[

uAUNEIUFTTIRAUUINNgUmMsulausadu

! Y o w 1 o o )
‘ﬁﬁﬂl’[’]fl]']ﬂﬂ‘]_luﬂuﬂﬂ']‘ww%@ﬂ'la'lﬂﬂ%u5'}u

d o =
WMoty Usengaes

v

a a cr’dy I 1 :é = [ a = a
INNUNUF U UTIUNTIVOIM AN INNHANZATUT YR INMaaTER TN
AUNITIAAAMANS NMAITIANAFNTATLAZINGINTADUNAADS
ANZINGITNTAS PNAINTANMINAY

=} =
UmMsAns 2559

7
a a A d a (%
AVANTUDIYIWIAINTUNHIINYIY

v
& o

o 1 4 b4 o < a a = =2 Ql' v oa o
unAngalazuiNdeyaaiuAN1aIne InusAauATNsAnEN 2554 nliEnnslupaatiny U19W14 (CUIR)
HuiilsdeyaeslidnidnaetneTnuindeinuneiudsanan s
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



THE NATURAL PARTIAL ORDER ON LINEAR TRANSFORMATION
SEMIGROUPS WITH RESTRICTIONS ON NULLITY OR CO-RANK

Mr. Pongsan Prakitsri

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2016
Copyright of Chulalongkorn University



Thesis Title THE NATURAL PARTIAL ORDER ON LINEAR
TRANSFORMATION SEMIGROUPS WITH
RESTRICTIONS ON NULLITY OR CO-RANK

By Mr. Pongsan Prakitsri

Field of Study Mathematics

Thesis Advisor Teeraphong Phongpattanacharoen, Ph.D.

Thesis Co-Advisor Assistant Professor Sureeporn Chaopraknoi, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

......................................... Dean of the Faculty of Science
(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

......................................... Chairman

(Professor Patanee Udomkavanich, Ph.D.)

......................................... Thesis Advisor
(Teeraphong Phongpattanacharoen, Ph.D.)

......................................... Thesis Co-Advisor
(Assistant Professor Sureeporn Chaopraknoi, Ph.D.)

......................................... Examiner

(Associate Professor Amorn Wasanawichit, Ph.D.)

......................................... Examiner

(Assistant Professor Sajee Pianskool, Ph.D.)

......................................... External Examiner

(Khajee Jantarakhajorn, Ph.D.)



Y o w

waday Ysznges: suduuedusssumauunanglmsmlassaduiitidedda
UUFUININHI0AIEIAUFUTIN. (THE NATURAL PARTIAL ORDER ON LINEAR
TRANSFORMATION SEMIGROUPS WITH RESTRICTIONS ON NULLITY OR
d' a a o [ = 4 d v a ,d'
CO-RANK) 0. NU5n¥1IMednusnan : a5, T3ned wadwauasg, 0. 15nwn

nenfinution : wet. a3, g3ous waumsniles, 67 i,

[

1 a é = % U ! d‘Q
UAUNTIUTITNIA < VUNangl S Avouauuauntioulag
<3N 4 ) o
a <b naollo a = xb = by uaz a = ay dm5vUN x,y € S!

4 & {y v { Y o @ v ’ o s q Y
o STilunnglnldnin S Tagh ST = § &1 S Tendanwal wazd S luliiendnyal 14 ST

v
I [ [ - 1

o @ 9 3 9 1 a : :
Ao S wuanenanyal 114111y S illundnunduauuediusssumavunengluaznangl
1 a & g‘/ 9 [ [ g’; = [ [ 1 a =
EJ@EJ‘]J?JﬂGIﬂJ’OQﬂQﬂ:J“]J‘L!‘L!WENﬂH ANUUNITANHIDOUAVUUINTIUTITIUF IO U UNI

gt hidsaavaflufiaula

=

a a 4 Y] 211 Bldl Ao & =} o o ~ a
11!'31’]ﬂ?uwu'ﬁﬂﬂﬂulﬁ111(”\1'[’)1!1%'1/]’1]']L‘]JT!LLa$LWfJ\1W'E)ﬁ'1W3‘]Jﬂ1§°I/]ﬁ'iJ']GI)'ﬂﬂluﬂ

a 9 [

a 9 ] d'd o A 1 o W 3’, 1 =\ [ Ly J o
ﬂ?‘]_]ﬂTi!,L‘iJﬁ\1LGINLﬁuhlﬂJ”lJ3ﬂ@]‘m\l511f’Ji‘ﬂﬂﬂ‘U“LlflfufJﬂWWﬁ3ﬂﬂWﬁWﬂU“Bui’H\lfﬂzﬁJﬂ’ﬂﬁJﬁuwu‘ﬁﬂu
P

Yo o [ a =1 yd' Ao & =1 o 1Y) Aa =
ﬂ']fﬂﬂ@uﬂﬂ’ﬂ']\?ﬁ?u‘ﬁﬁﬁllﬂfm HOINIINU Lii{lﬁN@ullsU'ﬂi‘ﬂL‘IJullﬁ&WfNW@ﬁ']ﬁiUﬁN']ﬂfﬂ{lufN
Aa v 2 1 I a @ a <]
nyUmsudasFaduraniunezduaudnldununuldnsdieuaznisun aunsnanga

mWznauLazaNFn lvggammzngy daunsnlnaruazandnilnuu

a a 4 4 Aan
AN ANATNANSIAY aeipyolde

a a 4 A A = o
INYINIINDUNIAUND T AMYUDYD ’E).Tl‘]_ﬁﬂ‘]eﬂﬁaﬂ .............

a a J A A A '
a1U1IM AUAAIANI AMYUBDYD f].‘ﬂlﬁﬂ‘]sﬂﬁ')ll .............



# # 5472836023 : MAJOR MATHEMATICS

KEYWORDS : LINEAR TRANSFORMATION SEMIGROUP / NATURAL
PARTIAL ORDER / COMPATIBLE ELEMENT / MINIMAL ELEMENT /
MAXIMAL ELEMENT / LOWER COVER / UPPER COVER

PONGSAN PRAKITSRI : THE NATURAL PARTIAL ORDER ON
LINEAR TRANSFORMATION SEMIGROUPS WITH RESTRICTIONS
ON NULLITY OR CO-RANK. ADVISOR : TEERAPHONG
PHONGPATTANACHAROEN, Ph.D., CO-ADVISOR : ASST. PROF.
SUREEPORN CHAOPRAKNOI, Ph.D., 67 pp.

The natural partial order < on a semigroup S is a partial order defined by
a < b if and only if @ = b = by and a = ay for some z,y € S!

where S! is the semigroup obtained from S such that S' = S if S has an identity
and if S has no identity, let S* be S with the identity 1 adjoined. It is known that
the natural partial orders on a semigroup and its regular subsemigroups coincide.
Therefore, the study of the natural partial order on nonregular semigroups are of
interest.

In this thesis, we give necessary and sufficient conditions for elements in
nonregular linear transformation semigroups with restrictions on nullity or co-rank
are related under the natural partial order. Furthermore, we provide necessary
and sufficient conditions for elements in those linear transformation semigroups
to be left and right compatible elements, minimal and maximal elements, lower

and upper covers.

Department: ......... Mathematics and Student’s Signature ..............cccc......

............................................... Advisor’s Signature ........................
Field of Study: ........... Mathematics . Co-advisor’s Signature ....................
Academic Year: ................ 2016,



vi

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Teeraphong Phongpat-
tanacharoen, and my co-advisor, Assistant Professor Dr. Sureeporn Chaopraknoi,
for their patience and expert advice throughout this thesis. I would never be able
to complete this thesis without their suggestions.

I also acknowledge Professor Dr. Patanee Udomkavanich, the chairman, Asso-
ciate Professor Dr. Amorn Wasanawichit, Assistant Professor Dr. Sajee Pianskool
and Dr. Khajee Jantarakhajorn, the thesis committees, for their invaluable com-
ments and guidance.

My sincere thanks also goes to my family and friends for their encouragement
and motivation.

Finally, I wish to thank the Science Achievement Scholarship of Thailand

(SAST) for financial assistance throughout my graduate study.



CONTENTS

page
ABSTRACT IN THAT ..o iv
ABSTRACT IN ENGLISH .. ..o v
ACKNOWLEDGEMENTS ... e vi
CON T EN TS o e vii
CHAPTER

[ INTRODUCTION ... e 1
II PRELIMINARIES .. 4
2.1 Notation and Definitions ........ .. .. .. o i 4
2.2 Elementary Results ........... 11
2.3 A Glance on the Natural Partial Order ........................... 18
[IT THE SEMIGROUPS AM(V)and AE(V) ...oiiii i 22
3.1 The Natural Partial Orders on AM (V) and AE(V) ............... 22

3.2 Left and Right Compatible Elements in (AM(V), <) and
(AE (V) ) et 28

3.3 Minimal and Maximal Elements in (AM(V'), <) and (AE(V), <) ..30
3.4 Lower and Upper Covers of Elements in (L(V), <), (AM(V), <)

and (AE(V), <) oo 32

IV THE SEMIGROUPS K (V, k) AND CI(V,K) «.vvoveeeeeneeaninn.. 37

4.1 The Natural Partial Orders on K(V, k) and CI(V,k) .............. 37
4.2 Left and Right Compatible Elements in (K (V, k), <) and

(CT(VK), ) oo 46

4.3 Minimal and Maximal Elements in (K (V, k), <) and (CI(V,k),<) 51

4.4 Lower and Upper Covers of Elements in (K (V) k), <) and
(CI(V Ry ) e e e 56
REFERENCES . 66



CHAPTER I
INTRODUCTION

In semigroup theory, the problem of defining a partial order on a semigroup has
been studied for a long time. For a semigroup S, the set E(S) of all idempotents

in S can be ordered in the following manner: for any e, f € E(.5),
e <pw) fifand onlyife =cf = fe.

From [8], this is a partial order on E(S). There are many attempts to extend this
order to any semigroup. In 1952, V. Wagner [16] introduced the notion of inverse
semigroups and the partial order <;,,, that is, for an inverse semigroup S and
a,bes,

a <iny bif and only if a = eb for some e € E(S5).

The intersection of the partial order <;,, and E(S) x E(S) is <g(s) where S is
an inverse semigroup. Next, in 1980, according to [3] and [12], R. Hartwig and
K. Nambooripad independently defined partial orders on a regular semigroup,
which have different forms but equal, say <,.,. An interesting form of <,., is
defined by H. Mitsch [11] in 1986 as follows. For a regular semigroup S and
a,bes,

a <,¢4 bif and only if a = 2b = by and a = za for some z,y € S.

Unfortunately, this relation on a general semigroup may not be a partial order if
the semigroup has no identity. To solve this problem, an element 1 ¢ S is added
to be the identity of S, that is, for a semigroup S, let S be a semigroup with the
identity 1 adjoined if S has no identity; otherwise, S* = S. Therefore, H. Mitsch
defined in [11] that, for a semigroup S and a,b € S,

a < bif and only if ¢ = 2b = by and a = za for some z,y € S*.



This order is a partial order on S called the natural partial order. In particular,
the orders < and <,.4 are equal on an arbitrary regular semigroup. Furthermore,
<, <peg and <y, are equal on each inverse semigroup. In addition, H. Mitsch
proved in [11] that the natural partial order < has several equivalent forms, that
is, for a semigroup S with the natural partial order < and a,b € S, the following
are equivalent:

(1) a < b,

(it) @ = zb = by and a = ay for some z,y € S*,

(i11) a = xb = by and a = xa = ay for some z,y € St

Nevertheless, it is sometimes not convenient to verify related elements in a
semigroup by using the definition of <. Therefore, the problem of finding neces-
sary and sufficient conditions for elements in various semigroups to be related is
of interest. Notice that the regularity of a semigroup is significant in studying
the natural partial order on a semigroup. In 1994, P. M. Higgins [4] proved that
regular subsemigroups of a semigroup inherit the natural partial order from the
semigroup. Therefore the natural partial orders on nonregular subsemigroups
of some semigroups are focused. From [2] and [5], they determined the natural
partial order on nonregular semigroups.

Note that every semigroup can be embedded into a certain transformation
semigroup, see [6]. This embedding additionally preserves the natural partial
order since the natural partial order is defined via multiplication of a semigroup.
There are many researches about the natural partial order on transformation
semigroups; for example, [5], [7] and [9] provide characterizations for elements in
some transformation semigroups to be related under the natural partial order.

For a vector space V| denote by L(V') the set of all linear transformations
on V. It is a semigroup under composition. In 2005, R. P. Sullivan [15] studied
the natural partial order on the semigroup L(V'). Our attention is now on various
subsemigroups of L(V'). In this thesis, certain nonregular subsemigroups of L(V')
are considered.

We consider several subsemigroups of L(V'), namely, AM (V'), AE(V), OM(V),



OE(V), K(V,k), CI(V,k). They are linear transformation semigroups with re-
strictions on nullity or co-rank and their definitions can be found in Chapter II.
Since the regularity of a semigroup is important in studying the natural partial
order, we focus on the regularity of those subsemigroups of L(V') listed above. The
regularity of the semigroups AM(V), AE(V), OM(V') and OE (V') are described
in [6]. However, the regularity of K (V, k) and CI(V, k) are still not investigated.
We shall give necessary and sufficient conditions for K (V, k) and CI(V, k) to be
nonregular.

We organize this thesis as follows: Chapter II contains notations, definitions
and quoted results that will be used in this thesis. Then we provide necessary and
sufficient conditions for elements in the nonregular semigroup S(V') to be related
under the natural partial order < where S(V) is defined as follows:

In Chapter III, S(V) is either AM (V') or AE(V).

In Chapter IV, S(V) is OM(V), OE(V), K(V,k) or CI(V, k).

Furthermore, we characterize left and right compatibility, minimality, maximality
and the existence of lower and upper covers of elements in (S(V), <) with or
without the regularity of S(V'). At last, we give many examples associated with

our results.



CHAPTER I1
PRELIMINARIES

2.1 Notation and Definitions

For a nonempty set X, a partition P of X is a family of sets such that & ¢ P,

U A =P and AN B = @ for all distinct A, B € P. A binary relation < on a

AeP
nonempty set X is called a partial order on X if the following properties hold.

(1) Reflexivity: = < x for all z € X.

(77) Antisymmetry: for any z,y € X, r <y and y < = imply = = y.

(73i) Transitivity: for any x,y,z € X, z < y and y < z imply = < z.

If X is a partial order on a set X, the pair (X, %) is said to be a partially ordered
set or a poset. In the sequel, if there is no ambiguity about the partial order, we
may write X instead of (X, x).

For a poset (X, <), an element x in X is called a minimal element in X if for
any y € X, y < x implies y = . A maximal element x in X is defined by for
any y € X, z < y implies z = y. An element x in X is said to be the minimum
element in X if x < y for all y in X. The mazimum element x in X is the element
such that y < x for all y € X.

For any distinct elements x and y in a poset (X <), x is said to be a lower
cover of y in X if x < y and there is no z € X \ {z,y} such that z < 2z and
z < y. From this definition, y is said to be an upper cover of x in X. It is clear

that there is no lower [upper] cover of minimal [maximal| elements.

Example 2.1.1. (i) Let X be a nonempty set and a € X. Consider P(X) with
the inclusion C. Obviously, @ has no lower cover in P(X) and & is a lower cover
of {a} in P(X). Let A, B C X be such that A C B. Then A is a lower cover of
B in P(X) if and only if B \ A is a singleton.

(17) Every element in the set of real numbers R has no lower and upper cover with



respect to the relation “less than or equal to”.

In this thesis, we illustrate many figures, so the notations are needed to intro-
duce. Consider a poset (X, <), an element in X will be drawn as a vertex. For
distinct x,y € X, we draw a straight line from x upward to y if = is a lower cover
of yin (X,<). If x < y on X, we use a dotted line from = upward to y; see the

following notations.

-

Figure 2.1: (¢) This means that x is a lower cover of y. The meaning of (i7) is

that y has a lower cover. (iii) means z < y. (iv) = has an upper cover.

For example, see the figure below.

Figure 2.2: A diagram of (P(X), C) where X = {a,b, c}.

Let N be the set of all natural numbers with the standard relation “less than
or equal to”<. Consider N x N with the partial order <’ defined by, for any
a,b,c,d € N, (a,b) <" (¢,d) if and only if @ < c and b < d. Then (N x N, ') is a

partially ordered set and it can be illustrated as in Figure 2.3.



Figure 2.3: A diagram of (N x N, <’).

Next, we provide definitions and notations in semigroup theory that will be
used. A nonempty set S with a binary operation - on S is called a semigroup if -
is associative. For any elements z,y in a semigroup S, we write x -y as zy. Next,
for a partial order < on a semigroup S, an element ¢ € S is said to be left [right]
compatible on S if for any elements a,b € S, a < b implies ca < ¢b [ac < be]. In
particular, ¢ is called compatible on S if it is both left and right compatible. If

every element in S is compatible, then < is called compatible on S.

Example 2.1.2. (i) For a set X, consider the power set P(X) with the inter-
section N and the union U. Then (P(X),N) and (P(X),U) are semigroups. Let
A,B,C € P(X) be such that A C B on (P(X),N). Thus CNAC CNB and
ANC C BNC. Therefore, C is compatible on (P(X),N). Similarly, C is also
compatible on (P(X),U).

(17) Let (RT,-) denote the poset of all positive real numbers endowed with usual
multiplication -. Consider the order “less than or equal to”< on (RT,:). Let
a,b,c € R™ be such that a < bon RT. Then ca < ¢b and ac < bc on RT. Hence <
is compatible on (R,-). Since 1 <2 and 1(—2) = (-2)1 = -2 ¢ -4 =(-2)2 =

2(—2), we have < is neither left nor right compatible on (R, -).

Let S be a semigroup. An element e in S is said to be an idempotent if e* = e.
For an x in S, if ax = x = za for all a € S, then x is called the zero. If e is an
element in S with the property that ae = a = ea for all a € S, then e is said to
be the identity. An element a in S is called regular if a = azxa for some z € S. If

every element in S is regular, then S is said to be a regular semigroup. For any



A, BCS, let
AB ={ab|a€ Aandb € B}.

A nonempty subset A of a semigroup S is called a left [right] ideal of S if SAC A
[AS C Al
If S is a semigroup without identity, we can adjoin an element 1 ¢ S and

define a binary operation * on S U {1} by

a*xb=ab for all a,b € 5,
axl=a=1x%a forallae SU{l}.
For a semigroup S, we let

S if S has the identity;
SU{1} if S has no identity.

St =

Then S! is a semigroup with identity.

Example 2.1.3. (i) Let X be aset. Note that X and & are identities of (P(X),N)
and (P(X),U), respectively. Hence P(X)! = P(X) under the operations N and U.
(17) Let S be a semigroup defined by ab = b for all a,b € S. If S has more than
one element, then S has no identity. Therefore, S* # S.

The natural partial order < on a semigroup S is defined by Mitsch in [11] as

follows, for any a,b € S,
a < b if and only if @ = 2b = by and a = ay for some z,y € S*.

This order is a partial order on S. For any a,b € S, the relation a < b stands for

a<band a#b.

Example 2.1.4. Let X be aset. Consider the semigroups (P(X),N) and (P(X),U).
Let A, B € P(X) be such that A C B. Since A= ANB=BNAand A=ANA,
we obtain A < B on (P(X),N). Since B=BUA=AUB and B= BUB, we
have B < A on (P(X),U).



Example 2.1.5. Let S be a semigroup defined by ab = b for all a,b € S. Suppose
that @ < bon S. Then a = xb = by and a = ay for some x,y € S*. This implies
that a = b = 0. Hence a < b on S if and only if a = b.

Consider S with the natural partial order <. If S has the zero element 0, then
0 is the minimum element by [2] and x € S is called a minimal nonzero element
in S if x is an upper cover of 0.

In this thesis, we are interested in studying the natural partial order on linear
transformation semigroups. We next introduce notations and definitions in linear
algebra and the theory of linear transformation semigroups.

In this section, let V' be a vector space over a field and let
L(V) ={a| ais a linear transformation on V'}.

From [6], L(V) is a regular semigroup under composition. Let a € L(V'). Throug-
hout this thesis, all functions act on the right-hand side of the argument. The
kernel of o is the set of v € V' such that va = 0 where 0 is the zero vector. The
image of o means V. The kernel and the image of o are denoted by ker o and
im «, respectively. For a subspace U of V| let dim U represent the dimension of U.
The notations dim(ker o) and dim(im «) are called the nullity of o and the rank
of a, respectively, denoted by nullity & and rank . For a subset A of V| let (A)
stand for the subspace spanned by A and (v) means ({v}) where v € V. Denote
by Oy and 1y the zero map on V' and the identity map on V', respectively.

For a subspace W of V and a vector v € V, the set {v+w | w € W} is denoted
by v+ W, called a coset of W in V. The set of all cosets of W in V' is represented
by

VIW ={v+W |veV}

Then the set V//W is called the quotient space of V- modulo W. In fact, V/W is a

vector space under the following operations: for u,v € V' and a scalar a,
(u+W)d w+W)=(u+v)+ W

and

a® (u+ W)= (au)+W.



Clearly, the zero vector in V/W is 0+W = W. For each o € L(V'), dim(V/im )
is called the corank of o denoted by corank . Note that if dim V' is finite, then
corank o = dim(V/im «a) = dim V' — dim(im o) = dim(ker o) = nullity a.

For any sets A, B, Ag C A, By C B and any function ¢ : A — B, denote by
Agp and Byp~! the image of Ay under ¢ and the inverse image of By under ¢,

respectively. Moreover, ¢! is the inverse relation of ¢. For any a, € L(V),

Vaf™ ={v eV |vf €ima} and let
E(o,B) ={v eV |va=vp}.

It is easy to see that E(a,3) € VaB~! for all a, 3 € L(V), but it is not necessary
true that E(a,8) = Vaf™'. Recall that any linear transformation o € L(V') can

be defined on a basis B of V' as it can be extended linearly from a basis, that is,
(av1 + -+ 4 apvp)a = Gy + - - - + avpa

where vy,...,v, € B, ay,...,a, are scalars and n is a natural number.

Example 2.1.6. Let dimV > 1 and let B be a basis of V and u € B. Define
B € L(V) by v8 =u for all v € B. Tt is routine to verify that V187! =V and
E(1y, B) = (u). Hence E(1y,[) C V1yB~L.

Many linear transformations will be defined in this thesis. We shall use a
bracket notation to represent many of them. Let B be a basis of V. If o € L(V)

is defined by, for each v € B, va = w, where w, € V, then we write

v
o =
Wo vEB
For a natural number n > 1, assume B has a partition {By, Bs, ..., B,}, u; € V

foralli=1,2,...,n—1, and o € L(V) is defined by

U; lfUEBZ,Z:LQ,,n—L
v =
w, ifvedwB,

where w, € V for all v € V. Then a will be written as
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vEB,
Next, let

AM(V) ={a € L(V) | nullity « is finite},
AE(V) ={a € L(V) | corank « is finite} .

Observe that 1y is contained in AM (V)NAE(V). Y. Kemprasit showed in [6] that
these sets are subsemigroups of L(V). Moreover, both AM (V) and AE(V) are
nonregular if and only if dim V' is infinite. Notice that both AM (V) and AE(V)
do not contain the zero map 0y whenever dim V' is infinite.

In [6], Y. Kemprasit also proved that the following are nonregular subsemi-

groups of L(V). For an infinite dimensional vector space V', let

OM(V) ={«a € L(V) | nullity « is infinite},
OE(V) ={a € L(V) | corank « is infinite}.

It can be seen that both OM (V) and OE(V') contain Oy, but 1y is not an element
in these semigroups.

For a cardinal number x with x < dim V/, let

K(V,k) ={a e L(V) | nullitya > K},

CI(V,k) ={a € L(V) | coranka > Kk} .

In 2005, S. Chaopraknoi and Y. Kemprasit proved in [1] that K (V, k) and CI(V, k)
are subsemigroups of L(V'). Note that both K (V, k) and CI(V, k) contain the iden-
tity map 1y if and only if x = 0. Moreover, the zero map 0Oy is always contained
in K(V,k) and CI(V, k). Observe that K(V,Ry) = OM(V), CI(V,RXy) = OE(V)
and K(V,0) = L(V) = CI(V,0) where Xy is the aleph-null. If dimV is finite,
then K(V,k) = CI(V,k) since corank @ = nullity . Furthermore, significant

properties of these semigroups are provided.

Proposition 2.1.7. [1] If dim V' be infinite, then K(V,k) # CI(V,.) for any

nonzero cardinal numbers K, < dim V.
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Therefore, we obtain the following proposition.
Proposition 2.1.8. K(V, k) = CI(V, k) if and only if dimV is finite or k = 0.

In [10], the authors proved that K(V, k) N CI(V, k) is a regular subsemigroup
of L(V) when dim V' is infinite.

The next proposition will be used in Section 4.2.
Proposition 2.1.9. [13] (i) K(V, k) is a right ideal of L(V).

(i1) CI(V, k) is a left ideal of L(V).

2.2 Elementary Results

This section contains basic results in set theory and linear algebra which are

needed in this thesis. The following is a well-known fact in set theory.

Proposition 2.2.1. [14] Let k and X be cardinal numbers such that at least one

of them is infinite. Then k 4+ X\ = max{k, A}.

For a set X, the cardinality of X is denoted by |X|. Next, we show that any

infinite set can be partitioned into finitely many infinite sets as follows.

Proposition 2.2.2. Let X be an infinite set and let n be a natural number.
Then there exists a partition {X1, Xo, ..., X} of X such that | X| = |X;| for all

1=1,2,...,n.
Proof. Let x1,x9,...,2, € X be distinct. Then
(X =X x{a1}] = |X x{z2}| = - = |X x {z,}].

Since X x {z1}, X x{za},..., X x {x,_1} and X x {x,} are disjoint, by Propo-
sition 2.2.1,

U(X x {mi})| = [ X {z [ + [ X x {za} 4+ -+ + [X x {an}] = [X].
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Thus there exists a bijection ¢ : U (X x{x;}) - X. Forany i = 1,2,...,n,

i=1
choose X; = [X x {x;}]¢. Hence | X;| = | X x {x;}| = |X| and

n n

Uxi=JIX x {z:}]¢ [U (X x {z;} ] ¢ =X.

i=1 i=1
Furthermore, it is easy to see that X; N X, = @ for all distinct ¢, 5 € {1,2,...,n}.
Therefore { X1, Xo, ..., X, } is a partition of X. ]

Now we let V' be a vector space. Here are some facts about linear maps, bases

and quotient spaces.

Proposition 2.2.3. Let B be a basis of V, A C B and let ¢ : BNA — V be such
that (B~ A)p is a linearly independent subset of V. Let o € L(V') be defined by

A v

0 v
¥ veEBNA

Then the following statements hold.
(2) If p is an injection, then ker a = (A).
(17) ima = ((B~ A)yp).

Proof. (i) Assume that ¢ is injective. Clearly, (A) C ker . Let u € ker . Then
= auit ) b
¢ J

where u; € A, v; € B\ A, a;,b; are scalars and both summations are over finite

index sets I and J. Hence

0=ua = Z bjvja = Z bjvjp.
J J

Since ¢ is injective, vjp # v for all distinct 7, j' € J. Since (B \ A)y is linearly
independent, we have b; = 0 for all j € J. This implies that u = Zaiui € (A).
Therefore ker a = (A). l

(1) Obviously, (B~ A)p) C ima. Let v € ima. Then v = ua for some u € V.

We write

u = Zaiui + Zbﬂ)j
i J
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for some u; € A, v; € B~ A and scalars a;,b; where 1 € I, j € J and I, J are

finite index sets. It follows that
v =ua = Z bjv;a = Z bjvjp € (B~ A)p).
J J

Hence ima = ((B ~ A)yp), as desired. O

The next proposition shows that a basis of a vector space V and a basis of

ker v where ov € L(V') can be used to construct a basis of im av.

Proposition 2.2.4. Let a € L(V), By be a basis of keraw and B a basis of V
containing By. Then the following statements hold.
(1) For any vi,vs € B\ By, v1 = vy if and only if via = vaa.

(i1) (B ~\ By)a is a basis of im .

Proof. (i) Let v1,v9 € B~ B;. The necessity is clear. Suppose that v;a = vsa.
Then v — vy € keraw = (By). Since vy,vo € B ~\ By, we obtain v; — vy €
(B~ B1) N (B;) ={0}. Hence v; = vs.

(77) Assume that

Zaivi =0

i
where v; € (B \ By)a, a; is a scalar and this summation is over finite index set I.

Then for each i € I, v; = u;« for some u; € B~ By. Hence

0= Z a;v; = Z a; U0 = (Z aiui) Q.

Thus Y au; € (B~ By) N (By) = {0} and so a; = 0 for all i € I. Therefore
(B ~\ Bj)a is linearly independent. By Proposition 2.2.3 (ii), we have im« is

spanned by (B \ Bj)a. Hence (B ~\ Bj)a is a basis of im . O

Proposition 2.2.5. Let B be a basis of V and A C B. Then the following
statements hold.

(1) {v+ (A) | ve B~ A} is a basis of the quotient space V/ (A).

(i0) dim(V/ (A)) = | B~ Al
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Proof. (i) Assume that

> ailo + (4)) = (4)

where v; € B\ A, a; is a scalar, i € I and [ is a finite index set. Then

Z a;v; + (A)y = (A).

It follows that Zaivi € (A). If A= g, then a; = 0 for all : € I. Suppose that
A # @. Hence lwe write Zaivi = ijuj where u; € A, b; is a scalar, j € J
and J is a finite index set.l Since B ]is linearly independent, we have a; = 0 for
all i € I. Therefore {v+ (A) | v € B~ A} is linearly independent. Next, let
v+ (A) € V/(A). We write

v = Zaiui + ij'l}j
( J

where u; € A, v; € B\ A, a;,b; are scalars, 1 € I, j € J and I, J are finite index
sets. Then
v (A) = (au; + (A) + ) (bjv; + (A))
( J

= (A)+ 3 (b0 +(4))

= b0y + (A)) € (f+{A) [v € BN AY).

Therefore {v + (A) | v € B\ A} is a basis of V/ (A).
(it) By (¢), dim(V/ (A4)) = |[{v+ (A) |ve BN A}| = |B\ A O

Recall that E(a,8) = {v € V | va = vB}. The following are elementary

results of linear transformation semigroups.

Proposition 2.2.6. Let o, € L(V) be such that Vaf™' = E(a,3). Then

ker 5 C ker «.

Proof. Let v € ker 8. Then v = 0 € Va, and thus v € VaB~!. Since Vaf™! =
E(a, B), we have v € E(«, 8). Hence vae = vf3 = 0. Therefore v € ker a. O
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Proposition 2.2.7. Let a, 3 € L(V) be such that Vaf™ = E(a, ). Then the
following are equivalent.

(i) a =5,

(i7) im B C ima,

(77i) ima C im B and ker o C ker 3.

Proof. Tt is easy to see that (i) implies (i¢) and (7).

(1) = (i): Assume that imf C ima. Let v € V. Then v € imf C im«, so
v = ua for some u € V. It follows that v € Vaf™' = FE(a, 3). Hence va = vf3,
so a = [.

(73i) = (i): Suppose that ima C imf and kera C ker5. Let v € V. Then
va € ima. Since ima C im [, we get va = uf for some u € V. Thus u €
VaB™! = E(a, ), so ua = uf = va. Hence v —u € kera C ker 8. Therefore
vfB = upf = va, and that a = . O

Remark 2.2.8. Let o, 8 € L(V) be distinct and Va3~! = E(a, 3). Then ker 8 C
ker o and im @ # im 8 by Propositions 2.2.6 and 2.2.7.

For convenience, we write the set {x; € V' | i € I'} in short by {z;};c; where [
is an index set. Next, we give a result extracted from the proof of Theorem 2.5

in [15].

Proposition 2.2.9. Let a, 3 € L(V) be such that ima C imf and Vaf™! =
E(a,B). Then

{witier U{yitjes = {mitier v 2
o= and [ =

0 U 0 Vi U
k keK J k

jeTkER
where {x; }ier is a basis of ker B, {x; }ier U{y; }jes is a basis of ker o, {uy }rex is a
basis of im v, {v;}es U{uptrer is a basis of im 5 and {x; }ier U{y; }jes U{zk b hex

1s a basis of V.

Proof. Let {x;};c; be a basis of ker 5. By Proposition 2.2.6, ker § C ker @. Then
extend {z; };er to a basis {x; }ier U{y; }jes of ker a. Let {uy }rex be a basis of im a.

Now we let k € K. Since ima C im 3, we have u, = z,3 for some z, € V. Thus
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2z € Vap™! = E(a, ), so 2k = 28 = ug. Assume that y;8 = v; for all j € J.

Next, we show that {z;}ier U{y;}jes U {2k rex is a basis of V. Suppose that

Zaixi + ijyj + chzk =0
i j k

where a;,b;, ¢, are scalars, 1 € I', j € J', k € K" and I', J', K’ are finite subsets
of I, J, K, respectively. Then
0=0a= Z CL2pQ = chuk,
k k
and hence ¢ = 0 for all & € K’. Since {x;}icr U{y;}jes is a basis of ker o, we
have a; = b; = 0 for all i € I’ and j € J'. Hence {x;}ier U {y;}jes U {2k thex is
linearly independent. Let v € V. Since va € im « and {uy }rex is a basis of im «,

we have
v = E CrUr = E Cprp
k k

where ¢, is a scalar, k € K’ and K’ is a finite subset of K. This implies that

v — Y cpzg € ker . Hence we can write

k
v — chzk = Zaixi + ijyj
k i J

where a;, b; are scalars, i € I', j € J', and I', J' are finite subsets of I, J, respecti-
vely. Then v € ({zi}ier U{y;}jes U {2 trer). S0, {@iticr U{yj}jes U{zk ek is
a basis of V. Note that {v;}jes U {urtrex = ({y;}jes U {2k }trer)p is a basis of

im 3 by Proposition 2.2.4 (iz). Therefore, o and  can be written as desired. [

The following is a useful tool to verify when the condition Va8™! = E(a, )
holds, where «, 5 € L(V).

Lemma 2.2.10. Let a, 8 € L(V) be such that ker 5 C kera and let Ay, Ay, Az
be disjoint linearly independent sets such that Ay, A1 U Ay and Ay U Ay U Az

are bases of ker 8, kera and V', respectively. If vae = v for all v € As, then
Vap™ = E(a, 3).
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Proof. Assume that va = vf3 for all v € Az. Since F(a,3) C Vaf™!, it remains
to prove that Vap™ C E(a, ). Let v € VaB~t. Then v = v'«a for some v’ € V.

Hence we write
v = Z a;x; + Z bjy; + Z CkZks
i j k
v = Z a;r; + Z Viy; + Z ChZk
i j k

for some z; € Ay, y; € A, 21 € A3 and some scalars a;, af, b, U}, ¢, ¢, where these
summations are over finite index sets. Since A; C ker § and A; U Ay C ker a, we

obtain
vp = Z bjy; 6 + Z crzl,
j K
vVa = Z CpipQ = Z 2k
! K

By Proposition 2.2.4 (ii), (A2 U A3)f is linearly independent. Since vf = v'a,
we have b; = 0 for all j € J. It follows that v = Zaﬂ:i + > cpzg. Thus
v =Y cpzp = Y cpzpS = v since z € As for all k GlK. Hencg v € E(a, B).
Therefgre, Vap! ~ E(a, B). O

The converse of this lemma is not true and the counterexample is provided in
Remark 4.2.3. We end this section by an observation on the semigroups AM (V')
and AE(V). Y. Kemprasit showed in [6] that if dim V' is finite, then AM (V) =
AE(V) = L(V). Now we prove that the converse is also true.

Proposition 2.2.11. AM (V)= AE(V) = L(V) if and only if dim V' is finite.

Proof. We shall prove the sufficiency by contrapositive. Assume that dimV is
infinite. Let B be a basis of V. Then there is a partition { B, Bo} of B such that
|B| = |B1| = |Bs|. Let uw € By and let ¢ : B~ {u} — By be a bijection. Now
define a, B € L(V') by

u v By v

o= and (=
0 vo 0 wp !

veEB~{u} vEDB2
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Then nullity « = 1 and coranka = |B \ By| = |By| by Propositions 2.2.3 (i)
and 2.2.5 (i7), respectively. Thus a € AM(V) ~ AE(V). This implies that
AM(V) # AE(V) and AE(V) # L(V). Moreover, by Propositions 2.2.3 (i)
and 2.2.5 (ii), nullity § = | By| and corank 5 = |B \ (B ~\ {u})| = 1, respectively.
Hence g € AE(V)~ AM (V) and so AM (V') # L(V).

The necessity is followed from [6]. O

2.3 A Glance on the Natural Partial Order

In this section, we provide some known results of the natural partial order on

a semigroup. Now let S be a semigroup with the natural partial order <.

Proposition 2.3.1. [2] (i) If S has the zero element, then it is the minimum
element in S.

(17) For any s € S and the identity 1 in S, s < 1 on S if and only if s is an
idempotent in S.

(1i1) For any subsemigroup T of S and a,b €T, a < b on T implies a < b on S.

The following propositions are very important in studying the natural partial
order on a semigroup. P. M. Higgins showed in [4] that the natural partial or-
ders on a semigroup and its regular subsemigroup coincide. Hence the study of

nonregular semigroups is of interest.

Proposition 2.3.2. [4] Let T be a reqular subsemigroup of S and a,b € T. Then
a<bonTifand only ifa <bonS.

Proposition 2.3.3. Let T be a reqular subsemigroup of S and x € T. If x is left
[right] compatible on S, then x is left [right] compatible on T .

Proof. Suppose that z is left [right] compatible on S. Let a,b € T be such that
a <bonT. Then a < bon S. By assumption, za < xb [ax < bx] on S. Since
T is a regular subsemigroup of .S, by Proposition 2.3.2, za < xb [ax < bx| on T

Hence x is left [right] compatible on T. O
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The converse of this proposition is not true in general as we will show in Exam-

ple 4.2.1.

Proposition 2.3.4. Let T be a subsemigroup of S and a,b € T. If a is a lower
cover of b in S, then a is a lower cover of b in T. In other words, if b is an upper

cover of a in S, then b is an upper cover of a in T.

Proof. Assume that a is a lower cover of bin S. Let ¢ € T be such that a < ¢ <b
on T'. Then, by Proposition 2.3.1 (iii), a < ¢ < b on S. By assumption, a = ¢ or
c=0. O

The converse of this proposition is also not true in general, see Example 4.4.8.
Let V' be a vector space. In this thesis, for any subsemigroup S(V') of L(V'), we
consider S(V') with the natural partial order < and then we may write (S(V), <)
in short by S(V). In [15], R. P. Sullivan gave a characterization of the natural
partial order on L(V'). The proof of the converse of this theorem will be used, so

we recall the proof of the sufficiency and omit the forward implication.

Theorem 2.3.5. [15] Let o, € L(V). Then o« < B on L(V) if and only if
ima Cim B and Vap™! = E(a, ).

Proof. Assume that ima C im 3 and Vaf~! = E(a, 3). From Proposition 2.2.9,

a and  can be written as

{zitiecr U{yjties 2 {zitier v; 2
o= and (=

0 Uy, 0 v U

keK jeJkeK

with {z;}ier, {zi}ier U{y;}jes, {urtrex, {vj}ties U{unbrerx and {;}icr U{y;}jes U
{2k trex are bases of ker 8, ker ar, im «v, im 8 and V/, respectively. Then we define

A p € L(V) by

[ teider U idier a and 1 — {vitjes U{witier wx
0 Zk 0 Uk
keK keK
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where {v;}jes U{ugtrex U{wi}ier is a basisof V. Foranyie I, je J, ke K,

0 =z = 2 \8 = x;8u = zap,
0=y ja=y;\8=y;Bu=y;au,

up = 20 = 2R\ = zkfp = zpap.
It follows that @ = A\ = Sp and a = ap. Hence o < f on L(V). O

Let a, 8 € L(V) be such that @« < § on L(V). Then, by Theorem 2.3.5,
ima C im 3 and Vaf~! = E(a,3). By Proposition 2.2.9, we can write o and (3

as

{ziticr U{yjtics 2 {xitier v; 2
and (=
0 Uk ) ek 0 B o

o
|

where {;};es is a basis of ker 8, {x; }icr U {y;};es is a basis of ker a, {uy}rek is a
basis of im o and {z; };e1 U{y; }jes U{ 2k }rek is a basis of V. That is, j is different

from a by sending {y;}jes to {v;};es. Hence we illustrate o and 3 as follows.

Figure 2.4: oo < g on L(V).

Furthermore, R. P. Sullivan [15] described left and right compatible elements
in L(V).

Theorem 2.3.6. [15] Let dimV > 2 and let v € L(V') be nonzero. Then the
following statements hold.

(1) ~v is left compatible on L(V') if and only if v is an epimorphism.

(12) v 1is right compatible on L(V') if and only if v is a monomorphism.
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Remark 2.3.7. (i) < is not compatible on L(V') where dimV > 2 since an
element in L(V') which is neither injective nor surjective is not compatible on L(V).
(i7) If dim V' = 0, then L(V') = {0y} and it is clear that Oy is compatible on L(V).
(#7i) Suppose that dim V' = 1. Claim that, for any «, 8 € L(V), if « < g on L(V),
then either & =  or a = Oy and rank 5 = 1. Let «, 5 € L(V') be such that o < 8
on L(V) and ranka = rankf = 1. Then ima = im 3. By Theorem 2.3.5 and

Proposition 2.2.7, a = 3. Hence the claim is proven. Therefore, < is compatible

on L(V).

Note that Oy is the minimum element in L(V') by Proposition 2.3.1 (i). Hence

minimal nonzero elements in L(V) is of interest by R. P. Sullivan.

Theorem 2.3.8. [15] Let o € L(V'). Then
(1) a is a minimal nonzero element in L(V') if and only if ranka = 1.
(17) a is a maximal element in L(V') if and only if a is a monomorphism or an

epimorphism.

Theorems 2.3.5, 2.3.6 and 2.3.8 will be used to compare to our main results in
the next chapters. Notice that many proofs in the remaining chapters always refer

to Propositions 2.2.1-2.2.4. For convenience, we sometimes omit these details.



CHAPTER III
THE SEMIGROUPS AM (V) AND AE(V)

Recall that, for a vector space V,

AM (V) ={a € L(V) | nullity « is finite},
AE(V) ={a € L(V) | corank « is finite} .

By Proposition 2.2.11, we know that AM (V) = AE(V) = L(V) if and only if
dim V' is finite. Then we study the semigroups AM (V) and AE(V) when dim V'
is infinite, which also implies that AM (V') and AE(V') are nonregular semigroups.
Since 1y, € AM(V)NAE(V), we have AM(V)' = AM(V) and AE(V)! = AE(V).

Our main purpose in this chapter is to give necessary and sufficient conditi-
ons for elements in the semigroups AM (V') and AE(V) to be comparable under
the natural partial order <. Then we provide characterizations for elements in
AM(V) and AE(V) to be left and right compatible elements, minimal and max-
imal elements. In addition, lower and upper covers of elements in L(V'), AM (V)
and AFE(V) are also described. Throughout this chapter, unless stated otherwise,
let V' be an infinite dimensional vector space. Furthermore, let S(V') stand for

AM (V) or AE(V).

3.1 The Natural Partial Orders on AM (V) and AE(V)

We first provide the necessary and sufficient conditions for elements in S(V)

to be related under the natural partial order.

Theorem 3.1.1. Let a,f € S(V). Then o < 8 on S(V) if and only if ima C
im 3 and Vap~' = E(a, 8).

Proof. Suppose that a <  on S(V)). Then, by Proposition 2.3.1 (iii), a < 3
on L(V) since S(V) is a subsemigroup of L(V). By Theorem 2.3.5, ima C im 3
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and VaB™! = E(a, B).

Conversely, assume the conditions hold. It follows from Proposition 2.2.9 that

{ziticr U{yj}ies 2 {zitier v 2
a= and =

0 Uy, 0 v U

keK jeJkeK

where {z; }ier, {2 }ierU{y; }ies, {uetrer, {v;}jesU{urrex and {x; }ierU{y; }jesU
{2 }kex are bases of ker 3, ker v, im v, im 5 and V', respectively. Let {v;};e; U

{ug trerx U {w; }ier, be a basis of V. Next, define A\, u € L(V') by

ties vities v
\— {yJ}JeJ and 1 = { J}JEJ

0 v 0 v

ve{zitierU{zk }rex ve{up ek U{witier

Foranyiel, je J, ke K,

0 =z = 2 \8 = x;Bp = zap,
0 =yja = y;AB = y;8p = yiau,

up = zpa = 2 AB = 21 fp = zpap.

Therefore, « = A3 = fp and @ = ap. We claim that A\, u € S(V). From the
definition of 3, [{y;}jes| = [{v;}jes| by Proposition 2.2.4 (i). If S(V) = AM(V),
then

nullity A = {y; }es| < {@itier U{y;}jes| = nullity a < oo
and nullity p = |{v;};es| = H{yj}jes| < oco. Thus \,p € AM(V). If S(V) =
AE(V), then

corank A = [{y;}jes| = {vj}jeul
< Hv;}jer U{witierl
= corank o < 00

and corank = |[{v;}es] < 00,50 \,p € AE(V). Hence o < S on S(V). O

Next, we show that Theorem 3.1.1 cannot be directly proven by the proof of

Theorem 2.3.5 although the conditions of these theorems are the same.



24

Example 3.1.2. Let B be a basis of V and u € B. Since |B \ {u}| = |B|, there
is a partition { By, Bo} of B\ {u} such that the cardinalities of B \ {u}, By and
By are equal. Then there exists a bijection ¢ : B N\ {u} — Bs.

(1) Define o, B € L(V') by

u v

o= and =
0 vp veB~{u} u vg veB~{u}
Hence, by Proposition 2.2.3 (i) and § is a monomorphism, nullity « = 1 and
a,f € AM(V). Since @, {u} and B ~ {u} satisfy Lemma 2.2.10, we have
Vap™ = E(a,3). Tt is clear that ima C im 3. Therefore o < 8 on AM (V) by
Theorem 3.1.1. According to the proof of Theorem 2.3.5, there exist A\, u € L(V)

of the forms

ByuU{u} v
0 v

veEB~{u} vEB2

<
<

A= and p =
0

such that « = A3 = fp and @ = au. By Proposition 2.2.3 (i), we obtain
nullity ¢ = | By U {u}| is infinite and so pu ¢ AM (V).

(1) Define a, 5 € L(V) by

. ByU{u} v and § — B, u w
0 v~ vEB> 0 u v vEBy

Then f is an epimorphism and coranka = |B \ (B ~ {u})| = 1 by Proposi-
tion 2.2.5 (i7). Hence o, 5 € AE(V). The sets By, {u} and B, fulfill Lemma 2.2.10,
so Vaf™! = E(a, 3). Moreover, ima C im 3. Thus a < 8 on AE(V) by Theo-
rem 3.1.1. Therefore, by the proof of Theorem 2.3.5, there exist A\, u € L(V) in

the forms

BiU{ut v U v
\ = 1 {u} and p =
0 v 0 wv
vEDB2 veB~{u}

such that « = A\ = Bu and o = au. However, corank A = |B \ By is infinite, so
A¢ AE(V).
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By Theorems 2.3.5 and 3.1.1, the natural partial order on S(V') can be derived

from the natural partial order on L(V).

Corollary 3.1.3. Let o, € S(V). Then a < § on S(V) if and only if « < 3
on L(V).

Observe that the natural partial orders on S(V') and L(V') are the same even if
S(V') is nonregular.

Theorem 3.1.1 can be used to check easily whether elements in S(V') are related
under the natural partial order. In Example 3.1.2, we give o, 8 € S(V) with
a < B on S(V). The following shows that there are infinitely many elements
in (S(V),<).

Example 3.1.4. Let B be a basis of V' and let By, By be disjoint finite subsets
of B. Define «, 8 € L(V) by

BiUB;, v By v
o= ' ? and = '
0 v 0

vEB\(B1UB2) v vEB\ By
Then nullity & = |B; U By| = corank a and nullity 5 = |By| = corank 3. These

cardinal numbers are finite, and hence «, 5 € AM(V) N AE(V). Observe that
VaB™! = E(a, B) since the sets By, By and B \ (B; U B,) satisfy Lemma 2.2.10.

Moreover, im o C im . Therefore, by Theorem 3.1.1, we have a < § on S(V).

The following proposition shows that comparable elements in AM (V') must be

both in either AM (V)N AE(V) or AM(V)~ AE(V).

Proposition 3.1.5. Let a,f € AM(V) be such that « < 3 on AM(V). Then
a € AE(V) if and only if B € AE(V).

Proof. For the forward implication, suppose that a« € AE(V). Since o < f3
on AM(V'), we obtain im«a C im 8 by Theorem 3.1.1. It follows that corank 5 <
corank o < 00, so f € AE(V).

Conversely, assume that o ¢ AFE(V). Since a < f on AM(V'), by Theo-

rem 3.1.1, ima C im 8 and Va3~ ! = E(«, ). From Proposition 2.2.9, we have

{ziticr U{yjtics 2 {zitier v;j 2
o= and [ =

0 U 0 Uj

keK jeJkeK
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with {z;}bier, {zi}ier U{y;tier, {untrer, {vj}jerU{urtrer and {z:}ier U{y;}jes U
{2k }kex are bases of ker 3, ker o, im o, im 5 and V, respectively. Let {v;};es U
{ug bhex U{witier, be a basis of V. Since a € AM(V'), we get {x; }ier U{y,}jers is
finite. Then {y;},c; is a finite set, and so is {v;},c;. Since a ¢ AE(V), we have

{vitier U{wihier] = [({v;}jes U {unteex U{witier) ~ {ur}rex| = corank a
is infinite. Hence corank 8 = |[{w; };cr| is infinite, which implies 8 ¢ AE(V). O

Similarly, for any «, 5 € AE(V) such that « < 5 on AE(V), we have o, 5 €
AM(VYNAE(V)or o, € AE(V) N AM(V).

Proposition 3.1.6. Let o, € AE(V) be such that o < 8 on AE(V). Then
a € AM(V) if and only if p € AM(V).

Proof. To prove the forward implication, assume that a € AM(V). By Theo-
rem 3.1.1, VaB™! = E(a,3). Then ker 3 C ker a by Proposition 2.2.6. Hence
nullity 8 < nullity & < oo and so § € AM(V).

For the converse, suppose that o« ¢ AM(V). As a <  on AE(V), by Theo-
rem 3.1.1, ima C im 3 and VaB~! = E(«, 3). By Proposition 2.2.9,

{@itier U{yjties 2 {witier v 2
o= and [ =

0 Uy, 0 v;

keK jeJkeK

where {z; }ier, {%:}ier U{y; s, {uetrer, {v5}jesU{urtrex and {@; }icrU{y; }jesU
{zk}kex are bases of ker 3, ker o, im o, im 5 and V, respectively. Let {v;};e; U
{ug e U{w; }ier be a basis of V.. Since « € AE(V)NAM(V), we get corank v =
{v;}ier U{wihier| < oo and nullity o = [{x; }ier U {y;}jes| is infinite. By Propo-
sition 2.2.4 (i), {y;}jes] = [{vj}jes| which is finite. Since [{z;}ier U {y;} el
is infinite and [{y;};es| is finite, nullity 5 = |{x;}ics| is infinite. Therefore,

B & AM(V). O

We provide Figures 3.1 and 3.2 to demonstrate the above propositions.
By Propositions 3.1.5 and 3.1.6, elements in AM (V)N AE(V) force its related
element to be in AM (V)N AE(V). Hence the following corollary holds.
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Figure 3.1: An example of elements in (AM(V), <).

Figure 3.2: An example of elements in (AE(V), <).

Corollary 3.1.7. Let a, f € AM(V)NAE(V). Then the following are equivalent.
(i) o < B on AM(V),

(17) a < B on AE(V),

(1ii) o < B on L(V).

Proposition 3.1.8. Let o, B € L(V) be such that o < 8 on L(V).
(i) If c € AM(V), then 5 € AM(V).
(17) If « € AE(V), then B € AE(V).

Proof. Since o« < f on L(V), by Theorem 2.3.5, we have ima C imf and
Vap™ = E(a, 3). From Proposition 2.2.6, we obtain ker 5 C ker a.

(1) If o € AM(V), then nullity f < nullity & < oo, so f € AM(V).

(i1) If « € AE(V), then

corank f = dim(V/im ) < dim(V/im«a) < corank a < oo,

so 5 € AE(V). ]

The converse of this proposition may not be true as in the below example.
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Example 3.1.9. Let § € S(V). Since Oy is the minimum element in L(V') by
Proposition 2.3.1 (i), we get Oy < 5 on L(V'). However Oy ¢ S(V') as nullity 0y =

corank Oy = dim V' is infinite.

Furthermore, we obtain a result, followed from Corollary 3.1.7 and Proposi-

tion 3.1.8.

Corollary 3.1.10. Let o« € AM(V)NAE(V) and p € L(V'). Then the following
are equivalent.

(1) a < B on AM(V),

(i1) o < B on AE(V),

(131) o < B on L(V).

3.2 Left and Right Compatible Elements in (AM(V), <)
and (AE(V), <)

Left and right compatibility of elements in L(V') are characterized in [15] as
mentioned in Theorem 2.3.6 whenever dim V' > 2 that is, for a nonzero v €
L(V), ~ is left [right] compatible on L(V) if and only if 7 is an epimorphism
[monomorphism]. In this section, we show that characterizations of left and right

compatible elements in S(V') and L(V') coincide. Recall that 1, € S(V).

Theorem 3.2.1. Let v € S(V). Then
(1) v is left compatible on S(V') if and only if v is an epimorphism.
(12) v 1is right compatible on S(V') if and only if v is a monomorphism.

Proof. (i) Suppose that « is left compatible on S(V'). Choose z € im~y ~\ {0}. Let
B be a basis of V' containing z and let u € B \ {z}. Define a € S(V') by letting

veEB~{z}

Since za? = ua = u = za and va? = va for all v € B\ {z}, we get « is an idem-

potent. Then oo < 1y on S(V') by Proposition 2.3.1 (i¢). Since 7 is left compatible
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on S(V), we have ya <~ on S(V). Thus im~ya C im~ by Theorem 3.1.1. Since
z € im~ and v = za, we obtain u € imya C im~. As u is an arbitrary element
in B\ {z}, we get B C im~. Therefore ~ is an epimorphism.

Conversely, assume that 7 is an epimorphism. Then v is left compatible
on L(V) by Theorem 2.3.6 (i). Let a, 8 € S(V) be such that « < g on S(V).
Then o < 5 on L(V), so ya < v on L(V'). Hence ya < v5 on S(V') by Corol-
lary 3.1.3.

(77) Assume that ~y is right compatible on S(V) and « is not a monomorphism.
Choose z € kery \ {0}. Let B be a basis of V' containing z and let u € B\ {z}.
Define ae € S(V') by

veEB~{z}
Then « is an idempotent. By Proposition 2.3.1 (ii), we have a < 1y on S(V).

Thus ay < v on S(V) by the right compatibility of v. It follows that ay = ypu
for some p € S(V'). Then

uy = zay = 2y = 0,
so u € ker~y. Since u € ker~y for all u € B\ {z}, we have B C ker~. Hence
v =0y ¢ S(V), a contradiction. Therefore,  is a monomorphism.
For the converse, suppose that 7 is a monomorphism. By Theorem 2.3.6 (i),
7 is right compatible on L(V). Let a, 8 € S(V) be such that « < g on S(V).
Similar to (i), ay < Bv on S(V') by Corollary 3.1.3. O

Corollary 3.2.2. Lety € S(V). Then ~y is left [right] compatible on S(V') if and
only if 7y is left [right] compatible on L(V').

There are infinitely many left and right compatible elements in S(V') as in the

following example.

Example 3.2.3. Let B be a basis of V and B; a nonempty finite subset of B.
Since |B| = |B\ By, there exists a bijection ¢ : B — B\ B;. Define o, 5 € L(V)
by

Bl (%
a = and (=
0 wet v

vEB\B1 vEB
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Then « is an epimorphism, f is a monomorphism, nullity o« = |By| < oo and
corank f = |B\ (B \ By)| = |By| < o0.

Hence o, 8 € AM (V)N AE(V). By Theorem 3.2.1, « is left compatible on S(V)
and [ is right compatible on S(V).

If we have related elements in S(V'), we can construct a new one by using left

and right compatible elements as follows.

Example 3.2.4. Let B be a basis of V' and let uy,us € B be distinct. Define
a,f € AM(V)NAE(V) by

{ug,ug} w o

o= and =
0 v 0

(%
vEB~{uy,u2} veEB~{u1}

Then o« < 5 on S(V) by Theorem 3.1.1. Since |B| = |B ~\ {uy,u2}|, we let
¢ : B — B~ {uy,us} be a bijection. Define 7,0 € L(V') by

v = {un, w2} v and 6 =

—1
0 U¢ veEB~{u1,u2} 'Ugb vEB

Then ,6 € S(V), v is left compatible on S(V') and ¢ is right compatible on S(V)

by Theorem 3.2.1. Hence ya < 8 and ad < 3§ on S(V). Since ¢! is surjective,

there are x1, 19 € B \ {uy,us} such that 10~ = u; and x9¢~' = u,. Note that

o = {U1,U2,$1,ﬂ72} v ﬁ— {Ul,UQ,[El} (%
yo = 0 Ugb*l y YP = 0 U¢71 ’
veEB~{u1,u2,z1,x2} veEB~{u1,u2,z1}
Uy, U v up v
ad = {ur, uz} and ([0 = '
0 0
U¢ vEB~{u1,u2} 'UQS vEB~{u1}

It can be observed that va # «, ad # «, v # 5, 56 # 5.

3.3 Minimal and Maximal Elements in (AM(V), <) and
(AE(V), <)
In this section, we focus on minimal, minimum, maximal and maximum ele-

ments in S(V'). The following theorem shows that there are no minimal elements

in S(V).
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Theorem 3.3.1. S(V) has no minimal element.

Proof. Let § € S(V) and By a basis of ker . Extend By to a basis B of V. Note
that By # B and (B ~\ B;)f is linearly independent, since Oy ¢ S(V) and by
Proposition 2.2.4 (ii), respectively. Let C' be a basis of V' containing (B \ Bj)/.
Now we let w € (B~ By)S. Then w = uf for some u € B\ B;. Define a € L(V)
by
Byu{u} w
0 vp vEB~(B1U{u})

By using By, {u} and B~ (B;U{u}) in Lemma 2.2.10, we have Va8~ = E(a, ).
If uf € ima, then u € VaB™! = FE(a,f) and hence u8 = ua = 0, which is a
contradiction. Thus uf ¢ ima. This implies ima C im 3, and that a # 5.
If S(V) = AM(V), then By is finite and so is |B; U {u}| = nullity . Thus
ac AM(V). If S(V) = AE(V), then

|C' (B~ B1)B| = corank § < oo.

Hence

corank v = |C' '\ (B \ (B U{u}))S| = corank 8 + 1 < oo,

so f € AE(V). Therefore a <  on S(V) by Theorem 3.1.1. Hence (S(V), <)

has no minimal element. O

From this theorem, S(V') has no minimum element. Next, we give necessary

and sufficient conditions for elements in S(V') to be maximal.

Theorem 3.3.2. Let a € S(V). Then « is mazimal in S(V') if and only if « is

a monomorphism or an epimorphism.

Proof. To show the necessity, assume that « is neither a monomorphism nor an
epimorphism. Let w € V \ima, u € V ~ {0} and let By be a basis of ker
containing u. Extend Bj to a basis B of V. Define 8 € L(V) by

Bi~{u} u w

0 W VN
veEB\ B,
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Thus ima C im S and hence a # . By using By \ {u}, {u} and B \ B; in

—=

Lemma 2.2.10, we obtain Vaf™! = E(«a, 3). If S(V) = AM(V), then
nullity 5 = | By ~ {u}| < |By| = nullity a < o0.

So, B € AM(V). If S(V) = AE(V), then corank < coranka < oo and hence
p e AE(V). By Theorem 3.1.1, a <  on S(V). Therefore « is not maximal in
S(V).

For the sufficiency, suppose that « is a monomorphism or an epimorphism. By

Theorem 2.3.8 (i), o is maximal in L(V'). Hence « is also maximal in S(V). O

Remark 3.3.3. Since there are many distinct monomorphisms and epimorphisms

in S(V'), which are maximal in S(V'), we have (S(V'), <) has no maximum element.

The next corollary is obtained from Proposition 2.3.8 (i7) and Theorems 3.2.1

and 3.3.2.

Corollary 3.3.4. Let a € S(V'). Then the following statements hold.
(1) a is mazimal in S(V') if and only if a is mazimal in L(V').
(17) a is mazimal in S(V') if and only if o is left compatible or right compatible

on S(V).

3.4 Lower and Upper Covers of Elements in (L(V), <),
(AM(V), <) and (AE(V), <)

Lower and upper covers of elements can be used to illustrate a diagram of
partially ordered sets. In this section, we first consider when an element in L(V)
has a lower cover and an upper cover and then consider the semigroup S(V'). Note
that when dealing with the semigroup L(V') we assume V is a general vector space,
and when considering on S(V') we suppose that dim V' is infinite. The following
proposition shows the necessary and sufficient conditions for « in L(V') to be a

lower cover of 5 in L(V).
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Lemma 3.4.1. Let o, € L(V) such that a < 8 on L(V). Then « is a lower
cover of B in L(V) if and only if dim(ker o/ ker B) = 1. In other words, B is an
upper cover of a in L(V') if and only if dim(ker a/ ker §) = 1.

Proof. Assume that dim(ker oo/ ker 5) = 1. Suppose that o < v < § on L(V)
for some v € L(V). Thus Vay™!' = E(a,v) and V87! = E(v,3) by Theo-
rem 2.3.5. It follows that ker 8 C kery C kera by Remark 2.2.8. Let B; be a
basis of ker 8. Extend it to a basis By of ker . Since dim(ker o/ ker 5) = 1, we
have |By \ By| = 1. Let u € By \ By. Thus By = By U {u}. Note that u ¢ ker~
since kery C kera. Let w € ker~y. Thus w € kera. We write w = Zaixi + bu
where z; € By, a;,b are scalars and ¢ is an element in a finite index s:et I. Then
0 = wvy = 0+ buy. Since uy # 0, we get b = 0. Hence w = Zaixi € ker 8, and
that kery = ker 5. Asy < S on L(V), we obtain im~ C im f. éince ker v = ker f3,
im~ C im 8 and V43~ = E(v, 3), by Proposition 2.2.7, we have v = £3.

For the forward implication, suppose that dim(kera/kerf) # 1. As a < 8
on L(V), from Theorem 2.3.5, ima C imf and VaB™! = E(a,8). By Re-
mark 2.2.8, we obtain that dim(kera/ker3) > 1 since @ # . By Proposi-

tion 2.2.9, @ and S can be written as

{witier U{yjties 2 {zitier y; 2
o= and [ =

0 i 0 v U

keK jeETkEK

where {@; }ier, {i}ierU{ys }ies, {unteer, {vj}jesUlurtrex and {2 }ierU{y;}jesU
{zk} ke are bases of ker 3, ker o, im o, im 3 and V/, respectively. Since [{y;};es| =

dim(ker oo/ ker §) > 1, let jo € J. Define v € L(V) by

{xi}ieIU{yj}jeJ\{jo} Yjo =k

0 Vi U
L

Then ima € imv € im 3. Moreover, Vay™! = E(a,v) and V487! = E(v, )
hold since the sets {z;}icr U{y;}jcs o> 1¥jo ) and {2 }rer, and the sets {x;}ier,
{vi}iesgioy and {yjo} U {2k }eek satisfying Lemma 2.2.10, respectively. Hence
a <y < pon L(V) by Theorem 2.3.5. Therefore, « is not a lower cover of /3
in L(V). O
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Hence we can describe the set of all lower covers of an element in L(V').

Corollary 3.4.2. Let € L(V'). Then
{a € L(V) | a< B onL(V) and dim(ker o/ ker g) = 1}
is the set of all lower covers of B in L(V').

For any «, 8 € L(V') such that « is a lower cover of 5 in L(V'), we write o and 3
as in Proposition 2.2.9 and thus |J| = 1 since dim(ker a/ ker §) = 1. Therefore

the following corollary is obtained.

Corollary 3.4.3. Let o, € L(V) be such that « < § on L(V). Then « is a
lower cover of B in L(V') if and only if dim(im 5/ im«a) = 1.

Now, we characterize when elements in L(V') have a lower cover and an upper

cover. Note that Oy is the minimum element in L(V') so it has no lower cover.

Theorem 3.4.4. (i) Every nonzero B € L(V) has a lower cover in L(V).
(17) For each a € L(V), a has an upper cover in L(V) if and only if a is not

mazximal in L(V).

Proof. (i) Let B € L(V) be nonzero and let By be a basis of ker 8. Extend B
to a basis B of V. We let w € (B ~ By)B. Then there is u € B ~\ By such that
uf = w. Define a € L(V') as in Theorem 3.3.1 by

Biu{u} w
0 vf3

veB~(B1U{u})
Thus a < § on L(V). By Lemma 3.4.1, « is a lower cover of § in L(V') since
dim(ker oo/ ker ) = 1.
(17) Let v € L(V). If v is a maximal element in L(V'), then there is no § € L(V)
such that a < 3, so « has no upper cover in L(V).
Conversely, suppose that « is not maximal in L(V'). Then, by Theorem 2.3.8 (i),

« is neither a monomorphism nor an epimorphism. Let w € V \ ima and
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u € kerao ~ {0}. Let By be a basis of kera containing u. Extend B to a
basis B of V. Define § € L(V) as in Theorem 3.3.2 by

Bi~{u} u w

0 W VX
vEB\B;

Then a < f on L(V) and dim(ker o/ ker §) = 1. Therefore § is an upper cover
of ain L(V) by Lemma 3.4.1. O

Next we study lower and upper covers of elements in S(V) when dim V' is
infinite. Since AM (V) = AE(V) = L(V) if and only if dim V' is finite, we consider
S(V) when dim V' is infinite.

Proposition 3.4.5. Let dim V' be infinite and let o, f € S(V). Then « is a lower
cover of B in S(V) if and only if « is a lower cover of B in L(V'). In other words,
B is an upper cover of o in S(V') if and only if 5 is an upper cover of a in L(V).

Proof. Assume that « is a lower cover of § in L(V'). By Proposition 2.3.4, « is a
lower cover of 5 in S(V).

To show the forward implication, suppose that « is not a lower cover of
in L(V). Then o < v < ff on L(V) for some v € L(V). Since v < y on L(V),
by Proposition 3.1.8, v € S(V). Hence o < v <  on S(V) by Corollary 3.1.3.

Therefore, « is not a lower cover of 5 in S(V). O

We next determine when an element in S(V') has a lower cover and an upper

cover where dim V' is infinite. Recall that 0y ¢ S(V).

Theorem 3.4.6. (i) Every € S(V) has a lower cover in S(V).
(17) For each o € S(V'), a has an upper cover in S(V') if and only if o is not a

mazimal element in S(V).

Proof. (i) Let 5 € S(V). Since [ is nonzero, by Theorem 3.4.4, 8 has a lower
cover in L(V), say a. It follows from Proposition 3.1.8 that o € S(V'). Hence «
is a lower cover of 8 in S(V') by Proposition 3.4.5.

(i1) Let a € S(V'). Suppose that 8 is an upper cover of a in S(V'). Then f is
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also an upper cover of v in L(V') by Proposition 3.4.5. This implies that « is
not a maximal element in L(V). Hence, by Theorem 2.3.8 (ii), « is neither a
monomorphism nor an epimorphism. Therefore, o is not a maximal element in
S(V') by Theorem 3.3.2.

The converse can be proven in a reverse way. O]

Remark 3.4.7. Let € S(V) and let B be a basis of V' containing a basis By of
ker 8. Then C} = (B ~\ B;)f is a basis of im 5 by Proposition 2.2.4 (ii). Extend
Cy toabasis Cof V. If S(V) = AM(V), then B\ By is infinite since B is finite.
If S(V) = AE(V), then |C \ C}| = corank f is finite, and that (B \ B;)5 = C}
is infinite and so is B \ B;. For each u € B \ By, define o, € S(V') by

Biu{u} w
0 vf3

Ay =

vEBN(B1U{u})

Then «, is a lower cover of §in S(V) for all u € B\ B; as dim(ker o,/ ker ) = 1
and by Proposition 3.4.5. Since B ~\ Bj is infinite, S has infinitely many lower
covers in S(V).

To end this chapter, we provide a figure of some related elements in AM (V)

and AE(V).

Figure 3.3: An example of comparable elements in AM (V') and AE(V).



CHAPTER IV
THE SEMIGROUPS K (V, k) AND CI(V, k)

Unless stated otherwise, we suppose throughout this chapter that V' is a vec-
tor space. Let us recall definitions of linear transformation semigroups given in

Chapter II as follows. For a cardinal number x with x < dim V/,

K(V,k) ={a € L(V) | nullitya > K},

CI(V,k) ={a € L(V) | coranka > K} .

In particular, OM (V) = K(V,Xg) and OE(V) = CI(V,Ry) when dim V' is infinite.
It can be observed that Oy is contained in K(V, k) N CI(V,k). Since K(V,0) =
CI(V,0) = L(V), we suppose throughout that 0 < x < dim V. Then K(V, ) and
CI(V, k) do not contain any monomorphisms and epimorphisms, respectively. For
convenience, let S(V, k) be K(V, k) or CI(V, k).

The main purpose of this chapter is to provide characterizations of the natural
partial order on the semigroups OM(V'), OE(V), K(V,r) and CI(V, ). Further-
more, left and right compatible elements, minimal and maximal elements, lower

and upper covers of elements in these partially ordered sets are investigated.

4.1 The Natural Partial Orders on K (V, k) and CI(V, k)

From Proposition 2.3.2, the regularity of a semigroup is important in studying
the natural partial order on a semigroup. We first determine the regularity of
the semigroups K(V,r) and CI(V,k). We recall that if dimV is finite, then
K(V,k) =CI(V,K).

Theorem 4.1.1. S(V, k) is regular if and only if diim V' is finite.

Proof. For the necessity, suppose that dim V' is infinite. Let B be a basis of V.
Then there is a partition {Bj, Bo} of B such that the cardinality of By, B, and



38

B are equal. There is a bijection ¢ : By — B. Define o, § € L(V') by

B w v
o= and =

0 vg vEBy vg™ veB
Thus a € K(V,k) and 5 € CI(V,k) since nullitya = |B;| = |B|] > k and
corank 5 = |B\By| = |By| = |B| > k. Let v € L(V') be such that & = aya. Since
« is an epimorphism, we have ya = 1y,. This implies that v is a monomorphism.
Therefore v ¢ K(V,k), so K(V,k) is not regular. Next, let A\ € L(V') be such
that § = BAB. Since (§ is a monomorphism, we have S\ = 1. Then A is an
epimorphism and so A ¢ CI(V, k). Therefore, C1(V, k) is not regular.

For the sufficiency, assume that dim V' is finite. Then K(V,k) = CI(V, k).
Let a« € K(V,k) and B; a basis of ker . Extend Bj to a basis B of V. Then
C1 = (B~ Bj)a is a basis of im a by Proposition 2.2.4 (iz). Extend C} to a basis
C of V. Note that a|g.p, : B~ By — (] is bijective by Proposition 2.2.4 (7).

Now define v € L(V) by

C\Cl v

0 vt
veCy

It follows that

|C' . C1] = nullity y = dim V' — rank

= |B| — |B \ Bi| = |By| = nullity o > &,

soy € K(V, k). Observe that for any v € By, vae = 0 = varya. For any v € B\ By,

vaya = (vaa™)a = va. Hence o = aya. Therefore S(V, k) is regular. O

By Proposition 2.3.2, we focus on studying the natural partial order on non-
regular semigroups. Then, from the above proposition, we will consider the semi-
groups K (V, k) and CI(V, k) when V is an infinite dimensional vector space and

Kk > 0.

Remark 4.1.2. Note that 1y is not contained in both K(V,k) and CI(V, k)

since k > 0. Suppose that « is the identity in K(V, k). Consider « in the proof
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of Theorem 4.1.1. Since « is an epimorphism and a = a7y, we have v = 1y, a
contradiction. Similarly, if 7 is the identity in C1(V, k), then we use § in the proof
of the above theorem and that v8 = [ implies 7 = 1y, which is a contradiction.
Hence, both K (V, x) and CI(V, k) have no identity. Therefore K(V, k) # K(V, k)
and CI(V, k) #£ CI(V, k).

The following example shows that there are o, f € K(V, k) such that a < 3
on L(V) but @ £ 8 on K(V, k). Therefore, the natural partial order on K(V, k)

cannot be derived from the natural partial order on L(V).

Example 4.1.3. Let dim V' be infinite and x a cardinal number such that x > 1
and let B be a basis of V. Then there is a partition {Bj, B2} of B such that
|B| = |B1| = | Ba|. Let u € Bs. There exists a bijection ¢ : By \ {u} — B~ {u}.
Define distinct «, 5 € L(V') by

Y\ ByU{u} w and § = By u w
0 vé veBa~{u} 0 v vg veBa~{u}
Since nullity @ = |B; U{u}| = |B| > s and nullity 5 = |B;| = |B| > &, we have
a,f € K(V,k). Moreover, ima C im . The sets By, {u} and By \ {u} satisfy
the conditions in Lemma 2.2.10, so VaB™! = E(a,3). Hence a < 3 on L(V)
by Theorem 2.3.5. Claim that a € § on K(V,k). Let u € L(V) be such that
a = Su. We shall show that u ¢ K(V,k)'. Note that u # 1 since a # . Then
0 = ua = ufp = up. For each v € By N\ {u}, vd = va = vfu = (vd)pu. Since

(By \ {u})¢p = B~ {u}, we have

ILL =
veB~{u}
It follows that nullity u = 1 < &, so u ¢ K(V,k)'. Therefore, a £ 8 on K(V, k)
but a < 5 on L(V). Note that if k = 1, it can be shown that o < 5 on K(V, k)

but the prove is routine so we omit it.

Theorem 4.1.4. Let dimV' be infinite and o, € K(V,k). Then a < [ on
K(V, k) if and only if
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(1) = or

(it) ima Cim B, Vap™! = E(a, ) and a € CI(V, k).

Proof. Assume that a < f on K(V,k). Then a < g on L(V), so ima C imf3
and Vaf™! = E(a, ) by Theorem 2.3.5. Next, we shall prove that a € CI(V, k).
Since o < B on K(V, k), we obtain o = au for some u € K(V,k). Let By be a
basis of im« and By a basis of ker u. To see that By N By = @, let v € By N Bs.
Then vy = 0 and v = ua for some v € V. Thus v = uva = vap = vu = 0,
a contradiction. Hence B; N By = &. Now we claim that B; U By is linearly

independent. Assume that

Z(]J@'Ui + ijwj =0
( J

for some v; € By, w; € By and scalars a;, b; where both summations are over finite
index sets I and J. Note that for each i € I, v; = u;« for some u; € V. Hence

0= Zaivi + ijwj = Zaiuia + ijwj, SO
7 - ,

A 7 i

0 = (Z a; U; O + Z bjwj>,u = Z a;U; O = Z a; U; &0 = Z a;v;.
i j i i i

Thus a; = 0 for all ¢ € I, and that b; = 0 for all j € J. Hence the claim is proven.

Extend B; U By to a basis B of V. Since € K(V, k) and B; N By = &, we get

corank = |B \ By| > |Bs| > k.

Therefore, o € CI(V, k).
For the sufficiency, suppose that the condition (i7) holds. By Proposition 2.2.9,

we write

{ziticr U{yjties 2 {zitier v; 2
a= and [ =

0 U 0 Vs
k) ek J

jETkER
where {z; }ie1U{y; }jesU{ 2k brex is a basis of V\, {zi}ier, {i}ierU{Y;}jes, {untrex
and {v;};es U {ug}rex are bases of ker 3, ker ar, im v and im 3, respectively. Let

{v;}ies U{ug bex U {wi}ier be a basis of V. Define A\, p € L(V) by

5= {itier Ulyities 2 and i — {vjties Udwihier  uy
0 2k 0 Uk
keK keK
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Then a = A\f = Bu and a = au. Observe that
nullity A = [{z; }ier U {y;},es| = nullity o > k.
Since a € CI(V, k), we get
nullity i = [{v;};es U {wi}ier| = corank a > &.
Thus A\, u € K(V, k). Hence a <  on K(V, k). O
The below example shows that there are infinitely many related element in K (V, k).

Example 4.1.5. Let dim V' be infinite and B a basis of V. Then there exists a
partition {By, Bs, B3} of B such that the cardinalities of B, By, By and Bs are
equal. We let ¢ : By — By U By be a bijection. Now define o and 3 in L(V') by

BiUBy w B, w w
o= and [ =
0 v 0 wo v

vEB3 wE By, vE€ B3

Obviously, nullity a = |B1UBs| = |B| > &, nullity 8 = |B;| = |B| > k, corank o« =
|IBN B3| = |B| > k and ima € imf. Then f € K(V,k) and a € K(V,k) N
CI(V,k). Now we have By, B, and Bs satisfying Lemma 2.2.10 and then Vaf™! =
E(a, ). Therefore, by Theorem 4.1.4, o < 5 on K(V, k).

By taking x = Ny in Theorem 4.1.4, we have

Corollary 4.1.6. Let o, € OM(V). Then o < 8 on OM (V') if and only if
(1) = or
(i) ima Cim B, Vaf™ = E(a, B) and o« € OE(V).
Similar to K(V, k), there are o, 8 € CI(V, k) such that o < 8 on L(V) but
a £ B on CI(V,k), as shown in the example below.

Example 4.1.7. Let dim V' be infinite, x a cardinal number with x > 1 and B
a basis of V. Then there is a partition {B;, Bo} of B where B, B; and Bs have
the same cardinality. Let v € B;. There is a bijection ¢ : B \ {u} — Bs. Define
a,B € L(V) by

u v u v

a = and (=
0 vo u v

veB~{u} veB~{u}
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Then ima € im 8 and « # . Note that
corank a = |B \ By| = |By| = |B| > &,
corank f = |B N\ (By U {u})| = |B1 ~ {u}| = |B| > k.

Thus «, 3 € CI(V, k). Moreover, Vaf™ = E(a, ) since &, {u} and B \ {u}
satisfy Lemma 2.2.10. Hence, a < § on L(V') by Theorem 2.3.5. Let A € L(V) be
such that @ = A3 and let v € B~ {u}. Claim that A ¢ CI(V,x)'. Since o # 3, we
have A # 1. Consider vf3 = v¢ = va = vAS. Since [ is a monomorphism, vA = v.
Hence B \ {u} C im A, so corank A < 1 < x. Thus A ¢ CI(V,k)'. Therefore
a £ Bon CI(V,k). If k=1, it can be seen that a < 8 on CI(V, k) and we omit
the proof.

Hence C1(V, k) does not inherit the natural partial order from L(V').

Theorem 4.1.8. Let dim V' be infinite and let o, 5 € CI(V k). Then a < 3 on
CI(V,k) if and only if

(1) = or

(it) ima Cim B, Vaf™' = E(a,8) and a € K(V, k).

Proof. Suppose that & < fon CI(V, k). Then a < on L(V). By Theorem 2.3.5,
ima C im B and Vaf™! = E(a, ). It remains to prove that a € K(V,r). As
a < BonCI(V, k), weobtain a = \§3 for some A\ € CI(V, k). By Proposition 2.2.9,

we have

{@itier U{yjties 2 {xitier v; 2
o= and [ =

0 Uy, 0 v U

keK jekeK

where {2 }icr, {i}ierU{Y; }jes, {untrer, {05} jesU{untrex and {z;}ier U{y;}jesU
{2k }rex are bases of ker 8, ker o, im o, im 8 and V| respectively. Claim that for

each k € K, z + w, € im X for some wy, € ker 3. Let kg € K. We write

Zko)\ = Z a; T; + Z bjyj + Z CrRL
i j k

where a;,b; and ¢ are scalars, i € I', j € J', k € K" and I',J', K’ are finite

subsets of I, J, K, respectively. Then

Uky = 2k = 2o A3 = E bjvj + E Cr U
j k
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Since {v;}jes U {uk}trer is a basis of im 3, we have b; = 0, ¢ = 0 and ¢, = 1
for all j € J' and k € K’ \ {ko}. It follows that zy, + > a;z; = 25, A € iIm A and
Z a;z; € ker 5. By choosing wy, = Z a;x;, the claim ig proven. Next, we show
tilat {zitier ULy }jes U{z + wk}keKZ is a basis of V. Since {z;}ier U {y;}jes U
{2k trer spans V and wy € ker B = ({x;}icr) for all k € K, we obtain that
{zi}ier U{y;}ies U {zr + wi}rex also spans V. Now assume that

Z%‘% + ijyj + ch(zk +wg) =0
j k

for some scalars a;,b; and ¢ wherei € I', j € J', k € K’ and I', J', K’ are finite
subsets of I, J, K, respectively. Then
Z a;x; + Z bjy; + Z L2k + Z cpwy = 0.
i j k k
Since {x; }ier U{y;}jes U{zk ke is a basis of V' and wy, € ker f = ({x; }ier) for all
ke K' wegetbj=0=c,forall jeJ, ke K' and hence a; =0 for all i € I'.
This implies {; }ier U {y;}jes U {2k + wi }rek is a basis of V. Since A € CI(V, k)

and {zx + w frex € im A, we have
nullity o = [{x; }ier U{y;}jes| > corank A > k.

Therefore o € K(V, k), as desired.
For the converse, suppose that the condition (i7) holds. By Proposition 2.2.9,
we get

{@itier U{yjties 2 {witier v 2
o= and (=

0 Uy, 0 vj

keK jeJkeK

where {@; }ier, {zi}ierU{y;}ies, {wntrer, {v;}jesU{urtrex and {z;}ierU{y; }jesU
{zk}kex are bases of ker 3, ker o, im o, im 5 and V, respectively. Let {v;};e; U
{ug trex U {w }ier be a basis of V. Define A\, u € L(V) as in the proof of Theo-
rem 2.3.5 by

)= {zitier U{y;ties 2 and i — {vjties U{wihier  uy
0 2k 0 Uk
keK keK
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Then @ = A3 = fp and a = apu. This implies that corank A = [{x;}ier U
{y;}jes] = nullity @ > & since a € K(V,k). Asimp C imp and g € CI(V, k),
we get corankpy > corank f > k. Thus A\, u € CI(V,k). Therefore, a < f8
on CI(V, k). O

Below is a result observed from Theorems 4.1.4 and 4.1.8.

Corollary 4.1.9. Let dim V' be infinite. The following statements hold.

(i) There are no a € K(V,k) ~ CI(V,k) and § € K(V,k) such that o < f8
on K(V, k).

(1) There are no aw € CI(V,k) ~ K(V,k) and p € CI(V,k) such that o < f
on CI(V,K).

The previous theorem is useful to examine related elements in CI(V, k). By
considering a and 3 in Example 4.1.7, we have nullity a = 1 < k, so a ¢ CI(V, k).
Hence a £ 8 on CI(V, k) by Theorem 4.1.8.

Example 4.1.10. Let dim V' be infinite and let B = By U By U B3 be a basis of V'
such that the cardinality of B, By, By and B3 are the same and B;, By, B3 are
disjoint. Let ¢ : By — By and ¢ : BoU Bs — Bs be bijections. Define a, § € L(V)
by

By w w v
a= and (=
O U¢ vEB2UB3 wsp ’U¢ weB1,v€EB2UB3
Since coranka = |B; U By = nullity @ and corank § = |By|, we have «a, €

CI(V,k) and o € K(V,k). Observe that ima C im 3. Then Vaf™! = E(a, )
since the sets @, By and B,U Bs satisfy the conditions in Lemma 2.2.10. Therefore,
by Theorem 4.1.8, a <  on CI(V, k).

The next corollary is a consequence of Theorem 4.1.8 by letting k = N,.

Corollary 4.1.11. Let a, f € OE(V). Then a < 3 on OE(V) if and only if

(1) = or
(ir) ima Cim B, Vapf™! = E(a, 8) and a € OM(V).

Next, this corollary follows from Theorems 2.3.5, 4.1.4 and 4.1.8.
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Corollary 4.1.12. Let dimV' be infinite. The following statemenets hold.

(1) For any o, € K(V,k), a < 8 on K(V,k) if and only if « <  on L(V) and
a € CI(V,K).

(17) For any o, B € CI(V,k), a <  on CI(V,k) if and only if o < B on L(V)
and o € K(V, k).

The following figures are obtained from Theorems 4.1.4 and 4.1.8. Recall that
we draw a dotted line from « upward to [ to represent a < ( and 0y is the

minimum element in K(V,x) and CI(V, k) by Proposition 2.3.1 (7).

CI(V, k) \ K(V, k)

KWV, kx)nCI(V,Kx)

Oy

Figure 4.1: An example of related elements in K(V, k) and CI(V, k).

If o < pon L(V)and g € K(V,k) [CI(V,k)], we can conclude that o €
K(V,k) [CI(V,k)]; see the following proposition.

Proposition 4.1.13. Let o, € L(V) be such that o < 3 on L(V).
(1) If B € K(V,k), then a € K(V,K).
(12) If B € CI(V, k), then a € CI(V, k).

Proof. The condition o < 8 on L(V) implies that ima C im3 and Vaf™! =
E(a, ) by Theorem 2.3.5. Then ker 5 C ker o by Proposition 2.2.6.

(1) Assume that 8 € K(V,k). Since nullity « > nullity 5 > &k, we have o €
K(V, k).

(77) Suppose that § € CI(V,k). Since coranka > corankf > k, we get a €
CI(V, k).
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Remark 4.1.14. Let a € L(V) and § € K(V, k) N CI(V, k) be such that a <
on L(V). Then o € K(V,k) N CI(V, k) by Proposition 4.1.13.

4.2 Left and Right Compatible Elements in (K (V, k), <)
and (CI(V,k), <)

This section is dedicated to the study of left and right compatible elements
in K(V,k) and CI(V,k). Theorem 2.3.6 states that a nonzero v € L(V'), where
dimV > 2, is left [right] compatible on L(V) if and only if 7 is an epimorphism
[a monomorphism|. However, the following example shows that, when dim V' = 2
and k = 1, there exists v € S(V, k) which is a compatible element in S(V, k) but

neither a monomorphism nor an epimorphism.

Example 4.2.1. Suppose that dimV = 2 and k = 1. Now we let {u,v} be a
basis of V. Define v € L(V') by

’Y:
0 v

Then nullityy = coranky = 1 > k and hence v € S(V,k). Claim that ~ is
left and right compatible on S(V,k). Let «, 5 € S(V,k) be such that o < 3
on S(V,k). Then o« < 8 on L(V) by Proposition 2.3.1 (4ii), so im«a C im /3 and
VaB™' = E(a, ) by Theorem 2.3.5. If a = 3, it is clear that yaa = v and
ay = (7. Suppose that a # . Then ima C im 8 by Remark 2.2.8. Since xk = 1,
we have 1 < corank f < coranka < dimV = 2. It follows that coranka = 2.
Thus o = Oy, so ya = Oy = ay. Hence va < 48 and ay < py on S(V, k).
Therefore - is left and right compatible on S(V, k). Note that + is neither left nor
right compatible on L(V) by Theorem 2.3.6.

Observe that Oy € S(V,k) and it is easy to see that Oy is compatible, so

nonzero left and right compatible elements will be determined.
Lemma 4.2.2. Let v € S(V, k) be nonzero. The following statements hold.
(1) Let dim V' be infinite. If v is left compatible on S(V, k), then v is an epimor-

phism.
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(17) Let dim V' be infinite. If v is right compatible on S(V, k), then v is a mono-
morphism.

(131) Let dim 'V < oo. If~ is left or right compatible on S(V, k), then k = dim V —1.

Proof. We use the following facts to show all of (i), (i7) and (éi7). Let B be a
basis of V' containing a basis By of kervy. By Proposition 2.2.4 (ii), we obtain
Cy = (B ~\ By)y is a basis of im~. Extend it to a basis C' of V.

(7) Assume that 7 is not an epimorphism. Let w € C' \. C}. Since 7 is nonzero,
we have w € C7. Then w = wyy for some wy € B \ By. Define «, 5 € L(V) by

o — C~Au,wt {u,w} and § — C~A{u,w} u w

0 w 0 wou
Then ima C im 3, and VaB™! = FE(a, ) since C~{u,w}, {u—w} and {u} satisfy
Lemma 2.2.10. Moreover, «, § € K(V, k) N CI(V, k) since nullity & = corank o =
dimV — 1 = dimV > k and nullity 8 = corankf = dimV — 2 = dimV > k.
Hence av < 8 on S(V, k) by Theorems 4.1.4 and 4.1.8. Claim that imya € im~f3
by showing that w € imya ~\ imyf3. Since w = wa = wyya, we have w € im~vya.
Let v € B. If v € By, then vy = 058 = 0. Otherwise, vy8 € C18 = {0,u}.
Hence im~f = (u) and so we have the claim. Therefore v is not left compatible

on S(V, k) by Theorems 4.1.4 and 4.1.8.

(#7) Assume that 7 is not a monomorphism. Recall that Bj is a basis of ker . Let

u € By. Since v is nonzero, let w € B\ B;. Define «, 5 € L(V) by

. B~ Au,w} {u,w} and G — B~ Au,w} u w

0 w 0 wou
Similar to (), we have o, € K(V, k) NCI(V,k) and a < 5 on S(V, k). Then

B~ Au,w} {u,w} B~{u} wu
oy = and [y =
0 wy 0 wy

It follows that ker By ¢ keray. Hence, by Proposition 2.2.6, V(avy)(8y)™' #
E(a, By) and so ay £ By on S(V,k) by Theorems 4.1.4 and 4.1.8. Hence 7 is
not right compatible on S(V, k).
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(77i) Suppose that k # dim V' — 1. We note that if K > dim V' — 1, then k = dim V'
and hence v = Oy which is a contradiction. Then x < dim V' — 1. It follows that
dimV > 3 since kK > 0. Note that K(V,x) = CI(V,k). Since k > 0, we get
v is neither a monomorphism nor an epimorphism. To show that ~ is not left
compatible, we define @ and 3 as in (7). Observe that nullity « = dimV — 1 > &
and nullity § = dimV — 2 > k. Thus o, € K(V,k) = CI(V,k). Observe
from Theorem 4.1.1 that S(V, k) is regular. Hence, by Proposition 2.3.2 and
Theorem 2.3.5, a < 8 on S(V, k), but ya £ v8 on S(V, k) since imyar € im~p.
This implies that ~ is not left compatible on S(V, k). To see that ~ is not right
compatible, define a and § as in (47). Since nullitya = dimV — 1 > k and
nullity = dimV — 2 > &, we obtain «, 5 € S(V, k). Moreover, ima C im /3 and
Vap™' = E(a,8). By Proposition 2.3.2 and Theorem 2.3.5, a < 8 on S(V, k).
Since ker By € ker ay, we obtain ary £ By on S(V,k). Therefore 7 is not left
compatible on S(V, k). O

Remark 4.2.3. By the definitions of o and 3, we have (C'~{u, w})U{u—w}U{w}
is a basis of V but wa = w and wf = u. Hence the converse of Lemma 2.2.10 is

not true.

We now determine left and right compatible elements in S(V, k) when dim V

is finite.

Theorem 4.2.4. Let dimV < oo and let v € S(V,k) be nonzero. Then the
following statements are equivalent.

(i) 7 is left compatible on S(V, k),

(13) v is right compatible on S(V, k),

(iii) K = dim V — 1.

Proof. Suppose that the condition (7i7) holds. Let «, 8 € S(V, k) be such that
a < pfon S(V,k). If a = f, then ya = v and ay = (. Suppose that
a < fon S(V,k). Then av <  on L(V') by Proposition 2.3.1 (¢ii). This implies
Vap™' = E(a, 3) by Theorem 2.3.5. From Remark 2.2.8, ker 3 C ker . Thus

dimV — 1 =k < nullity 5 < nullity « < dim V.
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Since dim V' is finite, we have nullity § = dim V' — 1 and nullity « = dim V. Hence
a = Oy since dim V' is finite. Then ya = 0y = a7, so ya < v8 and ay < By
on S(V, k). Therefore, the conditions (i) and (i) hold.

The conditions (7) and (i) imply (éi7) by Lemma 4.2.2 (ii). O

Remark 4.2.5. Let dimV = n be a natural number and CK(V, k) be the set
of left compatible elements in K (V, k), which is also right compatible elements in

K(V,k). By Theorem 4.2.4, if k # n — 1, we have
{0y} =CK(V,1) =CK(V,2) =+ =CK(V,n—2) = CK(V,n) = K(V,n),
and if k =n — 1, then CK(V,n—1) = K(V,n —1).

Theorem 4.2.6. Let dim V' be infinite and let v € K(V, k) be nonzero. Then the
following hold.

(1) 7y is left compatible on K(V, k) if and only if v is an epimorphism.

(17) v is not right compatible on K(V, k).

Proof. (i) The forward implication follows from Lemma 4.2.2 (7).

Conversely, suppose that 7 is an epimorphism. By Theorem 2.3.6 (i), 7y is left
compatible on L(V'). Let «, § € K(V, k) be such that a < fon K(V, k). Note that
the case a = [ is obvious. Assume that o # 5. Then, by Corollary 4.1.12, o < 3
on L(V)and a € CI(V, k). Hence ya < /3 on L(V') by the left compatibility of ~,
and ya € CI(V, k) since CI(V, k) is a left ideal of L(V') by Proposition 2.1.9 (i7).
Therefore, by Theorem 4.1.4, vae < v on K(V, k).

(1) Since every element in K (V, k) is not a monomorphism, by Lemma 4.2.2 (4i),

we have «y is not right compatible on K (V, k). O
By taking x = Ny, we have the following corollary.

Corollary 4.2.7. Let v € OM (V) be nonzero. Then the following hold.
(1) ~y is left compatible on OM (V') if and only if v is an epimorphism.
(i) ~y is not right compatible on OM (V).

The next corollary is obtained from Theorems 2.3.6 and 4.2.6.
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Corollary 4.2.8. Let dim V' be infinite. Then the following hold.

(1) K(V,K) has no nonzero compatible elements.

(17) For each v € K(V,k), 7 is left compatible on K(V, k) if and only if v is left
compatible on L(V).

Next, left and right compatibility of elements in C'I(V, x) are described.

Theorem 4.2.9. Let dim V' be infinite and let v € CI(V, k) be nonzero. Then
the following hold.
(i) v is not left compatible on CI(V, k).

(17) v 1is right compatible on CI(V, k) if and only if v is a monomorphism.

Proof. (i) Since v € CI(V, k) is not an epimorphism, we have ~ is not left com-
patible on CI(V, k) by Lemma 4.2.2 (7).

(77) To see the sufficiency, suppose that 7 is a monomorphism. Theorem 2.3.6 (%)
implies that 7 is right compatible on L(V). Let «, 5 € CI(V,k) be such that
a < B on CI(V,k). The case o = 3 is clear. Then we suppose that « # 3. Thus
a< fon L(V)and a € K(V,k) by Corollary 4.1.12. Since ~ is right compatible
on L(V), we have ay < vy on L(V). Furthermore, ay € K(V, k) since K(V, k)
is a right ideal of L(V') by Proposition 2.1.9 (i). Therefore, by Theorem 4.1.8,
ay < By on CI(V, k).

The forward implication follows from Lemma 4.2.2 (7). O

Corollary 4.2.10. Let v € OE(V) be nonzero. Then the following hold.
(1) 7y is not left compatible on OE(V).
(12) v 1is right compatible on OE (V') if and only if vy is a monomorphism.

Corollary 4.2.11. Let dim V' be infinite. The following hold.

(i) CI(V, k) has no nonzero compatible elements.

(13) For each v € CI(V,k), ~v is right compatible on CI(V, k) if and only if v is
right compatible on L(V).

In S(V, k), we can construct other elements in < from one using left and right

compatible elements.
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Example 4.2.12. Let dim V' be infinite and B a basis of V. Then there is a
partition { By, Bo, B3} of B such that B, By, By and Bs have the same cardinality.
Define a, B € L(V') by

BiUB, wv By v
o= and =
0 v 0 v
vEDB3 vEByUB3

Observe that nullity @« = coranka = |B; U By| > k and nullity 8 = corank § =
|B1| > K, so o, € K(V,k) N CI(V,k). It is easy to see that ima C imf.
As Bi, By and Bs satisfy Lemma 2.2.10, we have VaB~! = E(a,8). Hence, by
Theorems 4.1.4 and 4.1.8, « < fon S(V, k). Since |Bs| = |B1UB;s| and | B| = | B|,

let ¢ : B3 — B; U B3 and ¢ : B — Bj be bijections. Now define «,6 € L(V) as

N B, w w and 6 — )
0w ve wEBy wEBs ve veB
It follows that v € K(V, k) and § € CI(V, k) since nullity v = | By| and corank =
| B~ Bs|. Moreover, v is an epimorphism and ¢ is a monomorphism. Thus ~ is left
compatible on K(V, ) and ¢ is right compatible on CI(V, k) by Theorems 4.2.6
and 4.2.9, respectively. Therefore, ya < v on K(V, k) and ad < g6 on CI(V, k).
Since ¢ and ¢ are not identity functions, we have ya # «, ad # «, v6 # [ and

Bd # 5. Note that va, 78, ad and [ are in the following forms.

Bl U BQ v Bl w v
ya = . , V6= . :
/USO wEBs3 w ng ’wGBQ,UEBg
Bl U BQ v Bl v
ad = and (0 =
0 0
U¢ vEB3 U¢ vEByUB3

4.3 Minimal and Maximal Elements in (K(V,k), <) and
(CI(V, k), <)
Recall that Oy is the minimum element in K(V,x) and CI(V, k) by Proposi-

tion 2.3.1 (7). The main purpose of this section is to find necessary and sufficient

conditions for elements in K (V, k) and CI(V, k) to be minimal nonzero elements
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and maximal elements where V' is any vector space and 0 < K < dim V. Recall

that S(V, k) stands for K(V, k) or CI(V, k).

Theorem 4.3.1. Let § € S(V,k). Then  is a minimal nonzero element in

S(V, k) if and only if rank 5 = 1.

Proof. Assume that § is a minimal nonzero element in S(V, k). Since 0 < kK <
dimV, we have dimV > 1. If dimV = 1, it is clear that rank § = 1. Suppose
that dimV' > 2. Let B; be a basis of ker 5. Extend this to a basis B of V. As
[ is nonzero, there exists u € B ~\ By. Let C] be a basis of im # containing u/.

Extend C} to a basis C of V. Define a € L(V') by

B~A{u} u
0 uf

Then ima C im 5. Consider By, B ~\ (B; U {u}) and {u} in Lemma 2.2.10, we
obtain VaB™ = E(a, 8). Note that |B| > |B;| and |C;| > 1 since 3 is nonzero.
Case 1: f € K(V,k). Then |By| > k. Hence nullitya = |B ~ {u}| > |Bi| > &
and corank o = |C' \ {uf}| = |B ~ {u}| > k,s0 a € K(V,k) N CI(V, k).
Case 2: € CI(V,k). Then |C \ C}| = corank § > k. It follows that corank oo =
|C' ~ {uB}] > |C ~\ Ci| > k and nullity a = |B ~ {u}| = |C ~ {uf}| > k. Thus
ae€ K(V,r)NCI(V,k).
In any case, by Theorems 4.1.4 and 4.1.8, « < § on S(V, k). Since [ is minimal
in S(V, k), we get a = 3. Therefore, rank 5 = 1.

The converse is clear by Theorem 2.3.8 (3). O

Now we let S(V') be OM (V) or OE(V).

Corollary 4.3.2. Let f € S(V). Then 8 is a minimal nonzero element in S(V')
if and only if rank 5 = 1.

The next corollary is a consequence of Theorems 2.3.8 (i) and 4.3.1.

Corollary 4.3.3. Let 5 € S(V, k). Then § is a minimal nonzero element in S(V, k)

if and only if 5 is a minimal nonzero element in L(V).
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The following lemma is obtained from Theorems 4.1.4 and 4.1.8.

Lemma 4.3.4. Let dim V' be infinite. The following statements hold.
(i) Bvery o € K(V, k) \ CI(V, k) is mazimal in K(V, k).
(11) Every o € CI(V, k) \~ K(V, k) is mazimal in CI(V, k).

Proof. (i) Let o € K(V, k)~ CI(V, k). Suppose that o <  on K(V, k) for some
p € K(V,k). Then a = 8 by Theorem 4.1.4.

(#7) Tt can be proven similar to (7). O
The below lemma shows more conditions for elements in S(V, k) to be maximal.

Lemma 4.3.5. (i) Every a € K(V,k) with nullitya = x < oo is mazimal
in K(V, k).

(i1) Every a € CI1(V, k) with corank o = k < 0o is mazimal in CI(V, k).

Proof. (i) Let a € K(V, k) be such that nullity & = k < co. Suppose that a <
on K(V,k) for some 8 € K(V,k). By Proposition 2.3.1 (iii), we have a < (3
on L(V). This implies ima C im 3 and VaB™! = E(a,) by Theorem 2.3.5.
Then ker 5 C ker a by Proposition 2.2.6. Thus

k < nullity f < nullity « = k < o0.

It follows that nullity 5 = nullity @« = k. Since « is finite, ker @ = ker . Since
ima C im 8 and ker o = ker 3, by Proposition 2.2.7, we have a = 5.

(i7) Let @ € CI(V,k) be such that coranka = k < co. Assume that o < 8
for some 8 € CI(V,k). Then, by Proposition 2.3.1 (iii), « <  on L(V). By

Theorem 2.3.5, im« C im . Hence
k < corank 8 < corank a = k.

This implies corank 8 = corank a = k. Claim that im o = im 3. Let C] be a basis
of ima. Since ima C im 3, extend C to a basis Cy of im 3. Let C' be a basis

of V' containing C5. Then

|C' \ Cs] = corank § = k = corank a = |C' \ C}].
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Since k is finite, we have C; = C5. Hence ima = im (3, the claim is proven. By

Proposition 2.2.7, we get a = 5. O

Now, necessary and sufficient conditions for elements in S(V, k) to be maximal

elements are provided.

Theorem 4.3.6. (i) For each o € K(V, k), a is mazimal in K(V, k) if and only
if o ¢ CI(V,k) or nullity a = k < 0.
(13) For each o € CI(V k), a € CI(V, k) is mazimal in CI(V, k) if and only if

a ¢ K(V,k) or coranka = k < 00.

Proof. The sufficient conditions of () and (i7) follow from Lemmas 4.3.4 and 4.3.5.

We shall prove the necessities of (i) and (i) by contrapositive. Both (i) and (i7)
can be shown by using the following facts. Let a € K(V,x) N CI(V,k). Then
« is neither a monomorphism nor an epimorphism. Choose w € V ~\ im« and
u € kera . {0}. Let B; be a basis of ker o containing u. Extend B; to a basis B
of V. Since (B \ Bj)a is a basis of im a by Proposition 2.2.4 (i7) and w ¢ im «,
let C' be a basis of V' containing (B ~\ By)a U {w}. Define g € L(V') by

By~{u} u v

0 W Vo
vEB\B;

Then ima C im 3, and Va8~! = E(a, ) by using By \ {u}, {u} and B \ B; in
Lemma 2.2.10.

(i) Assume that |B;| = nullity @ > & or & is infinite.

Case 1: |By| > k. Then dimV > 2 since £ > 0, and nullity 5 = |B; ~\ {u}| > k.
It follows that g € K(V, k).

Case 2: « is infinite. Then nullity 5 = |By \ {u}| = |Bi| = nullitya > &, so
B e K(V,k).

In either case, we obtain o < 5 on K(V, k) by Theorem 4.1.4.

(77) Assume that corank o > k or & is infinite.

Case 1: coranka > k. Then dimV > 2 as k > 0, and

corank f = |C' \ ((B \ By)aU{w})| = coranka — 1 > k.
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Hence g € CI(V, k).

Case 2: k is infinite. Then
corank f = |C' \ (B~ By)aU{w})| =|C \ ((B \ By)a| = corank a > k.

This implies 8 € CI(V, k).
In either case, o < 8 on CI(V, k) by Theorem 4.1.8. ]

Consequently, we have the following corollary.

Corollary 4.3.7. (i) OM(V)NOE(V) is the set of all maximal elements in OM (V).
(1) OE(V) N~ OM(V) is the set of all mazimal elements in OE(V).

Lemma 4.3.4 says that the elements in K(V,k) ~ CI(V,k) are maximal in
K(V,k). Also, elements in CI(V, k) ~ K(V, k) are maximal in CI(V,k). The
following examples present that there are elements in K (V, k) N CI(V, k) which

are maximal in S(V, k) when dim V' is infinite and & is finite.

Example 4.3.8. Suppose that dim V is infinite. Let x be a natural number and let
B and C be bases of V. There exist By C B and Cy C C such that |By| = k = |Cy|.
Then |B N\ By| = |C \ Cy|, so there is a bijection ¢ : B\ By — C' \. Cy. Moreover,
let {B1, By} be a partition of B such that |B| = |B;| = |Bz|. Let ¥ be a bijection
from B\ By to Bs.

(i) Define v € L(V') by

B[) (%
0 vy

vEBN By
Observe that nullity &« = |By| = & and coranka = |By| > K, so a € K(V, k) N
CI(V,k). By Theorem 4.3.6, a is maximal in K (V, k) but not maximal in CI(V, k).
(1) Define o € L(V') by

Bl (%
0 vyt

vE B>
Thus nullity @ > k£ and coranka = |B \ (B \ By)| = |By| = k, and that a €
K(V,k)NCI(V, k). Hence o is maximal in CI(V, k) but not maximal in K(V, k)
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by Theorem 4.3.6.
(73) Define v € L(V') by

0 wvo

vEBN\ By

Then nullity @ = coranka = &, so a € K(V, k) N CI(V,k). Hence « is maximal
in K(V,k) and CI(V, k) by Theorem 4.3.6.

Observe that every epimorphism in K (V, k) is not contained in CI(V, k). Si-
milarly, every monomorphism in CI(V, k) is not contained in K (V, k). Therefore,
by Theorems 4.2.6 (i), 4.2.9 (i7) and 4.3.6 (i) and (ii), we have the following

corollary.

Corollary 4.3.9. Let dim V' be infinite. The following statements hold.

(i) For each nonzero o € K(V,k), if « is left compatible on K(V,K), then « is
mazximal in K(V, k).

(17) For each nonzero a € CI(V, k), if a is right compatible on CI1(V, k), then «

is mazimal in CI(V, k).

4.4 Lower and Upper Covers of Elements in (K (V, k), <)
and (CI(V, k), <)

In the last section, we give necessary and sufficient conditions for elements in
K(V,k) and CI(V, k) to have lower and upper covers where V' is a general vector

space and x > 0. Note that we let S(V, k) be K(V,k) or CI(V, k).

Lemma 4.4.1. Let o, € K(V,k) N CI(V, k). Then « is a lower cover of 5 in
S(V, k) if and only if « is a lower cover of 5 in L(V).

Proof. The sufficiency is obtained from Proposition 2.3.4.

To show the necessity, assume that « is a lower cover of 8 in S(V, k). Suppose
that « <y < 8 on L(V). From Remark 4.1.14, v € K(V, k) N CI(V, k).
Case 1: dimV is finite. Then K(V,k) = CI(V, k) is regular by Theorem 4.1.1.



57

Hence a < v < 5 on S(V, k) by Proposition 2.3.2.
Case 2: dim V is infinite. Then o < v < g on S(V, k) by Theorems 4.1.4 and 4.1.8
and Remark 4.1.14.

In either case, we obtain v = . Therefore « is a lower cover of 5 in L(V). O
The next result will be used in our main theorem.

Lemma 4.4.2. Let dimV' be infinite and let o« € K(V,k) and 5 € K(V,k) \
CI(V,k) be such that o < 8 on K(V, k). Then « is a lower cover of B in K(V, k)

if and only if corank o = Kk < 00.

Proof. Assume that corank a = k < 0o. Suppose that o <y < § on K(V, k) for
some v € K(V, k). Then, by Theorem 4.1.4, ima C im~, Vay™' = E(a,v) and
v € CI(V,K), so

k < coranky < corank a = Kk < 0.

Thus coranky = k = corank a. Similar to the proof of Lemma 4.3.5 (i7), imvy =
ima. Since imy = ima and Vay™! = E(«,7), by Proposition 2.2.7, v = a.
Therefore « is a lower cover of § in K(V, k).

For the forward implication, suppose that corank o # k or « is infinite. Since
a < B on K(V,k), by Theorem 4.1.4, a € CI(V, k), ima C im 3 and Vaf™! =
E(a, ). By Proposition 2.2.9, we write o and /3 as

{@itier U{yjties 2 {Titier v 2
a= and (=

0 UL 0 Uj

keK jeJkeK

with {z;}ier, {zi}tier U{y;}ier, {untrer, {vj}jerUlurtrer and {z:}ier U{y;}jes U
{# }kex are bases of ker 3, ker v, im v, im 5 and V', respectively. Let {v;};c; U
{ug trerx U {wi}1er, be a basis of V. Since g ¢ CI(V,k), we have |[{w;}ier] =
corank § < k. Thus |L| < k. Since a € CI(V, k), we obtain [{v;}e; U {wibier| =
corank @ > k. As |L| < k and we assume that corank @ > k or x is infinite, we

obtain |J| > 1. Then we let jo € J. Define v € L(V') by

{J7i}ielu{yj}jef\{j0} Yjo 2k

0 Vi U
Jo Tk ) ek
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Case 1: corank @ > k. Then corank y = coranka — 1 > k.

Case 2: & is infinite. Since a € CI(V, k), we have corank « is also infinite. Thus
corank v = corank @ — 1 = corank o > k.

In any case, v € CI(V,k). It is obvious that v € K(V,k) since nullityy =
H{zitier U{y;}jer oy = [{xi}ier| = nullity 3 > &. Note that ima C im~y € im 3.
The sets {;}icr U {y;}ies o {0} and {zp}rex fulfill Lemma 2.2.10, so we
get Vay™' = E(o, 7). Next, the sets {z;}ier, {yj}iesgioy and {yjo} U {zk}trex
satisfy Lemma 2.2.10. Then V3~ = E(v,3). By Theorem 4.1.4, a < v < f3
on K(V, k). Therefore, a is not a lower cover of 8 in K(V, k). O

Therefore, we describe the set of all lower covers of an element in K(V, k) ~\

CI(V, k) where k is finite.

Corollary 4.4.3. Let dim V' be infinite, x a natural number and f € K(V,K) ~
CI(V,k). Then

{a e K(V,k) | a< p on K(V,k) and corank o = K}
is the set of all lower covers of B in K(V, k).

Remark 4.4.4. Consider a and ~ in the proof of the forward implication of
Lemma 4.4.2. Note that « is a lower cover of v in L(V') by Lemma 3.4.1. Then,
by Proposition 4.4.1, « is also a lower cover of v in K(V, k). Suppose that s is
infinite. It follows that J is infinite and then let j; € J ~\ {jo}. Next, we define
T € L(V) by

{zitier U{yitier oy Yo Yin Zx

0 Vj, Vj  Ug

M=

keK

Then o < v <7, < fon K(V,k). It can be seen that ~y is a lower cover of v, by
Lemma 3.4.1. Since J is infinite, we can construct infinitely many ~; € K(V, k)
similar to 1 such that a < v <9 <y < -+ <7y < --- < f on K(V, k) where
1 is a natural number. In particular, v; is a lower cover of 7,4 for all natural

numbers 7.
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Next, we provide a characterization for elements in K (V, k) to have a lower

cover.

Theorem 4.4.5. (i) Every nonzero f € K(V,xk) N CI(V,k) has a lower cover
in K(V, k).

(17) Let dim'V' be infinite and let f € K(V,k) ~ CI(V,k). Then ( has a lower
cover in K(V, k) if and only if k is finite.

Proof. (i) Let p € K(V,k)NCI(V, k) be nonzero. By Theorem 3.4.4 (i),  has a
lower cover in L(V'), say a. Since § € K(V,k) N CI(V, k), by Remark 4.1.14, we
get o € K(V,k)NCI(V,k). Let v € K(V, k) be such that « < v < g on K(V, k).
Then oo < v < fon L(V). Since « is a lower cover of 5 in L(V'), we obtain 7 = .

Hence « is a lower cover of 8 in K (V| k).

(1) To show the sufficiency, suppose that s is finite. Let B be a basis of V
containing a basis B; of ker 5. Denote by C; = (B \ Bj)f, a basis of im 5 by
Proposition 2.2.4 (i7). Extend C) to a basis C' of V. Since |C' \ Cy| = corank <
Kk < 00, we get (' is infinite. Then there is Cy C C such that [(C'\C)UCy| = k.
Note that 5|p.p, : B~ By — Cy is a bijection by Proposition 2.2.4 (i). Let
By = Cy37L. Define a € L(V) by

Bl U Bo v
0 v

’L)EB\(BlUB())

Then ima € im 3, and VaB~! = E(«, 8) holds since By, By and B\ (B; U By)
fulfill Lemma 2.2.10. Hence av <  on L(V') by Theorem 2.3.5. Since € K(V, k),
by Proposition 4.1.13 (i), we have v € K(V, k). Since Byfs = Cy, we have

dlm(V/lmOé) = |C\ [B AN (Bl UB())]6| = |C\ (Cl AN Cg)l = |(C\ 01) UCQ| = K.

Thus a € CI(V,k). Therefore, Theorem 4.1.4 implies that o < § on K(V, k).
Since corank v = K < 00, by Lemma 4.4.2, « is a lower cover of § in K(V, k).

The forward implication is a consequence from Lemma 4.4.2. O

By letting k = Ny, we obtain the below corollary.
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Corollary 4.4.6. (i) Every nonzero § € OM(V) N OE(V) has a lower cover
in OM (V).
(17) Every B € OM(V)~ OE(V) has no lower covers in OM (V).

We conclude the following remark from Theorems 4.3.6 (i) and 4.4.5 (ii).

Remark 4.4.7. Suppose that & is a natural number. Let 5§ € K(V, k)N CI(V, k).

Every lower cover of § in K(V, k) is a maximal element in CI(V, k).

Next, we give an example of the existence of «, 8 € K(V, k) such that « is a
lower cover of B in K(V, k) but « is not a lower cover of g in L(V). Moreover,

some elements in K(V, k) \ CI(V, k) have distinct lower covers in K(V, k).

Example 4.4.8. Let x be a natural number such that x > 1. Suppose that dim V'
is infinite. Let B be a basis of V. Then there exists a partition {B;, Bo} of B
such that |B| = |By| = |Bs|. Thus there is a bijection ¢ : By — B. Let By C By
be such that |By| = k. Define o, 5 € L(V') by

BiUBy, w B, v
a= and [ =
0 U¢ vEB2\ By 0 U¢ vE Ba

As nullity o = | By U By| and nullity § = |By|, we have «, 8 € K(V, k). Since § is
an epimorphism, 5 ¢ CI(V, k). Note that

corank @ = |B \ (B \ By¢)| = |Bo¢| = |By| = k.

Thus o € CI(V,k). Moreover, ima C im 3. The sets By, By and By \ By
satisfy Lemma 2.2.10. Thus Va8~ ! = E(a, 3). Therefore a < 8 on K(V, k) by
Theorem 4.1.4. Since corank a = x, by Lemma 4.4.2, « is a lower cover of § in
K(V, k). However, « is not a lower cover of 5 in L(V') by Proposition 3.4.2. Since
there are infinitely many subsets of By which their cardinalities are x, the number

of lower covers of § in K(V,k) is also infinite. Note that if x = 1, then « is a

lower cover of § in K(V, k) and L(V).

Now we pay attention on results of lower covers of elements in C'I(V, k). The

following result is similar to Lemma 4.4.2.
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Lemma 4.4.9. Let dimV' be infinite and let o € CI(V,k) and f € CI(V,K) \
K(V, k) be such that a < B on CI(V, k). Then a is a lower cover of B in CI(V, k)

if and only of nullity o = Kk < 0.

Proof. Suppose that nullity = k < oo and a < v < 8 on CI(V, k) for some
v € CI(V,k). Then, by Theorem 4.1.8, ima C imf and Vay™! = E(a,7).
By Proposition 2.2.6, kery C ker «, so nullity vy < nullity« = . Notice that
v € K(V, k) by Theorem 4.1.8. It follows that

r < nullity v < nullity « = k < 00.

Thus nullityy = x = nullity . Hence kery = kera. Since ima C im [ and
ker v = ker ar, we have v = a by Proposition 2.2.7. Therefore « is a lower cover
of Bin CI(V, k).

To prove the necessity, assume that nullity « # & or x is infinite. As a <
B on CI(V,k), we have a € K(V,k), ima C imf and Vaf™! = E(a,3) by
Theorem 4.1.8. Then nullity « > k. By Proposition 2.2.9, we write a and [ as

follows.

{ziticr U{yj}ies 2 {zitier v; 2
o= and (=

0 Uy, 0 v U

keK jekeK

where {z; }icr, {i}ierU{Y; }jes, {untrer, {05} jesU{unrer and {z;}icr U{y;}jesU
{2k }rex are bases of ker 3, ker v, im v, im 3 and V', respectively. Since a € K(V, k)
and 8 ¢ K(V,k), we have [{z;}ier U {y;}jes] = nullitya > k and [{z;}ier| =
nullity 8 < k, respectively. Since nullity & > & or & is infinite, |J| > 1 so we let

Jo € J. Next define v € L(V') by

{$i}ieIU{yj}jeJ\{jo} Yjo Zk

0 Vi U
Jo k keK

Observe that ima C im~y C im f3.
Case 1: nullity @« > . Then nullity v = nullity o — 1 > &.
Case 2: x is infinite. Since a € K(V, k), we have nullity y = nullitya — 1 =

nullity o > k.
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In any case, v € K(V, k). Since im~ C im 3, we have corank~y > corank 5 > k.
Thus v € CI(V, k). Similar to the proof of the necessity of Lemma 4.4.2, Vay=! =
E(a,v) and V487! = E(v,8). Hence a < v < 8 on CI(V,k) by Theorem 4.1.8.

Therefore « is not a lower cover of § in CI1(V, k). O

We now show the set of all lower covers of an element in CI(V, k) \ K(V, k) when

Kk 1s finite.

Corollary 4.4.10. Let dim V' be infinite, k a natural number and § € CI1(V,k)~
K(V,k). Then

{a e CI(V,k) | a < 5 on CI(V, k) and nullity « = x}
is the set of all lower covers of 8 in CI(V, k).
From the proof of the necessity of Lemma 4.4.9, the below remark is obtained.

Remark 4.4.11. Suppose that x is infinite. Then J is infinite and let j; €
J N {jo}. By defining 7, as in Remark 4.4.4, we also obtain v is a lower cover
of v in CI(V, k). Then construct infinitely many 7; € CI(V, k) such that a <
T< <y <<y << fBon CI(V,k) where i is a natural number.

Furthermore, +; is a lower cover of ;41 in CI(V, k) for all natural number i.
Next, we characterize when elements in CI(V, k) have lower covers.

Theorem 4.4.12. (i) Every nonzero f € K(V,k) N CI(V,k) has a lower cover
in CI(V, k).

(i1) Let dim'V' be infinite and let § € CI(V,k) ~ K(V,k). Then § has a lower
cover in CI(V, k) if and only if k is finite.

Proof. (i) Let 8 € K(V,k) N CI(V,k) be nonzero. Then, by Theorem 4.4.5 (1),
B has a lower cover in K(V,k), say . That is @« < 8 on K(V,k). By Theo-
rems 4.1.4 and 4.1.8, we obtain a € K(V, k) N CI(V,k) and a <  on CI(V, k),
respectively. To show that « is a lower cover of 8 in CI(V,k), let v € CI(V, k)
be such that a < v < § on CI(V,k). From Theorems 4.1.8 and 4.1.4, we have

v € K(V,k) and o < v < 5 on K(V, k), respectively. Since « is a lower cover
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of fin K(V,k), we can conclude that v = 5. Therefore « is a lower cover of /3
in CI(V, k).

(17) To show the sufficiency, assume that  is finite. Let B; be a basis of ker 5 and
B a basis of V' containing By. As 8 ¢ K(V, k), we have |B;| = nullity 8 < k < 0.
Then B ~ Bj is infinite, so there is a nonempty set By C B ~ B;j such that
|B; U Bg| = k. Define o € L(V') by

B1 U B() (%
0 vp

vEB~(B1UBy)

Thus ima € im 3 and Va8~! = E(«, 8) holds by using By, By and B\ (B; U By)
in Lemma 2.2.10. Hence oo < 8 on L(V) by Theorem 2.3.5. Since g € CI(V, k),
we obtain a € CI(V,k) by Lemma 4.1.13 (i7). Furthermore, nullitya = |B; U
By| = k. Hence a € K(V,k) N CI(V, k). Therefore, Theorem 4.1.8 implies that
a < fon CI(V,k). Since nullity « = k, by Lemma 4.4.9, « is a lower cover of /3
in CI(V, k).

For the necessity, suppose that « is infinite. By Lemma 4.4.9, we have 3 has

no lower cover in C1(V, k). O

Corollary 4.4.13. (i) Every nonzero f € OM(V)NOE(V) has a lower cover
in OE(V).
(17) Every 5 € OE(V)~ OM(V) has no lower covers in OE(V).

By Theorems 4.3.6 (i) and 4.4.12 (i7), we have the following remark.

Remark 4.4.14. Let k be a natural number and g € CI(V,k) \ K(V, k).

Every lower cover of § in CI(V, k) is a maximal element in K(V, k).

We present the below example to demonstrate that there is an element in CI1(V] k)
whose lower covers in L(V) and CI(V, k) are different. Moreover, it can be ob-
served that a lower cover of an element in CI(V,k) \ K(V, k) need not to be

unique.

Example 4.4.15. Suppose that dim V' is infinite. Let x be a natural number
such that k > 1 and let B be a basis of V. Then there is a partition {B;, By}
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of V such that |B| = |B;| = |Bz|. Thus there exists a bijection ¢ : B — Bs. Let
By C By be such that |By| = k. Define o, 8 € L(V') by

By v v
o= and (=

0 vy vEB~By vy veB
Observe that nullity « = |By| = &, hence that a € K(V, k). Since ima C im 3,
we have corank o > corank f = |By| > k. Then o, € CI(V,k). Since § is a
monomorphism, ¢ K(V, k). The sets &, By and B\ By satisfy Lemma 2.2.10 and
hence Vaf™ = E(a, ). Thus a < 3 on CI(V, k) by Theorem 4.1.8. Therefore «
is a lower cover of § in C'I(V, k) by Lemma 4.4.9. Since x > 1, by Corollary 3.4.2,
« is not a lower cover of 5 in L(V). Note that B has infinitely many subsets

which their cardinalities equal to x. Hence § has infinite lower covers in C1(V, k).

If kK =1, then « is a lower cover of 8 in CI(V, k) and L(V).

Next, characterizations when elements in K(V, k) and CI(V, k) have upper

covers in K (V, k) and CI(V, k), respectively, are investigated.

Theorem 4.4.16. Let o € S(V, k). Then « has an upper cover in S(V, k) if and

only if a is not maximal in S(V, k).

Proof. Suppose that « is not maximal in S(V, k). Then, by Theorem 4.3.6, « €
K(V,k)NCI(V,k). Let w € V Nima and u € kera \ {0}, and let By be a
basis of ker a containing u. Extend B; to a basis B of V. Let C' be a basis of V
containing (B \ By)a U {w}. Define 5 € L(V') by

Bi~{u} u w

0 W VN
vEB\B1

Similar to the proof of Theorem 4.3.6, we get f € S(V,k) and then a < f3
on S(V,k). By Lemma 3.4.1, § is an upper cover of o in L(V'). Hence, Proposi-
tion 2.3.4 implies that § is an upper cover of a in S(V, k).

The forward implication is obvious. [

By taking x = Ny, we obtain the below corollary.
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Corollary 4.4.17. Let S(V) be OM (V) or OE(V), and let o € S(V). Then

a has an upper cover in S(V') if and only if o is not maximal in S(V').
The following corollaries are obtained from Theorems 4.3.6 and 4.4.16.

Corollary 4.4.18. Let « € K(V, k). Then the following are equivalent.
(1) a is mazimal in K (V) k).
(i1) a ¢ CI(V, k) or nullity o = k < 0.

(731) « has no upper cover in K(V, k).

Corollary 4.4.19. Let a« € CI(V,k). Then the following are equivalent.
(i) a is mazimal in CI(V, k).
(i1) o ¢ K(V,K) or coranka = k < 0.

(731) « has no upper cover in CI(V, k).

We illustrate examples of elements in S(V, k) where dim V' is infinite and k is

finite in Figure 4.2. In Figure 4.3, we consider when dim V' and & are infinite.

Figure 4.2: These are followed from Theorems 4.4.5 and 4.4.12.

Figure 4.3: These are obtained by Theorems 4.4.5 (i7) and 4.4.12 (i1).
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