
การเขียนโปรแกรมปริพันธ์หนึ่งและสองอิเล็กตรอนในโปรแกรมมอคคา

นายนพคุณ คำศรี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาเคมี ภาควิชาเคมี

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2559

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

PROGRAMMING OF ONE- AND TWO-ELECTRON INTEGRALS IN MOCCA
PROGRAM

Mr. Noppakoon Kharmsri

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Chemistry

Department of Chemistry
Faculty of Science

Chulalongkorn University
Academic Year 2016

Copyright of Chulalongkorn University

Thesis Title PROGRAMMING OF ONE- AND TWO-ELECTRON INTE-
GRALS IN MOCCA PROGRAM

By Mr. Noppakoon Kharmsri
Field of Study Chemistry
Thesis Advisor Associate Professor Viwat Vchirawongkwin, Dr. rer. nat.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfill-
ment of the Requirements for the Master’s Degree

..Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

..Chairman

(Associate Professor Vudhichai Parasuk, Ph.D.)

..Thesis Advisor

(Associate Professor Viwat Vchirawongkwin, Dr. rer. nat.)

..Examiner

(Nattapong Paiboonvorachat, Ph.D.)

..External Examiner

(Wikorn Punyain, Dr. rer. nat.)

iv

นพคุณ คำศรี : การเขียนโปรแกรมปริพันธ์หนึ่งและสองอิเล็กตรอนในโปรแกรมมอคคา.
(PROGRAMMING OF ONE- AND TWO-ELECTRON INTEGRALS IN MOC-
CA PROGRAM) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ.ดร.วิวัฒน์ วชิรวงศ์กวิน, 39 หน้า.

การนำทฤษฎีควอนตัมมาประยุกต์ใช้กับปัญหาทางเคมีได้รับการยอมรับอย่างกว้างขวางจาก

นักเคมีทั่วโลก ระเบียบวิธีการคำนวณทางเคมีควอนตัมหลายๆระเบียบวิธีต้องทำการประมวลผล

ปริพันธ์หนึ่งและสองอิเล็กตรอน การประมวลผลปริพันธ์หนึ่งและสองอิเล็กตรอนเป็นขั้นตอน

ที่ต้องใช้เวลาในการประมวลผลมากที่สุดและเป็นอุปสรรคต่อการประยุกต์ใช้ทฤษฎีควอนตัม

กับระบบทางเคมีขนาดใหญ่ การคำนวณทางเคมีควอนตัมบนหน่วยประมวลผลกราฟิกส์เป็น

ทางเลือกหนึ่งในการเร่งความเร็วในการประมวลผล งานวิจัยชิ้นนี้ได้ทำการเขียนโปรแกรมการ

คำนวณปริพันธ์หนึ่งและสองอิเล็กตรอนในโปรแกรมมอคคาซึ่งคำนวณบนหน่วยประมวลผล

กราฟิกส์ โปรแกรมมอคคาสามารถคำนวณปริพันธ์หนึ่งและสองอิเล็กตรอนได้ถูกต้องเมื่อเทียบกับ

โปรแกรมมาตรฐาน โดยโปรแกรมมอคคาสามารถคำนวณปริพันธ์หนึ่งและสองอิเล็กตรอนได้

ถูกต้องมากกว่าทศนิยมตำแหน่งที่ 11 เมื่อเทียบกับโปรแกรมมาตรฐานและโปรแกรมมอคคา

สามารถคำนวณได้เร็วกว่าโปรแกรมมาตรฐานประมาณ 150-7000 เท่า

ภาควิชา...เคมี ลายมือชื่อนิสิต...

สาขาวิชา..เคมี ลายมือชื่อ อ.ที่ปรึกษาหลัก..

ปีการศึกษา...................................2559

v

5671992123 : MAJOR CHEMISTRY
KEYWORDS : GPU/CUDA

NOPPAKOON KHARMSRI : PROGRAMMING OF ONE- AND TWO-
ELECTRON INTEGRALS IN MOCCA PROGRAM. ADVISOR : ASSOC.
PROF. VIWAT VCHIRAWONGKWIN, Dr. rer. nat., 39 pp.

Application of quantum theory in chemical problem is acceptable by many

chemists around the world. One- and two-electron integrals are the most time-

consuming part limiting quantum theory application for large scale chemical system.

Operation on graphic processing units (GPUs) for quantum chemistry calculation is

one choice for accelerating the calculations. In this work, the calculations of one-

and two-electron integrals were implemented for MOCCA program on GPU. Accord-

ing to the results, the one- and two-electron integrals calculated from the MOCCA

program are realiable compared with GAMESS (US) program. The accuracy of one-

and two-electron integrals calculated by MOCCA program is better than the level of

1×10−11 compared with GAMESS (US) program. MOCCA program can calculate

faster than GAMESS (US) program about 150-7000 times.

Department :Chemistry Student’s Signature..

Field of Study :Chemistry Advisor’s Signature...

Academic Year :2016

vi

ACKNOWLEDGEMENTS

This thesis was success by my endeavor and good support from my adviser,

Assoc. Prof. Dr. Viwat Vchirawongkwin, and members in my research groups. I

impress for their suggestions and friendship. The knowledge and experience from

master’s degree study will be the basis for my future.

I would like to specially appreciate and acknowledge Assoc. Prof. Dr. Vudhichai

Parasuk, Dr. Nattapong Paiboonvorachat and Dr. Wikorn Punyain who acted as the

thesis exam committee members and took the time to inspect and comment on this

thesis.

Furthermore, I would like to appreciate Departmetn of Chemistry Faculty of Science

Chulalongkorn University for the support of the infrastructure. I would like to

thank National Research University Project of Thailand’s Office of Higher Education

Commission (WCU-58-017-FW). I also thanks science achievement scholarship of

thailand (SAST) for giving me an oppotunity for study in master’s degree.

Finally, I would like to acknowledge my family for their belief in me.

CONTENTS

Page
ABSTRACT IN THAI . iv
ABSTRACT IN ENGLISH . v
ACKNOWLEDGEMENTS . vi
CONTENTS . vii
LIST OF TABLES . ix
LIST OF FIGURES . x

CHAPTER I Introduction . 1
1.1 Literature Review . 1

CHAPTER II Theory and Method . 4
2.1 Schrödinger equation . 4
2.2 Gaussian function and one- and two-electron integrals 5
2.3 Compute Unified Device Architecture (CUDA) 6

CHAPTER III Calculation Detail . 9
3.1 Molecular Orbital Calculation with CUDA program (MOCCA) 9
3.2 One- and two-electron integrals calculation implementation 9

3.2.1 Overlap integral . 11
3.2.2 Kinetic energy integral . 14
3.2.3 Potential integral . 16
3.2.4 Two-electron integral . 19

3.3 Calculation accuracy testing . 23
3.3.1 Direct accuracy testing . 23
3.3.2 Hartree-Fock calculation . 26

3.4 Calculation speed testing . 26

CHAPTER IV Results and Discussion . 28
4.1 Calculation accuracy . 28

viii

Page

4.1.1 Direct accuracy testing . 28

4.1.2 Hatree-Fock calculation . 31
4.2 Calculation speed testing . 32

CHAPTER V Conclusion . 35
VITAE . 39

ix

LIST OF TABLES

Table Page
3.1 The number of two-electron integrals calculated by MOCCA and

GAMESS (US) program of each calculation testing cases. 23
3.2 Two-electron integrals of (sp,df), (sd,pf) and (sf,pd) groups. 24
3.3 Coordinate of atomic orbitals for (sp,df), (sd,pf) and (sf,pd)-type two-

electron integrals. 25
3.4 Angular momentums, exponents, and contraction coefficients of gaussian-

type functions for atomic orbitals simulation. 25
3.5 Exponent and contraction coefficient of gaussain-type function used to

simulate s-type atomic orbitals of hydrogen atom for each calculation
testing cases (A, B and C). 27

4.1 Maximum error and average error (×10−16) of one- and two-electron
integrals calculation results of methane, water and carbon monoxide
molecules. 30

4.2 Maximum error of all two-electron integrals in (sp,df), (sd,pf) and (s-
f,pd) groups calculated by MOCCA program compared with GAMESS
(US) program. 31

4.3 Electronic energies (a.u.) calculated by Hartree-Fock method of three
molecules including methane, carbon monoxide and water molecules
simulated with 6-31G basis set. Num is the number of calculated
two-electron integrals for Hartree-Fock calculation. 32

4.4 Calculation speed testing results of GAMESS (US) program. Num is
the number of integrals evaluated by GAMESS (US) program. Shell
label the exponent and contraction coefficient using to simulate s-type
atomic orbital of hydrogen atom with coemd-2 basis set. 33

x

LIST OF FIGURES

Figure Page
2.1 CPU-GPU corporation. 6
2.2 The device memory model is managed by device and host code. . . 7
2.3 Kernel assignment of host to a grid of blocks for same execution of

all threads consisting in the grid. 8
3.1 Flowchart of electron integral evaluation. 11
4.1 The performance of MOCCA and GAMESS (US) program, which

presented by comparing integrals/second (horizon axis) in the base
10 logalithm function and theoretical models including H30 (H30),
H40 (H40) and H50 (H50). 34

CHAPTER I

INTRODUCTION

1.1 Literature Review

Quantum theory has been developed for interpreting the properties of the system
containing very small particles. Phenomena of those systems can be described by
solving their Schrödinger equations. Development of the solution of those equation
have been ongoing [1], and it can be applied in chemistry such as interpreting chem-
ical phenomena and predicting properties of molecules. To solve the Schrödinger
equation of many cases, it requires one- and two-electron integrals. Like other sci-
entific calculations, the problem for the applications of quantum theory in chemistry
is the execution of a massive amount of data [2, 3], thus requiring an efficient com-
putation.

Development of microprocessors based on a single CPU for sequential programs
by increasing clock speed had been focused by many computer developers, resulting
in a rapid performance increase and cost reduction. Energy-consumption and heat-
dissipation are the main problems for increasing clock speed [4,5]. The development
of microprocessors based on a multiple processing units or multi-core processors
designed for sequential and parallel applications are the solution of those problem-
s. Multi-core processors development maintains the execution speed of sequential
program. The cost of microprocessor based on a multi-core CPU is so expensive,
limiting the parallel software development to a small number of software developers.
The graphics processing units (GPUs) initially have been developed for a demand
of video game players for lighting the graphic operation of CPU [2]. The execution
model of GPUs is the single instruction multiple threads (SIMT) [6]. To compare

2

theoretically between multi-core CPU and many-core GPUs, the performance of G-
PUs are greater although CPU has a higher clock rate speed, however, there are
many of much smaller cores in GPUs. In addition to graphic applications, scientific
and other calculations can be implemented on GPUs [7]. For the initial time of using
GPUs for non-graphical applications, scientific calculation implementation was not
popular for many developers due to the difficulty in programing. However, nVidia
has developed a general-purpose GPUs (GPGPUs) and Compute Unified Device Ar-
chitecture (CUDA) to facilitate developer for GPGPU programing [8]. CUDA is an
application programing interface (API), based on C/C++ and Fortran programming
language. For accleration of massive-data calculation, the computation of scientific
works on GPUs is one of the good choices at the present time. Researchers imple-
ment many computational methods on GPU [4,7–9].

Our research group also has developed a computational chemistry program, name-
ly Molecular Orbital Calculation with CUDA (MOCCA) [10]. Hatree-Fock method
has been implemented in MOCCA program, already. Unfortunately, MOCCA pro-
gram did not have its own one- and two-electron integrals calculation codes. This
work is the implementation of one- and two-electron integrals for MOCCA program.
One- and two-electron integrals parts are the most time-consuming step in quantum
chemistry calculations. For one-electron integrals, there are overlap integral, kinetic
energy integral and potential integral. Electron repulsion integral is two-electron
integrals. Many research works have implemented efficient two-electron integral-
s calculation code on GPU [2, 11–15]. Yasuda implemented the Rys quadrature
method, one of the two-electron integral schemes, on nVidia GeForce 8800 GTX
GPU for single precision [11]. It was applied to Taxol and Valinomycin molecules,
simulated with 3-21G and 6-31G basis set for calculation testing. The preliminary
timing results show the considerable speedup over the calculation on CPU for s
and p functions. Subsequently, he and his co-worker further developed the algo-
rithm based on McMurchie and Davidson (MD) method for efficient calculation of
d function on GPU [12]. Ufimtsev and Marinez implemented the Rys quadrature
method on nVidia GeForce 8800 GTX GPU for single precision [2]. The program
was applied to a system of 64 hydrogen atoms simulated with STO-6G and 6-311G

3

basis sets compared with GAMESS (US) program running on AMD Opteron 175
CPU. The timing results showed that implemented program on GPU can calculate
faster than GAMESS (US) for more than 100 times in some cases. Asadchev and
his co-workers developed two-electron integrals calculation based on Rys quadrature
method for GAMESS (US) program on GPU [13]. The algorithm was designed for
efficient calculation extended to the g function. The performance of the algorithm
was evaluated on the nVidia GeForce GTX 275 and the nVidia Tesla T10 GPUs.
The calculation on nVidia Tesla T10 GPU showed the speedups are around 25 times
for double precision and 50 times for single presion compared with CPU. Miao and
his co-worker implemented two-electron integrals calculation based on recurrence
relation methods (VRR and HRR) for s, p and d functions on GPU [14]. It was
applied to self-consistent field (SCF) calculations. From calculation results, speedups
of calculation on GPUs reach 10 to 100 times compared to CPU and the accuracies
are better than 1×10−7 for systems with more than 4,000 basis functions. Afterward,
Miao and his-coworker developed the two-electron integrals calculation algorithm for
g function. [15]. It was applied to SCF calculation and the calculation result show
speedups of 10 to 18 times compared to CPU.

In this research, the calculation accuracy and speed of implemented one- and
two-electron integrals calculation on MOCCA program were tested comparing with
GAMESS (US) program [16]. For accuracy examination, one- and two-electron
integrals calculation of MOCCA program performed on three molecule, namely,
methane, carbonmonoxide and water with STO-3G, 3-21G and 6-31G basis sets. In
addition, the groups of (sp,df), (sd,pf) and (sf,pd) two-electron integrals of ammo-
nia molecule with aug-cc-pVDZ-RI basis set were calculated on MOCCA program
compared with GAMESS (US) program for accuracy testing. One- and two-electron
integrals were applied to Hartree-Fock calculation for methane, carbonmonoxide and
water molecules with 6-31G basis set for accuracy examination. The speed exami-
nation of two-electron integrals calculation of MOCCA program performed on three
theoretical models consisting of H30, H40 and H50. All theoretical models contain
s-type atomic orbitals only.

CHAPTER II

THEORY AND METHOD

2.1 Schrödinger equation

Quantum chemistry is a branch of chemistry that it applies quantum mechanics to
solve the problem. For quantum mechanics, the state of a system can be described
by the wave function or state function. Quantum theory can be applied correctly
for very small particles such as electrons. The fundamental equation of quantum
mechanics is the time-independent Schrödinger equation.

ĤΨ = EΨ. (2.1)

From Eq. (2.1), taking the Harmiltonian operator, Ĥ , on the wave function, Ψ, will
get the total energy, E, of the system. For quantum chemistry, the system is atomic
or molecular system. Total energy consists of a kinetic energy of nuclei, Kn, a
kinetic energy of electron, Ke, a nuclear-nuclear repulsion, Vnn, an electron-electron
repulsion, Vee, and a nuclear-electron attraction, Vne,

E = Kn +Ke + Vnn + Vee + Vne.

A combination of all nuclei and electrons’s wave functions is the total wave function
of the system or molecule. It is hard to solve the equation that the nuclei have
uncertain coordinates. Born-Oppenheimer approximation has been utilized to solve
this problem by assuming the nuclei are immobile compared with electrons [17]. All
nuclei’s kinetic energy is vanished. From this approximation, the total wave function
can be separated and written as:

Ψtotal = ΨelectronsΨnucleus.

5

Electronic wavefunction can be approximated by a linear combination of atomic
orbitals or atomic wave function (LCAO). The electronic Hamiltonian, focused on
electrons, of the molecule can be written as:

Ĥelectronic = −1

2

2n∑
i=1

∇2
i −

2n∑
i=1

∑
all µ

Zµ
rµi

+
2n∑
i=1

2n∑
j>i

1

rij
.

where 2n is the number of electrons.

2.2 Gaussian function and one- and two-electron integrals

The set of mathematical functions used to approximate an atomic wave function are
called basis function. In practice, there are complicated evaluation such as one-
and two-electron integrals. It requires an appropiate function such as Gaussian-type
functions (Eq. (2.2)) to facilitate such evaluation.

χ(A,α, l,m, n) = xlAy
m
A z

n
A exp(−αr2A), (2.2)

where l, m and n are angular momenta of the system. This function is the most
popular function for calculation in many commercial quantum chemistry programs,
because the product of two Gaussians on two centers is a Gaussian with a third
new center. Slater-type function is one of the most appropriate function for ap-
proximating Hydrogen atomic wave function. Slater-type functions are not popular
for simulation in many works. It require excessive calculation times. On the other
hand, Gaussian type-function can be used to simulate the wave function of Hydrogen
atom. A gaussian function (STO-1G) is not sufficient to simulate Hydrogen atom-
ic wave function as approximate as Slater-type function. Combination of several
Gaussian-type functions (STO-3G) give a good approximation of Hydrogen atomic
wave function nearby Slater-type function. To solve the molecular electronic wave
function, all of the calculation methods for electronic energy evaluation require one-
and two-electron integrals results. There are many research works related to the
solution or calculation method of one- and two-electron integral such as recurrence
relation, Rys quadrature method and others [18–22]. In this research, one- and
two-electron integrals calculation methods developed by Taketa’s group [18] were

6

implemented into MOCCA program on GPU. For this method, the expression of
one- and two-electron integrals are completely general, so the electron integrals can
be calculated over the basis functions of arbitrarily high angular momentum.

2.3 Compute Unified Device Architecture (CUDA)

CUDA is a general-purpose parallel computing platform and programming model
developed by NVIDIA to facilitate developers for programming on GPU. CUDA
is designed for supporting cooperation of CPU and GPUs. For software developed
by CUDA, there are host and device. The former phase operates sequentially on
CPU and the latter operates parallel on GPU. For calculation of GPU, the CPU is the

Figure 2.1: CPU-GPU corporation.

main processor while the GPU is a coprocessor for parallel computation. Instructions
and data are sent from the host phase to the device phase. The calculation model
of CPU-GPU coporation is master-slave model (Fig. 2.1) [23]. The slave node
parallel operates the same instruction with different input data from the master node.
After GPU execution, calculated data are transfered from GPU to CPU. For data
management of GPU calculation, CUDA memory model is supported by application
programming interface function. Programmers need to allocate memory and transfer

7

data from CPU to GPU. There are several type of GPU memory (Fig. 2.2) [24].

R/W per-thread registers

(Device) Grid

Block (0, 0) Block (1, 0)

Shared Memory

Registers Registers

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Transfer data to/from per-grid

global and constant memories

Global

MemoryHost

Constant

Memory

R/W per-thread local memory

R/W per-block shared memory

R/W per-grid global memory

Read only per-grid constant

memory

–

–

–

–

–

–

Host code can

Device code can:•

•

Figure 2.2: The device memory model is managed by device and host code.

For global and constant memory, they are managed by CPU. Constant variables are
stored in constant memory for using by kernel computation. Global and constant
memory can be utilized by all thread for computing. There are shared memory in
every streaming multiprocessor (SM). Data transfer rate of shared memory is higher
than global memory. Shared memory have been used for storing data, which are
often used for computation. The register memory are used by every therad privately.

8

The model for parallel execution provided by CUDA is blocks and threads in a
grid (Fig.2.3) [24]. A grid has many blocks having a unique address (blockIdx) and
each block consists of many thread having unique address (threadIdx). Address of
block and thread can be used to identify each thread in block. There are multiple
SM per GPU. Hundreds of threads can be executed on each SM. So thousands of
threads can be executed concurrently on a GPU. The architechture of GPU is a
Single Instruction Multiple Thread (SIMT) [6]. Groups of 32 threads called warps
execute the same instruction at the same time [6].

Host Device

Grid 1

Kernel

1

Block

(0, 0)

Block

(1, 0)

Grid 2

Block (1, 1)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Kernel

2

Block

(0, 1)

Block

(1, 1)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Figure 2.3: Kernel assignment of host to a grid of blocks for same execution of all
threads consisting in the grid.

CHAPTER III

CALCULATION DETAIL

3.1 Molecular Orbital Calculation with CUDA program (MOC-
CA)

MOCCA program is an object-oriented program (OOP) implemented via CUDA
C/C++ language [10]. This program has been designed with polymorphism and
inheritance, allowing developers for convenient further development. There are t-
wo main objects consisting of Molecule object and methodological objects. The
Molecule object operating on CPU, link and controls other objects, while the method-
ological objects operate on GPU. The main process is controlled by Molecule object
operation consists of reading file, data rearrangement, selecting method and writing
results. For the first step, an input file is read data for all contents to register in the
object memories. For the data rearrangement step, the Molecule object transfers all
data from the Read object to store in other objects. For selecting method step, the
Molecule object interacts to a kind of calculation method’s object to compute the
results. All requirement of data are loaded to the calculation method object. After
calculation is success, all results are copied back from the method object and the
results are written to a file. For calculation of MOCCA program, atomic orbital-
s are simulated by Gaussian-type function or linear combination of Gaussian-type
functions.

3.2 One- and two-electron integrals calculation implementation

One-electron integrals including overlap, kinetic and potential integrals and two-
electron integrals calculation method developed by Taketa group [18] were imple-
mented into MOCCA program. Organizing threads of the implemented program, grid

10

and block are organized as a 1-dimension array of blocks and a 1-dimension array of
threads, respectively. Calculation accuracy and speed of implemented one- and two-
electron integrals calculations were compared to the standard program (GAMESS
(US) program). Implemented one- and two-electron integrals calculations were ap-
plied to Hartree-Fock calculation for electronic energies (a.u.) evaluation compared
with GAMESS (US) program. The Hartree-Fock calculation part of MOCCA pro-
gram was developed by my co-worker [10]. GAMESS (US) program is free and
acceptable program. It is widely used by many researchers. GAMESS (US) pro-
gram was implemented on the Intel Core i7-980x CPU while MOCCA program was
implemented on the NVIDIA GeForce GTX 970 Ti GPUs.

Fig. 3.1 shows the flowchart of electron integral evaluation. Firstly, the input file
is read to CPU, and data of input file is prepared for calculation on GPU. Then, the
device memory is allocated on GPU for data of input file. The data are transfered
from CPU to the allocated memory on GPU. Variables for calculation procedure are
defined and initialized. After that, electron integrals are calculated. All equations
and pseudo codes for the implementation of overlap integral, kinetic energy integral,
potential integral and two-electron integral are shown below. The calculation results
are stored on GPU memory and then calculation results have been transfered from
GPU to CPU. Finally, output file is written on CPU.

11

Figure 3.1: Flowchart of electron integral evaluation.

3.2.1 Overlap integral

Define χ(A,α1, l1,m1, n1) = xl1Ay
m1
A zn1

A exp(−α1r
2
A) as a function of atomic orbital

centered at A and χ(B,α2, l2,m2, n2) = xl2By
m2
B zn2

B exp(−α2r
2
B) as a function of

atomic orbital centered at B. The new center of product of two function is (Px, Py, Pz)

;

Px =
α1Ax + α2Bx

α1 + α2

, Py =
α1Ay + α2By

α1 + α2

, Pz =
α1Az + α2Bz

α1 + α2

Overlap integral is the overlap volume between two atomic orbitals of moleucle.
Overlap integral equation [18] is written as:

S =

∫
χ(A,α1, l1,m1, n1)χ(B,α2, l2,m2, n2) dx dy dz

12

=

(
Π

γ

)3/2

exp

(
−α1α2AB

2

γ

)
[(l1+l2)/2]∑

i=0

f2i(l1, l2, PAx, PBx)
(2i− 1)!!

(2γ)i

[(m1+m2)/2]∑
j=0

f2j(m1,m2, PAy, PBy)
(2j − 1)!!

(2γ)j

[(n1+n2)/2]∑
k=0

f2k(n1, n2, PAz, PBz)
(2k − 1)!!

(2γ)k

where AB is the distance between A and B atoms.

Π = 3.14159265358979323846

PAx = Px − Ax

γ = α1 + α2

f2i(l1, l2, PAx, PBx) =

i+j=2k∑
i=0,l1

∑
j=0,l2

PAx
l1−1
(
l1
i

)
PBx

l2−1
(
l2
j

)
(2i− 1)!! = 1× 3× 5×× (2i− 1)

13

The pseudo code for overlap integral implementation is shown below.

The pseudo code for overlap integral implementation.

function Overlap_integral
START
assign pi constant = 3.14159265358979323846
assign threehalf constant = 1.5
assign integer i = 0
assign integer j = 0
assign overlap_result = 0

declare variable gamma
declare vector P, AB, PA, PB

declare orbital A, B;
assign coordinate to A atomic orbital
assign coordinate to B atomic orbital

calculate square of distance between A and B orbital (AB2)

for(assign i=0; i < number of premitive gaussian function of A atomic orbital; i++)
for(assign j=0; j < number of premitive gaussian function of B atomic orbital; j++)

gamma = premitive gaussian function of A[i].alpha + premitive gaussian function of B[j].alpha
calculate new center of multiplication of premitive gaussian function of A[i] and B[i] and assign it to P variable.

PA = vector P - vector A
PB = vector P - vector B

overlap_result += premitive gaussian function of A[i].constant
* premitive gaussian function of B[j].constant
* premitive gaussian function of A[j].normalization constant
* premitive gaussian function of B[j].normalization constant
* pow((pi/gamma) , (threehalf))
* exp(-(premitive gaussian function of A[i].alpha
* premitive gaussian function of B[j].alpha*AB2)/gamma)
* f_2i(A atomic orbital.lx, B atomic orbital.lx, PA.x, PB.x, gamma)
* f_2j(A atomic orbital.ly, B atomic orbital.ly, PA.y, PB.y, gamma)
* f_2k(A atomic orbital.lz, B atomic orbital.lz, PA.z, PB.z, gamma)

end for
end for

return overlap_result
END

14

3.2.2 Kinetic energy integral

Defined χ(A,α1, l1,m1, n1) = xl1Ay
m1
A zn1

A exp(−α1r
2
A) is a function of atomic orbital

centered at A and χ(B,α2, l2,m2, n2) = xl2By
m2
B zn2

B exp(−α2r
2
B) is a function of

atomic orbital centered at B. Kinetic energy integral equation [18] is written as:

KE =

∫
χ(A,α1, l1,m1, n1)(

−∇2

2
)χ(B,α2, l2,m2, n2) dr

= α2{2(l2 +m2 + n2) + 3}S(l2,m2, n2)− 2α2
2{S(l2 + 2,m2, n2)

+ S(l2,m2 + 2, n2) + S(l2,m2, n2 + 2)}

− 1

2
{l2(l2 − 1)S(l2 − 2,m2, n2) +m2(m2 − 1)S(l2,m2 − 2, n2)

+ n2(n2 − 1)S(l2,m2, n2 − 2)}

where

S(l2,m2, n2) =

∫
χ(A,α1, l1,m1, n1)χ(B,α2, l2,m2, n2) dx dy dz

15

The pseudo code for kinetic energy integral implementation is shown below.

The pseudo code for kinetic energy integral implementation.

function Kinetic_integral
START
assign pi constant = 3.14159265358979323846
assign threehalf constant = 1.5
assign integer i = 0
assign integer j = 0
assign kinetic_result = 0
declare variable gamma
declare vector P, AB, PA, PB
declare orbital A, B
assign coordinate to A atomic orbital
assign coordinate to B atomic orbital

calculate square of distance between A and B orbital (AB2)
for(assign i=0; i < number of premitive gaussian function of A atomic orbital; i++)

for(assign j=0; j < number of premitive gaussian function of B atomic orbital; j++)
gamma = premitive gaussian function of A[i].alpha + premitive gaussian function of B[j].alpha
calculate new center of multiplication of premitive gaussian function of A[i] and B[i] and assign it to P variable.
PA = vector P - vector A
PB = vector P - vector B

assign u constant = B atomic orbital.lx - 2
if(u<0) u = 0
assign v constant = B atomic orbital.ly - 2
end if
if(v<0) v = 0
assign w constant = B atomic orbital.lz - 2
end if
if(w<0) w = 0
end if

kinetic_result += premitive gaussian function of A[i].constant
* premitive gaussian function of B[j].constant
* premitive gaussian function of A[j].normalization constant
* premitive gaussian function of B[j].normalization constant
* (((premitive gaussian function of B[j].alpha)
* ((2 * (B atomic orbital.lx + B atomic orbital.ly + B atomic orbital.lz)) + 3)
* Overlap_integral(l2,m2,n2)) - (2*pow(premitive gaussian function of B[j].alpha,2))

* (Overlap_integral(l2+2,m2,n2) + Overlap_integral(l2,m2+2,n2) + Overlap_integral(l2,m2,n2+2)) -0.5
* (((B atomic orbital.lx)*(B atomic orbital.lx - 1) * Overlap_integral(l2-2,m2,n2) + ((B atomic orbital.ly)

* (B atomic orbital.ly - 1)*Overlap_integral(l2,m2-2,n2) + ((B atomic orbital.lz)*(B atomic orbital.lz - 1)
* Overlap_integral(l2,m2,n2-2))))

end for
end for

return kinetic_result
END

16

3.2.3 Potential integral

Defined χ(A,α1, l1,m1, n1) = xl1Ay
m1
A zn1

A exp(−α1r
2
A) is a function of atomic orbital

centered at A and χ(B,α2, l2,m2, n2) = xl2By
m2
B zn2

B exp(−α2r
2
B) is a function of

atomic orbital centered at B. The position of nucleus is (Cx, Cy, Cz). The new
center of product of two function is (Px, Py, Pz) ;

Px =
α1Ax + α2Bx

α1 + α2

, Py =
α1Ay + α2By

α1 + α2

, Pz =
α1Az + α2Bz

α1 + α2

Potential integral or nuclear attraction integral is the potential energy of attraction
between electrons in atomic orbital and nucleus of molecule. Potential integral
equation [18] is written as:

NAI =

∫
χ(A,α1, l1,m1, n1)

1

rC
χ(B,α2, l2,m2, n2) dr

=
2Π

γ
exp

(
−α1α2AB

2

γ

)∑
i,r,u

Ai,r,u(l1, l2, Ax, Bx, Cx, γ)

∑
j,s,v

Aj,s,v(m1,m2, Ay, By, Cy, γ)
∑
k,t,w

Ak,t,w(n1, n2, Az, Bz, Cz, γ)FV

(
CP

2

4 ∈

)
(3.1)

where

V = i+ j + k − 2(r + s+ t)− (u+ v + w)

Ai,r,u(l1, l2, Ax, Bx, Cx, γ) = (−1)ifi(l1, l2, PAx, PBx)
(−1)ui!PCx

2
(0.25γ)r+u

r!u!(i− 2r − 2u)!

PCx = Px − Cx , ∈=
0.25

γ
, γ = α1 + α2

Π = 3.14159265358979323846

FV (t) =

∫ 1

0

u2V exp(−tu2)du

In Eq. (3.1), the summation with respect ot indexes i, r and u extend from 0 to
l1 + l2, [i/2] and [(i− 2r)/2], respectively. The range of (j, s, v) or (k, t, w) can be
found in the same way.

17

The pseudo code for potential integral implementation is shown below.

The pseudo code for potential integral implementation.

function Potential_integral
START
assign pi constant = 3.14159265358979323846
assign integer rr = 0
assign integer vv = 0
assign potential_result = 0

declare variable gamma
declare vector P, AB, PA, PB, PC

declare orbital A, B
declare nucleus C
assign coordinate to A atomic orbital
assign coordinate to B atomic orbital
assign coordinate to C nucleus

calculate square of distance between A and B orbital (AB2)

for(rr=0; rr < number of premitive gaussian function of A atomic orbital; rr++)
for(vv=0; vv < number of premitive gaussian function of B atomic orbital; vv++)

gamma = premitive gaussian function of A[rr].alpha + premitive gaussian function of B[vv].alpha

calculate new center of multiplication of premitive gaussian function of A[rr]
and B[vv] and assign it to P variable.

PA = vector P - vector A
PB = vector P - vector B
PC = vector P - vector C

assign t = pow(distance between P and C,2) * gamma
assign F array
allocate memory for F array
calculate auxiliary function results and put them to F array
assign mocca_type half_NAI = 0

for(assign integer i = 0; i <= (A atomic orbital.lx + B atomic orbital.lx); i++)
for(assign integer r = 0; r <= i/2; r++)

for(assign integer u = 0; u <= (i - 2*r)/2 ; u++)

for(assign integer j = 0; j <= (A atomic orbital.ly + B atomic orbital.ly); j++)
for(assign integer s = 0; s <= j/2; s++)

for(assign integer v = 0; v <= (j - 2*s)/2; v++)

for(assign integer k = 0; k <= (A atomic orbital.lz + B atomic orbital.lz); k++)
for(assign integer t = 0; t <= k/2; t++)

for(assign integer w = 0; w <= (k - 2*t)/2; w++)

assign unsigned integer cof = i + j + k - 2*(r + s + t) - (u + v + w)
half_NAI = half_NAI + (A_function(i, r, u, A atomic orbital.lx, B atomic orbital.lx, PA.x, PB.x, PC.x, gamma))

* (A_function(j, s, v, A atomic orbital.ly, B atomic orbital.ly, PA.y, PB.y, PC.y, gamma))
* (A_function(k, t, w, A atomic orbital.lz, B atomic orbital.lz, PA.z, PB.z, PC.z, gamma))*F[cof]

18

end for end for end for
end for end for end for
end for end for end for

potential_result += premitive gassian function of A[rr].constant
* premitive gaussian function of B[vv].constant
* premitive gaussian function of A[rr].normalization constant
* premitive gaussian function of B[vv].normalization constant
* ((2*pi)/gamma) * exp(-(premitive gaussian function of A[rr].alpha
* premitive gaussian function of B[vv].alpha*AB2)/gamma)
* half_NAI

free memory of F array

end for
end for
END

19

3.2.4 Two-electron integral

Defined χ(A,α1, l1,m1, n1) = xl1Ay
m1
A zn1

A exp(−α1r
2
A) is a function of atomic orbital

centered at A and χ(B,α2, l2,m2, n2) = xl2By
m2
B zn2

B exp(−α2r
2
B) is a function of

atomic orbital centered at B. The new center of product of two function is (Px, Py, Pz)

:

Px =
α1Ax + α2Bx

α1 + α2

, Py =
α1Ay + α2By

α1 + α2

, Pz =
α1Az + α2Bz

α1 + α2

Defined χ(C, α3, l3,m3, n3) = xl3Cy
m3
C zn3

C exp(−α3r
2
C) is an function of atomic or-

bital centered at C and χ(D,α4, l4,m4, n4) = xl4Dy
m4
D zn4

D exp(−α4r
2
D) is an function

of atomic orbital centered at D. The new center of product of two function is
(Qx, Qy, Qz) :

Qx =
α3Cx + α4Dx

α3 + α4

, Qy =
α3Cy + α4Dy

α3 + α4

, Qz =
α3Cz + α4Dz

α3 + α4

Electron repulsion integral is the potential energy of repulsion between electrons
in atomic orbitals of molecule. Electron repulsion integral equation [18] is written
as:

ERI =

∫∫
χ(A,α1, l1,m1, n1)χ(B,α2, l2,m2, n2)

1

r12
χ(C, α3, l3,m3, n3)χ(D,α4, l4,m4, n4)

dr1 dr2

=
2Π2

γ1γ2
(

Π

γ1 + γ2
)1/2 exp

(
−α1α2AB

2

γ1
− α3α4CD

2

γ2

)
×

∑
i1,i2,r1,r2,u

Bi1,i2,r1,r2,u(l1, l2, Ax, Bx, Px, γ1|l3, l4, Cx, Dx, Qx, γ2)

×
∑

j1,j2,s1,s2,v

Bj1,j2,s1,s2,v(m1,m2, Ay, By, Py, γ1|m3,m4, Cy, Dy, Qy, γ2)

×
∑

k1,k2,t1,t2,w

Bk1,k2,t1,t2,w(n1, n2, Az, Bz, Pz, γ1|n3, n4, Cz, Dz, Qz, γ2)FV

(
PQ

2

4δ

)
(3.2)

20

where

V = i1 + i2 + j1 + j2 + k1 + k2 − 2(r1 + r2 + s1 + s2 + t1 + t2)− (u+ v + w)

Bi1,i2,r1,r2,u(l1, l2, Ax, Bx, Px, γ1|l3, l4, Cx, Dx, Qx, γ2)

= (−1)i2fi1(l1, l2, PAx, PBx)fi2(l3, l4, QCx, QDx)

× i1!i2!

(4γ1)i1(4γ2)
i
2δ
i1+i2

(4γ1)
r1(4γ2)

r2δr1+r2

r1!r2!(i1 − 2r1)!(i2 − 2r2)!

[i1 + i2 − 2(r1 − r2)]!
(−1)up

i1+i2−2(r1−r2)−2uδu

x

u![i1 + i2 − 2(r1 + r2)− 2u]!

γ1 = α1 + α2

γ2 = α3 + α4

px = Qx − Px

δ = 0.25(
1

γ1
+

1

γ2
)

Π = 3.14159265358979323846

FV (t) =

∫ 1

0

u2V exp(−tu2)du

In Eq. (3.2), the summation with respect to the indices i1, i2 , r1 , r2 and u

extend from 0 to l1+ l2, l3+ l4 , [i1/2] , [i2/2] and [(i1+ i2)/2−r1−r2], respectively.
The range of (j1, j2, s1, s2, v) or (k1, k2, t1, t2, w) can be found in the same way.

21

The pseudo code for two-electron integral implementation is shown below.

The pseudo code for two-electron integral implementation.

function Electron reulsion integral
START
assign two constant = 2
assign mocca_type mione constant = -1
assign mocca_type pi constant = 3.14159265358979323846
assign mocca_type twohalf constant = 0.5
assign mocca_type threehalf constant = 1.5
declare integer variable rr = 0
declare integer vv = 0
declare integer ss = 0
declare integer tt = 0
declare mocca_type ERI_result = 0

declare mocca_type gamma_1, gamma_2
declare vecter P, Q, PA, PB, QC, QD, QP

declare orbital A, B, C, D
assign coordinate to A atomic orbital
assign coordinate to B atomic orbital
assign coordinate to C atomic orbital
assign coordinate to D atomic orbital

for(rr=0; rr < number of premitive gaussian function of A atomic orbital; rr++)
for(vv=0; vv < number of premitive gaussian function of B atomic orbital; vv++)

for(ss=0; ss< number of premitive gaussian function of C atomic orbital; ss++)
for(tt=0; tt< number of premitive gaussian function of D atomic orbital; tt++)

gamma_1 = premitive gaussian function of A[rr].alpha + premitive gaussian function of B[vv].alpha
gamma_2 = premitive gaussian function of C[ss].alpha + premitive gaussian function of D[tt].alpha

calculate new center of multiplication of premitive gaussian function of A[rr]
and B[vv] and assign it to P variable.

calculate new center of multiplication of premitive gaussian function of C[ss]
and D[tt] and assign it to P variable.

PA = vector P - vector A
PB = vector P - vector B
QC = vector Q - vector C
QD = vector Q - vector D
QP = vector Q - vector P

assign F array
allocate memory for F array
assign mocca_type delta = 4*gamma_1*gamma_2/(gamma_1 + gamma_2)
assign mocca_type t = 0.25 * (P.distance(P, Q)*P.distance(P, Q)) * delta
calculate auxiliary function results and put them to F array

assign half_ERI = 0

for(assign unsigned integer i1 = 0; i1 <= (A atomic orbital.lx + B atomic orbital.lx); i1++)

22

for(assign unsigned integer i2 = 0; i2 <= (C atomic orbital.lx + D atomic orbital.lx); i2++)
for(assign unsigned integer r1 = 0; r1 <= i1/2 ; r1++)
for(assign unsigned integer r2 = 0; r2 <= i2/2 ; r2++)

for(unsigned int u = 0; u <=((i1 + i2)/2 - r1 - r2) ; u++)

for(assign unsigned int j1 = 0; j1 <= (A atomic orbital.ly + B atomic orbital.ly); j1++)
for(assign unsigned int j2 = 0; j2 <= (C atomic orbital.ly + D atomic orbital.ly); j2++)

for(assign unsigned int s1 = 0; s1 <= j1/2 ; s1++)
for(assign unsigned int s2 = 0; s2 <= j2/2 ; s2++)

for(unsigned int v = 0; v <= ((j1 + j2)/2 - s1 - s2) ; v++)

for(unsigned int k1 = 0; k1 <= (A atomic orbital.lz + B atomic orbital.lz); k1++)
for(unsigned int k2 = 0; k2 <= (C atomic orbital.lz + D atomic orbital.lz); k2++)

for(unsigned int t1 = 0; t1 <= k1/2 ; t1++)
for(unsigned int t2 = 0; t2 <= k2/2 ; t2++)

for(unsigned int w = 0; w <= ((k1 + k2)/2 - t1 - t2) ; w++)

unsigned int cof = i1 + i2 + j1 + j2 + k1 + k2 - 2*(r1 + r2 + s1 + s2 + t1 + t2) - u -v -w

half_ERI = half_ERI + (A.BFA_function(i1, i2, r1, r2, u, A atomic orbital.lx, B atomic
orbital.lx, C atomic orbital.lx, D atomic orbital.lx, PA.x, PB.x, QC.x, QD.x
,QP.x, gamma_1, gamma_2))*(A.BFA_function(j1, j2, s1, s2, v, A atomic
orbital.ly, B atomic orbital.ly, C atomic orbital.ly,D atomic orbital.ly
, PA.y, PB.y, QC.y, QD.y, QP.y, gamma_1, gamma_2))*(A.BFA_function(k1, k2, t1
, t2, w, A atomic orbital.lz, B atomic orbital.lz, C atomic orbital.lz,
D atomic orbital.lz, PA.z, PB.z, QC.z, QD.z, QP.z, gamma_1, gamma_2)) *F[cof]

end for end for end for
end for end for end for
end for end for end for

ERI_result += premitive gaussian function of A[rr].constant
* premitive gaussian function of B[vv].constant
* premitive gaussian function of C[ss].constant
* premitive gaussian function of D[tt].constant
* premitive gaussian function of A[rr].normalization constant
* premitive gaussian function of B[vv].normalization constant
* premitive gaussian function of C[ss].normalization constant
* premitive gaussian function of D[tt].normalization constant
* pow(pi,two)*2*pow((pi/(gamma_1 + gamma_2)),twohalf)
* pow(gamma_1,mione) * pow(gamma_2,mione)
* exp(-(premitive gaussian function of A[rr].alpha*premitive gaussian function of B[vv].alpha
* pow(distance between A and B,2))/gamma_1)
* exp(-(premitive gaussian function of C[ss].alpha
* premitive gaussian function of D[tt].alpha
* pow(distance between C and D,2))/gamma_2) * half_ERI

free memory of F array
end for
end for
end for
end for

return ERI_result
END

23

3.3 Calculation accuracy testing

Calculation accuracy testing of one- and two-electron integral of MOCCA program
is seperated into two parts, including direct accuracy testing and Hartree-Fock calcu-
lation. For direct accuracy testing, one- and two-electron integrals results of MOC-
CA program were compared directly with GAMESS (US) program. For Hartree-
Fock calculation, implemented one- and two-electron integrals were also applied
to Hartree-Fock calculation on MOCCA program compared with GAMESS (US)
program.

3.3.1 Direct accuracy testing

Direct accuracy testing of one- and two-electron integral of MOCCA program is
seperated into two parts, including full accuracy testing and special testing. For
full accuracy testing, one-electron integrals including overlap, kinetic and poten-
tial integrals and two-electron integrals of methane, carbon monoxide and water
molecules were calculated by MOCCA program compared with GAMESS (US) pro-
gram. Atomic orbitals of methane, carbon monoxide and water molecules were
simulated using STO-3G, 3-21G and 6-31G basis sets. The number of two-electron
integrals calculated by MOCCA program is not equal to GAMESS (US) program
(Table 3.1). Cauchy-Schwarz screening is available in GAMESS (US) program for
screening very little value of two-electron integrals. MOCCA program calculated all
of integrals of the system.

Table 3.1: The number of two-electron integrals calculated by MOCCA and
GAMESS (US) program of each calculation testing cases.

Basis set
CH4 H2O CO

GAMESS (US) MOCCA GAMESS (US) MOCCA GAMESS (US) MOCCA

STO-3G 921 6,561 228 2,401 512 10,000
3-21G 10,695 83,521 2,260 28,561 4,350 104,976
6-31G 10,695 83,521 2,260 28,561 4,350 104,976

24

All one- and two-electron integrals calculated by GAMESS (US) program of each
testing systems were compared to MOCCA program. The maximum and average
error of MOCCA program were investigated compared to GAMESS (US) program
using python language implemented program. The verification perform on Intel Core
i5 CPU. Maximum error and Average error were calculated by

Maximum error = max
1≤i≤num

∣∣RGAMESS (US)[i]−RMOCCA[i]
∣∣

Average error =

∑num
i=1

∣∣RGAMESS (US)[i]−RMOCCA[i]
∣∣

num
,

where RMOCCA[i] is the i order integral calculated by MOCCA program, RGAMESS (US)[i]

is the i order integral calculated by GAMESS (US) program, and num is the number
of integrals calculated by GAMESS (US) program.

For special testing, all two-electron integrals of one of (sp,df), (sd,pf) and (sf,pd)
groups of ammonia molecule with aug-cc-pVDZ-RI basis set were calculated by
MOCCA program compared with GAMESS (US) program. Table 3.2 show two-
electron integral of (sp,df), (sd,pf) and (sf,pd) groups.

Table 3.2: Two-electron integrals of (sp,df), (sd,pf) and (sf,pd) groups.

(sp,df) (sd,pf) (sf,pd)
(sp,df), (sp,fd), (sd,pf), (sd,fd), (sf,dp), (sf,pd),
(ps,df), (ps,fd), (ds,pf), (ds,fd), (fs,dp), (fs,pd),
(df,ps), (df,sp), (pf,sd), (pf,ds), (dp,sf), (dp,fs),
(fd,ps), (fd,sp) (fp,sd), (fp,ds) (pd,sf), (pd,fs)

Coordinates of s, p, d and f atomic orbital for calculation testing are shown in
Table 3.3. Angular momentum, exponent, and contraction coefficient of gaussian-
type function for atomic orbital simulation are shown in Table 3.4.

25

Table 3.3: Coordinate of atomic orbitals for (sp,df), (sd,pf) and (sf,pd)-type two-
electron integrals.

Atom (atomic orbital-type)
Coordinate (Bohr)

x y z

H (s) 1.0139900233640282 -0.6966744989081943 -0.7736725789922515
H (p) 1.0139353418889756 -0.3216725580090439 0.9901962696397845
H (d) 1.0139046391276065 1.0184033187174335 -0.2164947672177483
N (f) -0.2189257301552365 -0.0000040492583971 -0.0000020816689214

Table 3.4: Angular momentums, exponents, and contraction coefficients of gaussian-
type functions for atomic orbitals simulation.

Atom (atomic orbital-type)
Angular momentum

Exponent Contraction coefficient
l m n

H (s) 0 0 0 0.11272018383 1.0000000
H (p) 0 1 0 0.28586021512 1.0000000
H (d) 1 1 0 0.30382076276 1.0000000
N (f) 1 1 1 0.41976031664 1.0000000

MOCCA program calculated all integrals in the group but GAMESS (US) pro-
gram calculated only one of integral in the group. The maximum error of each
testing groups were investigated compared to GAMESS (US) program. The vertifi-
cation perform on Intel Core i5 CPU. Maximum error was calculated by

Maximum error = max
1≤i≤num

∣∣RGAMESS (US) −RMOCCA[i]
∣∣,

where RMOCCA[i] is the i order integral in the group calculated by MOCCA program,
RGAMESS (US) is one of integral in the group calculated by GAMESS (US) program,
and num is the number of integrals of the group calculated by MOCCA program.

26

3.3.2 Hartree-Fock calculation

Implemented one- and two-electron integrals calculations were applied to Hartree-
Fock calculation on MOCCA program for three molecules including methane, car-
bon monoxide and water molecules simulated with 6-31G basis set compared with
GAMESS (US) program. Before apply implemented one- and two-electron inte-
grals calculation to Hartree-Fock calculation of MOCCA program, the accuracy of
Hartree-Fock calculation of MOCCA program were tested by calculated electronic
energy (a.u.) compared with GAMESS (US) program using one- and two-electron
integrals results from GAMESS (US) program. For Hartree-Fock calculation, the
number of two-electron integrals calculated by MOCCA program is equal to the
number of two-electron integrals calculated by GAMESS (US) program for every
testing molecules. The absolute errors of calculation results of MOCCA program
compared with GAMESS (US) program were calculated by

Absolute error =
∣∣EMOCCA − EGAMESS (US)

∣∣,
where EMOCCA is electronic energy (a.u.) calculated by MOCCA program, and
EGAMESS (US) is electronic energy (a.u.) calculated by GAMESS (US) program.

3.4 Calculation speed testing

To avoid wrap divergence problem, (ss|ss)-type two-electron integral is selected for
the calculation speed comparision between MOCCA and GAMESS (US) program.
(ss|ss)-type two-electron integral was also implemented into MOCCA program. The
(ss|ss)-type two-electron integrals of linear-hydrogen models including H30, H40 and
H50 were calculated by MOCCA program. All hydrogen atoms in each models
have 1 s-type atomic orbital. Calculation testing is seperated into 3 cases including
A, B and C (Table 3.5). Each case have the different exponent for gaussian-type
function used to simulate s-type atomic orbital. Exponent and contraction coefficient
for gaussian-type function are extracted from coemd-2 basis set for hydrogen atom
[25]. From Table 3.5, first, third and fifth in column shell label the exponent and

27

contraction coefficient using to simulate first, third and fifth shell s-type atomic orbital
of hydrogen atom with coemd-2 basis set, respectively. There are 3 comparisons
between MOCCA and GAMESS (US) program in 1 case with the same exponent
and contraction coefficient including comparision for H30, H40 and H50 models.
Calculation speed in integrals per second of MOCCA program were compared with
GAMESS (US) program.

Table 3.5: Exponent and contraction coefficient of gaussain-type function used to
simulate s-type atomic orbitals of hydrogen atom for each calculation testing cases
(A, B and C).

Case Shell Exponent Contraction coefficient
A first 150.2760700 1.000000000000
B third 9.6283875 1.000000000000
C fifth 0.5325897 1.000000000000

CHAPTER IV

RESULTS AND DISCUSSION

The discussion was seperated into two parts: the computational accuracy and the
speed test for both one- and two-electron integrals calculation in the MOCCA pro-
gram compared with GAMESS (US) program. Both programs used the same data,
which obtained from the GAMESS (US) program to be an initial parameter.

4.1 Calculation accuracy

Calculation accuracy part include direct accuracy testing and Hartree-Fock calcu-
lation. For direct accuracy testing part, one- and two-electron integrals results of
MOCCA program were compared directly to the results of GAMESS (US) program.
For Hartree-Fock calculation part, implemented one- and two-electron integrals cal-
culations were applied to Hartree-Fock calculation of MOCCA program compared
to GAMESS (US) program. The Hartree-Fock calculation of MOCCA program was
developed by my co-worker [10].

4.1.1 Direct accuracy testing

The tests utilized the same information of coordinates, contraction coefficients and
exponents to be the initial parameter. MOCCA and GAMESS (US) program were
implemented on different processors. For two-electron integrals calculation, Taketa
method and Rys quadrature method were applied for calculation in MOCCA and
GAMESS (US) program, respectively. Calculaion results of both programs are
slightly different. From one- and two-electron integrals results of MOCCA program,
the results of MOCCA program are realiable compared with GAMESS (US) program.

29

For full accuracy testing, there are nine testing cases consisting of methane (STO-
3G, 3-21G and 6-31G), carbon monoxide (STO-3G, 3-21G and 6-31G) and water
(STO-3G, 3-21G and 6-31G). Maximum error and average error were evaluated.
Table 4.1 shows maximum error and average error of one and two-electron integrals
results of methane, water and carbon monoxide molecules calculated by MOCCA
program compared to GAMESS (US) program. For one-electron integrals, the largest
maximum errors are 9.99×10−16, 107.00×10−16 and 15,200.00×10−16 for overlap
integrals, kinetic energy integrals and potential integrals, respectively. Increasing
of maximum error between the overlap integral and kinetic energy integrals due
to round-off error. Kinetic energy integral is complicated than overlap integral
calculation, because the calculation is essential to evaluate overlap integral function
for 7 times. The largest maximum error of potential integral is larger than overlap
and kinetic energy due to round-off error. The complicated binomial coefficients
and auxiliary function are essential in the calculation of potential integral. To
compare between maximum error and average error of potential integrals of methane,
carbon monoxide and water molecules, the maximum error and average error of
carbon monoxide molecule are larger than methane and water molecules, because of
polarization effect of the electron density between p-type orbitals. For methane and
water molecules, there are only carbon and oxygen atoms having p-type orbitals,
respectively. There are p-type orbitals in both of carbon and oxygen atoms in
carbon monoxide molecule. Thus, polarization effect in carbon monoxide molecule
is influential than methane and water molecules.

For two-electron integrals or electron respulstion integrals of full accuracy testing,
the largest maximum error is 710.00×10−16 in the case of carbon monoxide molecule
simulate with 3-21G basis set. For comparison between 3 molecules (methane, water
and carbon monoxide molecules) with the same basis set, maximum error and average
error increase when incresing of polarization effect influence of the electron density
between p-type orbitals.

30

Table 4.1: Maximum error and average error (×10−16) of one- and two-electron
integrals calculation results of methane, water and carbon monoxide molecules.

Integral type Basis set
CH4 H2O CO

Max. Avg. Max. Avg. Max. Avg.

STO-3G 9.99 1.50 9.99 1.60 9.99 1.04
Overlap 3-21G 9.99 1.78 9.99 1.42 9.99 1.03

6-31G 9.99 0.77 9.99 1.29 9.99 0.85

STO-3G 24.00 3.90 20.00 2.60 24.00 2.08
Kinetic 3-21G 9.90 0.42 102.00 2.80 97.70 1.98

6-31G 97.90 2.02 107.00 3.48 107.00 3.37

STO-3G 4,970.00 1,020.00 8,030.00 1,290.00 11,100.00 1,860.00
Potential 3-21G 5,970.00 821.00 8,030.00 945.00 10,000.00 142.00

6-31G 4,970.00 944.00 8,030.00 961.00 15,200.00 1,440.00

STO-3G 302.00 24.80 400.00 43.00 490.00 60.70
Electron repulsion 3-21G 350.00 17.80 566.00 30.70 710.00 48.00

6-31G 299.00 19.00 370.00 30.10 650.00 64.80

For special testing, all two-electron integrals of one of (sp,df), (sd,pf) and (s-
f,pd) groups of ammonia molecule with aug-cc-pVDZ-RI basis set were calculated
by MOCCA program compared with GAMESS (US) program. Table 4.2 shows
maximum error of all two-electron integrals in (sp,df), (sd,pf) and (sf,pd) groups
calculated by MOCCA program compared with GAMESS (US) program. From Ta-
ble 4.2, the largest maximum error is 1.00×10−16. Calculation results of MOCCA
program are slightly different with GAMESS (US) program. For MOCCA program,
two-electron integrals in the same groups are not different significantly with each
others.

31

Table 4.2: Maximum error of all two-electron integrals in (sp,df), (sd,pf) and (sf,pd)
groups calculated by MOCCA program compared with GAMESS (US) program.

Two-electron integral group Maximum error (×10−16)
(sp,df) 1
(sd,pf) 1
(sf,pd) 1

4.1.2 Hatree-Fock calculation

Hartree-Fock calculations of MOCCA program were tested by three molecules in-
cluding methane, carbon monoxide and water molecules simulated with 6-31G basis
set. The tests utilized the same information of coordinates, contraction coefficients
and exponents to be the initial parameter. Electronic energies (a.u.) of each testing
molecules were evaluated compared with GAMESS (US) program by absolute error.
Before applied implemented one- and two-electron integrals calculation to Hartree-
Fock calculation of MOCCA program, the accuracy of Hartree-Fock calculation of
MOCCA program were tested by calculated electronic energy (a.u.) compared with
GAMESS (US) program using one- and two-electron integrals results from GAMESS
(US) program. From Table 4.3, column A1 and A2 are electronic energy (a.u.) cal-
culated by MOCCA program using one- and two-electron integrals results from
GAMESS (US) program and absolute error compared with GAMESS (US) program.
From column A2, the largest absolute error is 2 × 10−8. Hartree-Fock calculation
of MOCCA program is corrected compared with GAMESS (US) program. Column
B1 and B2 are electronic energy (a.u.) calculated by MOCCA program using im-
plemented one- and two-electron integrals calculations and absolute error compared
with GAMESS (US) program. From column B2, the accuracy of Hartree-Fock cal-
culation of MOCCA program is better than 1× 10−7 compared with GAMESS (US)
program. From Hartree-Fock calculation results, implemented one- and two-electron
integrals calculations can be applied to Hartree-Fock calculation correctly compared
with GAMESS (US) program.

32

Table 4.3: Electronic energies (a.u.) calculated by Hartree-Fock method of three
molecules including methane, carbon monoxide and water molecules simulated with
6-31G basis set. Num is the number of calculated two-electron integrals for Hartree-
Fock calculation.

Molecule Num
EMOCCA

EGAMESS
Absolute error (×10−8)

A1 B1 A2 B2

CH4 10695 -40.18014138 -40.18014138 -40.18014138 0 0
H2O 2260 -75.98507830 -75.98507830 -75.98507832 2 2
CO 4350 -106.75183300 -106.75183299 -106.75183300 0 1

4.2 Calculation speed testing

The (ss|ss)-type two-electron integrals of linear-hydrogen models including H30 ,
H40 and H50 were calculated by MOCCA program compared with GAMESS (US)
program for calculation speed in integrals per second (ints/s). The tests utilized the
same information of coordinates, contraction coefficients and exponents to be the
initial parameters. Calculation testing is seperated into 3 cases including A, B and
C. Each case have the different exponent for gaussian-type function used to simulate
s-type atomic orbital of hydrogen atoms. Exponent and contraction coefficient are
extracted from coemd-2 basis set for hydrogen atom [25]. The number of integrals
evaluated by MOCCA program is not equal to GAMESS (US) program with the
same model in each case. Cauchy–Schwarz screening is avaliable in GAMESS
(US) program for culling a tiny value of two-electron integrals. Cauchy–Schwarz
screening is not implemented into MOCCA program because, it is not in the scope
of this research. The goal of this research is only making MOCCA program to
calculate one- and two-electron integrals reliably. For MOCCA program, calculation
times of the same model with different cases is not different significantly because
the number of integrals evaluated by MOCCA program with different case is not
different. The number of integrals evaluated by MOCCA program are 810,000,
2,560,000 and 6,250,000 for H30 , H40 and H50, respectively. Calculation speed of

33

MOCCA program were calculated by

Calculation speed =
Num

Avg. time
,

where Num is the number of integrals evaluated by MOCCA program for each
model, Avg. time is the average calculation times of the model with different cases.
Calculation speed of MOCCA program for H30 , H40 and H50 are 36103228.49,
37108978.63 and 37463061.42 integrals per second, respectively. The number of
integrals evaluated by GAMESS (US) program, calculation speed of GAMESS (US)
program and calculation speed of MOCCA program compared with GAMESS (US)
program are shown in Table 4.4.

Table 4.4: Calculation speed testing results of GAMESS (US) program. Num is the
number of integrals evaluated by GAMESS (US) program. Shell label the exponent
and contraction coefficient using to simulate s-type atomic orbital of hydrogen atom
with coemd-2 basis set.

Case (Shell) Model Num Calculation speed (ints/s) MOCCA/GAMESS (times)
H30 465 4650.00 7764.14

A (first) H40 820 8200.00 4525.49
H50 1275 12750.00 2938.23

H30 2610 26100.00 1383.27
B (third) H40 4674 46740.00 793.94

H50 7194 71940.00 520.75

H30 25019 250190.00 144.30
C (fifth) H40 47042 235210.00 157.77

H50 75592 251973.33 148.68

Table 4.4 and Fig. 4.1 show calculation speed and performance of MOCCA
program compared with GAMESS (US) program. From Table 4.4 and Fig. 4.1,
calculation speed of MOCCA program is higher than GAMESS (US) program for
every cases. MOCCA program can calculate faster than GAMSS (US) program
about 150 to 7000 times.

34

3.67
3.91

4.11
4.42

4.67
4.86

5.43 5.49 5.51

7.56 7.57 7.58

H30 H40 H50
Models

3

4

5

6

7

8

9

10

lo
g
[i

n
ts

/s
]

GAMESS (A)

GAMESS (B)

GAMESS (C)

MOCCA

Figure 4.1: The performance of MOCCA and GAMESS (US) program, which
presented by comparing integrals/second (horizon axis) in the base 10 logalithm
function and theoretical models including H30 (H30), H40 (H40) and H50 (H50).

CHAPTER V

CONCLUSION

This research implemented one- and two-electron integrals developed by Taketa
group into MOCCA program. The calculation results and time were compared with
the standard program. One- and two-electron integrals calculation results of MOCCA
program show its accuracy for the level of double precision. From calculation test-
ing, the largest maximum errors are 9.99×10−16, 107.00×10−16, 15,200.00×10−16

and 710.00×10−16 for overlap integrals, kinetic energy integrals, potential integrals
and two-electron integrals, respectively. From calculation speed testing, MOCCA
program can calculates faster than standard program about 150 to 7000 times. Im-
plemented one- and two-electron integrals were applied to Hartree-Fock calculation
in MOCCA program compared with the standard program. From Hartree-Fock re-
sults of MOCCA program, the accuracy of Hartree-Fock calculation is better than
1×10−7 compared with the standard program. For the practical use of MOCCA pro-
gram, calculation speed of electron integrals will be improved for the next version
of MOCCA program. To improve electron integrals calculation part of MOCCA
program, Cauchy–Schwarz screening and electron integrals calculation methods in-
cluding Rys quadrature, recurrence relation method or/and other calculation methods
will be implemented for MOCCA program in the future.

REFERENCES
[1] X. Ge., S. Binnie, D. Rocca, R. Gebauer, S. Baroni Turbo TDDFT 2.0 Hybrid

Functionals and New Algorithms within Time-Dependent Density-Functional
Perturbation Theory Comput. Phys. Commun., 2014, 185, 2080–2089.

[2] I. Ufimtsev, T. Martinez Quantum Chemistry on Graphical Processing Units.
1. Strategies for Two-Electron Integral Evaluation J. Chem. Theory Comput.,
2008, 4, 222–231.

[3] J. Stone, D. Hardy, I. Ufimtsev, K. Schulten GPU-Accelerated Molecular Mod-
eling Coming of Age J. Mol. Graph. Model., 2010, 29, 116–125.

[4] Y. Maruyama, F. Hirata Modified Andeson Method for Accelerating 3D-RISM
Calculations Using Graphics Processing Unit J. Chem. Theory Comput., 2012,
8, 3015–3021.

[5] S. Cook CUDA Programming; Elsevier: USA, 2012.

[6] J. Cheng, M. Grossman, T. McKercher; John Wiley and Sons, Inc.: USA,
2014.

[7] M. Nitsche, M. Ferreria, E. Mocskos, M. Lebrero GPU Accelerated Implemen-
tation of Density Functional Theory for Hybrid QM/MM Simulations J. Chem.
Theory Comput., 2014, 10, 959–967.

[8] I. Ufimtsev, T. Martinez Quantum Chemistry on Graphical Processing Units.
2. Direct Self-Consistent-Field Implementation J. Chem. Theory Comput., 2009,
5, 1004–1015.

[9] C. M. Isborn, N. Luehr, I. Ufimtsev, T. Martinez An overview of the Amber
biomolecular simulation package Wires. Comput. Mol. Sci., 2013, 3, 198–210.

[10] C. Pornpiganon; Chulalongkorn University: Thailand, 2014.

[11] K. Yasuda Two-Electron Integral Evaluation on the Graphic Processing Unit
J. Comput. Chem., 2007, 29, 334–342.

[12] H. M. K. Yasuda Efficient Calculation of Two-Electron Integrals for High
Angular Basis Functions Int. J. Quantum Chem., 2014, 114, 543–552.

37

[13] A. Asadchev, V. Allada, J. Felder, B. Bode, M. Gordon, T. Windus Uncon-
tracted Rys Quadrature Implementation of up to G Functions on Graphical
Processing Units J. Chem. Theory Comput., 2010, 6, 696–704.

[14] Y. Miao, J. K.M Merz Accleration of Electron Repulsion Integral Evaluation
on Graphics Processing Units via Use of Recurrence Relations J. Chem.
Theory Comput., 2013, 9, 965–976.

[15] Y. Miao, J. K.M Merz Acceleration of High Angular Momentum Electron
Repulsion Integrals and Integral Derivatives on Graphics Processing Units J.
Chem. Theory Comput., 2015, 11, 1449–1462.

[16] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki,
N. Matsunaga, K. Nguyen, S. Su, T. Windus, M. Dupuis, J. Montgomery
General Atomic and Molecular Electronic Structure System J. Comput. Chem.,
1993, 14, 1347–1363.

[17] M. Born, J. Oppenheimer Zur Quantentheorie der Molekeln Ann. Phys., 1927,
84, 457–484.

[18] K. O-ohata, H. Taketa, S. Huzinaga Gaussian-Expansion Method for Molecular
Integral J. Phys. Soc. Jpn., 1966, 21, 2313–2324.

[19] L. Mcmurchie, E. Davidson One- and Two- Electron Integral over Cartesian
Gaussian Function J. Comput. Phys., 1978, 26, 218–231.

[20] M. Dupuis, J. Rys, H. King Computation of Electron Repulsion Integral Using
the Rys Quadrature Method J. Chem. Phys., 1983, 4, 154–157.

[21] S. Obara, A. Saika Efficient Recursive Computation of Molecular Integrals over
Cartesian Gaussian Functions J. Chem. Phys., 1986, 7, 3963–3974.

[22] M. Head-Gordon, J. Pople A Method for Two-Electron Gaussian Integral and
Integral Derivative Evaluation Using Recurrence Relations J. Chem. Phys.,
1988, 9, 5777–5786.

[23] N. Kharmsri, V. Vchirawongkwin One- and two-electron integrals calculations
of MOCC program on graphic processing units (GPUs) ANSCSE20, 2016,
pages 80–88.

38

[24] D. B. Kirk, W. mei W. Hwu; Elsevier: USA, 2010.

[25] J. Lehtola, P. Manninen, M. Hakala, K. Hamalainen Completeness-optimized
basis sets. Application to ground-state electron momentum densities J. Chem.
Phys., 2012, 137, 104105–1–104105–8.

39

VITAE

Personal Details

Name Mr.Noppakoon Kharmsri

Date of Birth April 5, 1991

Place of Birth Uttaradit, Thailand

Address 155/1, Chaijumpon, Laplae, Uttaradit 53130, Thailand

Telephone 088-282-3290

E-mail address milkbasisset@gmail.com

Education

2013-2016 M.Sc. in Chemistry, Chulalongkorn University, Thailand

2009-2012 B.Sc. in Chemistry (second honors), Naresuan University, Thai-
land

2002-2008 Uttaradit School, Uttaradit, Thailand

1995-2002 Anuban Uttaradit School, Uttaradit, Thailand

Presentation

Noppakoon Kharmsri, Viwat Vchirawongkwin One- and two-electron integral cal-
culation of MOCCA program on graphic processing units (GPUs) The 20th Inter-
national Annual Symposium on Computational Science and Engineering, Kasetsart
University, Bangkhen Campus, Bangkok, Thailand, July 27–29, 2016, pp 121–122.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Literature Review

	CHAPTER II THEORY AND METHOD
	2.1 SchrŁodinger equation
	2.2 Gaussian function and one- and two-electron integrals
	2.3 Compute Unified Device Architecture (CUDA)

	CHAPTER III CALCULATION DETAIL
	3.1 Molecular Orbital Calculation with CUDA program (MOCCA)
	3.2 One- and two-electron integrals calculation implementation
	3.3 Calculation accuracy testing
	3.4 Calculation speed testing

	CHAPTER IV RESULTS AND DISCUSSION
	4.1 Calculation accuracy
	4.2 Calculation speed testing

	CHAPTER V CONCLUSION
	REFERENCES
	VITAE

