

การใชค้อมพิวเตอร์กบัปัญหาเรขาคณิตแบบยุคลิด

 นายปริญญา ศิริคติธรรม

วิทยานิพนธ์น้ีเป็นสว่นหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบณัฑิต
สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั
ปีการศึกษา 2559

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

 บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

USING COMPUTER FOR EUCLIDEAN GEOMETRY PROBLEMS

Mr. Parinya Sirikatitum

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Mathematics

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2016

Copyright of Chulalongkorn University

Thesis Title USING COMPUTER FOR EUCLIDEAN GEOMETRY PROBLEMS

By Mr. Parinya Sirikatitum

Field of Study Mathematics

Thesis Advisor Associate Professor Wacharin Wichiramala, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Master’s Degree

. Dean of the Faculty of Science

(Associate Professor Polkit Sangvani, Ph.D.)

THESIS COMMITTEE

. Chairman

(Associate Professor Songkiat Sumetkijakan, Ph.D.)

. Thesis Advisor

(Associate Professor Wacharin Wichiramala, Ph.D.)

. Examiner

(Associate Professor Nataphan Kitisin, Ph.D.)

. Examiner

(Assistant Professor Khamron Mekchay, Ph.D.)

. External Examiner

(Sittisede Polwiang, Ph.D.)

iv

ปริญญา ศิริคติธรรม : การใชค้อมพิวเตอร์กบัปัญญาเรขาคณิตแบบยคุลิด. (USING
COMPUTER FOR EUCLIDEAN GEOMETRY PROBLEMS) อ.ทีÉปรึกษาวทิยานิพนธ์
หลกั : รศ.ดร.วชัรินทร์ วชิิรมาลา, śŚหนา้.
ในการพิจารณาปัญหาเรขาคณิตในสองมิตินัÊน เราจะใชคุ้ณสมบติัต่างๆของรูปเรขาคณิตแต่ละ

รูปสมบติัเกีÉยวกบัมุมและดา้นและสมบติัอืÉนๆทีÉเกีÉยวขอ้ง ซึÉงเปรียบสมบติัแต่ละอยา่งนัÊนเสมือนสมการ
จากนัÊนทาํการแกส้มการเพืÉอหาคาํตอบของความสมัพนัธ์ระหวา่งมุมหรือดา้น ซึÉงจะเกิดการลองผดิลอง
ถูก อาจทาํใหม้องขา้มวธีิการทีÉง่าย จนอาจใชเ้ครืÉองมือทีÉเกินความจาํเป็น ในวทิยานิพนธ์นีÊ จึงมีจุดประสงค์
ทีÉจะสร้างโปรแกรมทางคณิตศาสตร์เพืÉอแกไ้ขปัญหาเรขาคณิตแบบยคูลิด โดยมีแนวคิดทีÉจะใหค้อมพิวเตอร์
เปรียบเสมือนแรงงานทีÉจะทาํงานผกูสมการเพิÉม จนมากเพียงพอและแกส้มการทัÊงหมดทัÊงนีÊ โปรแกรม
นีÊสามารถช่วยตรวจสอบความจาํเป็นและเพียงพอของเครืÉองมือในการแกไ้ขปัญหาของโจทยเ์รขาคณิต
ในแต่ละโจทยไ์ดอี้กดว้ย

ภาควชิา ...คณิตศาสตร์และวทิยาการ.......... ลายมือชืÉอนิสิต ...
...คอมพิวเตอร์............................... ลายมือชืÉอ อ.ทีÉปรึกษาหลกั

สาขาวชิา ...คณิตศาสตร์................................
ปีการศึกษา ...Śŝŝš..

v

ŝşşŚřŜŜŞŚś : MAJOR MATHEMATICS
KEYWORDS : EUCLIDEANGEOMETRYPROBLEM,COMPUTATOINALAPPROACH, PRO-
GRAMMING ALGORITHM

PARINYA SIRIKATITUM : USING COMPUTER FOR EUCLIDEAN GEOMETERY
PROBLEMS. ADVISOR : ASSOC. PROF. WACHARIN WICHIRAMALA, Ph.D. śŚpp.

To solve a Euclidean geometry on the plane using only ruler and compass problem, we use
properties of angles, sides and some related geometry properties which are equivalent to solving
equations with multiple variables. Practically in order to solve a problem, we usually do trial and
error which is a waste of time and might use unnecessary tools. By using a mathematical program,
we can prevent human errors and unnecessary task on a problem. The idea of this work is to use a
computer as a labour to help us solve the equations after teaching some necessary theorems to it. We
create algorithms for a program to solve the problems.

Department : ...Mathematics and..... Student's Signature : ..
...Computer Science... Advisor's Signature : ..

Field of Study :Mathematics......
Academic Year :ŚŘřŞ.............

vi

ACKNOWLEDGEMENTS

In the completion of my Master Thesis, I am deeply indebted to my thesis advisor, Associate
Professor Dr.Wacharin Wichiramala, not only for coaching my research but also for broadening
my academic vision. I would like to express my special thanks to my thesis committee: Associate
Professor Dr.Songkiat Sumetkijakan, Associate Professor Dr.Nataphan Kitisin, Assistant Professor
Dr.Khamron Mekchay and Dr.Sittisede Polwiang. Their suggestions and comments are my sin-
cere appreciation. Moreover, I feel very thankful to all of my teachers who have taught me for my
knowledge and skills. Also, I wish to express my thankfulness to my family and my friends for their
encouragement throughout my study.

Finally, I would like to thank Chulalongkorn University graduate scholarship to commemorate
the şŚnd Anniversary of his Majesty King Bhumibol Adulyadej for financial support throughout my
graduate study.

CONTENTS

page
ABSTRACT IN THAI . iv
ABSTRACT IN ENGLISH . v
ACKNOWLEDGEMENTS . vi
CONTENTS . vii
CHAPTER

I INTRODUCTION . ř
II GENERALIZE THE PROBLEMS . Ŝ
III EQUATION GENERATING . řŚ
IV EXAMPLE . řş
V CONCLUSION AND DISCUSSION . Śś

APPENDIX . ŚŜ
REFERENCES . śř
VITA . śŚ

CHAPTER I

INTRODUCTION

In this chapter, the background and signification and the scope of the research will be presented.

1.1 Background and Signification

Consider the following problem. Let ABC be a triangle and letD be a point onBC . Prove that

∠ABD + ∠DAB = ∠ADC. (1.1.1)

Figure 1.1: The triangle ABC

To solve this problem, we use the fact that the sum of three angles of any triangle is equal to π
radian or (180◦) . Then we have

∠ABD + ∠BDA+ ∠DAB = π. (1.1.2)

And from the fact that
∠BDA+ ∠ADC = π. (1.1.3)

We combine (1.1.2) and (1.1.3) to obtain (1.1.1).

2

From the previous problem, we can see that solving this euclidean geometry problem we use
properties of angles, sides and some related geometry properties which are equivalent to solving
equations with multiple variables. In some problems, the solving part has lots of routine task and
easy to make mistake. The part of solving equations with multiple variables sparked this work. The
process can be done by computers if we teach them to solve the problem. This idea can also prevent
the human error that usually occur in most of the problems. There are attempts to do this trial and
error work by computers [ř, Ś, ś]. One explicit software may be found at MathWay [Ŝ]. But its
performance is still very limited as users may input only a small information of objects and may ask
only some specific kinds of questions. In this work, we construct an algorithm to help solving most
of Euclidean geometry problems using a computational approach.

1.2 Scope of the Research

1.2.1 Algorithm

We spot that the process of reaching the solution of the Euclidean geometry problems is obtained
by solving the equations with multiple variables. At present, the computers can manage to solve
this problem in fewer time. So, in this research we create an algorithm to help solving Euclidean
geometry problems using a computer software. That means the software for the algorithm may
depends on the potential that suit for the algorithm.

1.2.2 The limitation of a computer

In the equations generating, it is impossible to generate the equations without stop since the mem-
ory of the computer is limited. For example, if we construct an algorithm that add a middle point
between any two points, the added point can be act as another point to repeats on adding another
middle point. This example leads to a big problem that we cannot afford to add more points into
the system. For some problems, it is very helpful to add some specific points, as the proof would be

3

much shorter. Some problems cannot be proved without adding some crucial points. But it is a big
misunderstanding to think that adding these useful points is simple. Without any experience, one
may not know intuitively where to locate such points. Hence we may not expect a practical step to
add points to the initial situation. Then, no point will be generated by this algorithm.

CHAPTER II

GENERALIZE THE PROBLEMS

In this chapter, we start to generalize the problems into steps and create an efficiently way to input
the information of the Euclidean geometry problems into the computer. The structure of the input
will be presented in this chapter.

2.1 Basic Step

A computer can solve multiple variables problems. For example, if we have initial conditions a +

b = c and d = c − b, the computer can conclude that whether a = d or not. So, we can use this
ability to help us solve the Euclidean geometry problems by considering the geometric elements as
variables.

Figure 2.1: The triangle ABC

In a situation in Figure Ś.ř, a triangle ABC with a line AD where D is on the side BC . To
conclude that ∠ABD +∠DAB = ∠ADC , we can assign variables for each angle as in Figure
Ś.Ś and then input the conditions a + b + c = π and c + e = π. Now the computer can easily
conclude that a + b = e which is the desired equation. In order to use this process to solve the
problem using computer, the user needs to manually input all related equations and variables which

5

Figure 2.2: The triangle ABC

takes lots of task to do. In reality, a situation frequently has lots of variables and contains tons of
equations which is hard to input manually. Therefore, not only we let the computer helps us solve
the equations but also needs to help us generate the variables and equations.

Definition 2.1.1. A set-up is the information about lines, points and their rela-

tion. In particular, the order of points must be given and the orientation of each

triangle is known.

Figure 2.3: Two set-ups

For example, two set-ups in Figure Ś.ś, the set-up (a) has more information than (b) since the
points that lie on the same circle were given.

The first step is to figure out a way to input the set-up into the computer. As mentioned, one of
the way is to manually input all variables and equations but we need an efficiently way to input the

6

set-up using the least amount of task. The goal is that the computer can generate the variables and
equations from the input. Then, we need to know what the input looks like and the computer needs
to understand the input for the further equation generating. So, we begin to construct the structure
of the input.

2.2 Structure

There are many ways to assign the variables for the geometric elements in a set-up. For example, in
Figure Ś.Ś we defined the variables of angles in the set-up as a, b, ..., f . This assignment is easy to
do but hard for the programming to identify the angle, for which variable is. It might be more useful
if we assign the variables related to the name of the angles. The name of angles usually come from
the points in the set-up. So, there might be some way to use the points in a set-up to generate the
variables of all angles.

Furthermore the variables needs to contain the properties of the relations from the set-up. For
example, in Figure Ś.Ś, a triangle ABC , both triangles ABD and ADC shared the same side
BC . So, the variable for the sideBC in the triangleABD and the variable for the sideBC in the
triangle ADC must be the same.

So, the input that we need must have the information of how the points and lines are positioning.
It is observed that two crossed lines form angles. If the input is based on the lines in a set-up, any
angles might be reached by the search since each angle formed by two lines. So, we aim to use the
structure of the input using the lines. Since each line has points in it, we may use the order of points
of the line to describe it. The input that describes the set-up might be just the order of the points of
each line. So, we need to know that it is enough to describe the set-up by the order of points of each
line.

Taking care of placement of lines and points is the most difficult laborious part in describing all
detail of the set-up of a problem. For each problem, we must first start from drawing all possible

7

set-up described by the problem. For example, considering the following problem, called the power
of point. For a given circleO, a line L passing throughO atA atB, and a lineK passing through
O atC andD, suppose L andK meet atE. Then,EA ·EB = EC ·ED. For this problem, we
have Ś different possible set ups as in Figure Ś.Ŝ.

Figure 2.4: The 2 situations for the power point problem

We will find later that when A and B are swapped or C and D are swapped, the process and
the outcome are the same. Then for each set up, we have to describe all necessary information about
lines and points and relations between them.

2.3 Describing lines

In this section, we mention how to describe lines and their relations. We find a convenient way to
describe relations between lines, including angles and triangles and their orientations.

The first important information about lines are just points and their order on each line. For
examples, in Figure Ś.Ŝ (a) the lines are AEB and CED. While in the situation in Figure Ś.Ŝ (b),
the lines are ABE and CDE. For any problem, when these lines are "well interlaced", we may
have only Ś ways to draw them regardless rotation. Consider the following situation where the lines
are not well interlaced ABC ,DEF andBGE. Even though they are connected, we may draw Ŝ
possible situations.

From the previous example, if we consider the points A, B and G, the triangle formed by

8

(a) (b) (c) (d)

Figure 2.5: The 4 possible situations

these points has two different orientationsAGB in (a) andABG in (b) reading counterclockwise.
There are Ş ways to arrange ś letters and Ś ways for arranging ś letters in a circle. The different
of the orientations of a triangle can be considered as arranging ś letters in a circle. So, any three
points can form only two different triangles regardless orientations. In some set-up, we can change
the orientations of some triangles if the set-up does not has enough information of how lines are
intersected. For example, in Figure Ś.ŝ, we can flip the lineABC to make changes of the orientation
of a triangleABG while the orientation of the triangleGDE does not change. In some set-up, we
cannot change the orientations of some triangles since the lines are well interlaced and if we change
any orientation of a triangle, the orientation of every triangle will be changed. We then define the
concept on how lines are interlaced.

Definition 2.3.1. Any 2 triangles are called deeply adjacent if they share one

common side and there is a line through one of other remaining side for each

triangle.

Figure 2.6: The two deeply adjacent triangles ABD and ADC

For example, in Figure Ś.Ş, the trianglesABD andADC are deeply adjacent sinceAD is the

9

common side and the line BDC passing through one of other remaining side. There are two pairs
of triangles ABD, ABC and ADC and ABC are also deeply adjacent. Obviously, any triangle
is deeply adjacent to itself.

Furthermore, we can find the orientation of a triangle that is deeply adjacent to a known orien-
tation triangle. For example, given two triangles ABC andADC that are deeply adjacent and the
lineBDC passing through one side of both triangles. Suppose we know that the orientation of the
triangleABC isABC . Since the pointD lies betweenB andC and both triangle shared the same
side AC , the character D follows A in the orientation ADC . Similarly, if the line is BCD the
orientation of the triangle ADC will be ACD

Definition 2.3.2. We say that two triangles t and t′ are deeply connected if

there are triangles t = t1, t2, t3, ..., tn = t′ where ti and ti+1 are deeply adjacent.

Lemma 2.3.3. Given a set-up where 2 triangles ABC and XY Z are deeply con-

nected. If we know the orientation of one triangle then we may find the orientation

of another triangle.

Proof. Suppose that ABC is the triangle that we know its orientation. Since

the triangles ABC and XY Z are deeply connected, there are triangles ABC =

t1, t2, t3, ..., tn = XY Z where ti and ti+1 are deeply adjacent. Inductively, we

may find the orientation of XY Z. To show that this process is independent of

choice of path ti, we suppose the orientation that we previously obtained is XY Z

and suppose there are another triangles ABC = s1, s2, s3, ..., sk = XY Z where si

and si+1 are deeply adjacent and the orientation of sk is XZY . Since XY Z =

tn, tn−1, ..., t1 = ABC where ti and ti−1 are deeply adjacent. By reversing the

inductive process on t1, t2, t3, ..., tn, we obtain that the orientation of ABC is ACB.

This contradicts to the original orientation of ABC.

Definition 2.3.4. We say that a set-up is well interlaced if every two triangles

10

in the set-up are deeply connected.

(a) (b)

Figure 2.7: The well interlaced set-ups

For example, the lines in Figure Ś.ş (a) and Figure Ś.ş (b) are examples of well interlaced set-up
while the lines in Figure Ś.Š is not, since the triangles ACB andBEG are not deeply adjacent.

Figure 2.8: The non well interlaced set-up

If we know the orientation of a triangle t, we can find the orientation of the triangle that deeply
adjacent to t. Further more, we can find the orientation of any triangles that deeply connected to t
by the following theorem.

Theorem 2.3.5. For any well interlaced set-up, if we know an orientation of a

triangle in the set-up, we may find the orientations of all triangles.

11

Proof. The proof is followed by lemma 2.3.3.

In the next chapter, we will use Theorem Ś.ś.ŝ as follows. As we wish to use computer to help
solving Euclidean geometry problems. For each set up, we have to describe the orientation of every
triangles. The theorem will help us by reducing amount of work to describe all orientations in a well
interlaced set-up as we need only one orientation of any triangle.

CHAPTER III

EQUATION GENERATING

This chapter shows the algorithm in steps. The code that input in the computers can be written in
various ways depending on the language and program using.

The main idea of solving a Euclidean geometry problem by using the algorithm is to command
the computer to generate multiple variable equations and let the computer solve the desired expres-
sion from those equations. The elements in a set-up such as points, lines and angles will be considered
as variables in the equations. The variables will be created in the form of set with order preserved.
The computer will be commanded to generate equations from the set-up using some Euclidean geo-
metric properties and keep those equations in the set of conditions C. The computer will use the set
C to conclude an expression.

To begin the method, let S be a well interlaced set-up and then we command the computer to
perform the following steps on S .

Step 1. Input the information of each line and initial conditions

In this step, the order of points in each lines of S will be required to manually input by the user.
This is a very simple and practical way to input a set-up without requiring any advance geometry
skills. The data required in this step is the orders of points in each lines. For example, in a line
ABC , we can input the points in order [A,B,C] or [C,B,A]. The inputs in this step will be
consider as variables with information of order.

The initial conditions are input to the set C. If there is no initial conditions the set C will remains
empty. Since in this step does not generate any equation, the C remains unchanged.

Step 2. Input the information of points that lie on the same circle

13

Figure 3.1: Points A, B, C and D lie on the same circle

This step is the generating step for the information of points that lie on the same circle. The
equations that related to circles will be generated in this step. The user needs to input the information
in S to let the computer knows which points lie on the same circle.

Like Step ř, we require the user to manually input the points that lie on the same circle where
those points must be ordered in counterclockwise.

The information leads to equations as illustrator by Figure ś.ř. Where we get ∠BCA =

∠BDA, ∠DAC = ∠DBC , ∠CDB = ∠CAB and ∠ABD = ∠ACD. Further more,
we obtain ∠ABC + ∠CDA = π and ∠BCD + ∠DAB = π. For more than Ŝ points on the
same circle, the equations will be generated in similar way.

Thus for any collection of points that lie on the same circle, we can generate the previous equa-
tions for C and if the center of each circle has given, we can generate the equality of the distance of
each radius. In addition, we obtain some of exist angles from the order of points that lie in the same
circle which can be used in the next step.

Step 3. Generates all angles

In this step, the variables for all angles will be generated. The variables needed to keep some
information like their angle's orientation. So, each variable needs to has relation to its orientation
information for the further check. Some program can use a set or function as variable to keep some
information when checking on its condition. For example, some program can use a function f [A,
B, C] for the variable of an angle ABC .

14

Every three points form a triangle. The angles will be considered as variables with combination
of three points. The name of variables for angles can be named in any different way. In this case,
we use the variable a[A, B, C] for the angle ABC with the vertex B read counterclockwise. In
order to generate all angles, we need to know the orientation of all triangles. The question is that
how can we obtain the orientation of any angle in the set-up from the information in Step ř. From
the Theorem Ś.ś.ŝ, if the orientation of an angle in S is known, the orientations of every angle is
known for the well interlaced set-up S . So, there is a search to find all orientations of the angles if
the orientation of an angle is known.

From Step Ś, an orientation of some angles can be obtained from the order of circles. So, Theo-
rem Ś.ś.ŝ can be applied if there is a group of points that lies on the same circle. If there is no group
of points that lies on the same circle, an orientation of an angle in the set-up will be required to be
input. Now the computer can use the transitivity of orientation in S to generate all angles form a
known orientation of an angle.

Step 4. Triangles

In this step, the equation of the sum ofmeasures of three angles of each triangle will be generated.
The concept behind this step is to generate the relations between three angles in each triangle.

From Step Ś, variables of all angles are generated. So, the computer is commanded to generate
the equations of the sum of the three angles of any triangle is equal to π radian. The generated
equations are kept in the set C.

From now on, it can be observed that the properties the set-up which used angles can be input
in the form of equations using the variables of the angles.

Step 5. Combining sides and angles

In this step, the equations of the sum of adjacent angles and the sum of adjacent sides will be
generated. This is a trivial step but essential. The computer never know which two sides or angles

15

can be combined into one another. So this step is needed to measure the combining of any two
adjacent angles and sides.

For pointsA,B and C on the same line with such order, the computer commanded to generate
the measure of the distance equationsAB+BC = AC and for any tree orientation known angles
∠ABD, ∠DBC and ∠ABC the computer commanded to generate ∠ABD + ∠DBC =

∠ABC .

Step 6. Law of Sine and Cosine

In this step, the equations of law of sine and cosine of each triangle will be generated and kept
in C . The law of sine and cosine is the meaning of measuring the area of the triangles in the set-up.
The expression that needs the area of triangles to reach the goal can now be solved. This is a big
leap to measure the area instead of measuring just the distance of the lines or the size of the angles.

For any triangle ABC with a, b and c the corresponding sides, the computer commanded to
generate the equations sinA

a
=

sinB

b
=

sinC

c
, a2 = b2 + c2 − 2bc cosA, b2 = a2 + c2 −

2ac cosB and c2 = a2 + b2 − 2ab cosC .

Step 7. Similar triangles

In this step, the equations of the similar triangles will be generated. If Ś of ś of the corresponding
angles of two triangles have the same sizes then generate the equations of the proportion lengths of
corresponding sides. This will generate the relations of the sides between any two triangles that are
similar.

This step has the checking part before the generating. This means, the computer needs to solve
the equations from C that which two triangles have Ś of ś of the corresponding angles the same sizes
before generate the proportion lengths. Moreover, if an equation of a pair of triangles is generated,
the generated equation can be affect to the similarity of another pair of the triangles. So, the checking

Step 8. Congruent triangles

16

In this step, the equation of equality of the two triangles that are congruent will be generated. If
the conditions of the congruent triangles SSS, SAS, AAS of ASA are satisfied on any Ś triangles,
then the computer commanded to generate the equalities of the corresponding angles and sides. This
explained the computer to understand how the two triangle are equal using the information of ś
elements in a triangle.

From information in Step Ś and the initial information, together with Step ř and Theorem Ś.ś.ŝ,
we may know all orientations of triangles and thus angles if the lines are well interlace. Hence
any mathematical assisting software may use these equations and inequalities in C to verify a given
statement.

CHAPTER IV

EXAMPLE

This chapter shows the examples of the algorithm on some problem. Note that, the variables for the
angles in this chapter will be in the form a[A, B, C] where ∠ABC is an angle with the vertex B
read counterclockwise and the variables for the distance of the lines is d[P ,Q] where P andQ are
points and d[P ,Q]= d[Q, P].

4.1 Power of a point theorem

Given a point P and a circle, pass two lines through P that intersect the circle in points A and B
and, respectively, C andD as in Figure Ŝ.ř. Then AP ·BP = CP ·DP .

(a) (b)

Figure 4.1: The 2 situations for power a point theorem

This problem can be drawn into two set-up. So, in order to use the program, we have to split
into two cases.

18

Case (a) There are two lines APB and CPD and the points on the same circle are A,D,
B and C . In Step ř, the lines APB and CPD will be input. In Step Ś, the points on the same
circle A,D,B and C will be input with respected order. Then the equations

(i) a[B,A,D] = a[B, C ,D]

(ii) a[C ,A,B] = a[C ,D,B]

(iii) a[A,D, C] = a[A,B, C]

(iv) a[D, C ,A] = a[D,B,A]

(v) a[A,D,B] + a[B, C ,A] = π

(vi) a[C ,A,D] + a[D,B, C] = π

are generated. The variables of the angles∠BAD,∠BCD,∠CAB,∠CDB,∠ADC ,∠ABC ,
∠DCA, ∠DBA, ∠ADB, ∠BCA, ∠CAD and ∠DBC are also generated in Step Ś. In Step
ś, an angle from Step Ś will be chosen to determine the angles' orientation and then generate the
variables of the angles. The next part is an example of the search for the angles' orientation which
can be done by various ways.

In order to generate all angles, we first choose one of the angle we've already know its orientation,
in this case we choose∠BAD. Since any ś points form a triangle and also form three angles, then
we can get the orientation of all angles if we can find the orientation of all triangles. In this set-up,
we have Š triangles to reach. The search starts from considering the two lines that the angle∠BAD

uses which isAPB andAD. So the the next triangle that we can get its orientation is PAD, since
the point P is lies between A and B. Now we know the orientation of angles ∠PAD, ∠ADP

and ∠DPA. Next, consider the angle ∠ADP and the lineDPC . Since the point C is lies next
to D and P , the triangle DCA is reached. Follow by the angle ∠DCA and the line DPC , the
triangle PCA is reached. Continue the process to reach the triangles BCA, BCP , BCD and

19

BPD. Now we can generate the variables of all angles using the orientations of the triangles. The
equalities of the angles that use the same two lines such as a[B,A,D] = a[P ,A,D] and a[B, C ,
D] = a[B, C , P] are also generated into C in this part.

Moving to Step Ŝ, we can generate the sum of tree angles of each triangle since we already know
the orientation of all triangles. The equations

(i) a[B,A,D] + a[D,B,A] + a[A,D,B] = π

(ii) a[P ,A,D] + a[D, P ,A] + a[A,D, P] = π

(iii) a[C ,A,D] + a[D, C ,A] + a[A,D, C] = π

(iv) a[C ,A, P] + a[P , C ,A] + a[A, P , C] = π

(v) a[C ,A,B] + a[B, C ,A] + a[A,B, C] = π

(vi) a[C , P ,B] + a[B, C , P] + a[P ,B, C] = π

(vii) a[C ,D,B] + a[B, C ,D] + a[D,B, C] = π

(viii) a[P ,D,B] + a[B, P ,D] + a[D,B, P] = π

are generated. The Step ŝ, Step Ş, Step ş and Step Š can be similarly perform as Step Ŝ since they are
the routine generating steps. In Step ş, the similarity equations for the triangles ADP and BCP

is generated since we have a[P , A, D] = a[B, C , P] and a[A, D, P] = a[P , B, C] from Step
Ś and Step ś. So, the equation d[A,P]

d[C,P]
= d[D,P]

d[B,P]
is generated into C. Finally, if we command the

computer to simplify the expression d[A,P] d[B,P] = d[C,P] d[D,P] form C, the computer
can decides that the expression is true.

Case (b) Similarly to Case(a), the lines PCD and PAB and the points on the same circle
C ,D,B andA are input. The process can also be perform similarly to Case(a). The trianglesPDA

and PCB are similar since a[A,P,D] = a[B,P,C] and a[C,B, P] = a[P,D,A] from Step

20

Ś and Step ś. So, the equation d[A,P]
d[C,P]

= d[D,P]
d[B,P]

is also generated and the computer able to conclude
the expression d[A,P] · d[B,P] = d[C,P] · d[D,P].

It is observed that in Example Ŝ.ř the Step ŝ Step Ş and Step Š are not necessary to be performed
to conclude the expression. We can improve the performance speed by cutting off some of the
unnecessary steps that we already know.

4.2 Ceva’s theorem

Given a triangle ABC , let the lines AO, BO and CO be drawn from the vertices to a common
pointO (not on one of the sides ofABC), to meet opposite sides atD,E and F respectively as in
Figure Ŝ.Ś. Then

AF

FB
· BD

DC
· CE

EA
= 1. (4.2.1)

(a) (b)

Figure 4.2: The two situations for the Ceva’s theorem

In this example, we will skip the input and generating part and discuss about the conclusion part.
Suppose that we already done all Š steps for the Case (a). The Ceva's theorem can be proved by using
multiple variables equations. To do that, we need to use the area of a triangle's equation. Note that,
the area of a triangle of a given height is proportional to its base. So

|△FOA|
|△BOF |

=
AF

FB
=

|△FCA|
|△BCF |

. (4.2.2)

21

Therefore,
AF

FB
=

|△FCA| − |△FOA|
|△BCF | − |△BOF |

=
|△OCA|
|△BCO|

. (4.2.3)

Similarly,
CE

EA
=

|△BCO|
|△ABO|

(4.2.4)

and
BD

DC
=

|△ABO|
|△CAO|

. (4.2.5)

We combine the equations (4.2.3), (4.2.4) and (4.2.5) for AF
FB

· BD
DC

· CE
EA

= 1 as desired.
To measure the area of the triangle FOA, we can consider as

1

2
· d[A,F] · d[O,F] · Sin(a[A,F,O]). (4.2.6)

Since a[A,F,O] + a[O,F,B] = π, then Sin(a[A,F,O]) = Sin(π − a[O,F,B]) =

Sin(a[O,F,B]). Then, to conclude the equation (4.2.3), we use the fact that
1
2
· d[A,F] · d[C,F] · Sin(a[A,F,O])− 1

2
· d[A,F] · d[O,F] · Sin(a[A,F,C])

1
2
· d[B,F] · d[C,F] · Sin(a[O,F,B])− 1

2
· d[B,F] · d[O,F] · Sin(a[C,F,B])

=
d[A,F]

d[F,B]
.

(4.2.7)

The equation (4.2.7) is true by factoring d[A,F] and d[B,F] and use the equalities of the sine
functions. To complete the equation (4.2.3), we also need the fact

1
2
· d[A,F] · d[C,F] · Sin(a[A,F,O])− 1

2
· d[A,F] · d[O,F] · Sin(a[A,F,C])

1
2
· d[B,F] · d[C,F] · Sin(a[O,F,B])− 1

2
· d[B,F] · d[O,F] · Sin(a[C,F,B])

=
1
2
· d[O,A] · d[O,C] · Sin(a[A,O,C])

1
2
· d[O,B] · d[O,C] · Sin(a[C,O,B])

(4.2.8)

The equation (4.2.8) is true from the law of sine equations

Sin(a[A,F,O]) · d[A,F] = Sin(a[F,C,A]) · d[A,C] = Sin(a[A,O,C]) · d[O,A]

(4.2.9)

22

and

Sin(a[O,F,B]) · d[B,F] = Sin(a[B,C, F]) · d[B,C] = Sin(a[C,O,B]) · d[O,B]

(4.2.10)

which are generated in Step Ş and the equation d[C,F]− d[O,F] = d[O,C] which is generated
in Step ŝ. Combining (4.2.8) and (4.2.7) we have

d[A,F]

d[F,B]
=

1
2
· d[O,A] · d[O,C] · Sin(a[A,O,C])

1
2
· d[O,B] · d[O,C] · Sin(a[C,O,B])

(4.2.11)

which is the representation of (4.2.3). The equations represented for (4.2.4) and (4.2.5) are true
in similar way. The computer can use the fact of such equations to conclude the expression d[A,F]

d[F,B]
·

d[B,D]
d[D,C]

· d[C,E]
d[E,A]

= 1. The Case (b) can be done in similar way by replacing the minus in some
triangles combining equations to plus.

This example shows the ability to conclude the expressions that require the area equations.

CHAPTER V

CONCLUSION AND SUGGESTION

5.1 Conclusion

We can use the algorithm to help solving the Euclidean geometry problems. Most of the problems
can be solved by using our algorithm. If the problem cannot be conclude by this algorithm, such
problem might use more additional equations to solve. This is very helpful to identify the difficulty
level of the problems.

5.2 Suggestion

In some problem, one or two steps may be skipped as the generated equations are not needed to verify
the given statement. For example, some problems don't need the congruent triangles equation. So
we can cut off the Step Š which is not needed for the conclusion to improve the efficiency of the
algorithm.

We have tried to use Mathematica š.Ř and it works pretty well but there still some sort of easy
command that the Mathematica still does not work correctly. So, there is no program suggestion on
what suit to the algorithm. In addition, it will be useful if the software that we use can shows the
solution of the conclusion.

To enhance the performance of this algorithm, some additional steps can be added to generate
more equations. Presently, the performance of the computer is still not well enough to runs all Š
steps in a big set-up. We hope for the future that our algorithm will be used in a better performance
computer.

24

APPENDIX

25

APPENDIX

The code for Mathematica

This part shows an example code and explanation of a computer program used the algorithm in
Chapter ś. The computer software that we use is Mathematica š.Ř.

The following code is the code for Step ř. The initial condition and the input of the set-up will
be required the user to input. The order of the points in the same line will be input into the set "lines"
and the points on the same circle will be input into the set "circles". The initial conditions can be put
in the set "conditions". Some of the sets that we use for the checking remain empty for the further
generating.
lines = {}; points = {}; circles = {}; angles = {}; conditions = {}; similar = {}; sas = {}; sss =
{}; isosceles = {}; Ver = Join[Union @@ lines, points]; triangles = {}; disttri = {}; anglesbwlines
= {};
The following code is the code for Step Ś.
oncircles[P] := Do[oncircle @@ xy, {xy, Subsets[P, {Ŝ}]}];
oncircle[x , y , z , w] := (oncircleř[x, y, z, w];
oncircleř[y, z, w, x]; oncircleř[z, w, x, y]; oncircleř[w, x, y, z];
regangle[x, y, z]; regangle[y, z, w]; regangle[z, w, x]; regangle[w, x, y];
AppendTo[conditions, a[x, y, z] + a[z, w, x] == Pi];
AppendTo[conditions, a[y, z, w] + a[w, x, y] == Pi];);
oncircleř[x , y , z , w] := (regangle[x, y, w]; regangle[x, z, w];
AppendTo[conditions, a[x, y, w] == a[x, z, w]];);
The following code is the code for Step ś.
addangle[{x , y , z }] := (AppendTo[angles, {x, y, z}];a[z, y, x] = a[x, y, z]);

26

regangle[x , y , z] :=
If[! MemberQ[angles, {x, y, z}],
la = lineof[{x, y}]; lb = lineof[{y, z}];
px = Position[la, x][[ř]][[ř]]; pya = Position[la, y][[ř]][[ř]];
pz = Position[lb, z][[ř]][[ř]]; pyb = Position[lb, y][[ř]][[ř]];
anglesbwlines = Join[anglesbwlines, {al[la, lb], al[lb, la]}];
AppendTo[conditions, al[la, lb] + al[lb, la] == Pi];
{ix, ixc} =
If[px < pya, {Range[pya - ř],
Range[pya + ř, Length[la]]}, {Range[pya + ř, Length[la]], Range[pya - ř]}];
{jz, jzc} =
If[pz < pyb, {Range[pyb - ř],
Range[pyb + ř, Length[lb]]}, {Range[pyb + ř, Length[lb]], Range[pyb - ř]}];
Do[a[la[[i]], y, lb[[j]]] = al[la, lb];
addangle[{la[[i]], y, lb[[j]]}], {i, ix}, {j, jz}];
Do[a[la[[i]], y, lb[[j]]] = al[la, lb];
addangle[{la[[i]], y, lb[[j]]}], {i, ixc}, {j, jzc}];
Do[a[lb[[j]], y, la[[i]]] = al[lb, la];
addangle[{lb[[j]], y, la[[i]]}], {i, ix}, {j, jzc}];
Do[a[lb[[j]], y, la[[i]]] = al[lb, la];
addangle[{lb[[j]], y, la[[i]]}], {i, ixc}, {j, jz}];];
lineof[s] : =
(Do[If[subset[s, line], ll = line; Goto[exitlineof]], {line, lines}];
Return[s]; Label[exitlineof]; Return[ll]);
angleof[x , y , z] : = {lineof[{x, y}], lineof[{y, z}]};
subset[S , T] : = (Do[If[! MemberQ[T, s], Goto[exitsubset]], {s, S}];

27

Return[True]; Label[exitsubset]; Return[False]);
Do[oncircles[circle],{circle, circles}];
The following code is the code for Step Ŝ.
trianglesśpack = {};
changed = True;
While[changed,
changed = False;
Do[{x, y, z} = xyz; If[! MemberQ[triangles, xyz],
triangles = Join[triangles, {{x, y, z}, {y, z, x}, {z, x, y}}];
AppendTo[trianglesśpack, {{x, y, z}, {y, z, x}, {z, x, y}}];
regangle[y, z, x]; regangle[z, x, y];
AppendTo[conditions, a[x, y, z] + a[y, z, x] + a[z, x, y] == Pi];
changed = True],{xyz, angles}]];
The following code is the code for Step ŝ.
conditions = Join[conditions,
Complement[Flatten[Table[If[Length[Union[{x, y, z, w}]] == Ŝ&&

MemberQ[angles, {x, y, w}]&&MemberQ[angles, {w, y, z}]&&MemberQ[angles, {x, y, z}],
a[x, y, w] + a[w, y, z] == a[x, y, z]], {x, Ver}, {y, Ver}, {z, Ver}, {w, Ver}]], {Null}]];
Do[If[Length[Union[{x, y, z}]] == ś&&

MemberQ[Subsets[line], {x, y, z}],
conditions = Join[conditions, {d[x, y] + d[y, z] == d[x, z]}]],
{x, Ver}, {y, Ver}, {z, Ver}, {line, lines}]
The following code is the code for Step Ş.
sincheck = {}
While[changed, changed = False; Do[{x, y, z} = xyz;
If[! MemberQ[sincheck, xyz],

28

triangles = Join[sincheck, {{x, y, z}, {y, z, x}, {z, x, y}}];
AppendTo[conditions, Sin[a[x, y, z]]/d[x, z] == Sin[a[y, z, x]]/d[y, x] == Sin[a[z, x, y]]/d[z, y]];
changed = True] , {xyz, angles}]];
coscheck = {};
While[changed, changed = False; Do[{x, y, z} = xyz;
If[! MemberQ[sincheck, xyz],
triangles = Join[sincheck, {{x, y, z}, {y, z, x}, {z, x, y}}];
AppendTo[conditions, d[x, z]2 == d[y, z]2 + d[x, y]2 - Ś d[y, z] d[x, y] Cos[a[x, y, z]]];
AppendTo[conditions, d[x, y]2 == d[x, z]2 + d[y, z]2 - Ś d[x, z] d[y, z] Cos[a[y, z, x]]];
AppendTo[conditions, d[y, z]2 == d[x, z]2 + d[x, y]2 - Ś d[x, z] d[x, y] Cos[a[z, x, y]]];
changed = True],{xyz, angles}]];
The following code is the code for Step ş.
Do[flag[triś] = ř, {triś, trianglesśpack}];
changed = True;round = ř;
Print[Length[trianglesśpack]];
While[changed, Print["round : ", round];
changed = False; Do[packř = trianglesśpack[[iř]]; packŚ = trianglesśpack[[iŚ]];
{xř, yř, zř} = packř[[ř]]; {xŘ, yŘ, zŘ} = packŚ[[ř]];
Print[iř, " : ", iŚ]; If[(flag[packř] == round || flag[packŚ] == round)
&& ! MemberQ[similar, {packř, packŚ}],
Do[{xŚ, yŚ, zŚ} = xyzŚ; Print[xyzŚ];
If[Simplify[a[xř, yř, zř] == a[xŚ, yŚ, zŚ]&& a[yř, zř, xř] == a[yŚ, zŚ, xŚ], conditions],
Print[xř, yř, zř, " ", xŚ, yŚ, zŚ];
AppendTo[similar, {packř, packŚ}];
conditions = Join[conditions, {d[xř, yř]/d[xŚ, yŚ] == d[yř, zř]/d[yŚ, zŚ] == d[zř, xř]/d[zŚ, xŚ]}];
changed = True;

29

flag[packř] = round + ř; flag[packŚ] = round + ř;
Goto[dosas]]
, {xyzŚ, {{xŘ, yŘ, zŘ}, {yŘ, zŘ, xŘ}, {zŘ, xŘ, yŘ}, {xŘ, zŘ,
yŘ}, {zŘ, yŘ, xŘ}, {yŘ, xŘ, zŘ}}(}]];
If[!MemberQ[sss,{xyzř,xyzŘ}], Do[{xyzŚ}= If[Simplify[d[xř,yř]==d[xŚ,yŚ]&&

d[xř,zř]==d[xŚ,zŚ]&& d[yř,zř]==d[yŚ, zŚ],conditions],conditions=Join[conditions,
{a[xř,yř,zř]==a[xŚ,yŚ, zŚ],a[yř,zř,xř]==a[yŚ,zŚ,xŚ]}];
AppendTo[sss,{xyzř,xyzŘ}];
changed=True;
Goto[endsss]]
,{xyzŚ,{{xŘ,yŘ,zŘ},{yŘ,zŘ,xŘ},{zŘ,xŘ,yŘ},{xŘ,zŘ,yŘ},{zŘ,yŘ,xŘ},{yŘ, xŘ,zŘ}}}]];
Label[endsss];
Label[dosas];
If[!MemberQ[sas,{xyzř,xyzŘ}],
If[Simplify[a[zř,xř,yř]==a[zŚ,xŚ,yŚ]&& d[xř,yř]==d[xŚ,yŚ]&& d[xř,zř]==
d[xŚ,zŚ],conditions],conditions=Join[conditions,{a[xř,yř,zř]==a[xŚ,
yŚ,zŚ](*,a[b,c,a]==,d[b,c]==*)}];
Join[sas,allpairs[xyzř,xyzŚ]];
changed=True]];
If[!MemberQ[sss,{xyzř,xyzŘ}],
If[Simplify[d[xř,yř]==d[xŚ,yŚ]&& d[xř,zř]==d[xŚ,zŚ]&& d[yř,zř]==d[yŚ, zŚ],conditions],
conditions=Join[conditions,{a[xř,yř,zř]==a[xŚ,yŚ, zŚ],a[yř,zř,xř]==a[yŚ,zŚ,xŚ]}];
Join[sss,allpairs[xyzř,xyzŚ]];
changed=True]];
If[!MemberQ[sas,{xyzř,xyzŚŘŘŘ}],
If[Simplify[a[zř,xř,yř]==a[zŚ,xŚ,yŚ]&& d[xř,yř]==d[xŚ,yŚ]&& d[xř,zř]== d[xŚ,zŚ],conditions],

30

conditions=Join[conditions,{a[xř,yř,zř]==a[xŚ, yŚ,zŚ](*,a[b,c,a]==,d[b,c]==*)}];
Join[sas,allpairs[xyzř,xyzŚ]];
changed=True]
]; If[!MemberQ[sss,{xyzř,xyzŚŘŘŘ}],
If[Simplify[d[xř,yř]==d[xŚ,yŚ]&& d[xř,zř]==d[xŚ,zŚ]&& d[yř,zř]==d[yŚ, zŚ],conditions],
conditions=Join[conditions,{a[xř,yř,zř]==a[xŚ,yŚ, zŚ],a[yř,zř,xř]==a[yŚ,zŚ,xŚ]}];
Join[sss,allpairs[xyzř,xyzŚ]];
changed=True]]
, {iř, Length[trianglesśpack]}, {iŚ, iř + ř, Length[trianglesśpack]}]; round++]
The following code is the code for Step Š.
changed = True;
While[changed, changed = False;
Do[If[! MemberQ[isosceles, xyzř], {xř, yř, zř} = xyzř;
If[Simplify[d[xř, yř] == d[xř, zř], conditions], Print[xyzř];
conditions = Join[conditions, {a[xř, yř, zř] == a[yř, zř, xř]}];
AppendTo[isosceles, xyzř]; changed = True];]
If[! MemberQ[isosceles, xyzř], {xř, yř, zř} = xyzř;
If[Simplify[a[xř, yř, zř] == a[yř, zř, xř], conditions],
conditions = Join[conditions, {d[xř, yř] == d[xř, zř]}];
changed = True]] , {xyzř, triangles}];]

REFERENCES

[1] S.C. Chou, X.S. Gao, and J.Z. Zhang, Automated production of traditional
proofs for constructive geometry theorems, Proc. of Eighth IEEE Symposium
on Logic in Computer Science, 1993, 48-56.

[2] H. Gelernter, J.R. Hanson and D.W. Loveland, Empirical explorations of the
geometry-theorem proving machine, Proc. West. Joint Computer Conf., 1960,
143–147.

[3] H. Gelernter, Realization of a geometry-theorem proving machine, Computers
and Thought, eds. E.A. Feigenbaum, J.Feldman, 1963, 134–152.

[4] Mathway software. [Online] Available: https://mathway.com/, 2016.

32

VITA

Name Mr. Parinya Sirikatitum

Date of Birth řŝ April řššŚ

Place of Birth Songkla, Thailand

Education B.Sc. (Mathematics) (First-Class Honors),
Chulalongkorn University, ŚŘřś

Scholarship Chulalongkorn University graduate scholarship to commemorate
the şŚnd Anniversary of his Majesty King Bhumibol Adulyadej

Conference Speaker

• Computerization of Euclidean Geometry Problems

at the 21th Annual Meeting in Mathematics Annual Pure and
Applied Mathematics Conference, Śś-Śŝ May ŚŘřŞ
at Chulalongkorn University

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Background and Signi�cation
	1.2 Scope of the Research

	CHAPTER II GENERALIZE THE PROBLEMS
	2.1 Basic Step
	2.2 Structure
	2.3 Describing lines

	CHAPTER III EQUATION GENERATING
	CHAPTER IV EXAMPLE
	CHAPTER V CONCLUSION AND SUGGESTION
	APPENDIX
	VITA

