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CHAPTER I

INTRODUCTION AND PRELIMINARIES

Let (S, ·) be a system consisting of a nonempty set S with binary operation · on

S. If (S, ·) satisfies the associative law, i.e., ∀a, b, c ∈ S, (a · b) · c = a · (b · c), we say

that (S, ·) is a semigroup. For convenience, we write S for a semigroup (S, ·) and

ab for a · b where a, b ∈ S. For a semigroup S, we call an element a in S regular if

there exists an element x in S such that a = axa. If every element in S is regular,

then S is called a regular semigroup.

In 1951, J.A. Green introduced regular semigroup in his paper “On the struc-

ture of semigroups”; this was also the paper in which Green’s relations were intro-

duced. In semigroup theory, regular semigroups are very familiar and are one of

the most extensively studied of semigroups.

A significant benefit of regularity can be found in the study of Green’s relations

and the natural partial order, which are important relations in semigroup theory.

The relation between Green’s relations and regular semigroups are difficult to be

briefly mentioned here. However, we describe the relation between the natural

partial order and regular semigroups.

The natural partial order ≤ on a semigroup S is defined by a ≤ b if and only

if a = xb = by and a = ay for some x, y ∈ S1 where S1 is the semigroup S if S

contains an identity; otherwise S1 is the semigroup obtained from S by adjoining

a new symbol 1 as its identity. It is known that any semigroup endowed with the

natural partial order hands down the order to its regular subsemigroups.

Theorem 1.1. [2] If T is a regular subsemigroup of a semigroup S and a, b ∈ T .

Then a ≤ b on T if and only if a ≤ b on S.

Moreover, there are many researches about regularity of transformation semi-

groups. For example, Y. Kemprasit studied regularity of generalized semigroups of
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linear transformations in [4] and studied regular elements of some transformation

semigroups in [5]. The main purpose of this thesis is to investigate the regularity

of certain transformation semigroups with restricted range.

In the rest of this chapter, we give precise definitions, notations and funda-

mental results which will be used throughout this thesis. We separate this chapter

into two sections. The first section is to introduce necessary background and basic

results of transformation semigroups, and the other section is to give definitions,

notations and results of linear transformation semigroups, and provide some results

needed in this thesis.

1.1 Transformation semigroups

Given a nonempty set X, the full transformation semigroup on X means the set

of transformations on X, denoted by T (X). That is,

T (X) = {α : α is a function on X}.

Y. Kemprasit showed in [3, p. 109] that T (X) is a regular semigroup under com-

position.

In this thesis, all maps are written on the right of the argument. For α ∈ T (X),

the range of α is denoted by ranα, and the inverse relation of α is denoted by α−1.

Also, the inverse image of x under α is written by xα−1. Furthermore, let 1X be

the identity map on X and let |X| be the cardinality of X.

For any transformation α ∈ T (X) and x ∈ X, α is said to be one-to-one at x if

|xαα−1| = 1. If {x ∈ X : |xαα−1| > 1} is finite, then α is called almost one-to-one.

A transformation α in T (X) is called almost onto if X r ranα is finite. Then, a

transformation α in T (X) is one-to-one if and only if α is one-to-one at x for all

x ∈ X. Moreover, every injection and surjection are almost one-to-one and almost

onto, respectively. But its converse is not true; see Example 1.2 (iii). In this

thesis, we study the regularity of a generalisation of the following transformation

semigroups.
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For a nonempty set X, let AM(X) be the set of almost one-to-one transforma-

tions on X and AE(X) the set of almost onto transformations on X, that is,

AM(X) =
{
α ∈ T (X) : {x ∈ X : |xαα−1| > 1} is finite

}
and

AE(X) =
{
α ∈ T (X) : X r ranα is finite

}
.

Both AM(X) and AE(X) are subsemigroups of T (X) [3, p. 133], known as the

almost one-to-one transformation semigroup on X and the almost onto transfor-

mation semigroup on X, respectively.

Example 1.2. (i) Every injection on a nonempty set X is contained in AM(X).

(ii) Every surjection on a nonempty set X is contained in AE(X).

(iii) Let N be the set of natural numbers. We define µ : N→ N by

xµ =

2 if x = 1,

x otherwise.

Then 2µ−1 = {1, 2} and xµ−1 = {x} for all x ∈ Nr{2}. So {x ∈ N : |xµµ−1| > 1}

={1, 2}, and hence µ ∈ AM(N). Clearly, ranµ = N r {1}, so N r ranµ = {1}.

Hence µ ∈ AE(N). But µ is neither injective nor surjective.

Note that if X is finite then AM(X) = T (X) = AE(X), so it is regular.

Actually, this is the only case for AM(X) and also AE(X) to be regular.

Theorem 1.3. [3, p. 133] Let X be a nonempty set. The following statements are

equivalent:

(i) X is finite,

(ii) AM(X) is regular,

(iii) AE(X) is regular.
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Next, for an infinite set X, define

OM(X) =
{
α ∈ T (X) : {x ∈ X : |xαα−1| > 1} is infinite

}
and

OE(X) =
{
α ∈ T (X) : X r ranα is infinite

}
.

Clearly, both are subsemigroups of T (X), known as the opposite semigroup of

one-to-one transformation semigroup on X and the opposite semigroup of onto

transformation semigroup on X, respectively. These semigroups are intensively

studied in [3].

Example 1.4. (i) Every constant map on an infinite set X is an element in

OM(X) and OE(X).

(ii) Let Z be the set of integers, Z+ the set of positive integers and Z− the set of

negative integers. We define λ : Z→ Z by

xλ =

x if x ≥ 0,

0 otherwise.

Then 0λ−1 = Z−∪{0} and xλ−1 = {x} for all x ∈ Z+. So {x ∈ Z : |xλλ−1| > 1} =

Z− ∪ {0}. Hence λ ∈ OM(Z). Clearly, ranλ = Z+ ∪ {0}. Thus Z r ranλ = Z−,

so λ ∈ OE(Z).

From Theorem 1.3, there is a chance that AM(X) and AE(X) are regular

semigroups. But the story becomes different in OM(X) and OE(X).

Theorem 1.5. [3, p. 135] OM(X) and OE(X) are not regular.

Now, we introduce a generalisation of the full transformation semigroup T (X)

on X. For a nonempty subset Y of X, let T (X, Y ) be the set of all transformations

on X whose range is in Y , that is,

T (X, Y ) = {α ∈ T (X) : ranα ⊆ Y }.

This semigroup is studied in [5] and one can see that it is a subsemigroup of T (X)

and T (X,X) = T (X). Then we may regard T (X, Y ) as a generalisation of T (X).
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We call T (X, Y ) the full transformation semigroup on X with restricted range Y .

Clearly if Y = X or |Y | = 1 then T (X, Y ) is regular. In addition, Y. Kemprasit

et al. showed that it fails in other cases.

Theorem 1.6. [5] For a set X and its nonempty subset Y , T (X, Y ) is regular

if and only if |Y | = 1 or Y = X.

We next introduce a generalisation of AM(X). For a nonempty subset Y of X,

we mean by AM(X, Y ) the set of all elements in AM(X) whose range is contained

in Y. That is,

AM(X, Y ) =
{
α ∈ T (X, Y ) : {x ∈ X : |xαα−1| > 1} is finite

}
.

Likewise, we have a generalisation of AE(X), defined by

AE(X, Y ) =
{
α ∈ T (X, Y ) : X r ranα is finite

}
.

It is easy to see that AM(X, Y ) = T (X, Y ) = AE(X, Y ) when X is finite. Fur-

thermore, if Y = X then AM(X, Y ) = AM(X) and AE(X, Y ) = AE(X).

Note that AM(X, Y ) = T (X, Y )∩AM(X) and AE(X, Y ) = T (X, Y )∩AE(X).

We notice that there is an occasion that AM(X, Y ) or AE(X, Y ) becomes the

empty set, and we will discuss about this in the next chapter. If this is not the

case, AM(X, Y ) and AE(X, Y ) are semigroups, called the almost one-to-one trans-

formation semigroup on X with restricted range Y and the almost onto transfor-

mation semigroup on X with restricted range Y , respectively. Moreover, we show

in Proposition 2.8 that these two semigroups are different under some conditions.

In the case that X is an infinite set and Y is a nonempty subset of X, we define

OM(X, Y ) =
{
α ∈ T (X, Y ) : {x ∈ X : |xαα−1| > 1} is infinite

}
and

OE(X, Y ) =
{
α ∈ T (X, Y ) : X r ranα is infinite

}
.

Obviously, OM(X, Y ) and OE(X, Y ) are not empty, containing all constant maps.

Also, it is clear that both are semigroups as OM(X, Y ) = T (X, Y )∩OM(X) and

OE(X, Y ) = T (X, Y )∩OE(X). We call OM(X, Y ) the opposite semigroup of one-

to-one transformation semigroup on X with restricted range Y and OE(X, Y ) the
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opposite semigroup of onto transformation semigroup on X with restricted range Y .

Clearly, OM(X, Y ) and OE(X, Y ) can be considered as generalisations of OM(X)

and OE(X), respectively.

In Chapter II, we intensively study these semigroups; examples and character-

isations of regularity are provided.

1.2 Linear transformation semigroups

Let V be a vector space over a division ring and L(V ) the set of all linear transfor-

mations on V . Under composition L(V ) is a regular semigroup [3, p. 145], known

as the full linear transformation semigroup on V .

Throughout this thesis, we denote by dim (V ) the dimension of a vector space V .

For any subset A of a vector space V , the subspace spanned by A is denoted by

〈A〉. For a vector space V and a subspace W of V , we let V/W be the quotient

space of V and W . For α ∈ L(V ), the kernel of linear transformation α is denoted

by kerα, and α is said to be almost one-to-one if dim(kerα) < ∞, and we call

α almost onto if dim(V/ ranα) < ∞. In this thesis, we study the regularity of a

generalisation of the following linear transformation semigroups.

For a vector space V over a division ring, let

AM(V ) = {α ∈ L(V ) : dim(kerα) <∞} and

AE(V ) = {α ∈ L(V ) : dim(V/ ranα) <∞}.

In [3], the author showed that these are subsemigroups of L(V ), called the al-

most one-to-one linear transformation semigroup on V and the almost onto linear

transformation semigroup on V , respectively.

Example 1.7. (i) Every monomorphism on a vector space V belongs to AM(V ).

(ii) Every epimorphism on a vector space V is contained in AE(V ).

Note that if dim (V ) < ∞ then AM(V ) = L(V ) = AE(V ). Y. Kemprasit

showed thatAM(V ) andAE(V ) are regular semigroups under a certain conditions.
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Theorem 1.8. [3, p. 168] Let V be a vector space over a division ring. The fol-

lowing statements are equivalent:

(i) dim (V ) <∞,

(ii) AM(V ) is regular,

(iii) AE(V ) is regular.

Let V be an infinite dimensional vector space over a division ring and let

OM(V ) = {α ∈ L(V ) : dim(kerα) is infinite} and

OE(V ) = {α ∈ L(V ) : dim(V/ ranα) is infinite},

which have been defined and proved in [3, p. 170] that they are subsemigroups of

L(V ), called the opposite semigroup of one-to-one linear transformation semigroup

on V and the opposite semigroup of onto linear transformation semigroup on V ,

respectively; however, we do not worry about the regularity ofOM(V ) andOE(V ).

Theorem 1.9. [3, p. 171] OM(V ) and OE(V ) are not regular.

We now introduce a generalisation of the full linear transformation semigroup

L(V ) on V . Given a subspace W of V , we let

L(V,W ) = {α ∈ L(V ) : ranα ⊆ W}.

Then L(V,W ) is a subsemigroup of L(V ). Clearly, L(V,W ) = L(V ) when W = V .

Throughout this thesis, we let 0 be the zero element in a vector space V over

a division ring, that is, u+ 0 = u for all u ∈ V . The proposition below is a direct

consequence of Theorem 2.2 in [4]. For the sake of completeness, we provide the

reader with a proof.

Proposition 1.10. Let V be a vector space over a division ring and W a subspace

of V . Then L(V,W ) is regular if and only if V = {0} or W = {0} or W = V .

Proof. Clearly, if V = {0} or W = {0} then L(V,W ) is a singleton of the zero

map, and hence L(V,W ) is regular. In case W = V , we have L(V,W ) = L(V ),

which is done.



8

To prove the necessity, by contrapositive, suppose that V 6= {0}, W 6= {0} and

W 6= V . Since W 6= {0}, it contains a nonzero vector, say w. Let B1 be a basis

of W and B2 a basis of V such that B1 ⊆ B2. Since W 6= V , B2rB1 is not empty.

Let α : V → W be a linear transformation defined by

vα =

0 if v ∈ B1,

w if v ∈ B2 rB1.

Let β ∈ L(V,W ) and v ∈ B2 r B1. Then vαβα = wβα ∈ 〈B1〉α = {0} and

vα = w. Thus αβα 6= α, and hence α is not regular.

Next, we introduce generalisations of AM(V ) and AE(V ). For a subspace W

of V , by AM(V,W ) we mean the set of all elements in AM(V ) whose range is

in W and AE(V,W ) the set of all elements in AE(V ) whose range is in W. That is,

AM(V,W ) = {α ∈ L(V,W ) : dim(kerα) <∞} and

AE(V,W ) = {α ∈ L(V,W ) : dim(V/ ranα) <∞}.

It is clear that if dim (V ) is finite, then AM(V,W ) = L(V,W ) = AE(V,W ).

Moreover, if W = V then AM(V,W ) = AM(V ) and AE(V,W ) = AE(V ). Notice

that AM(V,W ) = L(V,W ) ∩ AM(V ) and AE(V,W ) = L(V,W ) ∩ AE(V ). We

need to be aware that AM(V,W ) and AE(V,W ) are possibly empty. When this

is not the case, we call AM(V,W ) the almost one-to-one linear transformation

semigroup on V with restricted range W and AE(V,W ) the almost onto linear

transformation semigroup on V with restricted range W .

When V is an infinite dimensional vector space and W is a subspace of V ,

we let

OM(V,W ) = {α ∈ L(V,W ) : dim(kerα) is infinite} and

OE(V,W ) = {α ∈ L(V,W ) : dim(V/ ranα) is infinite}.

Obviously, OM(V,W ) and OE(V,W ) are not empty, as they contain the zero

map. Since OM(V,W ) = L(V,W ) ∩ OM(V ) and it is not empty, OM(V,W ) is
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a semigroup. The set OE(V,W ) can be considered similarly. We call OM(V,W )

the opposite semigroup of one-to-one linear transformation semigroup on V with

restricted range W and OE(V,W ) the opposite semigroup of onto linear transfor-

mation semigroup on V with restricted range W . It is clear that if W = V then

OM(V,W ) = OM(V ) and OE(V,W ) = OE(V ).

Chapter III is devoted to the study of regularity of these linear transformation

semigroups. In addition, we finish this present chapter with a list of background

knowledge which is always used in this thesis.

Proposition 1.11. [3, p. 144] Let α ∈ L(V ). If B1 and B2 are base of kerα and

ranα, respectively and for any v ∈ B2, wv ∈ vα−1 is fixed, then B1∪{wv : v ∈ B2}

is a basis of V .

Proposition 1.12. [3, p. 144] Let α ∈ L(V ). If U is a subspace of V , B1 is a

basis of U and B is a basis of V with B1 ⊆ B, then dim(V/U) = |B rB1|.



CHAPTER II

REGULARITY OF TRANSFORMATION SEMIGROUPS

In this chapter, X is a nonempty set and Y is a nonempty subset of X. Our

main purpose is to determine regularity of specific subsemigroups of the total

transformation that are introduced in the previous chapter, namely,

AM(X, Y ) =
{
α ∈ T (X, Y ) : {x ∈ X : |xαα−1| > 1} is finite

}
,

AE(X, Y ) =
{
α ∈ T (X, Y ) : X r ranα is finite

}
,

OM(X, Y ) =
{
α ∈ T (X, Y ) : {x ∈ X : |xαα−1| > 1} is infinite

}
,

OE(X, Y ) =
{
α ∈ T (X, Y ) : X r ranα is infinite

}
,

and also AM(X, Y ) ∩ AE(X, Y ) and OM(X, Y ) ∩OE(X, Y ).

Before that, we give a characterisation of regular elements in T (X, Y ), which

is given by Y. Kemprasit in [5]. However, for convenience, we bring only a part

of the statement of Theorem 2.1 in [5]. Actually, the proof we provide is different

from the original one.

Theorem 2.1. [5] For any transformation α in T (X, Y ), α is regular in T (X, Y )

if and only if Y α = ranα.

Proof. Let α be an element in T (X, Y ). First, we assume that α is a regular element

in T (X, Y ). Then there exists a transformation β in T (X, Y ) such that αβα = α.

Thus Y α ⊆ ranα = Xα = Xαβα = (Xαβ)α ⊆ Y α. Hence Y α = ranα.

Conversely, we assume that Y α = ranα. For each y in ranα there is an element

zy in Y such that zyα = y. Let b ∈ Y and define β : X → Y by

yβ =

zy if y ∈ ranα,

b otherwise.
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For any x ∈ X, we have xαβα = (xα)βα = zxαα = xα, so αβα = α. Hence α is

regular in T (X, Y ).

Remark 2.2. Let S(X, Y ) be a subsemigroup of T (X, Y ) and α ∈ S(X, Y ). If

Y α 6= ranα then α is not regular in S(X, Y ).

The converse of Remark 2.2 is not true. That is, the condition Y α = ranα does

not always imply that α is regular in S(X, Y ). Theorems 1.3, 1.5, 1.8 and 1.9 show

that there exists an element α in S, when S is the semigroup AM(X), AE(X),

OM(X), OE(X), AM(V ), AE(V ), OM(V ) or OE(V ), such that Xα = ranα or

V α = ranα, but α is not regular in S.

However, some transformation semigroups satisfying the converse of Remark 2.2

are given in Corollaries 2.11 and 3.7.

Theorem 2.3. If Y is a proper subset of a set X, then every injection in T (X, Y )

is not regular in T (X, Y ).

Proof. Let α be an injection in T (X, Y ) where Y is a proper subset of X. Then

Y α ( Xα = ranα. By Theorem 2.1, α is not regular in T (X, Y ).

Remark 2.4. In case Y is a proper subset of a set X, every subsemigroup of

T (X, Y ) containing an injection is not regular.

The next example shows that there exists a class of transformations in T (X, Y )

which are neither regular in T (X, Y ) nor injective, when Y is a proper subset of

X with |Y | ≥ 2.

Example 2.5. Let a and b be distinct elements in a proper subset Y of a set X.

Define α ∈ T (X, Y ) by

xα =

a if x ∈ Y,

b otherwise.

Then α is not injective and Y α = {a} 6= {a, b} = ranα. By Theorem 2.1, α is not

regular in T (X, Y ).
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2.1 Regularity of AM(X,Y) and AE(X,Y)

As we mentioned before, there is a chance that AM(X, Y ) or AE(X, Y ) becomes

the empty set. A condition that would help eliminate such a weak spot is in need.

Proposition 2.6. Let X be an infinite set. Then

(i) AM(X, Y ) is not the empty set if and only if |X| = |Y |,

(ii) AE(X, Y ) is not the empty set if and only if X r Y is finite.

Proof. (i) We first assume that AM(X, Y ) is not the empty set. Then there

exists a transformation α in AM(X, Y ). Since α is an element in AM(X, Y ),

{x ∈ X : |xαα−1| > 1} is finite; hence for each y ∈ ranα, yα−1 is finite. Since

{yα−1 : y ∈ ranα} is a partition of X, we have X =
⋃

(yα−1) where the union

is taken over all y in ranα. Since X is an infinite set and yα−1 is a finite set

for all y ∈ ranα, ranα must be an infinite set with the same cardinality as X.

Consequently, |X| = | ranα| ≤ |Y | ≤ |X|.

The other implication follows from the fact that if X and Y have the same

cardinality, then there exists an injection from X to Y and it is clearly contained

in AM(X, Y ).

(ii) Assume that AE(X, Y ) contains a transformation β. We have X r Y is a

subset of X r ran β, which is finite since β ∈ AE(X, Y ). Therefore X r Y is also

finite.

For the sufficiency, we assume that X r Y is finite. Since X is infinite and

X r Y is finite, Y is infinite and |X| = |Y |. Then we have a transformation from

X onto Y and AE(X, Y ) contains this element.

From Proposition 2.6, we have the following proposition.

Proposition 2.7. Let X be an infinite set. Then

(i) AM(X, Y ) is a semigroup if and only if |X| = |Y |,

(ii) AE(X, Y ) is a semigroup if and only if X r Y is finite,

(iii) AM(X, Y ) ∩ AE(X, Y ) is a semigroup if and only if X r Y is finite.
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Proof. Note that the necessity of (i) and (ii) follow from Proposition 2.6.

(i) For the sufficiency, assume that |X| = |Y |. By Proposition 2.6, AM(X, Y )

is not empty. Then AM(X, Y ) = T (X, Y ) ∩ AM(X) is a subsemigroup of T (X).

(ii) The sufficiency is obtained from Proposition 2.6 and the fact that AE(X, Y )

is T (X, Y ) ∩ AE(X).

(iii) For the necessity, we assume that AM(X, Y ) ∩AE(X, Y ) is a semigroup.

Then AM(X, Y ) ∩ AE(X, Y ) is not empty. Hence AE(X, Y ) is not empty. By

Proposition 2.6, X r Y is finite.

For the sufficiency, we assume that X r Y is finite. Since X r Y is finite and

X is infinite, |X| = |Y |. Thus there exists a bijection from X to Y , which is

contained in both AM(X, Y ) and AE(X, Y ).

Proposition 2.8. Given semigroups AM(X, Y ) and AE(X, Y ), if X is infinite,

then neither AM(X, Y )rAE(X, Y ) nor AE(X, Y )rAM(X, Y ) is the empty set.

Proof. Assume that X is infinite. Since AM(X, Y ) is a semigroup, by Proposi-

tion 2.7 (i), |X| = |Y |. Since AE(X, Y ) is a semigroup, by Proposition 2.7 (ii),

X r Y is finite, which implies that |X| = |Y |. In either case, we have |X| = |Y |.

Since Y is infinite, there exists an infinite subset Z of Y with |Y | = |Z| = |Y rZ|.

Choose z ∈ Z. Provided two bijections ϕ : Y → Y r Z and ψ : Z → Y r {z}, we

define α, β ∈ T (X, Y ) by

xα =

xϕ if x ∈ Y,

z otherwise,

and

xβ =

xψ if x ∈ Z,

z otherwise.

First, we show that α ∈ AM(X, Y )rAE(X, Y ). We have ranα = (Y rZ)∪{z}.

Thus X r ranα = [X r (Y r Z)] r {z} = (X r Y ) ∪ (Z r {z}). Since Z r {z}

is infinite, X r ranα is infinite. Hence α is not in AE(X, Y ). Now, we have that

{x ∈ X : |xαα−1| > 1} = X r Y , so {x ∈ X : |xαα−1| > 1} is finite, as X r Y is
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finite. Thus α belongs to AM(X, Y ).

Next, we show that β is in AE(X, Y ) r AM(X, Y ). Clearly, ran β = Y , so

X r ran β = X r Y , which is finite. Therefore β is in AE(X, Y ). We have

{x ∈ X : |xββ−1| > 1} = X r Z ⊇ Y r Z, which is infinite. Thus β is not in

AM(X, Y ).

If X is finite, we have AM(X, Y ) = T (X, Y ) = AE(X, Y ); otherwise, these

semigroups are different. From these results we have AM(X, Y ) = AE(X, Y ) if

and only if X is finite.

For the semigroups AM(X, Y ) and AE(X, Y ), when |Y | = 1, these semigroups

are the same and their unique element is a constant map. In this case, they are

regular semigroups. For the other cases we have:

Theorem 2.9. Let S(X, Y ) with |Y | ≥ 2 be either the semigroup AM(X, Y ) or

the semigroup AE(X, Y ). Then S(X, Y ) is regular if and only if X is finite and

Y = X.

Proof. The sufficiency is directly obtained from Theorem 1.3. To prove the ne-

cessity, by contrapositive, suppose that X is infinite or Y 6= X. We divide the

situation into three cases.

Case 1: X is finite and Y 6= X. Then S(X, Y ) = T (X, Y ). Since |Y | ≥ 2 and

Y 6= X, by Theorem 1.6, S(X, Y ) is not regular.

Case 2: X is infinite and Y 6= X. Then by the assumption that S(X, Y ) is a

semigroup and by Proposition 2.7 (i) and (ii), |X| = |Y |, and hence there is a

bijection from X to Y , say α. Clearly α is in S(X, Y ). Since α is an injection, by

Theorem 2.3, α is not regular in T (X, Y ). Hence S(X, Y ) is not regular.

Case 3: X is infinite and Y = X. We can follow directly from Theorem 1.3.

Therefore the proof is complete.

Theorem 2.10. Let X be an infinite set. The semigroup AM(X, Y ) ∩AE(X, Y )

is regular if and only if Y = X.

Proof. To prove the necessity, by contrapositive, we suppose that Y 6= X and

AM(X, Y ) ∩ AE(X, Y ) is a semigroup. By Proposition 2.7 (iii), X r Y is finite.
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Consequently, |X| = |Y |. Thus there exists a bijection from X to Y and this map

is in AM(X, Y ) ∩ AE(X, Y ). In addition, by Theorem 2.3, it is not regular even

in T (X, Y ). Hence AM(X, Y ) ∩ AE(X, Y ) is not regular.

Conversely, we assume that Y = X. Let α be an element in AM(X)∩AE(X).

For each y ∈ ranα, we choose zy ∈ yα−1. By Theorem 2.1, α is regular in T (X).

Moreover, according to the proof of sufficiency of Theorem 2.1 we have β ∈ T (X)

such that

yβ =

zy if y ∈ ranα,

b otherwise,

where b ∈ Y and αβα = α. Claim that {x ∈ X : |xββ−1| > 1} is a subset of

(X r ranα)∪ {bα}. Let y ∈ X be such that |yββ−1| > 1. Suppose that y ∈ ranα.

Since |yββ−1| > 1, there exists t ∈ X r {y} such that tβ = yβ. Then we have two

cases to consider.

Case 1: t ∈ ranα. Then zt = tβ = yβ = zy, so t = ztα = zyα = y, which is a

contradiction.

Case 2: t /∈ ranα. Then b = tβ = yβ = zy, which implies that bα = zyα = y.

Then we have the claim. Since α is in AE(X), X r ranα is finite. Therefore

{x ∈ X : |xββ−1| > 1} is finite. Hence β belongs to AM(X). To see that β belongs

to AE(X) we consider the set Xrran β. Since {zx : x ∈ ranα} ⊆ ran β, Xrran β

is a subset of X r {zx : x ∈ ranα}. Claim that X r {zx : x ∈ ranα} is finite. It

suffices to prove that X r {zx : x ∈ ranα} is a subset of {x ∈ X : |xαα−1| > 1},

since α ∈ AM(X). Let y ∈ X r {zx : x ∈ ranα}. Then yα ∈ ranα and zyαα = yα

but y 6= zyα. Consequently, |yαα−1| > 1 and the claim is done. This implies that

X r ran β is finite. Hence β ∈ AE(X).

From Theorem 2.1 and applying the converse proof of Theorem 2.10, we have

a subsemigroup of T (X, Y ) preserving the converse of Remark 2.2.

Corollary 2.11. For any α in the semigroup AM(X, Y )∩AE(X, Y ), α is regular

in AM(X, Y ) ∩ AE(X, Y ) if and only if Y α = ranα.

Note that when X is finite, we have AM(X, Y ) ∩ AE(X, Y ) = T (X, Y ), and
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by Theorem 1.6, it is regular if and only if Y = X or Y is a singleton. In general,

we have

Corollary 2.12. AM(X) ∩ AE(X) is a regular semigroup.

Theorem 2.3 showed that for any proper subset Y of X, every bijection from

X to Y is not regular in T (X, Y ) and in its subsemigroups, including AM(X, Y ),

AE(X, Y ) and AM(X, Y ) ∩AE(X, Y ). We next show that, apart from the bijec-

tions, there is some other kind of nonregular elements.

Proposition 2.13. Let X be an infinite set and Y a proper subset of X such that

AM(X, Y ) ∩ AE(X, Y ) is a semigroup. Then there are infinitely many elements

in AM(X, Y )∩AE(X, Y ) which are not regular in T (X, Y ) and which are neither

injective nor surjective.

Proof. Since AM(X, Y )∩AE(X, Y ) is a semigroup and Y is a proper subset of X,

by Proposition 2.7 (iii), XrY is a nonempty finite set. We know that X is infinite,

so is Y . Let B be a finite subset of Y with |B| ≥ 3. Let b1, b2 ∈ B and y1, y2 ∈ Y

be distinct. Since B is a finite subset of an infinite set Y , |Y r {y1, y2}| = |Y rB|.

Choose a bijection ϕ from Y r {y1, y2} to Y rB. Define α ∈ T (X, Y ) by

xα =


xϕ if x ∈ Y r {y1, y2},

b1 if x ∈ {y1, y2},

b2 otherwise.

Then ranα = (Y r B) ∪ {b1, b2} 6= Y and X r ranα = (X r Y ) ∪ (B r {b1, b2}),

which is finite, so α is not surjective and α ∈ AE(X, Y ). It is easy to see that

y1, y2 ∈ {x ∈ X : |xαα−1| > 1} ⊆ (X r Y ) ∪ {y1, y2},

these show that α is not injective and α ∈ AM(X, Y ), since X r Y is finite. We

have Y α = (Y rB) ∪ {b1} 6= ranα, by Theorem 2.1, α is not regular in T (X, Y ).

Notice that if B has only two elements then the nonregular element α in

T (X, Y ) is surjective and it is still contained in AM(X, Y ) ∩ AE(X, Y ).
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2.2 Regularity of OM(X,Y) and OE(X,Y)

Throughout this section, X is an infinite set. Recall that OM(X, Y ), OE(X, Y )

and their intersection are always semigroups. In addition, let us note that under

the condition in Proposition 2.8, Y is an infinite proper subset of X, we have

OM(X, Y )rOE(X, Y ) and OE(X, Y )rOM(X, Y ) are not the empty sets, as both

{AM(X, Y ), OM(X, Y )} and {AE(X, Y ), OE(X, Y )} are partitions of T (X, Y ).

First of all, if |Y | = 1 then OM(X, Y ) = OE(X, Y ) = OM(X, Y ) ∩ OE(X, Y ),

which is a singleton of one constant map; in this case, the semigroup clearly is

regular. Otherwise, by Theorem 2.14, OM(X, Y )∩OE(X, Y ) contains a nonregular

element in T (X, Y ).

Theorem 2.14. Let Y be a proper subset of a set X with |Y | ≥ 2. Then

the semigroups OM(X, Y ), OE(X, Y ) and its intersection have infinitely many

nonregular elements in T (X, Y ). In particular, all OM(X, Y ), OE(X, Y ) and

OM(X, Y ) ∩OE(X, Y ) are nonregular semigroups.

Proof. Let y1, y2 ∈ Y be distinct. Let m ∈ X r Y . Define α ∈ T (X, Y ) by

xα =

y1 if x = m,

y2 otherwise.

Then {x ∈ X : |xαα−1| > 1} = X r {m} and X r ranα = X r {y1, y2}, which

implies that α ∈ OM(X, Y ) ∩OE(X, Y ). Since Y α = {y2} 6= {y1, y2} = ranα, by

Theorem 2.1, α is not regular in T (X, Y ).

Theorem 2.15. OM(X, Y )∩OE(X, Y ) is regular if and only if either Y = X or

|Y | = 1.

Proof. For the sufficiency, we have two cases to consider.

Case 1: Y = X. Let α belong to OM(X) ∩ OE(X) and let a ∈ X. For each

x ∈ ranα, we choose an element zx ∈ xα−1 and a transformation on X defined in
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the proof of Theorem 2.1, that is,

xβ =

zx if x ∈ ranα,

a otherwise,

and clearly we have αβα = α. Since α ∈ OE(X) and X r ranα is a subset

of {x ∈ X : |xββ−1| > 1}, the set {x ∈ X : |xββ−1| > 1} is infinite. Thus

β ∈ OM(X).

Next, we let T = {zx : x ∈ ranα}. Then X r ran β = X r (T ∪ {a}). To show

that β ∈ OE(X), we prove that X r T is infinite. One can see that X r T =⋃
(zxαα

−1r{zx}) where the union is taken over all x in ranα. Since α ∈ OM(X),

there exists m in ranα such that mα−1 is infinite, or {zx ∈ T : |zxαα−1| > 1} is

infinite. In either case, we get that XrT is an infinite set, and so is Xr(T ∪{a}).

Hence β belongs to OE(X).

Case 2: |Y | = 1. Then OM(X, Y ) ∩OE(X, Y ) is a singleton, containing exactly

one constant map. Obviously, OM(X, Y ) ∩OE(X, Y ) is regular.

The necessity follows directly from Theorem 2.14.

From Theorem 2.15, we have the following corollary.

Corollary 2.16. OM(X) ∩OE(X) is a regular semigroup.



CHAPTER III

REGULARITY OF LINEAR TRANSFORMATION

SEMIGROUPS

Previously, we investigated regularity of the semigroups AM(X, Y ), AE(X, Y ),

OM(X, Y ) and OE(X, Y ). One may question what will happen if we switch over

to vector spaces. Throughout, let V be a vector space over a division ring and W

a subspace of V . We now recall the semigroups of our interest, namely,

AM(V,W ) = {α ∈ L(V,W ) : dim(kerα) <∞},

AE(V,W ) = {α ∈ L(V,W ) : dim(V/ ranα) <∞},

OM(V,W ) = {α ∈ L(V,W ) : dim(kerα) is infinite} and

OE(V,W ) = {α ∈ L(V,W ) : dim(V/ ranα) is infinite}.

The purpose of this chapter is to determine the regularity of the above sets, and

also AM(V,W )∩AE(V,W ) and OM(V,W )∩OE(V,W ) whenever they are semi-

groups. This chapter comprises two parts: the first is concerned with regularity of

AM(V,W ) and AE(V,W ), while the second is dedicated to the study of regularity

ofOM(V,W ) andOE(V,W ). Note that if dim (V ) <∞ then L(V,W ),AM(V,W )

and AE(V,W ) are the same semigroup. Therefore, in the rest of this chapter, in-

finite dimensional vector spaces become of particular interest. Moreover, one can

see that every subsemigroup of L(V,W ) is also a subsemigroup of T (V,W ). That

means we can apply and take advantage of Remarks 2.2 and 2.4, and Theorem 2.3

in this chapter.
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3.1 Regularity of AM(V,W) and AE(V,W)

Note that it is not certain that AM(V,W ) and AE(V,W ) will be semigroups

even though dim (V ) is infinite. So we need characterisations for AM(V,W ) and

AE(V,W ) to be semigroups.

Proposition 3.1. Let V be an infinite dimensional vector space. Then

(i) AM(V,W ) is not the empty set if and only if dim (V ) = dim (W ),

(ii) AE(V,W ) is not the empty set if and only if dim (V/W ) <∞.

Proof. To show that (i) holds, we first assume that dim (V ) = dim (W ). Thus

there exists an isomorphism from V to W , which is contained in AM(V,W ).

Next, we assume that there exists a linear transformation β in AM(V,W ).

Thus dim(ker β) is finite. Since dim (V ) = dim(ker β) + dim(ran β), dim (V ) is

infinite and dim(ker β) is finite, we have dim (V ) = dim(ran β) ≤ dim (W ). Hence

dim (V ) = dim (W ).

(ii) Assume that AE(V,W ) is not empty and let ϕ be a linear transformation

in AE(V,W ). Since ϕ ∈ AE(V,W ), dim (V/W ) ≤ dim (V/ ranϕ) <∞.

Conversely, we assume that dim (V/W ) < ∞. Let B1 be a basis of W . Then

we extend B1 to a basis B of V . By Proposition 1.12, |BrB1| = dim (V/W ) <∞.

Since B1 ⊆ B, B is infinite and B r B1 is finite, we have B1 is infinite and |B| =

|B1|. Then there exists a bijection from B to B1, which induces an isomorphism

from V to W . Obviously, it is contained in AE(V,W ).

Below is a consequence of Proposition 3.1 and the fact that AM(V,W ) is

an intersection of L(V,W ) and AM(V ). Similar arguments can be applied to

AE(V,W ).

Proposition 3.2. Let V be an infinite dimensional vector space. Then

(i) AM(V,W ) is a semigroup if and only if dim (V ) = dim (W ),

(ii) AE(V,W ) is a semigroup if and only if dim (V/W ) <∞,

(iii) AM(V,W ) ∩ AE(V,W ) is a semigroup if and only if dim (V/W ) <∞.
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Proof. It remains to show that if dim (V/W ) < ∞, then AM(V,W ) ∩ AE(V,W )

is not empty. Assume that dim (V/W ) < ∞. By the proof of the sufficiency of

Proposition 3.1 (ii), we have an isomorphism from V to W , which is contained in

AM(V,W ) ∩ AE(V,W ). Thus AM(V,W ) ∩ AE(V,W ) is not empty.

Proposition 3.3. Given semigroups AM(V,W ) and AE(V,W ), if dim (V ) is

infinite, then neither AM(V,W ) rAE(V,W ) nor AE(V,W ) rAM(V,W ) is the

empty set.

Proof. Assume that AM(V,W ) and AE(V,W ) are semigroups and dim (V ) is

infinite. Let B1 be a basis of W . Then we extend B1 to a basis B of V . By

Proposition 1.12, |B r B1| = dim (V/W ) < ∞. Since B is infinite, we have B1 is

infinite and there exists an infinite subset Z of B1 with |B1| = |Z| = |B1 rZ|. We

now are able to provide two bijections ϕ : B1 → Z and ψ : Z → B1. Then we

define α, β ∈ L(V,W ) by

xα =

xϕ if x ∈ B1,

0 if x ∈ B rB1,

and

xβ =

xψ if x ∈ Z,

0 if x ∈ B r Z.

First, we show that α ∈ AM(V,W ) r AE(V,W ). We have dim (kerα) =

|BrB1| <∞. Hence α ∈ AM(V,W ). By the definition of α, we have ranα = 〈Z〉.

By Proposition 1.12, dim (V/ ranα) = |B r Z|, which is infinite, since B1 r Z

is an infinite subset of B r Z. Thus α /∈ AE(V,W ). Therefore α belongs to

AM(V,W ) rAE(V,W ).

Next, we show that β ∈ AE(V,W ) r AM(V,W ). By the definition of β,

dim (ker β) = |B r Z| and ran β = W . Since |B r Z| is infinite, so is dim (ker β),

and hence β /∈ AM(V,W ). Since ran β = W , dim (V/ ran β) = dim (V/W ) < ∞,

we have β ∈ AE(V,W ). Therefore β ∈ AE(V,W ) rAM(V,W ).

From Proposition 3.2 (i) and (ii), if AE(V,W ) is a semigroup then AM(V,W )
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is also a semigroup, but the converse is not true. It follows from Proposition 3.3

that the semigroup AM(V,W ) = AE(V,W ) if and only if dim (V ) is finite.

Consider semigroups AM(V,W ) and AE(V,W ). From Proposition 1.10, if

dim (V ) is finite and W is the zero subspace of V then AM(V,W ) = L(V,W ) =

AE(V,W ) is regular.

Theorem 3.4. Let W be a nonzero subspace of V and let S(V,W ) be either the

semigroup AM(V,W ) or the semigroup AE(V,W ). Then S(V,W ) is regular if and

only if dim (V ) <∞ and W = V .

Proof. For the sufficiency, we assume that dim (V ) < ∞ and W = V . Then

AM(V,W ) = AM(V ) and AE(V,W ) = AE(V ). By Theorem 1.8, S(V,W ) is

regular, as dim (V ) < ∞. To prove the necessity, by contrapositive, suppose that

dim (V ) is infinite or W 6= V .

Case 1: dim (V ) is infinite and W = V . By Theorem 1.8, S(V,W ) is not regular.

Case 2: dim (V ) < ∞ and W 6= V . Then S(V,W ) = L(V,W ). Since V 6= {0},

W 6= {0} and W 6= V , by Proposition 1.10, S(V,W ) is not regular.

Case 3: dim (V ) is infinite and W 6= V . Since S(V,W ) is a semigroup, by

Proposition 3.2 (i) and (ii), dim (V ) = dim (W ). Then there exists an isomorphism

α from V to W , which clearly is in S(V,W ); the reader is reminded that, when

S(V,W ) = AE(V,W ), dim (V/W ) is finite. By Theorem 2.3, α is not regular in

S(V,W ).

We use Theorem 3.4 to generalise Theorem 1.8 as follows.

Corollary 3.5. Let AM(V,W ) and AE(V,W ) be semigroups with W a nonzero

subspace of V . The following statements are equivalent:

(i) dim (V ) <∞ and W = V ,

(ii) AM(V,W ) is regular,

(iii) AE(V,W ) is regular.

It is clear that AM(V,W ) ∩ AE(V,W ) = L(V,W ) when dim (V ) < ∞. We

therefore consider only the case when V is an infinite dimensional vector space,
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and give a necessary and sufficient condition for AM(V,W ) ∩ AE(V,W ) to be

regular.

Theorem 3.6. Let V be an infinite dimensional vector space. The semigroup

AM(V,W ) ∩ AE(V,W ) is regular if and only if W = V .

Proof. To prove the necessity, by contrapositive, we suppose that W is a proper

subspace of V . Since W 6= V and dimV is infinite, by the proof of Theorem 3.4,

it is clear that the linear transformation α that we have in the third case of the

proof is also a nonregular element in the semigroups AM(V,W ) and AE(V,W ).

Therefore AM(V,W ) ∩ AE(V,W ) is not regular.

For the sufficiency, we assume that W = V . Thus AM(V,W ) = AM(V ) and

AE(V,W ) = AE(V ). Let α ∈ AM(V ) ∩ AE(V ). Let K be a basis of ker α and

P a basis of ran α. For each v ∈ P , we choose zv ∈ vα−1. By Proposition 1.11,

K ∪ {zv : v ∈ P} is a basis for V . Let B be a basis for V with P ⊆ B. Then we

define β ∈ L(V ) by

vβ =

zv if v ∈ P,

0 if v ∈ B r P.

We have

dim (ker β) = |B r P |

= dim (V/ ranα) (by Proposition 1.12)

<∞ (as α ∈ AE(V )).

Thus β ∈ AM(V ). We then show that β ∈ AE(V ). We know that K∪{zv : v ∈ P}

is a basis of V . By Proposition 1.12,

dim (V/ ran β) = |K|

= dim (kerα)

<∞ (as α ∈ AM(V )).

That is, β belongs to AE(V ). Next, claim that αβα = α. Let t ∈ K∪{zv : v ∈ P}.
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If t ∈ K, then tαβα = 0 = tα. Otherwise, t = zu for some u ∈ P . Then

tαβα = zuαβα = uβα = zuα = tα. Hence we have the claim. Therefore the proof

is complete.

Corollary 3.7. For any α in the semigroup AM(V,W )∩AE(V,W ), α is regular

in AM(V,W ) ∩ AE(V,W ) if and only if Wα = ranα.

Proof. It is obtained from Theorem 2.1 and the converse proof of Theorem 3.6 step

by step.

From Theorem 3.6 and the fact that AM(V ) = L(V ) = AE(V ) when dim (V )

is finite, we have the following corollary.

Corollary 3.8. AM(V ) ∩ AE(V ) is a regular semigroup.

By Theorem 2.3, for any proper subspace W of V , every isomorphism from

V to W is not regular in T (V,W ) and certainly in its subsemigroups, including

AM(V,W ), AE(V,W ) and AM(V,W ) ∩ AE(V,W ). The next proposition shows

that, apart from the isomorphisms, there is some other kind of nonregular elements.

Proposition 3.9. Let V be an infinite dimensional vector space and W a proper

subspace of V such that AM(V,W )∩AE(V,W ) is a semigroup. Then there are in-

finitely many elements in AM(V,W )∩AE(V,W ) which are not regular in L(V,W )

and which are neither injective nor surjective.

Proof. Let W be a proper subspace of V such that AM(V,W ) ∩ AE(V,W ) is a

semigroup. Then dim (V/W ) is finite. Let B1 be a basis of W . Then we extend

B1 to a basis B of V . By Proposition 1.12, |B r B1| = dim (V/W ) < ∞. Since

B is infinite and B r B1 is finite, we have B1 is infinite. Since W 6= V , B r B1 is

not empty. Let a ∈ B r B1. Let Z be a finite subset of B1 with |Z| ≥ 2. Choose

z ∈ Z. Since B1 is infinite and Z is a finite subset of B1, B1 r Z is infinite and

|B1 r Z| = |B1|. Let u1, u2 ∈ B1 be distinct. Thus |B1 r Z| = |B1 r {u1, u2}|.
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Hence there exists a bijection γ : B1 r {u1, u2} → B1 rZ. Define α ∈ L(V,W ) by

xα =


xγ if x ∈ B1 r {u1, u2},

0 if x ∈ {u1, u2} ∪ [B r (B1 ∪ {a})],

z if x = a.

Then ranα = 〈(B1 r Z) ∪ {z}〉. By Proposition 1.12,

dim (V/ ranα) = |B r [(B1 r Z) ∪ {z}]|

= |(B rB1) ∪ (Z r {z})|

= |B rB1|+ |Z r {z}|

<∞.

Thus α is not surjective and α belongs to AE(V,W ). We have

dim (kerα) = |{u1, u2} ∪ [B r (B1 ∪ {a})]|

= |{u1, u2}|+ |B r (B1 ∪ {a})|

<∞.

Thus α is not injective and α ∈ AM(V,W ). Hence α ∈ AM(V,W ) ∩ AE(V,W ).

By the definition of α, Wα = 〈B1α〉 = 〈B1 r Z〉 6= 〈(B1 r Z) ∪ {z}〉 = ranα. By

Theorem 2.1, α is not regular in L(V,W ).

3.2 Regularity of OM(V,W) and OE(V,W)

Throughout this section, we let V be an infinite dimensional vector space over

a division ring. The objective of this section is to investigate the regularity

of linear transformation semigroups OM(V,W ) and OE(V,W ). We note that

under the constraint in Proposition 3.3, we have OM(V,W ) r OE(V,W ) and

OE(V,W )rOM(V,W ) are not the empty sets, as both {AM(V,W ),OM(V,W )}

and {AE(V,W ),OE(V,W )} are partitions of L(V,W ).
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Theorem 3.10. For any nontrivial subspace W of V , the semigroups OM(V,W ),

OE(V,W ) and its intersection have infinitely many nonregular elements in L(V,W ).

In particular, all OM(V,W ), OE(V,W ) and its intersection are nonregular semi-

groups.

Proof. Let B1 be a basis of W . Then we extend B1 to a basis B of V . Let b ∈ B1

and let m ∈ B rB1. Define α ∈ L(V,W ) by

vα =

b if v = m,

0 if v ∈ B r {m}.

Then dim (kerα) = |B r {m}|, which is infinite. Hence α ∈ OM(V,W ). We

have ranα = 〈{b}〉. Thus dim (V/ ranα) = |B r {b}|, and hence α ∈ OE(V,W ).

Therefore α ∈ OM(V,W )∩OE(V,W ). SinceWα = 〈B1α〉 = {0} 6= 〈{b}〉 = ranα,

by Theorem 2.1, α is not regular in L(V,W ).

Theorem 3.11. OM(V,W ) ∩ OE(V,W ) is regular if and only if either W = V

or W = {0}.

Proof. Clearly, if W = {0} then the zero transformation is the only one element

in OM(V,W )∩OE(V,W ), and hence OM(V,W )∩OE(V,W ) is regular. Assume

that W = V . Then OM(V,W ) = OM(V ) and OE(V,W ) = OE(V ). Let α be in

OM(V ) ∩ OE(V ). Let K be a basis of ker α and P a basis of ran α. For each

v ∈ P , we choose zv ∈ vα−1. By Proposition 1.11, K ∪{zv : v ∈ P} is a basis of V .

Let B be a basis for V with P ⊆ B. Then we let γ be the linear transformation

defined by

vγ =

zv if v ∈ P,

0 if v ∈ B r P.

Thus dim (ker γ) = |B r P | = dim (V/ ranα), which is infinite, since α ∈ OE(V ).

Thus γ ∈ OM(V ). We show that γ ∈ OE(V ). We have K ∪ {zv : v ∈ P}

is a basis of V . Then dim (V/ ran γ) = |K| = dim (kerα), which is infinite, since

α ∈ OM(V ). Hence γ ∈ OE(V ). Thus γ ∈ OM(V )∩OE(V ). It is straightforward
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to see that αγα = α, and the proof is then complete.

The neccessity follows directly from Theorem 3.10

Corollary 3.12. OM(V ) ∩ OE(V ) is a regular semigroup.



CHAPTER IV

SUPPLEMENTARY COMMENTS

In Chapter II, the transformations under consideration are contained in T (X, Y );

the codomain of each map is Y . Possibly, there is one likely to put a question why

the conditions of elements α in AE(X, Y ) is not “Y r ranα is finite”.

We show that both AE(X, Y ) and

AE(X, Y ) = {α ∈ T (X, Y ) : Y r ranα is finite},

are the same semigroups under certain conditions. We also discuss in which way

they differ to each other. In addition, AE(X, Y ) and AE(X, Y ) are identical

whenever they both are semigroups. Then it is enough only to study the regularity

of the semigroup AE(X, Y ).

Furthermore, in the last section, we discuss its analogous problem in case of

linear transformations.

4.1 The relation between AE(X,Y) and AE(X,Y)

In this section, we assume that Y is a nonempty subset of X. By the definition of

AE(X, Y ) and AE(X, Y ), we have that AE(X, Y ) is a subset of AE(X, Y ), and

we see that if X is finite then AE(X, Y ) = T (X, Y ) = AE(X, Y ). In general, we

have

Proposition 4.1. AE(X, Y ) = AE(X, Y ) if and only if X r Y is finite.
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Proof. Suppose that X r Y is infinite. Let a ∈ Y . Define α ∈ T (X, Y ) by

xα =

x if x ∈ Y,

a otherwise.

Then ranα = Y . Thus α /∈ AE(X, Y ) but α ∈ AE(X, Y ). Hence AE(X, Y ) and

AE(X, Y ) are different, and AE(X, Y ) is not empty.

Conversely, assume that X r Y is finite. Clearly, AE(X, Y ) ⊆ AE(X, Y ). Let

α ∈ AE(X, Y ). Then Y r ranα is finite. Since Xr ranα = (XrY )∪ (Y r ranα),

X r Y and Y r ranα are also finite, we have X r ranα is finite. Hence α is in

AE(X, Y ). Therefore AE(X, Y ) = AE(X, Y ).

Propositions 2.7 (ii) and 4.1 show that if AE(X, Y ) is a semigroup then so is

AE(X, Y ). The converse holds whenever Y is infinite.

Proposition 4.2. Let Y be an infinite subset of X. Then AE(X, Y ) is a semigroup

if and only if X r Y is finite.

Proof. For the sufficiency, assume that X r Y is finite. Whether X is finite or

infinite, by Proposition 2.7 (ii) and the fact that AE(X, Y ) = T (X, Y ) when

X is finite, one can see that AE(X, Y ) is a semigroup. By the assumption and

Proposition 4.1 , AE(X, Y ) is a semigroup.

To prove the necessity, by contrapositive, we suppose that X r Y is infinite.

By the contrapositive proof of Proposition 4.1, AE(X, Y ) is not empty. It suffices

to show that AE(X, Y ) is not closed. We have two cases to consider.

Case 1: |X r Y | < |Y |. Since X r Y is infinite and |X r Y | < |Y |, there exists

a subset Z of Y with |X r Y | = |Z|. Then there exists a bijection α from X r Y

to Z. Clearly, we have a surjection β from Y to Y rZ. Now, we define ϕ : X → Y

by

wϕ =

wα if w ∈ X r Y,

wβ otherwise.
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Then ranϕ = Y . Thus ϕ belongs to AE(X, Y ). We have ranϕ2 = Y r Z. Hence

Y r ranϕ2 = Z, which is infinite. Thus ϕ2 /∈ AE(X, Y ). Hence AE(X, Y ) is not

closed.

Case 2: |X r Y | ≥ |Y |. Then there exists a surjection γ from X r Y to Y . Let

a ∈ Y . We define µ : X → Y by

xµ =

xγ if x ∈ X r Y,

a otherwise.

Then ranµ = Y , so µ is in AE(X, Y ). Clearly, ranµ2 = {a}. Thus Y r ranµ2 =

Y r {a}, which is infinite. Hence µ2 /∈ AE(X, Y ). Therefore AE(X, Y ) is not

closed.

The first main theorem follows from Propositions 2.7 (ii), 4.1 and 4.2.

Theorem 4.3. Let Y be an infinite subset of X. The following are equivalent:

(i) X r Y is finite,

(ii) AE(X, Y ) is a semigroup,

(iii) AE(X, Y ) is a semigroup,

(iv) AE(X, Y ) = AE(X, Y ).

In particular, OE(X, Y ) = {α ∈ T (X, Y ) : Y r ranα is infinite} if and only if

X r Y is finite.

From Proposition 4.2 and the fact that AE(X, Y ) = T (X, Y ) when Y is finite,

we have the following theorem.

Theorem 4.4. AE(X, Y ) is a semigroup if and only if either Y is finite or Y is

infinite and X r Y is finite.

Proof. We first assume that AE(X, Y ) is a semigroup and Y is an infinite set. By

Proposition 4.2, we have X r Y is finite.

The converse is obtained from Proposition 4.2 and the fact that AE(X, Y ) is

T (X, Y ) when Y is finite.
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Therefore the semigroup AE(X, Y ) is either T (X, Y ) or AE(X, Y ). This is a

reason why it suffices only to study the regularity of the semigroup AE(X, Y ), but

not both.

4.2 The relation between AE(V,W) and AE(V,W)

Let AE(V,W ) = {β ∈ L(V,W ) : dim (W/ ran β) < ∞}. In this section, we study

the relation between AE(V,W ) and AE(V,W ) in the same fashion as we have done

in the previous section. Throughout, W is a subspace of a vector space V .

Theorem 4.5. For a basis B1 of W and a basis B of V containing B1, we let

f ∈ T (B,B1) and α ∈ L(V,W ) be such that α|B = f . Then f ∈ AE(B,B1) if and

only if α ∈ AE(V,W )

Proof. Let f ∈ T (B,B1) and α ∈ L(V,W ) be such that α|B = f . Then ran f ⊆ B1

and it is easy to see that ran f is a basis of ranα. Consequently, dim (W/ ranα) =

|B1 r ran f |. The proof is then complete from this fact.

Proposition 4.6. AE(V,W ) = AE(V,W ) if and only if dim(V/W ) <∞.

Proof. For the necessity, we prove by contrapositive. Let B1 be a basis of W .

Then we extend B1 to a basis B of V . Suppose that dim(V/W ) is infinite. Define

β ∈ L(V,W ) by

xβ =

x if x ∈ B1,

0 if x ∈ B rB1.

Then ran β = W . Thus β ∈ AE(V,W ) but β /∈ AE(V,W ) . Hence AE(V,W ) is

not empty and AE(V,W ) 6= AE(V,W ).

To prove the sufficiency, we assume that dim(V/W ) < ∞. It is clear that

AE(V,W ) ⊆ AE(V,W ). Let α ∈ AE(V,W ). Let P be a basis of ranα. We

extend P to a basis B1 of W , and we then extend B1 to a basis B of V . By
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Proposition 1.12,

|B rB1| = dim(V/W ) <∞,

|B1 r P | = dim (W/ ranα) <∞ (as α ∈ AE(V,W )) and

|B r P | = dim (V/ ranα).

Since BrP = (BrB1)∪(B1rP ) is finite, we have dim (V/ ranα) is finite. Hence

α ∈ AE(V,W ).

Next, we will show that AE(V,W ) and AE(V,W ) are semigroups in the same

time. Note that if dim(V ) is infinite and dim(W ) is finite then AE(V,W ) is empty

and AE(V,W ) = L(V,W ).

Proposition 4.7. Let W be an infinite dimensional subspace of V . Then AE(V,W )

is a semigroup if and only if dim(V/W ) <∞.

Proof. Assume that dim(V/W ) <∞. By Proposition 4.6, AE(V,W ) = AE(V,W ).

By Proposition 3.2 (ii), AE(V,W ) is a semigroup.

Conversely, suppose that dim(V/W ) is infinite. Let B1 be a basis of W and

B a basis of V containing B1. By assumption and Proposition 1.12, B r B1 is

infinite. By the necessary proof of Proposition 4.2, there exists f ∈ AE(B,B1)

but f 2 /∈ AE(B,B1). Extend f to a linear transformation α ∈ L(V,W ). We have

α2|B = f 2. From these facts and Theorem 4.5, we have α2 /∈ AE(V,W ) when

α ∈ AE(V,W ). Therefore a nonempty set AE(V,W ) is not closed, and hence it is

not a semigroup.

These results give us an interesting fact.

Theorem 4.8. Let W be an infinite dimensional subspace of V . The following are

equivalent:

(i) dim(V/W ) <∞,

(ii) AE(V,W ) is a semigroup,

(iii) AE(V,W ) is a semigroup,

(iv) AE(V,W ) = AE(V,W ).
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In particular, OE(V,W ) = {α ∈ L(V,W ) : dim(W/ ranα) is infinite} if and only

if dim(V/W ) <∞.

Below is a consequence of Proposition 4.7 and the fact that AE(V,W ) =

L(V,W ) when dim(W ) is finite.

Theorem 4.9. AE(V,W ) is a semigroup if and only if either dim(W ) is finite or

dim(W ) is infinite and dim(V/W ) <∞.

Proof. For the forward implication, we assume that AE(V,W ) is a semigroup and

dim(W ) is infinite. By Proposition 4.7, we have dim(V/W ) <∞.

The other implication follows from Proposition 4.7 and the fact that AE(V,W )

is L(V,W ) when dim(W ) is finite.

From the above theorem, it is reasonable to only study the regularity of the

semigroup AE(V,W ).
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