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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

In this introductory chapter, we present a number of elementary concepts,
notations and propositions on semigroups most of which will be indispensable for
the remainder of this research.

Let N, Z and R denote respectively the set of natural numbers (positive in-
tegers), the set of integers and the set of real numbers. For any set X, let | X]|
denote the cardinality of X.

An element e of a semigroup S is called an idempotent if e = e. For a
semigroup S, let F(S) be the set of all idempotents of S. A semigroup S with
zero 0 is called a zero semigroup if xy = 0 for all z,y € S. An element = of
a semigroup S is reqular if x = xzyx for some y € S, and S is called a regular
semigroup if every element of S is regular.

A nonempty subset. A of a semigroup .S is called a-left [right] ideal of S if
SA C A[AS C A], and A is called an ideal of S if A is both a left and a right
ideal of S. We call a semigroup S a left [right] simple semigroup.if S is the only
left [right] ideal of S. Likewise a semigroup S is called a simple semigroup if S is

the only ideal of S. The following known result will be used later.

Proposition 1.1. A semigroup S is left [right] simple if and only if Sx = S
(xS =S| for allx € S.

A semigroup S with zero 0 is called a left [right] 0-simple semigroup if (i) S* # {0}

and (77) {0} and S are the only left [right] ideals of S. A 0-simple semigroup is a



semigroup S with zero 0 such that (i) S? # {0} and (ii) {0} and S are the only
ideals of S.

For a semigroup S, let S* be S if S has an identity, otherwise, let S! be the
semigroup S U {1} where 1 ¢ S with the operation extended from the operation
on S by defining 1z = z1 =« for all z € S U {1}.

A subsemigroup Q) of a semigroup S is called a quasi-ideal of S if SQ N QS C
@, and by a bi-ideal of S we mean a subsemigroup B of S such that BSB C
B. Clearly, every left ideal and every right ideal of S is a quasi-ideal of S and
every quasi-ideal of S is a bi-ideal of S. The notion of quasi-ideal for semigroups
was introduced by O. Steinfeld [16] in 1956. In fact, the notion of bi-ideal for

semigroups was introduced earlier by R. A. Good and D. R. Huges [3] in 1952.

Example 1.2. (1) Let R be a division ring, n € N and M, (R) the semigroup of
all » x n matrices over R under the usual multiplication of matrices. For each
C € M,(R), let Cy; denote the entry of C in the :*™ row and the j™ column. For
k,l € {1,2,...,n}, let Q*(R) be the subset of M,(R) consisting of all matrices

C € M, (R) such that
Cij =0 if i#k or j#l

Then for k1 € {1,2,...,n},

lth
!
( [ 7 )
0 0 z; O 0
. 0 .. 0 250 0 ... 0
Mn<R) n(R>: ) ) ) ) ) .’L’l,.fCQ,...,,’]anR
0 0 z, 0O 0
\ L . J




and
( B T )
0 O 0
0 O 0
ZI(R)MTL(R> = kth = SUNSYIDEE F S T1,T2,...,%Tn € R
0 0 0
{ i OF 3 %%\ 0 \ )

which implies that M, (R)Q*(R) N Q" (R)M,(R) = Q*(R), so QF(R) is a quasi-
ideal of M,(R). Moreover, if n > 1, then for all k,l € {1,2,...,n}, Q¥ (R) is

neither a left ideal nor a right ideal of M, (R).

(2) Let R be a division ring, n € Nyn > 4 and SU,(R) the semigroup of
all strictly upper triangular matrices over R under the usual multiplication of

matrices. Let

f . )
0 0z 0
0 00 vy
B=1 |0 0 000 Yy &R
0 ...0 00
\ L . J

Then B? = {0}, so B is a subsemigroup of SU,(R). Moreover, BSU,(R)B =

{0} € B. But



o .01l foro..0lfo...010
0...00[ 000 ..0/[0..0071
0 ...00[=1000..0/[0..000
0 ... 00/ 000 .o0/]0..000

0 ..0o10lfo... 00

0/ ... 00 1

=0 ...000]0..00

0 ... 01

0 ... 0.0 0[]0 ... 0 0

€ (SU,(R)YBNBSU,(R)) \ B,
so B is a bi-ideal but not a quasi-ideal of SU,, (R).

Example 1.2(1) shows that quasi-ideals of semigroups are a generalization of one-
sided ideals. It is shown in Example 1.2(2) that bi-ideals of semigroups generalize
quasi-ideals.

We know that the intersection of a set of subsemigroups of a semigroup S is a
subsemigroup of S if it is nonempty. It is known that the intersection of a set of
quasi-ideals of a semigroup S is either @ or a quasi-ideal of S and this is also true
for bi-ideals of S ([15], page 10 and 12). For a nonempty subset X of a semigroup
S, let (X), and (X)), denote the intersection of all quasi-ideals of S containing X
and the intersection of all bi-ideals of S containing X, respectively. Then (X),
[(X)p] is the smallest quasi-ideal [bi-ideal] of S containing X and (X), [(X)s] is
called the quasi-ideal [bi-ideal] of S generated by X. For xy,29,...,2, € S, let
(1,22, ..,2n)q and (21,29, ..., 2,), denote respectively ({z1,zo,...,2,}), and

({x1,z2,...,2,})p. Since every quasi-ideal of S is a bi-ideal of S, we have



Proposition 1.3. For every nonempty subset X of a semigroup S, (X), C (X),.

The following facts are well-known.

Proposition 1.4. ([2], page 84-85). For any nonempty subset X of a semigroup
S,

(X)g=9'XNXS'=(SXNnXS)UX

and

(X)p=XS'XUX =XSXUXUX2

Let BQ denote the class of all semigroups whose bi-ideals and quasi-ideals
coincide. Then a semigroup S is in BQ if and only if every bi-ideal of S is a
quasi-ideal. One call a semigroup in BQ a B@-semigroup. The following two

propositions give some significant subclasses of BQ.

Proposition 1.5. ([11]). Every reqular semigroup is in BQ.

Proposition 1.6. ([7]). Every left [right] simple semigroup and every left [right]

0-simple semigroup belongs to BQ.

Not only these kinds of semigroups belong to BQ. Zero semigroups containing
more than one element are obvious examples. Some other significant examples can

be seen in this research. However, J. Calais [1] has characterized the semigroups

in BQ as follows:

Proposition 1.7. ([1]). A semigroup S is in BQ if and only if (x,y), = (z,9)s

forall x,y € S.



If S is a BQ-semigroup, then for a nonempty subset X of S, (X), is a quasi-
ideal of S containing X which implies that (X), C (X),. We thus deduce from

Proposition 1.3 that

Proposition 1.8. If S € BQ, then (X), = (X), for every nonempty subset X of
S. Hence if S is a semigroup such that (x)y # (x)g ((2)s S ()4) for some z € S,

—=

then S ¢ BQ.

Next, let X be a set. A partial transformation of X is a map from a subset
of X into X. By a transformation of X is a map from X into X. The empty
transformation is the partial transformation 0 with empty domain. Let Px be the
set of all partial transformations of X. For a € Py, let Dom a and Im « denote
respectively the domain and the image (range) of . Then Pyx is a semigroup

under the composition of maps, that is, for a;, 3 € Px
Domaf = {z € Doma | za € Dom§ },

z(af) = (za)p for all € Dom af.

This implies that for a, 8 € Px, Domaf C Dom«a and Im a3 C Im 3. Let

Tx ={a € Px|Doma =X },

Ix ={ o€ Px |-« is one-to-one };

Mx ={a € Tx | a is one-to-one },

Ex={aecTx|Ima=X},

Gx ={a € Tx | aisone-to-one and Ima = X }.
Then all Tx, Ix, Mx and Ex are subsemigroups of Px, Gx = Mx N Ex, Gx C
Ex CTx C Py and Gx € Mx C Ix C Px. In particular, Gx is a subgroup of
Px, that is, G x is a subsemigroup of Py which also forms a group. We call Px, Tx,

Ix and Gy , the partial transformation semigroup on X, the full transformation



semigroup on X, the one-to-one partial transformation semigroup on X and the
symmetric group on X, respectively. It is well-known that Px, T'x and [y are
regular semigroups ([5], page 4). By Proposition 1.5, Px, T, Ix and Gx are
B@Q-semigroups for any set X. Due to the fact that for an infinite set X, for every
a € X, |X| =X\ {a}|, we have that |X| < oo if and only if Mx = Fx = Gy,
hence Mx and Ex are in BQ if | X| < co. The semigroups My and Fx have the

following special properties which can be proved easily.

Proposition 1.9. Let X be a set.

(i) For a, B8, v € Tx, if P = ~va [aff = ay] and o € Mx [Ex], then 3 = 7.

Hence Mx [Ex| is right [left] cancellative.

(11) For o € My [Ex|, & is reqular in Mx [Ex] if and only if « € Gx. Hence

Mx [Ex] is reqular if and only if | X| < occ.

(i13) If X is infinite, then Mx \ Gx [Ex ~\ Gx]| is a unique maximal proper ideal
of Mx [Ex]. Hence Mx [Ex| is left simple if and only if | X| < oo and My

[Ex] is right simpleif and only if | X| < oco.

From Proposition 1.9(ii) and (iii), it follow that Mx and Ex are neither regular nor
left [right] simple if X is infinite.. However, we cannot conclude from Proposition
1.5 or Proposition 1.6 that My and E'x do not belong to BQ when X is infinite.

It was proved in [8] that My [Ex] belongs to BQ if and only if | X| < occ.

Proposition 1.10. ([8]). For a set X,
(1) Mx € BQ if and only if | X| < oo,

(1i) Fx € BQ if and only if | X| < 0.



For an infinite set X, let
OFEx ={a e€Tx | X \Ima is infinite }.

Let A C X be such that |[X N~ Al = |A] = |X] and let A : X — X N A be a
bijection. Then A € OFx. Since Imaf C Im 3 for all o, 8 € Ty, it follows that
OFEYx is a subsemigroup of T'x. It was shown by Y. Kemprasit [9] that OFx is a
BQ-semigroup for every infinite set X but OFy is neither regular nor left [right]
simple. We can consider OFx as the “opposite semigroup”of Ex. It was proved

by P. M. Higgins [4] that OEy is dense in Tx in the following sense:

for any semigroup S and any homomorphisms p,¢: Tx — S,

¢|lorsx = V|or, implies that ¢ = 1.

Next, let X be an infinite set and
BLx ={«a € Tx | «is one-to-one and X ~\ Im « is infinite }.

Then BLx = MxNOFEx. Clearly, A defined above is in BL x.We then deduce that
BLx is a subsemigroup of T. By Proposition 1.9(i), BLx is right cancellative.
This implies that E(BLy) = @ since 1x ¢ BLx. If X is countably infinite, BLx
is called the Baer-Levi semigroup on X ([5], page 14). The Baer-Levi semigroup
on a countably-infinite set.is-known to be right simple ([5], page 14), so it is in
BQ by Proposition 1.6. Tt was proved by Y. Kemprasit in [9] that countable

infiniteness of X is also necessary for BLx to be in BQ.

Proposition 1.11. ([9]). For an infinite set X, BLx € BQ if and only if X is

countably infinite.

K. D. Magill ([12] and [13]) generalized the notion of transformation semi-

groups as follows: Let X and Y be sets and let T(X,Y’) denote the set of all



transformations o : X — Y. Then for a fixed § € T(Y, X), define an operation

“*”on T(X,Y) by
axf=aff foralla,f e T(X,Y).

Under this operation, T'(X, Y) becomes a semigroup which is denoted by (7'(X,Y), 9).
Moreover, the semigroup ((7'(X,Y), #) need not be regular.

R. P. Sullivan ([17]) generalized one step further by considering the set P(X,Y)
of all partial transformations from X into Y, that is, P(X,Y) ={a: A - Y |
A C X}, and generalizing the above semigroup as follows: For a nonempty
subset S of P(X,Y) and 6 € P(Y,X), if aff € S for all o, € S, let (S,0)
denote the semigroup (S, %) with * defined as above. In the same way, we define
I(X,)Y),M(X,Y), E(X,Y) and define the corresponding semigroups (I(X,Y"), )
where 6 € I(Y, X), (M(X,Y),0) where 8 € M(Y,X) and (F(X,Y), 0) where

0 € E(Y, X), respectively. We remark here that

(P(X, X)lx) = Px,(T(X,X),1x) = Tx, (I(X, X),1x) = Ix,
(M(X, X),1x) = Mx, (E(X, X),1x) = Ex.
In Chapter II, we prove that(S(X,Y);0) always belongs to BQ if S(X,Y)
is any of P(X,Y), T(X,Y) and I(X,Y) where § € S(Y,X). In particular, we
also show that these three semigroups need not be regular. Moreover, by the help

of Proposition 1.10, we shall prove that the condition that | X| = |Y| < oo is

necessary and sufficient for (M (X,Y),0) and (E(X,Y),60) to be in BQ.

Let V be a vector space over a division ring. For A C V', we let (A) denote
the subspace of V' spanned by A. To introduce various linear transformation

semigroups for Chapter 111, we first give some basic properties of vector spaces.
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Proposition 1.12. Let V and W be vector spaces over a division ring.

(7)

(i)

(iid)

(iv)

(vid)

(viii)

If a: V — W is a linear transformation, then

dimV = dim Kera + dim Im .
If U is a subspace of V', then
dimV = dimU + dim (V/U).
If U and Z are subspaces of V' such that Z C U, then
dim (V/U) = dim(V/Z/U/Z) < dim (V/Z).

If B is a basis of V_and A C B, then {v+ (A) | v € B~ A} is a basis of

V/(A) and v+ (A) # v + (A) for distinct v,v" € B~ A. Hence

dim (V/{AY) = | B ~ A.

Let o : V. = W be a linear transformation. If wy,ws,...,w, € W are
linearly independent and vy, vs, ..., v, € V are such that viac = w; for all
i€ {1,2,...,n}, then vy,vs,...,v, are linearly independent.

Let a : V. — W be a linear transformation, By is a basis of Kera and Bs
1s a basis of Ima. If for eachv € By, u, €V is such that u,a = v, then

BiU{wu, |veE By} is abasis of V.

Let a:'V — W be a linear transformation and B a basis of V. If Ba s a
linearly independent subset of W and a|p is one-to-one, then « is one-to-

one, that is, Kera = {0}.

Let oo : V. — W be a linear transformation, B a basis of V and A C B. If A«
is a linearly independent subset of W, «| 4 is one-to-one and (BN A)a = {0},

then Kera = (B~ A).
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For a vector space V over a division ring, let L(V') be the semigroup under
composition of all linear transformations a: V' — V. It is known that L(V) is

regular ([6], page 443). Let

G(V)={ae€ L(V) | ais an isomorphism }.

Then G(V) is a subgroup of L(V'). By Proposition 1.5, both L(V') and G(V) are
in BQ. The following subsets of L(V') are considered:
M((V)={ae€ L(V) | «a is one-to-one } and
EWV)={acLV)|Ima=V}.
Both M(V) and E(V) are clearly subsemigroups of L(V') containing G(V') and

M(V) [E(V)] = G(V) if and only if dimV' < oo. Next, we define the “opposite

semigroups” of M (V') and E(V') to be respectively by

OM (V) ={a€ L(V) | dimKer a is infinite } and
OE(V)={ae€ L(V) | dim (V/Ima) is infinite }
where dim V' is infinite. To show that OM (V) and OF(V) are indeed subsemi-
groups of L(V'), suppose that dimV is infinite. “Then we have that 0 € OM (V)
and 0 € OE(V) where 0 is the zero map on V. Since for all o, € L(V),
Keraf O Ker o and Im a8 C-Im 3, it follows that OM (V) and OE(V') are sub-

semigroups of L(V), respectively (see Proposition 1.12(iii)). The following subset

of L(V') is also considered:

OME(V)={aec L(V) | dimKera and dim (V/Im «) are infinite }

where dim V is infinite. Since 0 € OM(V)NOE(V) = OME(V') and both OM (V)
and OFE(V') are subsemigroups of L(V'), we have that OM E (V') is a subsemigroup

of L(V') containing 0.
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The semigroup BLx where X is infinite motivates us to define BL(V') where

dim V' is infinite as follows:

BL(V)={a € L(V) | a is one-to-one and dim (V/Im «) is infinite }.

Then BL(V) = M(V)NOE(V). To show that BL(V) is a subsemigroup of L(V),
assume that dim V' is infinite. Let B be a basis of V. Then B is infinite, so
there exists A C B such that |A| = |B \ A| = |B|. Thus there exists a bijection
¢ : B — A. Define o € L(V) by va = vp for all v € B. We thus deduce from

Proposition 1.12(vii) that o € M(V'). By Proposition 1.12(iv), we have

dim (V/Im o) = dim (V/(4)) = |B ~ A].

This implies that « € OE(V). Then a« € M(V) NOE(V), so BL(V) is a sub-
semigroup of L(V'), as required. Similarly, we consider the “opposite semigroup”

of BL(V') which is defined to be

OBL(V)={ae€ L(V) |Ima =V and dim Ker « is infinite }

where dim V' is infinite. By the definition, we have OBL(V) = E(V) N OM(V).
To show that OBL(V) is indeed a subsemigroup of L(V), it suffices to show that
OBL(V) # @. Let B be a basis of V and let-A be a subset of B such that
|A| = |B \ A| = |B|. Then there exists.a bijection ¢ : A'— B. Define a € L(V)
by

ve ifve A,
va =

0 ifveB\A
Then Ima = (Ap) = (B) = V. By Proposition 1.12(viii), Kera = (B \ A), so
dimKera = |B \ A| = |B|. Hence a € OBL(V). Then OBL(V) is a subsemi-

group of L(V') which is considered as the “opposite semigroup”of BL(V). Note
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that 0 ¢ OBL(V). Moreover, E(BL(V)) = @ = E(OBL(V)) by Proposition
1.9(i).
Next, the following subsets of L(V') are considered:

AM(V) ={a € L(V) | dim Ker « is finite } and

AE(V) ={a e L(V) | dim (V/Im a) is finite }.
Then M(V) C AM(V) and E(V) C AE(V). To show that AM (V) and AE(V)
are subsemigroups of L(V), let e, 3 € L(V). We claim that o|kerap is a linear
transformation from Ker a3 onto Ker § N Im a with Ker (a|keras) = Ker a. Since

(Ker af)a|kerag = (Keraf)a CIma  and

(Keraf)a|keras)f = (Ker af)ap = {0},
it follows that Im (a|kerap) € Ker fNIma. Let v € Ker NIm a. Then ua = v for
some u € V and v = 0. This implies that uaf = v = 0. Thus u € Ker a3 and so
v =ua = U(¥|Kerag) € Im (@kerap). Hence we have Im (a|kerap) = Ker SN Ima.

Since
Ker (alxeras) = { € Keraff | va =0}
C{veV|va=0} (since Keraf CV)
= Kera
={veV |va=0}
={veV|vaf=0}N{veV|va=0} (since 05 =0)
={veKeraf|va=0}

= Ker (a|Keraﬁ)7
we have Ker (o|keras) = Kera. Hence we have the claim. It then follows from

Proposition 1.12(i) that
dim Ker af = dim Ker o 4+ dim (Ker N Im «)

< dim Ker o + dim Ker g3. (1)
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Define 5* : V/Ima — Im 3/Im a3 by
(v+Ima)f* =vB+Imaf foralveV.

Clearly, * is well-defined and onto. Since [ is linear, (* is linear. Hence
B* is a linear transformation of V/Im« onto Im F/Imaf. Then we have that
dim (V/Im «) > dim (Im G/Im a3). Since Imaf C Im 3, we have by Proposition

1.12(iii) and (ii) that
dim (V/Im f) = dim ((V/Imaf)/(Im §/Im af)) and

dim (V/Im of) = dim (Im /Im aB) + dim ((V/Im o) /(Im 8/Im a3)),

respectively. These facts imply that
dim (V/Im o) < dim (V/Ima) + dim (V/Im (). (2)

We have respectively from (1) and (2) that AM (V') and AE(V) are subsemigroups
of L(V), as required. The semigroups AM (V) and AE(V) can be referred to
respectively as the semigroup of all “almost one-to-one linear transformations” of
V' and the semigroup of all “almost onto linear transformations” of V. Observe
that if dim V' is finite; then AM (V) = AE (V) = L(V).
Finally, we consider the following subsets of L(V'):
MAE(V) ={« € L(V)] ais one-to-one and dim (V/Im«) is finite },
EAM(V)={a€ L(V) | Ima =V and dim Ker « is finite } and
AME(V)={a € L(V) | dimKer o and dim (V/Im «) are finite }.
Then we have that
GV)CMV)NAE(V)=MAE(V),
GV)CEV)NAM(V)=FAM(V) and

G(V)C AM(V)NAE(V) = AME(V),
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so the above three subsets of L(V') are subsemigroups of L(V'). Note that if dim V'
is finite, then MAE(V) = EAM (V) = G(V) and AME(V) = L(V).
The aim of Chapter III is to characterize in terms of dimensions of V' when

the subsemigroups of L(V') mentioned above belong to BQ.

Next, let (X, <) be a partially ordered set. For o € T'x, v is said to be order-
preserving if for all x,y € X, & < y implies that xa < ya. For partially ordered
sets (X, <) and (Y, <'), we say that (X, <) and (Y, <) are order-isomorphic if
there is a bijection ¢ : X' — Y such that for z;, 29 € X, 21 < x5 if and only if

19 <" 9. The opposite partial order <,,, on X of < is defined by
T <oy ifandonlyif y <azforall z,ye X.

Clearly, <,,, is really a partial order on X. It is clear that for a nonempty interval
IofR, (I,<) and (—1I, <,,,) are order-isomorphic by « — —x where < is the usual

order of real numbers and —I = {—xz | x € [}. Hence we have

Proposition 1.13. Let < be the usual partial order on R.

(i) Fora € Ry ((=00,a), <) is order-isomorphic.-to((=a,00), <gpp)-

(i7) For a € R, ((—00,al,<) is order-isomorphic-to ([—a,00), <spp)-
(i13) For a,b € R and a < b, ((a,b], <) is order-isomorphic to ([—b, —a), <ep)-
Let Top(X) denote the set of all order-preserving transformations of X. Then
Top(X) is a subsemigroup of Tx. In [14], Top(X) is said to be the full order-
preserving transformation semigroup on X. Y. Kemprasit and T. Changphas [10]

characterized when Top(I) is regular where [ is a nonempty interval of R, as

follows:
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Proposition 1.14. ([10]). For a nonempty interval I of R, Top(I) is reqular if

and only if I is closed and bounded.

Then we can conclude from Proposition 1.5 and Proposition 1.14 that if [ is closed
and bounded, then Tpp(I) is a B@Q-semigroup. By making use of Proposition
1.8 and Proposition 1.13, we show in the last chapter that the converse of this
statement holds. Hence we obtain the fact that for a nonempty interval I of R,

Top(I) € BQ if and only if [ is closed and bounded.



CHAPTER II

GENERALIZED TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to characterize when the generalized transfor-
mation semigroups mentioned in Chapter I belong to B@Q.

Let us recall the notations which are used throughout this chapter. Let X and
Y be sets and

Px = the partial transformation semigroup on X,

Tx = the full transformation semigroup on X,

Ix = the one-to-one partial transformation semigroup on X,

Mx = the semigroup of one-to-one transformations of X,

E'x = the semigroup of onto transformations of X,

G x = the symmetric group on X,
PX,)Y)={a: A=Y |AC X}
TX,)Y)={acP(X,Y)|Doma=X},

I(X,Y)={a€ P(X,Y) | ais one-to-one },
M(X,)Y)={aeT(X,Y) | ais one-to-one },
EX,)Y)={aeT(X,Y)|Ima=Y}.
As was mentioned in Chapter I, Px, Tx and Ix are regular. In fact, if | X| > 1,
Tx is not left [right] simple and Py and Iy are not left [right] O-simple. That is

because the set

{a€Sx ||[lma| <1}
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is clearly a proper ideal of Sy where Sx is Py, Tx or Ix. Then (T(X,Y),0)
need not be left [right] simple and (P(X,Y),0), (I(X,Y),0) need not be left
[right] O-simple. Moreover, these three semigroups need not be regular. To see
this, let X =Y = N and define § : ¥ — X by 20 = 2x for all x € Y. Then
0 € S(Y,X) = S(N,N). Since for every @ € S(N,N), 1y0afly = 6af which
implies that Im (1yfafly) = Im (0af) C Im 6 = 2N # Im 1y. Hence 1y € S(N,N)
which is not regular in (S(N,N),8).

The first theorem requires the facts that Py, Ty, and [y are regular and every

regular semigroup is a B@)-semigroup.
Theorem 2.1. If S(X,Y) is any one of T(X,Y), P(X,Y) and I(X,Y) and 0 €
S(Y,X), then (S(X,Y),0) € BQ.

Proof. We know that (A), C (A), for any nonempty subset A of S(X,Y’) (Propo-
sition 1.3). To prove that (S(X,Y),0) € BQ, by Proposition 1.4 and Proposition

1.7, it suffices to show that for any nonempty subset A of S(X,Y),
S(X,Y)IAN AOS(X,Y) C AIS(X,Y)0A.

For this purpose, lett A be a nonempty subset of S(X,Y) and o € S(X,Y)0AN

AAS(X,Y). Then we have

a = POXN=~0pn (1)

for some B, p € S(X,Y) and A,y € A. But 0\ € S(Y,Y) and Ty, Py and Iy are

all regular, so there exists n € S(Y,Y') such that
OX = O ndA. (2)
It thus follows from (1) and (2) that

a = BOION = vOundX = v0(un)oA. (3)
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Since p € S(X,Y), n € S(Y,Y) and \,v € A, we have from (3) that a €

AOS(X,Y)OA. This completes the proof. n

The next two theorems are the second main results of this chapter. We
first prove three lemmas which will be used to determine when the semigroups
(M(X,Y),0) where 0 € M(Y,X) and (F(X,Y),0) where 6§ € E(Y, X) are in the
class BQ.

For convenience, we denote the semigroup (M (X,Y),8) where § € M(Y, X)
by (Mx,0) if X =Y. The notion (Ex,6) is defined similarly. Also, the notation
(Gx,0) where 6 € Gy is used for the semigroup G x with the operation * defined
by a* 3 = aff for all a,f € Gx. Clearly, (Gx,0) is a group having 67! as its

identity.

Lemma 2.2. If0 € Gx, then (GX,H) = Gx, (Mx,g) = Mx and (Ex,g) = Fx.

Proof. Define ¢ : T'x — Tx by ap = af for all @« € Tx. Then for o, € Tk,
(abB)p = abfl = (ap)(By), ad " € Tx, (e ')y = @ and af = B0 implies that
a=abff~! = 300~' = 3. Hence p-is an isomorphism from (T, ) onto Tx. Since
0cGx, Gx0 =Gx, Mx = Mx0~*0 C Mx0 C Mx and Ex = Ex07'0 C Ex0 C
Ex. It then follows that |G, @luy and |g, are respectively isomorphisms of

(Gx,0), (Mx,0) and (Ex,0) onto Gx, Mx and E¥x. O

Lemma 2.3. The following statements hold.
(1) M(X,Y)# @ and M(Y, X) # @ if and only if | X| = |Y|.

(i) BE(X,Y) # @ and E(Y, X) # @ if and only if | X| = |Y].
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Proof. If « € M(X,Y) and 8 € M(Y,X), then
[ X| = [Imaf < Y| and [V = [lm 3] < |X],
so | X|=|Y]. If y€ E(X,Y) and A € E(Y, X), then
[ X| > [Ima] = [¥Y]and (Y] > [Im A] = | X],

which implies that | X| = |Y].
If | X| = |Y|, then there is a bijection p of X onto Y, then p € M(X,Y)N
E(X,Y) and p~' e M(Y,X)NE(Y, X).

Hence (i) and (ii) are proved. O

Lemma 2.4. Assume that |X| = |Y|. If ¢ is a bijection of X onto Y, then
(1) (M(X,Y),0) = (Mx, ) where § € M(Y, X) and
(i7) (E(X,Y),0) = (Ex,pl) where 6 € E(Y,X).
Proof. Define ¢ : M(X,Y) — My and ¢y : E(X,Y) — Ex by
)y = ap tforalla.€ M(X,Y). and. B = B *forall € E(X,Y).
Let 6 € M(Y, X). Then pf € Mx and for o, f € M(X,Y),
(@0B)tr = (a0B)p™" = (™) (00)(Be™") = () (90)(B¢n).

and if aipy = Py, then a = (ap™)p = (ah)p = (B1)p = (B )y = 3. If
a € My, then ap € M(X,Y) and (ag); = (ap)p™ = a. This proves that v,
is an isomorphism of (M (X,Y),0) onto (Mx, ¢f). We can show similarly that
is an isomorphism of (F(X,Y),0) onto (Ex,pf) where § € E(Y, X). Hence (i)

and (ii) are proved, as desired. O
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Theorem 2.5. For 0 € M(Y, X), the semigroup (M(X,Y),80) belongs to BQ if

and only if | X| = |Y] < oo.

Proof. Assume that |X| = |Y| < oco. Then 6 : Y — X is a bijection, hence
6~': X — Y is also a bijection. By Lemma 2.4(i), (M (X,Y),0) = (Mx,07'0) =
(Mx,1x) = Mx. Since | X| < o0, Mx = Gx, so Mx € BQ by Proposition 1.5.
Hence (M(X,Y),0) € BQ.

Conversely, assume that (M(X,Y),6) € BQ. By Lemma 2.3(i), |X| = |Y].
Let ¢ : X — Y be a bijection. Then pf € Mx. To show that | X| < oo, suppose

that X is infinite. Therefore Gy & M.

Case 1: ¢ € Gx. Then (Mx,p0) = My by Lemma 2.2. But Mx ¢ BQ by

Proposition 1.10(i), so we have (Mx, ¢0) ¢ BQ.

Case 2: pf € Mx ~ Gx. Then by Proposition 1.9(iii), (¢0)" € Mx ~ Gx for
every n € N. It thus follows from Proposition 1.9(i) that (p0)" # (©0)™ for all

distinct n, m € N. In particular,

(00)* # 8 and  (0)° # (p0)°. (1)
We have from Proposition 1.4 that in (Mx, @f),

(p0)g = (Mx(0)" 0 (00): Mx ) U{ 0}, (2)
(¢0)s = (00)* Mx (00)* U { 00, (00)* }. (3)
By (2), (p0)* € (p0), in (Mx,p0). Since (p0)* ¢ Gx, by Proposition 1.9(ii),

(p0)? is not regular in My. Thus

(90)* ¢ (0)* Mx (00)*. (4)

From (1), (3) and (4), we conclude that (¢0)? € (), in (My, ¢0). Tt then follows

from Proposition 1.8 that (Mx, p0) ¢ BQ.
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Now we have (M, pf) ¢ BQ from Case 1 and Case 2. But since (M(X,Y),0) =
(Mx, p0) by Lemma 2.4(i), we deduce that (M(X,Y),0) ¢ BQ, a contradiction.
It then follows that | X| = |Y| < co.

Hence the theorem is proved, as required. O

Theorem 2.6. For 0 € E(Y,X), the semigroup (E(X,Y),0) belongs to BQ if

and only if | X| = |Y] < oc.

Proof. Assume that |X| = |Y| < co. Then we have that 6 : Y — X is a bijection,
so 71 : X — Y is a bijection. By Lemma 2.4(ii), (E(X,Y),0) = (Ex,07'6) =
(Ex,1x) = Ex. But Ex = Gx because |X| < oo, so Ex € BQ by Proposition
1.5. Consequently, (E(X,Y),0) € BQ.

For the converse, assume that (F(X,Y),0) € BQ. By Lemma 2.3(ii), |X| =
|Y|. Let ¢ : X — Y be a bijection. Then @0 € Ex. To show that | X| < oo,

suppose on the contrary that X is infinite. Thus Gx ¢ Ex.

Case 1: pf € Gx. From Lemma 2.2, (Ex,pf) = Ex. By Proposition 1.10(ii),
Ex ¢ BQ. Thus (Ex,¢0) ¢ BQ.

Case 2: ¢ € Ex ~ Gx. Then by Proposition 1.9(iii), (¢0)" € Ex \ Gx for
every m € N. From Proposition 1.9(i), we have that (¢f)" # (p#)™ for all distinct

n,m € N. In particular,

(00)” # 8 and  (00)* # (0)°. (1)
We can see from Proposition 1.4 that in (Ex, ¢0),

(00)y = (Ex(0)* N (90)°Ex) U{ b}, (2)

(90)s = (90)*Ex (90)* U {90, (00)° }. (3)
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We then have from (2) that (¢0)* € (¢6), in (Ex, p0). From Proposition 1.9(ii),

(ph)? is not regular in Fx, that is,

(00)* ¢ (00)° Ex(¢0)”. (4)

It then follows from (1), (3) and (4) that (pf)* ¢ (¢0), in (Ex,¢0). Hence
(Ex,pl) ¢ BQ by Proposition 1.8.

From the above two cases, we have (Ex, pf) ¢ BQ. But (E(X,Y),0) = (Ex, p0)
by Lemma 2.4(ii), we deduce that (E(X,Y),0) ¢ BQ which is a contradiction.

Therefore we have that | X| = |V| < cc.

Hence the proof is complete. Il



CHAPTER III

LINEAR TRANSFORMATION SEMIGROUPS

In this chapter, we give necessary and sufficient conditions for dimensions of
a vector space V over a division ring in order that various linear transformation
semigroups on V belong to B@Q.

We first recall the following subsemigroups of L(V/) previously mentioned in

Chapter I:
G(V) ={a € L(V) | a is an isomorphism },
M(V)={ae€ L(V) | «ais one-to-one },
EV)={aecL(lV)|Ima=V},
OM(V)={ae L(V) | dimKer « is infinite }
where dim V' is infinite,
OE(V)={ae LV)|dim(V/Ima) is infinite }
where dim V' is infinite,
OMBE(V)={a¢c L(V) | dimKera and dim (V/Im «) are infinite }
where dim V' is infinite,
BL(V)={a € L(V) | « is one-to-one and dim (V/Im «) is infinite }
where dim V' is infinite,
OBL(V)={a€ L(V) | Ima =V and dim Ker « is infinite }

where dim V' is infinite,
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AM (V) ={a € L(V) | dimKer « is finite },

AE(V)={a € L(V) | dim (V/Ima«) is finite },
MAE(V)={a e L(V) | ais one-to-one and dim (V/Im «) is finite },
EAM(V)={a€ L(V) | Ima =V and dim Ker « is finite } and

AME(V) ={a € L(V) | dim Ker o and dim (V/Im «) are finite }.

In the remainder, let V' be a vector space over a division ring R.
We first introduce the following lemmas which will be used.
Lemma 3.1. If B is a basis of V., A C B and a € L(V) is one-to-one, then
dim (Ima/{Aa)) = |B \ A|.

Proof. Assume that « is one-to-one. Then we have that a: V — Ima is an

isomorphism. Define & : V/(A) — Ima/(A)a by
(v+{A)a=va+{Aa foralveV.

Clearly, a is well-defined and onto. Since « is linear, it follows that & is linear.

Also @ is one-to-one since « is-one-to-one. Hence & is an isomorphism from

V/(A) onto Ima/(A)a. ThusIma/(A)a= V/(A). But dim (V/(A)) = |B \ A]

by Proposition-1.12(iv), so.dim (Im a/{Aa)) =|B~ Al. O
Lemma 3.2. Assume that B is a linearly independent subset of V.. Ifvi,vq, ..., v, €
B are distinct and uy,ug, ..., u, € (B~ {v1,v9,...,0,}), then vy — uj,ve —
Ug, ..., Uy — Uy are linearly independent over R.

Proof. It is clear that for any subset A of B, (A) N (B ~ A) = {0}. Let

r1,T9,...,T, € R be such that

ri(vy —uy) + ro(ve —ug) + ... + rp(vy — uyp) = 0.
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Then vy + 1ovg + ... + rpv, = iUy + rous + ...+ U, € ({v, v, ) N
(B~ {v1,v9,...,0,}) = {0}. Since vy, vy, ..., v, are linearly independent over R,
we have that r; = 0 for every ¢ € {1,2,...,n}. This proves that v; — uy, v —
U, . ..,V, — U, are linearly independent, over R. Il

We know from Proposition 1.10 that for any set X, Mx € BQ if and only if
| X| < oo and this is also true for £y. Following the technique of the given proofs
for these facts, we obtain the same results for M (V') and E(V') by replacing | X]|

by dim V. However, our proofs are more complicated.

Theorem 3.3. The semigroup M (V') is in BQ if and only if dimV < co.

Proof. 1f dim V' < oo, then M (V) = G(V') which implies by Proposition 1.5 that
M(V) e BQ.

For the converse, assume that dim V' is infinite. Let B be a basis of V. Then
B is infinite. Let A = {u, | n € N} be a subset of B where for any distinct

i,j € N, u; # uj. Let o, B, v € L(V) be defined by

(

Uo,, ~if v = w, for some n € N;
v =

v ifve BN A,

\

(

Upy1 1f v = u, for some n € N,
v =

v ifre BLA

\

and

Upso if v =u, for some n € N,
vy =

v if ve BN A.
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By Proposition 1.12(vii), a, 3, v € M (V). From the definitions of «, 5 and =, we
have that

Up B = Ugpio = uyay for all n e N

and

vBa=v =wvay forallv e B\ A.

This implies that a # fa = ay, so fa € M(V)anaM (V) = (a), by Proposition
1.4. Suppose that Sa € (a),. Since o # [a, by Proposition 1.4, fa € aM(V)a.
Let A € M (V) be such that Ja = aXa. From Proposition 1.9(i), § = aA. It then

follows that

B~A{u} =Bp=Ba\=(B~{uy1|neN}HA (1)

We have by Lemma 3.1 that

dim (Im A/((B~{tzn_1 | n € NDA)) = [{uzns | n € N}|. 2)

Thus from (1) and (2) yield that

dim (Im A/ (B~{u; })) = [{uon_1 | n € N}|. (3)

But dim (V/(B <~ {u; })) = [{ur}| =1 by Proposition 1.12(iv), so

dim (Im \/(B N {up ) <-dim (V/(BA {w 1) = 1. (4)

We have a contradiction because of (3) and (4). Then Sa ¢ («)y, so by Proposition

1.8, M(V) ¢ BQ.

Hence the theorem is completely proved. O]

Theorem 3.4. The semigroup E(V) is in BQ if and only if dimV < co.
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Proof. If dimV < oo, then E(V) = G(V), so E(V) € BQ by Proposition 1.5.
Conversely, assume that dim V' is infinite. Let B be an infinite basis of I/ and
A={u,|neN} C B where u; # u; if i # j. Define o, 5, v € L(V) by

(
0 if v = u, for some odd n € N,
v = Uz if v = u,, for some even n € N,

v ifwe B\ A,
0 if v =y or uy,
V0 = S, (if v = u, for somen e N~ {1,2},

) ifveBNA

and

0 if v = uy,
VY = Yun_1 if v =wu, for some n € Nx {1},

v ifve B~ A.

Then Ima=Imp=Imy=(BU{0})=V,s0«, 3,y € E(V). Moreover,

upfa =0 = u,ay if n=2ornisodd,

UpPa = Unz = UnQry ifn>2andniseven and

vBa =v = vay for allv € B\ A.
Consequently, o # fa = ay € E(V)anaE(V). By Proposition 1.4, ay € (a),.
Suppose that ay € («a),. By Proposition 1.4, ay = ala for some A € E(V).

By Proposition 1.9(i), we have v = Aa. By the definition of v, we have from

Proposition 1.12(viii) that

dim Ker (Aa) = dim Kery = 1. (1)
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Since Im A = V, for each odd n € N, u, A = w, for some u,, € V. Then from

Proposition 1.12(v),

{u), 1 | n €N} is a linearly independent subset of V' and
for every n € N, ug, 1y = b, ;A = ug,_1c = 0. (2)
Hence (1) and (2) yield a contradiction. Consequently, vy ¢ (a),. Therefore

E(V) ¢ BQ by Proposition 1.8.

Therefore the theorem is proved. O

For the study of OM(V'), OE(V'), OME(V), BL(V) and OBL(V), we always
assume that dim V' is infinite. We will show that the semigroups OM (V) and
OE(V) are not regular and neither left O-simple nor right 0-simple but they are

always in BQ.

Proposition 3.5. The semigroup OM (V') is not reqular.

Proof. Let B be a basis of V' and A C B such that |A| = |B \ A| = |B|. Then
there exists a bijection ¢ + B~ A — B. Define a. € L(V') by

ve ifve BN A,

v =

0 if ve A.

Then Kera = (A) by Proposition 1.12(viii) and Ima = (Imy) = (B) = V.
Therefore &« € OM (V). Suppose that a = afa for some § € L(V). Since
a € E(V) by Proposition 1.9(i), 1y = fa where 1y is the identity map on V.
This implies that [ is one-to-one, so f ¢ OM (V). This proves that « is not

regular in OM (V). Hence OM (V') is not a regular semigroup. O
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Proposition 3.6. The semigroup OM (V') is neither left 0-simple nor right 0-

simple.
Proof. For each k € N, let
Ay ={a € L(V) |dmIma < k }.

Clearly, 0 € A # {0} for all & € N. Since dimV = dimKera + dimIm« for
all « € L(V') (Proposition 1.12(i)) and dim V is infinite, it follows that dim Ker «
is infinite for all o« € Ay and for all £ € N. Then Ay C OM(V). Since for
a,p € L(V), rank (aff) < min{rank a, rank g}, it follows that Ay is an ideal of
L(V'). Hence Ay is a nonzero ideal of OM (V).

We can see that aw € OM (V') defined in the proof of Proposition 3.5 is not an
element of A, for all k& € N. Hence A, is a nonzero proper ideal of OM (V') for
every k € N.

Therefore OM (V') is neither left 0-simple nor right O-simple. O

As an immediate consequence of the fact that Keraf O Kera for all o, 3 €

L(V'), we have

Lemma 3.7. The semigroup OM (V') is a right ideal of L(V).

Theorem 3.8. The semigroup OM (V') always belongs to BQ.

Proof. To show that OM (V) € BQ from Proposition 1.3, Proposition 1.4 and
Proposition 1.7, it suffices to show that for every nonempty subset X of OM (V),
OM(V)X N XOM(V) C XOM(V)X .

Let X be a nonempty subset of OM (V) and let « € OM(V)X N XOM (V).

Then

a = fBy=An for some §,n€ OM(V) and v, A € X. (1)
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But L(V) is regular, so v = yu~y for some p € L(V'). It then follows from (1) that

a = Byuy = My = Anp)y. (2)

By Lemma 3.7, nu € OM(V), so from (2), we have o € XOM(V)X. This
proves that OM (V)X N XOM(V) € XOM(V)X. Hence OM(V) € BQ, as

required. Il

Proposition 3.9. The semigroup OE(V') is not reqular.

Proof. Let B be an infinite basis of V and A C B such that |A| = |B \ A| = |B|.
Then there exists a bijection ¢ : B — A. Define o € L(V) by va = vyp for
all v € B. Then Ima = (A) and by Proposition 1.12(vii), « is one-to-one. By
Proposition 1.12(iv), dim (V/Ima) = dim (V/(A4)) = |B ~ A|. Thus, we have
a € OE(V). If a = afa for some § € L(V), then aff = 1y since « is one-
to-one which implies that Im 3 = V, so § ¢ OE(V). Hence, we deduce that «
is not regular in OE(V). We therefore conclude that OFE (V') is not a regular

semigroup. O

Proposition 3.10. The semigroup OFE (V') is neither left 0-simple nor right 0-

simple.
Proof. For each k € N| let
Ay ={aec LV)|dmIma <k }.

As in the proof of Proposition 3.6. We have that Ay is a nonzero ideal of L(V)
for all £ € N. Since dim V' = dimIm o + dim (V/Im «) (Proposition 1.12(ii)) and
dim V' is infinite, it follows that dim (V/Im «) is infinite for all & € Ay and for all

k € N. Thus A, C OE(V) for every k € N.
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Let « € OE(V) be defined as in the proof of Proposition 3.9. Since A is an
infinite subset of B and Ima = (A), it follows that « ¢ Aj for every k € N.
Therefore each Ay, is a nonzero proper ideal of OF (V). Hence OE (V') is neither

left O-simple nor right 0-simple. O

Lemma 3.11. The semigroup OE (V') is a left ideal of L(V).

Proof. This is clear because of Proposition 1.12(iii) and the fact that Im a5 C Im 3

for all o, 5 € L(V). O

Theorem 3.12. The semigroup OE(V') is always in BQ.

Proof. To prove the theorem, by Proposition 1.3, Proposition 1.4 and Proposition
1.7, it suffices to show that OE(V)X NXOE(V) C XOFE(V)X for any nonempty
subset X of OE(V).

Let X be a nonempty subset of OE(V) and let @ € OE(V)X N XOE(V).

Then

a = Py =An forsome 3, ne€OE(V) and 3, \ € X. (1)

Since L(V) is regular, A = ApA for some p € L(V). Then from (1),

o = Ay = Ay = M)y (2)

By Lemma 3.11, 8 € OE(V). It then follows from (2) that « € XOE(V)X.

Therefore the theorem is proved. Il

We will show that OME(V) is always regular and hence it is in BQ by

Proposition 1.5.
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Lemma 3.13. The semigroup OME(V') is a reqular semigroup.

Proof. To show that OME(V) is regular, let « € OME(V). Let By and Bs be
respectively bases of Ker & and Im «. Then B is infinite. Let B be a basis of V'
containing By. By Proposition 1.12(iv), dim (V/Im «) = dim (V/(By)) = | B\ Ba|.
But a € OE(V), so B \ By is infinite. For each v € By, there exists an element
u, € V such that u,a =wv. It then follows that [{wu, | v € By }| = | Ba|. Moreover,

ByU{wu, | v € By} is a basis of V' by Proposition 1.12(vi). Define 5 € L(V) by

U, if v € By,
b =
0 ifve B\ Bs.

Then Ker § = (B ~\ Bsy) by Proposition 1.12(viii) and Im 5 = ({u, | v € B }).
We therefore have dim Ker f = |B ~\ Byl|. Since By U{w, | v € By } is a basis of

V' by Proposition 1.12(vi), we have by Proposition 1.12(iv) that
dim (V/ImB) = |(By U{wu, |v e By })~{u, |ve By }| =|By.

It then follows that § € OME(V). Since By U {u, | v € By } is a basis of V' and

vafa = (va)pa = 0fa =0 = va for all v € By
uyafa = (uya)fa = vfa = (vh)a =u,a for all v € By,

we deduce that afo = . This proves that OM E(V) is regular, as required. [

The following theorem is obtained directly from Lemma 3.13 and Proposition 1.5.

Theorem 3.14. The semigroup OME(V') always belongs to BQ.

Observe that OM (V') and OFE(V') are not regular but OM E(V)(= OM (V)N
OE(V)) is. However, OM (V) and OE(V) are neither left O-simple nor right

O-simple and neither is OM E (V') as shown in the following proposition.
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Proposition 3.15. The semigroup OME(V') is neither left 0-simple nor right

0-simple.
Proof. For each k € N, define
Ay ={aec LV) |dmIma <k} (1)

as in the proof of Proposition 3.6. By the proof of Proposition 3.6 and Proposition
3.10, each Ay is a nonzero ideal of OM (V') and OE(V'), respectively. Then Ay is

a nonzero ideal of OM E(V')(= OM (V) N OE(V)). From (1), we have
A CACA3C ...

Let B be a basis of V' and let uq, s, us,... be distinct elements of B. For each

positive integer k, define ay € L(V) by

v—ifv € {ug,us, ... ug },
VA —
0 ifveB~{uy,ug,...ul

Then for every k € N, Im ey, = (uy, us, ... ug) and hence dim Im oy = k. Thus for

every k > 1, ag € Ay ~ Agx_1. Consequently,
Al C A CA3IC .

Therefore each A is a-nonzero proper.ideal of OM E(V).

Hence OM E (V) is neither left 0-simple nor right 0-simple. O

As was mentioned in Chapter I, BLy is right simple if X is a countably infinite
set. This is also true that BL(V) is right simple if dim V' = ®,. We give this fact
as a lemma in order to prove the next theorem, analogous to Proposition 1.11.
That is, to prove that BL(V) € BQ if and only if dim V' = Xy. The technique of

the proof Proposition 1.11 is helpful for the proof of this theorem.
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Lemma 3.16. If dimV =Xy, then BL(V') is right simple .

Proof. By assumption, we have that for every a € BL(V), dim (V/Im«) = N,.
We will show that BL(V) is right simple by Proposition 1.1. This is equivalent to
show that for all , B € BL(V), there exists v € BL(V') such that ay = 3. Let «,
B € BL(V) be arbitrary fixed. Since o and /§ are one-to-one linear transformations
of V', we have that o~ '@: Ima — Im 8 is an isomorphism.

Let B; be a basis of Ima and By = Bya '3. Then Bs is a basis of Im 3. Let
B and B’ be bases of V such that By € B and By, C B’. It then follows from

Proposition 1.12(iv), that
dim (V/Ima) = |B x By| and dim (V/Im3) = |B’' \ Bs|.

Consequently, |B N\ By| = |B| = |B' ~ By| = Xy. Let A C B’ \ B; be such that

|A| = |B' \ By| = |(B' \ By) ~ A]. Thus
|(B"\ By) \ A| = Ro. (1)
Then there exists a bijection ¢: B \ B; — A. Define v € L(V') by

va B ifve By,
vy =
Vp if ve B\ Bj. (2)
Since Bija™'3N (B~ By)p = ByN A= &, it follows that v|p: B— ByUAC B’
is a bijection. Hence ~ is one-to-one by Proposition 1.12(vii), so 5 € M (V). Also,

we have from Proposition 1.12(iv) that
dim (V/Im~) = dim (V/(By U A)) = |B'\ (BeUA)| =|(B'~B2) N Al.  (3)

Theny € OE(V) by (1) and (3). But since BL(V) = M(V)NOE(V),~v € BL(V).
Because Im v = (By), we deduce from (2) that v|ime = @ '3. This implies that
ay = .

Hence BL(V) is right simple, as desired. O
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Theorem 3.17. The semigroup BL(V') is in BQ if and only if dimV = ;.

Proof. 1f dimV = Xy, then BL(V) € BQ by Lemma 3.16 and Proposition 1.6.
For the converse, assume that dim V' # Ny. Since dim V' is infinite, dim V' > R,.
Let B be a basis of V. Then B is uncountable. Let A and C be subsets of B such

that
ACC, |IBNC|=|C|=|B| and |C'N\A|l=|Al=]|C|. (1)
Let D be a countably infinite subset of B. Since B is uncountable,
|B~ D| =|B]|.

Then there are o, § € L(V) such that a|g: B — B\ C and 3|g: B — B\ D are
bijections. By Proposition 1.12(vii), we have that o, 5 € M (V). By Proposition
1.12(iv),

dim (V/Ima) = dim (V/{(B . C)) = |C} and

dim (V/Im 8) = dim (V/(B \ D)) = |D|, (2)

so we have that o, . € OE(V). Thus «, § € BL(V). Also we have

(BNC)a'Ba= (B~ D)aC B\C. (3)

Since |C] = |A|, there is a bijection ¢: C"— A. By (1), Cp € C. Define vy € L(V)
by
valBa ifve BNC,

vy =
vp ifved. (4)

Because of (3) and Cp C A, we have (B~ C)a"'BanCp C (BNC)NC = @.

Then v|p : B — (B~ C)UA C B is one-to-one. Hence v € M(V') by Proposition
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1.12(vii) and Im~ C ((B ~ C) U A). Since
dim (V/Im~y) > dim (V/{((B~ C)U A)) from Proposition 1.12(iii)
=|B~ ((BNC)UA),| from Proposition 1.12(iv)
—jo~ A
- 1B from (1),
we have v € OFE(V). Hence v € BL(V). We have by (4) that ¥|mma = o' Sa.
Consequently, fa = ay € BL(V )anaBL(V). By Proposition 1.4, fa € (a),. To
show that fa ¢ («)p, suppose on the contrary that fa € («),. By Proposition
1.4, Ba = a, Ba = a? or fa = ala for some X\ € BL(V). By Proposition 1.9(i),
06 =1y, B =aor § =al. Since C is uncountable, D is countable, Ba = B\ C

and BB = B~ D, we deduce that § # 1y and [ # a. Then = aA. Hence
Im G =Im(a)) = (Ima) = (BNC)A = ((BNC)N). (5)
Consequently,
| D= dim (V/Im 3) from (2)
=dim (V/(B ~ C)\) from (5)
> dim (Im A/ (B~ CHA)
=|B~ (BN O from Lemma 3.1
=1C|.
This contradicts the facts that D is countable but C' is uncountable. Therefore
Ba ¢ (a)p. By Proposition 1.8, BL(V) ¢ BQ.

Hence the theorem is completely proved. Il

If BL(V) is right simple, by Proposition 1.6, BL(V) € BQ which implies by

Theorem 3.17 that dim V' = Ny. That is, the converse of Lemma 3.16 holds.
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Corollary 3.18. dimV = X if and only if BL(V') is a right simple semigroup.

Next, to show that dim V' = N, is also necessary and sufficient for the semi-
group OBL(V') belongs to BQ, we first show as a lemma that if dimV = Ry,

then OBL(V) is left simple. Recall that OBL(V) =OM(V)NE(V).

Lemma 3.19. If dimV = Xy, then OBL(V') is left simple.

Proof. To show that OBL(V') is left simple by Proposition 1.1 which is equivalent
to show that for all o, 3 € OBL(V), ya = [ for some v € OBL(V).

Let o, € OBL(V) and let B be a basis of V. Then B is countably infinite.
Then for every infinite subset A of B, |A| = |B|. Since Ima = Impg = V|, for

every v € B, there exist u,,w, € V such that

1T — A R (1)

Then for distinct vy, v € B, ty, # Uy, and w,, # Wy,,. This implies that

Hu |ve B} =[B|={w, [veB}]

Let By and By be respectively bases of Kera and Ker 3. Then B; and B, are
countably infinite. By Proposition 1.12(vi), we have that B; U {w, | v € B} and
By U{w, | v € B} are both bases of V. Next, let C' be a subset of By such
that |C| = |Bs| = |B2 ~ C|. Then there is a bijection ¢ : C' — B;. Note that
CU(By~C)U{w, |v e B} is a disjoint union and it is a basis of V. Define

v € L(V) by
for every v € C,vy = v,
for every v € By \. C vy =0, (2)

for every v € B, w,y = Uy.
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Since By U{w, | v € B} is a basis of V|

Imy={(CpU{u, |lveB})=(BiU{u,|veB})=V.

Also, Kery = (By\.C) by Proposition 1.12(viii) and hence dim Kery = |By\C| =
|Bs| = dim Ker 5. Thus v € OBL(V'). To show that ya = 3, let v € B. Then

veCC,ve By~ C orv=w, for some z € B.

Case 1: v € C. Since C' C B, C Ker 3, v = 0. From (2), vy = vp € B; C Kera.

This implies that vya = 0. Hence vya = vf.

Case 2: v € By~ C. Since By ~ C' C By C Ker 3, v = 0. By (2), vy = 0. Thus

vya =0=0v0.

Case 3: v = w, for some z € B. Then by (1), u,a = z = w,5. From (2),

vy = w,y = u, and thus vya = u.a = 2z = w, B = vpf.
Hence ya = 3.

This proves that OBL(V) is left simple, as required. ]

Theorem 3.20. The semigroup OBL(V) is in BQ if and only if dim V = ;.

Proof. First, assume that dim V' # Ry. Then dim-V > X since dim V' is infinite.
Let B'be a basis of V'and let. C' C B be such that |B ~ C| =|C| = |B|. Let Dy
and Dy be countably infinite subsets of C' and B ~\ C|, respectively. Since C' and

B~ C are uncountable, we have

(BNC)N Dy =|BNC|=|B~Dy|=|B]and |C \ Dy|=|C|=|B|.

Then there are bijections ¢y : Dy — Dy, ¢ : (BN C) N Dy — B~ Dy, @3 :

C~D;— Candy,: (B~C)~ Dy — B~ C. By the choices of C, Dy and Do,
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we have
B:((B\C)\DQ)UDQUC:(C\D1>U<<B\C)\D2)UD1UD2
which are disjoint unions . (1)

We also have ¢, 4 : B~ Dy — B~ ('is a bijection. It then follows that

(B~ Dy)py oy =((B~ C) ~ Dy)U Ds
which is a disjoint union . (2)

Next, define «, 3,7 € L(V ) by

’

vpe ifv € (BN C) N Dy,

v = Y oup; ifv € Dy,

0 ifv e,

\
(
vps ifve N Dy,

v = vp, ifve (B~ C)N D,

0 if v € Dy U Dy

and
§

vy oy if v € BN Dy and vp; oy € Do,

VY = v, toaps if v € BN.Dy and v, tpy € (BN C) N Dy,

0 lf’UeDl

\

We have that a and 3 are well-defined by (1) and v is well-defined by (2). From
Proposition 1.12(viii) and the definitions of a and 3, we get
Ima = (B~ C)~N Dy)psUDypy) = ((B~D1)UDy))=(B) =1V,

dim Ker a = dim (C) = |C], (3)

Im A = (€'~ Di)gs U (B~ C) ~ Dy)gs) = (CU (BN C)) = (B) =V,

dimKerﬁ = dim <D1 U D2> = |D1 U D2|
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By (2), Propositionl.12(viii) and the definitions of ¢, ps and 7, we have

Imy = (Dap1 U((B N C) N\ D2))p2) = (D1 U (BN Dy)) =(B) =V,

dim Kery = dim (D;) = |Dy]. (4)
Consequently, «, 3,7 € OBL(V). We claim that fa = ay. Let v € B. Then v
belongs to one of the following subsets of B: Dy, Dy, C' . D; and (B~ C) \ Ds.
Case 1: v € D;. Then vfa = 0a = 0. Since Dy C C, vay =0y = 0.

Case 2: v € Dy. Then vfa = 0a = 0. Since vae = vy € Dy, vay = 0.
Case 3: v e C' ~\ D;y. Then vay = 0y = 0. But v = vps € C, so vBa = 0.

Case 4: v € (B~ ()~ D,y. Then v =vp, € B~ C, so

voapy. if vy € Dy,
vBa =
vpsps  if vy € (BN C) N Ds.

Since va = vy € B\ Dy, we have

vaw; papr  if vaupy s € Do,
vay =

vapy Lpaps i vawy tos € (BN C) N\ Ds.
But va<p51<p4 = 1)902902’1904 = VP45 S0
vawy ' papr = vpupr if vps € Do,
VaP3 Paps = Vpaps ~if vy € (BN C) N\ Dy

We then conclude that

vpspr i vpy € Dy,
vary =
Vg ifvpy € (BN C) N Ds.
This proves that vfa = vay for every v € B. Hence fa = ay € OBL(V)a N

aOBL(V). By Proposition 1.4, ay € («),. Suppose that ay € («),. By Proposi-

tion 1.4, ay = a, ay = a? or ay = ala for some A € OBL(V). By Proposition
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1.9(1), v = 1y, ¥ = a or 7 = Aa. By the definition of v, we have that v # 1y.
Since D; is countable and C' is uncountable, from (3) and (4), v # «. Then
v = Aa. Since Im A =V, for each v € C| there exists an element u, € V such
that u,A = v. Then [{u, | v € C}| = |C|, so {u, | v € C'} is uncountable.
Since C' is a linearly independent subset of V' over R, by Proposition 1.12(v),
{u, | v € C} is linearly independent over R. But since Ker v = (C), so for every
v € C, uyha = va = 0. It then follows that {u, | v € C'} C Ker Aa. Hence
dim Ker Ao is uncountable. Then by (4), that v = A« is impossible. Therefore
ay ¢ (o). Thus (a), # (a),. By Proposition 1.8, we have that OBL(V') is not
in BQ. This proves that if OBL(V') belongs to BQ, then dim V' = R,.

The converse of the theorem follows directly from Lemma 3.19 and Proposition

1.6. [l

Corollary 3.21. dimV = X if and only if OBL(V) is a left simple semigroup.

Proof. Assume that OBL(V) is left simple. Then OBL(V) € BQ by Proposition
1.6. Therefore we have by Theorem 3.20 that dim V' = N,

The converse is Lemma 3.19. O

Next, assume that V is a vector space over a division ring R of any dimension.
Recall from Chapter I, page 14, that if dimV < oo, then AM(V) = AE(V) =

L(V). Since L(V) is a regular semigroup, it follows from Proposition 1.5 that
(1) if dimV < oo, then AM(V) € BQ and
(2) if dimV < oo, then AE(V) € BQ.

The next two theorems show that the converses of (1) and (2) are also true.
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Theorem 3.22. The semigroup AM (V') is in BQ if and only if dimV < oo.

Proof. If dimV < oo, then AM (V') € BQ, as was mentioned above.
For the converse, assume that dim V' is infinite. Let B be a basis of V and

A={wu,|neN} C B where u; # u; if i # j. Define o, 3, v € L(V) by

;

Ug, if v = u, for some n € N,
v =

v ifve BXA,

\

(

Upsy if v =wu, for some n € N,
vf =<

v ifve BNA,

and

Upyo if v =w, for some n € N,

vy =

) ifveBNA.

Then «, 3, v € M(V') by Proposition 1.12(vii), so «, 3, v € AM (V). Since

for every n € N, wu,fBa = us,i0 = u,ay and

for every v € B\ A, vfa =v =vay,
we deduce that o # fa'= ay. Thus fa € AM(V)a N aAM(V) = (a), by
Proposition 1.4. Suppose that fa € (a),. By Proposition 1.4, fa = ala for
some A€ AM (V). Since a is one-to-one, we conclude that 4= aA. This implies

by the definitions of a and  that
B~ {u } = Bf = Ba\ = (Ba)\ = (B~ {uy,us,us,... })A\
For convenience, for each n € N, let w,, = us,_1. Thus
(BN Awn [ne NHA= (B~ A{wn[neNHA) = (B {ur}). (1)
But V = (B~ {ui}) + (u1), so by (1), we have

V=(B~{w,|neN}HA+ Ry (2)
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We then have by (2) that for each n € N, there exist v, € (B~ {w, |n € N})

and a,, € R such that w,\ = v, A + a,u;. Therefore
for every n € N, (w,, —v,)A € (uy). (3)

It follows from Lemma 3.2 that the set { w, —v, | n € N} is linearly independent
over R and w; —v; # w; —v; if @ # j. Set W = ({w, — v, | n € N}). Then
dim W is infinite. From (3), Alw : W — (u1) and hence dimIm (A|y) < 1. By

Proposition 1.12(i),
dimW = dim Ker (Alw) + dim Im (A|w).

We thus conclude that dim Ker (A|y,) is infinite. But Ker A D Ker (Aly), so
dim Ker \ is infinite. It is a contradiction since A\ € AM (V). This proves that

()4 # (@)p. Therefore AM(V') ¢ BQ by Proposition 1.8.

Hence the proof of the theorem is complete. O

Theorem 3.23. The semigroup AE(V) is in BQ if and only if dimV < oc.

Proof. If dimV < oo, then AE (V) € BQ, as mentioned previously.
On the other hand, assume that dim V' is infinite. Let B be a basis of V' and

A={u,|neN} C B where u; # u; if i # j. Define o, 5, v € L(V) by

0 if v =u, for some odd n € N,
v = un if v = u, for some even n € N,

v ifveBNA,

0 if v = uy or wuo,

B =19 u,_o ifv=u, for some n > 2,

v fve BN A
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and

0 if v=u,

vy =94 u,_q if v=u, for somen > 1,

v ifvée B~ A.

Then Ima=Impf =Imy = (BU{0}) = B. Thus o, 8, v € E(V) C AE(V) and
upfBa =0= u,ay if n =2 or nis odd,
upPa = Unsz = UnOy if n > 2 and nis even and

vBa = v = vay forallv e B\ A.
Thus a # fa = av. Consequently, ay € AE(V)a N aAE(V) = (a), by
Proposition 1.4. Suppose that ay € (a)p. By Proposition 1.4, ay = ala for
some A € AFE(V). Since a € E(V), by Proposition 1.9(i), v = Aa. Then

uida = uyy = 0, so ui A € Ker ae. By the definition of ov and Proposition 1.12(viii),
Kera = ({u, |n € Nand nisodd}).
For convenience, let w,, = uy, 1 for every n € N. Thus
Kera =({w, | n € N}). (1)
Since u1 A € Ker o, there are k € N and aq,as,...,a; € R such that

k
U = Zanwn. (2)
n=1

We claim that { wg., + Im A | n € N} is a linearly independent infinite subset of

V/Im \. To prove this, let [ € N and by, by, ...,b € R be such that

!
Z bp(Wisp +Im A) = Im A.

n=1

It then follows that 251:1 bpwiiyn € Im A, so there exists z € V such that

l
n=1
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Since V' = (B) = (A) + (B ~ A), there are m € N, ¢j,¢9,...,¢, € R and

u' € (B~ A) such that

m
z= E Colly, + .
n=1

We may choose m > 1. From (3) and (4), we have

l m
Z bWy y, = Z Cr(UnA) + U/ A
=" n=1

By (1) and (5), we get

l m
0= (Z by Wiy ) v = Z Cn(up ) + u' A

n=1 n=1

Since A\a = v and u;y = 0, we have

Z caluny) = —u'y.

n=2
From the definition of v, we have

m

Z Cn(uny) = chun_1 € (A) and uy=1u € (B A).
n=2

n=2
But (A) N (B~ A) ={0},s0 (6) and (7) yield ' =0and co =c3=...=¢,, =0
It then follows from (5) that
l
Z brnWisn = c1{ug X).
n=1
From this equality and (2), we obtain the following equality.
! k
Z bpWrin = 1 Z An Wy, .
n=1 n=1
This implies that c;a;w; +crasws+. . . +crapwyp —biwgi1 —bowgio—. . . —bwgs; = 0.
But since wy, ws, . .., wg, . . ., wgy; are linearly independent over R, so b, = 0 for all

n € {1,2,...,01}. Hence we have the claim. This contradicts that dim (V/Im \)

is finite. This proves that (a), # (a),. By Proposition 1.8, AE(V) ¢ BQ.

Hence the theorem is completely proved.
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Finally, we show that the finiteness of dim V' is also necessary and sufficient for
each of the linear transformation semigroups M AE(V) and EAM (V) to belong

to BQ.

Theorem 3.24. The semigroup MAE(V) is in BQ if and only if dimV < oo.

Proof. Assume that dim V' is infinite. Let B be a basis of V and A = {u, | n €
N} C B where u; # u; it i # j. Define «, 8, v € L(V) by

2

Upao if v =u, for some n € N,

v ifveB\NA,

Upq - if v =w, for some n € N~ {1},
VB = {
v ifve (BNA)U{u}

and

Up1  if v =u, for some n € N~ {1,2,3},
vy =

v ifve (BNA)U{uy,us,u;s}.

Then «, 5 and . are one-to-one by Proposition 1.12(vii), Ima = (B ~ { uy, us }),
Imf = (B~ {uy}) and Imy = (B ~\ {wy }). Thus from Proposition 1.12(iv),
dim (V/Im @) = 2;dim (V/Im ) = I and dim(V/Im~) = 1. Hence o, 3, v €

MAE(V). By the definitions of «, § and 7, we have that
ufa = Ui = ug = uzy = Uiy,
Up B = Up 100 = Upyg = Upyoy = Uy for any n > 1,
vBa =v =wvay foranyv € B~ A.

It then follows that Sa = avy, so fa € MAE(V)aNaMAE(V). By Proposition

14, fa € (a),. Suppose that fa € (o). Since upfa = us # uy = wga, fa # a.
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Then by Proposition 1.4, fa = ala for some A € MAE(V). By Proposition

1.9(i), we have § = aA. Then
B~{u}=Bf=Ba\= (B~ {uj,us})A\ (1)

Since A is one-to-one, A : V. — VA is an isomorphism. Consequently, V/W =

VA/W X for every subspace W of V' (see the proof of Lemma 3.1). Hence

2 =dim (V/(B~ {uy,us })) from Proposition 1.12(iv)

= dim (VA/(B~{ uy, us })A\)

< dim (V/(B {ug, ug })A)

= dim (V/A{(B~ {1, uz })A))

=dim (V/(B ~{u2}))=1  from (1) and Proposition 1.12(iv)
which is a contradiction. Thus fa & (@), so (), # (a),. By Proposition 1.8,
MAE(V) does not belong to BQ. This proves that if MAE(V) is in BQ, then
dimV < oo.

As was mentioned in Chapter I, page 15, MAE(V) = G(V) if dim V' < o0, so

MAE(V) € BQ if dim V < oc.

Hence the proof is complete. O]

Theorem 3.25. The semigroup EAM (V') is in BQ if and only if dimV < oo.

Proof. Assume that dim V' is infinite. Let B be a basis of V and A = {u, | n €
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N} C B where u; # u; for all distinct ¢ # j. Define «, 5, v € L(V) by

(

0 if v e {u,usl,
V=9 wu, o if v=u, for somen e N\ {1,2},
v if v e BNA,
(
0 ifU:Uq,
B =9 1w, if v =u, for somen € N\ {1},
v ifoe B\A
\
and
(
0 if v =4,
VY= Y, 1 ifv=u, forsomen e N~ {1},
v ifve BN\A.

\
Then Ima = ImfB = Imvy = (BU{0}) = V and by Proposition 1.12(viii),
Kera = (uy,ug), Kerf = (u;) and Kery = (uy), so we have that a, 3, v €

EAM(V). From the definitions of «, f and 7, we have the following equalities.
w1 fa = 0a =0=uo= ujay,
usfa =ua =0 =0y = usary,
uzfa= use = 0= u;y =uzy,
Up B = Up_ 100 = Up_3 = Up_27Y = UpQy if n > 3 and

vBa=v=wvay forallve B~ A
It then follows that fa = ay € EAM(V)a N aEAM (V). By Proposition 1.4,
a7y € (a),. Suppose that ay € (),. Since ugay = 0 # uy; = uza. By Proposition
1.4, ay = ada for some A € EAM (V). By Proposition 1.9(i), 7 = Aa. From the

definition of ~,

dim Ker (M) = dim Kery = 1. (1)
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Since Im A = V| there are u}, u), € V such that /A = u; and ubA = uy. Since uy

and uy are linearly independent, we have from Proposition 1.12(v) that
u} and ujy are linearly independent. (2)

We also have

{uh, ug by={wy, us Pra = {us, ug for = {0} (3)

Therefore (1), (2) and (3) yield a contradiction. Consequently, ay ¢ (a),. By
Proposition 1.8, FAM (V) ¢ BQ. This proves that if FAM(V) € BQ, then
dim V' < oo.

As was mentioned in Chapter I, page 15, EAM (V') = G(V) if dim V' is finite,

hence the converse holds. ]

Finally, we shall show that AM E(V/) is also regular which implies that it is a

BQ)-semigroup.

Proposition 3.26. The semigroup AME (V') is a reqular semigroup.

Proof. Let a € AME(V). Then dim Ker a and dim (V/Im«) are finite. Let B,
and By be bases of Kera and and Im «, respectively. Let B be a basis of V
containing Bs. For each v € By, let u, € V/ 'be such that u,o0 = v. It then follows
from Proposition 1.12(vi) that By U{w, | v € By } is a basis of V. By Proposition
1.12(iv),

dim (V/Ima) = dim (V/(Bs)) = |B \ Bal,

so |B \ Bs| < 0. Define g € L(V) by

u, ifv € By,
vB =
0 if v e B\ Bs.
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Then Ker 8 = (B ~\ Bs) by Proposition 1.12(viii) and Im g3 = ({u, | v € By }).
Thus dim Ker § = |B \ By| < 0o and we also have by Proposition 1.12(iv) that

dim (V/Im ) = dim ((B1 U{u, | v € Ba })/{({uy | v € B2 }))
= |By| = dim Ker . < 0.

Hence f € AME(V). Since By U{w, | v € B, } is a basis of V,

vapfa=0=va forallve B; and
Uy = vBa = u,a  for all v € Bs,

we have afae = ao. This proves that AM E(V) is regular, as required. O]

Therefore by Proposition 3.26 and Proposition 1.5, we have

Theorem 3.27. The semigroup AM E(V) always belongs to BQ.

Observe that 0 € AME(V) if and only if dim V' < c0. Because AME(V) is
always a BQ-semigroup, it is natural to ask whether AM E (V) is left O-simple
and/or right O-simple if dimV < oo and whether it is left simple and/or right
simple if dim V' is infinite (see Proposition 1.6).-The following proposition is the

answer.

Proposition 3.28. The following statements hold.
(1) If dimV < oo, then AME(V') is left [right] 0-simple if and only if dimV = 1.
(i3) If dim'V is infinite, then AME(V') is neither left simple nor right simple.
Proof. Since AME(V) = L(V) if dimV < oo, we have that
={0} ifdimV =0,

AME(V)
~R  ifdimV =1.
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Since R is a division ring, it follows that if dim V' = 1, then AM E(V') is both left

0-simple and right O-simple. Next, we assume that dimV > 1 and let

C={ac AME(V)|dimKera > 1},
D={ac AME(V) |dim (V/Ima) > 1}.

Let B be a basis of V and u,w € B such that u # w. Define 3,7y € L(V') by

v ifve BN{u,w},
U0 =

0 fv=worv=w

and

v ifw e B~ A{u},
gy =
ity

Then by Proposition 1.12(viii), Ker # = (u, w) and Ker v = (u). Moreover, Im =
(B~ {u,w}) and Im~y = (B ~ {u}). Therefore we have that dimKer s = 2,
dim (V/Im ) = 2, dimKer~y = 1 and dim (V/Im~) = 1. It thus follows that
geC, 6eD veAME(V) N C and v € AME(V) ~ D. This shows that
C' and D are nonempty proper subsets of AME(V). Since Ker a8 2O Kera and
Im fa C Im o for all ey 8 € AMF(V); we deduce that €' is-a proper right ideal

and D is a proper left ideal of AM E(V'). This proves that (i) and (ii) hold. [

Remark 3.29. The known result in Proposition 1.10 about Mx and Ex moti-
vates us to study M (V') and E(V). Also, our study on BL(V) in Theorem 3.17 is
motivated by the known result in Proposition 1.11. After that, many other linear
transformation semigroups are considered. As can be seen in this chapter, many
linear transformation semigroups are characterized when to be B(@)-semigroups.
Our technique of proofs use some knowledge of cardinalities of sets and linear al-

gebra. Especially, suitable constructions of linear transformations to achieve our
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goals are really important. It is quite clearly seen that if we define the transfor-
mation semigroups on a sets which were not defined in [9] in the similar way as in
this chapter, the expected results will be obtained by replacing dim V' with | X|.

Moreover, the proofs will be about the same or easier.



CHAPTER IV
ORDER-PRESERVING TRANSFORMATION

SEMIGROUPS

In this chapter, we are concerned with any order-preserving transformation
semigroups Tpp(I) on a nonempty interval / of real numbers under usual ordering.
The aim is to characterize when Top(7) is in BQ in terms of I. Proposition 1.8,
Proposition 1.13 and suitable constructions of mappings are important tools.

It is obvious that there are 9 types of nonempty intervals of R as follows where

a,beR.
1) R,
(2) (a,00); (3) la,00),
(4) (=00,a), (5) (=00, dl,
(6) (a,b) wherea<b, (7) (a,b] where a < b,
(8) [a,b) wherea <b, (9) [a,b] ~wherea <b.

To provide the main result, a series of following lemmas are required.

Lemma 4.1. Tpp(R) is not in BQ.

Proof. Define o, 3,7 : R — R by
ra=2% zf=3r and ay=2a>forallzeR.

Then all of «, f and v are one-to-one and increasing on R, so «, (3, v € Top(R).
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Moreover, Ima = (0,00) and Im § = Im~ = R. Since for every = € R,

zfa = (z8)a = (37)a = 2°7,

vay = (za)y = (27)y = (2°)° = 2*7,
it follows that a # fa = ay € Top(R)a N adpp(R). By Proposition 1.4, fa €
(a)q. To show that Ba ¢ (e),, suppose that fa € («),. From Proposition 1.4,

Ba = ala for some A € Tpp(R). Since « is one-to-one, § = aA (Proposition

1.9(i)). It then follows that

A‘Ima =2

(000) = 7' 5, (1)
RA& RS = Rad = (Ra)\ = (0, 00)\. 2)

From (1), we have that A|( is one-to-one. Because 0A € R, by (2), there
exists d € (0,00) such that 0\ = d\. But since X is order-preserving, it follows
that (0,d]\ = {OA}. This is a contradiction because | is one-to-one. Hence

Ba ¢ (a)p. By Proposition 1.8, we have Top(R) ¢ BQ. O

Lemma 4.2. Ifa € R and I = (a,00) or [a,00),then Top(I) is not in BQ.

Proof. Define «, 3,7 : [a,00) — R by

rT—a

T = ——— + a,
r—a+1

zf =2z — a, (1)
2z — 2a n

Ty =—"—"-—+a

7 r—a+1

for all z € [a, 00).

Then we have

a, 8 and v are continuous on I, (2)
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, (z—a+1)—(x—a) 1

e —at 1) CErEa

zf =2>0, (3)
,  (x—a+1)(2)— (22 —2a) 2

o= (x—a+1)2 _(x—a+1)2>0

for all = € [a,00). It then follows from (3) that «, (3, v are strictly increasing on

la,00). From (1), we have that
aa =af = ay = a. (4)
Consequently, «, 3, v € Top(l) and all of them are one-to-one. Let

ar=al;, fi=PBp and 7 =7

Then ay, f1,71 € Top(I) from (3) and (4). Observe that if a € I, then oy = «,

6y = 3 and v, = v. We claim that f;a; = ayy;. To show this, let € I. Then

zfrar = (xf01)aq = (22 — a)oy

(2xr —a)—a -
= a
(2x—a)—a+1
P — 0,

20 —2a11 "
u_{_)
r—a+1 2/
(&
r—a-+1
T—a
(m—i—a)—a—f—l
T —a
o( T
_ x—a—l—l) La
T —a
+1

xay = (rag)yr = (

+a)—2a

+a

r—a+1

B 2r — 2a n
2 —2a+1 @

Thus 51041 = 1M1 € TOP<I)Oél N alTop(I). By PI’OpOSitiOl’l 14, ﬁlOél € (041>q.

a+1—a 1
incea+1el, (a+1)ay a+1_a+1+a 5 taan

a+2—a 2
(a+1)par = (2a +2 —a)a; = (a+2)x Tre_ar1 st
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we have that Sy # aq. Suppose that fja; € (aq)p. From Proposition 1.4,
Brar = agday for some A € Tpp(I). But since oy is one-to-one, 5 = ayA. From

(1), (3) and (4), we have Im = [a, 00). Since

a
1 — =

lim(xa)zhm( xl—i—a):a—i—l,
A

we have from (2)-(4) that Ima = [a,a + 1). Hence we have
ImpBy=1 and Imag =TNJa,a+1). (5)
Since 1 = ay A and both a4 and [ are one-to-one, from (5) we conclude that
Moty = ai ' By which is one-to-one (6)
Moreover, from (5),
I =10 =1laiA = ({a)A=(IN[a,a+1))A. (7)

Since a+1 € I, (a+1)A € I, s0 by (7) (a+1)\ = dA for some d € IN[a,a+1). Then
d < a+1and d\ = (a+1)\. But Ais order-preserving, thus [d, a+1)\ = {(a+1)A}.

Now, we have
d<a+1, [dya+1) CINja,a+1l) and [d,a+1)A = {(a+1)A}. (8)

Then (6) and (8) yield a contradiction. Hence (10 ¢ (o). We therefore have

from Proposition 1.8 that Top(I) ¢ BQ. O

The following lemma is directly obtained from Lemma 4.2 and Proposition 1.13(i)

and (ii).

Lemma 4.3. Ifa € R and [ = (—00,a) or (—oo,al], then Top(I) ¢ BQ.
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Lemma 4.4. Let a,b € R be such that a < b and let I be (a,b) or (a,b]. Then

Tor(I) ¢ BQ.
Proof. Define «, 3,7 : [a,b] — R by

x b
x&—§+§forallx€[a,b]

4
2_:Jc+g ifa§a:<a+b,
_ P S—3 4
xf3 <4 y ;
), R —
\ 3 3
2
-’ /1 ifa§x<a+36,
w L N\
i kRN
F of f 4 <p<
43 5 if <z <b.
We then have respectively from (1), (2) and (3) that
1
aa:a;be(a,b), bao = b and xa':§f0rallx€[a,b],
af=a, bB=0,
1 1fa§x<a+b,
23 = 3 2
4 b
; ﬁ“; cr<b
2.a+b a. 2a+b
li == — = d
i =R BT T
a+b 4 a+b b 2a+b
Gabg =ttt b 2D
b
a7:5a6+ € (a,b), by=hb,
2
— ifa§x<a+3b,
oy =3 4
4
= i O3
_ 2 a4+ 3b a+b a+2b
b, @) =3t =y ad
T

(a+3b) _Z_l(a+3b)_§_ a+2b
1 773y 3°- 3
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From (4), (5) and (6), we have that «, § and 7 are continuous, order-preserving
and one-to-one and «, (3, v : [a,b] — [a,b]. This implies that oy, 51 ;71 € Top(I)

where oy = o7, 1 = O] and v; = v|;. To show that 10y = ayy;. Let x € I.

b
Case 1: x < %. Then by (1)-(3),

2x +a 1 2+ a b 2x+a+3b
zfiog = (z61)ar = ( 3 Jay = 5( 5 )+ R —
(zas) (:1:+b) 2(x+b>+a—|—b 2x +a+ 3b
ro = |\ T =— — —
171 )M 9 T 3 5 6 6
. <a+b:>x+b<%é+b a+3b
in = )
since x 5 § 4 i
b y TP a0 3b
Case 2: = > ot . Then x~2|— p o AR\ % a—z , so we have from (1)-(3)
that
4o —b 1 42— b b 2x-+0b
zfiag = (xf1)a; = ( 3 )06125( 3 )"‘5: 3
( ) (x—i-b) 4(x+b) b 2x+b
171 1)71 5 4! 3 5 3 3

Hence fia; = ayyi € Top(l)aqn N anTop(l) = (a1),. Suppose that fioy €
(cv1)p. Since aq is one-to-one and 3; # 1x, by Proposition 1.9(i), fia; # a3. By
Proposition 1.4, i1 = aj Ay for some A € Top(I). Then B = a3\ since a; is

one-to-one. Since @ ¢ I, from (4) and (5) and the continuity of a and /3, we have

b
Imalzlﬂ(a+

0 cand - Im Gy = 1 (7)

respectively. Since 51 = ay A\, we have from (7) that

a+b

I =10 =TIaA=(Ta)h= (IN( b)) (8)

We also have

Alma, = a7 '3 which is one-to-one 9)
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since oy and f3; are one-to-one. For any case of I, I N (a, a—i—b) #+ . Let
b b
celn (a,a;— ). By (8), cA =dA for some d € I N (a—i— ,b]. Then
a-+b < bif I =(a,b),
c< <d
<D= (a,b]. (10)
. . . P a+b
Since A is order-preserving, we have [c, d|A = {¢A} which implies that (T’ d|\ =
{dA\}. By (7) and (10), (CH_ b,d] C Im ay. Now, we have
atb g A Lo, and (CRE ) = (an). (11)

2 2

From (9) and (11), we have a contradiction. Therefore, Ba1 ¢ (ay),. By Propo-

sition 1.8, we have Top(I) ¢ BQ, as desired. O

We also have the following lemma from Lemma 4.4 and Proposition 1.13(iii).

Lemma 4.5. If a,b € R are such that a < b, then Top(la,b)) ¢ BQ.

Now we are ready to give the main result of this chapter.

Theorem 4.6. For a nonempty interval I of R, Top(I) € BQ if and only if I is

closed and bounded.

Proof. 1f I is closed and bounded, by Proposition 1.14 and Proposition 1.5,
Tor(I) € BQ.

On the other hand, assume that I is neither closed nor bounded. Then [ is
one of the types (1)-(8) mentioned at the beginning of this chapter. Hence by

Lemma 4.1-Lemma 4.5, we conclude that Top(I) ¢ BQ. O
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