, or change of a
character in a string give a different cost. Apart from the main objective of this work,
the authors suggested that an explanatory description or conclusion of a correlation
could also be drawn as each discrete value was a representative to some specific rules.
Typical to any expert system, the system requires a regular update of its knowledge

base from field to field.

Vega [4] developed techniques to correlate well logs using wavelet analysis
techniques. The techniques aims at detecting cyclostratigraphic sequences and true
boundaries with absent of core data. Cyclostratigraphy was processed by applying
wavelet analysis technique in order to assess wavelengths of the strongest cyclicities.
Using scaleogram, wave properties such as frequency constituents were able to be
extracted. Comparisons of using wavelet analysis, Fourier analysis, and semivariogram
showed that Morlet wavelet scaleogram was superior to Fourier analysis and
semivariogram in detecting cyclostraticraphy as the method could reveal
superimposed cycles of two different frequencies and also the locations of those
frequencies on the depth scale while Fourier analysis and semivariogram only

identified two superimposed frequencies. True boundary detection was performed on



a discretized well log space. Feature extraction was performed at boundary-upper and
boundary-lower windows. Training wells with best characterized data were used with
the observation wells to calculate total probability from multiplication of boundary-
upper probability and boundary-lower probability. Then a boundary was assigned to
observation wells at the highest probability. This process was repeated until the
training wells had no boundary left. The result was measured in detection performance

and it was as high as 90%.

Wavelet analysis method requires a priori which is the wavelet model.
Sometimes it requires trial-and-error process in order to select an appropriate wavelet
to a particular problem. Many method are aiming at processing non-stationery data
such as Empirical Mode Decomposition (EMD). As the name implies, EMD is mostly
applied in an empirical manner [5]. Similar to wavelet decomposition, EMD can be
used to decompose the original signals into fundamental signals called intrinsic mode.
Dragomiretskiy and Zosso [11] developed Variational Mode Decomposition (VMD) that
is based on mathematical foundation while it stills maintains data-adaptive wave
decomposition technique. Li et al. [12] proposed VMD-based method to perform
seismic sedimentary cycle and facies analysis in an unconventional reservoir in Fort

Worth, Texas.

Apart from signal processing and their related techniques, there are also
machine learning related techniques presented in the literatures. Luthi and Bryant [7]
presented correlation technique using back-propagation neural network. The method
can be divided as two sub-processes: one for datum correlation and another for marker
correlation. The first sub-process was first trained from the key well using tapped delay
line (or sliding-window) technique as an input layer. During the training, the network
provided output 1 when a boundary was at exactly at the middle node of the input
layer. The network itself contained two hidden layers and their number of processing
nodes were determined empirically. The second sub-process was first trained with two
dataset which are shale volume and vertical distance to datum. Locations at high
confidence peaks from output confidence curve were identified as possible

boundaries, which were then validated by geologist.



Fischetti et al. [13] presented a method to characterize shale and correlation
well logs using density, neutron porosity, and acoustic transition log to calculate M
and N parameters, which primarily are used in rock matrix mineralogical identification,
as inputs to a competitive neural network. The network consisted of a competitive
layer accepting two inputs. The competitive network for shale characterization was
used to confirm lateral continuity. The result showed that the network successfully
identified correct shale interval as the result agreed with the gamma ray log. Although
there was no indication of number of neurons used in the shale characterization case,
neurons in the competitive layer that was use in well correlation were as high as 20
neurons in order to allow redundancy and guarantee that all shale clusters were

identified.

Cassisi et al. [14] applied time series motif discovery technique proposed by
Mueen et al. [15] to investigate recurrent eruptive activity of Mt Etna during 1 January
2011 to 16 November 2011 from seismic volcano monitoring signals. The seismic signal
is seismic amplitude time series which were computed using a root-mean square (RMS).
The number of data points were 43,103 and the number of references were 10. The
study investigated results due to varying parameters such as motif length (50, 100, and
150 - durations of seismo-volcanic phenomena of interests), coefficients used for motif
range (2, 3, and 4), and number of desired groups of motifs (maximum at 20). Once the
motifs had been extracted, they were undergone similarity measurement using average
cross correlation. The study found that exact motif discovery technique using MK
algorithm revealed different seismo-volcanic phenomena from differences in
discovered RMS trends. For example, one group of RMS trends that exhibited sharp
increases and decreases RMS (lasting from seconds to minutes) are earthquakes while
another group of RMS trends that exhibited slower changes of RMS (in hours or days)

are lava fountains.

To the best of the knowledge, there is no application of exact time series motif
discovery technique in well log correlation problem. It may be due to the fact that
the technique is still relative new. Therefore, it should be useful to investigate the

applicability of exact time series motif discovery to well log problem.



CHAPTER 3
THEORY AND CONCEPT

3.1 Pattern Matching via Similarity Measurement

As previously discussed in Chapter 1, the first approach for well correlation
process is pattern matching from a known pattern to any section of a well log of
interest. In this approach, the known pattern is slid throughout the well log to be
correlated. The best correlation for the pattern may be quantitatively considered as
the pair that is the most similar. In order to determine how similar a pair is, similarity

measurement techniques are used in this closeness assessment.

In order to measure closeness between two groups, an appropriate comparison
technique is required. Depending on definition of closeness being considered,
appropriate comparison techniques are typically governed by comparison objectives.
Types of the objects also play an important role in choosing comparison technique.
Numerical data series, for example, may be compared based on varying means such
as direct numeric comparison, discrete representation comparison, descriptive
statistical parameter comparison, and model coefficient comparison. Some techniques
may provide comparison score which can later be used to quantify how close those
two groups being compared are. This process of assessing closeness of two groups may

be referred to as similarity measurement, which can be outlined as follows.

1. Once a comparison method is chosen, data preparation is performed according

to pre-conditions specified by the method.

2. Data re-representation is typically applied if the method works on different

space that that of the data’s original space.

3. If more than two datasets are used in the comparison, cross comparison of all

dataset may be needed.
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4. Resulting comparison scores of each dataset pair are then used. A cutoff score
may be defined in order to divide the scores into two groups of datasets that

are under and out of a particular cutoff score.

Specific to this study, well log data is considered to be numerical data. Each
data point is considered to be independent from its neighboring data points. Therefore,
similarity measurement is performed based on its intrinsic value of each data point
recorded by a logging tool. Distance measurement is a measurement responsible for
generating a comparison score of each similarity measurement. Frequently, distance
measurement is not arbitrarily chosen. It is, instead, soverned by an algorithm chosen
in another process. For example, a pattern discovery process may require a specific
distance measurement in order to exploit a special property of the distance
measurement. This is also the case of this study as this study employs MK algorithm
[15] to find an exact motif pair. The algorithm explicitly uses Euclidean distance due

to its specific properties as a distance metric.

Not only is Euclidean distance utilized in this study, but Hamming distance and
Levenshtein distance are also used in this study. The following sections provide details

about the mentioned distance measurements.

3.1.1 Data Representation

In order to utilize an existing similarity measurement, data to be compared may
need to be representative in order to fit the requirement of that particular method. In
this study, Hamming distance and Levenshtein distance require that data be character
string or discrete form. Therefore, any numerical data is typically represented as
character string. Converting one numeric data point to a character is possible. It,
however, is uncommon as one benefit of data representation to be achieved is
dimensionality reduction, which reduces number of data points to be a set of
predefined characters. Although dimensionality reduction results in an approximate
(not exact) comparison, it is beneficial as the comparison may be more meaningful
due to smearing effect, leaving small changes in data trend to be group with the main

trend of the same group which is then re-represented by a character.
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There are many data representation techniques presented in literatures. One
of which is Symbolic aggregate ApproXimation (SAX). SAX is a symbolic and data-
adaptive method representing a long time series with length n to a predefined
alphabet string of length w where w is much smaller than n (w << n) . Benefits of using

SAX are as follows:

— Dimensionality Reduction: Similar to other data representations, SAX provides
an approximate series from its original counterpart. Unlike other dimensionality
reduction methods such as wavelet-based methods, the generation technique

is simpler as it employs Piecewise Aggregate Approximation (PAA).

— Lower Bounding: A valid approximation serves as a representation of its original
series while preserving similarity or dissimilarity and main characteristics of the
original series on the approximated series. In other words, the dimension of
approximated series is lower enough to still maintain majority of its original
counterpart. Otherwise, it will not be useful as intrinsic features are changed

after dimensional reduction.

Steps to create representative data series using SAX are as follows.

1. Perform z-normalization to the original data to convert the data to have mean

(X) =0 and standard deviation (SD) =1.

Perform PAA on the original data of length n to the approximate data of length

Given original data series C of length n where C:(Cl,cz,c3,...,c- C ) and

jreealn

. W n

j=123,..,n.Since neN andwe N, it is obvious that— and — € R", Approximated
n w

series C of length w where C =(T,,C,,G,...,G;yCy) and 1=1,2,3,..,W can be

generated from



- N . . on.
where range minimum value is — (i —1)+1and range maximum value is —i
w w

This step results in a block-like data series of length w.
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The following trivial example demonstrates how a range is specified when

n
—¢N
w

Given n=33and w=4

W

Therefore, L e 37?

—8.25¢Nbut" e R*
W

ID Lower Bound Upper Bound
1 1.00 8.25

2 8.25 16.50

3 16.50 24.75

il 24.75 33.00

2. Perform representative discrete data (or word) ¢ of length w generation from

the approximate data using Gaussian-distributed, approximately equi-probable

symbols with number of symbols a, which can be determined from the area

under a N(0,1) Gaussian curve.

Given B a breakpoint on a z-normalized y-axis giving an approximately equi-

probable region. Therefore, B can be listed as follows:
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-0, 1=0

¢ = E, O<i<l1
a

Lin et al. [16] provided a lookup table for breakpoints under Gaussian
distribution with a ranging from 3 to 10. Alternatively, breakpoints corresponding to
any number of symbol a can be found from z-transformed values giving probabilities

from Yato(a-1)/a

Table 3.1 A look up table providing list of breakpoints corresponding to number of
breakpoints required. [16]

a

B 3 4 5 6 7 8 9 10
B 043 -0.67 084 -097 -107 -115 -1.22  -1.28
B, 0.43 0  -025 -043 -057 067 -076 -0.84
B 0.67 025 0 018 032 -043 052
B, 084 043 0.8 0 -014 -0.25
B 097 057 032 014 0
B, 107 067 043  0.25
B, 115 076 052
B 122 0.84
B, 1.28

Table 3.1 is easily obtained from normal distribution z-scores which are from
an inverse of a normal cumulative density function (cdf) given particular mean and

standard deviation with probability ranging from 1/ato(a—1)/a
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Example

In order to better understand the whole process of data representation using
SAX, the following section provides an example of how a data series is represented

into an approximate series.

1. Perform z-normalization to the original data to convert the data to have mean

(X) =0 and standard deviation (SD) =1

Mean=50.358
SD=10.832

10
O ||||||||| i ||||||||| i ||||||||| i lllllllll i ||||||||| i ||||||||| i ||||||||| i ||||||||| i |||||||||
0 10 20 30 40 50 60 70 80 90
Figure 3.1 Original data series
3

Figure 3.2 z-transformed data series

2. Perform PAA on the original data of length N=90 to the approximate data of
length w=3



90
3

n
w

eN

Table 3.2 Data range from PAA discretization

ID Lower Bound Upper Bound | Average Value
1 1 3 -1.6972
2 a4 6 0.5169
3 7 9 1.5505
a4 10 12 1.2236
5 13 15 0.5645
6 16 18 -0.0584
7 19 21 -0.4572
8 22 24 0.4163
9 25 27 1.5291
10 | 28 30 1.5375
11 |31 33 -0.1283
12 | 34 36 -1.1994
13 | 37 39 0.9319
14 |40 42 2.0148
15 |43 a5 0.2667
16 |46 a8 -0.5224
17 149 51 -0.2601
18 |52 54 -0.6872
19 |55 57 -0.8813
20 | 58 60 -1.0553

16



Table 3.3 Data range from PAA discretization (continued)

ID Lower Bound Upper Bound | Average Value
21 |61 63 -0.0376
22 | 64 66 -0.6228
23 |67 69 -1.2602
24 |70 72 -0.9857
25 |73 75 -0.4178
26 |76 78 -0.4649
27 |79 81 -0.2065
28 |82 84 -0.2128
29 |85 87 -0.0569
30 |88 90 0.6603

17

3. Perform representative discrete data (or word) C of length w generation from

the approximate data using Gaussian-distributed, approximately equi-probable

symbols with number of symbols a , which can be determined from the area

under a N(0,1) Gaussian curve.
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Figure 3.3 Time series discrete data representation using SAX.

Figure 3.3 shows how a z-transformed time series dataset having 90 data points
is represented as a character string containing 30 characters. The characters are a
combination of A to J representing 10 equi-probable regions. In this example, the final

representative discrete data C is AGJIHEDGJJEBIJGDDCBBECBBDDEEEH.

1.1.1  Metric

A metric is a function returning a distance between two instances of a set X

where

m:XxX >R

For all instance a, b, ¢, this function must conform to the following criteria [17,

18]
— Non-negativity: m(a,b)>0
— Identity: m(a,b)=0«<>a=b
— Symmetry: m(a,b)=m(b,a)
— Triangular Inequality: m(a,b)<m(a,c)+m(b,c)

Metric may be considered as a special distance measurement conforming to
the aforementioned properties. In other words, not all distance measurement is a

metric. These properties are of benefits to motif discovery. Section 3.2 gives a thorough
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discussion on how MK algorithm utilizes triangular inequality to help reduce number

of distance calculations in most cases.
1.1.2 Distance

A distance is a numerical represented how much 2 given instances are far apart
under a particular distance function. A distance is used to indicate similarity (or
dissimilarity) of two given instances. There are many distance functions in mathematic
literatures. Therefore, only distance functions or calculations used in this study are

discussed.
1.1.2.1 Euclidean Distance (ED)
Given
X=Xy, X Xgyevey Xy Xy )JER"

and

Y=V, Yo Yareier Yireons ¥y ) €R"
Euclidean distance of n-dimension of X and vy is defined as

d(xy)= (6 -y)

i=1

Euclidean distance is also a metric as it satisfies all metric criteria.
1.1.2.2 Hamming Distance

From a geometrical model in error detection and error correction codes,
Hamming [19] provides a definition of his distance (which is later called Hamming
distance) as a metric giving a distance between 2 equal-length bit strings from number
of bit difference. For example, Hamming distances between the following data points

and 000 are as follows.
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Table 3.4 An example of Hamming distance calculation on a bit string

Data Bit Representation | Hamming Distance
0 000 d (000,000)=0
1 001 d (000,001) =1
2 010 d (000,010)=1
4 100 d (000,100) =1
7 111 d(000,111)=3

The same idea is applicable to character string comparison. For example,
Hamming distance between AAAA and AABB is 2. Hamming distance may be divided
by string length to normalize its distance to be between 0 and 1. This normalization
may be useful for comparison of resulting Hamming distance from different string

length.
1.1.2.3 Levenshtein Distance

While Hamming distance is similar to substitution distance, Levenshtein
distance is similar to edit distance when substitution, insertion, and deletion are also
counted. Levenshtein distance may be used to compare between 2 strings having
different lengths. Similar to Hamming distance, any change required to convert one
string to another string has its associated unit cost (cost is 1). One of the major
applications of this distance is in approximation string match when a smaller string is
compared with a longer string. Below shows how Levenshtein distance is calculated

[20].

Given X=(X,%,, X5, X, )€S"and Y=Yy, Y, Var-rs Yy ) €S" where Sis a set

of symbols, then

d(x,y)=dg,(nm)

0, h=0and k=0
d,..(hk=1)+1, h=0and k>0
dre (h=1,K)+1, h>0and k=0
whered, ., (h,k) =4d ., (h-1k-1), X, = Y, :0<h<nand 0<k<m

d,. (hk-1)+1 X, # Yy
mindd . (h—-1k)+1 !,
dro(h—1k-1)+1

Therefore, the distance from comparing series X and y can be found at d(n,m)
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Figure 3.4 Levenshtein distance calculation example [21]

Referring to Figure 3.4, since S and S are identical in figure (b), the distance is 0.
Next comparison is between S and h. Since they are not identical, a cost has to be
considered. The cost is 1+ min(0,1,2). Therefore, the cost is 1. This calculation is
continued until the end of all strings. The real distance of comparing “Shawn” and
“Sean” is 2, which is indicated in the lowest right corner of the distance matrix shown

in (c).
1.1.3  Nearest Neighbor Search (NNS)

Nearest neighbor search in a typical time series research is a search technique
that aims at returning the closest proximity between the subsequence of interest which
is used as a query and a subsequence extracted from a different series in question.
The proximity between the two subsequences typically refer to the use of distance
function which gives a numerical distance figure indicating how close the two
subsequences are. In a typical meaning of distance, the most similar subsequences are
the subsequences having smallest distance compared with the other subsequence

pairs.

In this study, NNS is used to find the closest match or matches within a
predefined maximum distance of the well log section of interest in other wells. In this
search criteria, the search may give more than one match depending on the tightness
of the predefined distance. The distance function used in the search is Euclidean
distance. In order to be able to search for the matches, a sliding-window method,
which slides one data point at a time, is used to form a prospective section of the
same length as the length of the interest section, which is the length of window size

w. The prospective section and the section of interest is then undergone distance
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calculation. This calculated distance is recorded at index i which represents a distance
of such comparison between a section from i to i + w (forming a section of length w)
with the section of interest of also length w. Once all the indexes are associated with
distance figures, only sections having the distance figures under the predefined
distance cut off are chosen. Since only sections having the distance figures under the
predefined distance cut off are chosen, Early abandoning Euclidean distance, a
variance of Euclidean distance that stops the distance calculation as soon as the
cumulative distance exceeds the square of the predefined distance cut off and the
distance is returned as infinity, may be used, thereby saving most of the calculation

effort in the very much dissimilar sections.

In this study, similarity measurement techniques used in this pattern matching
process are varied but it is possible to categorize into 2 groups: exact similarity and
approximate similarity. Exact similarity is a similarity that is assessed on the original
data series while approximate similarity is a similarity that is assessed on the
approximate series. In real application, approximate similarity may serve as a way to

smear off some local variations.



23

3.2 Pattern (Motif) Discovery using MK Algorithm

A motif or a time series motif is a pair of time series or a pair of time series
subsequences extracted from longer time series having similar pattern to each other.
Motif discovery is, typically, an operation where at least a search strategy is applied on
a time series in order to recover intrinsic recurring pairs. Recurring patterns are of
interest because they may reveal inherently new and useful information of the time

series being studied.

There are many motif discovery techniques which can be categorized by
exactness of the similarity measurement technique used in motif discovery algorithms.
Simplest exact motif discovery algorithm is brute force algorithm. Brute force motif
discovery algorithm involves extracting a subsequence length s from the whole time
series length n (s<nors<n). Then the subsequence is compared with a
subsequence s’ (s'=s<n) extracted from original series on a sliding-window basis.
Although brute force method gives exact motif discovery, the algorithm is quadratic,
making it less applicable to large dataset since the time requires to work as such is
intractable. For example, finding a motif pair of length 1,024 from 100,000 objects using
brute force method takes 12.7 hours to complete [15]. This is considered to be less

attractive approach for a real application.

Apart from approximate motif discovery techniques, Mueen et al. [15]
presented a method to perform exact motif discovery with reduced operating time
named MK algorithm (Motif Kymatology algorithm). The method is reported to reduce
the time used to perform a motif pair discovery (of length 1,024 from 100,000 objects)
to 12.4 minutes, which account for 61.5 times reduction from conventional brute force
method). Therefore, MK algorithm shows a promising performance for applying exact

motif discovery on a real application.

The reason underlining a huge reduction of operating time required to find an
exact motif pair in a large dataset is due to an application of a pruning technique to
avoid unnecessary distance comparison based on triangular inequality property of

Euclidean distance metric. Even though this reduced number of comparisons results
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in reduction in operating time in most cases, its worst case scenario is still the same
scenario as that of conventional brute force technique, which is a complexity of O(nz)
where n is number of objects or data points. The worst case scenario only happens

when the motif pair distance is larger than any lower bound.
3.2.1 Intuition behind MK Algorithm

As previously mentioned, MK algorithm is able to prune off unnecessary search
space from exploitation of triangular inequality property of Euclidean distance metric.
Mueen et al. [15] observed that if two objects are close in the original space (small
distance), the objects must also be close in the linear ordering space. It must be aware
that the reverse is not true; two objects that are close in the arbitrary linear ordering
may be very far (large distance) in the original space. Linear ordering space provides a

heuristic and useful information for motif discovery.

In order to construct a linear ordering space, a reference point is chosen and
distances between other points to the reference point are calculated. As the name of
the space implies, the distances to the reference point are considered as distances in
the linear space. This distance in linear space is a lower bound for each pair of two

adjacent points.

Then a search operation can be started by updating a recorded smallest
distance value of the search operation called best-so-far. Initially, best-so-far is set as
infinity in order to reflex the start of the search operation. Starting from the first value
of the series, an original-space distance is required to be calculated only if the two
adjacent points have the linear-space distance (lower bound) that is less than the
current best-so-far. Moreover, whenever two adjacent points have its original-space
distance between the pair that is less than current best-so-far, best-so-far is updated
with this distance and the distance of the pair on the linear space is also recorded with
same distance. If the calculated original-space distance of the pair, however, is not less
than current best-so-far, only the linear-space distance of the pair is recorded using

the pair’s original-space distance previously calculated.
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Once the search operation is done, best-so-far will already have the smallest
original-space distance. Before the pair providing its original-space distance that of best-
so-far is considered as a motif, another search operation on linear space is required.
The pair that is also a motif must be within the same search window when the search
window size is of the best-so-far. In other words, only the pair having its lower bound
lowers than the recorded best-so-far is considered a motif pair. Figure 3.5 and Figure
3.6 give a better illustration on how MK algorithm intuition works by using a node-
based example. Figure 3.6 shows how best-so-far indicating a running, original-space
distance is obtained without having to directly calculate original-space distances of all
pairs. From example given in the figure, only 4 original-space distance calculation is

required.
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Figure 3.5 Original-space distances, linear-space distances, and lower bounds

From Figure 3.5, distances in Figure 3.5(a) are initially unknown to the algorithm

as they are calculated only when they are required. The distances in (a) is shown for

brevity. Figure (b) is a figure showing how linear space from distances to a reference

node is constructed. Figure (c) shows final lower bounds from linear-space distance

differences between two adjacent nodes.
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3.2.2 MK Algorithm Formal Statements

According to intuition behind the algorithm previously discussed, it is essential
to find a condition when comparisons can be stopped early while a motif pair can be
discovered. Therefore, the condition is a condition where it is certain that further
comparisons will give a pair that cannot be a motif. The condition is that when a lower
bound is larger than the current best-so-far. If a pair falls in this condition, the original
space distance of the pair will not necessarily be calculated as the pair cannot be a
motif pair. Otherwise, its original-space distance has to be calculated as it is a potential
motif. This condition can be shown by using triangular inequality property of a distance

metric.

Let ref be a reference time series in x where X = (X1 Xyy Xgyeen Xn)

Let {Xi,xj} be the pair that its original-space distance is not going to be

calculated.
Triangular inequality d(p,q)<d(p,r)+d(q,r) gives

d(ref,x)

< d(ref,xj)+d(x. x.)
d(ref, %) —d (ref,x; )| < d(x.x)

[ |

Therefore, ‘d (ref,x)—d (ref X )‘ is essentially the lower bound for d (Xi , Xj)

and d (Xi , Xj) can be avoided from calculation if ‘d (ref , Xi)—d (ref X )‘ > best-so-far
since it is certain that {xi,xj} is no longer a motif pair. Moreover, a lower bound can

easily be calculated as it is a cheap subtraction operation.

Generally, ref can be any series whether it is inside or outside of x. However, it
is preferred to use ref from a subsequence of x since it would be easier to prevent
{ref ,ref } from happening by assigning the original-space distance to be infinity as the
pair is not valid. Up until this point, the trick of using internal reference series only
reduces number of distance computations, but it does not reduce the search space as
it is unknown that when the stop criteria of the search space would be since distances
between the reference series and the other series still spans the entire dataset. In

other words, there is still no indexing which the algorithm can be checked if the search
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operation can be stopped. Sorting indices to linear-ordering space is a better option
than sorting the lower bounds. Both methods help guide early search stop but with

different complexity.

Lemma 3.1

Given X, a set of indices to linear-ordering distances
Let offset be a positive integer

I X —Xy(j) > best-sofar for all 1< j<n-—offset and offset >0 then

j+offset)

X1t ~ Xy > best-so-far for all 1< j<n-—w and w>offset

I(j+w

Lemma 3.1 indicates that if a lower bound (a difference between 2 distances

in linear ordering space) referenced by X,( and Xl(j) is greater than a running

j+offset)

minimum distance in original space best-so-far, a lower bound referenced by X (jw)
and X\() is also greater than best-so-far since w is greater than offset. This is due to
the fact that X, is a set providing indices to smallest-to-biggest distances between one
series and another reference series. Therefore, a lower bound at w > offset is certain
to be greater than best-so-far if the lower bound at offset is already greater than best-

so-far.

Lemma 3.2

If offset=1,2,3,...n—-1and j=1,23,...,n—offset Then {x,(j),xl(jwﬁset)}

generates all the possible pairs.

Lemma 3.2 states exactness of the algorithm [22] as it ensures search operation
to be performed in all possible pairs. Interested readers may find proofs to the lemmas

in the original literature [22].

In a very large time series, multiple references may help tighten lower bound.
However, not all references are equivalently good as references. When multiple
references are utilized, only the biggest lower bound is used for search operation as
the biggest lower bound is likely to give the earliest early search stop and comparison

rejection. To choose the biggest lower bound, the linear-ordering distance set with
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largest standard deviation is chosen as the larger the deviation is the larger the lower
bound. gap is used to allow indices between the prospective motif pair to be far apart.
For example, sometimes it is unlikely that the prospective motif pair to be closed
more than a certain number of data points. In this case, that data points are

represented by a gap . Figure 3.7 shows a flowchart of MK algorithm.
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Figure 3.7 MK Algorithm (based on [15])
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In this study, there are two approaches to well log correlation being presented.
Pattern matching is the technique to be used when a portion of well log signal around
section of interest in known and there is a need to find the similar section(s) in other

nearby wells while Pattern discovery is the technique to be used when only section

CHAPTER 4

METHODOLOGY

length is known. The detailed methodology is as follows.

4.1 Well Log Data Preparation

Unless specified otherwise, there are three gamma ray logs used throughout
this study. The well logs were obtained from three wells from SPIVEY - GRABS - BASIL

field, Kingman County, Kansas, USA. The source of this material is the Kansas Geological

Survey website at http://www.kgs.ku.edu/. All Rights Reserved.

Table 4.1 Well log data source

Well Name | Well Depth | Logging Usage in this study
From - To Step
Depth Purpose
(ft) (ft/data
From - To
point)
(ft)
TJADEN A 302.0 - 0.5 3,000.0 - 4,370.0 | Well Y, Sections
#6-13 4,411.5 (2,741 data points) | extracted as
model patterns
TJADEN A 350.0 - 0.5 3,000.0 - 4,367.0 | Well Z
#7-13 4,409.5 (2,735 data points)
#3 TJADEN 0.0 - 0.5 3,000.0 - 4,370.0 | Well X
"C" 4,408.5 (2,741 data points)
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Unless specified otherwise, all data windows used are zero-based data
windows. This means the first index is referred to as index 0 (not index 1). Therefore,
data window whose first index is at index 0 is also referred to as data window 0 or

Window 0.
4.2 Pattern Matching

The following steps are used in for performing well-to-well log correlation using pattern
matching approach.

1 Given a model pattern, find top five other similar patterns (data windows) of
the same length from the different than the well the model pattern is chosen
using Nearest Neighbor Search (NNS). Figure 4.1 shows that there are five data
windows promoted by NNS given the model pattern of length 130 indexes

shown in the upper left section of the figure. The five data windows

Window 1227 Window 933
Model Pattern Euclidean distance: 114.31 Euclidean distance: 259.79

=== Model Pattern === Model Pattern

Gamma Ray (API)

0 20 40 60 80 100 120

Depth Index Depth Index Depth Index
Window 62 Window 797 Window 1408
Euclidean distance: 292.77 Euclidean distance: 321.59 Euclidean distance: 322.00

1 === Model Pattern
120 - —— Data

=== Model Pattern
120 —— Data

=== Model Pattern
120 —— Data

100 -

Gamma Ray (API)

0 20 40

60 60
Depth Index Depth Index Depth Index

Figure 4.1 Five smallest distances promoted by conventional NNS
2 Perform multi-resolution analysis and summarize the best correlation result in
a probabilistic manner. Typically, maximum number of PAA blocks does not
exceed 1/2 x number of data points. Therefore, number of PAA blocks for any
section length (window length or window size) having 120 and 130 data points
(indexes) are from 5 to 50 blocks with an increment of five PAA blocks each

interval (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50) and number of PAA blocks for
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any section length having 200, 220, and 225 data points (indexes) are from 10
to 100 with an increment of 10 PAA blocks each interval (10, 20, 30, 40, 50, 60,
70, 80, 90, and 100). Number of SAX sections are fixed at 4, 6, 8, and 10 sections.

1) Perform Piecewise Aggregate Approximation (PAA). This is a
discretization over depth (x-axis). Figure 4.2 to 4.5 provides examples of
approximate signals generated by PAA using number of PAA blocks of
15, 25, 35, and 45 respectively. Since this model pattern and all data
windows are of length 130, multi-resolution analysis is performed based

on PAA of 5 — 50 blocks with increment of five blocks each interval.

Model Pattern Window 1227 Window 933

-~ Original -=-- Original

3| — Approximate

-=- Original

!
1
3| = Approximate ! 3k - —— Approximate

’
Ty,
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.

z-Transformed Gamma Ray (API)
\

20 20 40 60 80 100 120 20 20 40 60 80 100 120 20 20 40 60 80 100 120
Depth Index Depth Index Depth Index
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4 T T T T 4 T T T T T T T T T T
- == Original === Original - == Original
3 —— Approximate | 3 —— Approximate 3k —— Approximate
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Figure 4.2 Approximate signals based on 15 PAA blocks
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Figure 4.3 Approximate signals based on 25 PAA blocks
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Figure 4.5 Approximate signals based on 45 PAA blocks

35

2) Perform symbolic representation by discretizing log value (y-axis) with

4, 6, 8, and 10 SAX sections where each section has equal interval

probability. For example, each section in four SAX sections has 0.25

probability while each section in 10 SAX sections has 0.10 probability.

Figure 4.6 provides an example of symbolic representation over the

model pattern. Note than symbols A to D (A, B, C, and D) are used to

represent four SAX sections while symbols A to J (A, B, C, D, E, F, G, H,

l, and J) are used to represent 10 SAX sections. This representation is

performed for all number of PAA blocks.
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Figure 4.6 Symbolic representation as part of SAX representation on the model
pattern.

3) Perform discrete series similarity measurement using Hamming distance
and Levenshtein distance. For each distance measurement method
used, there are 40 measurement for each data window and there are
200 measurement for all five data windows. Therefore, there are 400
measurement for each model pattern. Figure 4.7 provides an example

of the results of all similarity measurement.

Distance
0 12 25 37 50
Hamming [ —
Window 1227 Window 933 Window 62 Window 797 Window 1408

No. of PAA blocks

4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10
No. of SAX sections No. of SAX sections No. of SAX sections No. of SAX sections No. of SAX sections

Distance
0 12 25 37 50
Levenshtein ———
Window 1227 Window 933 Window 62 Window 797 Window 1408

No. of PAA blocks
58

4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10
No. of SAX sections No. of SAX sections No. of SAX sections No. of SAX sections No. of SAX sections

Figure 4.7 Comparisons of distance measured by Hamming distance and Levenshtein
distance

4) Perform distance ranking for each resolution (each combination of

number of PAA blocks and number of SAX sections). The first rank of

the distance ranking is considered as the best match to the given model
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pattern. Figure 4.8 shows two color maps representing the best match
given by any particular resolution. Data windows previously promoted
by conventional NNS are represented by different colors.

Window
1227 933 62 797 1408

EEENTT ]

Levenshtein

Hamming

No. of PAA blocks
No. of PAA blocks

4 6 8 10 4 6 8 10
No. of SAX sections No. of SAX sections

Figure 4.8 The best match data window promoted by multi-resolution analysis

3  Observe and make necessary judgement on the results. For example, Figure
4.8 suggests that Window 1227 is the best match under multi-resolution
analysis from both Hamming distance and Levenshtein distance given the fact

that its probability of being the best match (first-rank distance) of 1.000
(100.0%).



Nearest neighbor search
for recovering possible
matched patterns

!

Calculate Euclidean Distance of all
pairs

!

Convert series pattern to
character string using SAX

!

Calculate Hamming Distance of all
character string pairs

!

Calculate Levenshtein Distance of
all character string pairs

Compare results across different
similarity measurements to see
hidden characteristics of well logs in
each particular area.

End

Figure 4.9 Pattern Matching process overview workflow
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4.3 Pattern Discovery

1 Select two well logs of the same log type to be correlated and connect them
together to form an artificial well log. Note the breakpoint which is the last
index of the first well log. Figure 4.10 shows an artificial which is created by
concatenating Well Y (2,741 indexes) and Well X (2,741 indexes) with index

2,741 served as a breakpoint between the two well logs.
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Artificial Well

Gamma Ray (API)
0 200 400 600

1000

2000 -

Depth Index

3000 -

4000

5000 -

Figure 4.10 An artificial well log from a concatenation of Well Y (top: above the

breakpoint) and Well X (bottom: below the breakpoint)
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2 Unless specified otherwise, standard deviation (SD) spans of -5.0 to 5.0 with
incremental of 0.5 each SD interval are chosen in this study based on the
gamma ray responses of the well logs chosen. These SD intervals will be used
in heuristic reference series selection to cover the entire log value response.

This is a modified step from the original MK provided by Mueen et al. [15].

3 provides the list of all SD intervals and their value range. The table also
includes key statistical values of the artificial well log. In this case, the artificial
well log is in the range of -1.5 SD to the maximum possible value at 5.0 SD.
Figure 4.11 shows the artificial well log signal with SD interval boundaries. As
can be seen in the grey-highlighted area in the figure, some portions of the

signals are discarded as they are outside of the predefined SD intervals.

4 Specify a section length for correlation. In this demonstration, a section length

of 120 indexes is used.
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Figure 4.11 The artificial well log with SD boundaries
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Table 4.2 Well log value from -5.0 SD to 5.0 SD span in 0.5 SD interval span

Standard Gamma Ray

Deviation (API)
Min Max Min Max

-5.0 -4.5| -187.87 | -162.34 Mean 67.39 API
-4.5 -4.0 | -162.34 | -136.82 | w SD 51.05 API
-4.0 -3.5 ] -136.82 | -111.29 z;: Max 549.99 API
35| 30| -11129| 8577| @ Min 509 AP
-3.0 -2.5 -85.77 -60.24 §

-2.5 -2.0 -60.24 -34.71 é)

-2.0 -1.5 -34.71 -9.19

-1.5 -1.0 -9.19 16.34

-1.0 -0.5 16.34 41.86

-0.5 0.0 41.86 67.39

0.0 0.5 67.39 92.91

0.5 1.0 92.91 118.44

1.0 1.5 11844 | 1439 |

1.5 20| 14396 | 169.49 ;(é

2.0 25| 169.49 | 195.01 E

2.5 3.0| 195.01| 220.54 §

3.0 3.5 | 220.54 | 246.06

3.5 4.0 | 246.06 | 271.59

4.0 451 271.59 | 297.11

4.5 50| 297.11 | 322.64

5.0 5,51 322.64 | 348.16

5 Once motif pairs (correlation results) are available, observe and make necessary
judgement on the results. As shown in Figure 4.12 to 4.14, first to third-rank
motif pairs are given as examples. The first-rank motif pair is the pair of Window

98 and Window 2836. The second-rank motif pair is the pair of Window 1205
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and Window 3953. The third-rank motif pair is the pair of Window 2212 and
Window 4997. If all data windows were rebased to the indexes in Well Y and
Well X, the first pair, for example, would be the pair of Window 98 on Well Y
and Window 95 on Well X. The reference series for these motif pairs is Window
4300 in the artificial well log and it is one of the 21 possible reference series
drawn from samples in the SD spans from -5.0 to 5.0. Figure 4.15 shows the
final well-to-well log correlation given these motif pairs. Notice that all data
windows are rebased to their respective wells: either Well Y or Well X.

Heuristic Pattern + Motif Pair
Lower bound: 0.10
z-Transformed ED: 1.66

Window 2836
z-Transformed ED: 17.16

Window 98
z-Transformed ED: 17.06

Window 4300 (Heuristic) ——=- Heuristic ——=- Heuristic
—— Window 98 —— Discovered —— Discovered
5[ — Window 2836 1 5t 1 5t 1

0 25 50 75 100

Figure 4.12 First-rank motif pair

Heuristic Pattern + Motif Pair

Lower bound: 0.03
z-Transformed ED: 2.15

Window 4300 (Heuristic)
—— Window 1205
—— Window 3953

Window 1205
z-Transformed ED: 17.08

10F
——- Heuristic

—— Discovered

Figure 4.13 Second-rank motif pair

Window 3953

z-Transformed ED: 17.12

——- Heuristic
—— Discovered




Heuristic Pattern + Motif Pair
Lower bound: 0.00
z-Transformed ED: 3.46

Window 4300 (Heuristic)
—— Window 2212 )
—— Window 4997

Window 2212
z-Transformed ED: 16.22

——- Heuristic
—— Discovered |

a5

Window 4997
z-Transformed ED: 16.22

——= Heuristic
—— Discovered |

Figure 4.14 Third-rank motif pair
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Figure 4.15 Final well-to-well log correlation of the section length of 120 indexes
(120 data points or 60 ft) using Window 4300 on the artificial well log as the final

reference series
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Connect 2 well logs to be correlated
as a single well log

!

Set pattern length, motif pair gap,
breakpoint index for pattern
discovery

!

Perform
Pattern (Motif) Discovery
(MK Algorithm)

Rank motif pairs from smallest to
biggest distances

!

Apply cut off distance to select the
best k-motif pairs that is with the
cut off

!

Disconnect the single connected
welllog into the original 2 well logs
using the recorded breakpoint

Re-baseline the index that is outside
of the breakpoint to be the index of
the second well

End
Figure 4.16 Pattern (motif) discovery using MK algorithm
Figure 4.16 provides a summary of steps for pattern discovery technique when
a distance cutoff (maximum allowable distance) is used. In this case, the number of

motif pairs from MK will depend on the pairs’ distance values and the distance cutoff

specified before starting the pattern discovery process.



CHAPTER 5

PATTERN MATCHING

Conventional well log correlation typically is a challenging task requiring
experienced engineers, geologists, and petro-physicists and sometimes deep
understanding of local geological characteristics. With advanced techniques in data

processing, digital well log correlation is still a challenging task.

In this study, pattern matching-based digital well log correlation techniques
revolve around correlating known patterns of interest from one well to other nearby
wells. Digital well log data in this study is a data series whose data points are responses
recorded by a logging tool with associated locations in the well where the responses
are recorded. To make sure that digital well log correlation is valid, logging frequency
is assumed to be the same for all sections to be correlated. To correlate a section of
interest, sliding window-based technique is used on top of similarity measurement.
Sliding window-based technique ensures that all possible candidate sections are
included in similarity measurement where closeness between the section of interest
and candidate section is measured as a quantifiable result called distance. As shown
in Figure 5.1, a section of interest is being slid over a well log. While the section is
being slid, similarity measurement is also performed to quantitatively assess closeness
of the section of interest with the data window at which the window is. The section
length is constant throughout the sliding operation and the step size is one index at a
time. For example, a window of length 120 indexes at depth index 500 is called
Window 500 and it covers from depth index 500 to depth index 620. The window will
be called Window 950 when it is slid for another 450 indexes. Unless stated otherwise,
the step size equals one and it also means the window is moved one data point at a
time given one index is one data point. After similarity measurement is performed over
all candidate sections, the best match having the smallest distance is chosen for
correlation. The approach outlined is essentially a search technique named NNS.

Therefore, it may be able to say that pattern matching-based digital well log correlation
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is NNS-based well log correlation. It has been known that the details incorporated in
each variety of NNS are what make application-led NNS interesting. Owing to simplicity
and robustness of the algorithm and applicability to well log correlation, conventional
NNS and its cutting-edge variances are chosen as the backbone of pattern-matching-
based digital well log correlation. This chapter shows how different distance
measurements play a major role in robustness of well log correlation, especially when
local variations are present. To demonstrate the applicability of NNS and its variances

in well log correlation, three example correlations using real well logs are given.
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Figure 5.1 Sliding window of a section of interest.

5.1 Example Correlation 1

This example discusses how conventional NNS can be used in well log
correlation. To start performing well log correlation using pattern matching technique,

there must be a section of interest. This section is then used as a model pattern to
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find the most similar section in other wells using a sliding window-based technique.

The model pattern is slid throughout other wells where well log correlation is needed.

While the model pattern is being slid along the well log to be correlated, a
distance measurement between the model pattern and well log data within that
window is performed. In conventional NNS, Euclidean distance is used as the distance
measurement. Euclidean distance is considered suitable for absolute distance
measurement as it treats values being used in the measurement as continuous values
because even slightest difference between two numerical values can still be
quantified. Top five data windows having smallest distances are chosen for discussion
once the model pattern is slid to the end of the well log to be correlated. Figure 5.1
shows that five smallest distances of length 120 indexes (the same length as the model
pattern) based on Euclidean distance are promoted as potential sections to be

correlated.

Window 1514 Window 1897
Model Pattern Euclidean distance: 298.23 Euclidean distance: 526.88
I

s00- - == Model Pattern 500 : - == Model Pattern
i —— Data

Pi
w IS @
8 5 g
3 3 s
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N
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0 20 40 60 80 100 120 0 20 40 80 100 120 0 20 40 80 100 120

60 60
Depth Index Depth Index Depth Index
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Figure 5.2 Five smallest distances promoted by conventional NNS
Figure 5.2 also shows that Window 1514 is the best match to the given model
pattern because it has the smallest distance (298.23) among all data windows. In this
example, the best match can be easily identified even without a distance
measurement as it almost perfectly matches the model pattern. This case also shows
that difference in data magnitude or difference of well log response at a certain depth

contributes to distance measured. Window 1897, the second best match, gives a good
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example as its distance (526.88) is much higher than that of Window 1514 even though
its overall data trends relatively match the model pattern. This is due to the fact that
there are regions where large magnitude differences are present in the calculation and

all the differences are equally treated under Euclidean distance.

While continuous-based approach already gives a good correlation to the
model pattern, it is also of interest to see if multi-resolution analysis based on discrete-

based approach will give any additional information on the correlation.
5.1.1 Multi-resolution Analysis

To perform multi-resolution analysis, basically original well logs have to be
discretized (in both depth axis and data value axis) and be represented as discrete
well logs, which have details reduced from the original well logs. Discrete well logs are
well logs represented by series of predefined set of symbols. Then distance
measurement is performed using a method that is capable of providing distance figure
when at least two discrete series are being compared. SAX representation with
Hamming distance and Levenshtein distance as distance measurement methods is

chosen in this study.

The first step in SAX representation is to perform Piecewise Aggregate
Approximation (PAA) to turn real-valued high frequency data of original well log data
into real-valued data with fixed number of blocks by performing discretization on well
log’s depth axis. The resulting well log signal is called approximate signal. Block values
are average data values of those original data points falling into the same blocks. For
example, each PAA block is an average of 8, 4.8, 3.5 (approx.), and 2.7 (approx.) data
points given the desired number of PAA blocks are 15, 25, 35, and 45 blocks over an
original well log signal of 120 indexes as shown in Figure 5.3. It can be seen from Figure
5.3 that increased number of PAA blocks gives PAA signals with more details which
capture peaks and troughs from the original signal. Too small number of PAA blocks
may result in too-coarse approximate well log signal while too large number of PAA

blocks may result in too much details kept in approximate well log signal.
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Figure 5.3 PAA signals on the model pattern using different number of PAA blocks

A balance point is typically required for generating an approximate well log

signal from a high-frequency well log signal. A good balance point must provide the

smallest distance (between the approximate well log signal and its original

counterpart) as number of PAA blocks increases. One technique that can be used to

determine an appropriate number of PAA blocks is to calculate the distance between

original well log and its approximate version using a distance measurement method

such as Euclidean distance. The most appropriate number of PAA blocks is when the

distance between the two series is just about to increase as it is the point where the

approximate well log is closest to its original counterpart. The method is shown in
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Figure 5.4 Selection of number of PAA blocks using Euclidean distance between

approximate well log and its original counterpartFigure 5.4 shows that different data

windows may have different balanced numbers of PAA blocks. While having higher

number of PAA blocks means the discrete signals have higher resolution and are

closer to their original counterparts as can be seen from reducing distance trends, it
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is commonly found in practice that the optimal number of PAA blocks (shown with
red dots) may not be the same in all data windows. To prevent bias in choosing just
one particular number of PAA blocks, it is better to use multi-resolution analysis, i.e.,
analysis based on different numbers of PAA blocks. In this example, 10 sets of
number of PAA blocks starting from 5 PAA blocks up to 50 PAA blocks, with
increment of 5 PAA blocks, were used in multi-resolution analysis. Approximate
signals based on 15, 25, 35, and 45 PAA blocks representing coarse resolution to fine

resolution are shown as examples in Figure 5.5 to 5.8.
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Figure 5.5 Approximate signals based on 15 PAA blocks
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Figure 5.6 Approximate signals based on 25 PAA blocks
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Figure 5.7 Approximate signals based on 35 PAA blocks
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Figure 5.8 Approximate signals based on 45 PAA blocks
Figure 5.5 to 5.8 clearly show that different data windows need different
number of PAA blocks in order for the approximate signals to cover not only their main
trend but also characteristic peaks and troughs which later result in reducing distance

trend as approximate signals are becoming closer to their original counterparts.

Given a specific number of PAA blocks, SAX representation can then be
performed. While PAA is used to discretize depth (x-axis) into equal-size intervals, SAX
equally discretizes the value axis (y-axis) based probability under normal distribution
assumption, i.e., each interval of the y-axis has the same probability. This means that
well log response must be assumed to be normally distributed. To make this method

work practically, it is assumed that normal distribution is drawn from model pattern of
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each pattern matching task. Then SAX equally discretized sections are established
based on number of equi-probable sections needed for model pattern. Finally, section
boundaries drawn from SAX discretized model pattern will be used in all other data
windows. Completing PAA discretization on the depth axis and SAX discretization on
the value axis turn a real-valued continuous well log response to a discrete well log
response. Figure 5.9 provides examples of a mode pattern under varying SAX
discretization over an approximate well log of 120 PAA blocks. On the left most of the
figure, it shows normal probability plot of the original model pattern. The fitting line is
the line of best fit of the normal probability plot. The four remaining plots on the right
of the figure provides what SAX discretization on the value (y-axis) looks like. As
typically seen in normal distribution, the value ranges for each SAX interval are smaller
near the mean value and larger far away from the mean value. Each value interval,
however, is equally probable. The symbols on the right of each plots are the symbols
used as representative values for each SAX section. For example, each SAX section
accounts for probability of 0.250 when the value axis is discretized into four SAX
sections represented by symbols A, B, C, and D. In this study, 4, 6, 8, and 10 SAX
sections covering equal probabilities of 0.250, 0.167 (approx.), 0.125, and 0.100 are
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Figure 5.9 Well log value (y-axis) discretization using various equi-probable SAX
sections
Based on an assumption that well log data are normally distributed, SAX can
be used. The range covered by a SAX symbol is dictated by probability number where
each SAX section covers an equal probability of well log value on the range. While it

is designed based on normal distribution assumption, conventional SAX is also
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applicable to well log data that may not be perfectly normally distributed. However,

accuracy of identified first rank match may vary also with distance measurement used.

In this study, Hamming distance is used for providing distance value based on
same-position mismatch comparisons. Distance values are honored as there are
mismatches of symbols used to represent well log values drawn from two (or more)
well logs in the same depth interval (at the same PAA block). The method checks if
there are substitutions of one symbol on the model pattern to another symbol on any
given data window. This is beneficial in finding if there are changes in properties at the
same depth interval given different well locations (from different well logs) and types
of the well logs. Levenshtein distance not only captures possible substitutions of
symbols but it also captures possible properties shifting of the same symbols in
different depth intervals. Properties shifting is a challenging digital well log correlation
problem. This is also beneficial in well log correlation as it helps digital well log
correlation to be more accurate as properties shifting results in high Euclidean distance

and Hamming distance, but may not result in high Levenshtein distance.

Similarity measurement in terms of Hamming and Levenshtein distances at
different number of PAA blocks and SAX sections is used to observe how converted
well logs into discrete series are valid in well log correlation task and how Hamming
and Levenshtein distances help decide the best match to a given model pattern. In
this example correlation, similarity measurement using Hamming and Levenshtein
distances is performed against all data windows (1514, 1897, 219, 2071, and 1647) using
all combinations of number of PAA blocks and number of SAX sections mentioned.
Distance values are then plotted in color maps as shown in Figure 5.10. Notice that
possible distance in these discrete-series similarity measurement is ranging from 0,
identical to the model pattern, to the maximum number of PAA blocks, complete
dissimilar to the model pattern. For example, the distance values can be between 0

and 30 when 30 PAA blocks are used.
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Figure 5.10 Comparisons of distance measured by Hamming distance and
Levenshtein distance

Figure 5.10 shows similarity measurement in terms of Hamming and
Levenshtein distances at different number of PAA blocks and SAX sections of the five
data windows previously chosen by continuous-based well log correlation approach.
The darker color represents smaller distance than that of the brighter color regardless
of distance measurement methods used. From this figure, it confirms that Window
1514 is the best match to the given model pattern as it has the smallest Hamming and
Levenshtein distances for different resolutions (different PAA blocks and SAX sections).
An important point that can also be seen in the figure is that the higher the resolution
of discrete signals (more number of PAA blocks and SAX sections) the higher the
chance those signals pickup details from the original counterparts, thereby resulting in
higher distance figures. While very small number of PAA blocks and SAX sections
provides small distance values, it may not give enough details in the comparisons,
thereby making less sense to use if the well log signals show significant degree of
fluctuation or have local variations. This is due to the fact that too small number of
discretized PAA blocks and SAX sections creates a too-coarse approximation, which in
turn results in small distance as approximate and discrete signals are gathered around

mean values, taking almost no peak and trough in the represented signals.
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To finally suggest the best match under this multi-resolution analysis, only the
smallest distance for each combination of different PAA blocks and SAX sections is
promoted. As shown in Figure 5.11, the best matches are promoted independently for
each combination of PAA blocks and SAX sections. Each data window is assigned a
color to use in the resulting color maps. When one of the data windows is promoted
as the best match given any particular combination of PAA and SAX, its representative
color is painted in the color maps. The final best match based on multi-resolution
analysis is considered in a probabilistic manner, by calculating number of that data

window promoted ass the best match over total combinations.

Window
1514 1897 219 2071 1647

EEENTT

Levenshtein

Hamming

No. of PAA blocks
No. of PAA blocks

4 6 8 10 4 6 8 10
No. of SAX sections No. of SAX sections

Figure 5.11 The best match data window promoted by multi-resolution analysis
Figure 5.11 shows that Window 1514 is most likely the best match to the model
pattern given its probability of being the first rank, given a pair of number of PAA blocks
and number of SAX sections used, of 0.975, outpacing the probability of Window 1897
to be the best match as its probability is only 0.025. To be promoted as the best
match, the data window must have the smallest distances measured by both
Levenshtein distance and Hamming distance. As can be implied from the results, multi-

resolution not only helps confirm which data window provides the best match to the



60

given model pattern, but also provide a probabilistic view of how best the best match
is to be correlated to the model pattern. If both distance measurement methods
cannot promote only a single best match, human interpretation may be needed and

the distance values may be used as an aid for selecting the best possible matches.
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5.2 Example Correlation 2

This example discusses how slight local variations affects well log correlation
performed by NNS and how multi-resolution analysis can unveil the correct correlation.
The model pattern of length 120 indexes used by this example is the same pattern
used in 5.1. However, the pattern will be used to find another different best match

from a different nearby well.

As outlined in section 5.1, NNS is first performed to find top five data windows
giving the five smallest distances given the model pattern. Once NNS is complete,
Window 1903, Window 1510, Window 214, Window 1281, and Window 8 are the five
smallest data windows promoted by the search with distances to the model pattern

of 578.36, 643.48, 923.47, 961.95, and 975.69 respectively.
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Figure 5.12 Five smallest distances promoted by conventional NNS
Under visual inspection, it could be said that Window 1903 and Window 1510
are arguably the best matches given some specific considerations. For example,
Window 1903 could be chosen as the best match given the fact that the two gamma
ray peaks are at almost the same location even though the two peaks do not have
similar gamma ray levels and Window 1510 contains deviations in gamma ray starting

from depth index around 105 onwards. Both better match in Window 1903 and
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deviations found in Window 1510 could be used to justify and select Window 1903 as
the best match. However, one might say that Window 1510 is the best match to the
given model pattern due to the fact that the first 60 depth indexes of the data window
provides almost a perfect match to the model pattern and the two gamma ray peaks
from the data window are relatively at the same or similar levels even though there
are deviations in depth axis from depth around 105 onwards and its overall distance

to the model pattern is higher than that of Window 1903.

To find true best match to the model pattern in this example, a more robust
method is required. It is typical in nature that the sections correlated may contain
some variations and it is challenging to justify which section is the best match in such
situation by using only conventional NNS with Euclidean distance alone. Multi-

resolution approach can help unveil true best match in such situation.
5.2.1 Multi-resolution Analysis

To continue with multi-resolution analysis, the model pattern and all the five
smallest-distance data windows promoted by NNS undergo data representation to
convert them from the original series first into block-like series and then further convert

into discrete series by using SAX representation.

The first step of SAX representation is to perform PAA which gives block-like
series based on originally continuous series and chosen PAA blocks. As can be seen
from Figure 5.13, it is unable to find a common number of PAA blocks to convert the
original series into approximate series since Window 1903, Window 1510, and Window
214 are more appropriate for PAA at the maximum number of PAA blocks at 50 blocks
while Window 1281 is more appropriate at 20 PAA blocks and Window 8 is more
appropriate at 30 PAA blocks. This variety in number of PAA blocks suggests that
comprehensive multi-resolution using multiple number of PAA blocks is required.
Therefore, PAA blocks of 5 to 50 with incremental of five PAA blocks are used in the
multi-resolution analysis. Approximate signals based on 20, 25, 30, 35, and 40 PAA
blocks representing coarse resolution to fine resolution are shown as examples in

Figure 5.14 to 5.18.
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Figure 5.14 Approximate signals based on 20 PAA blocks
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Figure 5.17 Approximate signals based on 35 PAA blocks
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Figure 5.18 Approximate signals based on 40 PAA blocks
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Increasing number of PAA blocks typically results in a closer approximation to

its original counterpart. Logically, this increase in number of PAA blocks should result

in the decrease in Euclidean distance calculated between approximate signal and its

original signal. However, it is frequently observed that the higher number of PAA blocks

do not always guarantee a closer approximation, especially when number of PAA

blocks are relatively small compared to the total number of data points making the

original signals. This is due to the fact that number of data points used in the numerical

average in each PAA block may result in higher than that of the portion of original
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signal, thereby contributing to higher distance overall. This behavior is often seen in
locations with fast and drastic change in the trends of the well log signals as shown in
Figure 5.19 for approximate signals of Window 1281 under 20, 25, and 30 PAA blocks
and Figure 5.20 for approximate signals of Window 8 under 30, 35, and 40 PAA blocks.
The figures are highlighted with example locations where increased number of PAA
blocks result in poorer approximation, signified by increased overall distance values.
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Figure 5.19 Approximate signals of Window 1281 under 20, 25, and 30 PAA blocks

over z-transformed signals.
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Figure 5.20 Approximate signals of Window 8 under 30, 35, and 40 PAA blocks
over z-transformed signals.

Number of SAX sections are 4, 6, 8, and 10 as previously chosen from 5.1. This
study found that these four sets of SAX sections are enough to be used for
differentiating well log correlation under local variations. These 10 sets of number of
PAA blocks, discretizing depth (x-axis) into equal-size intervals, and 4 sets of number
of SAX sections, discretizing the log values (y-axis) into equal-probability intervals,
account for 40 resolutions for each data window. This results in 200 resolutions for
Hamming distance and 200 resolutions for Levenshtein distance, totaling 400
resolutions in the analysis. Figure 5.21 shows color maps of distance values calculated
by Hamming distance and Levenshtein distance of all the 400 resolutions

aforementioned. The figure also suggests that only one set of SAX sections is not
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sufficient for multi-resolution analysis. As can be seen in Window 1510’s color maps,
10 SAX sections do not always give the closet approximation to the original signals
since the overall distance values are higher than that of 8 SAX sections signified by the
brighter color on the resolutions with 10 SAX sections than that of the resolutions with

8 SAX sections.

Once distance values of all resolutions are available, the data window having
smallest distance value in each resolution combination is then promoted as the best
match for that particular resolution, which results in Figure 5.22 where each resolution
has only one best match to the model pattern. To finally select the overall best match,
a probabilistic score is calculated. From the figure, Hamming distance promotes
Window 1510 as the best match to the model pattern with probability of 0.875 while
Levenshtein distance promotes the same data window with probability of 0.900. This
whole process does not involve indicating the location of the model pattern at
Window 1500 but multi-resolution analysis can still uncover the correct best match

pair of Window 1510 in a nearby well.
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Figure 5.21 Comparisons of distance measured by Hamming distance and

Levenshtein distance
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Figure 5.22 The best match data window promoted by multi-resolution analysis
5.3 Example Correlation 3

This example provides an example correlation using a longer section length than that
of the first two example correlations. The model pattern used in this example is of
length 200 indexes.

To start the process, NNS s first performed in order to find the five smallest
distance under Euclidean distance given the model pattern. Figure 5.23 shows the five
data windows (Window 901, Window 1290, Window 0, Window 698, and Window 2527)
having smallest Euclidean distance from conventional NNS. Based solely on visual
inspection, all data windows share some portions of them with relatively good match
to the given model pattern shown on the upper left of the figure. For example, Window
2527 shows a relatively good match during depth index of 175 to 200 while it has the
highest distance of all the five data windows. Window 1290 (the second rank) and
Window 901 (the first rank) share a relatively good match during depth index of 25 to
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50 but Window 901 has the lower overall distance. Window 0 shows a relatively good
match during depth index 80 onwards but there are differences in the magnitudes of
the log signals. While Window 698 seems to have the poorest match under visual
inspection, it is however ranked four as mostly the data window follows the peaks and
troughs of the model pattern, albeit much difference in the log signal magnitudes.

Such patterns would be interesting under multi-resolution analysis.
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Figure 5.23 Five smallest distances promoted by conventional NNS

5.3.1 Multi-resolution Analysis

As previously mentioned, all the data windows promoted by conventional NNS share
some similarity to the model pattern. This makes an additional analysis necessary as
it may help finalize the best match. Since the model section is of length 200 indexes,
the set of PAA blocks starts at 10 PAA blocks to 100 PAA blocks with block incremental
of 10 as outlined in Chapter 4.

To start the multi-resolution analysis, an analysis of the suitable number of PAA
blocks for discretization of the section depth (x-axis) is performed. Figure 5.24 shows
different optimal number of PAA blocks in the model pattern and all other five data
windows. The model pattern and Window 901 share the same optimal number of PAA
blocks at 60 blocks while both Window 698 and Window 2527 share the same optimal
number of PAA blocks at 50 blocks. Window 0 shows that its optimal number of PAA
blocks is at 80 blocks while Window 1290 shows that 100 blocks are the optimal PAA
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blocks as the distances between the approximate signals and their counterpart are
monotonically decreased throughout the entire selection of number of PAA blocks.
Such varying number of PAA blocks make multi-resolution analysis necessary as it is

impossible to choose only single number of PAA blocks without a bias.
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=
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Figure 5.24 Selection of number of PAA blocks using Euclidean distance between
approximate well log and its original counterpart

Once similarity measurement using Hamming and Levenshtein distances are
complete, Figure 5.25 is plotted showing color maps of all resolutions. Based solely
on visual inspection, Window 0 seems to have the darkest color maps overall, signifying
that Window 0 could potentially be the best match. The interesting thing is that
Window 0 generated by Levenshtein distance measurement seems to have a bit darker
color than that of generated by Hamming distance measurement.

To finalize the best match, all data windows are ranked based on Hamming
and Levenshtein distances. Figure 5.26 shows color maps of the best match under
varying resolution under Hamming and Levenshtein distances. Hamming distance
suggests that Window 0 be the best match to the model pattern with its probability
of being the best match of 0.700 while Levenshtein distance suggests that Window 0
be the best match with higher probability at 0.850. Interestingly, Window 901 only has
probability of being the best match only at 0.300 under Hamming distance and only
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at 0.150 under Levenshtein distance. No other data windows are promoted in this

multi-resolution analysis, albeit similarity in the well log signals aforementioned.
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Figure 5.25 Comparisons of distance measured by Hamming distance and
Levenshtein distance
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Figure 5.26 The best match data window promoted by multi-resolution analysis
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As can be seen on all three example correlations, discrete series with multi-
resolution helps identify best matches given different model patterns while Euclidean
distance fails to identify the correct best matches. Table 5.1 provides a summary on
parameters used in multi-resolution analysis and the final results based on the analysis
of the three example correlations. All of the correlated sections are kept as they are

valid sections.
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5.4 Multiple Well-to-Well Log Correlation

As shown in three example correlations, pattern matching approach shows a promising
result on well-to-well log correlation even when local variations exist. This example
shows that multiple well-to-well log correlations can be performed using pattern
matching approach, given all model patterns for each correlated sections are known.
To perform multiple well-to-well log correlation, each well log pair is undergone well-
to-well log correlation using known model patterns until all sections are correlated.
Then the same model patterns are used to correlate another set of well-to-well log
correlation. The approach works under an assumption that the model well whose
model patterns are extracted must be the center of the other nearby wells to be
correlated.

Figure 5.27 shows an example of multiple well-to-well log correlation using
pattern matching approach. From the figure, patterns from Well Y are used as model
patterns to correlate Well X and Well Z. Model pattern P has its length of 200 indexes.
Model pattern Q has its length of 225 indexes. Model pattern R has its length of 130
indexes. Model pattern S has its length of 120 indexes and Model pattern T has its
length of 220 indexes.
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Figure 5.27 Multiple well-to-well log correlation using pattern matching approach
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Table 5.2 Section length and the locations where the section is correlated across

Well X, Well Y, and Well Z

Section Section Well X Well Y Well Z Status
Length Index Index Index
(indexes)
P 200 5 0 0 Kept
Q 225 642 630 628 Kept
R 130 1227 1215 1222 Kept
S 120 1514 1500 1510 Kept
T 220 2188 2215 2258 Kept




CHAPTER 6

PATTERN DISCOVERY

Well log correlation still mostly relies on trying to find the best match for a
known section drawn from a well-studied well log. This results in well log correlation
shortcomings because well log correlation might not be started when there is no
known section. Pattern discovery technique is used to allow well log correlation to
start early when only a section thickness (well log section length) is known with
certainty. One of the pattern discovery techniques that is almost readily applicable for

well log correlation is MK algorithm.

The ability to find a pair of best match in a long series makes MK algorithm
(MK) useful for well log correlation task. Given a section length, MK automatically
returns the best-match pair having smallest Euclidean distance. Similar to Pattern
Matching techniques, this smallest-distance pair can be correlated because the pair is
considered the most similar sections of all other sections in the entire well logs. This
chapter discusses how MK can be used in digital well log correlation without having to

know any shape of well log pattern.
6.1 Example correlation 1

To use MK for well log correlation across any two wells, an artificial single well
log must be generated from the well logs to be correlated. Connecting two well logs
together would invalidate well log depth for each well log being connected because
depth of a well log is monotonically increased along its depth scale. Therefore, well
log depth has to be regenerated. The easiest way to regenerate well log depth for this
artificial well is to use depth index. Typical depth index starts at zero at the first data
point and number of data points — 1 is the final depth index for the very final data
point in the generated artificial well log. For example, the artificial well log will have

5,476 indexes given one well log of 2,741 data points and the other well log of 2,735
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data points. Figure 6.1 and Figure 6.2 illustrate what original well logs are and how an

artificially generated well log would be.

Without modification made in MK would have allowed any two well log
sections to self-correlate on the same well. Therefore, MK must be slightly modified
so that any best-match pair belongs to the same well is discarded. This slightly
modified MK takes a breakpoint, which is the final depth index of the first well, into
account and makes sure that both sections (forming best-match pair) are on different

side of this breakpoint.
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Figure 6.1 Sample well logs to be correlated

Figure 6.1 shows two original gamma ray well logs from Well Y and Well Z. Well

Y was logged from depth 3,000.0 ft. to 4370.0 ft. (total depth indexes of 2,741 indexes)
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and Well Z was logged from depth 3,000.0 ft. to 4,367.0 ft. (total depth indexes of
2,735 indexes)

Avrtificial Well

Gamma Ray (API)
0 200 400 600

0

1000

2000 -

Depth Index

3000 -

4000 |

5000 [

Ficure 6.2 An artificial well log of length 5,476 indexes generated by connecting two
well logs: Well Y and Well Z with a breakpoint (at dashed line).
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Figure 6.2 shows that the artificial well log with 5,476 data points is generated
from a connection of Well Y, having 2,741 data points, and Well Z, having 2,735 data
points. In this case, 2,741 is the breakpoint (indicated by a dashed line in the middle
of the generated artificial well log) between Well Y and Well Z. It is noticeable that

Figure 6.2 uses depth index instead of real well depths from the two original well logs.

After the generation of artificial well log, the well log is then fed into MK with
a section length (window size) and other parameters. MK will search for the best match
given the section length. Given a section length, MK starts by randomly choosing a
section to be used as a reference section. This reference section is then slid across the
entire artificial well log and each comparison’s distance (Euclidean distance) is
measured. Therefore, this reference section is functionally analogous to a model
pattern, which is manually chosen based on human knowledge, in pattern matching
approach. More than one reference section is better at tightening distance search
space, which could help prune off unnecessary comparisons and speed up the process

to get the best-match pair.
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To make sure that multiple reference sections span across all available well
log values, this study modifies how random reference sections are chosen. The
reference sections are randomly chosen from each value range within 0.5 standard
deviation (SD) span. SD is the SD of artificial well log. For example, there will be 21
reference sections randomly chosen within each 0.5 SD interval ranging from -5.0 SD
to 5.0 SD (-5.0 SD, -4.5 SD, -4.0 SD, ..., 4.0 SD, 4.5 SD, and 5.0 SD) given one reference
series is picked from each range. These minimum and maximum boundaries can be

arbitrarily chosen based on number of reference series required.
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Figure 6.4 Arbitrarily chosen 21 sections based on -5.0 to 5.0 SD span
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Figure 6.5 shows data windows that are randomly chosen reference series
within -5.0 SD to 5.0 SD of the artificial log data values. For example, the data value at
index 2571 is in -1.5 SD to -1.0 SD and is randomly chosen to be the candidate for this
SD interval. The reference series from index 2571 is called Window 2571 which covers
data from index 2571 to 2691 given the chosen section length or window size of 120.
This is also the case for Window 4956 that is generated from index 4956, randomly
chosen from the bucket 5.0 SD to 5.5 SD, to index 5076 given the pre-defined section
length of 120 indexes. Notice that there are no reference series chosen on intervals of
-5.0 SD to -2.0 SD due to the fact that there is no data value available in those ranges.
This makes the remaining 14 intervals (14 data windows: one data window from each
interval) useable as reference series. There are five indexes (262, 347, 792, 2029, and
2112) from Well Y and nine indexes (2234, 2320, 2571, 3957, 4299, 4609, 4754, 4755,
and 4956) from Well Z.
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Table 6.1 provides the complete list of data value ranges and key statistical
parameters. It can be seen that the last SD interval does not cover all the data values
from 344.74 APl to 549.99 API. This is relatively still safe as there are only 12 data
points out of total 5,476 data points. In addition, very rare data values do not likely

give a good reference series which can be used to extract many pairs.



Table 6.1 Well log value from -5.0 SD to 5.0 SD span in 0.5 SD interval span

Standard Gamma Ray
Deviation (API)
Min Max Min Max

-5.0 -45 ] -188.80 | -163.41
-4.5 -4.0 | -163.41 | -138.01 | w
-4.0 -3.5| -138.01 | -112.62 ji::
3.5 30| -11262| 8723| ©
-3.0 -2.5 -87.23 -61.83 §
-2.5 -2.0 -61.83 -36.44 §
-2.0 -1.5 -36.44 -11.05
-1.5 -1.0 -11.05 14.35
-1.0 -0.5 14.35 39.74
-0.5 0.0 39.74 65.14

0.0 0.5 65.14 90.53

0.5 1.0 90.53 | 115.92

1.0 1.5 11592 | 14132 | o
1.5 20| 14132 | 166.71 ;{é
2.0 25| 166.71 192.10 §
2.5 3.0 19210 | 217.50 §
3.0 35| 21750 | 242.89

3.5 4.0 | 242.89 | 268.28

4.0 45| 268.28 | 293.68

4.5 50| 293.68 | 319.07

5.0 55| 319.07 | 344.47

Mean 65.14
SD 50.79
Max 549.99
Min 9.05

API
API
API
API

86



Drawn from SD. [-5.0, -4.5)

Drawn from SD. [-4.5, -4.0)

Drawn from SD. [-4.0, -3.5)

500 500 00
§ 400 F 1 400} i a00f q
3 300F 1 300} i 300f 9
4
£ 200 1 200} i 200F q
£
s E E t ] E ]
] 100 100 100
0 20 40 60 80 100 120 0 20 40 60 80 100 120 020 40 60 80 100 120
Depth Index Depth Index Depth Index
Drawn from SD. [-3.5, -3.0) Drawn from SD. [-3.0, -2.5) Drawn from SD. [-2.5, -2.0)
500 T T T T T 500 T T . T T T T . . T
E 400 F 1 400} i a00f q
3 300 1 300} i 300f 9
4
& 200 1 200} i 200f q
£
s E E t ] E ]
I 100 100 100
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Depth Index Depth Index Depth Index
Window 2571 Window 792
Drawn from SD. [-2.0, -1.5) Drawn from SD. [-1.5, -1.0) Drawn from SD. [-1.0, -0.5)
500 T T T T T 500 T T T T T 500 T T . T T
§ 400 F 4 400} i a00f q
3 300F 1 300} i 300f 9
4
£ 200 1 200} i 200F q
£
m E E t ] E ]
I 100 100 100 w
0 20 40 60 80 100 120 0 20 40 60 80 100 120 020 4 50 80 100 120
Depth Index Depth Index Depth Index
Window 2320 Window 3957 Window 347
Drawn from SD. [-0.5, 0.0) Drawn from SD. [0.0, 0.5) Drawn from SD. [0.5, 1.0)
500 T T T T T 500 T T T T T 500 T T T . T
E 400 F 1 400} i a00f q
3 300 1 300} 1 300 ]
4
& 200F 1 200} i 200f q
£
s E E t ]
& 100 100 100 MW
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Depth Index Depth Index Depth Index
Window 4609 Window 2112 Window 2234
Drawn from SD. [1.0, 1.5) Drawn from SD. [1.5, 2.0) Drawn from SD. [2.0, 2.5)
500 T T T T T 500 T T T T T 500 T T T . T
§ 400 F 1 400 F 1
& 300F q 300F 9
4
£ 200 200 q
‘E“ 100 100 | 1
o
0 20 40 60 80 100 120 0 20 40 60 80 100 120 020 40 60 80 100 120
Depth Index Depth Index Depth Index
Window 262 Window 2029 Window 4299
Drawn from SD. [2.5, 3.0) Drawn from SD. [3.0, 3.5) Drawn from SD. [3.5, 4.0)
500 T T T T T 500 T T T T T 500 T T T . T
E 400 ]
3 300 ]
4
g 200 F q
£
8 100 F b
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Depth Index Depth Index Depth Index
Window 4755 Window 4754 Window 4956
Drawn from SD. [4.0, 4.5) Drawn from SD. [4.5, 5.0) Drawn from SD. [5.0, 5.5)
500 T T T T T 500 T T T T T 500 T T T T T
T ]
<
>
Z ]
4
© B
£
£
© B
o
0 20 40 60 80 100 120 0 20 40 60 80 100 120 020 40 60 80 100 120

Depth Index

Depth Index

Depth Index

87

Figure 6.5 21 SD intervals and 14 reference sections each randomly chosen from -5.0

SD to 5.0 SD of the artificial well log mean.
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Once reference sections are available, those sections is then used in distance
measurement. In this case, Euclidean distance is used for measuring distance between
each reference series and each data window being slid for the entire artificial well log
and distances between the reference series and each data window is collected. Given
14 chosen reference series, there are also 14 sets of distance values and each set

contains 5,356 distance values (5,476 — 120 = 5,356).

Then those 14 sets of distance values between the reference series and the
other data windows are ranked by their standard deviation of the distance values of
the sets. The set with highest standard deviation of the set’s distance values is the first
rank and the set with lowest standard deviation of the set’s distance values is instead
the last rank. As shown in Figure 6.6, Window 4956 has its standard deviation of
distance values of 2.95 which is the highest value in all reference series and Window
2112 has its standard deviation of distance values of 1.32 which is the lowest value in

all reference series.
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Figure 6.6 Reference series of the highest-to-smallest ranks based on standard

deviation of distance values.
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The next step is to search for the closest pair newly drawn from artificial well
log with an aid of the promoted reference series. To illustrate how well log section
search and comparison are performed, Figure 6.7 to Figure 6.9 are used. Assume that
current best-so-far was a distance value D higher than 2.20 before the pair shown in
Figure 6.7 was discovered. In the process of finding well log section pair to be
correlated using MK, Window1168 and Window 3923 are used to calculate lower
bounds with all other 14 data windows (shown in Figure 6.6), starting from lower bound
calculation with Window 4956 (having the highest standard deviation of distance
values), Window 2234, ..., Window 347, and Window 2112 (having the lowest standard
deviation of distance values). Window 1168 and Window 3923 both passed lower
bound testing for all 14 reference series (lower bounds with all reference series are
less than the then best-so-far D). This makes both data windows require a confirmation
if a distance between themselves is also less D. After the confirmation calculation, it
turns out that the distance between Window 1168 and Window 2112 is smaller than
D. Therefore, the pair is kept and best-so-far is updated with 2.20, the distance between
Window 1168 and Window 3923. After some discards on data windows failing lower
bound tests with best-so-far 2.20, the search and comparison continues for Window
145 and Window 2887 pair. The lower bound for this pair is 0.13 which is lower than
current best-so-far (2.20), making additional check required. The distance between
both data windows is 2.10 which is also smaller current best-so-far. Therefore, current
best-so-far is updated with 2.10 and the data window pair is kept. After some more
discards on data windows failing lower bound tests with best-so-far 2.10, the process
continues for Window 1480 and Window 4235 pair. It turns out that the pair is valid
and best-so-far is updated with its distance of 1.53. All other potential pairs either fail
lower bound tests or have their distances larger than or even equal to the best-so-far
of 1.53. Therefore, MK ends with the first-rank pair of the best-so-far of 1.53 given the

14 reference series (shown in Figure 6.6) and section length of 120 indexes.
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Figure 6.9 The first-rank motif pair of Window 1480 and Window 4235 with reference
series of Window 2112.
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The resulting well log correlation of this section length of 120 indexes is as

shown in Figure 6.10.

Well' Y Well Z

Gamma Ray (API) Gamma Ray (API)
0 200 400 600 300 0 200 400 600

3000 T 0 % T

3200 4 3200
3400 - 1 3400

3600 3600 [

Depth (ft.)

3800

4000 4000

4200 4200

Figure 6.10 The final correlation of section length 120 indexes (60 ft)
Figure 6.10 shows locations of the motif pair in their own well log. Since the
breakpoint between the two well logs is 2741, any data window index that is greater

than the break point can be converted to local index of Well Z. For example, Window
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4235 on artificial well log is Window 1494 Well Z’s well log. Table 6.2 shows the

resulting correlations of this well log signals

Table 6.2 Example correlations and the parameters used

Well 1 | Well 2 | Section | Section | Well 1 | Well 2 Pair
Length Index Index | Distance

Well Y | Well Z 120 1 1480 1494 1.53
2 145 146 2.10

3 1168 1182 2.20
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6.2 Example correlation 2

In this example, a new well called Well X is going to be correlated with Well
Y. As outlined in the example correlation 1, the two wells must be connected together

to form one artificial well prior to using MK.

Well Y Well X
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0 200 400 600 0 400 600
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Figure 6.11 Well logs to be correlated
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Avrtificial Well
Gamma Ray (API)
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Depth Index
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Ficure 6.12 An artificial well log of length 5,482 indexes generated by connecting two
well logs: Well Y and Well Z with a breakpoint (at dashed line).

Figure 6.12 shows that the artificial well log with 5,482 data points is generated

from a connection of Well Y, having 2,741 data points, and Well X, having 2,741 data
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points. In this case, 2,741 is the breakpoint (indicated by a dashed line in the middle
of the generated artificial well log) between Well Y and Well X. It is noticeable that

depth index is also used in this artificial well log.

Once the artificial well log is generated, heuristic reference series selection can
be performed. The selection is done by randomly choosing one index in each 0.5
standard deviation (SD) interval of the entire -5.0 to 5.0 SD span, thereby having 21
reference series in total. Although SD spanning from -5.0 to 5.0 is also used as they
were in the example correlation 1, the value ranges in each standard deviation interval
are different due to the fact that there are slight different in mean and SD of this

artificial well lo

shows key statistical parameters and value ranges. As it is the case in example
correlation 1, values from 348.16 to 549.99 is the range that is out of the SD span. The
range, however, only has 10 data points so this should be as the data points only
account for less than 0.2% of the total data points making the artificial well log. As
indicated in the table, only intervals from -1.5 SD are used to get indexes and thus

reference series as there is no data point when the value is below -1.5 SD.



Table 6.3 Well log value from -5.0 SD to 5.0 SD span in 0.5 SD interval span

Standard Gamma Ray
Deviation (API)

Min Max Min Max
-5.0 -45 1 -187.87 | -162.34
-4.5 -4.0 | -162.34 | -136.82 | w
-4.0 -35 | -136.82 | -111.29 ji::
3.5 30| 11129 | 8577 | ©
-3.0 -2.5 -85.77 -60.24 §
-2.5 -2.0 -60.24 -34.71 §
-2.0 -1.5 -34.71 -9.19
-1.5 -1.0 -9.19 16.34
-1.0 -0.5 16.34 41.86
-0.5 0.0 41.86 67.39
0.0 0.5 67.39 9291
0.5 1.0 92.91 118.44
1.0 1.5 11844 | 1439 |
1.5 20| 14396 | 169.49 %
2.0 25| 169.49 | 195.01 E
2.5 30| 195.01| 220.54 §
3.0 35| 220.54 | 246.06
3.5 4.0 | 246.06 | 271.59
4.0 45| 271.59 | 297.11
4.5 50| 297.11 | 322.64
5.0 55| 322.64 | 348.16

Mean 67.39
SD 51.05
Max 549.99
Min 5.09

API
API
API
API
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As depicted in Figure 6.13, most of the signal is within the SD intervals of -1.5
SD to 5.0 SD while several signal peaks are well over 5.0 SD. Once the intervals’

boundaries are available, the next step is to randomly choose indexes in the intervals.
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Figure 6.13 Artificial well log with SD boundaries
As suggested by Figure 6.14, the SD intervals that are less than -1.5 SD do not
have any data point. Therefore, there is no index, and thus data window, chosen for
those intervals. From the figure, there are 14 chosen indexes from Well Y (212 and
2080) and Well X (2243, 2264, 2441, 3067, 4300, 4363, 4495, 4505, 4536, 4537, 4944,
and 5026), given that the breakpoint between these two well logs is 2174 and section
length (window size) of 120.
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When reference series are ready, the next step is really the first step that uses
MK. 14 reference series are fetched to MK in order for MK to calculate distance
between each reference series and all other remaining data windows. For example,
MK calculates distances between the reference series Window 212, covering index 212
to index 332, and other data windows such as Window 1 (the first data window),
covering index 1 to index 120. The distance between reference series and the sliding
window of the same window will be assigned with distance infinity instead of its real
distance zero to prevent them from being promoted as a matched pair. There will be
14 sets of 5,362 (or 5,482 — 120) elements of the distance values as a result of this
calculation of distances between the reference series and all other remaining data
windows. Once the 14 sets of distance values are ready, MK then prepares information
necessary to search for matched pairs. First, MK ranks the 14 sets of distance values
from highest to lower standard deviation of the distance values. Given the distance-
value dataset with highest standard deviation, then MK ranks the indexes from the
index providing the smallest distance between the reference series and all other data
windows to the index providing the largest distance between the reference series and
all other data. To make these two steps more intuitive, Figure 6.15 outlines the steps
necessary to generate a set of indexes from lowest to highest distances with the

reference series which has the highest SD. of the distance values as aforementioned.
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ILLUSTRATIVE
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Randomly choose reference indexes for each SD
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Figure 6.15 Steps used to generate a set of indexes pointing to lowest-to-highest
distances based on the set with largest SD.

Figure 6.16 shows the ranks of 14 reference series. As aforementioned, the ranks
are from calculating the standard deviations of the distance values in which each
reference series is used in distance calculation of all other data windows and sorting
the standard deviations from highest to lowest number. For example, distance values
calculated based on reference series from Window 4397 are mostly varied while
distance values from Window 2112 are much less varied. Therefore, the standard
deviation of the distance values from Window 4397 is much higher than that of from

Window 2112. The plots in this figure simply show the plots of the reference series.
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The next step is to search matched pairs based on triangular inequality
concepts after the set of indexes to data windows, having lowest to highest distances,
is available. Starting from setting best-so-far with a starting distance value, each
subsequence search introduces a prospective pair to check if the pair’s lower bound
is smaller than the current best-so-far. If the pair has its lower bound really lower than
the current best-so-far, then the pair has to undergo further test whether the pair’s
distance is also not greater than that of the current best-so-far. The pair can be called

a matched pair (or motif pair) if the pair passes the two criteria mentioned.

Figure 6.17 to 6.20 show four matched pairs returned from MK using the 14
reference series and the section length of 120. As it is the case for example correlation,
it is assumed that Window 1557 — Window 4632 pair’s best-so-far must be D > 5.74
before this pair is being considered. When this pair comes in, MK checks whether the
lower bound is less than best-so-far. Since lower bound (1.23) of the pair is less than
best-so-far (D), an additional check, which is to confirm if the distance between the
pair is less than current best-so-far, must be performed. It becomes apparent that the
pair can be selected as a matched pair since its distance is 5.74, which is smaller than
D. The next matched pair (Window 1487 — 4239) is in the third rank. The current best-
so-far is 5.74, which is the distance of the previous pair. This third-rank pair is considered
a matched pair because it also fulfills two criteria (its lower bound of 0.12 and its
distance of 2.92 are both less than best-so-far of 5.74) as is the Window 1557-Window
4632 pair. The latter two matched pairs (Window 1184 — Window 3932 and Window
124 - Window 2861) also follow pass the two criteria (their lower bounds and distances
are less than best-so-far of 2.92 and 2.39 respectively) in the same manner. At the end
of this whole process, the best-so-far gets updated by the distance between Window

124 - Window 2861, which is 1.62.
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Figure 6.17 The forth-rank matched pair (motif pair) of Window 1557 and Window

4632 with reference series of Window 3067.
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Figure 6.18 The third-rank matched pair (motif pair) of Window 1487 and Window

4239 with reference series of Window 3067.
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Figure 6.19 The second-rank matched pair (motif pair) of Window 1184 and Window

3932 with reference series of Window 3067.
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Figure 6.20 The first-rank matched pair (motif pair) of Window 124 and Window 2861
with reference series of Window 3067.

While MK is applicable to well log correlation task, human interpretation is
sometimes still required, especially when there is a section mismatch when locations
on the depth scale is considered. As shown in Figure 6.21, there is a mismatch between
one section at 3,778.5 ft on Well Y and the other section at 3,945.5 ft on Well X. These

two sections are the sections from the forth-rank matched pair shown in Figure 6.17.
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This is due to the fact that MK perform Z-transformation on all the data series in all
distance calculation as part of a technique to perform scale invariance, considering
only similar shapes of the signals while the signals share similarity in Z-transformed
space, comparisons. In this case, a human interpretation may be needed to rule out
these kind of mismatch. The corrected well log correlation after a human intervention
is shown in Figure 6.22. Table 6.4 shows that locations where the wells are correlated.
Section 4 is discarded due to the fact that the correlation is not correct since both
sections from each well should have been closer over the depth. This process requires

human effort as MK does not have the information.

Table 6.4 Example correlations and the parameters used

Well 1 | Well 2 | Section | Section | Well 1 | Well 2 Pair Status
Length Index Index | Distance

Well Y | Well X 120 1 120 124 1.62 Kept

A 1184 1191 2.39 Kept

3 1487 1498 2.92 Kept

4 1557 1891 5.74 Discarded
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Figure 6.21 Well log correlation mismatch.
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Figure 6.22 Corrected well log correlation after a mismatch is excluded
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6.3 Multiple Well-to-Well Log Correlation using Pattern Discovery

As can be seen from the two previous examples, pattern discovery can be
applied in well-to-well log correlation task given section lengths are known. This
example shows how multiple well-to-well log correlation can be achieved using
pattern discovery approach. Figure 6.23 and Figure 6.24 are well-to-well log
correlations both performed using Well Y as a shared well in order to correlate across

three wells from Well X to Well Y (shared well) and then Well Z.

The challenge in multiple well-to-well log correlation using pattern discovery
approach is that there is no guaranteed that the motif pairs from the nearby wells will
correlate with the shared well at the same locations to make perfect joining across
multiple wells. As shown in Figure 6.23 and Figure 6.24, Well X and Well Z do not join
Well Y at the same indexes. Therefore, human intervention to manually adjust the
joining locations on Well Y are required. Depending on each data window, joining
location may be assigned based on matched peaks and troughs across multiple wells.
Figure 6.25 shows the result after human intervention to manually align the correlated
section from well-to-well log correlation between Well Y and Well Z and well-to-well
log correlation between Well Y and Well X. Several previously correlated sections are

also removed as they are not available in all well logs to be correlated.
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Figure 6.23 Well-to-well log correlation using pattern discovery approach

(left section)
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Figure 6.24 Well-to-well log correlation using pattern discovery approach

(right section)
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6.25 Multiple well-to-well log correlation using pattern discovery approach

with human intervention to align some of the correlated sections.
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6.4 An Integrated Approach to Well-to-Well log Correlation

In real field application, it is possible to jointly use both pattern discovery and
pattern matching to form a comprehensive and integrated well-to-well log correlation.
Pattern discovery is suitable when only minimal information about the field is known.
In the early stages of field development, only section length is known as the
information may come from other data sources such as seismic survey. In the latter
stages of field development, pattern matching may be more suitable as it can easily
be used to correlate multiple wells (by connecting multiple wells as a single well and
using a pattern of interest with NNS or multi-resolution analysis). The steps outlined

below may be used as a guideline for integrated well-to-well log correlation.

1 When the first two well logs are available, use pattern discovery to find inherent
patterns shared by the two wells.

2 Repeat step 1 using different section lengths (window size) in order to cover
patterns of varying lengths

3 Once well logs from different wells become available, use pattern matching to
check whether the patterns extracted from step 1 and 2 (pattern discovery) are
available in the other wells nearby the first two wells. Changes in probability
of best match can also be analyzed as the well logs from the wells that are far

from the first two wells become available.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, conclusions and recommendations on how time series pattern

matching and pattern discovery can be used in well-to-well log correlation are

discussed.

7.1 Conclusions

This study presents the processes applying pattern matching and pattern
discovery approaches of time series data mining to perform well-to-well log
correlation. The processes are aimed to be used to propose possible matches
under specific conditions identified by each approach. Full automation of the
processes still requires further continued study and development.

A sliding-window technique is used to extract well log data for a given length
(or window size). Each time the window moves by one index to ensure that all

data window is included in finding a match.

7.1.1 Pattern Matching

Euclidean distance can be used to provide an absolute distance between any
two well log signals. This distance can be used to exactly determine how good
a matching is. Euclidean distance, however, does not provide a very good
matching result, especially when variations (such as signal shifting and
insertion/deletion of some small portions) between the two signals are
prominent.

Different number of PAA blocks may give different best-match results. The
higher number of PAA blocks may capture too much detail from the original
signals while the lower number of PAA blocks may not sufficiently capture
detail from the original signals. Both scenarios can lead to pattern mismatch

due to improper level of details.



116

— Different numbers of SAX sections, which is the discretization of data values at
discretized depths into different symbols (groups), may also give different best-
match results. The higher number of SAX sections introduces variety of
symbols, which emphasizes too much on insignificant differences, i.e,,
identifying small difference as different symbols. The lower number of SAX
sections combines data having a wide range of values in the same group,
resulting in inability to distinguish differences in data values. Both scenarios can
lead to pattern mismatch due to improper identification of log value
boundaries.

— Multi-resolution analysis allows us to find the most probable match from
different levels of discretization. From different levels of PAA blocks and SAX
sections, the data window that is best matched for the most frequent is
identified as the most probable match.

— Levenshtein distance is far superior to Hamming distance in similarity
measurement when there are local variations in well log signals because its
comparison technique can offset the variations (to some certain extents) and
thus the distance value is less affected by the variations. Hamming distance is,
however, superior to Euclidean distance when local variations are in the well
log signals since Euclidean distance is inflexible to this kind of situations.

— Based on the matching results under multi-resolution analysis, SAX can still be
used to generate discrete series even though the well log signals do not follow
perfect normal distribution.

7.1.2 Pattern Discovery

— Drawing reference series from each well log interval (SD interval) helps increase
stability of the motif pairs discovered by MK.

— Depending on reference series used, MK can distinguish sections that should
be correlated based on distance values of any two well log signals being

correlated without prior knowledge of the signals.
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— MK can help uncover similar sections under Euclidean distance across two
different well log signals which can later be used as a guideline to perform

multiple well-to-well log correlation.
7.2 Recommendations

— Afurther study is needed to tackle stability of the resulting well log correlation
generated by MK because of randomness of the reference series used.
Currently, it is required that the algorithm be executed several times to obtain
the results when they are relatively stable.

— A further study is needed to observe the performance of MK algorithm in well-
to-well log correlation using other distance metrics such as Hamming and
Levenshtein distances.

— A further study is needed to generate well-to-well log correlation which is
readily applicable for multiple well-to-well correlation by calculating global

distance of all well logs given the same or very close sections.
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