อันดับบางส่วนธรรมชาติบนกึ่งกรุปการแปลงเชิงเส้น ที่มีข้อจำกัดบนศูนยภาพหรือค่าลำดับชั้นร่วม

> วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญูาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์

> คณะวิทยาศาสตร์ จุพาลงกรณ์มหาวิทยาลัย
> ปีการศึกษา 2559
> ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็นของวิทยานิพนธธดั้งแตปีไการกึกษา 2554 ที่ให้บริการ่ในคลังับญญาจุฬาบ (CUIR)
เป็นแเฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธีที่สงผ่านทางบัณติตวิทยาลัย
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

THE NATURAL PARTIAL ORDER ON LINEAR TRANSFORMATION SEMIGROUPS WITH RESTRICTIONS ON NULLITY OR CO-RANK

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Mathematics

Department of Mathematics and Computer Science Faculty of Science

Chulalongkorn University
Academic Year 2016
Copyright of Chulalongkorn University

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree
Dean of the Faculty of Science
(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEEChairman(Professor Patanee Udomkavanich, Ph.D.)Thesis Advisor
(Teeraphong Phongpattanacharoen, Ph.D.)
Thesis Co-Advisor
(Assistant Professor Sureeporn Chaopraknoi, Ph.D.)
Examiner
(Associate Professor Amorn Wasanawichit, Ph.D.)
.. Examiner
(Assistant Professor Sajee Pianskool, Ph.D.)
External Examiner
(Khajee Jantarakhajorn, Ph.D.)

พงษ์สัญ ประกฤตศรี: อันดับบางส่วนธรรมชาติบนกึ่งกรุปการแปลงเชิงเส้นที่มีข้อจำกัด บนศูนยภาพหรือค่าลำดับชั้นร่วม. (THE NATURAL PARTIAL ORDER ON LINEAR TRANSFORMATION SEMIGROUPS WITH RESTRICTIONS ON NULLITY OR CO-RANK) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ดร. ธีรพงษ์ พงษ์พัฒนเจริญ, อ. ที่ปรึกษา วิทยานิพนธ์ร่วม : ผศ. ดร. สุรีย์พร ชาวแพรกน้อย, 67 หน้า.

อันดับบางส่วนธรรมชาติ \leq บนกึ่งกรุป S คืออันดับบางส่วนที่นิยามโดย $a \leq b$ ก็ต่อเมื่อ $a=x b=b y$ และ $a=a y$ สำหรับบาง $x, y \in S^{1}$ เมื่อ S^{1} เป็นกึ่งกรุปที่ได้จาก S โดยที่ $S^{1}=S$ ถ้า S มีเอกลักษณ์ และถ้า S ไม่มีเอกลักษณ์ ให้ S^{1} คือ S ผนวกเอกลักษณ์ 1 เข้าไปใน S เป็นที่รู่กันว่าอันดับบางส่วนธรรมชาติบนกึ่งกรุปและกึ่งกรุป ย่อยปรกติของกึ่งกรุปนั้นพ้องกัน ดังนั้นการศึกษาอันดับบางส่วนธรรมชาติบนกึ่ง กรุปไม่ปรกติจึงเป็นที่สนใจ

ในวิทยานิพนธ์ฉบับนี้เราให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับการที่สมาชิกในกึ่ง กรุปการแปลงเชิงเส้นไม่ปรกติที่มีข้อจำกัดบนศูนยภาพหรือค่าลำดับชั้นร่วมจะมีความสัมพันธ์กัน ภายใต้อันดับบางส่วนธรรมชาติ นอกจากนี้เราให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับสมาชิกในกึ่ง กรุปการแปลงเชิงเส้นเหล่านั้นที่จะเป็นสมาชิกใช้แทนกันได้ทางซ้ายและทางขวา สมาชิกเล็กสุด เฉพาะกลุ่มและสมาชิกใหญ่สุดเฉพาะกลุ่ม สมาชิกปกล่างและสมาชิกปกบน

ภาควิชา. \qquad คณิตศาสตร์มลละ \qquad ลายมือชื่อนิสิต
วิทยาการคอมพิวเตอร์ ลายมือชื่อ อ.ที่ปรึกษาหลัก.
สาขาวิชา \qquad คณิตศาสตร์ \qquad ลายมือชื่อ อ.ที่ปรึกษาร่วม
ปีการศึกษา \qquad 2559
\# \# 5472836023 : MAJOR MATHEMATICS
KEYWORDS : LINEAR TRANSFORMATION SEMIGROUP / NATURAL PARTIAL ORDER / COMPATIBLE ELEMENT / MINIMAL ELEMENT / MAXIMAL ELEMENT / LOWER COVER / UPPER COVER

PONGSAN PRAKITSRI : THE NATURAL PARTIAL ORDER ON
LINEAR TRANSFORMATION SEMIGROUPS WITH RESTRICTIONS ON NULLITY OR CO-RANK. ADVISOR: TEERAPHONG PHONGPATTANACHAROEN, Ph.D., CO-ADVISOR : ASST. PROF. SUREEPORN CHAOPRAKNOI, Ph.D., 67 pp.

The natural partial order \leq on a semigroup S is a partial order defined by $a \leq b$ if and only if $a=x b=b y$ and $a=a y$ for some $x, y \in S^{1}$
where S^{1} is the semigroup obtained from S such that $S^{1}=S$ if S has an identity and if S has no identity, let S^{1} be S with the identity 1 adjoined. It is known that the natural partial orders on a semigroup and its regular subsemigroups coincide. Therefore, the study of the natural partial order on nonregular semigroups are of interest.

In this thesis, we give necessary and sufficient conditions for elements in nonregular linear transformation semigroups with restrictions on nullity or co-rank are related under the natural partial order. Furthermore, we provide necessary and sufficient conditions for elements in those linear transformation semigroups to be left and right compatible elements, minimal and maximal elements, lower and upper covers.

Department: \qquad Student's Signature \qquadComputer Science

Advisor's Signature
Field of Study :Mathematics............ Co-advisor's Signature \qquad Academic Year : 2016

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Teeraphong Phongpattanacharoen, and my co-advisor, Assistant Professor Dr. Sureeporn Chaopraknoi, for their patience and expert advice throughout this thesis. I would never be able to complete this thesis without their suggestions.

I also acknowledge Professor Dr. Patanee Udomkavanich, the chairman, Associate Professor Dr. Amorn Wasanawichit, Assistant Professor Dr. Sajee Pianskool and Dr. Khajee Jantarakhajorn, the thesis committees, for their invaluable comments and guidance.

My sincere thanks also goes to my family and friends for their encouragement and motivation.

Finally, I wish to thank the Science Achievement Scholarship of Thailand (SAST) for financial assistance throughout my graduate study.

CONTENTS

page

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II PRELIMINARIES 4
2.1 Notation and Definitions 4
2.2 Elementary Results 11
2.3 A Glance on the Natural Partial Order 18
III THE SEMIGROUPS $A M(V)$ and $A E(V)$ 22
3.1 The Natural Partial Orders on $A M(V)$ and $A E(V)$ 22
3.2 Left and Right Compatible Elements in $(A M(V), \leq)$ and $(A E(V), \leq)$ 28
3.3 Minimal and Maximal Elements in $(A M(V), \leq)$ and $(A E(V), \leq)$ 30
3.4 Lower and Upper Covers of Elements in $(L(V), \leq),(A M(V), \leq)$ and $(A E(V), \leq)$ 32
IV THE SEMIGROUPS $K(V, \kappa)$ AND $C I(V, \kappa)$ 37
4.1 The Natural Partial Orders on $K(V, \kappa)$ and $C I(V, \kappa)$ 37
4.2 Left and Right Compatible Elements in $(K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$ 46
4.3 Minimal and Maximal Elements in $(K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$ 51
4.4 Lower and Upper Covers of Elements in $(K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$ 56
REFERENCES 66
VITA 67

CHAPTER I

INTRODUCTION

In semigroup theory, the problem of defining a partial order on a semigroup has been studied for a long time. For a semigroup S, the set $E(S)$ of all idempotents in S can be ordered in the following manner: for any $e, f \in E(S)$,

$$
e \leq_{E(S)} f \text { if and only if } e=e f=f e
$$

From [8], this is a partial order on $E(S)$. There are many attempts to extend this order to any semigroup. In 1952, V. Wagner [16] introduced the notion of inverse semigroups and the partial order $\leq_{i n v}$, that is, for an inverse semigroup S and $a, b \in S$,

$$
a \leq_{i n v} b \text { if and only if } a=e b \text { for some } e \in E(S) .
$$

The intersection of the partial order $\leq_{i n v}$ and $E(S) \times E(S)$ is $\leq_{E(S)}$ where S is an inverse semigroup. Next, in 1980, according to [3] and [12], R. Hartwig and K. Nambooripad independently defined partial orders on a regular semigroup, which have different forms but equal, say $\leq_{\text {reg }}$. An interesting form of $\leq_{\text {reg }}$ is defined by H. Mitsch [11] in 1986 as follows. For a regular semigroup S and $a, b \in S$,

$$
a \leq_{r e g} b \text { if and only if } a=x b=b y \text { and } a=x a \text { for some } x, y \in S .
$$

Unfortunately, this relation on a general semigroup may not be a partial order if the semigroup has no identity. To solve this problem, an element $1 \notin S$ is added to be the identity of S, that is, for a semigroup S, let S^{1} be a semigroup with the identity 1 adjoined if S has no identity; otherwise, $S^{1}=S$. Therefore, H. Mitsch defined in [11] that, for a semigroup S and $a, b \in S$,

$$
a \leq b \text { if and only if } a=x b=b y \text { and } a=x a \text { for some } x, y \in S^{1} .
$$

This order is a partial order on S called the natural partial order. In particular, the orders \leq and $\leq_{\text {reg }}$ are equal on an arbitrary regular semigroup. Furthermore, $\leq, \leq_{\text {reg }}$ and $\leq_{i n v}$ are equal on each inverse semigroup. In addition, H. Mitsch proved in [11] that the natural partial order \leq has several equivalent forms, that is, for a semigroup S with the natural partial order \leq and $a, b \in S$, the following are equivalent:
(i) $a \leq b$,
(ii) $a=x b=b y$ and $a=a y$ for some $x, y \in S^{1}$,
(iii) $a=x b=b y$ and $a=x a=a y$ for some $x, y \in S^{1}$.

Nevertheless, it is sometimes not convenient to verify related elements in a semigroup by using the definition of \leq. Therefore, the problem of finding necessary and sufficient conditions for elements in various semigroups to be related is of interest. Notice that the regularity of a semigroup is significant in studying the natural partial order on a semigroup. In 1994, P. M. Higgins [4] proved that regular subsemigroups of a semigroup inherit the natural partial order from the semigroup. Therefore the natural partial orders on nonregular subsemigroups of some semigroups are focused. From [2] and [5], they determined the natural partial order on nonregular semigroups.

Note that every semigroup can be embedded into a certain transformation semigroup, see [6]. This embedding additionally preserves the natural partial order since the natural partial order is defined via multiplication of a semigroup. There are many researches about the natural partial order on transformation semigroups; for example, [5], [7] and [9] provide characterizations for elements in some transformation semigroups to be related under the natural partial order.

For a vector space V, denote by $L(V)$ the set of all linear transformations on V. It is a semigroup under composition. In 2005, R. P. Sullivan [15] studied the natural partial order on the semigroup $L(V)$. Our attention is now on various subsemigroups of $L(V)$. In this thesis, certain nonregular subsemigroups of $L(V)$ are considered.

We consider several subsemigroups of $L(V)$, namely, $A M(V), A E(V), O M(V)$,
$O E(V), K(V, \kappa), C I(V, \kappa)$. They are linear transformation semigroups with restrictions on nullity or co-rank and their definitions can be found in Chapter II. Since the regularity of a semigroup is important in studying the natural partial order, we focus on the regularity of those subsemigroups of $L(V)$ listed above. The regularity of the semigroups $A M(V), A E(V), O M(V)$ and $O E(V)$ are described in [6]. However, the regularity of $K(V, \kappa)$ and $C I(V, \kappa)$ are still not investigated. We shall give necessary and sufficient conditions for $K(V, \kappa)$ and $C I(V, \kappa)$ to be nonregular.

We organize this thesis as follows: Chapter II contains notations, definitions and quoted results that will be used in this thesis. Then we provide necessary and sufficient conditions for elements in the nonregular semigroup $S(V)$ to be related under the natural partial order \leq where $S(V)$ is defined as follows:

In Chapter III, $S(V)$ is either $A M(V)$ or $A E(V)$.
In Chapter IV, $S(V)$ is $O M(V), O E(V), K(V, \kappa)$ or $C I(V, \kappa)$.
Furthermore, we characterize left and right compatibility, minimality, maximality and the existence of lower and upper covers of elements in $(S(V), \leq)$ with or without the regularity of $S(V)$. At last, we give many examples associated with our results.

CHAPTER II

PRELIMINARIES

2.1 Notation and Definitions

For a nonempty set X, a partition P of X is a family of sets such that $\varnothing \notin P$, $\bigcup_{A \in P} A=P$ and $A \cap B=\varnothing$ for all distinct $A, B \in P$. A binary relation \preccurlyeq on a nonempty set X is called a partial order on X if the following properties hold.
(i) Reflexivity: $x \preccurlyeq x$ for all $x \in X$.
(ii) Antisymmetry: for any $x, y \in X, x \preccurlyeq y$ and $y \preccurlyeq x$ imply $x=y$.
(iii) Transitivity: for any $x, y, z \in X, x \preccurlyeq y$ and $y \preccurlyeq z$ imply $x \preccurlyeq z$.

If \preccurlyeq is a partial order on a set X, the pair (X, \preccurlyeq) is said to be a partially ordered set or a poset. In the sequel, if there is no ambiguity about the partial order, we may write X instead of (X, \preccurlyeq).

For a poset (X, \preccurlyeq), an element x in X is called a minimal element in X if for any $y \in X, y \preccurlyeq x$ implies $y=x$. A maximal element x in X is defined by for any $y \in X, x \preccurlyeq y$ implies $x=y$. An element x in X is said to be the minimum element in X if $x \preccurlyeq y$ for all y in X. The maximum element x in X is the element such that $y \preccurlyeq x$ for all $y \in X$.

For any distinct elements x and y in a poset $(X \preccurlyeq), x$ is said to be a lower cover of y in X if $x \preccurlyeq y$ and there is no $z \in X \backslash\{x, y\}$ such that $x \preccurlyeq z$ and $z \preccurlyeq y$. From this definition, y is said to be an upper cover of x in X. It is clear that there is no lower [upper] cover of minimal [maximal] elements.

Example 2.1.1. (i) Let X be a nonempty set and $a \in X$. Consider $\mathcal{P}(X)$ with the inclusion \subseteq. Obviously, \varnothing has no lower cover in $\mathcal{P}(X)$ and \varnothing is a lower cover of $\{a\}$ in $\mathcal{P}(X)$. Let $A, B \subseteq X$ be such that $A \subseteq B$. Then A is a lower cover of B in $\mathcal{P}(X)$ if and only if $B \backslash A$ is a singleton.
(ii) Every element in the set of real numbers \mathbb{R} has no lower and upper cover with
respect to the relation "less than or equal to".

In this thesis, we illustrate many figures, so the notations are needed to introduce. Consider a poset (X, \preccurlyeq), an element in X will be drawn as a vertex. For distinct $x, y \in X$, we draw a straight line from x upward to y if x is a lower cover of y in (X, \preccurlyeq). If $x \preccurlyeq y$ on X, we use a dotted line from x upward to y; see the following notations.

Figure 2.1: (i) This means that x is a lower cover of y. The meaning of $(i i)$ is that y has a lower cover. (iii) means $x \preccurlyeq y$. (iv) x has an upper cover.

For example, see the figure below.

Figure 2.2: A diagram of $(\mathcal{P}(X), \subseteq)$ where $X=\{a, b, c\}$.

Let \mathbb{N} be the set of all natural numbers with the standard relation "less than or equal to" \leqslant. Consider $\mathbb{N} \times \mathbb{N}$ with the partial order \leqslant^{\prime} defined by, for any $a, b, c, d \in \mathbb{N},(a, b) \leqslant^{\prime}(c, d)$ if and only if $a \leqslant c$ and $b \leqslant d$. Then $\left(\mathbb{N} \times \mathbb{N}, \leqslant^{\prime}\right)$ is a partially ordered set and it can be illustrated as in Figure 2.3.

Figure 2.3: A diagram of $\left(\mathbb{N} \times \mathbb{N}, \leqslant^{\prime}\right)$.

Next, we provide definitions and notations in semigroup theory that will be used. A nonempty set S with a binary operation - on S is called a semigroup if . is associative. For any elements x, y in a semigroup S, we write $x \cdot y$ as $x y$. Next, for a partial order \preccurlyeq on a semigroup S, an element $c \in S$ is said to be left [right] compatible on S if for any elements $a, b \in S, a \preccurlyeq b$ implies $c a \preccurlyeq c b[a c \preccurlyeq b c]$. In particular, c is called compatible on S if it is both left and right compatible. If every element in S is compatible, then \preccurlyeq is called compatible on S.

Example 2.1.2. (i) For a set X, consider the power set $\mathcal{P}(X)$ with the intersection \cap and the union \cup. Then $(\mathcal{P}(X), \cap)$ and $(\mathcal{P}(X), \cup)$ are semigroups. Let $A, B, C \in \mathcal{P}(X)$ be such that $A \subseteq B$ on $(\mathcal{P}(X), \cap)$. Thus $C \cap A \subseteq C \cap B$ and $A \cap C \subseteq B \cap C$. Therefore, \subseteq is compatible on $(\mathcal{P}(X), \cap)$. Similarly, \subseteq is also compatible on $(\mathcal{P}(X), \cup)$.
(ii) Let $\left(\mathbb{R}^{+}, \cdot\right)$ denote the poset of all positive real numbers endowed with usual multiplication \cdot. Consider the order "less than or equal to" \leqslant on $\left(\mathbb{R}^{+}, \cdot\right)$. Let $a, b, c \in \mathbb{R}^{+}$be such that $a \leqslant b$ on \mathbb{R}^{+}. Then $c a \leqslant c b$ and $a c \leqslant b c$ on \mathbb{R}^{+}. Hence \leqslant is compatible on $\left(\mathbb{R}^{+}, \cdot\right)$. Since $1 \leqslant 2$ and $1(-2)=(-2) 1=-2 \nless-4=(-2) 2=$ $2(-2)$, we have \leqslant is neither left nor right compatible on (\mathbb{R}, \cdot).

Let S be a semigroup. An element e in S is said to be an idempotent if $e^{2}=e$. For an x in S, if $a x=x=x a$ for all $a \in S$, then x is called the zero. If e is an element in S with the property that $a e=a=e a$ for all $a \in S$, then e is said to be the identity. An element a in S is called regular if $a=a x a$ for some $x \in S$. If every element in S is regular, then S is said to be a regular semigroup. For any
$A, B \subseteq S$, let

$$
A B=\{a b \mid a \in A \text { and } b \in B\} .
$$

A nonempty subset A of a semigroup S is called a left [right] ideal of S if $S A \subseteq A$ $[A S \subseteq A]$.

If S is a semigroup without identity, we can adjoin an element $1 \notin S$ and define a binary operation $*$ on $S \cup\{1\}$ by

$$
\begin{array}{ll}
a * b=a b & \text { for all } a, b \in S, \\
a * 1=a=1 * a & \text { for all } a \in S \cup\{1\} .
\end{array}
$$

For a semigroup S, we let

$$
S^{1}=\left\{\begin{array}{lr}
S & \text { if } S \text { has the identity; } \\
S \cup\{1\} & \text { if } S \text { has no identity. }
\end{array}\right.
$$

Then S^{1} is a semigroup with identity.
Example 2.1.3. (i) Let X be a set. Note that X and \varnothing are identities of $(\mathcal{P}(X), \cap)$ and $(\mathcal{P}(X), \cup)$, respectively. Hence $\mathcal{P}(X)^{1}=\mathcal{P}(X)$ under the operations \cap and \cup. (ii) Let S be a semigroup defined by $a b=b$ for all $a, b \in S$. If S has more than one element, then S has no identity. Therefore, $S^{1} \neq S$.

The natural partial order \leq on a semigroup S is defined by Mitsch in [11] as follows, for any $a, b \in S$,

$$
a \leq b \text { if and only if } a=x b=b y \text { and } a=a y \text { for some } x, y \in S^{1} .
$$

This order is a partial order on S. For any $a, b \in S$, the relation $a<b$ stands for $a \leq b$ and $a \neq b$.

Example 2.1.4. Let X be a set. Consider the semigroups $(\mathcal{P}(X), \cap)$ and $(\mathcal{P}(X), \cup)$. Let $A, B \in \mathcal{P}(X)$ be such that $A \subseteq B$. Since $A=A \cap B=B \cap A$ and $A=A \cap A$, we obtain $A \leq B$ on $(\mathcal{P}(X), \cap)$. Since $B=B \cup A=A \cup B$ and $B=B \cup B$, we have $B \leq A$ on $(\mathcal{P}(X), \cup)$.

Example 2.1.5. Let S be a semigroup defined by $a b=b$ for all $a, b \in S$. Suppose that $a \leq b$ on S. Then $a=x b=b y$ and $a=a y$ for some $x, y \in S^{1}$. This implies that $a=x b=b$. Hence $a \leq b$ on S if and only if $a=b$.

Consider S with the natural partial order \leq. If S has the zero element 0 , then 0 is the minimum element by [2] and $x \in S$ is called a minimal nonzero element in S if x is an upper cover of 0 .

In this thesis, we are interested in studying the natural partial order on linear transformation semigroups. We next introduce notations and definitions in linear algebra and the theory of linear transformation semigroups.

In this section, let V be a vector space over a field and let

$$
L(V)=\{\alpha \mid \alpha \text { is a linear transformation on } V\} .
$$

From [6], $L(V)$ is a regular semigroup under composition. Let $\alpha \in L(V)$. Throughout this thesis, all functions act on the right-hand side of the argument. The kernel of α is the set of $v \in V /$ such that $v \alpha=0$ where 0 is the zero vector. The image of α means $V \alpha$. The kernel and the image of α are denoted by $\operatorname{ker} \alpha$ and $\operatorname{im} \alpha$, respectively. For a subspace U of V, let $\operatorname{dim} U$ represent the dimension of U. The notations $\operatorname{dim}(\operatorname{ker} \alpha)$ and $\operatorname{dim}(\operatorname{im} \alpha)$ are called the nullity of α and the rank of α, respectively, denoted by nullity α and $\operatorname{rank} \alpha$. For a subset A of V, let $\langle A\rangle$ stand for the subspace spanned by A and $\langle v\rangle$ means $\langle\{v\}\rangle$ where $v \in V$. Denote by 0_{V} and 1_{V} the zero map on V and the identity map on V, respectively.

For a subspace W of V and a vector $v \in V$, the set $\{v+w \mid w \in W\}$ is denoted by $v+W$, called a coset of W in V. The set of all cosets of W in V is represented by

$$
V / W=\{v+W \mid v \in V\} .
$$

Then the set V / W is called the quotient space of V modulo W. In fact, V / W is a vector space under the following operations: for $u, v \in V$ and a scalar a,

$$
(u+W) \oplus(v+W)=(u+v)+W
$$

and

$$
a \odot(u+W)=(a u)+W .
$$

Clearly, the zero vector in V / W is $0+W=W$. For each $\alpha \in L(V), \operatorname{dim}(V / \operatorname{im} \alpha)$ is called the corank of α denoted by corank α. Note that if $\operatorname{dim} V$ is finite, then corank $\alpha=\operatorname{dim}(V / \operatorname{im} \alpha)=\operatorname{dim} V-\operatorname{dim}(\operatorname{im} \alpha)=\operatorname{dim}(\operatorname{ker} \alpha)=$ nullity α.

For any sets $A, B, A_{0} \subseteq A, B_{0} \subseteq B$ and any function $\phi: A \rightarrow B$, denote by $A_{0} \phi$ and $B_{0} \phi^{-1}$ the image of A_{0} under ϕ and the inverse image of B_{0} under ϕ, respectively. Moreover, ϕ^{-1} is the inverse relation of ϕ. For any $\alpha, \beta \in L(V)$, $V \alpha \beta^{-1}=\{v \in V \mid v \beta \in \operatorname{im} \alpha\}$ and let

$$
E(\alpha, \beta)=\{v \in V \mid v \alpha=v \beta\} .
$$

It is easy to see that $E(\alpha, \beta) \subseteq V \alpha \beta^{-1}$ for all $\alpha, \beta \in L(V)$, but it is not necessary true that $E(\alpha, \beta)=V \alpha \beta^{-1}$. Recall that any linear transformation $\alpha \in L(V)$ can be defined on a basis B of V as it can be extended linearly from a basis, that is,

$$
\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \alpha=a_{1} v_{1} \alpha+\cdots+a_{n} v_{n} \alpha
$$

where $v_{1}, \ldots, v_{n} \in B, a_{1}, \ldots, a_{n}$ are scalars and n is a natural number.
Example 2.1.6. Let $\operatorname{dim} V \gg 1$ and let B be a basis of V and $u \in B$. Define $\beta \in L(V)$ by $v \beta=u$ for all $v \in B$. It is routine to verify that $V 1_{V} \beta^{-1}=V$ and $E\left(1_{V}, \beta\right)=\langle u\rangle$. Hence $E\left(1_{V}, \beta\right) \subsetneq V 1_{V} \beta^{-1}$.

Many linear transformations will be defined in this thesis. We shall use a bracket notation to represent many of them. Let B be a basis of V. If $\alpha \in L(V)$ is defined by, for each $v \in B, v \alpha=w_{v}$ where $w_{v} \in V$, then we write

$$
\alpha=\binom{v}{w_{v}}_{v \in B} .
$$

For a natural number $n>1$, assume B has a partition $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}, u_{i} \in V$ for all $i=1,2, \ldots, n-1$, and $\alpha \in L(V)$ is defined by

$$
v \alpha= \begin{cases}u_{i} & \text { if } v \in B_{i}, i=1,2, \ldots, n-1 \\ w_{v} & \text { if } v \in B_{n}\end{cases}
$$

where $w_{v} \in V$ for all $v \in V$. Then α will be written as

$$
\alpha=\left(\begin{array}{ccccc}
B_{1} & B_{2} & \ldots & B_{n-1} & v \\
u_{1} & u_{2} & \ldots & u_{n-1} & w_{v}
\end{array}\right)_{v \in B_{n}}
$$

Next, let

$$
\begin{aligned}
A M(V) & =\{\alpha \in L(V) \mid \text { nullity } \alpha \text { is finite }\} \\
A E(V) & =\{\alpha \in L(V) \mid \text { corank } \alpha \text { is finite }\}
\end{aligned}
$$

Observe that 1_{V} is contained in $A M(V) \cap A E(V)$. Y. Kemprasit showed in [6] that these sets are subsemigroups of $L(V)$. Moreover, both $A M(V)$ and $A E(V)$ are nonregular if and only if $\operatorname{dim} V$ is infinite. Notice that both $A M(V)$ and $A E(V)$ do not contain the zero map 0_{V} whenever $\operatorname{dim} V$ is infinite.

In [6], Y. Kemprasit also proved that the following are nonregular subsemigroups of $L(V)$. For an infinite dimensional vector space V, let

$$
\begin{array}{r}
O M(V)=\{\alpha \in L(V) \mid \text { nullity } \alpha \text { is infinite }\}, \\
O E(V)=\{\alpha \in L(V) \mid \text { corank } \alpha \text { is infinite }\} .
\end{array}
$$

It can be seen that both $O M(V)$ and $O E(V)$ contain 0_{V}, but 1_{V} is not an element in these semigroups.

For a cardinal number κ with $\kappa \leq \operatorname{dim} V$, let

$$
\begin{gathered}
K(V, \kappa)=\{\alpha \in L(V) \mid \text { nullity } \alpha \geq \kappa\} \\
C I(V, \kappa)=\{\alpha \in L(V) \mid \operatorname{corank} \alpha \geq \kappa\}
\end{gathered}
$$

In $2005, \mathrm{~S}$. Chaopraknoi and Y. Kemprasit proved in [1] that $K(V, \kappa)$ and $C I(V, \kappa)$ are subsemigroups of $L(V)$. Note that both $K(V, \kappa)$ and $C I(V, \kappa)$ contain the identity map 1_{V} if and only if $\kappa=0$. Moreover, the zero map 0_{V} is always contained in $K(V, \kappa)$ and $C I(V, \kappa)$. Observe that $K\left(V, \aleph_{0}\right)=O M(V), C I\left(V, \aleph_{0}\right)=O E(V)$ and $K(V, 0)=L(V)=C I(V, 0)$ where \aleph_{0} is the aleph-null. If $\operatorname{dim} V$ is finite, then $K(V, \kappa)=C I(V, \kappa)$ since corank $\alpha=$ nullity α. Furthermore, significant properties of these semigroups are provided.

Proposition 2.1.7. [1] If $\operatorname{dim} V$ be infinite, then $K(V, \kappa) \neq C I(V, \iota)$ for any nonzero cardinal numbers $\kappa, \iota \leq \operatorname{dim} V$.

Therefore, we obtain the following proposition.
Proposition 2.1.8. $K(V, \kappa)=C I(V, \kappa)$ if and only if $\operatorname{dim} V$ is finite or $\kappa=0$.
In [10], the authors proved that $K(V, \kappa) \cap C I(V, \kappa)$ is a regular subsemigroup of $L(V)$ when $\operatorname{dim} V$ is infinite.

The next proposition will be used in Section 4.2.

Proposition 2.1.9. [13] (i) $K(V, \kappa)$ is a right ideal of $L(V)$.
(ii) $C I(V, \kappa)$ is a left ideal of $L(V)$.

2.2 Elementary Results

This section contains basic results in set theory and linear algebra which are needed in this thesis. The following is a well-known fact in set theory.

Proposition 2.2.1. [14] Let κ and λ be cardinal numbers such that at least one of them is infinite. Then $\kappa+\lambda=\max \{\kappa, \lambda\}$.

For a set X, the cardinality of X is denoted by $|X|$. Next, we show that any infinite set can be partitioned into finitely many infinite sets as follows.

Proposition 2.2.2. Let X be an infinite set and let n be a natural number. Then there exists a partition $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ of X such that $|X|=\left|X_{i}\right|$ for all $i=1,2, \ldots, n$.

Proof. Let $x_{1}, x_{2}, \ldots, x_{n} \in X$ be distinct. Then

$$
|X|=\left|X \times\left\{x_{1}\right\}\right|=\left|X \times\left\{x_{2}\right\}\right|=\cdots=\left|X \times\left\{x_{n}\right\}\right| .
$$

Since $X \times\left\{x_{1}\right\}, X \times\left\{x_{2}\right\}, \ldots, X \times\left\{x_{n-1}\right\}$ and $X \times\left\{x_{n}\right\}$ are disjoint, by Proposition 2.2.1,

$$
\left|\bigcup_{i=1}^{n}\left(X \times\left\{x_{i}\right\}\right)\right|=\left|X \times\left\{x_{1}\right\}\right|+\left|X \times\left\{x_{2}\right\}\right|+\cdots+\left|X \times\left\{x_{n}\right\}\right|=|X| .
$$

Thus there exists a bijection $\phi: \bigcup_{i=1}^{n}\left(X \times\left\{x_{i}\right\}\right) \rightarrow X$. For any $i=1,2, \ldots, n$, choose $X_{i}=\left[X \times\left\{x_{i}\right\}\right]$. Hence $\left|X_{i}^{i=1}\right|=\left|X \times\left\{x_{i}\right\}\right|=|X|$ and

$$
\bigcup_{i=1}^{n} X_{i}=\bigcup_{i=1}^{n}\left[X \times\left\{x_{i}\right\}\right] \phi=\left[\bigcup_{i=1}^{n}\left(X \times\left\{x_{i}\right\}\right)\right] \phi=X
$$

Furthermore, it is easy to see that $X_{i} \cap X_{j}=\varnothing$ for all distinct $i, j \in\{1,2, \ldots, n\}$. Therefore $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a partition of X.

Now we let V be a vector space. Here are some facts about linear maps, bases and quotient spaces.

Proposition 2.2.3. Let B be a basis of $W, A \subseteq B$ and let $\varphi: B \backslash A \rightarrow V$ be such that $(B \backslash A) \varphi$ is a linearly independent subset of V. Let $\alpha \in L(V)$ be defined by

$$
\alpha=\left(\begin{array}{cc}
A & v \\
0 & v \varphi
\end{array}\right)_{v \in B \backslash A}
$$

Then the following statements hold.
(i) If φ is an injection, then $\operatorname{ker} \alpha=\langle A\rangle$.
(ii) $\operatorname{im} \alpha=\langle(B \backslash A) \varphi\rangle$.

Proof. (i) Assume that φ is injective. Clearly, $\langle A\rangle \subseteq \operatorname{ker} \alpha$. Let $u \in \operatorname{ker} \alpha$. Then

$$
u=\sum_{i} a_{i} u_{i}+\sum_{j} b_{j} v_{j}
$$

where $u_{i} \in A, v_{j} \in B \backslash A, a_{i}, b_{j}$ are scalars and both summations are over finite index sets I and J. Hence

$$
0=u \alpha=\sum_{j} b_{j} v_{j} \alpha=\sum_{j} b_{j} v_{j} \varphi
$$

Since φ is injective, $v_{j} \varphi \neq v_{j^{\prime}} \varphi$ for all distinct $j, j^{\prime} \in J$. Since $(B \backslash A) \varphi$ is linearly independent, we have $b_{j}=0$ for all $j \in J$. This implies that $u=\sum_{i} a_{i} u_{i} \in\langle A\rangle$. Therefore ker $\alpha=\langle A\rangle$.
(ii) Obviously, $\langle(B \backslash A) \varphi\rangle \subseteq \operatorname{im} \alpha$. Let $v \in \operatorname{im} \alpha$. Then $v=u \alpha$ for some $u \in V$. We write

$$
u=\sum_{i} a_{i} u_{i}+\sum_{j} b_{j} v_{j}
$$

for some $u_{i} \in A, v_{j} \in B \backslash A$ and scalars a_{i}, b_{j} where $i \in I, j \in J$ and I, J are finite index sets. It follows that

$$
v=u \alpha=\sum_{j} b_{j} v_{j} \alpha=\sum_{j} b_{j} v_{j} \varphi \in\langle(B \backslash A) \varphi\rangle .
$$

Hence $\operatorname{im} \alpha=\langle(B \backslash A) \varphi\rangle$, as desired.
The next proposition shows that a basis of a vector space V and a basis of ker α where $\alpha \in L(V)$ can be used to construct a basis of $\operatorname{im} \alpha$.

Proposition 2.2.4. Let $\alpha \in L(V), B_{1}$ be a basis of $\operatorname{ker} \alpha$ and B a basis of V containing B_{1}. Then the following statements hold.
(i) For any $v_{1}, v_{2} \in B \backslash B_{1}, v_{1}=v_{2}$ if and only if $v_{1} \alpha=v_{2} \alpha$.
(ii) $\left(B \backslash B_{1}\right) \alpha$ is a basis of $\operatorname{im} \alpha$.

Proof. (i) Let $v_{1}, v_{2} \in B \backslash B_{1}$. The necessity is clear. Suppose that $v_{1} \alpha=v_{2} \alpha$. Then $v_{1}-v_{2} \in \operatorname{ker} \alpha=\left\langle B_{1}\right\rangle$. Since $v_{1}, v_{2} \in B \backslash B_{1}$, we obtain $v_{1}-v_{2} \in$ $\left\langle B \backslash B_{1}\right\rangle \cap\left\langle B_{1}\right\rangle=\{0\}$. Hence $v_{1}=v_{2}$.
(ii) Assume that

where $v_{i} \in\left(B \backslash B_{1}\right) \alpha, a_{i}$ is a scalar and this summation is over finite index set I.
Then for each $i \in I, v_{i}=u_{i} \alpha$ for some $u_{i} \in B \backslash B_{1}$. Hence

$$
0=\sum_{i} a_{i} v_{i}=\sum_{i} a_{i} u_{i} \alpha=\left(\sum_{i} a_{i} u_{i}\right) \alpha .
$$

Thus $\sum_{i} a_{i} u_{i} \in\left\langle B \backslash B_{1}\right\rangle \cap\left\langle B_{1}\right\rangle=\{0\}$ and so $a_{i}=0$ for all $i \in I$. Therefore $\left(B \backslash B_{1}\right) \alpha$ is linearly independent. By Proposition 2.2.3 (ii), we have im α is spanned by $\left(B \backslash B_{1}\right) \alpha$. Hence $\left(B \backslash B_{1}\right) \alpha$ is a basis of im α.

Proposition 2.2.5. Let B be a basis of V and $A \subseteq B$. Then the following statements hold.
(i) $\{v+\langle A\rangle \mid v \in B \backslash A\}$ is a basis of the quotient space $V /\langle A\rangle$.
(ii) $\operatorname{dim}(V /\langle A\rangle)=|B \backslash A|$.

Proof. (i) Assume that

$$
\sum_{i} a_{i}\left(v_{i}+\langle A\rangle\right)=\langle A\rangle
$$

where $v_{i} \in B \backslash A, a_{i}$ is a scalar, $i \in I$ and I is a finite index set. Then

$$
\sum_{i} a_{i} v_{i}+\langle A\rangle=\langle A\rangle
$$

It follows that $\sum_{i} a_{i} v_{i} \in\langle A\rangle$. If $A=\varnothing$, then $a_{i}=0$ for all $i \in I$. Suppose that $A \neq \varnothing$. Hence we write $\sum_{i} a_{i} v_{i}=\sum_{j} b_{j} u_{j}$ where $u_{j} \in A, b_{j}$ is a scalar, $j \in J$ and J is a finite index set. Since B is linearly independent, we have $a_{i}=0$ for all $i \in I$. Therefore $\{v+\langle A\rangle \mid v \in B\langle A\}$ is linearly independent. Next, let $v+\langle A\rangle \in V /\langle A\rangle$. We write

$$
v=\sum_{i} a_{i} u_{i}+\sum_{j} b_{j} v_{j}
$$

where $u_{i} \in A, v_{j} \in B \backslash A, a_{i}, b_{j}$ are scalars, $i \in I, j \in J$ and I, J are finite index sets. Then

$$
\begin{aligned}
v+\langle A\rangle & =\sum_{i}\left(a_{i} u_{i}+\langle A\rangle\right)+\sum_{j}\left(b_{j} v_{j}+\langle A\rangle\right) \\
& =\langle A\rangle+\sum_{j}\left(b_{j} v_{j}+\langle A\rangle\right) \\
& =\sum_{j} b_{j}\left(v_{j}+\langle A\rangle\right) \in\langle\{v+\langle A\rangle \mid v \in B \backslash A\}\rangle .
\end{aligned}
$$

Therefore $\{v+\langle A\rangle \mid v \in B \backslash A\}$ is a basis of $V /\langle A\rangle$.
(ii) $\operatorname{By}(i), \operatorname{dim}(V /\langle A\rangle)=|\{v+\langle A\rangle \mid v \in B \backslash A\}|=|B \backslash A|$.

Recall that $E(\alpha, \beta)=\{v \in V \mid v \alpha=v \beta\}$. The following are elementary results of linear transformation semigroups.

Proposition 2.2.6. Let $\alpha, \beta \in L(V)$ be such that $V \alpha \beta^{-1}=E(\alpha, \beta)$. Then $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$.

Proof. Let $v \in \operatorname{ker} \beta$. Then $v \beta=0 \in V \alpha$, and thus $v \in V \alpha \beta^{-1}$. Since $V \alpha \beta^{-1}=$ $E(\alpha, \beta)$, we have $v \in E(\alpha, \beta)$. Hence $v \alpha=v \beta=0$. Therefore $v \in \operatorname{ker} \alpha$.

Proposition 2.2.7. Let $\alpha, \beta \in L(V)$ be such that $V \alpha \beta^{-1}=E(\alpha, \beta)$. Then the following are equivalent.
(i) $\alpha=\beta$,
(ii) $\operatorname{im} \beta \subseteq \operatorname{im} \alpha$,
(iii) $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $\operatorname{ker} \alpha \subseteq \operatorname{ker} \beta$.

Proof. It is easy to see that (i) implies (ii) and (iii).
(ii) $\Rightarrow(i)$: Assume that $\operatorname{im} \beta \subseteq \operatorname{im} \alpha$. Let $v \in V$. Then $v \beta \in \operatorname{im} \beta \subseteq \operatorname{im} \alpha$, so $v \beta=u \alpha$ for some $u \in V$. It follows that $v \in V \alpha \beta^{-1}=E(\alpha, \beta)$. Hence $v \alpha=v \beta$, so $\alpha=\beta$.
(iii) $\Rightarrow(i)$: Suppose that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $\operatorname{ker} \alpha \subseteq \operatorname{ker} \beta$. Let $v \in V$. Then $v \alpha \in \operatorname{im} \alpha$. Since $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$, we get $v \alpha=u \beta$ for some $u \in V$. Thus $u \in$ $V \alpha \beta^{-1}=E(\alpha, \beta)$, so $u \alpha=u \beta=v \alpha$. Hence $v=u \in \operatorname{ker} \alpha \subseteq \operatorname{ker} \beta$. Therefore $v \beta=u \beta=v \alpha$, and that $\alpha=\beta$.

Remark 2.2.8. Let $\alpha, \beta \in L(V)$ be distinct and $V \alpha \beta^{-1}=E(\alpha, \beta)$. Then ker $\beta \subsetneq$ ker α and $\operatorname{im} \alpha \neq \operatorname{im} \beta$ by Propositions 2.2.6 and 2.2.7.

For convenience, we write the set $\left\{x_{i} \in V \mid i \in I\right\}$ in short by $\left\{x_{i}\right\}_{i \in I}$ where I is an index set. Next, we give-a result extracted from the proof of Theorem 2.5 in [15].

Proposition 2.2.9. Let $\alpha, \beta \in L(V)$ be such that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=$ $E(\alpha, \beta)$. Then

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I}$ is a basis of $\operatorname{ker} \beta,\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}$ is a basis of $\operatorname{ker} \alpha$, $\left\{u_{k}\right\}_{k \in K}$ is a basis of $\operatorname{im} \alpha,\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ is a basis of $\operatorname{im} \beta$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ is a basis of V.

Proof. Let $\left\{x_{i}\right\}_{i \in I}$ be a basis of ker β. By Proposition 2.2.6, $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$. Then extend $\left\{x_{i}\right\}_{i \in I}$ to a basis $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}$ of ker α. Let $\left\{u_{k}\right\}_{k \in K}$ be a basis of im α. Now we let $k \in K$. Since $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$, we have $u_{k}=z_{k} \beta$ for some $z_{k} \in V$. Thus
$z_{k} \in V \alpha \beta^{-1}=E(\alpha, \beta)$, so $z_{k} \alpha=z_{k} \beta=u_{k}$. Assume that $y_{j} \beta=v_{j}$ for all $j \in J$. Next, we show that $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ is a basis of V. Suppose that

$$
\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}+\sum_{k} c_{k} z_{k}=0
$$

where a_{i}, b_{j}, c_{k} are scalars, $i \in I^{\prime}, j \in J^{\prime}, k \in K^{\prime}$ and $I^{\prime}, J^{\prime}, K^{\prime}$ are finite subsets of I, J, K, respectively. Then

$$
0=0 \alpha=\sum_{k} c_{k} z_{k} \alpha=\sum_{k} c_{k} u_{k},
$$

and hence $c_{k}=0$ for all $k \in K^{\prime}$. Since $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}$ is a basis of ker α, we have $a_{i}=b_{j}=0$ for all $i \in I^{\prime}$ and $j \in J^{\prime}$. Hence $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ is linearly independent. Let $v \in V$. Since $v \alpha \in \operatorname{im} \alpha$ and $\left\{u_{k}\right\}_{k \in K}$ is a basis of $\operatorname{im} \alpha$, we have

$$
v \alpha=\sum_{k} c_{k} u_{k}=\sum_{k} c_{k} z_{k} \alpha
$$

where c_{k} is a scalar, $k \in K^{\prime}$ and K^{\prime} is a finite subset of K. This implies that $v-\sum_{k} c_{k} z_{k} \in \operatorname{ker} \alpha$. Hence we can write

$$
v-\sum_{k} c_{k} z_{k}=\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}
$$

where a_{i}, b_{j} are scalars, $i \in I^{\prime}, j \in J^{\prime}$, and I^{\prime}, J^{\prime} are finite subsets of I, J, respectively. Then $v \in\left\langle\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}\right\rangle$. So, $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ is a basis of V. Note that $\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}=\left(\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}\right) \beta$ is a basis of $\operatorname{im} \beta$ by Proposition 2.2.4 (ii). Therefore, α and β can be written as desired.

The following is a useful tool to verify when the condition $V \alpha \beta^{-1}=E(\alpha, \beta)$ holds, where $\alpha, \beta \in L(V)$.

Lemma 2.2.10. Let $\alpha, \beta \in L(V)$ be such that $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$ and let A_{1}, A_{2}, A_{3} be disjoint linearly independent sets such that $A_{1}, A_{1} \cup A_{2}$ and $A_{1} \cup A_{2} \cup A_{3}$ are bases of $\operatorname{ker} \beta$, $\operatorname{ker} \alpha$ and V, respectively. If $v \alpha=v \beta$ for all $v \in A_{3}$, then $V \alpha \beta^{-1}=E(\alpha, \beta)$.

Proof. Assume that $v \alpha=v \beta$ for all $v \in A_{3}$. Since $E(\alpha, \beta) \subseteq V \alpha \beta^{-1}$, it remains to prove that $V \alpha \beta^{-1} \subseteq E(\alpha, \beta)$. Let $v \in V \alpha \beta^{-1}$. Then $v \beta=v^{\prime} \alpha$ for some $v^{\prime} \in V$. Hence we write

$$
\begin{aligned}
v & =\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}+\sum_{k} c_{k} z_{k}, \\
v^{\prime} & =\sum_{i} a_{i}^{\prime} x_{i}+\sum_{j} b_{j}^{\prime} y_{j}+\sum_{k} c_{k}^{\prime} z_{k}
\end{aligned}
$$

for some $x_{i} \in A_{1}, y_{j} \in A_{2}, z_{k} \in A_{3}$ and some scalars $a_{i}, a_{i}^{\prime}, b_{j}, b_{j}^{\prime}, c_{k}, c_{k}^{\prime}$ where these summations are over finite index sets. Since $A_{1} \subseteq \operatorname{ker} \beta$ and $A_{1} \cup A_{2} \subseteq \operatorname{ker} \alpha$, we obtain

$$
\begin{aligned}
& v \beta=\sum_{j} b_{j} y_{j} \beta+\sum_{k} c_{k} z_{k} \beta \\
& v^{\prime} \alpha=\sum_{k} c_{k}^{\prime} z_{k} \alpha=\sum_{k} c_{k}^{\prime} z_{k} \beta
\end{aligned}
$$

By Proposition 2.2.4 (ii), $\left(A_{2} \cup A_{3}\right) \beta$ is linearly independent. Since $v \beta=v^{\prime} \alpha$, we have $b_{j}=0$ for all $j \in J$. It follows that $v=\sum_{i} a_{i} x_{i}+\sum_{k} c_{k} z_{k}$. Thus $v \alpha=\sum_{k} c_{k} z_{k} \alpha=\sum_{k} c_{k} z_{k} \beta=v \beta$ since $z_{k} \in A_{3}$ for all $k \in K$. Hence $v \in E(\alpha, \beta)$. Therefore, $V \alpha \beta^{-1}=E(\alpha, \beta)$.

The converse of this lemma is not true and the counterexample is provided in Remark 4.2.3. We end this section by an observation on the semigroups $A M(V)$ and $A E(V)$. Y. Kemprasit showed in [6] that if $\operatorname{dim} V$ is finite, then $A M(V)=$ $A E(V)=L(V)$. Now we prove that the converse is also true.

Proposition 2.2.11. $A M(V)=A E(V)=L(V)$ if and only if $\operatorname{dim} V$ is finite.

Proof. We shall prove the sufficiency by contrapositive. Assume that $\operatorname{dim} V$ is infinite. Let B be a basis of V. Then there is a partition $\left\{B_{1}, B_{2}\right\}$ of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let $u \in B_{1}$ and let $\phi: B \backslash\{u\} \rightarrow B_{2}$ be a bijection. Now define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
u & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash\{u\}} \text { and } \beta=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi^{-1}
\end{array}\right)_{v \in B_{2}}
$$

Then nullity $\alpha=1$ and $\operatorname{corank} \alpha=\left|B \backslash B_{2}\right|=\left|B_{1}\right|$ by Propositions 2.2.3 (i) and 2.2.5 (ii), respectively. Thus $\alpha \in A M(V) \backslash A E(V)$. This implies that $A M(V) \neq A E(V)$ and $A E(V) \neq L(V)$. Moreover, by Propositions 2.2.3 (i) and 2.2.5 (ii), nullity $\beta=\left|B_{1}\right|$ and corank $\beta=|B \backslash(B \backslash\{u\})|=1$, respectively. Hence $\beta \in A E(V) \backslash A M(V)$ and so $A M(V) \neq L(V)$.

The necessity is followed from [6].

2.3 A Glance on the Natural Partial Order

In this section, we provide some known results of the natural partial order on a semigroup. Now let S be a semigroup with the natural partial order \leq.

Proposition 2.3.1. [2] (i) If S has the zero element, then it is the minimum element in S.
(ii) For any $s \in S$ and the identity 1 in $S, s \leq 1$ on S if and only if s is an idempotent in S.
(iii) For any subsemigroup T of S and $a, b \in T, a \leq b$ on T implies $a \leq b$ on S.

The following propositions are very important in studying the natural partial order on a semigroup. P. M. Higgins showed in [4] that the natural partial orders on a semigroup and its regular subsemigroup coincide. Hence the study of nonregular semigroups is of interest.

Proposition 2.3.2. [4] Let T be a regular subsemigroup of S and $a, b \in T$. Then $a \leq b$ on T if and only if $a \leq b$ on S.

Proposition 2.3.3. Let T be a regular subsemigroup of S and $x \in T$. If x is left [right] compatible on S, then x is left [right] compatible on T.

Proof. Suppose that x is left [right] compatible on S. Let $a, b \in T$ be such that $a \leq b$ on T. Then $a \leq b$ on S. By assumption, $x a \leq x b[a x \leq b x]$ on S. Since T is a regular subsemigroup of S, by Proposition 2.3.2, $x a \leq x b[a x \leq b x]$ on T. Hence x is left [right] compatible on T.

The converse of this proposition is not true in general as we will show in Example 4.2.1.

Proposition 2.3.4. Let T be a subsemigroup of S and $a, b \in T$. If a is a lower cover of b in S, then a is a lower cover of b in T. In other words, if b is an upper cover of a in S, then b is an upper cover of a in T.

Proof. Assume that a is a lower cover of b in S. Let $c \in T$ be such that $a \leq c \leq b$ on T. Then, by Proposition 2.3.1 (iii), $a \leq c \leq b$ on S. By assumption, $a=c$ or $c=b$.

The converse of this proposition is also not true in general, see Example 4.4.8.
Let V be a vector space. In this thesis, for any subsemigroup $S(V)$ of $L(V)$, we consider $S(V)$ with the natural partial order \leq and then we may write $(S(V), \leq)$ in short by $S(V)$. In [15], R. P. Sullivan gave a characterization of the natural partial order on $L(V)$. The proof of the converse of this theorem will be used, so we recall the proof of the sufficiency and omit the forward implication.

Theorem 2.3.5. [15] Let $\alpha, \beta \in L(V)$. Then $\alpha \leq \beta$ on $L(V)$ if and only if $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$.

Proof. Assume that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. From Proposition 2.2.9, α and β can be written as

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

with $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Then we define $\lambda, \mu \in L(V)$ by

$$
\lambda=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & z_{k}
\end{array}\right)_{k \in K} \text { and } \mu=\left(\begin{array}{cc}
\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L} & u_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K}
$$

where $\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ is a basis of V. For any $i \in I, j \in J, k \in K$,

$$
\begin{array}{r}
0=x_{i} \alpha=x_{i} \lambda \beta=x_{i} \beta \mu=x_{i} \alpha \mu, \\
0=y_{j} \alpha=y_{j} \lambda \beta=y_{j} \beta \mu=y_{j} \alpha \mu, \\
u_{k}=z_{k} \alpha=z_{k} \lambda \beta=z_{k} \beta \mu=z_{k} \alpha \mu .
\end{array}
$$

It follows that $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$. Hence $\alpha \leq \beta$ on $L(V)$.
Let $\alpha, \beta \in L(V)$ be such that $\alpha \leq \beta$ on $L(V)$. Then, by Theorem 2.3.5, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. By Proposition 2.2.9, we can write α and β as

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I}$ is a basis of $\operatorname{ker} \beta,\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}$ is a basis of $\operatorname{ker} \alpha,\left\{u_{k}\right\}_{k \in K}$ is a basis of $\operatorname{im} \alpha$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ is a basis of V. That is, β is different from α by sending $\left\{y_{j}\right\}_{j \in J}$ to $\left\{v_{j}\right\}_{j \in J}$. Hence we illustrate α and β as follows.

Figure 2.4: $\alpha \leq \beta$ on $L(V)$.

Furthermore, R. P. Sullivan [15] described left and right compatible elements in $L(V)$.

Theorem 2.3.6. [15] Let $\operatorname{dim} V \geq 2$ and let $\gamma \in L(V)$ be nonzero. Then the following statements hold.
(i) γ is left compatible on $L(V)$ if and only if γ is an epimorphism.
(ii) γ is right compatible on $L(V)$ if and only if γ is a monomorphism.

Remark 2.3.7. $(i) \leq$ is not compatible on $L(V)$ where $\operatorname{dim} V \geq 2$ since an element in $L(V)$ which is neither injective nor surjective is not compatible on $L(V)$.
(ii) If $\operatorname{dim} V=0$, then $L(V)=\left\{0_{V}\right\}$ and it is clear that 0_{V} is compatible on $L(V)$.
(iii) Suppose that $\operatorname{dim} V=1$. Claim that, for any $\alpha, \beta \in L(V)$, if $\alpha \leq \beta$ on $L(V)$, then either $\alpha=\beta$ or $\alpha=0_{V}$ and $\operatorname{rank} \beta=1$. Let $\alpha, \beta \in L(V)$ be such that $\alpha \leq \beta$ on $L(V)$ and $\operatorname{rank} \alpha=\operatorname{rank} \beta=1$. Then $\operatorname{im} \alpha=\operatorname{im} \beta$. By Theorem 2.3.5 and Proposition 2.2.7, $\alpha=\beta$. Hence the claim is proven. Therefore, \leq is compatible on $L(V)$.

Note that 0_{V} is the minimum element in $L(V)$ by Proposition 2.3.1 (i). Hence minimal nonzero elements in $L(V)$ is of interest by R. P. Sullivan.

Theorem 2.3.8. [15] Let $\alpha \in L(V)$. Then
(i) α is a minimal nonzero element in $L(V)$ if and only if $\operatorname{rank} \alpha=1$.
(ii) α is a maximal element in $L(V)$ if and only if α is a monomorphism or an epimorphism.

Theorems 2.3.5, 2.3.6 and 2.3.8 will be used to compare to our main results in the next chapters. Notice that many proofs in the remaining chapters always refer to Propositions 2.2.1-2.2.4. For convenience, we sometimes omit these details.

CHAPTER III

 THE SEMIGROUPS $A M(V)$ AND $A E(V)$Recall that, for a vector space V,

$$
\begin{aligned}
A M(V) & =\{\alpha \in L(V) \mid \text { nullity } \alpha \text { is finite }\} \\
A E(V) & =\{\alpha \in L(V) \mid \text { corank } \alpha \text { is finite }\} .
\end{aligned}
$$

By Proposition 2.2.11, we know that $A M(V)=A E(V)=L(V)$ if and only if $\operatorname{dim} V$ is finite. Then we study the semigroups $A M(V)$ and $A E(V)$ when $\operatorname{dim} V$ is infinite, which also implies that $A M(V)$ and $A E(V)$ are nonregular semigroups. Since $1_{V} \in A M(V) \cap A E(V)$, we have $A M(V)^{1}=A M(V)$ and $A E(V)^{1}=A E(V)$.

Our main purpose in this chapter is to give necessary and sufficient conditions for elements in the semigroups $A M(V)$ and $A E(V)$ to be comparable under the natural partial order \leq. Then we provide characterizations for elements in $A M(V)$ and $A E(V)$ to be left and right compatible elements, minimal and maximal elements. In addition, lower and upper covers of elements in $L(V), A M(V)$ and $A E(V)$ are also described. Throughout this chapter, unless stated otherwise, let V be an infinite dimensional vector space. Furthermore, let $S(V)$ stand for $A M(V)$ or $A E(V)$.

3.1 The Natural Partial Orders on $A M(V)$ and $A E(V)$

We first provide the necessary and sufficient conditions for elements in $S(V)$ to be related under the natural partial order.

Theorem 3.1.1. Let $\alpha, \beta \in S(V)$. Then $\alpha \leq \beta$ on $S(V)$ if and only if im $\alpha \subseteq$ $\operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$.

Proof. Suppose that $\alpha \leq \beta$ on $S(V)$. Then, by Proposition 2.3.1 (iii), $\alpha \leq \beta$ on $L(V)$ since $S(V)$ is a subsemigroup of $L(V)$. By Theorem 2.3.5, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$
and $V \alpha \beta^{-1}=E(\alpha, \beta)$.
Conversely, assume the conditions hold. It follows from Proposition 2.2.9 that

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Let $\left\{v_{j}\right\}_{j \in J} \cup$ $\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ be a basis of V. Next, define $\lambda, \mu \in L(V)$ by

$$
\lambda=\left(\begin{array}{cc}
\left\{y_{j}\right\}_{j \in J} & v \\
0 & v
\end{array}\right)_{v \in\left\{x_{i}\right\}_{i \in I} \cup\left\{z_{k}\right\}}^{k \in K} \text { and } \mu=\left(\begin{array}{cc}
\left\{v_{j}\right\}_{j \in J} & v \\
0 & v
\end{array}\right)_{v \in\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}} .
$$

For any $i \in I, j \in J, k \in K$,

$$
\begin{array}{r}
0=x_{i} \alpha=x_{i} \lambda \beta=x_{i} \beta \mu=x_{i} \alpha \mu, \\
0=y_{j} \alpha=y_{j} \lambda \beta=y_{j} \beta \mu=y_{j} \alpha \mu, \\
u_{k}=z_{k} \alpha=z_{k} \lambda \beta=z_{k} \beta \mu=z_{k} \alpha \mu .
\end{array}
$$

Therefore, $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$. We claim that $\lambda, \mu \in S(V)$. From the definition of $\beta,\left|\left\{y_{j}\right\}_{j \in J}\right|=\left|\left\{v_{j}\right\}_{j \in J}\right|$ by Proposition 2.2.4 (i). If $S(V)=A M(V)$, then

$$
\text { nullity } \lambda=\left|\left\{y_{j}\right\}_{j \in J}\right| \leq\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}\right|=\text { nullity } \alpha<\infty
$$

and nullity $\mu=\left|\left\{v_{j}\right\}_{j \in J}\right|=\left|\left\{y_{j}\right\}_{j \in J}\right|<\infty$. Thus $\lambda, \mu \in A M(V)$. If $S(V)=$ $A E(V)$, then

$$
\begin{aligned}
\operatorname{corank} \lambda & =\left|\left\{y_{j}\right\}_{j \in J}\right|=\left|\left\{v_{j}\right\}_{j \in J}\right| \\
& \leq\left|\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L}\right| \\
& =\operatorname{corank} \alpha<\infty
\end{aligned}
$$

and corank $\mu=\left|\left\{v_{j}\right\}_{j \in J}\right|<\infty$, so $\lambda, \mu \in A E(V)$. Hence $\alpha \leq \beta$ on $S(V)$.
Next, we show that Theorem 3.1.1 cannot be directly proven by the proof of Theorem 2.3.5 although the conditions of these theorems are the same.

Example 3.1.2. Let B be a basis of V and $u \in B$. Since $|B \backslash\{u\}|=|B|$, there is a partition $\left\{B_{1}, B_{2}\right\}$ of $B \backslash\{u\}$ such that the cardinalities of $B \backslash\{u\}, B_{1}$ and B_{2} are equal. Then there exists a bijection $\phi: B \backslash\{u\} \rightarrow B_{2}$.
(i) Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
u & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash\{u\}} \text { and } \beta=\left(\begin{array}{cc}
u & v \\
u & v \phi
\end{array}\right)_{v \in B \backslash\{u\}} .
$$

Hence, by Proposition 2.2 .3 (i) and β is a monomorphism, nullity $\alpha=1$ and $\alpha, \beta \in A M(V)$. Since $\varnothing,\{u\}$ and $B \backslash\{u\}$ satisfy Lemma 2.2.10, we have $V \alpha \beta^{-1}=E(\alpha, \beta)$. It is clear that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Therefore $\alpha \leq \beta$ on $A M(V)$ by Theorem 3.1.1. According to the proof of Theorem 2.3.5, there exist $\lambda, \mu \in L(V)$ of the forms

$$
\lambda=\left(\begin{array}{ll}
u & v \\
0 & v
\end{array}\right)^{v \in B \backslash\{u\}} \text { and } \mu=\left(\begin{array}{cc}
B_{1} \cup\{u\} & v \\
0 & v
\end{array}\right)_{v \in B_{2}}
$$

such that $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$. By Proposition 2.2.3 (i), we obtain nullity $\mu=\left|B_{1} \cup\{u\}\right|$ is infinite and so $\mu \notin A M(V)$.
(ii) Define $\alpha, \beta \in L(V)$ by

Then β is an epimorphism and corank $\alpha=|B \backslash(B \backslash\{u\})|=1$ by Proposition 2.2.5 (ii). Hence $\alpha, \beta \in A E(V)$. The sets $B_{1},\{u\}$ and B_{2} fulfill Lemma 2.2.10, so $V \alpha \beta^{-1}=E(\alpha, \beta)$. Moreover, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Thus $\alpha \leq \beta$ on $A E(V)$ by Theorem 3.1.1. Therefore, by the proof of Theorem 2.3.5, there exist $\lambda, \mu \in L(V)$ in the forms

$$
\lambda=\left(\begin{array}{cc}
B_{1} \cup\{u\} & v \\
0 & v
\end{array}\right)_{v \in B_{2}} \text { and } \mu=\left(\begin{array}{cc}
u & v \\
0 & v
\end{array}\right)_{v \in B \backslash\{u\}}
$$

such that $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$. However, $\operatorname{corank} \lambda=\left|B \backslash B_{2}\right|$ is infinite, so $\lambda \notin A E(V)$.

By Theorems 2.3.5 and 3.1.1, the natural partial order on $S(V)$ can be derived from the natural partial order on $L(V)$.

Corollary 3.1.3. Let $\alpha, \beta \in S(V)$. Then $\alpha \leq \beta$ on $S(V)$ if and only if $\alpha \leq \beta$ on $L(V)$.

Observe that the natural partial orders on $S(V)$ and $L(V)$ are the same even if $S(V)$ is nonregular.

Theorem 3.1.1 can be used to check easily whether elements in $S(V)$ are related under the natural partial order. In Example 3.1.2, we give $\alpha, \beta \in S(V)$ with $\alpha \leq \beta$ on $S(V)$. The following shows that there are infinitely many elements in $(S(V), \leq)$.

Example 3.1.4. Let B be a basis of V and let B_{1}, B_{2} be disjoint finite subsets of B. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup B_{2} & v \\
0 & v
\end{array}\right)_{v \in B \backslash\left(B_{1} \cup B_{2}\right)} \text { and } \beta=\left(\begin{array}{cc}
B_{1} & v \\
0 & v
\end{array}\right)_{v \in B \backslash B_{1}} .
$$

Then nullity $\alpha=\left|B_{1} \cup B_{2}\right|=\operatorname{corank} \alpha$ and nullity $\beta=\left|B_{1}\right|=\operatorname{corank} \beta$. These cardinal numbers are finite, and hence $\alpha, \bar{\beta} \in A M(V) \cap A E(V)$. Observe that $V \alpha \beta^{-1}=E(\alpha, \beta)$ since the sets B_{1}, B_{2} and $B \times\left(B_{1} \cup B_{2}\right)$ satisfy Lemma 2.2.10. Moreover, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Therefore, by Theorem 3.1.1, we have $\alpha \leq \beta$ on $S(V)$.

The following proposition shows that comparable elements in $A M(V)$ must be both in either $A M(V) \cap A E(V)$ or $A M(V) \backslash A E(V)$.

Proposition 3.1.5. Let $\alpha, \beta \in A M(V)$ be such that $\alpha \leq \beta$ on $A M(V)$. Then $\alpha \in A E(V)$ if and only if $\beta \in A E(V)$.

Proof. For the forward implication, suppose that $\alpha \in A E(V)$. Since $\alpha \leq \beta$ on $A M(V)$, we obtain $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ by Theorem 3.1.1. It follows that corank $\beta \leq$ $\operatorname{corank} \alpha<\infty$, so $\beta \in A E(V)$.

Conversely, assume that $\alpha \notin A E(V)$. Since $\alpha \leq \beta$ on $A M(V)$, by Theorem 3.1.1, im $\alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. From Proposition 2.2.9, we have

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

with $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Let $\left\{v_{j}\right\}_{j \in J} \cup$ $\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ be a basis of V. Since $\alpha \in A M(V)$, we get $\left\{x_{i}\right\}_{i_{\in I}} \cup\left\{y_{j}\right\}_{j \in J}$ is finite. Then $\left\{y_{j}\right\}_{j \in J}$ is a finite set, and so is $\left\{v_{j}\right\}_{j \in J}$. Since $\alpha \notin A E(V)$, we have

$$
\left|\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L}\right|=\left|\left(\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}\right) \backslash\left\{u_{k}\right\}_{k \in K}\right|=\operatorname{corank} \alpha
$$

is infinite. Hence corank $\beta=\left|\left\{w_{l}\right\}_{l \in L}\right|$ is infinite, which implies $\beta \notin A E(V)$.
Similarly, for any $\alpha, \beta \in A E(V)$ such that $\alpha \leq \beta$ on $A E(V)$, we have $\alpha, \beta \in$ $A M(V) \cap A E(V)$ or $\alpha, \beta \in A E(V) \wedge A M(V)$.

Proposition 3.1.6. Let $\alpha, \beta \in A E(V)$ be such that $\alpha \leq \beta$ on $A E(V)$. Then $\alpha \in A M(V)$ if and only if $\beta \in A M(V)$.

Proof. To prove the forward implication, assume that $\alpha \in A M(V)$. By Theorem 3.1.1, $V \alpha \beta^{-1}=E(\alpha, \beta)$. Then $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$ by Proposition 2.2.6. Hence nullity $\beta \leq$ nullity $\alpha<\infty$ and so $\beta \in A M(V)$.

For the converse, suppose that $\alpha \notin A M(V)$. As $\alpha \leq \beta$ on $A E(V)$, by Theorem 3.1.1, im $\alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. By Proposition 2.2.9,

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Let $\left\{v_{j}\right\}_{j \in J} \cup$ $\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ be a basis of V. Since $\alpha \in A E(V) \backslash A M(V)$, we get corank $\alpha=$ $\left|\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L}\right|<\infty$ and nullity $\alpha=\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}\right|$ is infinite. By Proposition 2.2.4 $(i),\left|\left\{y_{j}\right\}_{j \in J}\right|=\left|\left\{v_{j}\right\}_{j \in J}\right|$ which is finite. Since $\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}\right|$ is infinite and $\left|\left\{y_{j}\right\}_{j \in J}\right|$ is finite, nullity $\beta=\left|\left\{x_{i}\right\}_{i \in I}\right|$ is infinite. Therefore, $\beta \notin A M(V)$.

We provide Figures 3.1 and 3.2 to demonstrate the above propositions.
By Propositions 3.1.5 and 3.1.6, elements in $A M(V) \cap A E(V)$ force its related element to be in $A M(V) \cap A E(V)$. Hence the following corollary holds.

Figure 3.1: An example of elements in $(A M(V), \leq)$.

Figure 3.2: An example of elements in $(A E(V), \leq)$.

Corollary 3.1.7. Let $\alpha, \beta \in A M(V) \cap A E(V)$. Then the following are equivalent.
(i) $\alpha \leq \beta$ on $A M(V)$,
(ii) $\alpha \leq \beta$ on $A E(V)$,
(iii) $\alpha \leq \beta$ on $L(V)$.

Proposition 3.1.8. Let $\alpha, \beta \in L(V)$ be such that $\alpha \leq \beta$ on $L(V)$.
(i) If $\alpha \in A M(V)$, then $\beta \in A M(V)$.
(ii) If $\alpha \in A E(V)$, then $\beta \in A E(V)$.

Proof. Since $\alpha \leq \beta$ on $L(V)$, by Theorem 2.3.5, we have $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. From Proposition 2.2.6, we obtain $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$.
(i) If $\alpha \in A M(V)$, then nullity $\beta \leq$ nullity $\alpha<\infty$, so $\beta \in A M(V)$.
(ii) If $\alpha \in A E(V)$, then

$$
\operatorname{corank} \beta=\operatorname{dim}(V / \operatorname{im} \beta) \leq \operatorname{dim}(V / \operatorname{im} \alpha) \leq \operatorname{corank} \alpha<\infty,
$$ so $\beta \in A E(V)$.

The converse of this proposition may not be true as in the below example.

Example 3.1.9. Let $\beta \in S(V)$. Since 0_{V} is the minimum element in $L(V)$ by Proposition 2.3.1 (i), we get $0_{V} \leq \beta$ on $L(V)$. However $0_{V} \notin S(V)$ as nullity $0_{V}=$ corank $0_{V}=\operatorname{dim} V$ is infinite.

Furthermore, we obtain a result, followed from Corollary 3.1.7 and Proposition 3.1.8.

Corollary 3.1.10. Let $\alpha \in A M(V) \cap A E(V)$ and $\beta \in L(V)$. Then the following are equivalent.
(i) $\alpha \leq \beta$ on $A M(V)$,
(ii) $\alpha \leq \beta$ on $A E(V)$,
(iii) $\alpha \leq \beta$ on $L(V)$.

3.2 Left and Right Compatible Elements in $(A M(V), \leq)$ and $(A E(V), \leq)$

Left and right compatibility of elements in $L(V)$ are characterized in [15] as mentioned in Theorem 2.3.6 whenever $\operatorname{dim} V \geq 2$, that is, for a nonzero $\gamma \in$ $L(V), \gamma$ is left [right] compatible on $L(V)$ if and only if γ is an epimorphism [monomorphism]. In this section, we show that characterizations of left and right compatible elements in $S(V)$ and $L(V)$ coincide. Recall that $1_{V} \in S(V)$.

Theorem 3.2.1. Let $\gamma \in S(V)$. Then
(i) γ is left compatible on $S(V)$ if and only if γ is an epimorphism.
(ii) γ is right compatible on $S(V)$ if and only if γ is a monomorphism.

Proof. (i) Suppose that γ is left compatible on $S(V)$. Choose $z \in \operatorname{im} \gamma \backslash\{0\}$. Let B be a basis of V containing z and let $u \in B \backslash\{z\}$. Define $\alpha \in S(V)$ by letting

$$
\alpha=\left(\begin{array}{ll}
z & v \\
u & v
\end{array}\right)_{v \in B \backslash\{z\}} .
$$

Since $z \alpha^{2}=u \alpha=u=z \alpha$ and $v \alpha^{2}=v \alpha$ for all $v \in B \backslash\{z\}$, we get α is an idempotent. Then $\alpha \leq 1_{V}$ on $S(V)$ by Proposition 2.3.1 (ii). Since γ is left compatible
on $S(V)$, we have $\gamma \alpha \leq \gamma$ on $S(V)$. Thus $\operatorname{im} \gamma \alpha \subseteq \operatorname{im} \gamma$ by Theorem 3.1.1. Since $z \in \operatorname{im} \gamma$ and $u=z \alpha$, we obtain $u \in \operatorname{im} \gamma \alpha \subseteq \operatorname{im} \gamma$. As u is an arbitrary element in $B \backslash\{z\}$, we get $B \subseteq \operatorname{im} \gamma$. Therefore γ is an epimorphism.

Conversely, assume that γ is an epimorphism. Then γ is left compatible on $L(V)$ by Theorem 2.3.6 (i). Let $\alpha, \beta \in S(V)$ be such that $\alpha \leq \beta$ on $S(V)$. Then $\alpha \leq \beta$ on $L(V)$, so $\gamma \alpha \leq \gamma \beta$ on $L(V)$. Hence $\gamma \alpha \leq \gamma \beta$ on $S(V)$ by Corollary 3.1.3.
(ii) Assume that γ is right compatible on $S(V)$ and γ is not a monomorphism. Choose $z \in \operatorname{ker} \gamma \backslash\{0\}$. Let B be a basis of V containing z and let $u \in B \backslash\{z\}$. Define $\alpha \in S(V)$ by

$$
\alpha=\left(\begin{array}{ll}
z & v \\
u & v
\end{array}\right)_{v \in B \backslash\{z\}}
$$

Then α is an idempotent. By Proposition 2.3.1 (ii), we have $\alpha \leq 1_{V}$ on $S(V)$. Thus $\alpha \gamma \leq \gamma$ on $S(V)$ by the right compatibility of γ. It follows that $\alpha \gamma=\gamma \mu$ for some $\mu \in S(V)$. Then

$$
u \gamma=z a \gamma=z \gamma \mu=0,
$$

so $u \in \operatorname{ker} \gamma$. Since $u \in \operatorname{ker} \gamma$ for all $u \in B \backslash\{z\}$, we have $B \subseteq \operatorname{ker} \gamma$. Hence $\gamma=0_{V} \notin S(V)$, a contradiction. Therefore, γ is a monomorphism.

For the converse, suppose that γ is a monomorphism. By Theorem 2.3.6 (ii), γ is right compatible on $L(V)$. Let $\alpha, \beta \in S(V)$ be such that $\alpha \leq \beta$ on $S(V)$. Similar to $(i), \alpha \gamma \leq \beta \gamma$ on $S(V)$ by Corollary 3.1.3.

Corollary 3.2.2. Let $\gamma \in S(V)$. Then γ is left [right] compatible on $S(V)$ if and only if γ is left [right] compatible on $L(V)$.

There are infinitely many left and right compatible elements in $S(V)$ as in the following example.

Example 3.2.3. Let B be a basis of V and B_{1} a nonempty finite subset of B. Since $|B|=\left|B \backslash B_{1}\right|$, there exists a bijection $\phi: B \rightarrow B \backslash B_{1}$. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi^{-1}
\end{array}\right)_{v \in B \backslash B_{1}} \text { and } \beta=\binom{v}{v \phi}_{v \in B}
$$

Then α is an epimorphism, β is a monomorphism, nullity $\alpha=\left|B_{1}\right|<\infty$ and

$$
\operatorname{corank} \beta=\left|B \backslash\left(B \backslash B_{1}\right)\right|=\left|B_{1}\right|<\infty .
$$

Hence $\alpha, \beta \in A M(V) \cap A E(V)$. By Theorem 3.2.1, α is left compatible on $S(V)$ and β is right compatible on $S(V)$.

If we have related elements in $S(V)$, we can construct a new one by using left and right compatible elements as follows.

Example 3.2.4. Let B be a basis of V and let $u_{1}, u_{2} \in B$ be distinct. Define $\alpha, \beta \in A M(V) \cap A E(V)$ by

$$
\alpha=\left(\begin{array}{cc}
\left\{u_{1}, u_{2}\right\} & v \\
0 & v
\end{array}\right)_{v \in B \backslash\left\{u_{1}, u_{2}\right\}} \text { and } \beta=\left(\begin{array}{cc}
u_{1} & v \\
0 & v
\end{array}\right)_{v \in B \backslash\left\{u_{1}\right\}} .
$$

Then $\alpha \leq \beta$ on $S(V)$ by Theorem 3.1.1. Since $|B|=\left|B \backslash\left\{u_{1}, u_{2}\right\}\right|$, we let $\phi: B \rightarrow B \backslash\left\{u_{1}, u_{2}\right\}$ be a bijection. Define $\gamma, \delta \in L(V)$ by

$$
\gamma=\left(\begin{array}{cc}
\left\{u_{1}, u_{2}\right\} & v \\
0 & v \phi^{-1}
\end{array}\right)_{v \in B \backslash\left\{u_{1}, u_{2}\right\}} \text { and } \delta=\binom{v}{v \phi}_{v \in B} .
$$

Then $\gamma, \delta \in S(V), \gamma$ is left compatible on $S(V)$ and δ is right compatible on $S(V)$ by Theorem 3.2.1. Hence $\gamma \alpha \leq \gamma \beta$ and $\alpha \delta \leq \beta \delta$ on $S(V)$. Since ϕ^{-1} is surjective, there are $x_{1}, x_{2} \in B \backslash\left\{u_{1}, u_{2}\right\}$ such that $x_{1} \phi^{-1}=u_{1}$ and $x_{2} \phi^{-1}=u_{2}$. Note that

$$
\begin{gathered}
\gamma \alpha=\binom{\left\{u_{1}, u_{2}, x_{1}, x_{2}\right\}}{0 \text { CHUL } v \phi^{-1}}_{v \in B \backslash\left\{u_{1}, u_{2}, x_{1}, x_{2}\right\}} \quad, \gamma \beta=\left(\begin{array}{cc}
\left\{u_{1}, u_{2}, x_{1}\right\} & v \\
0 & v \phi^{-1}
\end{array}\right)_{v \in B \backslash\left\{u_{1}, u_{2}, x_{1}\right\}}, \\
\alpha \delta=\left(\begin{array}{cc}
\left\{u_{1}, u_{2}\right\} & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash\left\{u_{1}, u_{2}\right\}} \text { and } \beta \delta=\left(\begin{array}{cc}
u_{1} & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash\left\{u_{1}\right\}} .
\end{gathered}
$$

It can be observed that $\gamma \alpha \neq \alpha, \alpha \delta \neq \alpha, \gamma \beta \neq \beta, \beta \delta \neq \beta$.

3.3 Minimal and Maximal Elements in $(A M(V), \leq)$ and $(A E(V), \leq)$

In this section, we focus on minimal, minimum, maximal and maximum elements in $S(V)$. The following theorem shows that there are no minimal elements in $S(V)$.

Theorem 3.3.1. $S(V)$ has no minimal element.

Proof. Let $\beta \in S(V)$ and B_{1} a basis of $\operatorname{ker} \beta$. Extend B_{1} to a basis B of V. Note that $B_{1} \neq B$ and $\left(B \backslash B_{1}\right) \beta$ is linearly independent, since $0_{V} \notin S(V)$ and by Proposition 2.2.4 (ii), respectively. Let C be a basis of V containing $\left(B \backslash B_{1}\right) \beta$. Now we let $w \in\left(B \backslash B_{1}\right) \beta$. Then $w=u \beta$ for some $u \in B \backslash B_{1}$. Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup\{u\} & v \\
0 & v \beta
\end{array}\right)_{v \in B \backslash\left(B_{1} \cup\{u\}\right)} .
$$

By using $B_{1},\{u\}$ and $B \backslash\left(B_{1} \cup\{u\}\right)$ in Lemma 2.2.10, we have $V \alpha \beta^{-1}=E(\alpha, \beta)$. If $u \beta \in \operatorname{im} \alpha$, then $u \in V \alpha \beta^{-1}=E(\alpha, \beta)$ and hence $u \beta=u \alpha=0$, which is a contradiction. Thus $u \beta \notin \operatorname{im} \alpha$. This implies $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$, and that $\alpha \neq \beta$. If $S(V)=A M(V)$, then B_{1} is finite and so is $\left|B_{1} \cup\{u\}\right|=$ nullity α. Thus $\alpha \in A M(V)$. If $S(V)=A E(V)$, then

$$
\left|C \times\left(B \backslash B_{1}\right) \beta\right|=\operatorname{corank} \beta<\infty .
$$

Hence

$$
\operatorname{corank} \alpha=\left|C \backslash\left(B \backslash\left(B_{1} \cup\{u\}\right)\right) \beta\right|=\operatorname{corank} \beta+1<\infty
$$

so $\beta \in A E(V)$. Therefore $\alpha<\beta$ on $S(V)$ by Theorem 3.1.1. Hence $(S(V), \leq)$ has no minimal element.

From this theorem, $S(V)$ has no minimum element. Next, we give necessary and sufficient conditions for elements in $S(V)$ to be maximal.

Theorem 3.3.2. Let $\alpha \in S(V)$. Then α is maximal in $S(V)$ if and only if α is a monomorphism or an epimorphism.

Proof. To show the necessity, assume that α is neither a monomorphism nor an epimorphism. Let $w \in V \backslash \operatorname{im} \alpha, u \in V \backslash\{0\}$ and let B_{1} be a basis of $\operatorname{ker} \alpha$ containing u. Extend B_{1} to a basis B of V. Define $\beta \in L(V)$ by

$$
\beta=\left(\begin{array}{ccc}
B_{1} \backslash\{u\} & u & v \\
0 & w & v \alpha
\end{array}\right)_{v \in B \backslash B_{1}} .
$$

Thus $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$ and hence $\alpha \neq \beta$. By using $B_{1} \backslash\{u\},\{u\}$ and $B \backslash B_{1}$ in Lemma 2.2.10, we obtain $V \alpha \beta^{-1}=E(\alpha, \beta)$. If $S(V)=A M(V)$, then

$$
\text { nullity } \beta=\left|B_{1} \backslash\{u\}\right| \leq\left|B_{1}\right|=\text { nullity } \alpha<\infty .
$$

So, $\beta \in A M(V)$. If $S(V)=A E(V)$, then corank $\beta \leq \operatorname{corank} \alpha<\infty$ and hence $\beta \in A E(V)$. By Theorem 3.1.1, $\alpha<\beta$ on $S(V)$. Therefore α is not maximal in $S(V)$.

For the sufficiency, suppose that α is a monomorphism or an epimorphism. By Theorem 2.3.8 $(i i), \alpha$ is maximal in $L(V)$. Hence α is also maximal in $S(V)$.

Remark 3.3.3. Since there are many distinct monomorphisms and epimorphisms in $S(V)$, which are maximal in $S(V)$, we have $(S(V), \leq)$ has no maximum element.

The next corollary is obtained from Proposition 2.3.8 (ii) and Theorems 3.2.1 and 3.3.2.

Corollary 3.3.4. Let $\alpha \in S(V)$. Then the following statements hold.
(i) α is maximal in $S(V)$ if and only if α is maximal in $L(V)$.
(ii) α is maximal in $S(V)$ if and only if α is left compatible or right compatible on $S(V)$.

3.4 Lower and Upper Covers of Elements in $(L(V), \leq)$, $(A M(V), \leq)$ and $(A E(V), \leq)$

Lower and upper covers of elements can be used to illustrate a diagram of partially ordered sets. In this section, we first consider when an element in $L(V)$ has a lower cover and an upper cover and then consider the semigroup $S(V)$. Note that when dealing with the semigroup $L(V)$ we assume V is a general vector space, and when considering on $S(V)$ we suppose that $\operatorname{dim} V$ is infinite. The following proposition shows the necessary and sufficient conditions for α in $L(V)$ to be a lower cover of β in $L(V)$.

Lemma 3.4.1. Let $\alpha, \beta \in L(V)$ such that $\alpha<\beta$ on $L(V)$. Then α is a lower cover of β in $L(V)$ if and only if $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1$. In other words, β is an upper cover of α in $L(V)$ if and only if $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1$.

Proof. Assume that $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1$. Suppose that $\alpha<\gamma \leq \beta$ on $L(V)$ for some $\gamma \in L(V)$. Thus $V \alpha \gamma^{-1}=E(\alpha, \gamma)$ and $V \gamma \beta^{-1}=E(\gamma, \beta)$ by Theorem 2.3.5. It follows that $\operatorname{ker} \beta \subseteq \operatorname{ker} \gamma \subsetneq \operatorname{ker} \alpha$ by Remark 2.2.8. Let B_{1} be a basis of $\operatorname{ker} \beta$. Extend it to a basis B_{2} of $\operatorname{ker} \alpha$. Since $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1$, we have $\left|B_{2} \backslash B_{1}\right|=1$. Let $u \in B_{2} \backslash B_{1}$. Thus $B_{2}=B_{1} \cup\{u\}$. Note that $u \notin \operatorname{ker} \gamma$ since $\operatorname{ker} \gamma \subsetneq \operatorname{ker} \alpha$. Let $w \in \operatorname{ker} \gamma$. Thus $w \in \operatorname{ker} \alpha$. We write $w=\sum_{i} a_{i} x_{i}+b u$ where $x_{i} \in B_{1}, a_{i}, b$ are scalars and i is an element in a finite index set I. Then $0=w \gamma=0+b u \gamma$. Since $u \gamma \neq 0$, we get $b=0$. Hence $w=\sum_{i} a_{i} x_{i} \in \operatorname{ker} \beta$, and that $\operatorname{ker} \gamma=\operatorname{ker} \beta$. As $\gamma \leq \beta$ on $L(V)$, we obtain $\operatorname{im} \gamma \subseteq \operatorname{im} \beta$. Since $\operatorname{ker} \gamma=\operatorname{ker} \beta$, $\operatorname{im} \gamma \subseteq \operatorname{im} \beta$ and $V \gamma \beta^{-1}=E(\gamma, \beta)$, by Proposition 2.2.7, we have $\gamma=\beta$.

For the forward implication, suppose that $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta) \neq 1$. As $\alpha<\beta$ on $L(V)$, from Theorem 2.3.5, im $\alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. By Remark 2.2.8, we obtain that $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)>1$ since $\alpha \neq \beta$. By Proposition 2.2.9, α and β can be written as

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & \text { จงาลง } u_{k}
\end{array}\right)_{k \in K} \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Since $\left|\left\{y_{j}\right\}_{j \in J}\right|=$ $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)>1$, let $j_{0} \in J$. Define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}} & y_{j_{0}} & z_{k} \\
0 & v_{j_{0}} & u_{k}
\end{array}\right)_{k \in K} .
$$

Then $\operatorname{im} \alpha \subsetneq \operatorname{im} \gamma \subsetneq \operatorname{im} \beta$. Moreover, $V \alpha \gamma^{-1}=E(\alpha, \gamma)$ and $V \gamma \beta^{-1}=E(\gamma, \beta)$ hold since the sets $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}},\left\{y_{j_{0}}\right\}$ and $\left\{z_{k}\right\}_{k \in K}$, and the sets $\left\{x_{i}\right\}_{i \in I}$, $\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}}$ and $\left\{y_{j_{0}}\right\} \cup\left\{z_{k}\right\}_{k \in K}$ satisfying Lemma 2.2.10, respectively. Hence $\alpha<\gamma<\beta$ on $L(V)$ by Theorem 2.3.5. Therefore, α is not a lower cover of β in $L(V)$.

Hence we can describe the set of all lower covers of an element in $L(V)$.
Corollary 3.4.2. Let $\beta \in L(V)$. Then

$$
\{\alpha \in L(V) \mid \alpha<\beta \text { on } L(V) \text { and } \operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1\}
$$

is the set of all lower covers of β in $L(V)$.

For any $\alpha, \beta \in L(V)$ such that α is a lower cover of β in $L(V)$, we write α and β as in Proposition 2.2.9 and thus $|J|=1$ since $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1$. Therefore the following corollary is obtained.

Corollary 3.4.3. Let $\alpha, \beta \in L(V)$ be such that $\alpha<\beta$ on $L(V)$. Then α is a lower cover of β in $L(V)$ if and only if $\operatorname{dim}(\operatorname{im} \beta / \operatorname{im} \alpha)=1$.

Now, we characterize when elements in $L(V)$ have a lower cover and an upper cover. Note that 0_{V} is the minimum element in $L(V)$ so it has no lower cover.

Theorem 3.4.4. (i) Every nonzero $\beta \in L(V)$ has a lower cover in $L(V)$.
(ii) For each $\alpha \in L(V)$, α has an upper cover in $L(V)$ if and only if α is not maximal in $L(V)$.

Proof. (i) Let $\beta \in L(V)$ be nonzero and let B_{1} be a basis of ker β. Extend B_{1} to a basis B of V. We let $w \in\left(B \backslash B_{1}\right) \beta$. Then there is $u \in B \backslash B_{1}$ such that $u \beta=w$. Define $\alpha \in L(V)$ as in Theorem 3.3.1 by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup\{u\} & v \\
0 & v \beta
\end{array}\right)_{v \in B \backslash\left(B_{1} \cup\{u\}\right)} .
$$

Thus $\alpha<\beta$ on $L(V)$. By Lemma 3.4.1, α is a lower cover of β in $L(V)$ since $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1$.
(ii) Let $\alpha \in L(V)$. If α is a maximal element in $L(V)$, then there is no $\beta \in L(V)$ such that $\alpha<\beta$, so α has no upper cover in $L(V)$.

Conversely, suppose that α is not maximal in $L(V)$. Then, by Theorem 2.3.8 (ii), α is neither a monomorphism nor an epimorphism. Let $w \in V \backslash \operatorname{im} \alpha$ and
$u \in \operatorname{ker} \alpha \backslash\{0\}$. Let B_{1} be a basis of $\operatorname{ker} \alpha$ containing u. Extend B_{1} to a basis B of V. Define $\beta \in L(V)$ as in Theorem 3.3.2 by

$$
\beta=\left(\begin{array}{ccc}
B_{1} \backslash\{u\} & u & v \\
0 & w & v \alpha
\end{array}\right)_{v \in B \backslash B_{1}} .
$$

Then $\alpha<\beta$ on $L(V)$ and $\operatorname{dim}(\operatorname{ker} \alpha / \operatorname{ker} \beta)=1$. Therefore β is an upper cover of α in $L(V)$ by Lemma 3.4.1.

Next we study lower and upper covers of elements in $S(V)$ when $\operatorname{dim} V$ is infinite. Since $A M(V)=A E(V)=L(V)$ if and only if $\operatorname{dim} V$ is finite, we consider $S(V)$ when $\operatorname{dim} V$ is infinite.

Proposition 3.4.5. Let dim V be infinite and let $\alpha, \beta \in S(V)$. Then α is a lower cover of β in $S(V)$ if and only if α is a lower cover of β in $L(V)$. In other words, β is an upper cover of α in $S(V)$ if and only if β is an upper cover of α in $L(V)$.

Proof. Assume that α is a lower cover of β in $L(V)$. By Proposition 2.3.4, α is a lower cover of β in $S(V)$.

To show the forward implication, suppose that α is not a lower cover of β in $L(V)$. Then $\alpha<\gamma<\beta$ on $L(V)$ for some $\gamma \in L(V)$. Since $\alpha<\gamma$ on $L(V)$, by Proposition 3.1.8, $\gamma \in S(V)$. Hence $\alpha<\gamma<\beta$ on $S(V)$ by Corollary 3.1.3. Therefore, α is not a lower cover of β in $S(V)$.

We next determine when an element in $S(V)$ has a lower cover and an upper cover where $\operatorname{dim} V$ is infinite. Recall that $0_{V} \notin S(V)$.

Theorem 3.4.6. (i) Every $\beta \in S(V)$ has a lower cover in $S(V)$.
(ii) For each $\alpha \in S(V)$, α has an upper cover in $S(V)$ if and only if α is not a maximal element in $S(V)$.

Proof. (i) Let $\beta \in S(V)$. Since β is nonzero, by Theorem 3.4.4, β has a lower cover in $L(V)$, say α. It follows from Proposition 3.1.8 that $\alpha \in S(V)$. Hence α is a lower cover of β in $S(V)$ by Proposition 3.4.5.
(ii) Let $\alpha \in S(V)$. Suppose that β is an upper cover of α in $S(V)$. Then β is
also an upper cover of α in $L(V)$ by Proposition 3.4.5. This implies that α is not a maximal element in $L(V)$. Hence, by Theorem 2.3.8 (ii), α is neither a monomorphism nor an epimorphism. Therefore, α is not a maximal element in $S(V)$ by Theorem 3.3.2.

The converse can be proven in a reverse way.

Remark 3.4.7. Let $\beta \in S(V)$ and let B be a basis of V containing a basis B_{1} of ker β. Then $C_{1}=\left(B \backslash B_{1}\right) \beta$ is a basis of $\operatorname{im} \beta$ by Proposition 2.2.4 (ii). Extend C_{1} to a basis C of V. If $S(V)=A M(V)$, then $B \backslash B_{1}$ is infinite since B_{1} is finite. If $S(V)=A E(V)$, then $\left|C \backslash C_{1}\right|=\operatorname{corank} \beta$ is finite, and that $\left(B \backslash B_{1}\right) \beta=C_{1}$ is infinite and so is $B \backslash B_{1}$. For each $u \in B \backslash B_{1}$, define $\alpha_{u} \in S(V)$ by

$$
\alpha_{u}=\left(\begin{array}{cc}
B_{1} \cup\{u\} & v \\
0 & v \beta
\end{array}\right)_{v \in B \backslash\left(B_{1} \cup\{u\}\right)} .
$$

Then α_{u} is a lower cover of β in $S(V)$ for all $u \in B \backslash B_{1}$ as $\operatorname{dim}\left(\operatorname{ker} \alpha_{u} / \operatorname{ker} \beta\right)=1$ and by Proposition 3.4.5. Since $B<B_{1}$ is infinite, β has infinitely many lower covers in $S(V)$.

To end this chapter, we provide a figure of some related elements in $A M(V)$ and $A E(V)$.

Figure 3.3: An example of comparable elements in $A M(V)$ and $A E(V)$.

CHAPTER IV

THE SEMIGROUPS $K(V, \kappa)$ AND $C I(V, \kappa)$

Unless stated otherwise, we suppose throughout this chapter that V is a vector space. Let us recall definitions of linear transformation semigroups given in Chapter II as follows. For a cardinal number κ with $\kappa \leq \operatorname{dim} V$,

$$
\begin{gathered}
K(V, \kappa)=\{\alpha \in L(V) \mid \text { nullity } \alpha \geq \kappa\}, \\
C I(V, \kappa)=\{\alpha \in L(V) \mid \text { corank } \alpha \geq \kappa\} .
\end{gathered}
$$

In particular, $O M(V)=K\left(V, \aleph_{0}\right)$ and $O E(V)=C I\left(V, \aleph_{0}\right)$ when $\operatorname{dim} V$ is infinite. It can be observed that 0_{V} is contained in $K(V, \kappa) \cap C I(V, \kappa)$. Since $K(V, 0)=$ $C I(V, 0)=L(V)$, we suppose throughout that $0<\kappa \leq \operatorname{dim} V$. Then $K(V, \kappa)$ and $C I(V, \kappa)$ do not contain any monomorphisms and epimorphisms, respectively. For convenience, let $S(V, \kappa)$ be $K(V, \kappa)$ or $C I(V, \kappa)$.

The main purpose of this chapter is to provide characterizations of the natural partial order on the semigroups $O M(V), O E(V), K(V, \kappa)$ and $C I(V, \kappa)$. Furthermore, left and right compatible elements, minimal and maximal elements, lower and upper covers of elements in these partially ordered sets are investigated.

4.1 The Natural Partial Orders on $K(V, \kappa)$ and $C I(V, \kappa)$

From Proposition 2.3.2, the regularity of a semigroup is important in studying the natural partial order on a semigroup. We first determine the regularity of the semigroups $K(V, \kappa)$ and $C I(V, \kappa)$. We recall that if $\operatorname{dim} V$ is finite, then $K(V, \kappa)=C I(V, \kappa)$.

Theorem 4.1.1. $S(V, \kappa)$ is regular if and only if $\operatorname{dim} V$ is finite.
Proof. For the necessity, suppose that $\operatorname{dim} V$ is infinite. Let B be a basis of V. Then there is a partition $\left\{B_{1}, B_{2}\right\}$ of B such that the cardinality of B_{1}, B_{2} and
B are equal. There is a bijection $\phi: B_{2} \rightarrow B$. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi
\end{array}\right)_{v \in B_{2}} \text { and } \beta=\binom{v}{v \phi^{-1}}_{v \in B} .
$$

Thus $\alpha \in K(V, \kappa)$ and $\beta \in C I(V, \kappa)$ since nullity $\alpha=\left|B_{1}\right|=|B| \geq \kappa$ and corank $\beta=\left|B \backslash B_{2}\right|=\left|B_{1}\right|=|B| \geq \kappa$. Let $\gamma \in L(V)$ be such that $\alpha=\alpha \gamma \alpha$. Since α is an epimorphism, we have $\gamma \alpha=1_{V}$. This implies that γ is a monomorphism. Therefore $\gamma \notin K(V, \kappa)$, so $K(V, \kappa)$ is not regular. Next, let $\lambda \in L(V)$ be such that $\beta=\beta \lambda \beta$. Since β is a monomorphism, we have $\beta \lambda=1_{V}$. Then λ is an epimorphism and so $\lambda \notin C I(V, \kappa)$. Therefore, $C I(V, \kappa)$ is not regular.

For the sufficiency, assume that $\operatorname{dim} V$ is finite. Then $K(V, \kappa)=C I(V, \kappa)$. Let $\alpha \in K(V, \kappa)$ and B_{1} a basis of $\operatorname{ker} \alpha$. Extend B_{1} to a basis B of V. Then $C_{1}=\left(B \backslash B_{1}\right) \alpha$ is a basis of im α by Proposition 2.2 .4 (ii). Extend C_{1} to a basis C of V. Note that $\left.\alpha\right|_{B \backslash B_{1}}: B \vee B_{1} \rightarrow C_{1}$ is bijective by Proposition 2.2.4 (i). Now define $\gamma \in L(V)$ by

It follows that

$$
\begin{aligned}
\left|C \backslash C_{1}\right| & =\text { nullity } \gamma=\operatorname{dim} V-\operatorname{rank} \gamma \\
& =|B|-\left|B \backslash B_{1}\right|=\left|B_{1}\right|=\text { nullity } \alpha \geq \kappa,
\end{aligned}
$$

so $\gamma \in K(V, \kappa)$. Observe that for any $v \in B_{1}, v \alpha=0=v \alpha \gamma \alpha$. For any $v \in B \backslash B_{1}$, $v \alpha \gamma \alpha=\left(v \alpha \alpha^{-1}\right) \alpha=v \alpha$. Hence $\alpha=\alpha \gamma \alpha$. Therefore $S(V, \kappa)$ is regular.

By Proposition 2.3.2, we focus on studying the natural partial order on nonregular semigroups. Then, from the above proposition, we will consider the semigroups $K(V, \kappa)$ and $C I(V, \kappa)$ when V is an infinite dimensional vector space and $\kappa>0$.

Remark 4.1.2. Note that 1_{V} is not contained in both $K(V, \kappa)$ and $C I(V, \kappa)$ since $\kappa>0$. Suppose that γ is the identity in $K(V, \kappa)$. Consider α in the proof
of Theorem 4.1.1. Since α is an epimorphism and $\alpha=\alpha \gamma$, we have $\gamma=1_{V}$, a contradiction. Similarly, if γ is the identity in $C I(V, \kappa)$, then we use β in the proof of the above theorem and that $\gamma \beta=\beta$ implies $\gamma=1_{V}$, which is a contradiction. Hence, both $K(V, \kappa)$ and $C I(V, \kappa)$ have no identity. Therefore $K(V, \kappa)^{1} \neq K(V, \kappa)$ and $C I(V, \kappa)^{1} \neq C I(V, \kappa)$.

The following example shows that there are $\alpha, \beta \in K(V, \kappa)$ such that $\alpha \leq \beta$ on $L(V)$ but $\alpha \not \leq \beta$ on $K(V, \kappa)$. Therefore, the natural partial order on $K(V, \kappa)$ cannot be derived from the natural partial order on $L(V)$.

Example 4.1.3. Let $\operatorname{dim} V$ be infinite and κ a cardinal number such that $\kappa>1$ and let B be a basis of V. Then there is a partition $\left\{B_{1}, B_{2}\right\}$ of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let $u \in B_{2}$. There exists a bijection $\phi: B_{2} \backslash\{u\} \rightarrow B \backslash\{u\}$. Define distinct $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup\{u\} & v \\
0 & v \phi
\end{array}\right)_{v \in B_{2} \backslash\{u\}} \text { and } \beta=\left(\begin{array}{ccc}
B_{1} & u & v \\
0 & u & v \phi
\end{array}\right)_{v \in B_{2} \backslash\{u\}}
$$

Since nullity $\alpha=\left|B_{1} \cup\{u\}\right|=|B| \geq \kappa$ and nullity $\beta=\left|B_{1}\right|=|B| \geq \kappa$, we have $\alpha, \beta \in K(V, \kappa)$. Moreover, $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$. The sets $B_{1},\{u\}$ and $B_{2} \backslash\{u\}$ satisfy the conditions in Lemma 2.2.10, so $V \alpha \beta^{-1}=E(\alpha, \beta)$. Hence $\alpha \leq \beta$ on $L(V)$ by Theorem 2.3.5. Claim that $\alpha \not \leq \beta$ on $K(V, \kappa)$. Let $\mu \in L(V)$ be such that $\alpha=\beta \mu$. We shall show that $\mu \notin K(V, \kappa)^{1}$. Note that $\mu \neq 1$ since $\alpha \neq \beta$. Then $0=u \alpha=u \beta \mu=u \mu$. For each $v \in B_{2} \backslash\{u\}, v \phi=v \alpha=v \beta \mu=(v \phi) \mu$. Since $\left(B_{2} \backslash\{u\}\right) \phi=B \backslash\{u\}$, we have

$$
\mu=\left(\begin{array}{ll}
u & v \\
0 & v
\end{array}\right)_{v \in B \backslash\{u\}} .
$$

It follows that nullity $\mu=1<\kappa$, so $\mu \notin K(V, \kappa)^{1}$. Therefore, $\alpha \not \leq \beta$ on $K(V, \kappa)$ but $\alpha \leq \beta$ on $L(V)$. Note that if $\kappa=1$, it can be shown that $\alpha \leq \beta$ on $K(V, \kappa)$ but the prove is routine so we omit it.

Theorem 4.1.4. Let $\operatorname{dim} V$ be infinite and $\alpha, \beta \in K(V, \kappa)$. Then $\alpha \leq \beta$ on $K(V, \kappa)$ if and only if
(i) $\alpha=\beta$ or
(ii) $\operatorname{im} \alpha \subseteq \operatorname{im} \beta, V \alpha \beta^{-1}=E(\alpha, \beta)$ and $\alpha \in C I(V, \kappa)$.

Proof. Assume that $\alpha<\beta$ on $K(V, \kappa)$. Then $\alpha<\beta$ on $L(V)$, so $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by Theorem 2.3.5. Next, we shall prove that $\alpha \in C I(V, \kappa)$. Since $\alpha<\beta$ on $K(V, \kappa)$, we obtain $\alpha=\alpha \mu$ for some $\mu \in K(V, \kappa)$. Let B_{1} be a basis of $\operatorname{im} \alpha$ and B_{2} a basis of ker μ. To see that $B_{1} \cap B_{2}=\varnothing$, let $v \in B_{1} \cap B_{2}$. Then $v \mu=0$ and $v=u \alpha$ for some $u \in V$. Thus $v=u \alpha=u \alpha \mu=v \mu=0$, a contradiction. Hence $B_{1} \cap B_{2}=\varnothing$. Now we claim that $B_{1} \cup B_{2}$ is linearly independent. Assume that

$$
\sum_{i} a_{i} v_{i}+\sum_{j} b_{j} w_{j}=0
$$

for some $v_{i} \in B_{1}, w_{j} \in B_{2}$ and scalars a_{i}, b_{j} where both summations are over finite index sets I and J. Note that for each $i \in I, v_{i}=u_{i} \alpha$ for some $u_{i} \in V$. Hence

$$
\begin{aligned}
& 0=\sum_{i} a_{i} v_{i}+\sum_{j} b_{j} w_{j}=\sum_{i} a_{i} u_{i} \alpha+\sum_{j} b_{j} w_{j}, \text { so } \\
& 0=\left(\sum_{i} a_{i} u_{i} \alpha+\sum_{j} b_{j} w_{j}\right) \mu=\sum_{i} a_{i} u_{i} \alpha \mu=\sum_{i} a_{i} u_{i} \alpha=\sum_{i} a_{i} v_{i} .
\end{aligned}
$$

Thus $a_{i}=0$ for all $i \in I$, and that $b_{j}=0$ for all $j \in J$. Hence the claim is proven. Extend $B_{1} \cup B_{2}$ to a basis B of V. Since $\mu \in K(V, \kappa)$ and $B_{1} \cap B_{2}=\varnothing$, we get

$$
\operatorname{corank} \alpha=\left|B \backslash B_{1}\right| \geq\left|B_{2}\right| \geq \kappa
$$

Therefore, $\alpha \in C I(V, \kappa)$.
For the sufficiency, suppose that the condition (ii) holds. By Proposition 2.2.9, we write

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ is a basis of $V,\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}$ and $\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta$, $\operatorname{ker} \alpha, \operatorname{im} \alpha$ and $\operatorname{im} \beta$, respectively. Let $\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ be a basis of V. Define $\lambda, \mu \in L(V)$ by

$$
\lambda=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & z_{k}
\end{array}\right)_{k \in K} \text { and } \mu=\left(\begin{array}{cc}
\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L} & u_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} .
$$

Then $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$. Observe that

$$
\text { nullity } \lambda=\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}\right|=\text { nullity } \alpha \geq \kappa \text {. }
$$

Since $\alpha \in C I(V, \kappa)$, we get

$$
\text { nullity } \mu=\left|\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L}\right|=\operatorname{corank} \alpha \geq \kappa \text {. }
$$

Thus $\lambda, \mu \in K(V, \kappa)$. Hence $\alpha \leq \beta$ on $K(V, \kappa)$.
The below example shows that there are infinitely many related element in $K(V, \kappa)$.
Example 4.1.5. Let $\operatorname{dim} V$ be infinite and B a basis of V. Then there exists a partition $\left\{B_{1}, B_{2}, B_{3}\right\}$ of B such that the cardinalities of B, B_{1}, B_{2} and B_{3} are equal. We let $\phi: B_{2} \rightarrow B_{1} \cup B_{2}$ be a bijection. Now define α and β in $L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup B_{2} & v \\
0 & v
\end{array}\right) \quad \text { and } \beta=\left(\begin{array}{ccc}
B_{1} & w & v \\
0 & w \phi & v
\end{array}\right)_{w \in B_{3}, v \in B_{3}} .
$$

Obviously, nullity $\alpha=\left|B_{1} \cup B_{2}\right|=|B| \geq \kappa$, nullity $\beta=\left|B_{1}\right|=|B| \geq \kappa$, corank $\alpha=$ $\left|B \backslash B_{3}\right|=|B| \geq \kappa$ and $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$. Then $\beta \in K(V, \kappa)$ and $\alpha \in K(V, \kappa) \cap$ $C I(V, \kappa)$. Now we have B_{1}, B_{2} and B_{3} satisfying Lemma 2.2.10 and then $V \alpha \beta^{-1}=$ $E(\alpha, \beta)$. Therefore, by Theorem 4.1.4, $\alpha<\beta$ on $K(V, \kappa)$.

By taking $\kappa=\aleph_{0}$ in Theorem 4.1.4, we have
Corollary 4.1.6. Let $\alpha, \beta \in O M(V)$. Then $\alpha \leq \beta$ on $O M(V)$ if and only if
(i) $\alpha=\beta$ or
(ii) $\operatorname{im} \alpha \subseteq \operatorname{im} \beta, V \alpha \beta^{-1}=E(\alpha, \beta)$ and $\alpha \in O E(V)$.

Similar to $K(V, \kappa)$, there are $\alpha, \beta \in C I(V, \kappa)$ such that $\alpha \leq \beta$ on $L(V)$ but $\alpha \not \leq \beta$ on $C I(V, \kappa)$, as shown in the example below.

Example 4.1.7. Let $\operatorname{dim} V$ be infinite, κ a cardinal number with $\kappa>1$ and B a basis of V. Then there is a partition $\left\{B_{1}, B_{2}\right\}$ of B where B, B_{1} and B_{2} have the same cardinality. Let $u \in B_{1}$. There is a bijection $\phi: B \backslash\{u\} \rightarrow B_{2}$. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
u & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash\{u\}} \text { and } \beta=\left(\begin{array}{cc}
u & v \\
u & v \phi
\end{array}\right)_{v \in B \backslash\{u\}} .
$$

Then $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$ and $\alpha \neq \beta$. Note that

$$
\begin{aligned}
& \operatorname{corank} \alpha=\left|B \backslash B_{2}\right|=\left|B_{1}\right|=|B| \geq \kappa, \\
& \operatorname{corank} \beta=\left|B \backslash\left(B_{2} \cup\{u\}\right)\right|=\left|B_{1} \backslash\{u\}\right|=|B| \geq \kappa .
\end{aligned}
$$

Thus $\alpha, \beta \in C I(V, \kappa)$. Moreover, $V \alpha \beta^{-1}=E(\alpha, \beta)$ since $\varnothing,\{u\}$ and $B \backslash\{u\}$ satisfy Lemma 2.2 .10 . Hence, $\alpha<\beta$ on $L(V)$ by Theorem 2.3.5. Let $\lambda \in L(V)$ be such that $\alpha=\lambda \beta$ and let $v \in B \backslash\{u\}$. Claim that $\lambda \notin C I(V, \kappa)^{1}$. Since $\alpha \neq \beta$, we have $\lambda \neq 1$. Consider $v \beta=v \phi=v \alpha=v \lambda \beta$. Since β is a monomorphism, $v \lambda=v$. Hence $B \backslash\{u\} \subseteq \operatorname{im} \lambda$, so corank $\lambda \leq 1<\kappa$. Thus $\lambda \notin C I(V, \kappa)^{1}$. Therefore $\alpha \not \leq \beta$ on $C I(V, \kappa)$. If $\kappa=1$, it can be seen that $\alpha \leq \beta$ on $C I(V, \kappa)$ and we omit the proof.

Hence $C I(V, \kappa)$ does not inherit the natural partial order from $L(V)$.
Theorem 4.1.8. Let $\operatorname{dim} V$ be infinite and let $\alpha, \beta \in C I(V, \kappa)$. Then $\alpha \leq \beta$ on $C I(V, \kappa)$ if and only if
(i) $\alpha=\beta$ or
(ii) $\operatorname{im} \alpha \subseteq \operatorname{im} \beta, V \alpha \beta^{-1}=E(\alpha, \beta)$ and $\alpha \in K(V, \kappa)$.

Proof. Suppose that $\alpha<\beta$ on $C I(V, \kappa)$. Then $\alpha<\beta$ on $L(V)$. By Theorem 2.3.5, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. It remains to prove that $\alpha \in K(V, \kappa)$. As $\alpha<\beta$ on $C I(V, \kappa)$, we obtain $\alpha=\lambda \beta$ for some $\lambda \in C I(V, \kappa)$. By Proposition 2.2.9, we have

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Claim that for each $k \in K, z_{k}+w_{k} \in \operatorname{im} \lambda$ for some $w_{k} \in \operatorname{ker} \beta$. Let $k_{0} \in K$. We write

$$
z_{k_{0}} \lambda=\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}+\sum_{k} c_{k} z_{k}
$$

where a_{i}, b_{j} and c_{k} are scalars, $i \in I^{\prime}, j \in J^{\prime}, k \in K^{\prime}$ and $I^{\prime}, J^{\prime}, K^{\prime}$ are finite subsets of I, J, K, respectively. Then

$$
u_{k_{0}}=z_{k_{0}} \alpha=z_{k_{0}} \lambda \beta=\sum_{j} b_{j} v_{j}+\sum_{k} c_{k} u_{k} .
$$

Since $\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ is a basis of $\operatorname{im} \beta$, we have $b_{j}=0, c_{k}=0$ and $c_{k_{0}}=1$ for all $j \in J^{\prime}$ and $k \in K^{\prime} \backslash\left\{k_{0}\right\}$. It follows that $z_{k_{0}}+\sum_{i} a_{i} x_{i}=z_{k_{0}} \lambda \in \operatorname{im} \lambda$ and $\sum_{i} a_{i} x_{i} \in \operatorname{ker} \beta$. By choosing $w_{k_{0}}=\sum_{i} a_{i} x_{i}$, the claim is proven. Next, we show that $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}+w_{k}\right\}_{k \in K}$ is a basis of V. Since $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ spans V and $w_{k} \in \operatorname{ker} \beta=\left\langle\left\{x_{i}\right\}_{i \in I}\right\rangle$ for all $k \in K$, we obtain that $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}+w_{k}\right\}_{k \in K}$ also spans V. Now assume that

$$
\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}+\sum_{k} c_{k}\left(z_{k}+w_{k}\right)=0
$$

for some scalars a_{i}, b_{j} and c_{k} where $i \in I^{\prime}, j \in J^{\prime}, k \in K^{\prime}$ and $I^{\prime}, J^{\prime}, K^{\prime}$ are finite subsets of I, J, K, respectively. Then

$$
\sum_{i} a_{i} x_{i}+\sum_{j} b_{j} y_{j}+\sum_{k} c_{k} z_{k}+\sum_{k} c_{k} w_{k}=0
$$

Since $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}\right\}_{k \in K}$ is a basis of V and $w_{k} \in \operatorname{ker} \beta=\left\langle\left\{x_{i}\right\}_{i \in I}\right\rangle$ for all $k \in K^{\prime}$, we get $b_{j}=0=c_{k}$ for all $j \in J^{\prime}, k \in K^{\prime}$, and hence $a_{i}=0$ for all $i \in I^{\prime}$. This implies $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup\left\{z_{k}+w_{k}\right\}_{k \in K}$ is a basis of V. Since $\lambda \in C I(V, \kappa)$ and $\left\{z_{k}+w_{k}\right\}_{k \in K} \subseteq \operatorname{im} \lambda$, we have

$$
\text { nullity } \alpha=\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}\right| \geq \operatorname{corank} \lambda \geq \kappa \text {. }
$$

Therefore $\alpha \in K(V, \kappa)$, as desired.
For the converse, suppose that the condition (ii) holds. By Proposition 2.2.9, we get

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Let $\left\{v_{j}\right\}_{j \in J} \cup$ $\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ be a basis of V. Define $\lambda, \mu \in L(V)$ as in the proof of Theorem 2.3.5 by

$$
\lambda=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & z_{k}
\end{array}\right)_{k \in K} \text { and } \mu=\left(\begin{array}{cc}
\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L} & u_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} .
$$

Then $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$. This implies that corank $\lambda=\mid\left\{x_{i}\right\}_{i \in I} \cup$ $\left\{y_{j}\right\}_{j \in J} \mid=$ nullity $\alpha \geq \kappa$ since $\alpha \in K(V, \kappa)$. As $\operatorname{im} \mu \subseteq \operatorname{im} \beta$ and $\beta \in C I(V, \kappa)$, we get corank $\mu \geq \operatorname{corank} \beta \geq \kappa$. Thus $\lambda, \mu \in C I(V, \kappa)$. Therefore, $\alpha \leq \beta$ on $C I(V, \kappa)$.

Below is a result observed from Theorems 4.1.4 and 4.1.8.

Corollary 4.1.9. Let $\operatorname{dim} V$ be infinite. The following statements hold.
(i) There are no $\alpha \in K(V, \kappa) \backslash C I(V, \kappa)$ and $\beta \in K(V, \kappa)$ such that $\alpha<\beta$ on $K(V, \kappa)$.
(ii) There are no $\alpha \in C I(V, \kappa)<K(V, \kappa)$ and $\beta \in C I(V, \kappa)$ such that $\alpha<\beta$ on $C I(V, \kappa)$.

The previous theorem is useful to examine related elements in $C I(V, \kappa)$. By considering α and β in Example 4.1.7, we have nullity $\alpha=1<\kappa$, so $\alpha \notin C I(V, \kappa)$. Hence $\alpha \not \leq \beta$ on $C I(V, \kappa)$ by Theorem 4.1.8.

Example 4.1.10. Let $\operatorname{dim} V$ be infinite and let $B=B_{1} \cup B_{2} \cup B_{3}$ be a basis of V such that the cardinality of B, B_{1}, B_{2} and B_{3} are the same and B_{1}, B_{2}, B_{3} are disjoint. Let $\varphi: B_{1} \rightarrow B_{2}$ and $\phi: B_{2} \cup B_{3} \rightarrow B_{3}$ be bijections. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi
\end{array}\right)_{\substack{ \\
B_{2} \cup B_{3}}} \text { and } \beta=\left(\begin{array}{c}
w \text { wัย } v \\
w \varphi \\
w \phi
\end{array}\right)_{w \in B_{1}, v \in B_{2} \cup B_{3}} .
$$

Since corank $\alpha=\left|B_{1} \cup B_{2}\right|=$ nullity α and $\operatorname{corank} \beta=\left|B_{1}\right|$, we have $\alpha, \beta \in$ $C I(V, \kappa)$ and $\alpha \in K(V, \kappa)$. Observe that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Then $V \alpha \beta^{-1}=E(\alpha, \beta)$ since the sets \varnothing, B_{1} and $B_{2} \cup B_{3}$ satisfy the conditions in Lemma 2.2.10. Therefore, by Theorem 4.1.8, $\alpha \leq \beta$ on $C I(V, \kappa)$.

The next corollary is a consequence of Theorem 4.1 .8 by letting $\kappa=\aleph_{0}$.

Corollary 4.1.11. Let $\alpha, \beta \in O E(V)$. Then $\alpha \leq \beta$ on $O E(V)$ if and only if
(i) $\alpha=\beta$ or
(ii) $\operatorname{im} \alpha \subseteq \operatorname{im} \beta, V \alpha \beta^{-1}=E(\alpha, \beta)$ and $\alpha \in O M(V)$.

Next, this corollary follows from Theorems 2.3.5, 4.1.4 and 4.1.8.

Corollary 4.1.12. Let $\operatorname{dim} V$ be infinite. The following statemenets hold.
(i) For any $\alpha, \beta \in K(V, \kappa), \alpha<\beta$ on $K(V, \kappa)$ if and only if $\alpha<\beta$ on $L(V)$ and $\alpha \in C I(V, \kappa)$.
(ii) For any $\alpha, \beta \in C I(V, \kappa), \alpha<\beta$ on $C I(V, \kappa)$ if and only if $\alpha<\beta$ on $L(V)$ and $\alpha \in K(V, \kappa)$.

The following figures are obtained from Theorems 4.1.4 and 4.1.8. Recall that we draw a dotted line from α upward to β to represent $\alpha \leq \beta$ and 0_{V} is the minimum element in $K(V, \kappa)$ and $C I(V, \kappa)$ by Proposition 2.3.1 (i).

Figure 4.1: An example of related elements in $K(V, \kappa)$ and $C I(V, \kappa)$.

If $\alpha \leq \beta$ on $L(V)$ and $\beta \in K(V, \kappa)[C I(V, \kappa)]$, we can conclude that $\alpha \in$ $K(V, \kappa)[C I(V, \kappa)]$; see the following proposition.

Proposition 4.1.13. Let $\alpha, \beta \in L(V)$ be such that $\alpha \leq \beta$ on $L(V)$.
(i) If $\beta \in K(V, \kappa)$, then $\alpha \in K(V, \kappa)$.
(ii) If $\beta \in C I(V, \kappa)$, then $\alpha \in C I(V, \kappa)$.

Proof. The condition $\alpha \leq \beta$ on $L(V)$ implies that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=$ $E(\alpha, \beta)$ by Theorem 2.3.5. Then $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$ by Proposition 2.2.6.
(i) Assume that $\beta \in K(V, \kappa)$. Since nullity $\alpha \geq$ nullity $\beta \geq \kappa$, we have $\alpha \in$ $K(V, \kappa)$.
(ii) Suppose that $\beta \in C I(V, \kappa)$. Since corank $\alpha \geq \operatorname{corank} \beta \geq \kappa$, we get $\alpha \in$ $C I(V, \kappa)$.

Remark 4.1.14. Let $\alpha \in L(V)$ and $\beta \in K(V, \kappa) \cap C I(V, \kappa)$ be such that $\alpha \leq \beta$ on $L(V)$. Then $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$ by Proposition 4.1.13.

4.2 Left and Right Compatible Elements in ($K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$

This section is dedicated to the study of left and right compatible elements in $K(V, \kappa)$ and $C I(V, \kappa)$. Theorem 2.3.6 states that a nonzero $\gamma \in L(V)$, where $\operatorname{dim} V \geq 2$, is left [right] compatible on $L(V)$ if and only if γ is an epimorphism [a monomorphism]. However, the following example shows that, when $\operatorname{dim} V=2$ and $\kappa=1$, there exists $\gamma \in S(V, \kappa)$ which is a compatible element in $S(V, \kappa)$ but neither a monomorphism nor an epimorphism.

Example 4.2.1. Suppose that $\operatorname{dim} V=2$ and $\kappa=1$. Now we let $\{u, v\}$ be a basis of V. Define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{ll}
u & v \\
0 & v
\end{array}\right)
$$

Then nullity $\gamma=\operatorname{corank} \gamma=1 \geq \kappa$ and hence $\gamma \in S(V, \kappa)$. Claim that γ is left and right compatible on $S(V, \kappa)$. Let $\alpha, \beta \in S(V, \kappa)$ be such that $\alpha \leq \beta$ on $S(V, \kappa)$. Then $\alpha \leq \beta$ on $L(V)$ by Proposition 2.3.1 (iii), so $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by Theorem 2.3.5. If $\alpha=\beta$, it is clear that $\gamma \alpha=\gamma \beta$ and $\alpha \gamma=\beta \gamma$. Suppose that $\alpha \neq \beta$. Then $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$ by Remark 2.2.8. Since $\kappa=1$, we have $1 \leq \operatorname{corank} \beta<\operatorname{corank} \alpha \leq \operatorname{dim} V=2$. It follows that $\operatorname{corank} \alpha=2$. Thus $\alpha=0_{V}$, so $\gamma \alpha=0_{V}=\alpha \gamma$. Hence $\gamma \alpha \leq \gamma \beta$ and $\alpha \gamma \leq \beta \gamma$ on $S(V, \kappa)$. Therefore γ is left and right compatible on $S(V, \kappa)$. Note that γ is neither left nor right compatible on $L(V)$ by Theorem 2.3.6.

Observe that $0_{V} \in S(V, \kappa)$ and it is easy to see that 0_{V} is compatible, so nonzero left and right compatible elements will be determined.

Lemma 4.2.2. Let $\gamma \in S(V, \kappa)$ be nonzero. The following statements hold.
(i) Let $\operatorname{dim} V$ be infinite. If γ is left compatible on $S(V, \kappa)$, then γ is an epimorphism.
(ii) Let $\operatorname{dim} V$ be infinite. If γ is right compatible on $S(V, \kappa)$, then γ is a monomorphism.
(iii) Let $\operatorname{dim} V<\infty$. If γ is left or right compatible on $S(V, \kappa)$, then $\kappa=\operatorname{dim} V-1$.

Proof. We use the following facts to show all of (i), (ii) and (iii). Let B be a basis of V containing a basis B_{1} of $\operatorname{ker} \gamma$. By Proposition 2.2.4 (ii), we obtain $C_{1}=\left(B \backslash B_{1}\right) \gamma$ is a basis of $\operatorname{im} \gamma$. Extend it to a basis C of V.
(i) Assume that γ is not an epimorphism. Let $u \in C \backslash C_{1}$. Since γ is nonzero, we have $w \in C_{1}$. Then $w=w_{0} \gamma$ for some $w_{0} \in B \backslash B_{1}$. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{c}
C \backslash\{u, w\} \\
0
\end{array} \frac{\{u, w\}}{w}, ~ \text { and } \beta=\left(\begin{array}{ccc}
C \backslash\{u, w\} & u & w \\
0 & w & u
\end{array}\right) .\right.
$$

Then $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$, and $V \alpha \beta^{-1}=E(\alpha, \beta)$ since $C \backslash\{u, w\},\{u-w\}$ and $\{u\}$ satisfy Lemma 2.2.10. Moreover, $\alpha, \beta \in K(V, \kappa) \cap C I(V, \kappa)$ since nullity $\alpha=\operatorname{corank} \alpha=$ $\operatorname{dim} V-1=\operatorname{dim} V \geq \kappa$ and nullity $\beta=\operatorname{corank} \beta=\operatorname{dim} V-2=\operatorname{dim} V \geq \kappa$. Hence $\alpha<\beta$ on $S(V, \kappa)$ by Theorems 4.1.4 and 4.1.8. Claim that $\operatorname{im} \gamma \alpha \nsubseteq \operatorname{im} \gamma \beta$ by showing that $w \in \operatorname{im} \gamma \alpha \backslash \operatorname{im} \gamma \beta$. Since $w=w \alpha=w_{0} \gamma \alpha$, we have $w \in \operatorname{im} \gamma \alpha$. Let $v \in B$. If $v \in B_{1}$, then $v \gamma \beta=0 \beta=0$. Otherwise, $v \gamma \beta \in C_{1} \beta=\{0, u\}$. Hence $\operatorname{im} \gamma \beta=\langle u\rangle$ and so we have the claim. Therefore γ is not left compatible on $S(V, \kappa)$ by Theorems 4.1.4 and 4.1.8.
(ii) Assume that γ is not a monomorphism. Recall that B_{1} is a basis of $\operatorname{ker} \gamma$. Let $u \in B_{1}$. Since γ is nonzero, let $w \in B \backslash B_{1}$. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B \backslash\{u, w\} & \{u, w\} \\
0 & w
\end{array}\right) \text { and } \beta=\left(\begin{array}{ccc}
B \backslash\{u, w\} & u & w \\
0 & w & u
\end{array}\right) .
$$

Similar to (i), we have $\alpha, \beta \in K(V, \kappa) \cap C I(V, \kappa)$ and $\alpha<\beta$ on $S(V, \kappa)$. Then

$$
\alpha \gamma=\left(\begin{array}{cc}
B \backslash\{u, w\} & \{u, w\} \\
0 & w \gamma
\end{array}\right) \text { and } \beta \gamma=\left(\begin{array}{cc}
B \backslash\{u\} & u \\
0 & w \gamma
\end{array}\right) .
$$

It follows that $\operatorname{ker} \beta \gamma \nsubseteq \operatorname{ker} \alpha \gamma$. Hence, by Proposition 2.2.6, $V(\alpha \gamma)(\beta \gamma)^{-1} \neq$ $E(\alpha \gamma, \beta \gamma)$ and so $\alpha \gamma \not \leq \beta \gamma$ on $S(V, \kappa)$ by Theorems 4.1.4 and 4.1.8. Hence γ is not right compatible on $S(V, \kappa)$.
(iii) Suppose that $\kappa \neq \operatorname{dim} V-1$. We note that if $\kappa>\operatorname{dim} V-1$, then $\kappa=\operatorname{dim} V$ and hence $\gamma=0_{V}$ which is a contradiction. Then $\kappa<\operatorname{dim} V-1$. It follows that $\operatorname{dim} V \geq 3$ since $\kappa>0$. Note that $K(V, \kappa)=C I(V, \kappa)$. Since $\kappa>0$, we get γ is neither a monomorphism nor an epimorphism. To show that γ is not left compatible, we define α and β as in (i). Observe that nullity $\alpha=\operatorname{dim} V-1>\kappa$ and nullity $\beta=\operatorname{dim} V-2 \geq \kappa$. Thus $\alpha, \beta \in K(V, \kappa)=C I(V, \kappa)$. Observe from Theorem 4.1.1 that $S(V, \kappa)$ is regular. Hence, by Proposition 2.3.2 and Theorem 2.3.5, $\alpha<\beta$ on $S(V, \kappa)$, but $\gamma \alpha \not \leq \gamma \beta$ on $S(V, \kappa)$ since $\operatorname{im} \gamma \alpha \nsubseteq \operatorname{im} \gamma \beta$. This implies that γ is not left compatible on $S(V, \kappa)$. To see that γ is not right compatible, define α and β as in (ii). Since nullity $\alpha=\operatorname{dim} V-1>\kappa$ and nullity $\beta=\operatorname{dim} V-2 \geq \kappa$, we obtain $\alpha, \beta \in S(V, \kappa)$. Moreover, $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$. By Proposition 2.3.2 and Theorem 2.3.5, $\alpha<\beta$ on $S(V, \kappa)$. Since $\operatorname{ker} \beta \gamma \nsubseteq \operatorname{ker} \alpha \gamma$, we obtain $\alpha \gamma \not \leq \beta \gamma$ on $S(V, \kappa)$. Therefore γ is not left compatible on $S(V, \kappa)$.

Remark 4.2.3. By the definitions of α and β, we have $(C \backslash\{u, w\}) \cup\{u-w\} \cup\{w\}$ is a basis of V but $w \alpha=w$ and $w \beta=u$. Hence the converse of Lemma 2.2.10 is not true.

We now determine left and right compatible elements in $S(V, \kappa)$ when $\operatorname{dim} V$ is finite.

Theorem 4.2.4. Let $\operatorname{dim} V<\infty$ and let $\gamma \in S(V, \kappa)$ be nonzero. Then the following statements are equivalent.
(i) γ is left compatible on $S(V, \kappa)$,
(ii) γ is right compatible on $S(V, \kappa)$,
(iii) $\kappa=\operatorname{dim} V-1$.

Proof. Suppose that the condition (iii) holds. Let $\alpha, \beta \in S(V, \kappa)$ be such that $\alpha \leq \beta$ on $S(V, \kappa)$. If $\alpha=\beta$, then $\gamma \alpha=\gamma \beta$ and $\alpha \gamma=\beta \gamma$. Suppose that $\alpha<\beta$ on $S(V, \kappa)$. Then $\alpha<\beta$ on $L(V)$ by Proposition 2.3.1 (iii). This implies $V \alpha \beta^{-1}=E(\alpha, \beta)$ by Theorem 2.3.5. From Remark 2.2.8, $\operatorname{ker} \beta \subsetneq \operatorname{ker} \alpha$. Thus

$$
\operatorname{dim} V-1=\kappa \leq \text { nullity } \beta<\text { nullity } \alpha \leq \operatorname{dim} V
$$

Since $\operatorname{dim} V$ is finite, we have nullity $\beta=\operatorname{dim} V-1$ and nullity $\alpha=\operatorname{dim} V$. Hence $\alpha=0_{V}$ since $\operatorname{dim} V$ is finite. Then $\gamma \alpha=0_{V}=\alpha \gamma$, so $\gamma \alpha \leq \gamma \beta$ and $\alpha \gamma \leq \beta \gamma$ on $S(V, \kappa)$. Therefore, the conditions (i) and (ii) hold.

The conditions (i) and (ii) imply (iii) by Lemma 4.2.2 (iii).
Remark 4.2.5. Let $\operatorname{dim} V=n$ be a natural number and $C K(V, \kappa)$ be the set of left compatible elements in $K(V, \kappa)$, which is also right compatible elements in $K(V, \kappa)$. By Theorem 4.2.4, if $\kappa \neq n-1$, we have

$$
\left\{0_{V}\right\}=C K(V, 1)=C K(V, 2)=\cdots=C K(V, n-2)=C K(V, n)=K(V, n),
$$

and if $\kappa=n-1$, then $C K(V, n-1)=K(V, n-1)$.
Theorem 4.2.6. Let $\operatorname{dim} V$ be infinite and let $\gamma \in K(V, \kappa)$ be nonzero. Then the following hold.
(i) γ is left compatible on $K(V, \kappa)$ if and only if γ is an epimorphism.
(ii) γ is not right compatible on $K(V, \kappa)$.

Proof. (i) The forward implication follows from Lemma 4.2.2 (i).
Conversely, suppose that γ is an epimorphism. By Theorem 2.3.6 (i), γ is left compatible on $L(V)$. Let $\alpha, \beta \in K(V, \kappa)$ be such that $\alpha \leq \beta$ on $K(V, \kappa)$. Note that the case $\alpha=\beta$ is obvious. Assume that $\alpha \neq \beta$. Then, by Corollary 4.1.12, $\alpha<\beta$ on $L(V)$ and $\alpha \in C I(V, \kappa)$. Hence $\gamma \alpha \leq \gamma \beta$ on $L(V)$ by the left compatibility of γ, and $\gamma \alpha \in C I(V, \kappa)$ since $C I(V, \kappa)$ is a left ideal of $L(V)$ by Proposition 2.1.9 (ii). Therefore, by Theorem 4.1.4, $\gamma \alpha \leq \gamma \beta$ on $K(V, \kappa)$.
(ii) Since every element in $K(V, \kappa)$ is not a monomorphism, by Lemma 4.2.2 (ii), we have γ is not right compatible on $K(V, \kappa)$.

By taking $\kappa=\aleph_{0}$, we have the following corollary.
Corollary 4.2.7. Let $\gamma \in O M(V)$ be nonzero. Then the following hold.
(i) γ is left compatible on $O M(V)$ if and only if γ is an epimorphism.
(ii) γ is not right compatible on $O M(V)$.

The next corollary is obtained from Theorems 2.3.6 and 4.2.6.

Corollary 4.2.8. Let $\operatorname{dim} V$ be infinite. Then the following hold.
(i) $K(V, \kappa)$ has no nonzero compatible elements.
(ii) For each $\gamma \in K(V, \kappa), \gamma$ is left compatible on $K(V, \kappa)$ if and only if γ is left compatible on $L(V)$.

Next, left and right compatibility of elements in $C I(V, \kappa)$ are described.
Theorem 4.2.9. Let $\operatorname{dim} V$ be infinite and let $\gamma \in C I(V, \kappa)$ be nonzero. Then the following hold.
(i) γ is not left compatible on $C I(V, \kappa)$.
(ii) γ is right compatible on $C I(V, \kappa)$ if and only if γ is a monomorphism.

Proof. (i) Since $\gamma \in C I(V, \kappa)$ is not an epimorphism, we have γ is not left compatible on $C I(V, \kappa)$ by Lemma 4.2.2 (i).
(ii) To see the sufficiency, suppose that γ is a monomorphism. Theorem 2.3.6 (ii) implies that γ is right compatible on $L(V)$. Let $\alpha, \beta \in C I(V, \kappa)$ be such that $\alpha \leq \beta$ on $C I(V, \kappa)$. The case $\alpha=\beta$ is clear. Then we suppose that $\alpha \neq \beta$. Thus $\alpha<\beta$ on $L(V)$ and $\alpha \in K(V, \kappa)$ by Corollary 4.1.12. Since γ is right compatible on $L(V)$, we have $\alpha \gamma \leq \beta \gamma$ on $L(V)$. Furthermore, $\alpha \gamma \in K(V, \kappa)$ since $K(V, \kappa)$ is a right ideal of $L(V)$ by Proposition 2.1.9 (i). Therefore, by Theorem 4.1.8, $\alpha \gamma \leq \beta \gamma$ on $C I(V, \kappa)$.

The forward implication follows from Lemma 4.2.2 (ii).
Corollary 4.2.10. Let $\gamma \in O E(V)$ be nonzero. Then the following hold.
(i) γ is not left compatible on $O E(V)$.
(ii) γ is right compatible on $O E(V)$ if and only if γ is a monomorphism.

Corollary 4.2.11. Let $\operatorname{dim} V$ be infinite. The following hold
(i) $C I(V, \kappa)$ has no nonzero compatible elements.
(ii) For each $\gamma \in C I(V, \kappa), \gamma$ is right compatible on $C I(V, \kappa)$ if and only if γ is right compatible on $L(V)$.

In $S(V, \kappa)$, we can construct other elements in \leq from one using left and right compatible elements.

Example 4.2.12. Let $\operatorname{dim} V$ be infinite and B a basis of V. Then there is a partition $\left\{B_{1}, B_{2}, B_{3}\right\}$ of B such that B, B_{1}, B_{2} and B_{3} have the same cardinality. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup B_{2} & v \\
0 & v
\end{array}\right)_{v \in B_{3}} \text { and } \beta=\left(\begin{array}{cc}
B_{1} & v \\
0 & v
\end{array}\right)_{v \in B_{2} \cup B_{3}} .
$$

Observe that nullity $\alpha=\operatorname{corank} \alpha=\left|B_{1} \cup B_{2}\right| \geq \kappa$ and nullity $\beta=\operatorname{corank} \beta=$ $\left|B_{1}\right| \geq \kappa$, so $\alpha, \beta \in K(V, \kappa) \cap C I(V, \kappa)$. It is easy to see that $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. As B_{1}, B_{2} and B_{3} satisfy Lemma 2.2.10, we have $V \alpha \beta^{-1}=E(\alpha, \beta)$. Hence, by Theorems 4.1.4 and 4.1.8, $\alpha \leq \beta$ on $S(V, k)$. Since $\left|B_{3}\right|=\left|B_{1} \cup B_{3}\right|$ and $|B|=\left|B_{3}\right|$, let $\varphi: B_{3} \rightarrow B_{1} \cup B_{3}$ and $\phi: B \rightarrow B_{3}$ be bijections. Now define $\gamma, \delta \in L(V)$ as

$$
\gamma=\left(\begin{array}{ccc}
B_{1} & w & v \\
0 & w & v \varphi
\end{array}\right)_{w \in B_{2}, v \in B_{3}} \text { and } \delta=\binom{v}{v \phi}_{v \in B} .
$$

It follows that $\gamma \in K(V, \kappa)$ and $\delta \in C I(V, \kappa)$ since nullity $\gamma=\left|B_{1}\right|$ and $\operatorname{corank} \delta=$ $\left|B \backslash B_{3}\right|$. Moreover, γ is an epimorphism and δ is a monomorphism. Thus γ is left compatible on $K(V, \kappa)$ and δ is right compatible on $C I(V, \kappa)$ by Theorems 4.2.6 and 4.2.9, respectively. Therefore, $\gamma \alpha \leq \gamma \beta$ on $K(V, \kappa)$ and $\alpha \delta \leq \beta \delta$ on $C I(V, \kappa)$. Since φ and ϕ are not identity functions, we have $\gamma \alpha \neq \alpha, \alpha \delta \neq \alpha, \gamma \beta \neq \beta$ and $\beta \delta \neq \beta$. Note that $\gamma \alpha, \gamma \beta, \alpha \delta$ and $\beta \delta$ are in the following forms.

$$
\left.\left.\begin{array}{c}
\gamma \alpha=\left(\begin{array}{cc}
B_{1} \cup B_{2} & v \\
0 & v \varphi
\end{array}\right)_{w \in B_{3}}, \gamma \beta=\left(\begin{array}{cc}
B_{1} & w
\end{array}\right) v \\
0 \\
w
\end{array}\right) v \varphi\right)_{w \in B_{2}, v \in B_{3}},
$$

4.3 Minimal and Maximal Elements in $(K(V, \kappa), \leq)$ and $(C I(V, \kappa), \leq)$

Recall that 0_{V} is the minimum element in $K(V, \kappa)$ and $C I(V, \kappa)$ by Proposition 2.3.1 (i). The main purpose of this section is to find necessary and sufficient conditions for elements in $K(V, \kappa)$ and $C I(V, \kappa)$ to be minimal nonzero elements
and maximal elements where V is any vector space and $0<\kappa \leq \operatorname{dim} V$. Recall that $S(V, \kappa)$ stands for $K(V, \kappa)$ or $C I(V, \kappa)$.

Theorem 4.3.1. Let $\beta \in S(V, \kappa)$. Then β is a minimal nonzero element in $S(V, \kappa)$ if and only if $\operatorname{rank} \beta=1$.

Proof. Assume that β is a minimal nonzero element in $S(V, \kappa)$. Since $0<\kappa \leq$ $\operatorname{dim} V$, we have $\operatorname{dim} V \geq 1$. If $\operatorname{dim} V=1$, it is clear that $\operatorname{rank} \beta=1$. Suppose that $\operatorname{dim} V \geq 2$. Let B_{1} be a basis of $\operatorname{ker} \beta$. Extend this to a basis B of V. As β is nonzero, there exists $u \in B \backslash B_{1}$. Let C_{1} be a basis of $\operatorname{im} \beta$ containing $u \beta$. Extend C_{1} to a basis C of V. Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B & \left.\begin{array}{cc}
\{u\} & u \\
0 & u \beta
\end{array}\right) ~ . ~
\end{array}\right.
$$

Then $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$. Consider $B_{1}, B \backslash\left(B_{1} \cup\{u\}\right)$ and $\{u\}$ in Lemma 2.2.10, we obtain $V \alpha \beta^{-1}=E(\alpha, \beta)$. Note that $|B|>\left|B_{1}\right|$ and $\left|C_{1}\right| \geq 1$ since β is nonzero.

Case 1: $\beta \in K(V, \kappa)$. Then $\left|B_{1}\right| \geq \kappa$. Hence nullity $\alpha=|B \backslash\{u\}| \geq\left|B_{1}\right| \geq \kappa$ and corank $\alpha=|C \backslash\{u \beta\}|=|B \backslash\{u\}| \geq \kappa$, so $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$.
Case 2: $\beta \in C I(V, \kappa)$. Then $\left|C \backslash C_{1}\right|=\operatorname{corank} \beta \geq \kappa$. It follows that corank $\alpha=$ $|C \backslash\{u \beta\}| \geq\left|C \backslash C_{1}\right| \geq \kappa$ and nullity $\alpha=|B \backslash\{u\}|=|C \backslash\{u \beta\}| \geq \kappa$. Thus $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$.
In any case, by Theorems 4.1.4 and 4.1.8, $\alpha \leq \beta$ on $S(V, \kappa)$. Since β is minimal in $S(V, \kappa)$, we get $\alpha=\beta$. Therefore, $\operatorname{rank} \beta=1$.

The converse is clear by Theorem 2.3.8 (i).
Now we let $S(V)$ be $O M(V)$ or $O E(V)$.
Corollary 4.3.2. Let $\beta \in S(V)$. Then β is a minimal nonzero element in $S(V)$ if and only if $\operatorname{rank} \beta=1$.

The next corollary is a consequence of Theorems 2.3.8 (i) and 4.3.1.
Corollary 4.3.3. Let $\beta \in S(V, \kappa)$. Then β is a minimal nonzero element in $S(V, \kappa)$ if and only if β is a minimal nonzero element in $L(V)$.

The following lemma is obtained from Theorems 4.1.4 and 4.1.8.
Lemma 4.3.4. Let $\operatorname{dim} V$ be infinite. The following statements hold.
(i) Every $\alpha \in K(V, \kappa) \backslash C I(V, \kappa)$ is maximal in $K(V, \kappa)$.
(ii) Every $\alpha \in C I(V, \kappa) \backslash K(V, \kappa)$ is maximal in $C I(V, \kappa)$.

Proof. (i) Let $\alpha \in K(V, \kappa) \backslash C I(V, \kappa)$. Suppose that $\alpha \leq \beta$ on $K(V, \kappa)$ for some $\beta \in K(V, \kappa)$. Then $\alpha=\beta$ by Theorem 4.1.4.
(ii) It can be proven similar to (i).

The below lemma shows more conditions for elements in $S(V, \kappa)$ to be maximal.
Lemma 4.3.5. (i) Every $\alpha \in K(V, \kappa)$ with nullity $\alpha=\kappa<\infty$ is maximal in $K(V, \kappa)$.
(ii) Every $\alpha \in C I(V, \kappa)$ with corank $\alpha=\kappa<\infty$ is maximal in $C I(V, \kappa)$.

Proof. (i) Let $\alpha \in K(V, \kappa)$ be such that nullity $\alpha=\kappa<\infty$. Suppose that $\alpha \leq \beta$ on $K(V, \kappa)$ for some $\beta \in K(V, \kappa)$. By Proposition 2.3.1 (iii), we have $\alpha \leq \beta$ on $L(V)$. This implies $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by Theorem 2.3.5. Then $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$ by Proposition 2.2.6. Thus

$$
\kappa \leq \text { nullity } \beta \leq \text { nullity } \alpha=\kappa<\infty \text {. }
$$

It follows that nullity $\beta=$ nullity $\alpha=\kappa$. Since κ is finite, $\operatorname{ker} \alpha=\operatorname{ker} \beta$. Since $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$, by Proposition 2.2.7, we have $\alpha=\beta$.
(ii) Let $\alpha \in C I(V, \kappa)$ be such that corank $\alpha=\kappa<\infty$. Assume that $\alpha \leq \beta$ for some $\beta \in C I(V, \kappa)$. Then, by Proposition 2.3.1 (iii), $\alpha \leq \beta$ on $L(V)$. By Theorem 2.3.5, im $\alpha \subseteq \operatorname{im} \beta$. Hence

$$
\kappa \leq \operatorname{corank} \beta \leq \operatorname{corank} \alpha=\kappa
$$

This implies corank $\beta=\operatorname{corank} \alpha=\kappa$. Claim that $\operatorname{im} \alpha=\operatorname{im} \beta$. Let C_{1} be a basis of $\operatorname{im} \alpha$. Since $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$, extend C_{1} to a basis C_{2} of $\operatorname{im} \beta$. Let C be a basis of V containing C_{2}. Then

$$
\left|C \backslash C_{2}\right|=\operatorname{corank} \beta=\kappa=\operatorname{corank} \alpha=\left|C \backslash C_{1}\right| .
$$

Since κ is finite, we have $C_{1}=C_{2}$. Hence $\operatorname{im} \alpha=\operatorname{im} \beta$, the claim is proven. By Proposition 2.2.7, we get $\alpha=\beta$.

Now, necessary and sufficient conditions for elements in $S(V, \kappa)$ to be maximal elements are provided.

Theorem 4.3.6. (i) For each $\alpha \in K(V, \kappa), \alpha$ is maximal in $K(V, \kappa)$ if and only if $\alpha \notin C I(V, \kappa)$ or nullity $\alpha=\kappa<\infty$.
(ii) For each $\alpha \in C I(V, \kappa), \alpha \in C I(V, \kappa)$ is maximal in $C I(V, \kappa)$ if and only if $\alpha \notin K(V, \kappa)$ or $\operatorname{corank} \alpha=\kappa<\infty$.

Proof. The sufficient conditions of (i) and (ii) follow from Lemmas 4.3.4 and 4.3.5.
We shall prove the necessities of (i) and (ii) by contrapositive. Both (i) and (ii) can be shown by using the following facts. Let $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$. Then α is neither a monomorphism nor an epimorphism. Choose $w \in V \backslash \operatorname{im} \alpha$ and $u \in \operatorname{ker} \alpha \backslash\{0\}$. Let B_{1} be a basis of $\operatorname{ker} \alpha$ containing u. Extend B_{1} to a basis B of V. Since $\left(B \backslash B_{1}\right) \alpha$ is a basis of $\operatorname{im} \alpha$ by Proposition 2.2.4 (ii) and $w \notin \operatorname{im} \alpha$, let C be a basis of V containing $\left(B \backslash B_{1}\right) \alpha \cup\{w\}$. Define $\beta \in L(V)$ by

$$
\beta=\left(\begin{array}{ccc}
B_{1} \backslash\{u\} & u & v \\
0 & w & v \alpha
\end{array}\right)_{v \in B \backslash B_{1}} .
$$

Then $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$, and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by using $B_{1} \backslash\{u\},\{u\}$ and $B \backslash B_{1}$ in Lemma 2.2.10.
(i) Assume that $\left|B_{1}\right|=$ nullity $\alpha>\kappa$ or κ is infinite.

Case 1: $\left|B_{1}\right|>\kappa$. Then $\operatorname{dim} V \geq 2$ since $\kappa>0$, and nullity $\beta=\left|B_{1} \backslash\{u\}\right| \geq \kappa$. It follows that $\beta \in K(V, \kappa)$.
Case 2: κ is infinite. Then nullity $\beta=\left|B_{1} \backslash\{u\}\right|=\left|B_{1}\right|=$ nullity $\alpha \geq \kappa$, so $\beta \in K(V, \kappa)$.

In either case, we obtain $\alpha<\beta$ on $K(V, \kappa)$ by Theorem 4.1.4.
(ii) Assume that corank $\alpha>\kappa$ or κ is infinite.

Case 1: $\operatorname{corank} \alpha>\kappa$. Then $\operatorname{dim} V \geq 2$ as $\kappa>0$, and

$$
\operatorname{corank} \beta=\left|C \backslash\left(\left(B \backslash B_{1}\right) \alpha \cup\{w\}\right)\right|=\operatorname{corank} \alpha-1 \geq \kappa
$$

Hence $\beta \in C I(V, \kappa)$.
Case 2: κ is infinite. Then

$$
\operatorname{corank} \beta=\left|C \backslash\left(\left(B \backslash B_{1}\right) \alpha \cup\{w\}\right)\right|=\mid C \backslash\left(\left(B \backslash B_{1}\right) \alpha \mid=\operatorname{corank} \alpha \geq \kappa\right.
$$

This implies $\beta \in C I(V, \kappa)$.
In either case, $\alpha<\beta$ on $C I(V, \kappa)$ by Theorem 4.1.8.
Consequently, we have the following corollary.
Corollary 4.3.7. (i) $O M(V) \backslash O E(V)$ is the set of all maximal elements in $O M(V)$.
(ii) $O E(V) \backslash O M(V)$ is the set of all maximal elements in $O E(V)$.

Lemma 4.3.4 says that the elements in $K(V, \kappa) \backslash C I(V, \kappa)$ are maximal in $K(V, \kappa)$. Also, elements in $C I(V, \kappa) \backslash K(V, \kappa)$ are maximal in $C I(V, \kappa)$. The following examples present that there are elements in $K(V, \kappa) \cap C I(V, \kappa)$ which are maximal in $S(V, \kappa)$ when $\operatorname{dim} V$ is infinite and κ is finite.

Example 4.3.8. Suppose that $\operatorname{dim} V$ is infinite. Let κ be a natural number and let B and C be bases of V. There exist $B_{0} \subseteq B$ and $C_{0} \subseteq C$ such that $\left|B_{0}\right|=\kappa=\left|C_{0}\right|$. Then $\left|B \backslash B_{0}\right|=\left|C \backslash C_{0}\right|$, so there is a bijection $\phi: B \backslash B_{0} \rightarrow C \backslash C_{0}$. Moreover, let $\left\{B_{1}, B_{2}\right\}$ be a partition of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let ψ be a bijection from $B \backslash B_{0}$ to B_{2}.
(i) Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{0} & v \\
0 & v \psi
\end{array}\right)_{v \in B \backslash B_{0}} .
$$

Observe that nullity $\alpha=\left|B_{0}\right|=\kappa$ and corank $\alpha=\left|B_{1}\right|>\kappa$, so $\alpha \in K(V, \kappa) \cap$ $C I(V, \kappa)$. By Theorem 4.3.6, α is maximal in $K(V, \kappa)$ but not maximal in $C I(V, \kappa)$.
(ii) Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \psi^{-1}
\end{array}\right)_{v \in B_{2}} .
$$

Thus nullity $\alpha>\kappa$ and corank $\alpha=\left|B \backslash\left(B \backslash B_{0}\right)\right|=\left|B_{0}\right|=\kappa$, and that $\alpha \in$ $K(V, \kappa) \cap C I(V, \kappa)$. Hence α is maximal in $C I(V, \kappa)$ but not maximal in $K(V, \kappa)$
by Theorem 4.3.6.
(iii) Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{0} & v \\
0 & v \phi
\end{array}\right)_{v \in B \backslash B_{0}} .
$$

Then nullity $\alpha=\operatorname{corank} \alpha=\kappa$, so $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$. Hence α is maximal in $K(V, \kappa)$ and $C I(V, \kappa)$ by Theorem 4.3.6.

Observe that every epimorphism in $K(V, \kappa)$ is not contained in $C I(V, \kappa)$. Similarly, every monomorphism in $C I(V, \kappa)$ is not contained in $K(V, \kappa)$. Therefore, by Theorems 4.2.6 (i), 4.2.9 (ii) and 4.3.6 (i) and (ii), we have the following corollary.

Corollary 4.3.9. Let $\operatorname{dim} V$ be infinite. The following statements hold.
(i) For each nonzero $\alpha \in K(V, \kappa)$, if α is left compatible on $K(V, \kappa)$, then α is maximal in $K(V, \kappa)$.
(ii) For each nonzero $\alpha \in C I(V, \kappa)$, if α is right compatible on $C I(V, \kappa)$, then α is maximal in $C I(V, \kappa)$.

4.4 Lower and Upper Covers of Elements in $(\boldsymbol{K}(\boldsymbol{V}, \boldsymbol{\kappa}), \leq)$ and $(C I(V, \kappa), \leq)$

In the last section, we give necessary and sufficient conditions for elements in $K(V, \kappa)$ and $C I(V, \kappa)$ to have lower and upper covers where V is a general vector space and $\kappa>0$. Note that we let $S(V, \kappa)$ be $K(V, \kappa)$ or $C I(V, \kappa)$.

Lemma 4.4.1. Let $\alpha, \beta \in K(V, \kappa) \cap C I(V, \kappa)$. Then α is a lower cover of β in $S(V, \kappa)$ if and only if α is a lower cover of β in $L(V)$.

Proof. The sufficiency is obtained from Proposition 2.3.4.
To show the necessity, assume that α is a lower cover of β in $S(V, \kappa)$. Suppose that $\alpha<\gamma \leq \beta$ on $L(V)$. From Remark 4.1.14, $\gamma \in K(V, \kappa) \cap C I(V, \kappa)$.

Case 1: $\operatorname{dim} V$ is finite. Then $K(V, \kappa)=C I(V, \kappa)$ is regular by Theorem 4.1.1.

Hence $\alpha<\gamma \leq \beta$ on $S(V, \kappa)$ by Proposition 2.3.2.
Case 2: $\operatorname{dim} V$ is infinite. Then $\alpha<\gamma \leq \beta$ on $S(V, \kappa)$ by Theorems 4.1.4 and 4.1.8 and Remark 4.1.14.

In either case, we obtain $\gamma=\beta$. Therefore α is a lower cover of β in $L(V)$.
The next result will be used in our main theorem.

Lemma 4.4.2. Let $\operatorname{dim} V$ be infinite and let $\alpha \in K(V, \kappa)$ and $\beta \in K(V, \kappa) \backslash$ $C I(V, \kappa)$ be such that $\alpha<\beta$ on $K(V, \kappa)$. Then α is a lower cover of β in $K(V, \kappa)$ if and only if $\operatorname{corank} \alpha=\kappa<\infty$.

Proof. Assume that corank $\alpha=\kappa<\infty$. Suppose that $\alpha \leq \gamma<\beta$ on $K(V, \kappa)$ for some $\gamma \in K(V, \kappa)$. Then, by Theorem 4.1.4, im $\alpha \subseteq \operatorname{im} \gamma, V \alpha \gamma^{-1}=E(\alpha, \gamma)$ and $\gamma \in C I(V, \kappa)$, so

$$
\kappa \leq \operatorname{corank} \gamma \leq \operatorname{corank} \alpha=\kappa<\infty
$$

Thus corank $\gamma=\kappa=$ corank α. Similar to the proof of Lemma 4.3.5 (ii), im $\gamma=$ $\operatorname{im} \alpha$. Since $\operatorname{im} \gamma=\operatorname{im} \alpha$ and $V \alpha \gamma^{-1}=E(\alpha, \gamma)$, by Proposition 2.2.7, $\gamma=\alpha$. Therefore α is a lower cover of β in $K(V, \kappa)$.

For the forward implication, suppose that corank $\alpha \neq \kappa$ or κ is infinite. Since $\alpha<\beta$ on $K(V, \kappa)$, by Theorem 4.1.4, $\alpha \in C I(V, \kappa), \operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=$ $E(\alpha, \beta)$. By Proposition 2.2.9, we write α and β as

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

with $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta$, $\operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Let $\left\{v_{j}\right\}_{j \in J} \cup$ $\left\{u_{k}\right\}_{k \in K} \cup\left\{w_{l}\right\}_{l \in L}$ be a basis of V. Since $\beta \notin C I(V, \kappa)$, we have $\left|\left\{w_{l}\right\}_{l \in L}\right|=$ corank $\beta<\kappa$. Thus $|L|<\kappa$. Since $\alpha \in C I(V, \kappa)$, we obtain $\left|\left\{v_{j}\right\}_{j \in J} \cup\left\{w_{l}\right\}_{l \in L}\right|=$ corank $\alpha \geq \kappa$. As $|L|<\kappa$ and we assume that corank $\alpha>\kappa$ or κ is infinite, we obtain $|J|>1$. Then we let $j_{0} \in J$. Define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}} & y_{j_{0}} & z_{k} \\
0 & v_{j_{0}} & u_{k}
\end{array}\right)_{k \in K} .
$$

Case 1: $\operatorname{corank} \alpha>\kappa$. Then corank $\gamma=\operatorname{corank} \alpha-1 \geq \kappa$.
Case 2: κ is infinite. Since $\alpha \in C I(V, \kappa)$, we have corank α is also infinite. Thus corank $\gamma=\operatorname{corank} \alpha-1=\operatorname{corank} \alpha \geq \kappa$.

In any case, $\gamma \in C I(V, \kappa)$. It is obvious that $\gamma \in K(V, \kappa)$ since nullity $\gamma=$ $\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}}\right| \geq\left|\left\{x_{i}\right\}_{i \in I}\right|=$ nullity $\beta \geq \kappa$. Note that $\operatorname{im} \alpha \subsetneq \operatorname{im} \gamma \subsetneq \operatorname{im} \beta$. The sets $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}},\left\{y_{j_{0}}\right\}$ and $\left\{z_{k}\right\}_{k \in K}$ fulfill Lemma 2.2.10, so we get $V \alpha \gamma^{-1}=E(\alpha, \gamma)$. Next, the sets $\left\{x_{i}\right\}_{i \in I},\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}}$ and $\left\{y_{j_{0}}\right\} \cup\left\{z_{k}\right\}_{k \in K}$ satisfy Lemma 2.2.10. Then $V \gamma \beta^{-1}=E(\gamma, \beta)$. By Theorem 4.1.4, $\alpha<\gamma<\beta$ on $K(V, \kappa)$. Therefore, α is not a lower cover of β in $K(V, \kappa)$.

Therefore, we describe the set of all lower covers of an element in $K(V, \kappa) \backslash$ $C I(V, \kappa)$ where κ is finite.

Corollary 4.4.3. Let $\operatorname{dim} V$ be infinite, κ a natural number and $\beta \in K(V, \kappa) \backslash$ $C I(V, \kappa)$. Then

$$
\{\alpha \in K(V, \kappa) \mid \alpha<\beta \text { on } K(V, \kappa) \text { and } \operatorname{corank} \alpha=\kappa\}
$$

is the set of all lower covers of β in $K(V, \kappa)$.
Remark 4.4.4. Consider α and γ in the proof of the forward implication of Lemma 4.4.2. Note that α is a lower cover of γ in $L(V)$ by Lemma 3.4.1. Then, by Proposition 4.4.1, α is also a lower cover of γ in $K(V, \kappa)$. Suppose that κ is infinite. It follows that J is infinite and then let $j_{1} \in J \backslash\left\{j_{0}\right\}$. Next, we define $\gamma_{1} \in L(V)$ by

$$
\gamma_{1}=\left(\begin{array}{cccc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}, j_{1}\right\}} & y_{j_{0}} & y_{j_{1}} & z_{k} \\
0 & v_{j_{0}} & v_{j_{1}} & u_{k}
\end{array}\right)_{k \in K} .
$$

Then $\alpha<\gamma<\gamma_{1}<\beta$ on $K(V, \kappa)$. It can be seen that γ is a lower cover of γ_{1} by Lemma 3.4.1. Since J is infinite, we can construct infinitely many $\gamma_{i} \in K(V, \kappa)$ similar to γ_{1} such that $\alpha<\gamma<\gamma_{1}<\gamma_{2}<\cdots<\gamma_{i}<\cdots<\beta$ on $K(V, \kappa)$ where i is a natural number. In particular, γ_{i} is a lower cover of γ_{i+1} for all natural numbers i.

Next, we provide a characterization for elements in $K(V, \kappa)$ to have a lower cover.

Theorem 4.4.5. (i) Every nonzero $\beta \in K(V, \kappa) \cap C I(V, \kappa)$ has a lower cover in $K(V, \kappa)$.
(ii) Let $\operatorname{dim} V$ be infinite and let $\beta \in K(V, \kappa) \backslash C I(V, \kappa)$. Then β has a lower cover in $K(V, \kappa)$ if and only if κ is finite.

Proof. (i) Let $\beta \in K(V, \kappa) \cap C I(V, \kappa)$ be nonzero. By Theorem 3.4.4 (i), β has a lower cover in $L(V)$, say α. Since $\beta \in K(V, \kappa) \cap C I(V, \kappa)$, by Remark 4.1.14, we get $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$. Let $\gamma \in K(V, \kappa)$ be such that $\alpha<\gamma \leq \beta$ on $K(V, \kappa)$. Then $\alpha<\gamma \leq \beta$ on $L(V)$. Since α is a lower cover of β in $L(V)$, we obtain $\gamma=\beta$. Hence α is a lower cover of β in $K(V, \kappa)$.
(ii) To show the sufficiency, suppose that κ is finite. Let B be a basis of V containing a basis B_{1} of $\operatorname{ker} \beta$. Denote by $C_{1}=\left(B \backslash B_{1}\right) \beta$, a basis of $\operatorname{im} \beta$ by Proposition 2.2.4 (ii). Extend C_{1} to a basis C of V. Since $\left|C \backslash C_{1}\right|=\operatorname{corank} \beta<$ $\kappa<\infty$, we get C_{1} is infinite. Then there is $C_{2} \subseteq C_{1}$ such that $\left|\left(C \backslash C_{1}\right) \cup C_{2}\right|=\kappa$. Note that $\left.\beta\right|_{B \backslash B_{1}}: B \backslash B_{1} \rightarrow C_{1}$ is a bijection by Proposition 2.2.4 (i). Let $B_{0}=C_{2} \beta^{-1}$. Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup B_{0} & v \\
0 & v \beta
\end{array}\right)_{v \in B \backslash\left(B_{1} \cup B_{0}\right)} .
$$

Then $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$, and $V \alpha \beta^{-1}=E(\alpha, \beta)$ holds since B_{1}, B_{0} and $B \backslash\left(B_{1} \cup B_{0}\right)$ fulfill Lemma 2.2.10. Hence $\alpha<\beta$ on $L(V)$ by Theorem 2.3.5. Since $\beta \in K(V, \kappa)$, by Proposition 4.1.13 (i), we have $\alpha \in K(V, \kappa)$. Since $B_{0} \beta=C_{2}$, we have
$\operatorname{dim}(V / \operatorname{im} \alpha)=\left|C \backslash\left[B \backslash\left(B_{1} \cup B_{0}\right)\right] \beta\right|=\left|C \backslash\left(C_{1} \backslash C_{2}\right)\right|=\left|\left(C \backslash C_{1}\right) \cup C_{2}\right|=\kappa$.
Thus $\alpha \in C I(V, \kappa)$. Therefore, Theorem 4.1.4 implies that $\alpha<\beta$ on $K(V, \kappa)$. Since corank $\alpha=\kappa<\infty$, by Lemma 4.4.2, α is a lower cover of β in $K(V, \kappa)$.

The forward implication is a consequence from Lemma 4.4.2.
By letting $\kappa=\aleph_{0}$, we obtain the below corollary.

Corollary 4.4.6. (i) Every nonzero $\beta \in O M(V) \cap O E(V)$ has a lower cover in $O M(V)$.
(ii) Every $\beta \in O M(V) \backslash O E(V)$ has no lower covers in $O M(V)$.

We conclude the following remark from Theorems 4.3.6 (ii) and 4.4.5 (ii).

Remark 4.4.7. Suppose that κ is a natural number. Let $\beta \in K(V, \kappa) \backslash C I(V, \kappa)$. Every lower cover of β in $K(V, \kappa)$ is a maximal element in $C I(V, \kappa)$.

Next, we give an example of the existence of $\alpha, \beta \in K(V, \kappa)$ such that α is a lower cover of β in $K(V, \kappa)$ but α is not a lower cover of β in $L(V)$. Moreover, some elements in $K(V, \kappa) \backslash C I(V, \kappa)$ have distinct lower covers in $K(V, \kappa)$.

Example 4.4.8. Let κ be a natural number such that $\kappa>1$. Suppose that $\operatorname{dim} V$ is infinite. Let B be a basis of V. Then there exists a partition $\left\{B_{1}, B_{2}\right\}$ of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Thus there is a bijection $\phi: B_{2} \rightarrow B$. Let $B_{0} \subseteq B_{2}$ be such that $\left|B_{0}\right|=\kappa$. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup B_{0} & v \\
0 & v \phi
\end{array}\right)_{v \in B_{2} \backslash B_{0}} \text { and } \beta=\left(\begin{array}{cc}
B_{1} & v \\
0 & v \phi
\end{array}\right)_{v \in B_{2}} .
$$

As nullity $\alpha=\left|B_{1} \cup B_{0}\right|$ and nullity $\beta=\left|B_{1}\right|$, we have $\alpha, \beta \in K(V, \kappa)$. Since β is an epimorphism, $\beta \notin C I(V, \kappa)$. Note that

$$
\text { corank } \alpha=\left|B \backslash\left(B \backslash B_{0} \phi\right)\right|=\left|B_{0} \phi\right|=\left|B_{0}\right|=\kappa
$$

Thus $\alpha \in C I(V, \kappa)$. Moreover, $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$. The sets B_{1}, B_{0} and $B_{2} \backslash B_{0}$ satisfy Lemma 2.2.10. Thus $V \alpha \beta^{-1}=E(\alpha, \beta)$. Therefore $\alpha<\beta$ on $K(V, \kappa)$ by Theorem 4.1.4. Since corank $\alpha=\kappa$, by Lemma 4.4.2, α is a lower cover of β in $K(V, \kappa)$. However, α is not a lower cover of β in $L(V)$ by Proposition 3.4.2. Since there are infinitely many subsets of B_{2} which their cardinalities are κ, the number of lower covers of β in $K(V, \kappa)$ is also infinite. Note that if $\kappa=1$, then α is a lower cover of β in $K(V, \kappa)$ and $L(V)$.

Now we pay attention on results of lower covers of elements in $C I(V, \kappa)$. The following result is similar to Lemma 4.4.2.

Lemma 4.4.9. Let $\operatorname{dim} V$ be infinite and let $\alpha \in C I(V, \kappa)$ and $\beta \in C I(V, \kappa) \backslash$ $K(V, \kappa)$ be such that $\alpha<\beta$ on $C I(V, \kappa)$. Then α is a lower cover of β in $C I(V, \kappa)$ if and only if nullity $\alpha=\kappa<\infty$.

Proof. Suppose that nullity $\alpha=\kappa<\infty$ and $\alpha \leq \gamma<\beta$ on $C I(V, \kappa)$ for some $\gamma \in C I(V, \kappa)$. Then, by Theorem 4.1.8, im $\alpha \subseteq \operatorname{im} \beta$ and $V \alpha \gamma^{-1}=E(\alpha, \gamma)$. By Proposition 2.2.6, $\operatorname{ker} \gamma \subseteq \operatorname{ker} \alpha$, so nullity $\gamma \leq$ nullity $\alpha=\kappa$. Notice that $\gamma \in K(V, \kappa)$ by Theorem 4.1.8. It follows that

$$
\kappa \leq \text { nullity } \gamma \leq \text { nullity } \alpha=\kappa<\infty .
$$

Thus nullity $\gamma=\kappa=$ nullity α. Hence $\operatorname{ker} \gamma=\operatorname{ker} \alpha$. Since $\operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $\operatorname{ker} \gamma=\operatorname{ker} \alpha$, we have $\gamma=\alpha$ by Proposition 2.2.7. Therefore α is a lower cover of β in $C I(V, \kappa)$.

To prove the necessity, assume that nullity $\alpha \neq \kappa$ or κ is infinite. As $\alpha<$ β on $C I(V, \kappa)$, we have $\alpha \in K(V, \kappa), \operatorname{im} \alpha \subseteq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$ by Theorem 4.1.8. Then nullity $\alpha \geq \kappa$. By Proposition 2.2.9, we write α and β as follows.

$$
\alpha=\left(\begin{array}{cc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} & z_{k} \\
0 & u_{k}
\end{array}\right)_{k \in K} \text { and } \beta=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} & y_{j} & z_{k} \\
0 & v_{j} & u_{k}
\end{array}\right)_{j \in J, k \in K}
$$

where $\left\{x_{i}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K},\left\{v_{j}\right\}_{j \in J} \cup\left\{u_{k}\right\}_{k \in K}$ and $\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J} \cup$ $\left\{z_{k}\right\}_{k \in K}$ are bases of $\operatorname{ker} \beta, \operatorname{ker} \alpha, \operatorname{im} \alpha, \operatorname{im} \beta$ and V, respectively. Since $\alpha \in K(V, \kappa)$ and $\beta \notin K(V, \kappa)$, we have $\left|\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J}\right|=$ nullity $\alpha>\kappa$ and $\left|\left\{x_{i}\right\}_{i \in I}\right|=$ nullity $\beta<\kappa$, respectively. Since nullity $\alpha>\kappa$ or κ is infinite, $|J|>1$ so we let $j_{0} \in J$. Next define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{ccc}
\left\{x_{i}\right\}_{i \in I} \cup\left\{y_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}} & y_{j_{0}} & z_{k} \\
0 & v_{j_{0}} & u_{k}
\end{array}\right)_{k \in K} .
$$

Observe that $\operatorname{im} \alpha \subsetneq \operatorname{im} \gamma \subsetneq \operatorname{im} \beta$.
Case 1: nullity $\alpha>\kappa$. Then nullity $\gamma=$ nullity $\alpha-1 \geq \kappa$.
Case 2: κ is infinite. Since $\alpha \in K(V, \kappa)$, we have nullity $\gamma=$ nullity $\alpha-1=$ nullity $\alpha \geq \kappa$.

In any case, $\gamma \in K(V, \kappa)$. Since $\operatorname{im} \gamma \subseteq \operatorname{im} \beta$, we have corank $\gamma \geq \operatorname{corank} \beta \geq \kappa$. Thus $\gamma \in C I(V, \kappa)$. Similar to the proof of the necessity of Lemma 4.4.2, $V \alpha \gamma^{-1}=$ $E(\alpha, \gamma)$ and $V \gamma \beta^{-1}=E(\gamma, \beta)$. Hence $\alpha<\gamma<\beta$ on $C I(V, \kappa)$ by Theorem 4.1.8. Therefore α is not a lower cover of β in $C I(V, \kappa)$.

We now show the set of all lower covers of an element in $C I(V, \kappa) \backslash K(V, \kappa)$ when κ is finite.

Corollary 4.4.10. Let $\operatorname{dim} V$ be infinite, κ a natural number and $\beta \in C I(V, \kappa) \backslash$ $K(V, \kappa)$. Then

$$
\{\alpha \in C I(V, \kappa) \mid \alpha<\beta \text { on } C I(V, \kappa) \text { and nullity } \alpha=\kappa\}
$$

is the set of all lower covers of β in $C I(V, \kappa)$.
From the proof of the necessity/ of Lemma 4.4.9, the below remark is obtained.

Remark 4.4.11. Suppose that κ is infinite. Then J is infinite and let $j_{1} \in$ $J \backslash\left\{j_{0}\right\}$. By defining γ_{1} as in Remark 4.4.4, we also obtain γ is a lower cover of γ_{1} in $C I(V, \kappa)$. Then construct infinitely many $\gamma_{i} \in C I(V, \kappa)$ such that $\alpha<$ $\gamma<\gamma_{1}<\gamma_{2}<\cdots<\gamma_{i}<\cdots<\beta$ on $C I(V, \kappa)$ where i is a natural number. Furthermore, γ_{i} is a lower cover of γ_{i+1} in $C I(V, \kappa)$ for all natural number i.

Next, we characterize when elements in $C I(V, \kappa)$ have lower covers.
Theorem 4.4.12. (i) Every nonzero $\beta \in K(V, \kappa) \cap C I(V, \kappa)$ has a lower cover in $C I(V, \kappa)$.
(ii) Let $\operatorname{dim} V$ be infinite and let $\beta \in C I(V, \kappa) \backslash K(V, \kappa)$. Then β has a lower cover in $C I(V, \kappa)$ if and only if κ is finite.

Proof. (i) Let $\beta \in K(V, \kappa) \cap C I(V, \kappa)$ be nonzero. Then, by Theorem 4.4.5 (i), β has a lower cover in $K(V, \kappa)$, say α. That is $\alpha<\beta$ on $K(V, \kappa)$. By Theorems 4.1.4 and 4.1.8, we obtain $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$ and $\alpha<\beta$ on $C I(V, \kappa)$, respectively. To show that α is a lower cover of β in $C I(V, \kappa)$, let $\gamma \in C I(V, \kappa)$ be such that $\alpha<\gamma \leq \beta$ on $C I(V, \kappa)$. From Theorems 4.1.8 and 4.1.4, we have $\gamma \in K(V, \kappa)$ and $\alpha<\gamma \leq \beta$ on $K(V, \kappa)$, respectively. Since α is a lower cover
of β in $K(V, \kappa)$, we can conclude that $\gamma=\beta$. Therefore α is a lower cover of β in $C I(V, \kappa)$.
(ii) To show the sufficiency, assume that κ is finite. Let B_{1} be a basis of $\operatorname{ker} \beta$ and B a basis of V containing B_{1}. As $\beta \notin K(V, \kappa)$, we have $\left|B_{1}\right|=$ nullity $\beta<\kappa<\infty$. Then $B \backslash B_{1}$ is infinite, so there is a nonempty set $B_{0} \subseteq B \backslash B_{1}$ such that $\left|B_{1} \cup B_{0}\right|=\kappa$. Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{1} \cup B_{0} & v \\
0 & v \beta
\end{array}\right)_{v \in B \backslash\left(B_{1} \cup B_{0}\right)} .
$$

Thus $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$ and $V \alpha \beta^{-1}=E(\alpha, \beta)$ holds by using B_{1}, B_{0} and $B \backslash\left(B_{1} \cup B_{0}\right)$ in Lemma 2.2.10. Hence $\alpha<\beta$ on $L(V)$ by Theorem 2.3.5. Since $\beta \in C I(V, \kappa)$, we obtain $\alpha \in C I(V, \kappa)$ by Lemma 4.1.13 (ii). Furthermore, nullity $\alpha=\mid B_{1} \cup$ $B_{0} \mid=\kappa$. Hence $\alpha \in K(V, \kappa) \cap C I(V, \kappa)$. Therefore, Theorem 4.1.8 implies that $\alpha<\beta$ on $C I(V, \kappa)$. Since nullity $\alpha=\kappa$, by Lemma 4.4.9, α is a lower cover of β in $C I(V, \kappa)$.

For the necessity, suppose that κ is infinite. By Lemma 4.4.9, we have β has no lower cover in $C I(V, \kappa)$.

Corollary 4.4.13. (i) Every nonzero $\beta \in O M(V) \cap O E(V)$ has a lower cover in $O E(V)$.
(ii) Every $\beta \in O E(V) \backslash O M(V)$ has no lower covers in $O E(V)$.

By Theorems 4.3.6 (i) and 4.4.12 (ii), we have the following remark.
Remark 4.4.14. Let κ be a natural number and $\beta \in C I(V, \kappa) \backslash K(V, \kappa)$.
Every lower cover of β in $C I(V, \kappa)$ is a maximal element in $K(V, \kappa)$.
We present the below example to demonstrate that there is an element in $C I(V, \kappa)$ whose lower covers in $L(V)$ and $C I(V, \kappa)$ are different. Moreover, it can be observed that a lower cover of an element in $C I(V, \kappa) \backslash K(V, \kappa)$ need not to be unique.

Example 4.4.15. Suppose that $\operatorname{dim} V$ is infinite. Let κ be a natural number such that $\kappa>1$ and let B be a basis of V. Then there is a partition $\left\{B_{1}, B_{2}\right\}$
of V such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Thus there exists a bijection $\psi: B \rightarrow B_{2}$. Let $B_{0} \subseteq B_{2}$ be such that $\left|B_{0}\right|=\kappa$. Define $\alpha, \beta \in L(V)$ by

$$
\alpha=\left(\begin{array}{cc}
B_{0} & v \\
0 & v \psi
\end{array}\right)_{v \in B \backslash B_{0}} \text { and } \beta=\binom{v}{v \psi}_{v \in B} .
$$

Observe that nullity $\alpha=\left|B_{0}\right|=\kappa$, hence that $\alpha \in K(V, \kappa)$. Since $\operatorname{im} \alpha \subsetneq \operatorname{im} \beta$, we have corank $\alpha \geq \operatorname{corank} \beta=\left|B_{1}\right| \geq \kappa$. Then $\alpha, \beta \in C I(V, \kappa)$. Since β is a monomorphism, $\beta \notin K(V, \kappa)$. The sets \varnothing, B_{0} and $B \backslash B_{0}$ satisfy Lemma 2.2.10 and hence $V \alpha \beta^{-1}=E(\alpha, \beta)$. Thus $\alpha<\beta$ on $C I(V, \kappa)$ by Theorem 4.1.8. Therefore α is a lower cover of β in $C I(V, \kappa)$ by Lemma 4.4.9. Since $\kappa>1$, by Corollary 3.4.2, α is not a lower cover of β in $L(V)$. Note that B_{2} has infinitely many subsets which their cardinalities equal to κ. Hence β has infinite lower covers in $C I(V, \kappa)$. If $\kappa=1$, then α is a lower cover of β in $C I(V, \kappa)$ and $L(V)$.

Next, characterizations when elements in $K(V, \kappa)$ and $C I(V, \kappa)$ have upper covers in $K(V, \kappa)$ and $C I(V, \kappa)$, respectively, are investigated.

Theorem 4.4.16. Let $\alpha \in S(V, \kappa)$. Then α has an upper cover in $S(V, \kappa)$ if and only if α is not maximal in $S(V, \kappa)$.

Proof. Suppose that α is not maximal in $S(V, \kappa)$. Then, by Theorem 4.3.6, $\alpha \in$ $K(V, \kappa) \cap C I(V, \kappa)$. Let $w \in V \backslash \operatorname{im} \alpha$ and $u \in \operatorname{ker} \alpha \backslash\{0\}$, and let B_{1} be a basis of ker α containing u. Extend B_{1} to a basis B of V. Let C be a basis of V containing $\left(B \backslash B_{1}\right) \alpha \cup\{w\}$. Define $\beta \in L(V)$ by

$$
\beta=\left(\begin{array}{ccc}
B_{1} \backslash\{u\} & u & v \\
0 & w & v \alpha
\end{array}\right)_{v \in B \backslash B_{1}} .
$$

Similar to the proof of Theorem 4.3.6, we get $\beta \in S(V, \kappa)$ and then $\alpha<\beta$ on $S(V, \kappa)$. By Lemma 3.4.1, β is an upper cover of α in $L(V)$. Hence, Proposition 2.3.4 implies that β is an upper cover of α in $S(V, \kappa)$.

The forward implication is obvious.

By taking $\kappa=\aleph_{0}$, we obtain the below corollary.

Corollary 4.4.17. Let $S(V)$ be $O M(V)$ or $O E(V)$, and let $\alpha \in S(V)$. Then α has an upper cover in $S(V)$ if and only if α is not maximal in $S(V)$.

The following corollaries are obtained from Theorems 4.3.6 and 4.4.16.
Corollary 4.4.18. Let $\alpha \in K(V, \kappa)$. Then the following are equivalent.
(i) α is maximal in $K(V, \kappa)$.
(ii) $\alpha \notin C I(V, \kappa)$ or nullity $\alpha=\kappa<\infty$.
(iii) α has no upper cover in $K(V, \kappa)$.

Corollary 4.4.19. Let $\alpha \in C I(V, \kappa)$. Then the following are equivalent.
(i) α is maximal in $\operatorname{CI}(V, \kappa)$.
(ii) $\alpha \notin K(V, \kappa)$ or corank $\alpha=\kappa<\infty$.
(iii) a has no upper cover in $C I(V, \kappa)$.

We illustrate examples of elements in $S(V, \kappa)$ where $\operatorname{dim} V$ is infinite and κ is finite in Figure 4.2. In Figure 4.3, we consider when $\operatorname{dim} V$ and κ are infinite.

Figure 4.2: These are followed from Theorems 4.4.5 and 4.4.12.

Figure 4.3: These are obtained by Theorems 4.4.5 (ii) and 4.4.12 (ii).

REFERENCES

[1] Chaopraknoi, S., Kemprasit, Y.: Linear transformation semigroups admitting the structure of a semihyperring with zero, Ital. J. Pure Appl. Math. 17, 213222 (2005).
[2] Chaopraknoi, S., Phongpattanacharoen, T., Rawiwan, P.: The natural partial order on some transformation semigroups, Bull. Aust. Math. Soc. 89, 279-292 (2014).
[3] Hartwig, R.: How to partially order regular elements, Math. Japon. 25, 1-13 (1980).
[4] Higgins, P. M.: The Mitsch order on a semigroup, Semigroup Forum 49, 261-266 (1994).
[5] Huisheng, P., Weina, D.: Naturally ordered semigroups of partial transformations preserving an equivalence relation, Comm. Algebra 41, 3308-3324 (2013).
[6] Kemprasit, Y.: Algebraic Semigroup Theory, Pitak, Bangkok, 2002.
[7] Kowol, G., Mitsch, H.: Naturally ordered transformation semigroups, Mh. Math 102, 115-138 (1986).
[8] Lawson, M.: Inverse Semigroups: the Theory of Partial Symmetries, World Scientific, Singapore, 1998.
[9] Marques-Smith, M. P. O., Sullivan, R. P.: Partial orders on transformation semigroups, Monatsh. Math. 140, 103-118 (2003).
[10] Mendez-Gonçalves, S., Sullivan, R. P.: The ideal structure of semigroups of linear transformation with lower bounds on their nullity or defect, Algebra Colloq. 17:1, 109-120 (2010).
[11] Mitsch, H.: A natural partial order for semigroups, Proc. Amer. Math. Soc. 97, 384-388 (1986).
[12] Nambooripad, K.: The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23, 249-260 (1980).
[13] Prakitsri, P.: Nearring structure on variants of some transformation semigroups, Master's Thesis, Chulalongkorn University, 2010.
[14] Roman, S.: Advanced Linear Algebra, Springer-Verlag, New York, 2008.
[15] Sullivan, R. P.: Partial orders on linear transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 135A, 413-437 (2005).
[16] Wagner, V.: Generalized groups, Dokl. Akad. Nauk SSSR 84, 1119-1122 (1952). (in Russian)

VITA

Name	Mr. Pongsan Prakitsri
Date of Birth	20 March 1987
Place of Birth	Bangkok, Thailand
Education	B.Sc. (Mathematics)(First Class Honours), Kasetsart University, 2008
	M.Sc. (Mathematics), Chulalongkorn University, 2010
Scholarship	Science Achievement Scholarship of Thailand (SAST)

