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CHANCHAI APIWATSAKULCHAI: Time Series Pattern Discovery Techniques for Well-
to-Well Log Correlation. ADVISOR: ASST. PROF. SUWAT ATHICHANAGORN, Ph.D. {, 121 
pp. 

Well log data is one of the most abundant data sources for subsurface 
characterization since almost all drilled wells are logged. Subsurface characterization 
requires correlated well log information. Processes to help perform well-to-well log 
correlation have been developed in this study based on the two approaches: pattern 
matching and pattern discovery. 

Pattern matching focuses on finding a known pattern of interest in uncorrelated 
wells. The use of Euclidean, Hamming, and Levenshtein distances in similarity measurement, 
Piecewise Aggregate Approximation (PAA), and Symbolic Aggregate approXimation (SAX) data 
representation helps create reduced-resolution while maintains  the main characteristics of 
the signals. Multi-resolution analysis provides the most probable match from different data 
resolutions obtained by different discretization levels. The results show that multi-resolution 
analysis can identify the most probable match from the most frequent data window 
promoted. The results also show that Levenshtein distance is far superior to Hamming and 
Euclidean distances in finding the best match even when local variations are present. 

Pattern discovery focuses on finding repeating patterns without any prior 
knowledge of patterns that might exist in the well logs. MK (Motif Kymatology) is used as the 
base algorithm in this study. For the data sets tried in this study, the proposed algorithm can 
successfully identify repeating patterns. A modified step is incorporated in order to help 
increase stability of the final correlated well sections. 

In summary, pattern matching and pattern discovery can be formed as an 
integrated workflow to support well log correlation task and subsurface characterization. 
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CHAPTER 1 
INTRODUCTION 

One of the data acquisition techniques used to obtain data for subsurface 
characterization is well logging. Well logging is probably the most attractive method to 
collect basic lithological data and fluid type as the method can provide data within 
moderate range from the wellbore deep into the formation depending on depth of 
investigation of logging tools used. Its usefulness is also the time used to obtain 
required data is relatively small as multiple logging tools for varying properties can run 
into the wellbore at the same time. According to the benefits aforementioned, well 
logging is usually performed on multiple wells in order to capture possible deviation 
of properties across different wells even though their locations are relatively close and 
their depths are on the same range. 

Added values from having multiple well logs are not only for data collection 
and their interpretation on a well-by-well basis, but it also provides crucial subsurface 
characterization benefit from a process called correlation. Correlation, or more 
frequently called well log correlation, is a process aiming to match a similar portion of 
interest using the same log type across one or more log responses from different wells. 
These similar portions obtained from well log correlation process are usually used for 
many purposes and one crucial purpose is to use them for modelling connections of 
rock and their properties across depth ranges. The similar portions drawn from multiple 
wells are generally thought to have certain degree of similarity in terms of properties 
recorded and their inferences. For example, similar gamma ray log responses (in API 
degree) behind a potential reservoir section may be used to indicate quality of that 
potential reservoir rock in this section of interest and the quality may not be on the 
same degree assuming that lower gamma ray means a better quality of the section of 
interest since it has lower shale content and is more preferable. 

There are efforts trying to perform well log correlation using many techniques 
apart from conventional well log correlation involving manual process of locating 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

similar sections across multiple wells. The sections may be in the form of log values 
falling in the same range, having the similar trend with or without scale variation1. 
Owing to advancement of data processing in computing realm and the use of digital 
well log, there has been interests to digitally process well log data and perform well 
log correlation using different techniques such as extension of moments method and 
polynomial regression [1], dynamic wave matching [2], signal processing and other 
related methods (Wavelet Transform, Hilbert Huang Transformation, and Empirical 
Mode Decomposition and Variational Mode Decomposition) [3-6], artificial intelligence 
techniques [7, 8]. These techniques listed are not meant to be comprehensive but it 
is to provide a list of recent advances in well log correlation. 

Since well log data is a value on depth scale, different techniques may treat 
the data differently. For example, polynomial regression is a technique that typically 
works directly on real domain (value versus depth) while signal processing and related 
techniques typically works on frequency domain (amplitude versus frequency). 
Therefore, well log data has to be converted from real domain to frequency domain 
in order to use signal processing methods.  

Ability to process well log data directly on real domain possesses benefits as 
there is no requirements to change its domain to process, thereby reducing error and 
bias due to changing domain, and it is simpler to understand with less computation. 

1.1 Problem Statement 

To date, it may still be able to say that conventional well log correlation is the 
main practice performed. Conventional well log correlation typically involves 
approximating a portion of well log response to match another portion of a different 
well log response. Sometimes, this approximation matching is, unfortunately, arbitrary. 
At one time, one small deviation from the main trend may be neglected and the 

                                           
1 Scale variation in well log is a variation where certain log responses from two wells 
show some degrees of extension or contraction along the depth axis while major 
trends of those logs are similar. 
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match is treated as a satisfactory match, thereby correlating two sections one from 
each well together. At another time, small deviation is chosen to be included in the 
correlation. Admittedly, inconsistency of this practice may be masked as an engineer’s 
judgement. Instead of arbitrary inclusion or exclusion of a portion of well log response, 
it is better to quantify the match before making any judgement on a correlation based 
on those quantifiable numbers. 

Finding interested stratigraphic units that are small sections spread along an 
ultra-deep well using convention method can be a daunting task and there can be a 
lot of mistake involved. For example, less similar sections may likely be chosen instead 
of more similar section since there is no quantifiable figures. In fact, one could actually 
calculate some basic statistical figures such as mean and standard deviation for all 
possible sections. Then selection of the sections can be made based on comparisons 
of the calculated figures. This is by far not the best method that can be done. 

Well log interpretation may be done on a certain objective, which may result 
in looking for a certain pattern or trend in a well log. This means it is possible that 
some patterns may unintentionally be neglected, thereby overlooking valuable 
information. This overlooked information may have a significant effect to the reservoir 
modelling. 

Problems aforementioned alone are sufficient to promote more systematic and 
quantifiable approach to well log correlation task since those problems are crucial to 
the correlation result. In addition, ability to extract all patterns and make quantifiable 
match will result in great benefits for any future subsurface study.  

1.2 Objectives 

As previously mentioned, study objectives are to develop a systematic workflow to 
meet the requirements as follows:  

­ To semi-automatically find interested well sections of all lengths using 

gamma ray log. 

­ To correlate well sections across multiple wells 
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1.3 Expected Usefulness 

­ Data-adaptive pattern discovery method requires little priori knowledge of a 

pattern. This approach is more beneficial especially when data pool is small, 

which is a situation when a model-based pattern discovery method is hard to 

be applied and statistical-based pattern discovery may give high uncertainty. 

­ Development in time series motif discovery has opened a new way of extracting 

repeating patterns in a well log. Meaningful repeating patterns are crucial to 

modern well log analysis. 

­ Combination of motif discovery techniques can be used on non-linear and non-

stationery nature of well log data to extract repeating patterns that may be 

meaningful and beneficial for modern well log analysis. 

­ Subsequences extracted from a well log are important to well log analysis as 

they contain useful information such as lithologic sequence, level of energy as 

a log response, and etc. These information drawn from the subsequences, in 

turns, can be used as fundamental elements for classification of local 

characteristic of accumulation and correlation of similar patterns across 

spatially-connected wells. 

1.4 Methodology 

There are, normally, more than one well drilled in a particular area as part of 
data acquisition for reservoir characterization. One of the challenges is how to correlate 
similar stratigraphic unit across multiple well logs. Oftentimes, similar stratigraphic unit 
in one depth interval may not necessarily be correlated with the similar unit in another 
depth interval. This challenge is, therefore, not entirely easy to tackle. Owing to 
advances in data mining techniques for pattern discovery, there are methods to help 
correlating two similar but different series together. This study will illustrate how to 
apply those techniques to tackle well log correlation challenge.  
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Conventional well log correlation, typically, involves finding 2 characteristic 
marks on the top and at the bottom one each that covers the interested zone to see 
if those logs being correlated are on-depth relative to each other [9]. After the marks 
are found, the real process of conventional well log correlation starts. These 2 steps 
may be done repetitively for the entire log depth for more than one zone of interest 
as all zones correlated are crucial for reservoir modelling in the later stages of a 
reservoir simulation study. In this study, however, it is more preferable to use a more 
heuristic method to digitally correlate well logs of all possible sections.  

In data mining literatures, there are many techniques that can find a pair of 
sections that are the most similar compared to the rest of the logs. The nature of well 
log data considered, it is possible to say that time series pattern discovery or, more 
specifically, motif discovery can be applied to well log correlation problem. Motif 
discovery involves trying to find recurrent patterns in a time series data. Ability to find 
recurrent patterns in a time series is beneficial and there has been numerous 
application in other industries. In this well log correlation problem, if it is possible to 
identify two sections one from each well as a motif pair, it is also reasonable to 
correlate those sections from those wells together, provided that those are located 
on relatively the same depth interval. This process may be referred to as motif 
discovery. 

Depending on motif discovery strategy, there may be some cases where similar 
patterns to a motif are still on the well log data undiscovered. In these cases, it may 
be necessary to perform a search routine in order to capture all those similar patterns 
to a particular motif. One method that is used as a search routine is Nearest Neighbor 
Search. This process may be referred to as nearest neighbor search. 

In order to perform well log correlation as previously mentioned, there is an 
absolute requirement to perform similarity measurement. While similarity 
measurement seems to be a simple process, there are, however, challenges in defining 
degree of similarity between 2 sections which, in this case, is 2 well logs. Similarity 
measurement may be done directly on real domain. Alternatively, it may be done on 
a discretized domain using a certain representation applied to data on real domain 
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before performing similarity on that discretized domain. It is considered to be vital to 
well log correlation results. This process may be referred to as similarity measurement. 

The following steps are steps performed in this study. They are intended to 
give a more concrete example of aforementioned conceptual steps. Since this study 
involves substantial amount of software programming task, the outlined steps may, at 
times, be highly dependent on the implemented programs in this study. 

1.5 Well Log Correlation Approaches 

Well-log correlation may be divided into two approaches based on well-log 
correlation strategies. 

1.5.1 Approach A: Pattern Matching 
This approach primarily focuses on finding a known pattern, which may be from 

a known section having the pattern of interest, in other well logs that have not been 
correlated such as well logs from recently drilled wells. The main strategy of this 
approach is to find if there is the pattern of interest in those well logs. It is also used 
to determine the best match of the pattern to those well logs. In order to identify the 
best match, similarity measurement is employed in the matching process. 

1.5.2 Approach B: Pattern Discovery 
This approach focuses on finding repeating patterns across well logs without 

any prior knowledge of patterns that might be existed in the well logs. As the name 
implies, the approach aims at extracting inherent patterns from the well logs. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 
LITERATURE REVIEW 

As mentioned in Chapter 1, there are many techniques that can be used to 
perform well log correlation. This section provides a review of previous works relating 
to digital processing of well log for correlation. 

Lineman et al. [10] presented a system employing Dynamic Time Warping 
(DTW), a technique used in speech recognition, together with a specific knowledge 
base of geological information to perform well-to-well log correlation from domain 
experts commonly found in development of expert system. The system developed 
would try to first establish a local cost from comparing between two logs. Then 
representation of the log data to discrete data was performed. Before using DTW to 
establish warping paths indicating correlations between two well logs, a distance matrix 
was created using string matching technique where insertion, deletion, or change of a 
character in a string give a different cost. Apart from the main objective of this work, 
the authors suggested that an explanatory description or conclusion of a correlation 
could also be drawn as each discrete value was a representative to some specific rules. 
Typical to any expert system, the system requires a regular update of its knowledge 
base from field to field. 

Vega [4] developed techniques to correlate well logs using wavelet analysis 
techniques. The techniques aims at detecting cyclostratigraphic sequences and true 
boundaries with absent of core data. Cyclostratigraphy was processed by applying 
wavelet analysis technique in order to assess wavelengths of the strongest cyclicities. 
Using scaleogram, wave properties such as frequency constituents were able to be 
extracted. Comparisons of using wavelet analysis, Fourier analysis, and semivariogram 
showed that Morlet wavelet scaleogram was superior to Fourier analysis and 
semivariogram in detecting cyclostratigraphy as the method could reveal 
superimposed cycles of two different frequencies and also the locations of those 
frequencies on the depth scale while Fourier analysis and semivariogram only 
identified two superimposed frequencies. True boundary detection was performed on 
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a discretized well log space. Feature extraction was performed at boundary-upper and 
boundary-lower windows. Training wells with best characterized data were used with 
the observation wells to calculate total probability from multiplication of boundary-
upper probability and boundary-lower probability. Then a boundary was assigned to 
observation wells at the highest probability. This process was repeated until the 
training wells had no boundary left. The result was measured in detection performance 
and it was as high as 90%. 

Wavelet analysis method requires a priori which is the wavelet model. 
Sometimes it requires trial-and-error process in order to select an appropriate wavelet 
to a particular problem. Many method are aiming at processing non-stationery data 
such as Empirical Mode Decomposition (EMD). As the name implies, EMD is mostly 
applied in an empirical manner [5]. Similar to wavelet decomposition, EMD can be 
used to decompose the original signals into fundamental signals called intrinsic mode. 
Dragomiretskiy and Zosso [11] developed Variational Mode Decomposition (VMD) that 
is based on mathematical foundation while it stills maintains data-adaptive wave 
decomposition technique. Li et al. [12] proposed VMD-based method to perform 
seismic sedimentary cycle and facies analysis in an unconventional reservoir in Fort 
Worth, Texas. 

Apart from signal processing and their related techniques, there are also 
machine learning related techniques presented in the literatures. Luthi and Bryant [7] 
presented correlation technique using back-propagation neural network. The method 
can be divided as two sub-processes: one for datum correlation and another for marker 
correlation. The first sub-process was first trained from the key well using tapped delay 
line (or sliding-window) technique as an input layer. During the training, the network 
provided output 1 when a boundary was at exactly at the middle node of the input 
layer. The network itself contained two hidden layers and their number of processing 
nodes were determined empirically. The second sub-process was first trained with two 
dataset which are shale volume and vertical distance to datum. Locations at high 
confidence peaks from output confidence curve were identified as possible 
boundaries, which were then validated by geologist. 
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Fischetti et al. [13] presented a method to characterize shale and correlation 
well logs using density, neutron porosity, and acoustic transition log to calculate M 
and N parameters, which primarily are used in rock matrix mineralogical identification, 
as inputs to a competitive neural network. The network consisted of a competitive 
layer accepting two inputs. The competitive network for shale characterization was 
used to confirm lateral continuity. The result showed that the network successfully 
identified correct shale interval as the result agreed with the gamma ray log. Although 
there was no indication of number of neurons used in the shale characterization case, 
neurons in the competitive layer that was use in well correlation were as high as 20 
neurons in order to allow redundancy and guarantee that all shale clusters were 
identified. 

Cassisi et al. [14] applied time series motif discovery technique proposed by 
Mueen et al. [15] to investigate recurrent eruptive activity of Mt Etna during 1 January 
2011 to 16 November 2011 from seismic volcano monitoring signals. The seismic signal 
is seismic amplitude time series which were computed using a root-mean square (RMS). 
The number of data points were 43,103 and the number of references were 10. The 
study investigated results due to varying parameters such as motif length (50, 100, and 
150 – durations of seismo-volcanic phenomena of interests), coefficients used for motif 
range (2, 3, and 4), and number of desired groups of motifs (maximum at 20). Once the 
motifs had been extracted, they were undergone similarity measurement using average 
cross correlation. The study found that exact motif discovery technique using MK 
algorithm revealed different seismo-volcanic phenomena from differences in 
discovered RMS trends. For example, one group of RMS trends that exhibited sharp 
increases and decreases RMS (lasting from seconds to minutes) are earthquakes while 
another group of RMS trends that exhibited slower changes of RMS (in hours or days) 
are lava fountains. 

To the best of the knowledge, there is no application of exact time series motif 
discovery technique in well log correlation problem. It may be due to the fact that 
the technique is still relative new. Therefore, it should be useful to investigate the 
applicability of exact time series motif discovery to well log problem.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 
THEORY AND CONCEPT 

3.1 Pattern Matching via Similarity Measurement 

As previously discussed in Chapter 1, the first approach for well correlation 
process is pattern matching from a known pattern to any section of a well log of 
interest. In this approach, the known pattern is slid throughout the well log to be 
correlated. The best correlation for the pattern may be quantitatively considered as 
the pair that is the most similar. In order to determine how similar a pair is, similarity 
measurement techniques are used in this closeness assessment. 

In order to measure closeness between two groups, an appropriate comparison 
technique is required. Depending on definition of closeness being considered, 
appropriate comparison techniques are typically governed by comparison objectives. 
Types of the objects also play an important role in choosing comparison technique. 
Numerical data series, for example, may be compared based on varying means such 
as direct numeric comparison, discrete representation comparison, descriptive 
statistical parameter comparison, and model coefficient comparison. Some techniques 
may provide comparison score which can later be used to quantify how close those 
two groups being compared are. This process of assessing closeness of two groups may 
be referred to as similarity measurement, which can be outlined as follows. 

1. Once a comparison method is chosen, data preparation is performed according 
to pre-conditions specified by the method. 

2. Data re-representation is typically applied if the method works on different 
space that that of the data’s original space. 

3. If more than two datasets are used in the comparison, cross comparison of all 
dataset may be needed. 
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4. Resulting comparison scores of each dataset pair are then used. A cutoff score 
may be defined in order to divide the scores into two groups of datasets that 
are under and out of a particular cutoff score. 

Specific to this study, well log data is considered to be numerical data. Each 
data point is considered to be independent from its neighboring data points. Therefore, 
similarity measurement is performed based on its intrinsic value of each data point 
recorded by a logging tool. Distance measurement is a measurement responsible for 
generating a comparison score of each similarity measurement. Frequently, distance 
measurement is not arbitrarily chosen. It is, instead, governed by an algorithm chosen 
in another process. For example, a pattern discovery process may require a specific 
distance measurement in order to exploit a special property of the distance 
measurement. This is also the case of this study as this study employs MK algorithm 
[15] to find an exact motif pair. The algorithm explicitly uses Euclidean distance due 
to its specific properties as a distance metric.  

Not only is Euclidean distance utilized in this study, but Hamming distance and 
Levenshtein distance are also used in this study. The following sections provide details 
about the mentioned distance measurements. 

3.1.1 Data Representation 
In order to utilize an existing similarity measurement, data to be compared may 

need to be representative in order to fit the requirement of that particular method. In 
this study, Hamming distance and Levenshtein distance require that data be character 
string or discrete form. Therefore, any numerical data is typically represented as 
character string. Converting one numeric data point to a character is possible. It, 
however, is uncommon as one benefit of data representation to be achieved is 
dimensionality reduction, which reduces number of data points to be a set of 
predefined characters. Although dimensionality reduction results in an approximate 
(not exact) comparison, it is beneficial as the comparison may be more meaningful 
due to smearing effect, leaving small changes in data trend to be group with the main 
trend of the same group which is then re-represented by a character. 
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There are many data representation techniques presented in literatures. One 
of which is Symbolic aggregate ApproXimation (SAX). SAX is a symbolic and data-
adaptive method representing a long time series with length n to a predefined 
alphabet string of length w where w is much smaller than n ( )w n . Benefits of using 
SAX are as follows: 

­ Dimensionality Reduction: Similar to other data representations, SAX provides 
an approximate series from its original counterpart. Unlike other dimensionality 
reduction methods such as wavelet-based methods, the generation technique 
is simpler as it employs Piecewise Aggregate Approximation (PAA). 

­ Lower Bounding: A valid approximation serves as a representation of its original 
series while preserving similarity or dissimilarity and main characteristics of the 
original series on the approximated series. In other words, the dimension of 
approximated series is lower enough to still maintain majority of its original 
counterpart. Otherwise, it will not be useful as intrinsic features are changed 
after dimensional reduction.  

 

Steps to create representative data series using SAX are as follows. 

1. Perform z-normalization to the original data to convert the data to have mean 
( ) 0x   and standard deviation ( ) 1SD  . 

Perform PAA on the original data of length n  to the approximate data of length 

w   

Given original data series C  of length n  where  1 2 3  , , , , ,...,j nC c c c c c   and

1,2,3,...,j n . Since n  and w , it is obvious that and
w n

n w

 , Approximated 

series C  of length w  where  1  2 3, , , , ,...,i wC c c c c c   and 1,2,3,...,i w  can be 
generated from 
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This step results in a block-like data series of length w. 

The following trivial example demonstrates how a range is specified when 
n

w
  

 Given 33and 4n w    

 Therefore, 33
8.25 but

4

n n

w w

     

ID Lower Bound Upper Bound 

1 1.00 8.25 

2 8.25 16.50 
3 16.50 24.75 

4 24.75 33.00 

 

2. Perform representative discrete data (or word) C  of length w generation from 
the approximate data using Gaussian-distributed, approximately equi-probable 
symbols with number of symbols a, which can be determined from the area 
under a (0,1)  Gaussian curve. 

 

Given i  a breakpoint on a z-normalized y-axis giving an approximately equi-
probable region. Therefore, i  can be listed as follows: 
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, 0
1

, 0 1i

i
c

i
a

 
   
  

Lin et al. [16] provided a lookup table for breakpoints under Gaussian 
distribution with a ranging from 3 to 10. Alternatively, breakpoints corresponding to 
any number of symbol a can be found from z-transformed values giving probabilities 
from 1 to( 1)a a a  

 

Table 3.1 A look up table providing list of breakpoints corresponding to number of 
breakpoints required.  [16]  

a          

i  3 4 5 6 7 8 9 10 

1  -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 

2  0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 

3   0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 

4    0.84 0.43 0.18 0 -0.14 -0.25 

5     0.97 0.57 0.32 0.14 0 

6      1.07 0.67 0.43 0.25 

7       1.15 0.76 0.52 

8        1.22 0.84 

9         1.28 

Table 3.1 is easily obtained from normal distribution z-scores which are from 
an inverse of a normal cumulative density function (cdf) given particular mean and 
standard deviation with probability ranging from 1 to( 1)a a a   
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Example 

In order to better understand the whole process of data representation using 
SAX, the following section provides an example of how a data series is represented 
into an approximate series. 

1. Perform z-normalization to the original data to convert the data to have mean 
( ) 0x   and standard deviation ( ) 1SD   

 
Figure 3.1 Original data series 

 
Figure 3.2 z-transformed data series 

2. Perform PAA on the original data of length 90n   to the approximate data of 
length 3w   
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90

3

n

w
 

 
Table 3.2 Data range from PAA discretization 

ID Lower Bound Upper Bound Average Value 

1 1 3 -1.6972 

2 4 6 0.5169 
3 7 9 1.5505 

4 10 12 1.2236 

5 13 15 0.5645 
6 16 18 -0.0584 

7 19 21 -0.4572 
8 22 24 0.4163 

9 25 27 1.5291 

10 28 30 1.5375 
11 31 33 -0.1283 

12 34 36 -1.1994 

13 37 39 0.9319 
14 40 42 2.0148 

15 43 45 0.2667 

16 46 48 -0.5224 
17 49 51 -0.2601 

18 52 54 -0.6872 
19 55 57 -0.8813 

20 58 60 -1.0553 
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Table 3.3 Data range from PAA discretization (continued) 

ID Lower Bound Upper Bound Average Value 
21 61 63 -0.0376 

22 64 66 -0.6228 

23 67 69 -1.2602 
24 70 72 -0.9857 

25 73 75 -0.4178 
26 76 78 -0.4649 

27 79 81 -0.2065 

28 82 84 -0.2128 
29 85 87 -0.0569 

30 88 90 0.6603 

 

3. Perform representative discrete data (or word) C  of length w generation from 
the approximate data using Gaussian-distributed, approximately equi-probable 
symbols with number of symbols a  , which can be determined from the area 
under a (0,1)  Gaussian curve. 
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Figure 3.3 Time series discrete data representation using SAX. 

 

Figure 3.3 shows how a z-transformed time series dataset having 90 data points 
is represented as a character string containing 30 characters. The characters are a 
combination of A to J representing 10 equi-probable regions. In this example, the final 

representative discrete data C  is AGJIHEDGJJEBIJGDDCBBECBBDDEEEH. 

1.1.1 Metric 

A metric is a function returning a distance between two instances of a set X 
where 

:m X X   
For all instance a, b, c, this function must conform to the following criteria [17, 

18] 

­ Non-negativity:  , 0m a b    

­ Identity:  , 0 m a b a b     

­ Symmetry:    , ,m a b m b a   

­ Triangular Inequality:      , , ,m a b m a c m b c    

Metric may be considered as a special distance measurement conforming to 
the aforementioned properties. In other words, not all distance measurement is a 
metric. These properties are of benefits to motif discovery. Section 3.2 gives a thorough 
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discussion on how MK algorithm utilizes triangular inequality to help reduce number 
of distance calculations in most cases. 

1.1.2 Distance 

A distance is a numerical represented how much 2 given instances are far apart 
under a particular distance function. A distance is used to indicate similarity (or 
dissimilarity) of two given instances. There are many distance functions in mathematic 
literatures. Therefore, only distance functions or calculations used in this study are 
discussed. 

1.1.2.1 Euclidean Distance (ED) 

Given  

  1 2 3  ,  , ,..., , ,     n

nix x x x x x    
 and 

   1 2 3  ,  , , , ,...,i

n

ny y y y y y    
Euclidean distance of n-dimension of x  and y  is defined as  

   
2

1

,
n

i i

i

d x y x y


 
 

Euclidean distance is also a metric as it satisfies all metric criteria.  

1.1.2.2 Hamming Distance 

From a geometrical model in error detection and error correction codes, 
Hamming [19] provides a definition of his distance (which is later called Hamming 
distance) as a metric giving a distance between 2 equal-length bit strings from number 
of bit difference. For example, Hamming distances between the following data points 
and 000 are as follows. 
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Table 3.4 An example of Hamming distance calculation on a bit string 

Data Bit Representation Hamming Distance 
0 000  000, 000 0d   
1 001  000, 001 1d   
2 010  000, 010 1d   
4 100  000,1  00 1d   
7 111  000,1  11 3d   

The same idea is applicable to character string comparison. For example, 
Hamming distance between AAAA and AABB is 2. Hamming distance may be divided 
by string length to normalize its distance to be between 0 and 1. This normalization 
may be useful for comparison of resulting Hamming distance from different string 
length. 

1.1.2.3 Levenshtein Distance  

While Hamming distance is similar to substitution distance, Levenshtein 
distance is similar to edit distance when substitution, insertion, and deletion are also 
counted. Levenshtein distance may be used to compare between 2 strings having 
different lengths. Similar to Hamming distance, any change required to convert one 
string to another string has its associated unit cost (cost is 1). One of the major 
applications of this distance is in approximation string match when a smaller string is 
compared with a longer string. Below shows how Levenshtein distance is calculated 
[20]. 

Given  1 2 3  ,  , , ,     n

nx x x x x   and  1 2 3  ,  , ,..., m

my y y y y  where is a set 
of symbols, then   

 , ( , )matd x y d n m  
0, 0 and 0

( , 1) 1, 0 and 0
( 1, ) 1, 0 and 0
( 1, 1) ,where ( , ) ; 0 and 0

( , 1) 1
min ( 1, ) 1 ,

( 1, 1) 1

mat

mat

mat h kmat

h kmat

mat

mat

h k
d h k h k
d h k h k
d h k x yd h k h n k m

x yd h k
d h k
d h k

 
   

    


      
    

   
     

Therefore, the distance from comparing series x  and y  can be found at ( , )d n m   
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(a) Initialization (b) 2nd-row calculation (c) Completion 
Figure 3.4 Levenshtein distance calculation example [21]  

Referring to Figure 3.4, since S and S are identical in figure (b), the distance is 0. 
Next comparison is between S and h. Since they are not identical, a cost has to be 
considered. The cost is  1   min 0,1, 2 . Therefore, the cost is 1. This calculation is 
continued until the end of all strings. The real distance of comparing “Shawn” and 
“Sean” is 2, which is indicated in the lowest right corner of the distance matrix shown 
in (c). 

1.1.3 Nearest Neighbor Search (NNS) 

Nearest neighbor search in a typical time series research is a search technique 
that aims at returning the closest proximity between the subsequence of interest which 
is used as a query and a subsequence extracted from a different series in question. 
The proximity between the two subsequences typically refer to the use of distance 
function which gives a numerical distance figure indicating how close the two 
subsequences are. In a typical meaning of distance, the most similar subsequences are 
the subsequences having smallest distance compared with the other subsequence 
pairs. 

In this study, NNS is used to find the closest match or matches within a 
predefined maximum distance of the well log section of interest in other wells. In this 
search criteria, the search may give more than one match depending on the tightness 
of the predefined distance. The distance function used in the search is Euclidean 
distance. In order to be able to search for the matches, a sliding-window method, 
which slides one data point at a time, is used to form a prospective section of the 
same length as the length of the interest section, which is the length of window size 
w. The prospective section and the section of interest is then undergone distance 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 

calculation. This calculated distance is recorded at index i which represents a distance 
of such comparison between a section from i to i + w (forming a section of length w) 
with the section of interest of also length w. Once all the indexes are associated with 
distance figures, only sections having the distance figures under the predefined 
distance cut off are chosen. Since only sections having the distance figures under the 
predefined distance cut off are chosen, Early abandoning Euclidean distance, a 
variance of Euclidean distance that stops the distance calculation as soon as the 
cumulative distance exceeds the square of the predefined distance cut off and the 
distance is returned as infinity, may be used, thereby saving most of the calculation 
effort in the very much dissimilar sections. 

In this study, similarity measurement techniques used in this pattern matching 
process are varied but it is possible to categorize into 2 groups: exact similarity and 
approximate similarity. Exact similarity is a similarity that is assessed on the original 
data series while approximate similarity is a similarity that is assessed on the 
approximate series. In real application, approximate similarity may serve as a way to 
smear off some local variations.   
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3.2 Pattern (Motif) Discovery using MK Algorithm 

A motif or a time series motif is a pair of time series or a pair of time series 
subsequences extracted from longer time series having similar pattern to each other. 
Motif discovery is, typically, an operation where at least a search strategy is applied on 
a time series in order to recover intrinsic recurring pairs. Recurring patterns are of 
interest because they may reveal inherently new and useful information of the time 
series being studied.  

There are many motif discovery techniques which can be categorized by 
exactness of the similarity measurement technique used in motif discovery algorithms. 
Simplest exact motif discovery algorithm is brute force algorithm. Brute force motif 
discovery algorithm involves extracting a subsequence length s from the whole time 
series length n (  or   )s n s n . Then the subsequence is compared with a 
subsequence  ( )s s s n     extracted from original series on a sliding-window basis. 
Although brute force method gives exact motif discovery, the algorithm is quadratic, 
making it less applicable to large dataset since the time requires to work as such is 
intractable. For example, finding a motif pair of length 1,024 from 100,000 objects using 
brute force method takes 12.7 hours to complete [15]. This is considered to be less 
attractive approach for a real application.  

Apart from approximate motif discovery techniques, Mueen et al. [15] 
presented a method to perform exact motif discovery with reduced operating time 
named MK algorithm (Motif Kymatology algorithm). The method is reported to reduce 
the time used to perform a motif pair discovery (of length 1,024 from 100,000 objects) 
to 12.4 minutes, which account for 61.5 times reduction from conventional brute force 
method). Therefore, MK algorithm shows a promising performance for applying exact 
motif discovery on a real application.  

The reason underlining a huge reduction of operating time required to find an 
exact motif pair in a large dataset is due to an application of a pruning technique to 
avoid unnecessary distance comparison based on triangular inequality property of 
Euclidean distance metric. Even though this reduced number of comparisons results 
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in reduction in operating time in most cases, its worst case scenario is still the same 
scenario as that of conventional brute force technique, which is a complexity of  2O n  

where n is number of objects or data points. The worst case scenario only happens 
when the motif pair distance is larger than any lower bound. 

3.2.1 Intuition behind MK Algorithm 

As previously mentioned, MK algorithm is able to prune off unnecessary search 
space from exploitation of triangular inequality property of Euclidean distance metric. 
Mueen et al. [15] observed that if two objects are close in the original space (small 
distance), the objects must also be close in the linear ordering space. It must be aware 
that the reverse is not true; two objects that are close in the arbitrary linear ordering 
may be very far (large distance) in the original space. Linear ordering space provides a 
heuristic and useful information for motif discovery.  

In order to construct a linear ordering space, a reference point is chosen and 
distances between other points to the reference point are calculated. As the name of 
the space implies, the distances to the reference point are considered as distances in 
the linear space. This distance in linear space is a lower bound for each pair of two 
adjacent points. 

Then a search operation can be started by updating a recorded smallest 
distance value of the search operation called best-so-far. Initially, best-so-far is set as 
infinity in order to reflex the start of the search operation. Starting from the first value 
of the series, an original-space distance is required to be calculated only if the two 
adjacent points have the linear-space distance (lower bound) that is less than the 
current best-so-far. Moreover, whenever two adjacent points have its original-space 
distance between the pair that is less than current best-so-far, best-so-far is updated 
with this distance and the distance of the pair on the linear space is also recorded with 
same distance. If the calculated original-space distance of the pair, however, is not less 
than current best-so-far, only the linear-space distance of the pair is recorded using 
the pair’s original-space distance previously calculated.  
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Once the search operation is done, best-so-far will already have the smallest 
original-space distance. Before the pair providing its original-space distance that of best-
so-far is considered as a motif, another search operation on linear space is required. 
The pair that is also a motif must be within the same search window when the search 
window size is of the best-so-far. In other words, only the pair having its lower bound 
lowers than the recorded best-so-far is considered a motif pair. Figure 3.5 and Figure 
3.6 give a better illustration on how MK algorithm intuition works by using a node-
based example. Figure 3.6 shows how best-so-far indicating a running, original-space 
distance is obtained without having to directly calculate original-space distances of all 
pairs. From example given in the figure, only 4 original-space distance calculation is 
required. 
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(a) 

 

(b) 

 

(c) 

 
Figure 3.5 Original-space distances, linear-space distances, and lower bounds 

 
From Figure 3.5, distances in Figure 3.5(a) are initially unknown to the algorithm 

as they are calculated only when they are required. The distances in (a) is shown for 
brevity. Figure (b) is a figure showing how linear space from distances to a reference 
node is constructed. Figure (c) shows final lower bounds from linear-space distance 
differences between two adjacent nodes. 
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3.2.2 MK Algorithm Formal Statements 

According to intuition behind the algorithm previously discussed, it is essential 
to find a condition when comparisons can be stopped early while a motif pair can be 
discovered. Therefore, the condition is a condition where it is certain that further 
comparisons will give a pair that cannot be a motif. The condition is that when a lower 
bound is larger than the current best-so-far. If a pair falls in this condition, the original 
space distance of the pair will not necessarily be calculated as the pair cannot be a 
motif pair. Otherwise, its original-space distance has to be calculated as it is a potential 
motif. This condition can be shown by using triangular inequality property of a distance 
metric.  

Let ref be a reference time series in x where  1 2 3, , , , nx x x x x    

Let  ,i jx x  be the pair that its original-space distance is not going to be 

calculated. 

Triangular inequality      , , ,d p q d p r d q r   gives 

     
     

,  , ,

, , ,

i j i j

i j i j

d ref x d ref x d x x

d ref x d ref x d x x

 

 
 

Therefore,    , ,i jd ref x d ref x  is essentially the lower bound for  ,i jd x x  

and  ,i jd x x  can be avoided from calculation if    , ,i jd ref x d ref x  best-so-far 

since it is certain that  ,i jx x  is no longer a motif pair. Moreover, a lower bound can 

easily be calculated as it is a cheap subtraction operation. 

Generally, ref can be any series whether it is inside or outside of x. However, it 
is preferred to use ref from a subsequence of x since it would be easier to prevent 

 ,ref ref  from happening by assigning the original-space distance to be infinity as the 
pair is not valid. Up until this point, the trick of using internal reference series only 
reduces number of distance computations, but it does not reduce the search space as 
it is unknown that when the stop criteria of the search space would be since distances 
between the reference series and the other series still spans the entire dataset. In 
other words, there is still no indexing which the algorithm can be checked if the search 
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operation can be stopped. Sorting indices to linear-ordering space is a better option 
than sorting the lower bounds. Both methods help guide early search stop but with 
different complexity. 

Lemma 3.1 

Given 
Ix  a set of indices to linear-ordering distances 

Let offset be a positive integer 
If    I j offset I j

x x


   best-so-far for all 1  j n offset    and 0offset   then 

   
 

I j w I j
x x


   best-so-far for all 1 j n w    and  w offset  

Lemma 3.1 indicates that if a lower bound (a difference between 2 distances 
in linear ordering space) referenced by  I j offset

x


 and  I j
x  is greater than a running 

minimum distance in original space best-so-far, a lower bound referenced by  I j w
x

  

and  I j
x  is also greater than best-so-far since w is greater than offset. This is due to 

the fact that Ix  is a set providing indices to smallest-to-biggest distances between one 
series and another reference series. Therefore, a lower bound at w > offset is certain 
to be greater than best-so-far if the lower bound at offset is already greater than best-
so-far. 

Lemma 3.2 

If 1,2,3, 1offset n    and 1,2,3, ,j n offset    Then 
    ,

I j I j offset
x x


 

generates all the possible pairs. 

Lemma 3.2 states exactness of the algorithm [22] as it ensures search operation 
to be performed in all possible pairs. Interested readers may find proofs to the lemmas 
in the original literature [22]. 

In a very large time series, multiple references may help tighten lower bound. 
However, not all references are equivalently good as references. When multiple 
references are utilized, only the biggest lower bound is used for search operation as 
the biggest lower bound is likely to give the earliest early search stop and comparison 
rejection. To choose the biggest lower bound, the linear-ordering distance set with 
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largest standard deviation is chosen as the larger the deviation is the larger the lower 
bound. gap is used to allow indices between the prospective motif pair to be far apart. 
For example, sometimes it is unlikely that the prospective motif pair to be closed 
more than a certain number of data points. In this case, that data points are 
represented by a gap . Figure 3.7 shows a flowchart of MK algorithm. 
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Figure 3.7 MK Algorithm (based on [15]) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

METHODOLOGY 

In this study, there are two approaches to well log correlation being presented. 
Pattern matching is the technique to be used when a portion of well log signal around 
section of interest in known and there is a need to find the similar section(s) in other 
nearby wells while Pattern discovery is the technique to be used when only section 
length is known. The detailed methodology is as follows. 

4.1 Well Log Data Preparation 

Unless specified otherwise, there are three gamma ray logs used throughout 
this study. The well logs were obtained from three wells from SPIVEY - GRABS – BASIL 
field, Kingman County, Kansas, USA. The source of this material is the Kansas Geological 
Survey website at http://www.kgs.ku.edu/. All Rights Reserved. 

Table 4.1 Well log data source 

Well Name Well Depth  
From – To 

(ft) 

Logging 
Step 

(ft/data 
point) 

Usage in this study 

Depth  
From - To 

(ft) 

Purpose 

TJADEN A 
#6-13 

302.0 – 
4,411.5 

0.5 3,000.0 - 4,370.0 
(2,741 data points) 

Well Y, Sections 
extracted as 
model patterns 

TJADEN A 
#7-13 

350.0 – 
4,409.5 

0.5 3,000.0 - 4,367.0 
(2,735 data points) 

Well Z 

#3 TJADEN 
"C" 

0.0 – 
4,408.5 

0.5 3,000.0 - 4,370.0 
(2,741 data points) 

Well X 
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Unless specified otherwise, all data windows used are zero-based data 
windows. This means the first index is referred to as index 0 (not index 1). Therefore, 
data window whose first index is at index 0 is also referred to as data window 0 or 
Window 0. 

4.2 Pattern Matching 

The following steps are used in for performing well-to-well log correlation using pattern 
matching approach. 

1 Given a model pattern, find top five other similar patterns (data windows) of 
the same length from the different than the well the model pattern is chosen 
using Nearest Neighbor Search (NNS). Figure 4.1 shows that there are five data 
windows promoted by NNS given the model pattern of length 130 indexes 
shown in the upper left section of the figure. The five data windows  

 
Figure 4.1 Five smallest distances promoted by conventional NNS 

2 Perform multi-resolution analysis and summarize the best correlation result in 
a probabilistic manner. Typically, maximum number of PAA blocks does not 
exceed 1/2 × number of data points. Therefore, number of PAA blocks for any 
section length (window length or window size) having 120 and 130 data points 
(indexes) are from 5 to 50 blocks with an increment of five PAA blocks each 
interval (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50) and number of PAA blocks for 
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any section length having 200, 220, and 225 data points (indexes) are from 10 
to 100 with an increment of 10 PAA blocks each interval (10, 20, 30, 40, 50, 60, 
70, 80, 90, and 100). Number of SAX sections are fixed at 4, 6, 8, and 10 sections. 

1) Perform Piecewise Aggregate Approximation (PAA). This is a 
discretization over depth (x-axis). Figure 4.2 to 4.5 provides examples of 
approximate signals generated by PAA using number of PAA blocks of 
15, 25, 35, and 45 respectively. Since this model pattern and all data 
windows are of length 130, multi-resolution analysis is performed based 
on PAA of 5 – 50 blocks with increment of five blocks each interval. 

 
Figure 4.2 Approximate signals based on 15 PAA blocks 

 
Figure 4.3 Approximate signals based on 25 PAA blocks 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35 

 
Figure 4.4 Approximate signals based on 35 PAA blocks 

 
Figure 4.5 Approximate signals based on 45 PAA blocks 

2) Perform symbolic representation by discretizing log value (y-axis) with 
4, 6, 8, and 10 SAX sections where each section has equal interval 
probability. For example, each section in four SAX sections has 0.25 
probability while each section in 10 SAX sections has 0.10 probability. 
Figure 4.6 provides an example of symbolic representation over the 
model pattern. Note than symbols A to D (A, B, C, and D) are used to 
represent four SAX sections while symbols A to J (A, B, C, D, E, F, G, H, 
I, and J) are used to represent 10 SAX sections. This representation is 
performed for all number of PAA blocks. 
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Figure 4.6 Symbolic representation as part of SAX representation on the model 

pattern. 
3) Perform discrete series similarity measurement using Hamming distance 

and Levenshtein distance. For each distance measurement method 
used, there are 40 measurement for each data window and there are 
200 measurement for all five data windows. Therefore, there are 400 
measurement for each model pattern. Figure 4.7 provides an example 
of the results of all similarity measurement. 

 
Figure 4.7 Comparisons of distance measured by Hamming distance and Levenshtein 

distance 
4) Perform distance ranking for each resolution (each combination of 

number of PAA blocks and number of SAX sections). The first rank of 
the distance ranking is considered as the best match to the given model 
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pattern. Figure 4.8 shows two color maps representing the best match 
given by any particular resolution. Data windows previously promoted 
by conventional NNS are represented by different colors. 

 
Figure 4.8 The best match data window promoted by multi-resolution analysis 
3 Observe and make necessary judgement on the results. For example, Figure 

4.8 suggests that Window 1227 is the best match under multi-resolution 
analysis from both Hamming distance and Levenshtein distance given the fact 
that its probability of being the best match (first-rank distance) of 1.000 
(100.0%).  
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Figure 4.9 Pattern Matching process overview workflow 
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4.3 Pattern Discovery 

1 Select two well logs of the same log type to be correlated and connect them 
together to form an artificial well log. Note the breakpoint which is the last 
index of the first well log. Figure 4.10 shows an artificial which is created by 
concatenating Well Y (2,741 indexes) and Well X (2,741 indexes) with index 
2,741 served as a breakpoint between the two well logs. 
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Figure 4.10 An artificial well log from a concatenation of Well Y (top: above the 

breakpoint) and Well X (bottom: below the breakpoint)  
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2 Unless specified otherwise, standard deviation (SD) spans of -5.0 to 5.0 with 
incremental of 0.5 each SD interval are chosen in this study based on the 
gamma ray responses of the well logs chosen. These SD intervals will be used 
in heuristic reference series selection to cover the entire log value response. 
This is a modified step from the original MK provided by Mueen et al. [15]. 

3  provides the list of all SD intervals and their value range. The table also 
includes key statistical values of the artificial well log. In this case, the artificial 
well log is in the range of -1.5 SD to the maximum possible value at 5.0 SD. 
Figure 4.11 shows the artificial well log signal with SD interval boundaries. As 
can be seen in the grey-highlighted area in the figure, some portions of the 
signals are discarded as they are outside of the predefined SD intervals. 

4 Specify a section length for correlation. In this demonstration, a section length 
of 120 indexes is used. 
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Figure 4.11 The artificial well log with SD boundaries 

  

Legends

0.0 SD

-4.0 SD
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-1.0 SD

1.0 SD

2.0 SD

3.0 SD

4.0 SD

5.0 SD

-4.5 SD

-3.5 SD

-2.5 SD

-1.5 SD
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Table 4.2 Well log value from -5.0 SD to 5.0 SD span in 0.5 SD interval span 

Standard 
Deviation 

Gamma Ray 
(API) 

  
    

Min Max Min Max     
-5.0 -4.5 -187.87 -162.34 

No
 d

at
a 

av
ail

ab
le

 

 Mean 67.39 API 
-4.5 -4.0 -162.34 -136.82  SD 51.05 API 

-4.0 -3.5 -136.82 -111.29  Max 549.99 API 

-3.5 -3.0 -111.29 -85.77  Min 5.09 API 
-3.0 -2.5 -85.77 -60.24     
-2.5 -2.0 -60.24 -34.71     
-2.0 -1.5 -34.71 -9.19     
-1.5 -1.0 -9.19 16.34 

Da
ta

 a
va

ila
bl

e 

    
-1.0 -0.5 16.34 41.86     
-0.5 0.0 41.86 67.39     
0.0 0.5 67.39 92.91     
0.5 1.0 92.91 118.44     
1.0 1.5 118.44 143.96     
1.5 2.0 143.96 169.49     
2.0 2.5 169.49 195.01     
2.5 3.0 195.01 220.54     
3.0 3.5 220.54 246.06     
3.5 4.0 246.06 271.59     
4.0 4.5 271.59 297.11     
4.5 5.0 297.11 322.64     
5.0 5.5 322.64 348.16     

 
5 Once motif pairs (correlation results) are available, observe and make necessary 

judgement on the results. As shown in Figure 4.12 to 4.14, first to third-rank 
motif pairs are given as examples. The first-rank motif pair is the pair of Window 
98 and Window 2836. The second-rank motif pair is the pair of Window 1205 
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and Window 3953. The third-rank motif pair is the pair of Window 2212 and 
Window 4997. If all data windows were rebased to the indexes in Well Y and 
Well X, the first pair, for example, would be the pair of Window 98 on Well Y 
and Window 95 on Well X. The reference series for these motif pairs is Window 
4300 in the artificial well log and it is one of the 21 possible reference series 
drawn from samples in the SD spans from -5.0 to 5.0. Figure 4.15 shows the 
final well-to-well log correlation given these motif pairs. Notice that all data 
windows are rebased to their respective wells: either Well Y or Well X. 

 
Figure 4.12 First-rank motif pair 

 
Figure 4.13 Second-rank motif pair 
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Figure 4.14 Third-rank motif pair 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46 

 
Figure 4.15 Final well-to-well log correlation of the section length of 120 indexes 
(120 data points or 60 ft) using Window 4300 on the artificial well log as the final 

reference series 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47 

 
Figure 4.16 Pattern (motif) discovery using MK algorithm 

Figure 4.16 provides a summary of steps for pattern discovery technique when 
a distance cutoff (maximum allowable distance) is used. In this case, the number of 
motif pairs from MK will depend on the pairs’ distance values and the distance cutoff 
specified before starting the pattern discovery process. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

PATTERN MATCHING 

Conventional well log correlation typically is a challenging task requiring 
experienced engineers, geologists, and petro-physicists and sometimes deep 
understanding of local geological characteristics. With advanced techniques in data 
processing, digital well log correlation is still a challenging task.  

In this study, pattern matching-based digital well log correlation techniques 
revolve around correlating known patterns of interest from one well to other nearby 
wells. Digital well log data in this study is a data series whose data points are responses 
recorded by a logging tool with associated locations in the well where the responses 
are recorded. To make sure that digital well log correlation is valid, logging frequency 
is assumed to be the same for all sections to be correlated. To correlate a section of 
interest, sliding window-based technique is used on top of similarity measurement. 
Sliding window-based technique ensures that all possible candidate sections are 
included in similarity measurement where closeness between the section of interest 
and candidate section is measured as a quantifiable result called distance. As shown 
in Figure 5.1, a section of interest is being slid over a well log. While the section is 
being slid, similarity measurement is also performed to quantitatively assess closeness 
of the section of interest with the data window at which the window is. The section 
length is constant throughout the sliding operation and the step size is one index at a 
time. For example, a window of length 120 indexes at depth index 500 is called 
Window 500 and it covers from depth index 500 to depth index 620. The window will 
be called Window 950 when it is slid for another 450 indexes. Unless stated otherwise, 
the step size equals one and it also means the window is moved one data point at a 
time given one index is one data point. After similarity measurement is performed over 
all candidate sections, the best match having the smallest distance is chosen for 
correlation. The approach outlined is essentially a search technique named NNS. 
Therefore, it may be able to say that pattern matching-based digital well log correlation 
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is NNS-based well log correlation. It has been known that the details incorporated in 
each variety of NNS are what make application-led NNS interesting. Owing to simplicity 
and robustness of the algorithm and applicability to well log correlation, conventional 
NNS and its cutting-edge variances are chosen as the backbone of pattern-matching-
based digital well log correlation. This chapter shows how different distance 
measurements play a major role in robustness of well log correlation, especially when 
local variations are present. To demonstrate the applicability of NNS and its variances 
in well log correlation, three example correlations using real well logs are given.  
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Figure 5.1 Sliding window of a section of interest. 

5.1 Example Correlation 1 

This example discusses how conventional NNS can be used in well log 
correlation. To start performing well log correlation using pattern matching technique, 
there must be a section of interest. This section is then used as a model pattern to 
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find the most similar section in other wells using a sliding window-based technique. 
The model pattern is slid throughout other wells where well log correlation is needed. 

While the model pattern is being slid along the well log to be correlated, a 
distance measurement between the model pattern and well log data within that 
window is performed. In conventional NNS, Euclidean distance is used as the distance 
measurement. Euclidean distance is considered suitable for absolute distance 
measurement as it treats values being used in the measurement as continuous values 
because even slightest difference between two numerical values can still be 
quantified. Top five data windows having smallest distances are chosen for discussion 
once the model pattern is slid to the end of the well log to be correlated. Figure 5.1 
shows that five smallest distances of length 120 indexes (the same length as the model 
pattern) based on Euclidean distance are promoted as potential sections to be 
correlated. 

 
Figure 5.2 Five smallest distances promoted by conventional NNS 

Figure 5.2 also shows that Window 1514 is the best match to the given model 
pattern because it has the smallest distance (298.23) among all data windows. In this 
example, the best match can be easily identified even without a distance 
measurement as it almost perfectly matches the model pattern. This case also shows 
that difference in data magnitude or difference of well log response at a certain depth 
contributes to distance measured. Window 1897, the second best match, gives a good 
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example as its distance (526.88) is much higher than that of Window 1514 even though 
its overall data trends relatively match the model pattern. This is due to the fact that 
there are regions where large magnitude differences are present in the calculation and 
all the differences are equally treated under Euclidean distance. 

While continuous-based approach already gives a good correlation to the 
model pattern, it is also of interest to see if multi-resolution analysis based on discrete-
based approach will give any additional information on the correlation. 

5.1.1 Multi-resolution Analysis 

To perform multi-resolution analysis, basically original well logs have to be 
discretized (in both depth axis and data value axis) and be represented as discrete 
well logs, which have details reduced from the original well logs. Discrete well logs are 
well logs represented by series of predefined set of symbols. Then distance 
measurement is performed using a method that is capable of providing distance figure 
when at least two discrete series are being compared. SAX representation with 
Hamming distance and Levenshtein distance as distance measurement methods is 
chosen in this study. 

The first step in SAX representation is to perform Piecewise Aggregate 
Approximation (PAA) to turn real-valued high frequency data of original well log data 
into real-valued data with fixed number of blocks by performing discretization on well 
log’s depth axis. The resulting well log signal is called approximate signal. Block values 
are average data values of those original data points falling into the same blocks. For 
example, each PAA block is an average of 8, 4.8, 3.5 (approx.), and 2.7 (approx.) data 
points given the desired number of PAA blocks are 15, 25, 35, and 45 blocks over an 
original well log signal of 120 indexes as shown in Figure 5.3. It can be seen from Figure 
5.3 that increased number of PAA blocks gives PAA signals with more details which 
capture peaks and troughs from the original signal. Too small number of PAA blocks 
may result in too-coarse approximate well log signal while too large number of PAA 
blocks may result in too much details kept in approximate well log signal. 
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Figure 5.3 PAA signals on the model pattern using different number of PAA blocks 

A balance point is typically required for generating an approximate well log 
signal from a high-frequency well log signal. A good balance point must provide the 
smallest distance (between the approximate well log signal and its original 
counterpart) as number of PAA blocks increases. One technique that can be used to 
determine an appropriate number of PAA blocks is to calculate the distance between 
original well log and its approximate version using a distance measurement method 
such as Euclidean distance. The most appropriate number of PAA blocks is when the 
distance between the two series is just about to increase as it is the point where the 
approximate well log is closest to its original counterpart. The method is shown in 
Figure 5.4. 

 
Figure 5.4 Selection of number of PAA blocks using Euclidean distance between 

approximate well log and its original counterpartFigure 5.4 shows that different data 
windows may have different balanced numbers of PAA blocks. While having higher 
number of PAA blocks means the discrete signals have higher resolution and are 

closer to their original counterparts as can be seen from reducing distance trends, it 
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is commonly found in practice that the optimal number of PAA blocks (shown with 
red dots) may not be the same in all data windows. To prevent bias in choosing just 
one particular number of PAA blocks, it is better to use multi-resolution analysis, i.e., 

analysis based on different numbers of PAA blocks. In this example, 10 sets of 
number of PAA blocks starting from 5 PAA blocks up to 50 PAA blocks, with 

increment of 5 PAA blocks, were used in multi-resolution analysis. Approximate 
signals based on 15, 25, 35, and 45 PAA blocks representing coarse resolution to fine 

resolution are shown as examples in Figure 5.5 to 5.8. 

 
Figure 5.5 Approximate signals based on 15 PAA blocks 

 
Figure 5.6 Approximate signals based on 25 PAA blocks 
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Figure 5.7 Approximate signals based on 35 PAA blocks 

 
Figure 5.8 Approximate signals based on 45 PAA blocks 

Figure 5.5 to 5.8 clearly show that different data windows need different 
number of PAA blocks in order for the approximate signals to cover not only their main 
trend but also characteristic peaks and troughs which later result in reducing distance 
trend as approximate signals are becoming closer to their original counterparts. 

Given a specific number of PAA blocks, SAX representation can then be 
performed. While PAA is used to discretize depth (x-axis) into equal-size intervals, SAX 
equally discretizes the value axis (y-axis) based probability under normal distribution 
assumption, i.e., each interval of the y-axis has the same probability. This means that 
well log response must be assumed to be normally distributed. To make this method 
work practically, it is assumed that normal distribution is drawn from model pattern of 
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each pattern matching task. Then SAX equally discretized sections are established 
based on number of equi-probable sections needed for model pattern. Finally, section 
boundaries drawn from SAX discretized model pattern will be used in all other data 
windows. Completing PAA discretization on the depth axis and SAX discretization on 
the value axis turn a real-valued continuous well log response to a discrete well log 
response. Figure 5.9 provides examples of a mode pattern under varying SAX 
discretization over an approximate well log of 120 PAA blocks. On the left most of the 
figure, it shows normal probability plot of the original model pattern. The fitting line is 
the line of best fit of the normal probability plot. The four remaining plots on the right 
of the figure provides what SAX discretization on the value (y-axis) looks like. As 
typically seen in normal distribution, the value ranges for each SAX interval are smaller 
near the mean value and larger far away from the mean value. Each value interval, 
however, is equally probable. The symbols on the right of each plots are the symbols 
used as representative values for each SAX section. For example, each SAX section 
accounts for probability of 0.250 when the value axis is discretized into four SAX 
sections represented by symbols A, B, C, and D. In this study, 4, 6, 8, and 10 SAX 
sections covering equal probabilities of 0.250, 0.167 (approx.), 0.125, and 0.100 are 
chosen. 

 
Figure 5.9 Well log value (y-axis) discretization using various equi-probable SAX 

sections  
Based on an assumption that well log data are normally distributed, SAX can 

be used. The range covered by a SAX symbol is dictated by probability number where 
each SAX section covers an equal probability of well log value on the range. While it 
is designed based on normal distribution assumption, conventional SAX is also 
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applicable to well log data that may not be perfectly normally distributed. However, 
accuracy of identified first rank match may vary also with distance measurement used. 

In this study, Hamming distance is used for providing distance value based on 
same-position mismatch comparisons. Distance values are honored as there are 
mismatches of symbols used to represent well log values drawn from two (or more) 
well logs in the same depth interval (at the same PAA block). The method checks if 
there are substitutions of one symbol on the model pattern to another symbol on any 
given data window. This is beneficial in finding if there are changes in properties at the 
same depth interval given different well locations (from different well logs) and types 
of the well logs. Levenshtein distance not only captures possible substitutions of 
symbols but it also captures possible properties shifting of the same symbols in 
different depth intervals. Properties shifting is a challenging digital well log correlation 
problem. This is also beneficial in well log correlation as it helps digital well log 
correlation to be more accurate as properties shifting results in high Euclidean distance 
and Hamming distance, but may not result in high Levenshtein distance. 

Similarity measurement in terms of Hamming and Levenshtein distances at 
different number of PAA blocks and SAX sections is used to observe how converted 
well logs into discrete series are valid in well log correlation task and how Hamming 
and Levenshtein distances help decide the best match to a given model pattern. In 
this example correlation, similarity measurement using Hamming and Levenshtein 
distances is performed against all data windows (1514, 1897, 219, 2071, and 1647) using 
all combinations of number of PAA blocks and number of SAX sections mentioned. 
Distance values are then plotted in color maps as shown in Figure 5.10. Notice that 
possible distance in these discrete-series similarity measurement is ranging from 0, 
identical to the model pattern, to the maximum number of PAA blocks, complete 
dissimilar to the model pattern. For example, the distance values can be between 0 
and 30 when 30 PAA blocks are used. 
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Figure 5.10 Comparisons of distance measured by Hamming distance and 

Levenshtein distance 
Figure 5.10 shows similarity measurement in terms of Hamming and 

Levenshtein distances at different number of PAA blocks and SAX sections of the five 
data windows previously chosen by continuous-based well log correlation approach. 
The darker color represents smaller distance than that of the brighter color regardless 
of distance measurement methods used. From this figure, it confirms that Window 
1514 is the best match to the given model pattern as it has the smallest Hamming and 
Levenshtein distances for different resolutions (different PAA blocks and SAX sections). 
An important point that can also be seen in the figure is that the higher the resolution 
of discrete signals (more number of PAA blocks and SAX sections) the higher the 
chance those signals pickup details from the original counterparts, thereby resulting in 
higher distance figures. While very small number of PAA blocks and SAX sections 
provides small distance values, it may not give enough details in the comparisons, 
thereby making less sense to use if the well log signals show significant degree of 
fluctuation or have local variations. This is due to the fact that too small number of 
discretized PAA blocks and SAX sections creates a too-coarse approximation, which in 
turn results in small distance as approximate and discrete signals are gathered around 
mean values, taking almost no peak and trough in the represented signals. 
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To finally suggest the best match under this multi-resolution analysis, only the 
smallest distance for each combination of different PAA blocks and SAX sections is 
promoted. As shown in Figure 5.11, the best matches are promoted independently for 
each combination of PAA blocks and SAX sections. Each data window is assigned a 
color to use in the resulting color maps. When one of the data windows is promoted 
as the best match given any particular combination of PAA and SAX, its representative 
color is painted in the color maps. The final best match based on multi-resolution 
analysis is considered in a probabilistic manner, by calculating number of that data 
window promoted ass the best match over total combinations.  

 
Figure 5.11 The best match data window promoted by multi-resolution analysis 

Figure 5.11 shows that Window 1514 is most likely the best match to the model 
pattern given its probability of being the first rank, given a pair of number of PAA blocks 
and number of SAX sections used, of 0.975, outpacing the probability of Window 1897 
to be the best match as its probability is only 0.025. To be promoted as the best 
match, the data window must have the smallest distances measured by both 
Levenshtein distance and Hamming distance. As can be implied from the results, multi-
resolution not only helps confirm which data window provides the best match to the 
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given model pattern, but also provide a probabilistic view of how best the best match 
is to be correlated to the model pattern. If both distance measurement methods 
cannot promote only a single best match, human interpretation may be needed and 
the distance values may be used as an aid for selecting the best possible matches. 
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5.2 Example Correlation 2 

This example discusses how slight local variations affects well log correlation 

performed by NNS and how multi-resolution analysis can unveil the correct correlation. 

The model pattern of length 120 indexes used by this example is the same pattern 

used in 5.1. However, the pattern will be used to find another different best match 

from a different nearby well. 

As outlined in section 5.1, NNS is first performed to find top five data windows 

giving the five smallest distances given the model pattern. Once NNS is complete, 

Window 1903, Window 1510, Window 214, Window 1281, and Window 8 are the five 

smallest data windows promoted by the search with distances to the model pattern 

of 578.36, 643.48, 923.47, 961.95, and 975.69 respectively. 

 

Figure 5.12 Five smallest distances promoted by conventional NNS 
Under visual inspection, it could be said that Window 1903 and Window 1510 

are arguably the best matches given some specific considerations. For example, 
Window 1903 could be chosen as the best match given the fact that the two gamma 
ray peaks are at almost the same location even though the two peaks do not have 
similar gamma ray levels and Window 1510 contains deviations in gamma ray starting 
from depth index around 105 onwards. Both better match in Window 1903 and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62 

deviations found in Window 1510 could be used to justify and select Window 1903 as 
the best match. However, one might say that Window 1510 is the best match to the 
given model pattern due to the fact that the first 60 depth indexes of the data window 
provides almost a perfect match to the model pattern and the two gamma ray peaks 
from the data window are relatively at the same or similar levels even though there 
are deviations in depth axis from depth around 105 onwards and its overall distance 
to the model pattern is higher than that of Window 1903. 

To find true best match to the model pattern in this example, a more robust 
method is required. It is typical in nature that the sections correlated may contain 
some variations and it is challenging to justify which section is the best match in such 
situation by using only conventional NNS with Euclidean distance alone. Multi-
resolution approach can help unveil true best match in such situation. 

5.2.1 Multi-resolution Analysis 

To continue with multi-resolution analysis, the model pattern and all the five 
smallest-distance data windows promoted by NNS undergo data representation to 
convert them from the original series first into block-like series and then further convert 
into discrete series by using SAX representation. 

The first step of SAX representation is to perform PAA which gives block-like 
series based on originally continuous series and chosen PAA blocks. As can be seen 
from Figure 5.13, it is unable to find a common number of PAA blocks to convert the 
original series into approximate series since Window 1903, Window 1510, and Window 
214 are more appropriate for PAA at the maximum number of PAA blocks at 50 blocks 
while Window 1281 is more appropriate at 20 PAA blocks and Window 8 is more 
appropriate at 30 PAA blocks. This variety in number of PAA blocks suggests that 
comprehensive multi-resolution using multiple number of PAA blocks is required. 
Therefore, PAA blocks of 5 to 50 with incremental of five PAA blocks are used in the 
multi-resolution analysis. Approximate signals based on 20, 25, 30, 35, and 40 PAA 
blocks representing coarse resolution to fine resolution are shown as examples in 
Figure 5.14 to 5.18. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63 

 
Figure 5.13 Selection of number of PAA blocks using Euclidean distance between 

approximate well log and its original counterpart 

 
Figure 5.14 Approximate signals based on 20 PAA blocks 
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Figure 5.15 Approximate signals based on 25 PAA blocks 

 

 
Figure 5.16 Approximate signals based on 30 PAA blocks 
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Figure 5.17 Approximate signals based on 35 PAA blocks 

 
Figure 5.18 Approximate signals based on 40 PAA blocks 

Increasing number of PAA blocks typically results in a closer approximation to 
its original counterpart. Logically, this increase in number of PAA blocks should result 
in the decrease in Euclidean distance calculated between approximate signal and its 
original signal. However, it is frequently observed that the higher number of PAA blocks 
do not always guarantee a closer approximation, especially when number of PAA 
blocks are relatively small compared to the total number of data points making the 
original signals. This is due to the fact that number of data points used in the numerical 
average in each PAA block may result in higher than that of the portion of original 
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signal, thereby contributing to higher distance overall. This behavior is often seen in 
locations with fast and drastic change in the trends of the well log signals as shown in 
Figure 5.19 for approximate signals of Window 1281 under 20, 25, and 30 PAA blocks 
and Figure 5.20 for approximate signals of Window 8 under 30, 35, and 40 PAA blocks. 
The figures are highlighted with example locations where increased number of PAA 
blocks result in poorer approximation, signified by increased overall distance values. 

 
Figure 5.19 Approximate signals of Window 1281 under 20, 25, and 30 PAA blocks 

over z-transformed signals. 

 
Figure 5.20 Approximate signals of Window 8 under 30, 35, and 40 PAA blocks  

over z-transformed signals. 
Number of SAX sections are 4, 6, 8, and 10 as previously chosen from 5.1. This 

study found that these four sets of SAX sections are enough to be used for 

differentiating well log correlation under local variations. These 10 sets of number of 

PAA blocks, discretizing depth (x-axis) into equal-size intervals, and 4 sets of number 

of SAX sections, discretizing the log values (y-axis) into equal-probability intervals, 

account for 40 resolutions for each data window. This results in 200 resolutions for 

Hamming distance and 200 resolutions for Levenshtein distance, totaling 400 

resolutions in the analysis. Figure 5.21 shows color maps of distance values calculated 

by Hamming distance and Levenshtein distance of all the 400 resolutions 

aforementioned. The figure also suggests that only one set of SAX sections is not 

20 PAA blocks 25 PAA blocks 30 PAA blocks

30 PAA blocks 35 PAA blocks 40 PAA blocks
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sufficient for multi-resolution analysis. As can be seen in Window 1510’s color maps, 

10 SAX sections do not always give the closet approximation to the original signals 

since the overall distance values are higher than that of 8 SAX sections signified by the 

brighter color on the resolutions with 10 SAX sections than that of the resolutions with 

8 SAX sections. 

Once distance values of all resolutions are available, the data window having 

smallest distance value in each resolution combination is then promoted as the best 

match for that particular resolution, which results in Figure 5.22 where each resolution 

has only one best match to the model pattern. To finally select the overall best match, 

a probabilistic score is calculated. From the figure, Hamming distance promotes 

Window 1510 as the best match to the model pattern with probability of 0.875 while 

Levenshtein distance promotes the same data window with probability of 0.900. This 

whole process does not involve indicating the location of the model pattern at 

Window 1500 but multi-resolution analysis can still uncover the correct best match 

pair of Window 1510 in a nearby well.  

 

Figure 5.21 Comparisons of distance measured by Hamming distance and 
Levenshtein distance 
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Figure 5.22 The best match data window promoted by multi-resolution analysis 

5.3 Example Correlation 3 

This example provides an example correlation using a longer section length than that 
of the first two example correlations. The model pattern used in this example is of 
length 200 indexes.  

To start the process, NNS is first performed in order to find the five smallest 
distance under Euclidean distance given the model pattern. Figure 5.23 shows the five 
data windows (Window 901, Window 1290, Window 0, Window 698, and Window 2527) 
having smallest Euclidean distance from conventional NNS. Based solely on visual 
inspection, all data windows share some portions of them with relatively good match 
to the given model pattern shown on the upper left of the figure. For example, Window 
2527 shows a relatively good match during depth index of 175 to 200 while it has the 
highest distance of all the five data windows. Window 1290 (the second rank) and 
Window 901 (the first rank) share a relatively good match during depth index of 25 to 
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50 but Window 901 has the lower overall distance. Window 0 shows a relatively good 
match during depth index 80 onwards but there are differences in the magnitudes of 
the log signals. While Window 698 seems to have the poorest match under visual 
inspection, it is however ranked four as mostly the data window follows the peaks and 
troughs of the model pattern, albeit much difference in the log signal magnitudes. 
Such patterns would be interesting under multi-resolution analysis. 

 
Figure 5.23 Five smallest distances promoted by conventional NNS 

5.3.1 Multi-resolution Analysis 

As previously mentioned, all the data windows promoted by conventional NNS share 
some similarity to the model pattern. This makes an additional analysis necessary as 
it may help finalize the best match. Since the model section is of length 200 indexes, 
the set of PAA blocks starts at 10 PAA blocks to 100 PAA blocks with block incremental 
of 10 as outlined in Chapter 4.  

To start the multi-resolution analysis, an analysis of the suitable number of PAA 
blocks for discretization of the section depth (x-axis) is performed. Figure 5.24 shows 
different optimal number of PAA blocks in the model pattern and all other five data 
windows. The model pattern and Window 901 share the same optimal number of PAA 
blocks at 60 blocks while both Window 698 and Window 2527 share the same optimal 
number of PAA blocks at 50 blocks. Window 0 shows that its optimal number of PAA 
blocks is at 80 blocks while Window 1290 shows that 100 blocks are the optimal PAA 
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blocks as the distances between the approximate signals and their counterpart are 
monotonically decreased throughout the entire selection of number of PAA blocks. 
Such varying number of PAA blocks make multi-resolution analysis necessary as it is 
impossible to choose only single number of PAA blocks without a bias.  

 
Figure 5.24 Selection of number of PAA blocks using Euclidean distance between 

approximate well log and its original counterpart 
Once similarity measurement using Hamming and Levenshtein distances are 

complete, Figure 5.25 is plotted showing color maps of all resolutions. Based solely 
on visual inspection, Window 0 seems to have the darkest color maps overall, signifying 
that Window 0 could potentially be the best match. The interesting thing is that 
Window 0 generated by Levenshtein distance measurement seems to have a bit darker 
color than that of generated by Hamming distance measurement. 

To finalize the best match, all data windows are ranked based on Hamming 
and Levenshtein distances. Figure 5.26 shows color maps of the best match under 
varying resolution under Hamming and Levenshtein distances. Hamming distance 
suggests that Window 0 be the best match to the model pattern with its probability 
of being the best match of 0.700 while Levenshtein distance suggests that Window 0 
be the best match with higher probability at 0.850. Interestingly, Window 901 only has 
probability of being the best match only at 0.300 under Hamming distance and only 
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at 0.150 under Levenshtein distance. No other data windows are promoted in this 
multi-resolution analysis, albeit similarity in the well log signals aforementioned. 

 
Figure 5.25 Comparisons of distance measured by Hamming distance and 

Levenshtein distance 

 
Figure 5.26 The best match data window promoted by multi-resolution analysis 
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As can be seen on all three example correlations, discrete series with multi-
resolution helps identify best matches given different model patterns while Euclidean 
distance fails to identify the correct best matches. Table 5.1 provides a summary on 
parameters used in multi-resolution analysis and the final results based on the analysis 
of the three example correlations. All of the correlated sections are kept as they are 
valid sections. 
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5.4 Multiple Well-to-Well Log Correlation 

As shown in three example correlations, pattern matching approach shows a promising 
result on well-to-well log correlation even when local variations exist. This example 
shows that multiple well-to-well log correlations can be performed using pattern 
matching approach, given all model patterns for each correlated sections are known. 
To perform multiple well-to-well log correlation, each well log pair is undergone well-
to-well log correlation using known model patterns until all sections are correlated. 
Then the same model patterns are used to correlate another set of well-to-well log 
correlation. The approach works under an assumption that the model well whose 
model patterns are extracted must be the center of the other nearby wells to be 
correlated.  

Figure 5.27 shows an example of multiple well-to-well log correlation using 
pattern matching approach. From the figure, patterns from Well Y are used as model 
patterns to correlate Well X and Well Z. Model pattern P has its length of 200 indexes. 
Model pattern Q has its length of 225 indexes. Model pattern R has its length of 130 
indexes. Model pattern S has its length of 120 indexes and Model pattern T has its 
length of 220 indexes.  
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Figure 5.27 Multiple well-to-well log correlation using pattern matching approach 

 
Table 5.2 Section length and the locations where the section is correlated across 

Well X, Well Y, and Well Z 

Section Section 
Length 

(indexes) 

Well X 
Index 

Well Y 
Index 

Well Z 
Index 

Status 

P 200 5 0 0 Kept 

Q 225 642 630 628 Kept 
R 130 1227 1215 1222 Kept 

S 120 1514 1500 1510 Kept 
T 220 2188 2215 2258 Kept 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

PATTERN DISCOVERY 

Well log correlation still mostly relies on trying to find the best match for a 
known section drawn from a well-studied well log. This results in well log correlation 
shortcomings because well log correlation might not be started when there is no 
known section. Pattern discovery technique is used to allow well log correlation to 
start early when only a section thickness (well log section length) is known with 
certainty. One of the pattern discovery techniques that is almost readily applicable for 
well log correlation is MK algorithm. 

The ability to find a pair of best match in a long series makes MK algorithm 
(MK) useful for well log correlation task. Given a section length, MK automatically 
returns the best-match pair having smallest Euclidean distance. Similar to Pattern 
Matching techniques, this smallest-distance pair can be correlated because the pair is 
considered the most similar sections of all other sections in the entire well logs. This 
chapter discusses how MK can be used in digital well log correlation without having to 
know any shape of well log pattern. 

6.1 Example correlation 1 

To use MK for well log correlation across any two wells, an artificial single well 
log must be generated from the well logs to be correlated. Connecting two well logs 
together would invalidate well log depth for each well log being connected because 
depth of a well log is monotonically increased along its depth scale. Therefore, well 
log depth has to be regenerated. The easiest way to regenerate well log depth for this 
artificial well is to use depth index. Typical depth index starts at zero at the first data 
point and number of data points – 1 is the final depth index for the very final data 
point in the generated artificial well log. For example, the artificial well log will have 
5,476 indexes given one well log of 2,741 data points and the other well log of 2,735 
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data points. Figure 6.1 and Figure 6.2 illustrate what original well logs are and how an 
artificially generated well log would be. 

Without modification made in MK would have allowed any two well log 
sections to self-correlate on the same well. Therefore, MK must be slightly modified 
so that any best-match pair belongs to the same well is discarded. This slightly 
modified MK takes a breakpoint, which is the final depth index of the first well, into 
account and makes sure that both sections (forming best-match pair) are on different 
side of this breakpoint. 
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Figure 6.1 Sample well logs to be correlated 

Figure 6.1 shows two original gamma ray well logs from Well Y and Well Z. Well 
Y was logged from depth 3,000.0 ft. to 4370.0 ft. (total depth indexes of 2,741 indexes) 
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and Well Z was logged from depth 3,000.0 ft. to 4,367.0 ft. (total depth indexes of 
2,735 indexes) 

 
Figure 6.2 An artificial well log of length 5,476 indexes generated by connecting two 

well logs: Well Y and Well Z with a breakpoint (at dashed line).  
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Figure 6.2 shows that the artificial well log with 5,476 data points is generated 
from a connection of Well Y, having 2,741 data points, and Well Z, having 2,735 data 
points. In this case, 2,741 is the breakpoint (indicated by a dashed line in the middle 
of the generated artificial well log) between Well Y and Well Z. It is noticeable that 
Figure 6.2 uses depth index instead of real well depths from the two original well logs. 

After the generation of artificial well log, the well log is then fed into MK with 
a section length (window size) and other parameters. MK will search for the best match 
given the section length. Given a section length, MK starts by randomly choosing a 
section to be used as a reference section. This reference section is then slid across the 
entire artificial well log and each comparison’s distance (Euclidean distance) is 
measured. Therefore, this reference section is functionally analogous to a model 
pattern, which is manually chosen based on human knowledge, in pattern matching 
approach. More than one reference section is better at tightening distance search 
space, which could help prune off unnecessary comparisons and speed up the process 
to get the best-match pair. 
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Figure 6.3 Sliding window 

Window 200

Section Length 

(Window Size) 

220 Indexes
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Section Length 
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Window 390
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To make sure that multiple reference sections span across all available well 
log values, this study modifies how random reference sections are chosen. The 
reference sections are randomly chosen from each value range within 0.5 standard 
deviation (SD) span. SD is the SD of artificial well log. For example, there will be 21 
reference sections randomly chosen within each 0.5 SD interval ranging from -5.0 SD 
to 5.0 SD (-5.0 SD, -4.5 SD, -4.0 SD, …, 4.0 SD, 4.5 SD, and 5.0 SD) given one reference 
series is picked from each range. These minimum and maximum boundaries can be 
arbitrarily chosen based on number of reference series required. 
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Figure 6.4 Arbitrarily chosen 21 sections based on -5.0 to 5.0 SD span  

Legends
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Figure 6.5 shows data windows that are randomly chosen reference series 
within -5.0 SD to 5.0 SD of the artificial log data values. For example, the data value at 
index 2571 is in -1.5 SD to -1.0 SD and is randomly chosen to be the candidate for this 
SD interval. The reference series from index 2571 is called Window 2571 which covers 
data from index 2571 to 2691 given the chosen section length or window size of 120. 
This is also the case for Window 4956 that is generated from index 4956, randomly 
chosen from the bucket 5.0 SD to 5.5 SD, to index 5076 given the pre-defined section 
length of 120 indexes. Notice that there are no reference series chosen on intervals of 
-5.0 SD to -2.0 SD due to the fact that there is no data value available in those ranges. 
This makes the remaining 14 intervals (14 data windows: one data window from each 
interval) useable as reference series. There are five indexes (262, 347, 792, 2029, and 
2112) from Well Y and nine indexes (2234, 2320, 2571, 3957, 4299, 4609, 4754, 4755, 
and 4956) from Well Z.   
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Table 6.1 provides the complete list of data value ranges and key statistical 
parameters. It can be seen that the last SD interval does not cover all the data values 
from 344.74 API to 549.99 API. This is relatively still safe as there are only 12 data 
points out of total 5,476 data points. In addition, very rare data values do not likely 
give a good reference series which can be used to extract many pairs.  
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Table 6.1 Well log value from -5.0 SD to 5.0 SD span in 0.5 SD interval span 

Standard 
Deviation 

Gamma Ray 
(API) 

  
    

Min Max Min Max     
-5.0 -4.5 -188.80 -163.41 

No
 d

at
a 

av
ail

ab
le

 

 Mean 65.14 API 
-4.5 -4.0 -163.41 -138.01  SD 50.79 API 

-4.0 -3.5 -138.01 -112.62  Max 549.99 API 

-3.5 -3.0 -112.62 -87.23  Min 9.05 API 
-3.0 -2.5 -87.23 -61.83     
-2.5 -2.0 -61.83 -36.44     
-2.0 -1.5 -36.44 -11.05     
-1.5 -1.0 -11.05 14.35 

Da
ta

 a
va

ila
bl

e 

    
-1.0 -0.5 14.35 39.74     
-0.5 0.0 39.74 65.14     
0.0 0.5 65.14 90.53     
0.5 1.0 90.53 115.92     
1.0 1.5 115.92 141.32     
1.5 2.0 141.32 166.71     
2.0 2.5 166.71 192.10     
2.5 3.0 192.10 217.50     
3.0 3.5 217.50 242.89     
3.5 4.0 242.89 268.28     
4.0 4.5 268.28 293.68     
4.5 5.0 293.68 319.07     
5.0 5.5 319.07 344.47     
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Figure 6.5 21 SD intervals and 14 reference sections each randomly chosen from -5.0 

SD to 5.0 SD of the artificial well log mean.  
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Once reference sections are available, those sections is then used in distance 
measurement. In this case, Euclidean distance is used for measuring distance between 
each reference series and each data window being slid for the entire artificial well log 
and distances between the reference series and each data window is collected. Given 
14 chosen reference series, there are also 14 sets of distance values and each set 
contains 5,356 distance values (5,476 – 120 = 5,356).  

Then those 14 sets of distance values between the reference series and the 
other data windows are ranked by their standard deviation of the distance values of 
the sets. The set with highest standard deviation of the set’s distance values is the first 
rank and the set with lowest standard deviation of the set’s distance values is instead 
the last rank. As shown in Figure 6.6, Window 4956 has its standard deviation of 
distance values of 2.95 which is the highest value in all reference series and Window 
2112 has its standard deviation of distance values of 1.32 which is the lowest value in 
all reference series. 
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Figure 6.6 Reference series of the highest-to-smallest ranks based on standard 

deviation of distance values.   
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The next step is to search for the closest pair newly drawn from artificial well 
log with an aid of the promoted reference series. To illustrate how well log section 
search and comparison are performed, Figure 6.7 to Figure 6.9 are used. Assume that 
current best-so-far was a distance value D higher than 2.20 before the pair shown in 
Figure 6.7 was discovered. In the process of finding well log section pair to be 
correlated using MK, Window1168 and Window 3923 are used to calculate lower 
bounds with all other 14 data windows (shown in Figure 6.6), starting from lower bound 
calculation with Window 4956 (having the highest standard deviation of distance 
values), Window 2234, …, Window 347, and Window 2112 (having the lowest standard 
deviation of distance values). Window 1168 and Window 3923 both passed lower 
bound testing for all 14 reference series (lower bounds with all reference series are 
less than the then best-so-far D). This makes both data windows require a confirmation 
if a distance between themselves is also less D. After the confirmation calculation, it 
turns out that the distance between Window 1168 and Window 2112 is smaller than 
D. Therefore, the pair is kept and best-so-far is updated with 2.20, the distance between 
Window 1168 and Window 3923. After some discards on data windows failing lower 
bound tests with best-so-far 2.20, the search and comparison continues for Window 
145 and Window 2887 pair. The lower bound for this pair is 0.13 which is lower than 
current best-so-far (2.20), making additional check required. The distance between 
both data windows is 2.10 which is also smaller current best-so-far. Therefore, current 
best-so-far is updated with 2.10 and the data window pair is kept. After some more 
discards on data windows failing lower bound tests with best-so-far 2.10, the process 
continues for Window 1480 and Window 4235 pair. It turns out that the pair is valid 
and best-so-far is updated with its distance of 1.53. All other potential pairs either fail 
lower bound tests or have their distances larger than or even equal to the best-so-far 
of 1.53. Therefore, MK ends with the first-rank pair of the best-so-far of 1.53 given the 
14 reference series (shown in Figure 6.6) and section length of 120 indexes. 
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Figure 6.7 The third-rank motif pair of Window 1168 and Window 3923 with reference 

series of Window 2112. 

 
Figure 6.8 The second-rank motif pair of Window 145 and Window 2887 with 

reference series of Window 2112. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92 

 
Figure 6.9 The first-rank motif pair of Window 1480 and Window 4235 with reference 

series of Window 2112. 
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The resulting well log correlation of this section length of 120 indexes is as 
shown in Figure 6.10. 

 
Figure 6.10 The final correlation of section length 120 indexes (60 ft) 

Figure 6.10 shows locations of the motif pair in their own well log. Since the 
breakpoint between the two well logs is 2741, any data window index that is greater 
than the break point can be converted to local index of Well Z. For example, Window 
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4235 on artificial well log is Window 1494 Well Z’s well log. Table 6.2 shows the 
resulting correlations of this well log signals 

Table 6.2 Example correlations and the parameters used 

Well 1 Well 2 Section 
Length 

Section Well 1 
Index 

Well 2 
Index 

Pair 
Distance 

Well Y Well Z 120 1 1480 1494 1.53 

   2 145 146 2.10 
   3 1168 1182 2.20 
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6.2 Example correlation 2 

In this example, a new well called Well X is going to be correlated with Well 
Y. As outlined in the example correlation 1, the two wells must be connected together 
to form one artificial well prior to using MK.  

 
Figure 6.11 Well logs to be correlated 
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Figure 6.12 An artificial well log of length 5,482 indexes generated by connecting two 

well logs: Well Y and Well Z with a breakpoint (at dashed line). 
Figure 6.12 shows that the artificial well log with 5,482 data points is generated 

from a connection of Well Y, having 2,741 data points, and Well X, having 2,741 data 
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points. In this case, 2,741 is the breakpoint (indicated by a dashed line in the middle 
of the generated artificial well log) between Well Y and Well X. It is noticeable that 
depth index is also used in this artificial well log. 

Once the artificial well log is generated, heuristic reference series selection can 
be performed. The selection is done by randomly choosing one index in each 0.5 
standard deviation (SD) interval of the entire -5.0 to 5.0 SD span, thereby having 21 
reference series in total. Although SD spanning from -5.0 to 5.0 is also used as they 
were in the example correlation 1, the value ranges in each standard deviation interval 
are different due to the fact that there are slight different in mean and SD of this 
artificial well lo 

 shows key statistical parameters and value ranges. As it is the case in example 
correlation 1, values from 348.16 to 549.99 is the range that is out of the SD span. The 
range, however, only has 10 data points so this should be as the data points only 
account for less than 0.2% of the total data points making the artificial well log. As 
indicated in the table, only intervals from -1.5 SD are used to get indexes and thus 
reference series as there is no data point when the value is below -1.5 SD.  
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Table 6.3 Well log value from -5.0 SD to 5.0 SD span in 0.5 SD interval span 

Standard 
Deviation 

Gamma Ray 
(API) 

  
    

Min Max Min Max     
-5.0 -4.5 -187.87 -162.34 

No
 d

at
a 

av
ail

ab
le

 

 Mean 67.39 API 
-4.5 -4.0 -162.34 -136.82  SD 51.05 API 

-4.0 -3.5 -136.82 -111.29  Max 549.99 API 

-3.5 -3.0 -111.29 -85.77  Min 5.09 API 
-3.0 -2.5 -85.77 -60.24     
-2.5 -2.0 -60.24 -34.71     
-2.0 -1.5 -34.71 -9.19     
-1.5 -1.0 -9.19 16.34 

Da
ta

 a
va

ila
bl

e 

    
-1.0 -0.5 16.34 41.86     
-0.5 0.0 41.86 67.39     
0.0 0.5 67.39 92.91     
0.5 1.0 92.91 118.44     
1.0 1.5 118.44 143.96     
1.5 2.0 143.96 169.49     
2.0 2.5 169.49 195.01     
2.5 3.0 195.01 220.54     
3.0 3.5 220.54 246.06     
3.5 4.0 246.06 271.59     
4.0 4.5 271.59 297.11     
4.5 5.0 297.11 322.64     
5.0 5.5 322.64 348.16     
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As depicted in Figure 6.13, most of the signal is within the SD intervals of -1.5 
SD to 5.0 SD while several signal peaks are well over 5.0 SD. Once the intervals’ 
boundaries are available, the next step is to randomly choose indexes in the intervals. 

 
Figure 6.13 Artificial well log with SD boundaries 

As suggested by Figure 6.14, the SD intervals that are less than -1.5 SD do not 
have any data point. Therefore, there is no index, and thus data window, chosen for 
those intervals. From the figure, there are 14 chosen indexes from Well Y (212 and 
2080) and Well X (2243, 2264, 2441, 3067, 4300, 4363, 4495, 4505, 4536, 4537, 4944, 
and 5026), given that the breakpoint between these two well logs is 2174 and section 
length (window size) of 120.  

Legends
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Figure 6.14 21 reference sections each randomly chosen from -5.0 SD to 5.0 SD of 

the artificial well log mean.  
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When reference series are ready, the next step is really the first step that uses 
MK. 14 reference series are fetched to MK in order for MK to calculate distance 
between each reference series and all other remaining data windows. For example, 
MK calculates distances between the reference series Window 212, covering index 212 
to index 332, and other data windows such as Window 1 (the first data window), 
covering index 1 to index 120. The distance between reference series and the sliding 
window of the same window will be assigned with distance infinity instead of its real 
distance zero to prevent them from being promoted as a matched pair. There will be 
14 sets of 5,362 (or 5,482 – 120) elements of the distance values as a result of this 
calculation of distances between the reference series and all other remaining data 
windows. Once the 14 sets of distance values are ready, MK then prepares information 
necessary to search for matched pairs. First, MK ranks the 14 sets of distance values 
from highest to lower standard deviation of the distance values. Given the distance-
value dataset with highest standard deviation, then MK ranks the indexes from the 
index providing the smallest distance between the reference series and all other data 
windows to the index providing the largest distance between the reference series and 
all other data. To make these two steps more intuitive, Figure 6.15 outlines the steps 
necessary to generate a set of indexes from lowest to highest distances with the 
reference series which has the highest SD. of the distance values as aforementioned. 
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Figure 6.15 Steps used to generate a set of indexes pointing to lowest-to-highest 

distances based on the set with largest SD. 
Figure 6.16 shows the ranks of 14 reference series. As aforementioned, the ranks 

are from calculating the standard deviations of the distance values in which each 
reference series is used in distance calculation of all other data windows and sorting 
the standard deviations from highest to lowest number. For example, distance values 
calculated based on reference series from Window 4397 are mostly varied while 
distance values from Window 2112 are much less varied. Therefore, the standard 
deviation of the distance values from Window 4397 is much higher than that of from 
Window 2112. The plots in this figure simply show the plots of the reference series. 
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Figure 6.16 Reference series of the highest-to-smallest ranks based on standard 

deviation of distance values.   
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The next step is to search matched pairs based on triangular inequality 
concepts after the set of indexes to data windows, having lowest to highest distances, 
is available. Starting from setting best-so-far with a starting distance value, each 
subsequence search introduces a prospective pair to check if the pair’s lower bound 
is smaller than the current best-so-far. If the pair has its lower bound really lower than 
the current best-so-far, then the pair has to undergo further test whether the pair’s 
distance is also not greater than that of the current best-so-far. The pair can be called 
a matched pair (or motif pair) if the pair passes the two criteria mentioned.  

Figure 6.17 to 6.20 show four matched pairs returned from MK using the 14 
reference series and the section length of 120. As it is the case for example correlation, 
it is assumed that Window 1557 – Window 4632 pair’s best-so-far must be D > 5.74 
before this pair is being considered. When this pair comes in, MK checks whether the 
lower bound is less than best-so-far. Since lower bound (1.23) of the pair is less than 
best-so-far (D), an additional check, which is to confirm if the distance between the 
pair is less than current best-so-far, must be performed. It becomes apparent that the 
pair can be selected as a matched pair since its distance is 5.74, which is smaller than 
D. The next matched pair (Window 1487 – 4239) is in the third rank. The current best-
so-far is 5.74, which is the distance of the previous pair. This third-rank pair is considered 
a matched pair because it also fulfills two criteria (its lower bound of 0.12 and its 
distance of 2.92 are both less than best-so-far of 5.74) as is the Window 1557-Window 
4632 pair. The latter two matched pairs (Window 1184 – Window 3932 and Window 
124 – Window 2861) also follow pass the two criteria (their lower bounds and distances 
are less than best-so-far of 2.92 and 2.39 respectively) in the same manner. At the end 
of this whole process, the best-so-far gets updated by the distance between Window 
124 – Window 2861, which is 1.62. 
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Figure 6.17 The forth-rank matched pair (motif pair) of Window 1557 and Window 

4632 with reference series of Window 3067. 
 

 
Figure 6.18 The third-rank matched pair (motif pair) of Window 1487 and Window 

4239 with reference series of Window 3067. 
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Figure 6.19 The second-rank matched pair (motif pair) of Window 1184 and Window 

3932 with reference series of Window 3067. 
 

 
Figure 6.20 The first-rank matched pair (motif pair) of Window 124 and Window 2861 

with reference series of Window 3067. 
While MK is applicable to well log correlation task, human interpretation is 

sometimes still required, especially when there is a section mismatch when locations 
on the depth scale is considered. As shown in Figure 6.21, there is a mismatch between 
one section at 3,778.5 ft on Well Y and the other section at 3,945.5 ft on Well X. These 
two sections are the sections from the forth-rank matched pair shown in Figure 6.17. 
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This is due to the fact that MK perform Z-transformation on all the data series in all 
distance calculation as part of a technique to perform scale invariance, considering 
only similar shapes of the signals while the signals share similarity in Z-transformed 
space, comparisons. In this case, a human interpretation may be needed to rule out 
these kind of mismatch. The corrected well log correlation after a human intervention 
is shown in Figure 6.22. Table 6.4 shows that locations where the wells are correlated. 
Section 4 is discarded due to the fact that the correlation is not correct since both 
sections from each well should have been closer over the depth. This process requires 
human effort as MK does not have the information. 

 

Table 6.4 Example correlations and the parameters used 
Well 1 Well 2 Section 

Length 
Section Well 1 

Index 
Well 2 
Index 

Pair 
Distance 

Status 

Well Y Well X 120 1 120 124 1.62 Kept 
   2 1184 1191 2.39 Kept 

   3 1487 1498 2.92 Kept 

   4 1557 1891 5.74 Discarded 
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Figure 6.21 Well log correlation mismatch. 
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Figure 6.22 Corrected well log correlation after a mismatch is excluded  
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6.3 Multiple Well-to-Well Log Correlation using Pattern Discovery 

As can be seen from the two previous examples, pattern discovery can be 
applied in well-to-well log correlation task given section lengths are known. This 
example shows how multiple well-to-well log correlation can be achieved using 
pattern discovery approach. Figure 6.23 and Figure 6.24 are well-to-well log 
correlations both performed using Well Y as a shared well in order to correlate across 
three wells from Well X to Well Y (shared well) and then Well Z.  

The challenge in multiple well-to-well log correlation using pattern discovery 
approach is that there is no guaranteed that the motif pairs from the nearby wells will 
correlate with the shared well at the same locations to make perfect joining across 
multiple wells. As shown in Figure 6.23 and Figure 6.24, Well X and Well Z do not join 
Well Y at the same indexes. Therefore, human intervention to manually adjust the 
joining locations on Well Y are required. Depending on each data window, joining 
location may be assigned based on matched peaks and troughs across multiple wells. 
Figure 6.25 shows the result after human intervention to manually align the correlated 
section from well-to-well log correlation between Well Y and Well Z and well-to-well 
log correlation between Well Y and Well X. Several previously correlated sections are 
also removed as they are not available in all well logs to be correlated. 
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Figure 6.23 Well-to-well log correlation using pattern discovery approach  

(left section) 
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Figure 6.24 Well-to-well log correlation using pattern discovery approach  

(right section) 
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Figure 6.25 Multiple well-to-well log correlation using pattern discovery approach 

with human intervention to align some of the correlated sections. 
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6.4 An Integrated Approach to Well-to-Well log Correlation 

In real field application, it is possible to jointly use both pattern discovery and 
pattern matching to form a comprehensive and integrated well-to-well log correlation. 
Pattern discovery is suitable when only minimal information about the field is known. 
In the early stages of field development, only section length is known as the 
information may come from other data sources such as seismic survey. In the latter 
stages of field development, pattern matching may be more suitable as it can easily 
be used to correlate multiple wells (by connecting multiple wells as a single well and 
using a pattern of interest with NNS or multi-resolution analysis). The steps outlined 
below may be used as a guideline for integrated well-to-well log correlation. 

1 When the first two well logs are available, use pattern discovery to find inherent 
patterns shared by the two wells. 

2 Repeat step 1 using different section lengths (window size) in order to cover 
patterns of varying lengths 

3 Once well logs from different wells become available, use pattern matching to 
check whether the patterns extracted from step 1 and 2 (pattern discovery) are 
available in the other wells nearby the first two wells. Changes in probability 
of best match can also be analyzed as the well logs from the wells that are far 
from the first two wells become available. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS  

In this chapter, conclusions and recommendations on how time series pattern 
matching and pattern discovery can be used in well-to-well log correlation are 
discussed.  

7.1 Conclusions 

­ This study presents the processes applying pattern matching and pattern 
discovery approaches of time series data mining to perform well-to-well log 
correlation. The processes are aimed to be used to propose possible matches 
under specific conditions identified by each approach. Full automation of the 
processes still requires further continued study and development. 

­ A sliding-window technique is used to extract well log data for a given length 
(or window size). Each time the window moves by one index to ensure that all 
data window is included in finding a match. 

7.1.1 Pattern Matching 

­ Euclidean distance can be used to provide an absolute distance between any 
two well log signals. This distance can be used to exactly determine how good 
a matching is. Euclidean distance, however, does not provide a very good 
matching result, especially when variations (such as signal shifting and 
insertion/deletion of some small portions) between the two signals are 
prominent. 

­ Different number of PAA blocks may give different best-match results. The 
higher number of PAA blocks may capture too much detail from the original 
signals while the lower number of PAA blocks may not sufficiently capture 
detail from the original signals. Both scenarios can lead to pattern mismatch 
due to improper level of details. 
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­ Different numbers of SAX sections, which is the discretization of data values at 
discretized depths into different symbols (groups), may also give different best-
match results. The higher number of SAX sections introduces variety of 
symbols, which emphasizes too much on insignificant differences, i.e., 
identifying small difference as different symbols. The lower number of SAX 
sections combines data having a wide range of values in the same group, 
resulting in inability to distinguish differences in data values. Both scenarios can 
lead to pattern mismatch due to improper identification of log value 
boundaries. 

­ Multi-resolution analysis allows us to find the most probable match from 
different levels of discretization. From different levels of PAA blocks and SAX 
sections, the data window that is best matched for the most frequent is 
identified as the most probable match. 

­ Levenshtein distance is far superior to Hamming distance in similarity 
measurement when there are local variations in well log signals because its 
comparison technique can offset the variations (to some certain extents) and 
thus the distance value is less affected by the variations. Hamming distance is, 
however, superior to Euclidean distance when local variations are in the well 
log signals since Euclidean distance is inflexible to this kind of situations. 

­ Based on the matching results under multi-resolution analysis, SAX can still be 
used to generate discrete series even though the well log signals do not follow 
perfect normal distribution. 

7.1.2 Pattern Discovery 

­ Drawing reference series from each well log interval (SD interval) helps increase 
stability of the motif pairs discovered by MK. 

­ Depending on reference series used, MK can distinguish sections that should 
be correlated based on distance values of any two well log signals being 
correlated without prior knowledge of the signals. 
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­ MK can help uncover similar sections under Euclidean distance across two 
different well log signals which can later be used as a guideline to perform 
multiple well-to-well log correlation. 

7.2 Recommendations 

­ A further study is needed to tackle stability of the resulting well log correlation 
generated by MK because of randomness of the reference series used. 
Currently, it is required that the algorithm be executed several times to obtain 
the results when they are relatively stable. 

­ A further study is needed to observe the performance of MK algorithm in well-
to-well log correlation using other distance metrics such as Hamming and 
Levenshtein distances.  

­ A further study is needed to generate well-to-well log correlation which is 
readily applicable for multiple well-to-well correlation by calculating global 
distance of all well logs given the same or very close sections. 
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