การสังเคราะห์ออกซาโซลิดิโนนผ่านการจัดเป็นวงภายในโมเลกุลด้วยการเหนี่ยวนำแบบกรด และแบบแฮโล

นายธนกฤต จันทรา

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS OF OXAZOLIDINONES VIA ACID- AND HALO-INDUCED INTRAMOLECULAR CYCLIZATION

Mr. Thanakrit Chantra

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2009 Copyright of Chulalongkorn University

Thesis Title	SYNTHESIS OF OXAZOLIDINONES VIA ACID- AND HALO	
	INDUCED INTRAMOLECULAR CYCLIZATION	
Ву	Mr. Thanakrit Chantra	
Field of Study	Chemistry	
Thesis Advisor	Anawat Ajavakom, Ph.D.	
Thesis Co-Advisor	Associate Professor Mongkol Sukwattanasinitt, Ph.D.	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

..... Dean of the Faculty of

Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

..... Chairman

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

...... Thesis Advisor

(Anawat Ajavakom, Ph.D.)

...... Thesis Co-Advisor

(Associate Professor Mongkol Sukwattanasinitt, Ph.D.)

..... Examiner

(Sumrit Wacharasindhu, Ph.D.)

..... External Examiner

(Assistant Professor Boon-ek Yingyongnarongkul, Ph.D.)

ธนกฤต จันทรา: การสังเคราะห์ออกซาโซลิดิโนนผ่านการจัดเป็นวงภายในโมเลกุล ด้วยการเหนี่ยวนำแบบกรดและแบบแฮโล (SYNTHESIS OF OXAZOLIDINONES VIA ACID- AND HALO-INDUCED INTRAMOLECULAR CYCLIZATION) อ. ที่ ปรึกษาวิทยานิพนธ์หลัก : อ.ดร.อนวัช อาชวาคม, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม : รศ. ดร.มงคล สุขวัฒนาสินิทธิ์, 135 หน้า.

งานวิจัยนี้ได้พัฒนาวิธีการใหม่ในการสังเคราะห์สารประกอบ 2-ออกซาโซลิดิโนน สอง วิธี วิธีการแรกเป็นการจัดเป็นวงภายในโมเลกุลโดยของอนุพันธ์บีตาเอ็นแอริลคาร์บามิลอิ-พอกไซด์การเหนี่ยวนำด้วยกรด ด้วยการทำปฏิกิริยาอนุพันธ์บีตาเอ็นแอริลคาร์บามิลอิพอก ไซด์กับกรดไตรฟลูออโรอาซิติกสามารถสังเคราะห์แอโรมาติกออกซาโซลิดิโนนในเปอร์เซ็นต์ ผลิตภัณฑ์ที่ดีมาก โดยกลไกการเกิดปฏิกิริยาเกิดจากออกซิเจนอะตอมของหมู่ปกป้องคาร์บอ-นิลเข้าซนที่อิพอกไซด์คาร์บอนภายใต้ภาวะที่เป็นกรดและปิดวงตามรูปแบบ 5-เอกโซ-เทต ได้ อนุพันธ์ 2-ออกซาโซลิดิโนนที่ต้องการ นอกจากนี้ยังสามารถใช้วิธีการนี้เพื่อการสังเคราะห์ยา แก้โรคซึมเศร้า โทลอกซาโทน และ ยาปฏิชีวนะต้านแบคทีเรียชนิดแกรมบวก ลิเนโซลิดได้ วิธีการที่สองเกี่ยวข้องกับการจัดเป็นวงภายในโมเลกุลด้วยการเหนี่ยวนำของแฮโล ของเทอร์-เซียรรีบิวทิลแอลริล คาร์บาเมตโดยการใช้แฮโลจีเนติ้งรีเอเจนต์หลายชนิด ทำให้สามารถ สังเคราะห์อนุพันธ์ออกซาโซลิดิโนนที่ถูกแทนที่ด้วยคลอโร โบรโม หรือ ไอโอโด หนึ่งหรือสอง อะตอมได้สำเร็จ โดยปฏิกิริยาสามารถเลือกเกิดให้ผลิตภัณฑ์ออกซาโซลิดิโนนที่มีหรือไม่มีการ แทนที่ของแฮโลเจนอะตอมที่ตำแหน่งพ*ารา*บนวงแอริล ได้อย่างจำเพาะ เมื่อเลือกใช้แฮโลจีเน-ติ้งรีเอเจนต์อย่างเหมาะสม

ภาควิชา <u>เคมี</u>	ลายมือชื่อนิสิต
สาขาวิชา <u>เคมี</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา <u>2552</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

5072228023 : MAJOR CHEMISTRY KEYWORDS : OXAZOLIDINONE / INTRAMOLECULA CYCLIZATION / HALOGENS

THANAKRIT CHANTRA : SYNTHESIS OF OXAZOLIDINONES VIA ACID- AND HALO-INDUCED INTRAMOLECULAR CYCLIZATION. THESIS ADVISOR : ANAWAT AJAVAKOM, Ph.D., THESIS CO-ADVISOR : ASSOC. PROF. MONGKOL SUKWATTANASINITT, Ph.D., 135 pp.

Two novel synthetic pathways toward 2-oxazolidinone derivatives were developed. The first pathway is the acid-induced intramolecular cyclization of β -(*N*-arylcarbamyl) epoxides. Simple treatment of a β -(*N*-arylcarbamyl)epoxide with trifluoroacetic acid exclusively gave the corresponding *N*-aryl-2-oxazolidinone in excellent yield. Mechanistically, the Boc carbonyl oxygen intramolecularly attacks the acid-activated epoxide ring in *5-exo-tet* fashion to form the desired oxazolidin-2-ones. Toloxatone, a well known antidepressant, and Linezolid (Zyvox[®]) antibacterial medicine were successfully synthesized from this cyclization method. The second synthetic pathway involves halo-induced cyclization of *tert*-butyl allyl(phenyl)carbamate. Various halogenated reagents were evaluated for reaction optimization. The synthesis of oxazolidinone derivatives containing one or two halogen atoms were successfully established for all chloro, bromo and iodo compounds. Either unsubstituted-aryl oxazolidinone or *p*-halo-substituted-aryl oxazolidinone were selectively produced with appropriate choice of halogenated reagents.

Student's Signature
Advisor's Signature
Co-Advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my appreciation to my thesis advisor, Dr. Anawat Ajavakom, for his attention, suggestion and encouragement during the course of this research. I would like to gratefully acknowledgement my thesis co-advisor, Associate Professor Dr. Mongkol Sukwattanasinitt, for his valuable suggestion, kindness and some financial support throughout the course of this long research.

I would like to acknowledge Assistant Professor Dr. Warinthorn Chavasiri, chairman of thesis committee, Dr. Sumrit Wacharasindhu and Assistant Professor Dr. Boon-ek Yingyongnarongkul for their kind attention and recommendation. I would like to thank Assistant Professor Dr. Paitoon Rashatasakhon for his attention and suggestion during our group meeting. I would like to extend my thankfulness to Associate Professor Dr. Tirayut Vilaivan for chiral HPLC column chromatography and some chemicals. I also would like to thank Assistant Professor Dr. Aroonsiri Shitangkoon for chiral GC column chromatography. I would like to thanks Associate Professor Dr. Sanong Ekgasit for permission to use IR instrument.

I would like to express my appreciation to Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, for giving the opportunity to study. I would like to thank all my friends in our research group for their great friendships and suggestion.

I would like to thanks Center for Petroleum, Petrochemicals and Advanced Materials and my financial support from the TRF-Master Research Grants under Thailand Research Fund (TRF), ADB under the Petroleum & Petrochemical Technology Consortium and 90th anniversary of Chulalongkorn University Fund. These scholarships can help my student life.

Finally, I would like to express my thankfulness to my beloved family for their love, encouragement and support during both of my good and hard time.

CONTENTS

Abstract (Thai)	iv
Abstract (English)	V
Acknowledgements	vi
Contents	vii
List of Tables	xiii
List of Figures	xiv
List of Schemes	xix
List of Abbreviation	ısxxiii
CHAPTER I Introd	luction1
1.1 Intramole	cular cyclization1
The ru	ale of ring-forming reaction
1.2 Acid-indu	ced intramolecular cyclization 4
1.2.1	Trifluoroaceticacid (TFA) 4
1.2.2	Chlorosulfonic acid (ClSO ₃ H) 5
1.2.3	Lewis acid 5
1.3 Halo-indu	ced intramolecular cyclization 5
1.3.1	NBS, NIS, and IC1
1.3.2	Iodine and bis(<i>sym</i> -collidine) ₂ IPF ₆
1.4 2-Oxazoli	dinone
1.4.1	Synthesis of 2-oxazolidinone
	a) Carbamate-mediated cyclization
	- Aryl carbamates with (<i>R</i>)-glycidyl butyrate
	- Aryl carbamates with (S)-acetic acid 2-
	acetylamino-1- chloromethyl-ethyl ester11
	- Hydroxyl carbamates with base12
	- Chiral aziridine carbamates with BF ₃ ·OEt ₂ 14
	- Alkynyl carbamates with gold-catalyzed15
	- Epoxy aryl carbamates with base15
	b) Epoxide-mediates cyclization16

	c) β-Lactam with triphosgene cyclization	17
	d) Azidoformate cyclization	17
	e) Isocyanate with carbondioxide	18
1.5 Epoxidation	on of alkenes	19
1.5.1	Epoxidation of alkenes with peroxy acids and peroxides	20
1.5.2	Epoxidation of alkenes catalyzed by metal complexes	20
1.5.3	Asymmetric epoxidation of alkenes catalyzed by metal	
	complexes	21
	- Sharpless epoxidation	21
	- Katsuki-Jacobsen epoxidation	22
1.6 Enantiome	eric excess (ee)	23
1.7 Specific ro	otation	24
CHAPTER II Exper	rimental	26
Materi	als	26
Analy	tical instruments	27
2.1 Preparatio	n of aryl carbamate	28
- Method I		. 28
2.1.1	tert-Butyl 3-fluoro-4-morpholinophenylcarbamate (83A)	28
2.1.2	<i>tert</i> -Butyl phenylcarbamate (83B)	. 29
2.1.3	tert-Butyl 4-iodophenylcarbamate (83C)	29
2.1.4	tert-Butyl 3-fluorophenylcarbamate (83D)	29
2.1.5	tert-Butyl <i>m</i> -tolylcarbamate (83E)	29
2.1.6	<i>tert</i> -Butyl 4-methoxyphenylcarbamate (83F)	29
- Method I	I	30
2.1.7	tert-Butyl 4-iodophenylcarbamate (83C)	30
2.1.8	<i>tert</i> -Butyl 3-fluorophenylcarbamate (83D)	30
2.2 Preparatio	n of glycidyltosylate	31
2.2.1	Glycidyltosylate	31
2.2.2	(S)-Glycidyltosylate	30
2.3 Preparatio	n of β-(N-arylcarbamyl)epoxides	32

2.3.1	tert-Butyl 3-fluoro-4-morpholinophenyl(oxiran-2-	
	ylmethyl)carbamate (84A)	.32
2.3.2	(S)-tert-butyl 3-fluoro-4-morpholinophenyl	
	(oxiran-2-ylmethyl)carbamate ((S)-84A)	.33
2.3.3	<i>tert</i> -Butyl oxiran-2-ylmethyl(phenyl)carbamate (84B)	33
2.3.4	(R)-tert-butyl oxiran-2-ylmethyl(phenyl)carbamate	
	((<i>R</i>)-84B)	.33
2.3.5	tert-Butyl 4-iodophenyl(oxiran-2-ylmethyl)	
	carbamate (84C)	33
2.3.6	tert-Butyl-3-fluorophenyl(oxiran-2-ylmethyl)	
	carbamate (84D)	.35
2.3.7	<i>tert</i> -Butyl oxiran-2-ylmethyl(<i>m</i> -tolyl)carbamate (84E)	.35
2.3.8	tert-Butyl 4-methoxyphenyl(oxiran-2-ylmethyl)	
	carbamate (3F)	.35
2.4 Preparatio	on of N-aryl-2-oxazolidinones	.35
2.4.1	Acid optimization	.35
	- Using BF ₃ ·OEt ₂	.35
	- Using TiCl ₄	36
	- Using AlCl ₃	36
	- Using TFA	36
	- Using CH ₃ COOH	36
2.4.2	Synthesis 2-oxazolidinone derivative by acid cyclization	.36
	- 3-(3-Fluoro-4-morpholinophenyl)-5-(hydroxymethyl)	
	oxazolidin-2-one (85A)	36
	- (<i>R</i>)-3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl))
	oxazolidin-2-one ((<i>R</i>-)85 A)	.37
	- 5-(Hydroxymethyl)-3-phenyloxazolidin-2-one (85B)	.37
	- (S)-5-(hydroxymethyl)-3-phenyloxazolidin-2-one	
	((<i>S</i>)-85B)	.37
	- 5-(Hydroxymethyl)-3-(4-iodophenyl)	
	oxazolidin-2-one (85C)	37
	- 3-(3-Fluorophenyl)-5-(hydroxymethyl)	

	oxazolidin-2-one (85D)	
	- 5-(Hydroxymethyl)-3- <i>m</i> -tolyloxazolidin-2-one (85E).	38
	- 5-(Hydroxymethyl)-3-(4-methoxyphenyl)	
	oxazo-lidin-2-one (85F)	38
2.5 Preparation	on of allyl carbamate	38
2.5.1	tert-Butyl allyl(3-fluoro-4-morpholinophenyl)	
	carbamate (86A)	39
2.5.2	<i>tert</i> -Butyl allyl(phenyl)carbamate (86B)	39
2.5.3	<i>tert</i> -Butylallyl(3-fluorophenyl)carbamate (86D)	39
2.6 Halogena	tion of alkene	40
2.6.1	Chlorination	40
	- Synthesis of chloro-2-oxazolidinones	40
2.6.2	Bromination	42
	- Synthesis of bromo-2-oxazolidinones	42
2.6.3	Iodination	44
	- Synthesis of iodo-2-oxazolidinones	44
2.7 Oxidation	of terminal alkene	49
2.8 Preparatio	on of Linezolid	51
2.8.1	Preparation of 4-(2-fluoro-4-nitrophenyl)morpholine (90) 51
2.8.2	Preparation of 3-fluoro-4-morpholinoaniline (82A)	51
2.8.3	Preparation of (3-(3-fluoro-4-morpholinophenyl)-2-	
	oxooxazolidin-5-yl) methylmethanesulfonate (91)	52
2.8.4	Preparation of 5-(azidomethyl)-3-(3-fluoro-4-	
	morpholinophenyl) oxazolidin-2-one (92)	53
2.8.5	Preparation of N-((3-(3-fluoro-4-morpholinophenyl)-2-	
	oxooxazolidin-5-yl methyl)acetamide (26)	54
2.9 Stereoche	mistry study.	55
2.9.1	High performance liquid chromatography (HPLC)	55
2.9.2	Gas chromatography (GC)	
2.9.3	Optical rotations	
2.9.4	Percent inversion (%inv)	

CHAPTER III Resu	llts and Discussion	. 57
3.1 The first s	ynthetic pathway: acid-induce intramolecular cyclization	. 58
3.1.1	Synthesis of aryl carbamates	58
3.1.2	N-allylation of <i>tert</i> -butylarylcarbamates	60
3.1.3	Synthesis of β -(<i>N</i> -arylcarbamyl)propylenoxides	
	(N-aryl-N-(2,3-propyleneoxy)carbamate)	. 62
	- Attempt in epoxidation of <i>O-tert</i> -butyl- <i>N</i> -aryl- <i>N</i> -	
	allylcarbamates	. 62
	- Alkylation reaction of O-tert-butyl-N-	
	arylcarbamate	65
3.1.4	Formation of 2-oxazolidinone ring	. 67
3.1.5	Mechanism of acid-induced intramolecular cyclization	69
3.1.6	Synthesis of linezolid	70
3.1.7	Study of stereochemistry from alkylation and cyclization	. 72
3.2 The secon	d synthetic pathway: halo-induced intramolecular	
cyclisation	n	. 75
3.2.1	Using chlorine (Cl ₂) and <i>N</i> -chlorosuccinimide (NCS)	. 76
	- Cl ₂ (gas)	.76
	- <i>N</i> -chlorosuccinimide (NCS)	. 77
3.2.2	Using bromine (Br ₂) and <i>N</i> -bromosuccinimide (NBS)	78
	- Br ₂	78
	- <i>N</i> -bromosuccinimide (NBS)	.78
3.2.3	Using iodine (I ₂) or iodinated reagents	. 79
	- I ₂	80
	- <i>N</i> -iodosuccinimide (NIS)	. 80
	- BTMA·ICl ₂	. 82
	- Iodinemonochloride (ICl)	. 82
	- KI and KIO ₃	82
3.2.4	Mechanism of halo-induced intramolecular cyclization	83

CHAPTER IV Conclusion		85
	4.1 Conclusion	85
	4.2 Suggestion for the future work	86

References	
Appendices	97
Appendix A NMR Spectra	
Appendix B MASS Spectra	125
Appendix C CHROMATOGRAMS	132
Vitae	135

LIST OF TABLES

Table 3.1	The epoxidation of 86A and 86B with various oxidants	63
Table 3.2	The epoxidation of 86A and 86B with various oxidants	
	in the presence of (R,R) Jacobsen catalyst (JC)	64
Table 3.3	Alkylation of carbamate $83A$ with (<i>R</i>)-glycidyl tosylate (98 %ee).	73
Table 3.4	Acid induced cyclization of carbamylepoxide (S)-84A to form	
	oxazolidinone (R)-85A	74
Table 3.5	Preparation of various chloro-2-oxazolidinones	
	using Cl ₂ and NCS	77
Table 3.6	Preparation of various bromo-2-oxazolidinones	
	using Br ₂ and NBS	.79
Table 3.7	Preparation of various iodo-2-oxazolidinones using l ₂ , NIS, ICl	
	BTMA ·ICl ₂ and KI/KIO ₃	.81

LIST OF FIGURES

Figure 1.1	2-oxazolidinones and various 2-oxazolidinone derivatives	8
Figure 1.2	The mechanism of action	9
Figure 1.3	The mechanism of Sharpless epoxidation	22
Figure 1.4	Katsuki-Jacobsen epoxidation	23
Figure 1.5	The mechanism of Katsuki-Jacobsen epoxidation	23
Figure 3.1	¹ H NMR spectra of aryl carbamate 83A-F in CDCl ₃	60
Figure 3.2	¹ H NMR spectra of <i>N</i> -aryl- <i>N</i> -allylcarbamates 86A , 86B and	
	86D in CDCl ₃	61
Figure 3.3	¹ H NMR spectrum of epoxyaryl carbamate 86B in CDCl ₃ by	
	epoxidation	65
Figure 3.4	¹ H NMR spectra of <i>O-tert</i> -butyl-β-(<i>N</i> -arylcarbamyl)epoxides	
	84A-F in CDCl ₃	66
Figure 3.5	¹ H NMR spectra of various <i>N</i> -aryl 2-oxazolidinones	
	85A-F in CDCl ₃	69
Figure 3.6	¹ H NMR spectra of the total synthesis of Linezolid (26) and	
	some of its precursors (85A, 91 and 92) in CDCl ₃	72
Figure 3.7	The structure of Azaspiracid-1 and antibiotic X-206	76
Figure A1	¹ H NMR spectrum of <i>tert</i> -butyl 3-fluoro-4-morpholinophenyl-	
	carbamate	98
Figure A2	¹ H NMR spectrum of <i>tert</i> -butyl phenylcarbamate	98
Figure A3	¹ H NMR spectrum of <i>tert</i> -butyl 4-iodophenylcarbamate	99
Figure A4	¹ H NMR spectrum of <i>tert</i> -butyl 3-fluorophenylcarbamate	99
Figure A5	¹ H NMR spectrum of <i>m</i> -tolylcarbamate 1	100
Figure A6	¹ H NMR spectrum of <i>tert</i> -butyl 4-methoxyphenylcarbamate 1	100
Figure A7	¹ H NMR spectrum of 3-fluoro-4-morpholinophenyl-	
	(oxiran-2-ylmethyl)carbamate 1	101
Figure A8	¹ H NMR spectrum of <i>tert</i> -butyl oxiran-2-ylmethyl	
	(phenyl)carbamate 1	101
Figure A9	¹ H NMR spectrum of <i>tert</i> -butyl-4-iodophenyl	

	(oxiran-2ylmethyl)carbamate	102
Figure A10	¹ H NMR spectrum of <i>tert</i> -butyl-3-fluorophenyl	
	(oxiran-2-ylmethyl)carbamate	102
Figure A11	¹ H NMR spectrum of <i>tert</i> -butyl oxiran-2-ylmethyl	
	(<i>m</i> -tolyl)carbamate	103
Figure A12	¹ H NMR spectrum of <i>tert</i> -butyl 4-methoxyphenyl	
	(oxiran-2-ylmethyl) carbamate	. 103
Figure A13	¹ H NMR spectrum of 3-(3-Fluoro-4-morpholinophenyl)-	
	5-(hydroxymethyl)oxazolidin-2-one	.104
Figure A14	¹ H NMR spectrum of 5-(hydroxymethyl)-3-	
	phenyloxazolidin-2-one	. 104
Figure A15	¹ H NMR spectrum of 5-(hydroxymethyl)-3-(4-iodophenyl)	
	oxazolidin-2-one	. 105
Figure A16	¹ H NMR spectrum of 3-(3-fluorophenyl)-5-(hydroxymethyl)	
	oxazolidin-2-one	105
Figure A17	¹ H NMR spectrum of 5-(hydroxymethyl)-3- <i>m</i> -tolyl	
	oxazolidin-2-one	106
Figure A18	¹ H NMR spectrum of 5-(hydroxymethyl)-3-(4-methoxyphenyl)	
	oxazolidin-2-one	. 106
Figure A19	¹ H NMR spectrum of <i>tert</i> -butylallyl(3-fluoro-4-morpholinophenyl))
	carbamate	. 107
Figure A20	¹ H NMR spectrum of <i>tert</i> -butyl allyl(phenyl)carbamate	. 107
Figure A21	¹ H NMR spectrum of <i>tert</i> -Butyl allyl(3-fluorophenyl)carbamate	. 108
Figure A22	¹ H NMR spectrum of 5-(bromomethyl)-3-(3-fluorophenyl)	
	oxazolidin-2-one	. 108
Figure A23	¹ H NMR spectrum of 4-(2-fluoro-4-nitrophenyl)morpholine	109
Figure A24	¹ H NMR spectrum of 3-fluoro-4-morpholinoaniline	.109
Figure A25	¹ H NMR spectrum of (3-(3-fluoro-4-morpholinophenyl)-2-	
	oxooxazolidin-5-yl) methylmethanesulfonate	. 110
Figure A26	¹ H NMR spectrum of 5-(azidomethyl)-3-	
	(3-fluoro-4-morpholinophenyl)oxazolidin-2-one	110
Figure A27	¹ H NMR spectrum of N-((3-(3-fluoro-4-morpholinophenyl)-2-	

	oxooxazolidin-5-yl methyl)acetamide	111
Figure A28	¹ H NMR spectrum of glycidyltosylate1	
Figure A29	¹ H NMR spectrum of 5-(chloromethyl)-3-phenyloxazolidin-2-one1	
Figure A30	¹ H NMR spectrum of 5-(chloromethyl)-3-(4-chlorophenyl)	
	oxazolidin-2-one	112
Figure A31	¹ H NMR spectrum of 5-(bromomethyl)-3-	
	phenyloxazolidin-2-one	113
Figure A32	¹ H NMR spectrum of 5-(bromomethyl)-3-	
	(4-bromophenyl)oxazolidin-2-one	113
Figure A33	¹ H NMR spectrum of 5-(iodomethyl)-3-	
	phenyloxazolidin-2-one	114
Figure A34	¹ H NMR spectrum of 5-(iodomethyl)-3-	
	(4-iodophenyl)oxazolidin-2-one	114
Figure A35	¹ H NMR spectrum of 3-(3-fluoro-4-iodophenyl)-5-(iodomethyl)	
	oxazolidin-2-one	115
Figure A36	¹³ C NMR spectrum of <i>tert</i> -butyl 3-fluoro-4-	
	morpholinophenylcarbamate	. 115
Figure A37	¹³ C NMR spectrum of <i>tert</i> -butyl phenylcarbamate	116
Figure A38	¹³ C NMR spectrum of <i>tert</i> -butyl allyl(3-fluoro-4-	
	morpholinophenyl)carbamate	116
Figure A39	¹³ C NMR spectrum of <i>tert</i> -butyl	
	allyl(phenyl)carbamate	. 117
Figure A40	¹³ C NMR spectrum of <i>tert</i> -butyl oxiran-2-ylmethyl	
	(phenyl)carbamate	. 117
Figure A41	¹³ C NMR spectrum of 4-(2-fluoro-4-nitrophenyl)morpholine	. 118
Figure A42	¹³ C NMR spectrum of 3-(3-Fluoro-4-morpholinophenyl)-5-	
	(hydroxymethyl)oxazolidin-2-one	118
Figure A43	¹³ C NMR spectrum of <i>N</i> -((3-(3-fluoro-4-morpholinophenyl)-2-	
	oxooxazolidin-5-yl methyl)acetamide	119
Figure A44	¹³ C NMR spectrum of 5-(hydroxymethyl)-3-(4-iodophenyl)	
	oxazolidin-2-one	119
Figure A45	¹³ C NMR spectrum of 3-(3-fluorophenyl)-5-(hydroxymethyl)	

	oxazolidin-2-one	120
Figure A46	¹³ C NMR spectrum of 5-(Hydroxymethyl)-3-(4-methoxyphenyl)	
	oxazo-lidin-2-one	120
Figure A47	¹³ C NMR spectrum of 5-(chloromethyl)-3-phenyloxazolidin-2-c	
Figure A48	¹³ C NMR spectrum of 5-(chloromethyl)-3-(4-chlorophenyl)	
	oxazolidin-2-one	121
Figure A49	¹³ C NMR spectrum of 5-(bromomethyl)-3-phenyloxazolidin-2-one	
Figure A50	¹³ C NMR spectrum of 5-(bromomethyl)-3-(4-bromophenyl)	
	oxazolidin-2-one	122
Figure A51	¹³ C NMR spectrum of 5-(iodomethyl)-3-phenyloxazolidin-2-one	123
Figure A52	¹³ C NMR spectrum of 5-(iodomethyl)-3-(4-iodophenyl)	
	oxazolidin-2-one	123
Figure A53	¹³ C NMR spectrum of 3-(3-fluoro-4-iodophenyl)-5-(iodomethyl)	
	oxazolidin-2-one	124
Figure B1	Mass spectrum (ESI-) of 4-(2-fluoro-4-nitrophenyl)morpholine	. 125
Figure B2	Mass spectrum (ESI-) of tert-butyl 3-fluoro-4-	
	morpholinophenylcarbamate	125
Figure B3	Mass spectrum (ESI+) of <i>tert</i> -butyl 3-fluoro-4-morpholinophenyl	
	(oxiran-2-ylmethyl)carbamate	126
Figure B4	Mass spectrum (ESI+) of 3-(3-fluoro-4-morpholinophenyl)-5-	
	(hydroxymethyl)oxazolidin-2-one	126
Figure B5	N-((3-(3-fluoro-4-morpholinophenyl)-2-	
	oxooxazolidin-5-yl)methyl)acetamide	127
Figure B6	Mass spectrum (ESI+) of <i>tert</i> -butyl allyl(phenyl)carbamate	127
Figure B7	Mass spectrum (ESI+) of 5-(chloromethyl)-3-	
	phenyloxazolidin-2-one	128
Figure B8	Mass spectrum (ESI+) 5-(chloromethyl)-3-(4-chlorophenyl)	
	oxazolidin-2-one	128
Figure B9	Mass spectrum (ESI+) of 5-(bromomethyl)-3-	
	phenyloxazolidin-2-one	129
Figure B10	Mass spectrum (ESI+) of 5-(bromomethyl)-3-(4-bromophenyl)	
	oxazolidin-2-one	129

Figure B11	Mass spectrum (ESI+) of 5-(iodomethyl)-3-phenyl	
	oxazolidin-2-one	
Figure B12	Mass spectrum (ESI+) of 5-(iodomethyl)-3-(4-iodophenyl)	
	oxazolidin-2-one	
Figure B13	Mass spectrum (ESI+) of 3-(3-fluoro-4-iodophenyl)-5-(iodomethyl)	
	oxazolidin-2-one	
Figure C1	GC chromatogram of <i>tert</i> -butyl oxiran-2-ylmethyl(phenyl)	
	carbamate132	
Figure C2	GC chromatogram of (<i>R</i>)-tert-butyl oxiran-2-ylmethyl(phenyl)	
	carbamate132	
Figure C3	GC chromatogram of 5-(hydroxymethyl)-3-	
	phenyloxazolidin-2-one	
Figure C4	GC chromatogram of (S)-5-(hydroxymethyl)-3-	
	phenyloxazolidin-2-one132	
Figure C5	HPLC chromatogram of chromatogram of tert-butyl 3-fluoro-4-	
	morpholinophenyl(oxiran-2-ylmethyl)carbamate133	
Figure C6	HPLC chromatogram of (S)-tert-butyl 3-fluoro-4-	
	morpholinophenyl(oxiran-2-ylmethyl)carbamate133	
Figure C7	HPLC chromatogram of 3-(3-fluoro-4-morpholinophenyl)-5-	
	(hydroxymethyl)oxazolidin-2-one134	
Figure C8	HPLC chromatogram of (<i>R</i>)-3-(3-fluoro-4-morpholinophenyl)-5-	
	(hydroxymethyl)oxazolidin-2-one	

LIST OF SCHEMES

	Page
Scheme 1.1	Preparation of pyrans and oxazolidinone from oxygenated and
	N-C-O precursor
Scheme 1.2	The ring-closure of <i>exo-trig</i> and <i>endo-trig</i> cyclization (right),
	and the favoured subtended angle for a nucleophilic to carbon
	atom (left)
Scheme 1.3	TFA acid-induced intramolecular cyclisation4
Scheme 1.4	ClSO ₃ H acid-induced intramolecular cyclisation5
Scheme 1.5	AlMeCl ₂ acid-induced intramolecular cyclisation 5
Scheme 1.6	NBS, NIS, and ICl for halo-induced intramolecular cyclisation 6
Scheme 1.7	I_2 and bis(<i>sym</i> -collidine) ₂ IPF ₆ for halo-induced intramolecular
	cyclisation7
Scheme 1.8	General procedure of N -lithiocarbamates with (R) -glycidyl
	butyrate cyclization10
Scheme 1.9	Synthesis of antibiotic Linezolid (U-100592)
	and Eperezolid (U-100766)10
Scheme 1.10	Synthesis of analogues antimicrobial 2-oxazolidinones11
Scheme 1.11	One-Pot Conversion of N-Aryl carbamates to
	<i>N</i> -Aryl-5(<i>S</i>)-acetamido-methyl-2-oxazolidinones12
Scheme 1.12	Synthesis of antimicrobial 2-oxazolidinones via (S)-acetic acid
	2-acetylamino-1-chloromethyl-ethyl ester12
Scheme 1.13	Synthesis of Linezolid and α -substituted analogues of Linezolid
	via intramolecular cyclization of hydroxy carbamate13
Scheme 1.14	The intramolecular cyclization of hydroxy carbamate in the synthesis
	Linezolid and Eperezolid
Scheme 1.15	Synthesis of Linezolid via acid-mediated intramolecular
	cyclization14
Scheme 1.16	Preparation of unsaturated cyclic carbamates via
	catalytic cyclization15
Scheme 1.17	Preparation of tricyclic fused oxazolidinone via base-mediated

	intramolecular cyclization	. 16
Scheme 1.18	Preparation 2-oxazolidinones via intramolecular cyclization	
	reaction	. 16
Scheme 1.19	te 1.19 Synthesis of 2-oxazolidinones from 3-hydroxy β -lactams	
Scheme 1.20	Synthesis of 2-oxazolidinones from azidoformate cyclization	18
Scheme 1.21	Synthesis of 2-oxazolidinones from via isocyanate-CO ₂	
	cyclization	19
Scheme 1.22	Synthesis of ethylene oxide by air oxidation	19
Scheme 1.23	The mechanism of alkene epoxidation with peroxy acid	20
Scheme 1.24	The epoxidation of α , β unsaturated ketones and	
	aldehydes by using peroxides	. 20
Scheme 1.25	Synthesis of epoxide by using alkenes catalyzed by metal	
	complexes	. 21
Scheme 2.1 Preparation of aryl carbamates 83A-F		28
Scheme 2.2 Preparation of aryl carbamates 83C and 83D		
	using DMAP as catalyst	30
Scheme 2.3	Preparation of glycidyltosylate	. 31
Scheme 2.4	Preparation of β-(N-arylcarbamyl)epoxides 84A-F	. 32
Scheme 2.5	Preparation of N-aryl-2-oxazolidinones 85A-F	35
Scheme 2.6	Preparation of allyl carbamates 86A, 86B and 86D	. 38
Scheme 2.7	Preparation of 5-(Chloromethyl)-3-(4-chlorophenyl)	
	oxazolidin-2-one (87BCl ₂) using Cl ₂	40
Scheme 2.8	Preparation of 5-(Chloromethyl)-3-phenyloxazolidin-2-one	
	(87BCl) and 5-(Chloromethyl)-3-(4-chlorophenyl)	
	oxazolidin-2-one (87BCl ₂) using NCS	41
Scheme 2.9	Preparation of 5-(Bromomethyl)-3-(4-bromophenyl)	
	oxazolidin-2-one (87BBr ₂) and 5-(bromomethyl)-3-	
	(3-fluorophenyl)oxazolidin-2-one (87DBr) using Br ₂	42
Scheme 2.10	Preparation of 5-(Bromomethyl)-3-phenyloxazolidin-2-one	
	(87BBr) and 5-(Bromomethyl)-3-(4-bromophenyl)oxazolidin-	
	2-one (87BBr ₂) using NBS	43
Schome 2 11	Preparation of 5 (indomethyl) 3 phenyloyazolidin 2 one (87RI)	

	using I ₂	44
Scheme 2.12	Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI)	
	and 5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (87BI2)	
	using NIS	45
Scheme 2.13	Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI)	
	and 5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (87BI ₂)	
	using ICl	46
Scheme 2.14	Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI)	
	using BTMA·ICl ₂ .	47
Scheme 2.15	Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI),	
	5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one(87BI ₂) and 3-	
	(3-fluoro-4-iodophenyl)-5-(iodomethyl)oxazolidin-2-one (87DI ₂)	
	using KI/KIO ₃	48
Scheme 2.16	Preparation of <i>tert</i> -Butyl oxiran-2-ylmethyl(phenyl)	
	carbamate (83B)	49
Scheme 2.17	Preparation of tert-Butyl oxiran-2-ylmethyl(phenyl)carbamate	
	(83B) using Payne oxidation	50
Scheme 2.18	Preparation of 4-(2-fluoro-4-nitrophenyl)morpholine (90)	51
Scheme 2.19	Preparation of 3-fluoro-4-morpholinoaniline (82A)	51
Scheme 2.20 Preparation of (3-(3-fluoro-4-morpholinophenyl)-2-		
	oxooxazolidin-5-yl) methylmethanesulfonate (91)	52
Scheme 2.21	Preparation of 5-(azidomethyl)-3-(3-fluoro-4-	
	morpholinophenyl)oxazolidin-2-one (92)	53
Scheme 2.22	Preparation of N-((3-(3-fluoro-4-morpholinophenyl)-2-	
	oxooxazolidin-5-yl methyl)acetamide (26)	54
Scheme 3.1	Synthesis of N-aryl-2-oxazolidinones	57
Scheme 3.2	Synthesis of <i>O-tert</i> -butyl- <i>N</i> -arylcarbamates 83A-F with Boc ₂ O	59
Scheme 3.3	3.3 <i>N</i> -allylation of <i>O-tert</i> -butyl- <i>N</i> -arylcarbamates 83A , 83B and 83D 61	
Scheme 3.4	Epoxidation of <i>N</i> -allylcarbamates 86A and 86B	62
Scheme 3.5	Synthesis of β -(<i>N</i> -arylcarbamyl)epoxides 84A-F by alkylation	65
Scheme 3.6	Optimization of acid induced cyclization of β -(<i>N</i> -arylcarbamyl)	
	epoxide 84B to form 2-oxazolidinone 85B	67

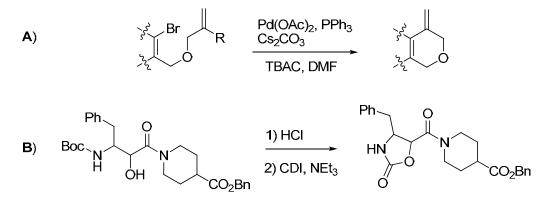
Scheme 3.7	Synthesis of 2-oxazolidinones 85A-F using TFA for cyclization 68	
Scheme 3.8 Proposed mechanism for acid-induced intramolecular		
	cyclization of β -(<i>N</i> -arylcarbamyl)epoxide 84	70
Scheme 3.9 The total synthesis of Linezolid		.71
Scheme 3.10	cheme 3.10 Synthesis of β -(<i>N</i> -arylcarbamyl)epoxides (<i>S</i>)-84A	
Scheme 3.11 Possible S_N1 - and S_N2 -type mechanism for the formation of 2-		
	oxazolidinones 85A from acid induced intramolecular	
	cyclization of (S)-84A	74
Scheme 3.12	Synthesis of diastereoselective iodolactonization from alkene	. 76
Scheme 3.13	Scheme 3.13 Active species for the iodination	
Scheme 3.14	The proposed mechanism of halo-induced intramolecular	
	cyclization	84

LIST OF ABBREVIATIONS

Ar	Aromatic
BF ₃ ·OEt ₂	boron trifluoride diethyletherate
Boc	<i>tert</i> -butoxy carbonyl
Boc ₂ O	di-tert-butyl dicarbornate
br	broad (NMR)
Bu	butyl
¹³ C-NMR	Carbon nuclear magnetic resonance
cm	Centimeter
°C	Degree Celsius
d	doublet (NMR)
dd	doublet of doublet (NMR)
ddd	doublet of doublet of doublet(NMR)
dt	doublet of triplet (NMR)
DMF	N,N'-dimethyl formamide
DMAP	4-(dimethyl amino)pyridine
DuP	DuPont's compound (medicine)
%ee	percent enantiomeric effect
equiv.	equivalent
EtOAc	ethyl acetate
FID	flame ionization detector
g	Gram
GC	Gas Chromatography
h	hour
¹ H-NMR	Proton nuclear magnetic resonance
HPLC	High Performance Liquid Chromatography
Hz	Hertz
J	Coupling constant
JC	Jacobsen catalyst
LiHMDS	lithium bis(trimethylsilyl)amide

m	multiplet (NMR)
Μ	Molar
MAOI	monoamine oxidase inhibitor
Me	methyl
MHz	megaherz
min	minute
mL	Millilitre
mmol	Millimole
MS	mass spectroscopy
m/z	Mass per charge
NBS	N-Bromosuccinimide
NCS	N-Chlorosuccinimide
NIS	N-Iodosuccinimide
m-CPBA	meta chloroperbenzoic acid
nm	Nanometer
NMO	N-methyl morpholine n-oxide
MRSA	methicillin resistant Staphylococcus aureus
MRSE	methicillin resistant Staphylococcus epidermitis
OAc	acetate
OD	OD type chiral column
OJ	OJ type chiral column
OMe	methoxy
ppm	Part per million
R	R configuration
rfx.	reflux
rt	room temperature
S	S configuration
t	tertiary
t	triplet (NMR)
TFA	trifluoroacetic acid
THF	tetrahydrofuran
VRE	Vancomycin resistant

CHAPTER I


INTRODUCTION

Organic compounds can be commonly divided into two types depending on the structural dissimilarity, acyclic and cyclic compounds. The cyclic compound is a series of carbon atoms and/or other atoms connected together to form a ring structure. Carbocyclic compounds are a cyclic compound containing only carbon atoms in the ring structure, while heterocyclic compounds are a cyclic organic compound containing at least one atom of carbon and at least one atom of other element usually sulfur, nitrogen or oxygen within the ring structure. The heterocyclic compound, probably the largest and the most varied class of organic compounds, possesses numerous attractive properties. Mostly, a class of this compound has much potential as bioactive medicines in clinical therapy [1-4], catalysts in asymmetric synthesis [5-8], and polymers [9-11]. Because of its importance, a great deal of effort has been expanded in attempts to develop the new methodologies based on intramolecular cyclization reaction.

1.1 Intramolecular cyclization

Recently, the construction of heterocyclic compound *via* cyclization has played a considerable role in organic chemistry for many years. In general, there are various reactions, which can be used for the synthesis of heterocyclic compounds such as Hetero-Diels-Alder cycloaddtion reaction [12], and intramolecular cyclization [13]. The intramolecular cyclization is one of the most important reactions which can be commonly used for the preparation of this type of compounds. For example, pyrans, the six-membered oxygenated heterocycle accommodated as a usual moiety in natural products [14], can be prepared from the intramolecular cyclization of an oxygenated precursor [15] (Scheme1.1A). A five-membered ring heterocyclic oxazolidinone, also often found in various natural products [16], can be potentially

synthesized from N-C-O precursor [17] (Scheme 1.1B). Focusing on the intramolecular cyclization, metal mediated catalysts [18], radical initiator [19], bases [20], and acids [21] have been used for inducing intramolecular cyclization reaction.

Scheme 1.1 Preparation of pyrans and oxazolidinone from oxygenated and N-C-O precursor

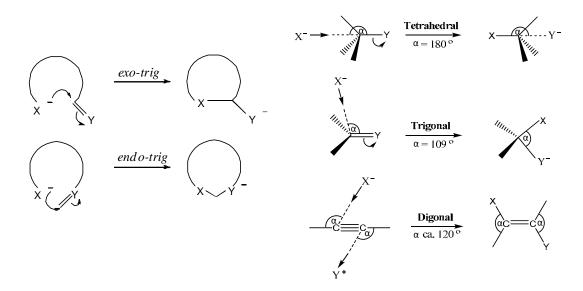
The rule of ring-forming reaction

Ring-forming reactions are important and common process in organic chemistry. In 1976, Jack E. Balwin [22-23], has established simple rules for ring closure useful for organic chemists in planning syntheses. He described a ring forming process with the prefix *exo*, when nucleophilic attacks an electrophile and electrons shift away from the ring or prefix *endo*, if electrons stay within the ring (Scheme 1.2). In addition, a numerical prefix is used to indicate the ring size, and the suffixes *tet*, *trig*, and *dig* refer to geometry of the carbon atom accepter undergoing the ring-closure reaction, tetrahedral (sp^3) , trigonal (sp^2) , and digonal (sp) respectively.

Tetrahedral Systems

- a) 3 to 7-exo-tet are all favoured.
- b) 5 to 6-*endo-tet* are disfavoured.

Trigonal Systems


- a) 3 to 7-exo-trig are all favoured.
- b) 3 to 5-endo-trig are disfavoured; 6 to 7-endo-trig are favoured.

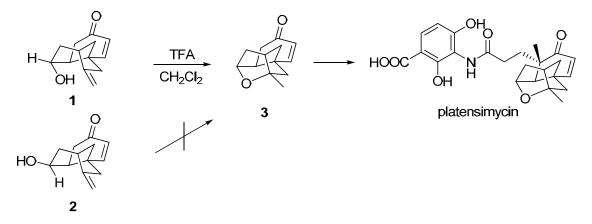
Digonal Systems

a) 3 to 4-*exo-dig* are disfavoured; 5 to 7-*exo-dig* are favoured.

b) 3 to 7-endo-dig are favoured.

Notably, a disfavoured ring closure does not mean the reaction is completely impossible, it only means that the possibility of having such a ring formation happened is very low.

Scheme 1.2 The ring-closure of *exo-trig* and *endo-trig* cyclization (right), and the favoured subtended angle for a nucleophilic to carbon atom (left)

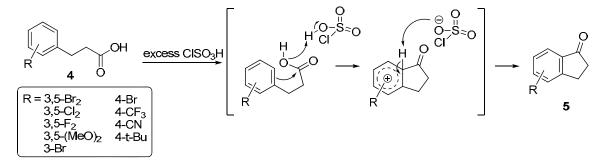

According to this Balwin's Rule, the favoured ring closure of the tetrahedral, trigonal, and digonal ring closure process are represented in Scheme 1.2. By description for these processes based on the suitable stereochemical transition states, the subtended angle (α) between the three interacting atoms is retained during the reaction pathway, becoming the angle between these atoms in the final products. Additionally, the length and nature of the chain enable the terminal atom to achieve the required trajectories to form the ring linking bond, while the require distortion of bond angles and distance to achieve trajectories is clearly the reason for the disfavoured cases. In summary, the tetrahedral systems correspond to the inversion of the configuration, S_N2 type reaction, while the trigonal systems are supported by the general predominance of *endo*-ring closures (Scheme 1.2).

1.2 Acid-induced intramolecular cyclization

In order to proceed the intramolecular cyclization, however, a general procedure for synthesizing organic compounds by using an acid-induced intramolecular cyclization reaction is one of the most popular methods for construction of numerous heterocyclic compounds. Acids such as trifluoroacetic acid [24], chlorosulfonic acid [25], and such Lewis acid [26] are exemplified.

1.2.1 Trifluoroaceticacid (TFA)

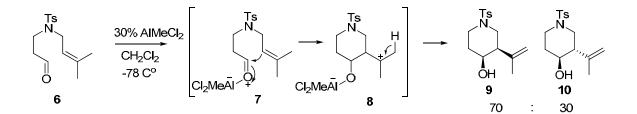
Nicolaou and co-workers [24] reported that the synthesis of platensimycin was accomplished from the treatment of diastereomers of hydroxyl alkene 1 and 2 in the presence of strong Brønsted acid, TFA. Percent yield of the cage-like product 3 was calculated to be 87% based on the isomer 1 remained in the mixture. Interestingly, the diastereomer 2 is unreacted and fully recovered because their regioselectivity is usually controlled by the Markovnikov tenet (Scheme 1.3).



Scheme 1.3 TFA acid-induced intramolecular cyclization

1.2.2 Chlorosulfonic acid (ClSO₃H)

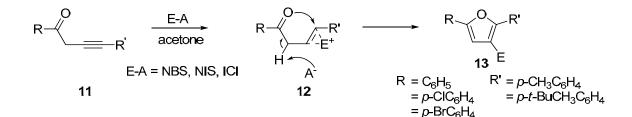
Anil and co-workers [25] reported that the chlorosulfonic acid (ClSO₃H) had been utilized to induce the intramolecular cyclization of various aryl propionic acids **4** to produce halogen-substituted indanone derivatives in high yields (70-94%). This cyclization with ClSO₃H acid as an acidic dehydrating agent


generated the desired indanone products **5** mechanistically through five-six fused membered ring cationic intermediate (Scheme 1.4).

Scheme 1.4 CISO₃H acid-induced intramolecular cyclization

1.2.3 Lewis acid

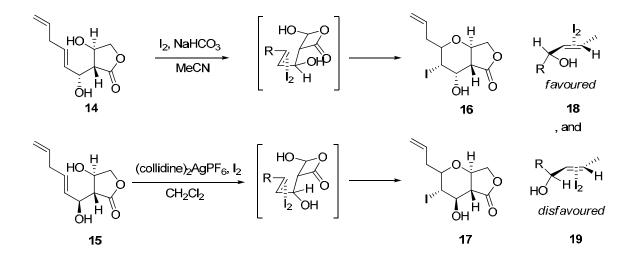
Snaith and co-workers [26] have recently explored the intramolecular cyclization of carbonyl enes 6 by using catalytic amount of Lewis acid AlMeCl₂ to give piperidine diastereomers 9 and 10. The aldehyde 6 was treated with AlMeCl₂ to chemoselectively create the oxonium ion 7 subsequently cyclic 8 as intermediates which then deprotonated to furnish piperidine as desired products 9 and 10 in high diastereomeric ratio (Scheme 1.5).


Scheme 1.5 AlMeCl₂ acid-induced intramolecular cyclization

1.3 Halo-induced intramolecular cyclization

Likewise an acid-induced intramolecular cyclization, halo-induced intramolecular cyclization of unsaturated compound has been proven to be an efficient method for one step construction and functionalization of many heterocyclic compounds. For instance, it could provide an important building block for combinatorial chemistry [27]. The developments of synthetic routes leading to further opportunity for substituted heterocycle *via* various halo-reagents are exemplified.

1.3.1 NBS, NIS, and ICl


Adam Snidy and co-workers [28] reported that the intramolecular cyclization of 1,4-diaryl but-3-yn-1-ones **11** using *N*-bromosuccinimide (NBS), *N*-iodosuccinimide (NIS), and iodine monochloride (ICl) as electrophilic halo-reagent produced 2,5-disubstituted 3-bromo-and 3-iodofurans **13** in high yield (82-94%). The cyclization involving the reaction of alkynyl ketone with various halogenating electrophiles generated a cationic intermediate **12**, which was immediately cyclised to halofurans (Scheme 1.6).

Scheme 1.6 NBS, NIS, and ICl for halo-induced intramolecular cyclization

1.3.2 Iodine and bis(*sym*-collidine)₂IPF₆

Gao and co-workers [29] have investigated that the preparation of tetrahydropyrans *via* iodoetherifiacation of substrates containing an allylic alcohol with iodine. The reaction turned out to be highly dependent on conformation of allylic moiety of allylic alcohol. Allylic diol **14** proceeds rapidly through the favoured **18** π -complex (C-OH eclipses the carbon-carbon double bond) and cyclised to yield 2,6-cis-tetra-hydropyran **16**, while disfavoured **19** π -complex (C-H eclipses the carbon-carbon double bond) cyclization requires a more reactive iodinating reagent, bis(*sym*-collidine)₂IPF₆. This iodinating reagent was used to prepare *in situ* from bis(*sym*-collidine)₂AgPF₆ and iodine, to overcome this defect could be convert allylic diol **15** into the desired tetrahydropyran **17** in high yield (Scheme 1.7).

Scheme 1.7 I₂ and bis(sym-collidine)₂IPF₆ for halo-induced intramolecular cyclization

1.4 2-Oxazolidinone

Oxazolidinone, a five membered heterocycle consists of oxygen, carbonyl and nitrogen as shown as a core unit in Figure 1.1. Particularly, they are useful as chiral auxiliaries in asymmetric synthesis [30-33]. One of the best known chiral auxiliaries of this class is Evans auxiliary used in enantioselective Aldol reactions [34]. Another major issue is the use of oxazolidinones as a new class of synthetic antibacterial medicines with marvellous inhibition against gram-positive pathogenic and anaerobic bacteria such as methicillin resistant Staphylococcus aureus (MRSA), methicillin resistant Staphylococcus epidermitis (MRSE) and Vancomycin resistant enterococci (VRE) [35-36]. The examples show DuPont's compound DuP-105 and DuP-721 [37-39] that were not enter advanced chinical testing. First commercial available oxazolidinone antibiotic is the Linezolid (Zyvox[®]), which has been successfully developed by Phamacia Corporation [12-14] and approved by U.S Food and Drug Administrative (FDA) on April, 2000. Moreover, Toloxatone (Humoryl) is an antidepressant and monoamine oxidase inhibitor (MAOI) activity [40]. Nowadays, synthesis and investigation of this newly intriguing oxazolidinone family, RX-01, is one of the most focusing area in oxazolidinone research field. Despite of the fascinating properties of this class compound, using as an antibacterial medicine is undergoing clinical trial period [41].

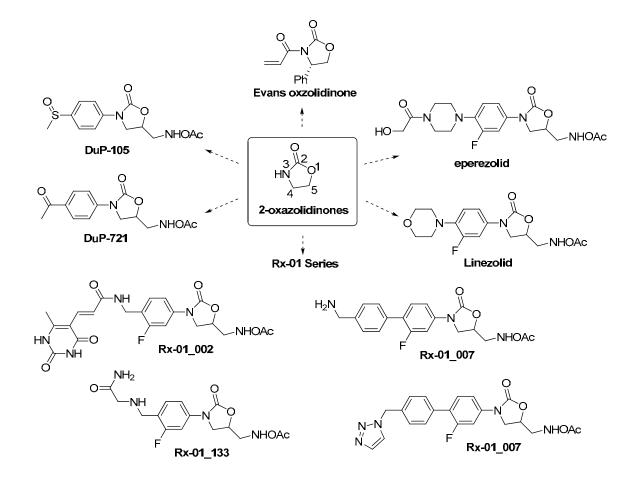


Figure 1.1 2-oxazolidinones and various 2-oxazolidinone derivatives

The oxazolidinones appear to inhibit bacterial translation at the initiation phase of protein synthesis. The preferred binding of oxazolidinones, in this case Linezolid, to the A site of the 50S ribosomal subunit interferes the initial complexation between fMet-tRNA and mRNA to this site. As a result of this interference of the RNA interaction during the initiation phase that involves the bacterial translation from initiating complex toward the 50S ribosomal subunit [2, 4, 42], the bacterial protein synthesis is therefore completely inhibited (Figure 1.2).

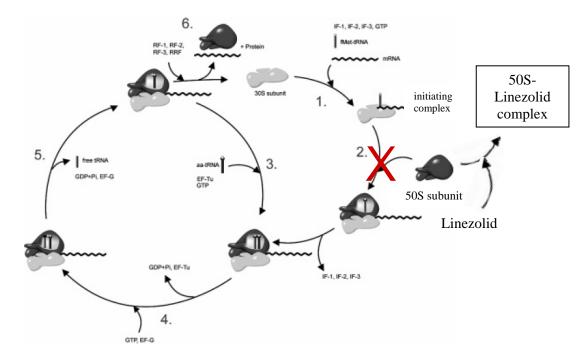
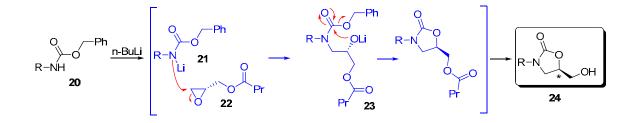
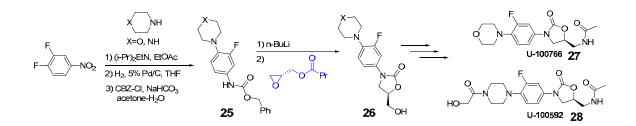


Figure 1.2 The mechanism of action

1.4.1 Synthesis of 2-oxazolidinone

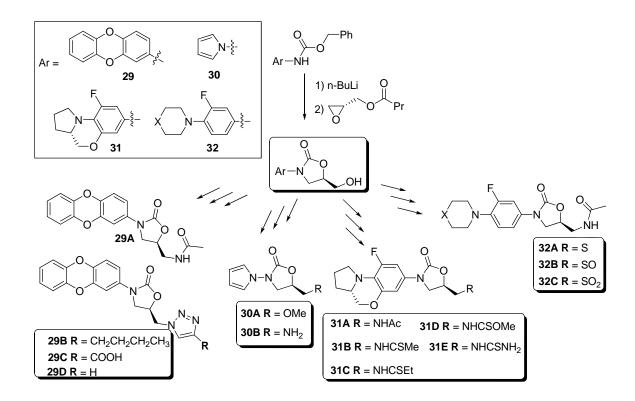

Due to the remarkable functionalities of 2-oxazolidinones, their preparations have become a continuous challenge for organic chemists. In general, 2-oxazolidinone derivatives can be synthesized from various precursors such as carbamate [35, 43-55], amino alcohol [60], epoxide [56], β -lactam [57], azidoformate [58], and isocyanate [59]. The classification of these precursors is considered based on ring forming cyclization process.

a) Carbamate-mediated cyclization


- Aryl carbamates with (R)-glycidyl butyrate

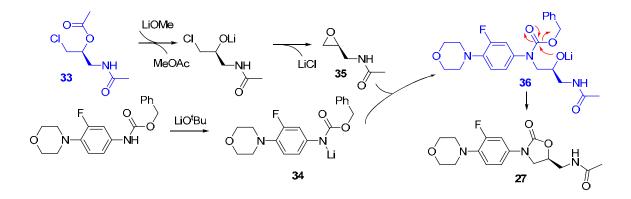
This 2-oxazolidinone ring forming process is generally undertaken by deprotonation of aryl carbamate 20 with base, especially *n*-BuLi. Then generated essential reactive species, in the case of *n*-BuLi, *N*-lithioarylcarbamate 21 is treated with (*R*)-glycidyl butyrate 22 to form alkoxide intermediated 23, which immediately cyclised into 2-oxazolidinone 24 (Scheme 1.8). For instance, Steven J. Brickner and

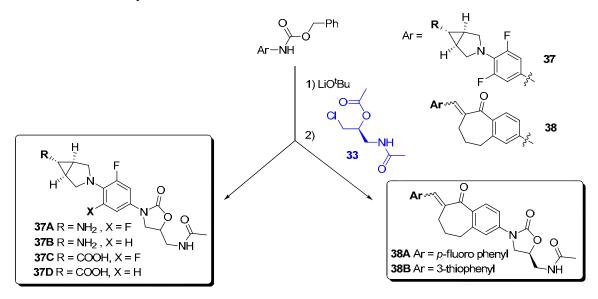
co-workers [35] have successfully prepared two potent antibacterial synthetic oxazolidinones, Linezolid (U-100592) **27** and Eperezolid (U-100766) **28**. The synthetic pathway started from 3,4-difluoronitrobenzene with morpholine or piperazine by nucleophilic aromatic substitutions furnishing the substitution at para position. Reduction with catalytic hydrogenation with Pd/C, followed by protection with benzyl chloroformate (CBZ) produced carbamate **25**. Treatment of *n*-BuLi with of (*R*)-glycidyl butyrate provided the corresponding (5*R*)-(hydroxymethyl)-2-oxazolidinone **26**, which would be thus used in the further synthesis of Linezolid and Eperezolid (Scheme 1.9).



Scheme 1.8 General procedure of *N*-lithiocarbamates with (*R*)-glycidyl butyrate cyclization

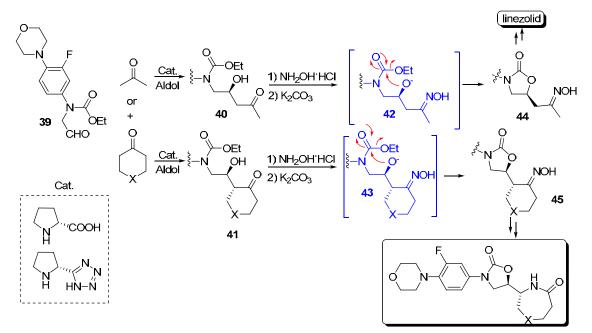
Scheme 1.9 Synthesis of antibiotic Linezolid (U-100592) and Eperezolid (U-100766)


For the novel discovery of antimicrobial activity, David C. Ebner and coworkers [43] have explored four novel oxazolidinones **29A-29D** in benzodioxin style. Moreover, useful process valuable chiral (R)-glycidyl butyrate reagent is widely utilized in the preparation of various 2-oxazolidinone antibacterial agents such as pyrrole ring substituted oxazolidinones **30A-30B** [44], tricyclic oxazolidinone derivatives **31A-31E** [45], and oxazolidinones **32A-32C** with thiomorpholine moiety [46] (Scheme 1.10).

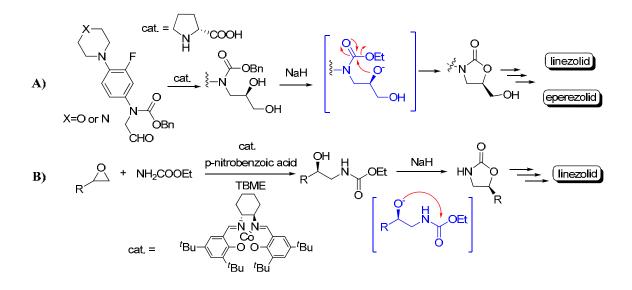

Scheme 1.10 Synthesis of analogues antimicrobial 2-oxazolidinones

- Aryl carbamates with (S)-acetic acid 2-acetylamino-1-chloromethylethyl ester

William R. Perrault and co-workers [47] have developed the current commercial process to produce Zyvox (Linezolid) by preparing economical chiral synthons N-[(2S)-2-(acetyloxy)-3-chloropropyl]acetamide **33** from commercially available (*S*)-epichlorohydrin. The reaction of *N*-lithiocarbamate **34** with chiral epoxide **35** generated the alkoxide intermediate **36**, which was subsequently cyclized into *N*-aryl-5(*S*)-aminomethyl-2-oxazolidinone derivative in one step. The oxazolidinone ring formation was explained as scheme 1.11. Likewise the *N*-lithioaryl carbamates with (*R*)-glycidyl butyrate case, these reagents and procedures have also proven to be applicable in the preparation of a diverse array of 2-oxazolidinones such as azabicyclic oxazolidinone antibacterial agent **37** [48], and benzocycloheptanone **38** [49] (Scheme 1.12).

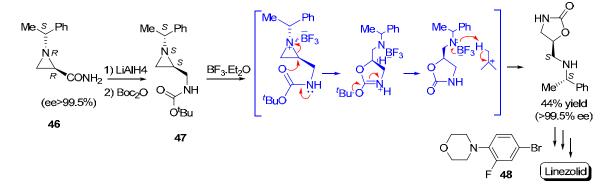

Scheme 1.11 One-Pot Conversion of *N*-Aryl carbamates to *N*-Aryl-5(*S*)-acetamidomethyl-2-oxazolidinones

Scheme 1.12 Synthesis of antimicrobial 2-oxazolidinones *via* (*S*)-acetic acid 2acetylamino-1-chloromethyl-ethyl ester


- Hydroxyl carbamates with base

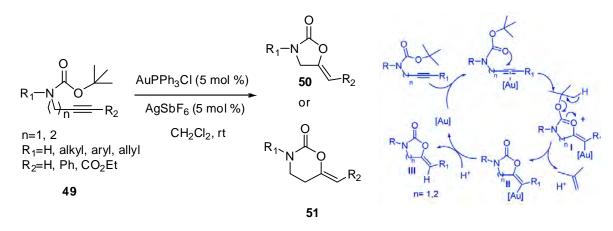
Hydroxyl carbamate is also one of the precursors for the synthesis of 2oxazolidinone derivative. In 2008 Wei Wang and co-workers [50] reported that oxazolidinone analogues could be synthesized from the intramolecular cyclization of hydroxyl carbamates in the presence of base. The hydroxyl carbamates **40** and **41** were prepared from the reaction of aldehyde **39** with ketones in the presence of proline catalyst *via* catalytic enantioselective aldol reaction. Treatment this hydroxyl carbamate with base gave alkoxide intermediates **42** and **43** ready for the cyclization into chiral oxazolidinones **44** and **45**. Then two-step Beckman rearrangement was performed to afford Linezolid. Moreover, the successful preparation of novel α -substituted analogues of Linezolid with high enantio- and diastereoselectivity can open the new synthetic route for α -substituted analogues oxazolidinone (Scheme 1.13).

Scheme 1.13 Synthesis of Linezolid and α-substituted analogues of Linezolid *via* intramolecular cyclization of hydroxy carbamate


Many reports have used this procedure to synthesize oxazolidinone derivatives. For instance, Srinivasarao V. and co-workers [51] used this methodology to prepare Linezolid and Eperezolid in high yield and %ee (Scheme 1.14 A.). Giuseppe B. and co-workers [52] successfully generated chiral synthons that can be used in the synthesis of Linezolid (Scheme 1.14 B).

Scheme 1.14 The intramolecular cyclization of hydroxy carbamate in the synthesis Linezolid and Eperezolid

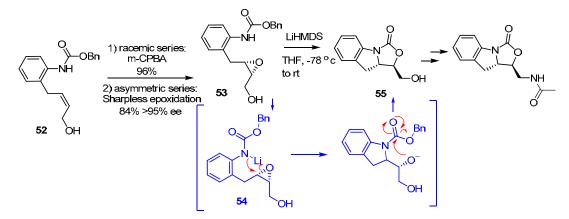
- Chiral aziridine carbamates with BF₃·OEt₂


Roberto, Mora'n-R. and co-workers [53] have successful developed another Linezolid synthesis procedure. The starting enantiopure 1-substituted aziridine-2-carboxamide **46** was reduced with LiAlH₄, followed by Boc protection to obtain chiral aziridine carbamate **47**. Aziridine ring opening in *5-exo-tret* gave chiral oxazolidinone synthon upon treatment with Lewis acid BF₃·OEt₂. The C-N coupling reaction was introduced this compound with aryl halide **48** to provide Linezolid in high yield (Scheme 1.15).

Scheme 1.15 Synthesis of Linezolid via acid-mediated intramolecular cyclization

- Alkynyl carbamates with gold-catalyzed

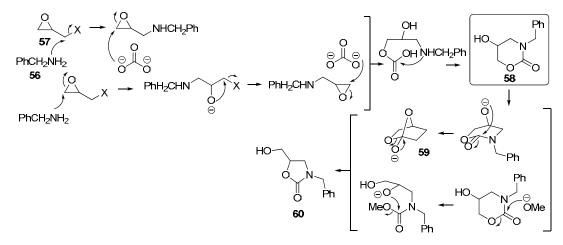
Due to the excellent ability of transition metals to activate alkynes toward nucleophilic attack, numerous novel catalytic cyclizations have been developed. Juan, C. C. and co-workers [54] reported that alkylidene 2-oxazolidinones **50** and 1,3-oxazin-2-ones **51** can be prepared from the catalytic cyclizations of alkynyl carbamate **49** in the presence of catalytic amount of AuPPh₃Cl/AgSbF₆ under mild reaction conditions. A tentative mechanism for this gold-catalyzed cyclization involves the nucleophilic attack of the carbamate carbonyl group on the activated Au(I)-alkyne complex to afford the cationic vinyl-gold intermediate **I**. Subsequently *tert*-butyl fragmentation **19** by releasing isobutene and a proton, would give raise to the oxazolidinone **III** or 1,3-oxazin-2-ones (Scheme 1.16). Remarkably, this novel procedure was applicable in the preparation of unsaturated 2-oxazolidinone.



Scheme 1.16 Preparation of unsaturated cyclic carbamates *via* catalytic cyclization

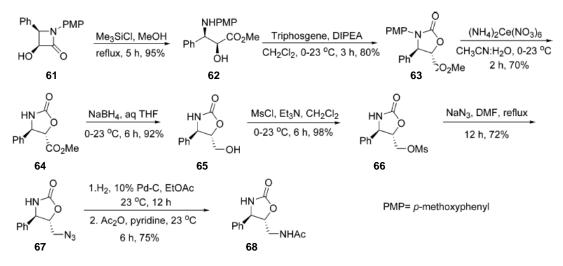
- Epoxy aryl carbamates with base

Steven J. B. and co-workers [55] developed the synthesis of tricyclic fused oxazolidinone antibacterial agents by using intramolecular cyclization of aryl epoxycarbamates in base conditions. The synthesis started from the epoxidation of unsaturated carbamate **52** producing aryl epoxycarbamate **53**, which was converted to tricyclic fused oxazolidinone by using LiHMDS as base. Firstly, the amide was deprotonated with base to obtain *N*-lithio-intermediate **54**, which would then


intramolecularly cyclize to afford tricyclic fused oxazolidinone **55** in high yield (Scheme 1.17).

Scheme 1.17 Preparation of tricyclic fused oxazolidinone *via* base-mediated intramolecular cyclization

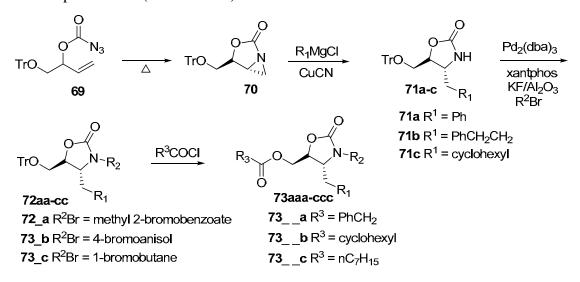
b) Epoxide-mediated cyclization


Yumiko, O. and co-workers [56] have explored the convenient synthesis of useful *N*-substituted oxazolidinones, by treating benzyl amine **56** and halomethyl oxiranes **57** with carbonate salts (Na₂CO₃, K₂CO₃, Cs₂CO₃, and Ag₂CO₃) in the presence of a base such as DBU or TEA to give oxazolidinones **60** in high yields. A reaction mechanism was proposed. The corresponding oxazolidinone produced the ring opening of an oxazinanone intermediate **58** through a bicyclo[2.2.1] intermediate **59** (Scheme. 1.18).

Scheme 1.18 Preparation 2-oxazolidinones via intramolecular cyclization reaction

c) β-Lactam with triphosgene cyclization

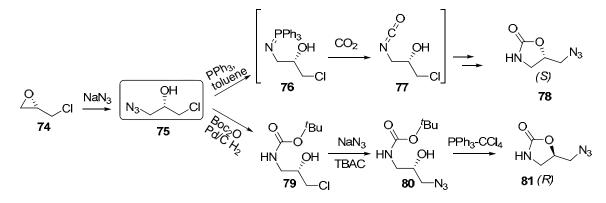
Rajesh, K. M. and co-workers [57] described that the novel synthesis of 2-oxazolidinones could be prepared form 3-hydroxy β -lactams in stereomerically pure by a ring-opening-cyclization isomerization process. Lactam **61** was hydrolyzed with Me₃SiCl by refluxing in methanol to afford the *syn*-aminol **62** in 95% yield. Upon treatment of **62** with triphosgene and Hunig's base in dichloromethane oxazolidinone **63** was obtained in 80% yield. The *N*-methoxyphenyl moiety on the oxazolidinone ring was then cleaved with ceric ammonium nitrate in acetonitrile and water to yield the *N*-protio oxazolidinone **64** in 70% yield. Selective reduction of **64** with sodium borohydride in aqueous THF furnishes the alcohol **65** in 92% yield. Conversion of the hydroxy **65** into the azide **67** proceeded through mesylate **66** in 72% yield. Catalytic hydrogenation of the azide and subsequent acetylation afforded the acetamide **68** in 75% yield for the final one-pot synthesis (Scheme 1.19).



Scheme 1.19 Synthesis of 2-oxazolidinones from 3-hydroxy β-lactams

d) Azidoformate cyclization

Stephen, C. B. and co-workers [58] presented a 3x3x3 array synthesis yielding 27 different products in one time that was suitable for the preparation of oxazolidinone libraries. The starting material bicylic aziridine **70** was prepared from the thermolysis of the azidoformate **69** in good yield as a single diastereomer. The synthesis starts with the opening of the aziridine ring of **70** with copper-catalyzed and


commercially available Grignard reagents (R^1) produced substituted compounds **71** in high yield. The *N*-atom was substituted with both aryl and alkyl groups (R^2) *via* KF/Al₂O₃ method and Pd₂(dba)₃/xantphos system to yield compounds **72**. In the final substitution step, trityl protecting group of compounds **72** was removed *via* esterification then subsequently treated with three different acid chlorides to provide desired products **73** (Scheme 1.20).

Scheme 1.20 Synthesis of 2-oxazolidinones from azidoformate cyclization

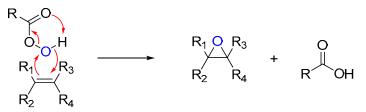
e) Isocyanate with carbondioxide

Madhusudhan G. and co-workers [59] reported the facile synthesis of (R)-and (S)-5-azidomethyl-2-oxazolidinones from (S)-epichlorohydrin. (S)epichlorohydrin 74 was stereoselectively ring-opened with NaN₃ in mild acidic conditions using NH₄Cl to give (2S)-1-azido-3-chloropropan-2-ol 75 without racemization. The treatment of azido alcohol 75 with Ph₃P and carbon dioxide in toluene under reflux gave oxazolidinone 78. The mechanism involved an intermediate iminophosphorane 76 that reacts with carbon dioxide to generate an intermediate isocyanate 77, which was further treated with NaN₃ to give the corresponding oxazolidinone 78. Furthermore, oxazolidinone 81 was obtained by converting compound **75** into *tert*-butyl carbamate derivative **79** by reductive protection with Boc using Pd/C. Treatment this chloride 79 with NaN₃ in the presence of tetrabutylammonium chloride (TBAC) yielded azido compound 80, which then cyclized with PPh₃-CCl₄-NEt₃ to (*R*)-oxazolidinone **81** by $S_N 2$ inversion (Scheme 1.21).

Scheme 1.21 Synthesis of 2-oxazolidinones from via isocyanate-CO₂ cyclization

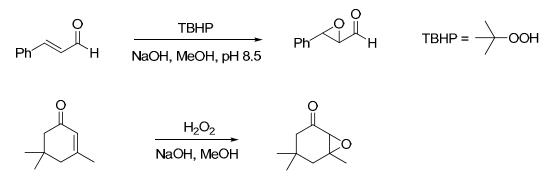
Although many 2-oxazolidinone constructions have been reported, the increasing incidence of bacterial resistance to a large number of antibacterial agents and the requirement of optically pure new Evans chiral auxiliary analogs in asymmetric synthesis are becoming a major issue. Thus, the finding and developing more efficient methodologies of 2-ozazolidinones are still among the interest of organic chemists.

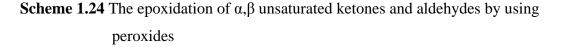
1.5 Epoxidation of alkenes


An epoxide, or oxirane, is reactive three membered-ring cyclic ether which is important synthetic precursor for organic synthesis. Epoxides are usually used to convert alkenes to several other functional groups. The simplest and the most important epoxide, is ethylene oxide prepared from a direct oxidation of ethylene by air in the presence of silver catalyst [61] (Scheme 1.22).

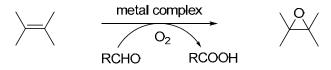
$$=$$
 + Air $\xrightarrow{\text{silver}}$ $\overset{\text{O}}{\bigtriangleup}$

Scheme 1.22 Synthesis of ethylene oxide by air oxidation


1.5.1 Epoxidation of alkenes with peroxy acids and peroxides


The ordinary oxidation of alkene to produce epoxides has been used for many decades without metal catalyst. The most important oxidizing agents are peroxy acids and peroxides, for which the mechanism of peracid epoxidation is believed to go through a cyclic concerted transition state. The carbon-carbon bond is broken when the oxygen transferred to alkene causing the simultaneous proton transfer toward the carbonyl oxygen [62] (Scheme 1.23).

Scheme 1.23 The mechanism of alkene epoxidation with peroxy acid


In the case of using peroxides, as an oxidizing agent, α , β unsaturated aldehydes and ketones can be much selectively epoxidise, especially sodium salt of H₂O₂ or sodium salt of *tert*-butyl hydroperoxide (TBHP) more than peroxy acid [63]. (Scheme 1.24)

1.5.2 Epoxidation of alkenes catalyzed by metal complexes

The oxidation of alkenes have been developed using metalloporphyrins and metal complex of non-porphyrin-ligands, normally requires oxidants [64, 65], *e.g.* H_2O_2 , organic peroxides, or iodosyl benzene. It has been observed that olefins can be epoxidized by O_2 in the presence of aldehydes and transition metal-containing catalysts to yield epoxides in satisfactory yield [66]. (Scheme 1.25)

Scheme 1.25 Synthesis of epoxide by using alkenes catalyzed by metal complexes

1.5.3 Asymmetric epoxidation of alkenes catalyzed by metal complexes

Catalytic asymmetric epoxidation is a remarkably powerful technique for the stereoselective synthesis. The development of the chiral catalysts inducing highly efficient and above all highly stereoselective asymmetric epoxidation has always been the most focusing area of asymmetric synthesis. Many chemists have proposed their successful chemistry, in which some of them are picked up for brief introduction.

Sharpless epoxidation

The most well known and fascinating method to convert allylic alcohols into the corresponding epoxides with high yield and highly stereoselective in only one step was developed by Sharpless and coworkers [67]. By using a complex of titanium-*iso*propoxide, the TBHP as an oxidant and enantiomerically pure diethyl tartrate as catalyst (DET), the desired epoxide enantiomers can be obtained with high enantiomeric excess (ee). The high enantioselectivity for Sharpless epoxidation reason may be due the important playing role of the hydroxyl function of the allylic alcohol. A wide range of allylic alcohol can be epoxidized with significant enantiomeric excess usually more than 90% and high yield above 80% [68]. The mechanism relies on the first step, the rapid ligand exchange of $Ti(Oi-Pr)_4$ with DET. The resulting complex undergoes further ligand exchange with the allylic alcohol and then TBHP. The hydroperoxide and the allylic alcohol occupy the axial coordination site on the titanium and this model conceivably accounts for the facial enantioselectivity. (Figure 1.3)

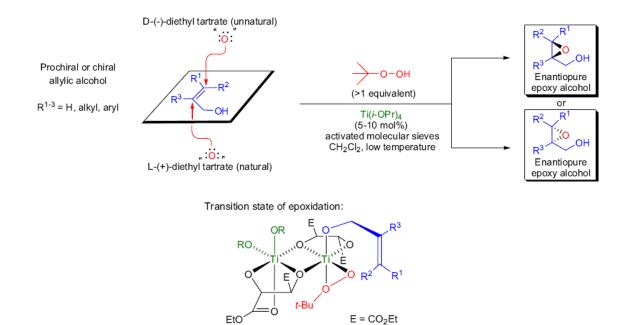


Figure 1.3 The mechanism of Sharpless epoxidation [68]

Katsuki-Jacobsen epoxidation

Another interesting efficient epoxidation of non-functionalized alkenes with high enantioselectivity was firstly introduced by Katsuki-Jacobsen and coworkers [69]. The catalyst is chiral salen-Mn (III) was used with simple oxidants e.g. PhIO, NaOCl, and H_2O_2 . The perfect matching catalyst and reaction condition is required to achieve and optimal enantioselectivity. The condensations of diamine with salicylaldehyde derivatives make a unique tune of the steric an electronic property of the catalyst [70]. Notably, the Jacobsen's catalysts is air-stable that can be kept for a long period without decomposition [71] and Katsuki's catalysts is also effective [72]. (Figure 1.4)

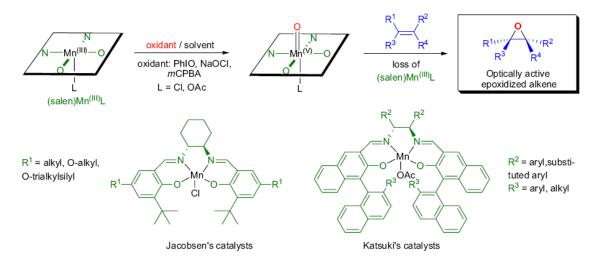


Figure 1.4 Katsuki-Jacobsen epoxidation [73]

The conceivably mechanism is most likely a manganese(V) specie as the reactive intermediate, which is formed upon the oxidation of the Mn(III)-salen complex. The enantioselectivity is explained by either a "top-on" approach (Jacobsen) or by a "side-on" approach (Katsuki) of the olefin. The three major mechanistic pathways are shown below. The radical intermediate accounts for the formation of mixed epoxides when conjugated olefins are used as substrates [73]. (Figure 1.5)

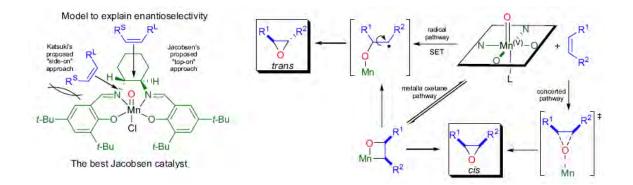


Figure 1.5 The mechanism of Katsuki-Jacobsen epoxidation [72]

1.6 Enantiomeric excess (ee)

The term "enantiomeric excess" was introduced in 1971 by Morison and Mosher to describe the relationship of two enantiomers in a mixture and was equated

$$op = \frac{[\alpha]_{obs}}{[\alpha]_{max}}$$
 (equation 1.1)

where; $[\alpha]_{obs}$ = observed specific rotation

R

 $[\alpha]_{max}$ = maximum specific rotation

$$ee = \frac{R-S}{R+S} = R-S$$
 (equation 1.2)

where; R and S are respective fraction of enantiomers

$$+S = 1$$

% $ee = \frac{R-S}{R+S} \times 100$ (equation 1.3)

It is most often expressed as a percent enantiomeric excess (%ee). For mixtures of diastereomer, there are similarity defined and used for diastereomeric excess (de) and percent diastereomeric excess (%de)

1.7 Specific rotation

The specific rotation [α] value occurred in solution of chiral molecule [75], is defined as the observed angle of optical rotation α from resulting in plane-polarized light is passed through certain sample with a part length of 1 dm and concentration of 1 g/1mL. As results, a negative value means levorotatory rotation and a positive value means dextrorotatory rotation. Specific rotation can be calculated by using two equations depending on the sample. The equation 1.4 and equation 1.5 are used when sample is pure liquid and solution respectively.

Liquid;

$$\left[\alpha\right]_{\lambda}^{T} = \frac{\alpha}{lxd} \qquad (\text{equation 1.4})$$

where; α = optical rotation T = temperature (°C) d = density (g/mL) l = path length (dm) λ = wavelength of sodium D line (589 nm)

$$\left[\alpha\right]_{\lambda}^{T} = \frac{\alpha}{lxc} \qquad (\text{equation1.5})$$

where; α = optical rotation

l = path length (dm)

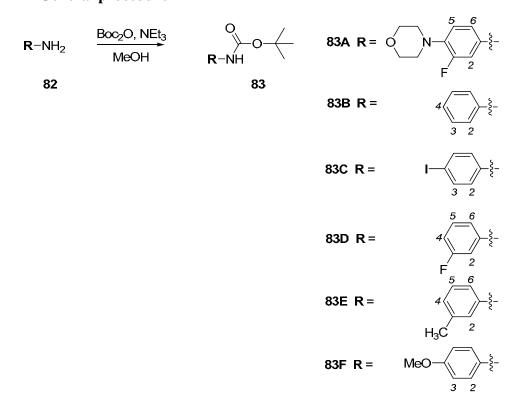
T = temperature (°C) c = concentration (g/mL) λ = wavelength of sodium D line (589 nm)

CHAPTER II

EXPERIMENTAL

Synthesis

Materials: Aniline, 3,4-difluoronitro benzene, allyl bromide, 3-chloro perbenzoic acid (*m*-CPBA), oxone[®], 4-methylbenzene-1-sulfonyl chloride (TsCl), (R)-glycidyltosylate, 4-phenylpyridine N-oxide (PPNO), manganesesulfate(R, R)-(-)-*N*,*N*'-Bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride ((*R*,*R*)-Jacobsen's *N*-methylmorpholine-*N*-oxide catalyst), (NMO), bis(trimethylsilyl)amide (LiHMDS), *N*-chlorosuccinimide (NCS), Nbromosuccinimide (NBS), N-iodosuccinimide (NIS), Iodine monochloride (ICl) were purchased from Aldrich (USA). Morpholine, iodine, di-tert-butyl dicarbornate, 10% palladium on carbon, celite, tert-butyl alkoxide, ammonium chloride, triethylamine (TEA), sodium thiosulphate, sodium sulphate anhydrous, sodium hydrogen carbonate, magnesium sulphate anhydrous, ammonium acetate, calcium carbonate, 30% *N*,*N*-dimethylpyridin-4-amine hydrogen peroxide. glycidol, (DMAP), epichlorohydrin, trifluoroacetic acid (TFA), titanium(IV)chloride (TiCl₄), boron trifluoride diethyletherate ($BF_3 \cdot OEt_2$), aluminium trichloride (AlCl₃) and acetic acid (CH₃COOH), 10% palladium on activated charcoal were purchased from Fluka (Switzerland). Diethylether (reagent grade) was purchased from AnalaR[®] (UK). Toluene (AR grade) was purchased from Fisher Scientific (UK). Hexane (HPLC grade), 2-propanol (HPLC grade), EtOAc(HPLC grade), Methanol (AR grade), tetrahydrofuran (AR grade), acetone (AR grade), dimethylfomamide (DMF) (AR grade), dimethyl sulfoxide (DMSO) (AR grade), chloroform (CHCl₃) (AR grade), methylene chloride (CH₂Cl₂) (AR grade) were purchased from Labscan (Thailand). Bromine solution, sodium azide, acetic anhydride were purchased from Carlo Alba. Commercially available sodium hypochlorite (Clorox) was used as bleaching agent. Tetrahydrofuran (THF) was distilled over sodium and benzophenone, acetonitrile (CH₃CN) was distilled over calcium hydride and stored over molecular sieves. Other


analytical grade solvents were used as received without further distillation. For extraction and chromatography, solvents were commercial grade and they were distilled prior to use. Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. Column chromatography was performed using Merck silica gel 60 (70-230 mesh). Analytical TLC was carried out on silica gel plates with detection by UV lights.

Analytical instruments: ¹H and ¹³C NMR spectra were recorded on Varian Mercury at 400 MHz NMR spectrometer (Varian, USA) using residual solvent (CDCl₃, 7.26 ppm and 77.0 ppm) as the reference. Low resolution Mass Analysis was conducted with Quattro micromass (Waters, France) using the electrospray ionization (ESI) in its positive or negative modes. Either percent enantiomeric excess (%ee) were studied using normal phase HPLC or GC analysis. For HPLC, a Water 600TM controller system equipped with gradient pump and Water 996TM photo diode array detector. A Chiralcel[®] OJ-H column Cellulose tris (4-methylbenzoate)coated on 5µm silica-gel HPLC column 250 x 20 mm ID was used for the analysis of percent enantiomeric excess (%ee) by real-time HPLC Chromatogram monitoring. Peak monitoring and data processing were performed on the based Empower software. For GC, an Agilent 6890 equipped with split injector and flame ionization detector (FID) detector. 30% BSiMe in OV-1701 column 15.356 m x 0.25 mm x 0.25 µm was used. Optical rotations were measured using sodium light (D line, 589.3 nm) at ambient temperature on Jasco P-1010 Polarimeter. Infrared spectra were measured from neat on a Nicolet Impact 410 FT-IR spectrophotometer (Thermo Nicolet, USA). The melting points were recorded on Electrothermal 9100 (Electrothermal Engineering LTD.).

2.1 Preparation of aryl carbamates

General procedure 1

Method I

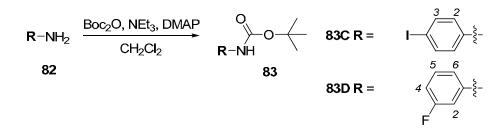
Scheme 2.1 Preparation of aryl carbamates 83A-F

Amine and NEt₃ were dissolved in MeOH. After stirring for 10 minutes, Boc₂O was added into the reaction. The reaction mixture was stirred at ambient temperature for 2 hours under nitrogen atmosphere. After the removal of solvent in *vacuo*, aqueous HCl (2 M) was added and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (9:1).

2.1.1 *tert*-Butyl 3-fluoro-4-morpholinophenylcarbamate (83A): Compound 83A was synthesized from 3-fluoro-4-morpholinoaniline (5.65 g, 28.84 mmol), NEt₃ (12.00 mL, 86.52 mmol) and Boc₂O (8.00 mL, 34.61 mmol) in MeOH 50 mL to afford 83A as a clear crystal (5.75 g, 65%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ (ppm): 7.28 (d, *J* = 14.0 Hz, 1H, 2-Ar*H*), 6.92 (d, *J* = 8.5 Hz, 1H, 6-Ar*H*), 6.82 (t, *J* = 9.0 Hz, 1H, 5-Ar*H*), 6.68 (s, br, 1H, N*H*), 3.84 (m, 4H, OC*H*₂), 3.00 (m, 4H, NC*H*₂), 1.49 (s, 9H, C(C*H*₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 156.8, 154.4, 152.7, 135.2, 133.9, 119.0, 114.4, 107.7, 107.5, 80.5, 66.9, 51.1, 28.2.

2.1.2 *tert*-**Butyl** phenylcarbamate (83B): According to carbamate formation above, compound 83B was synthesized from aniline (2.00 mL, 2.10 mmol), NEt₃ (1.00 mL, 7.19 mmol) and Boc₂O (0.80 ml, 3.48 mmol) in MeOH (10 mL) to afford 83B as a clear white crystal (400 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.35 (d, J = 8.0 Hz, 2H, 2-ArH), 7.30 (m, 2H, 3-ArH), 7.03 (t, J = 7.0 Hz, 1H, 4-ArH), 6.45 (s, br, 1H, NH), 1.52 (s, 9H, C(CH₃)₃).

2.1.3 *tert*-Butyl 4-iodophenylcarbamate (83C): Compound 83C was synthesized from 4-iodoaniline (1.00 g, 4.57 mmol), NEt₃ (1.90 mL, 13.7 mmol) and Boc₂O (1.60 mL, 6.96 mmol) in MeOH (30 mL) to afford 83C as a clear white crystal (752 mg, 52%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.57 (d, J = 9.0 Hz, 2H, 2-ArH), 7.14 (d, J = 8.5 H, 2H, 3-ArH), 6.45(s, br, 1H, NH), 1.51 (s, 9H, C(CH₃)₃).


2.1.4 *tert*-**Butyl 3-fluorophenylcarbamate (83D)**: Compound **83D** was synthesized from 3-fluoroaniline (1.00 g, 9.01mmol), NEt₃ (3.80 mL, 27.3 mmol) and Boc₂O (2.7 mL, 11.7 mmol) in MeOH (20 mL) to afford **83D** as a white solid (555 mg, 30%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.31 (d, J = 11.0 Hz, 1H, 2-Ar*H*), 7.21 (dd, J = 8.0, 15.0 Hz, 1H, 5-Ar*H*), 6.97 (d, J = 8.0 Hz, 1H, 6-Ar*H*), 6.72 (dt, J = 2.0, 8.0 Hz, 1H, 4-Ar*H*), 6.53 (s, 1H, N*H*), 1.52 (s, 9H, C(CH₃)₃).

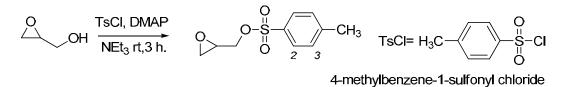
2.1.5 *tert*-**Butyl** *m*-tolylcarbamate (83E): Compound 83E was synthesized from *m*-toluidine (0.500 mL, 4.67 mmol), NEt₃ (2.00 mL, 14.4 mmol) and Boc₂O (1.60 mL, 6.96 mmol) in MeOH (20 mL) to afford 83E as a clear pale yellow solid (873 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.26 (s, 1H, 2-Ar*H*), 7.16 (t, *J* = 7.5 Hz, 1H, 6-Ar*H*), 7.09 (d, *J* = 8.0 Hz, 1H, 5-Ar*H*), 6.85 (d, *J* = 7.5 Hz, 1H, 4-Ar*H*), 6.41 (s, 1H, NH), 2.32 (s, 3H, CH₃), 1.52 (s, 9H, C(CH₃)₃).

2.1.6 *tert*-Butyl 4-methoxyphenylcarbamate (83F): Ccompound 83F was synthesized from 4-methoxyaniline (403 mg, 3.27 mmol), NEt₃ (1.40 mL, 10.1 mmol) and Boc₂O 1.20 mL, 5.22 mmol) in MeOH (15 mL) to afford 83F as a clear white

crystal (738 mg, 97%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.26 (d, J = 8.0 Hz, 2H, 2-ArH), 6.83 (d, J = 9.0 Hz, 2H, 3-ArH), 6.34 (s, 1H, NH), 3.78 (s, 3H, OCH₃), 1.51 (s, 9H, C(CH₃)₃).

Method II General procedure 2

Scheme 2.2 Preparation of aryl carbamates 83C and 83D using DMAP as catalyst

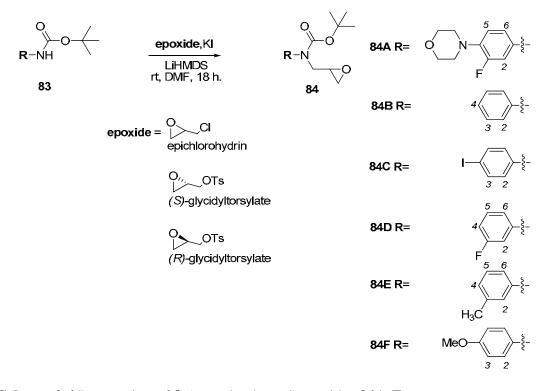

To a stirred solution of amine in CH_2Cl_2 (20 mL) was added NEt₃ and DMAP (10 mol%). After stirring for 10 minutes, Boc₂O was added into the mixture by syringe. The reaction mixture was stirred at ambient temperature for 2 hours under nitrogen atmosphere and quenched with aqueous HCl (2 M). The organic layer was separated and the aqueous layers was extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (9:1).

2.1.7 *tert*-Butyl 4-iodophenylcarbamate (83C): Compound 83C was synthesized from 4-iodoaniline (200 mg, 0.913 mmol), NEt₃ (0.400 mL, 2.88 mmol) and Boc₂O (0.320 g, 1.39 mmol), DMAP (11 mg) in CH₂Cl₂ (20 mL) to afford 83C as a clear white crystal (218 mg, 75%).

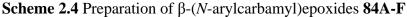
2.1.8 *tert*-Butyl 3-fluorophenylcarbamate (83D): Compound 83D was synthesized from 3-fluoroaniline (0.20 mL, 2.08 mmol), NEt₃ (1.00 mL, 7.19 mmol) and Boc₂O (0.70 mL, 3.04 mmol), DMAP (10 mg) in CH_2Cl_2 (20 mL) to afford 83D as a white solid (406 mg, 88%).

2.2 Preparation of glycidyltosylate

General procedure


Scheme 2.3 Preparation of glycidyltosylate

To a stirred solution of amine in CH_2Cl_2 (20 mL) was added NEt₃ and DMAP (10 mol%). After stirring for 10 minutes, a solution of TsCl in CH_2Cl_2 was added. The reaction mixture was stirred at ambient temperature for 3 hours under nitrogen atmosphere before being quenched with aqueous HCl (2 M) and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (9:1).


2.2.1 Glycidyltosylate: The compound was synthesized from glycidol (0.38 mL, 5.72 mmol), TsCl (1.70 g., 8.92 mmol), NEt₃ (1.90 mL, 13.7 mmol), and 10 mol% DMAP in CH₂Cl₂ (20 mL) to afford glycidyltosylate as a clear oil (1.08 g., 83%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.80 (d, *J*=8.0 Hz, 2H, 2-Ar*H*), 7.35 (d, *J* = 8.0 Hz, 1H, 3-Ar*H*), 4.25 (dd, *J* = 3.5, 11.5 Hz, 1H, OCH₂CHO), 3.94 (dd, *J* = 6.0, 11.5 Hz, 1H, OCH₂CHO), 3.18 (m, 1H, OCH₂CHO), 2.81 (t, *J* = 4.5 Hz, 1H, OCH₂CHCH₂), 2.58 (dd, *J* = 2.5, 4.5 Hz, 1H, OCH₂CHCH₂), 2.44 (s, 3H, CCH₃).

2.2.2 (*S*)-Glycidyltosylate: The compound was synthesized from glycidol (0.50 mL, 7.53 mmol), TsCl (2.15 g., 11.3 mmol), NEt₃ (3.2 mL, 23.0 mmol), and 10% mol DMAP in CH₂Cl₂ 20 mL to afford glycidyltosylate as a clear oil (882 mg, 57%). Physical and spectroscopic data were found to be identical to that of racemic glycidyltosylate.

2.3 Preparation of β-(N-arylcarbamyl)epoxides

General procedure

To a stirred solution of aryl carbamate in DMF was added KI and epoxide. The 1 M solution of LiHMDS in THF was added dropwise. The reaction mixture was stirred at ambient temperature under nitrogen atmosphere for 18 hours before being quenched with deionized water and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with deionized water several times to remove DMF, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (85:15).

2.3.1 *tert*-Butyl 3-fluoro-4-morpholinophenyl(oxiran-2-ylmethyl)

carbamate (84A): Compound 84A was synthesized from *tert*-butyl 3-fluoro-4morpholino phenylcarbamate (83A) (100 mg, 0.338 mmol), epichlorohydrin (0.0800 mL, 1.02 mmol), KI (160 mg, 1.00 mmol) and LiHMDS (0.80 mL, 0.80 mmol) in DMF 10 mL to afford 84A as a clear oil (101 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.00 (m, 2H, 2-ArH, 6-ArH), 6.87 (t, J = 9.0, 1H, 5-ArH), 3.87 (m, 4H, NCH₂CH, OCH₂), 3.52 (dd, J = 5.5, 15.0 Hz, 1H, NCH₂CH), 3.22 (m, 1H, CH₂CHO), 3.07 (m, 4H, NCH₂), 2.81 (t, J = 4.5 Hz, 1H, CHCH₂O), 2.52 (dd, J = 2.5, 4.5 Hz, 1H, CHCH₂O), 1.45 (s, 9H, C(CH₃)₃).

2.3.2 (S)-tert-Butyl3-fluoro-4-morpholinophenyl(oxiran-2-ylmethyl) carbamate ((S)-84A): Compound (S)-84A was synthesized from 83A (100 mg, 0.337 mmol), (R)-glycidyltosylate (230 mg, 1.00 mmol), KI (168 mg, 1.00 mmol) and LiHMDS (1.4 mL, 1.10 mmol) in DMF 10 mL to afford (S)-84A as a clear oil (98 mg, 83%). Physical and spectroscopic data were found to be identical to that of racemic 84A.

2.3.3 *tert*-**Butyl oxiran-2-ylmethyl(phenyl)carbamate (84B):** Compound **84B** was synthesized from *tert*-butyl phenylcarbamate (**83B**) (200 mg, 1.04 mmol), KI (170 mg, 10.2 mmol), epichlorohydrin (0.82 mL, 10.5 mmol) and LiHMDS (2.00 mL, 2.00 mmol) in DMF 20 mL to afford **84A** as a clear oil (210 mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.40-7.20 (m, 5H, Ar*H*), 3.87 (dd, J = 3.5, 14.5 Hz, 1H, NC*H*₂CH), 3.63 (dd, J = 5.5, 14.5 Hz, 1H, NC*H*₂CH), 3.63 (dd, J = 5.5, 14.5 Hz, 1H, NC*H*₂CH), 3.24 (m, 1H, NCH₂CHCH₂), 2.79 (t, J = 4.5 Hz, 1H, NCH₂CHC*H*₂), 2.51 (dd, J = 2.5, 4.5 Hz, 1H, NCH₂CHC*H*₂), 1.44 (s, 9H, C(C*H*₃)₃).

2.3.4 (*R*)-tert-butyl oxiran-2-ylmethyl(phenyl)carbamate ((*R*)-84B): Compound (*R*)-84B was synthesized from 83B (100 mg, 0.518 mmol), KI (260 mg, 1.57 mmol), (*S*)-glycidyltosylate (350 mg, 1.53 mmol) and LiHMDS (1.00 mL, 1.00 mmol) in DMF 10 mL to afford (*R*)-84B as a clear oil (210 mg, 85%). Physical and spectroscopic data were found to be identical to that of racemic 84B.


2.3.5 *tert*-Butyl4-iodophenyl(oxiran-2-ylmethyl)carbamate (84C): Compound 84C was synthesized from *tert*-butyl 4-iodophenylcarbamate (83C) (200 mg, 0.627 mmol), KI (312 mg, 1.88 mmol) epichlorohydrin (0.150 mL, 1.91 mmol) and LiHMDS (1.25 mL, 1.25 mmol) in DMF 20 mL to afford 84C as a clear oil (170 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.63 (d, J = 8.5 Hz, 2H, 3-Ar*H*), 7.03 (d, J = 8.5 Hz, 2H, 2-Ar*H*,), 3.93 (dd, J = 3.5, 15.0 Hz, 1H, NCH₂CH), 3.49 (dd, J = 6.0, 15.0 Hz, 1H, NCH₂CH), 3.23 (m, 1H, CH₂CHO), 2.80 (t, J = 4.5 Hz, 1H, CHCH₂O), 2.51 (dd, J = 2.5, 4.5 Hz, 1H, CHCH₂O), 1.44 (s, 9H, C(CH₃)₃).

2.3.6 *tert*-Butyl-3-fluorophenyl(oxiran-2-ylmethyl)carbamate (84D): Compound 84D was synthesized from *tert*-butyl-3-fluorophenylcarbamate (83D) (103 mg, 0.486 mmol), KI (240 mg, 1.45 mmol), epichlorohydrin (0.11 mL, 1.40 mmol) and LiHMDS (0.95 mL, 0.95 mmol) in DMF 10 mL to afford 84D as a clear oil (97.0 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.28 (m, 1H, 2-Ar*H*), 7.06 (m, 2H, 5-Ar*H*, 6-Ar*H*), 6.91 (m, 1H, 4-Ar*H*), 3.94 (dd, J = 3.5, 14.5 Hz, 1H, NCH₂CH), 3.55 (dd, J = 5.5, 14.5 Hz, 1H, NCH₂CH), 3.24 (m, 1H, CH₂CHO), 2.82 (t, J = 4.5 Hz, 1H, CHCH₂O), 2.53 (dd, J = 2.5, 4.5 Hz, 1H, CHCH₂O), 1.46 (s, 9H, C(CH₃)₃). [α]_D^{24.8} = -36.85° (c = 1.00, CHCl₃).

2.3.7 *tert*-Butyl oxiran-2-ylmethyl(*m*-tolyl)carbamate (84E): Compound 84E was synthesized from *tert*-butyl-*m*-tolylcarbamate (83E) (200 mg, 0.965 mmol), KI (800 mg, 4.80 mmol), epichlorohydrin (0.400 mL, 5.10 mmol) and LiHMDS (2.00 mL, 2.00 mmol) in DMF 20 mL to afford 84E as a clear oil (156 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.21 (t, J = 7.5 Hz, 1H, 2-ArH), 7.10-7.00 (m, 3H, 4-ArH, 5-ArH, 6-ArH), 3.83 (dd, J = 3.5, 14.5 Hz, 1H, NCH₂CH), 3.63 (dd, J = 5.5, 14.5 Hz, 1H, NCH₂CH), 3.23 (m, 1H, CH₂CHO), 2.79 (t, J = 4.5 Hz, 1H, CHCH₂O), 2.51 (dd, J = 2.5, 4.5 Hz, 1H, CHCH₂O), 2.34 (s, 3H, CCH₃), 1.45 (s, 9H, C(CH₃)₃).

2.3.8 *tert*-Butyl 4-methoxyphenyl(oxiran-2-ylmethyl) carbamate (84F): Compound 84F was synthesized from *tert*-butyl-4-methoxyphenylcarbamate (83F) (200 mg, 0.857 mmol), KI (430 mg, 2.59 mmol), epichlorohydrin (0.20 mL, 2.55 mmol) and LiHMDS (1.70 mL, 1.70 mmol) in DMF 20 mL to afford 84F as a clear oil (181 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.15 (d, J = 5.5 Hz, 2H, 2-ArH), 6.85 (d, J = 8.5 Hz, 2H, 3-ArH), 3.79 (m, 4H, OCH₃, NCH₂CH), 3.58 (dd, J =4.5, 15.0 Hz, 1H, NCH₂CH), 3.21 (m, 1H, CH₂CHO), 2.78 (t, J = 4.5 Hz, 1H, CHCH₂O), 2.49 (dd, J = 2.5, 4.5 Hz, 1H, CHCH₂O), 1.42 (s, 9H, C(CH₃)₃).

2.4. Preparation of N-aryl-2-oxazolidinones

Scheme 2.5 Preparation of N-aryl-2-oxazolidinones 85A-F

2.4.1 Acid optimization

General procedure

To a solution of *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate (**84B**) in CH_2Cl_2 (10 mL) was added a variety of acid (5 equiv), acetic acid (CH₃COOH), trifluoroacetic acid (TFA), boron trifluoride diethyletherate (BF₃·OEt₂), titanium (IV) chloride (TiCl₄), or aluminium trichloride (AlCl₃) and then refluxed for 2 hours. The reaction mixture was quenched with NaHCO₃ and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (4:1) to obtain 5-(hydroxymethyl)-3-phenyloxazolidin-2-one (**85B**).

Using $BF_3 \cdot OEt_2$ as acid: According to acid optimization procedure above, the *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate (84B) (210 mg, 0.844 mmol), $BF_3 \cdot OEt_2$ (0.530 mL, 4.18 mmol) to afford 85B as a white solid (133 mg, 81%).

Using TiCl₄ as acid: The *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate (84B) (112 mg, 0.450 mmol), TiCl₄ (0.25 mL, 2.27 mmol) to afford 85B as a white solid (71 mg, 82%).

Using AlCl₃ as acid: The *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate (84B) (123 mg, 0.495 mmol), AlCl₃ (356 mg, 2.67 mmol) to afford 85B as a white solid (40.0 mg, 15%).

Using TFA as acid: The *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate (84B) (209 mg, 0.822 mmol), TFA (0.315 mL, 4.11 mmol) to afford 85B as a white solid (146 mg, 92%).

Using CH₃COOH as acid: The *tert*-butyl oxiran-2-ylmethyl(phenyl) carbamate (84B) (161 mg, 0.648 mmol), CH₃COOH (0.200 mL, 3.49 mmol) to afford 85B as a white solid (28.8 mg, 23%).

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (d, J = 8.5 Hz, 2H, 2-Ar*H*), 7.38 (t, J = 7.5 Hz, 2H, 3-Ar*H*), 7.15 (dt, J = 1.0, 7.0, 7.0 Hz, 1H, 4-Ar*H*), 4.76 (m, 1H, CH₂C*H*O), 4.02 (m, 3H, NC*H*₂CH, CHC*H*₂OH), 3.77 (m, 1H, NC*H*₂CH), 2.14 (t, J = 6.5 Hz, 1H, O*H*).

2.4.2 Synthesis 2-oxazolidinone derivatives by acid cyclization

General procedure

To a solution of β -(*N*-arylcarbamyl)epoxides **84** in CH₂Cl₂ 10 mL was added TFA and then refluxed for 2 hours. The reaction mixture was then quenched with aqueous solution of NaHCO₃ and extracted with CH₂Cl₂ (3 x10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (4:1) to obtain 2-oxazolidinone derivatives.

3-(3-Fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one

(85A): The *tert*-Butyl 3-fluoro-4-morpholinophenyl(oxiran-2-ylmethyl)carbamate (84A) (66.8 mg, 0.190 mmol) was used as a starting material, TFA (0.070 mL, 0.914

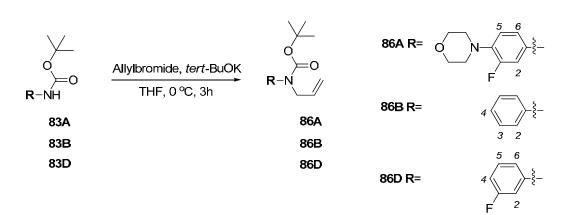
mmol) to afford **85A** (41 mg, 75%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.45 (dd, J = 2.5, 14.5 Hz, 1 H, 2-Ar*H*), 7.12 (ddd, J = 1.0, 2.5, 9.0 Hz, 1H, 6-Ar*H*), 6.92 (t, J = 9.0 Hz, 1H, 5-Ar*H*), 4.74 (m, 1H, CH₂C*H*O), 3.97 (m, 3H, NC*H*₂CH, CHC*H*₂OH), 3.87 (m, 4H, OC*H*₂), 3.75 (d, J = 12.5 Hz, 1H, NC*H*₂CH), 3.05 (m, 4H, NC*H*₂), 2.39 (s, 1H, OH).

(*R*)-3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one ((*R*-)85A): The *tert*-Butyl 3-fluoro-4-morpholinophenyl(oxiran-2-ylmethyl)carbamate ((*S*)-84A) (144 mg, 0.408 mmol) was used as a starting material, TFA (0.16 mL, 2.04 mmol) to afford the corresponding (*R*)-85A (118 mg, 81%). Physical and spectroscopic data were found to be identical to that of racemic 85A

5-(Hydroxymethyl)-3-phenyloxazolidin-2-one (85B): The *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate (**84B**) (209 mg, 0.822 mmol), TFA (0.315 mL, 4.11 mmol) to afford **85B** as a white solid (146 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.55 (d, J = 8.5 Hz, 2H, 2-ArH), 7.38 (t, J = 7.5 Hz, 2H, 3-ArH), 7.15 (dt, J = 1.0, 7.0, 7.0 Hz, 1H, 5-ArH), 4.76 (m, 1H, CH₂CHO), 4.02 (m, 3H, NCH₂CH, CHCH₂OH), 3.77 (m, 1H, NCH₂CH), 2.14 (s, J = 6.5 Hz, 1H, OH).

(*S*)-5-(hydroxymethyl)-3-phenyloxazolidin-2-one ((*S*)-85B): The *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate ((*S*)-84B) (209 mg, 0.822 mmol), TFA (0.315 mL, 4.11 mmol) to afford the corresponding (*S*)-85Bas a white solid (146 mg, 90%). Physical and spectroscopic data were found to be identical to that of racemic 85B.

5-(Hydroxymethyl)-3-(4-iodophenyl)oxazolidin-2-one (85C): The *tert*-butyl 4-iodophenylcarbamate (**84C**) (141 mg, 0.376 mmol) was used as a starting material, TFA (0.15 mL, 1.96 mmol) to afford **85C** (100 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.67 (d, J = 9.0 Hz, 2H, 3-Ar*H*), 7.33 (d, J = 9.0 Hz, 2H, 2-Ar*H*), 4.76 (m, 1H, CH₂CHO), 3.99 (m, 3H, NCH₂CH, CHCH₂OH), 3.76 (m, 1H, NCH₂CH), 2.08 (dd, J = 6.03, 7.17 Hz, 1H, OH).


3-(3-Fluorophenyl)-5-(hydroxymethyl)oxazolidin-2-one (85D): The *tert*butyl-3-fluorophenyl(oxiran-2-ylmethyl)carbamate (**84D**) (97.0 mg, 0.364 mmol) was used as a starting material, TFA (0.20 mL, 2.07 mmol) to afford **85D** (71 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.44 (ddd, J = 2.0, 4.0, 11.0 Hz, 1H, 2-Ar*H*), 7.31 (m, 1H, 6-Ar*H*), 7.22 (d, J = 7.0 Hz, 1H, 5-Ar*H*), 6.83 (m, 1H, 4-Ar*H*), 4.75 (m, 1H, CH₂CHO), 4.00 (m, 3H, NCH₂CH, CHCH₂OH), 3.75 (m, 1H, NCH₂CH), 2.73 (t, J = 6.0 Hz, 1H, O*H*).

5-(Hydroxymethyl)-3-*m***-tolyloxazolidin-2-one (85E):** The *tert*-butyl oxiran-2-ylmethyl(*m*-tolyl)carbamate (**84E**) (68.0 mg, 0.258 mmol) was used as a starting material, TFA (0.10 mL, 1.31 mmol) to afford **85E** (46.0 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.34 (s, 1H, 2-Ar*H*), 7.28 (d, *J* = 8.5 Hz, 1H, 6-Ar*H*), 7.22 (t, *J* = 7.5 Hz, 1H, 5-Ar*H*), 6.93 (d, *J* = 7.0 Hz, 1H, 4-Ar*H*), 4.67 (m, 1H, CH₂CHO), 3.95 (m, 3H, NCH₂CH, CHCH₂OH), 3.73 (m, 1H, NCH₂CH), 2.44 (s, 1H, O*H*), 2.33 (s, 3H, CH₃).

5-(Hydroxymethyl)-3-(4-methoxyphenyl)oxazo-lidin-2-one (85F): The *tert*butyl 4-methoxyphenyl(oxiran-2-ylmethyl) carbamate (**84F**) (181 mg, 0.648 mmol) was used as a starting material, TFA (0.25 mL, 3.27 mmol) to afford **85F** (109 mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.44 (d, J = 8.0 Hz, 2H, 2-ArH), 6.91 (d, J = 8.0 Hz, 2H, 3-ArH), 4.73 (m, 1H, CH₂CHO), 3.99 (m, 3H, NCH₂CH, CHCH₂OH), 3.77 (m, 4H, OCH₃, NCH₂CH), 2.19 (t, J = 5.5 Hz, 1H, OH).

2.5 Preparation of allylcarbamates

General procedure

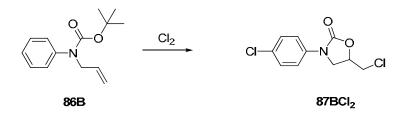
Scheme 2.6 Preparation of allyl carbamates 86A, 86B and 86D

Carbamates in THF were cooled to 0 °C. A 1 M solution of *tert*-BuOK in THF was added dropwise to reaction mixture. After stirring at 0 °C for an hour, allylbromide was added at 0 °C and stirred for 2 hours under nitrogen atmosphere. The reaction mixture was quenched with saturated NH₄Cl and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/CH₂Cl₂ (4:1).

2.5.1 *tert*-**Butyl** (3-fluoro-4-morpholinophenyl)allylcarbamate (86A): According to allyl formation above, compound **86A** was synthesized from *tert*-butyl 3-fluoro-4 morpholinophenylcarbamate (**83A**) (0.217 g, 0.730 mmol), 1 M solution of *tert*-BuOK in THF (1.00 mL, 1.00 mmol) and allylbromide (0.25 mL, 3.00 mmol) in THF (20 mL) to afford **86A** as clear white crystal (0.23 g, 95%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ (ppm): 6.95 (m, overlapping, 2H, 2-ArH, 6-ArH), 6.85 (t, J = 9.0 Hz, 1H, 5-ArH), 5.88 (m, 1H, CH₂CHCH₂), 5.13 (dd, J = 2.0, 13.5 Hz, 2H, NCH₂CHCH₂), 4.16 (d, J=5.5 Hz, 1H, NCH₂CHCH₂), 3.86 (m, 4H, OCH₂), 3.05 (s, 4H, NCH₂), 1.44 (s, 9H, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 154.3, 137.7, 137.6, 134.0, 125.5, 122.1, 118.1, 116.5, 114.9, 114.5, 80.6, 66.9, 52.9, 50.9, 30.3, 28.2.

2.5.2 *tert*-**Butyl** (phenyl)allylcarbamate (86B): Compound 86B was synthesized from *tert*-butyl phenylcarbamate (83B) (324 mg, 1.67 mmol), 1 M solution of *tert*-BuOK in THF (2.50 mL, 2.50 mmol) and allylbromide (0.57 mL, 6.70 mmol) in THF (20 mL) to afford **86B** as colorless oil (374 mg, 96%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.24 (m, 5H, Ar*H*), 5.92 (m, 1H, NCH₂C*H*CH₂), 5.14 (m, 2H, NCH₂CHC*H*₂), 4.22 (s, 2H, NCH₂CHCH₂), 1.44 (s, 9H, C(C*H*₃)₃).¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 154.5, 142.8, 134.3, 128.6, 126.3, 135.7, 116.4, 80.3, 52.9, 28.3. $v_{\rm max}$ (neat) 3075, 2975, 1702, 1592, 1380, 1149.

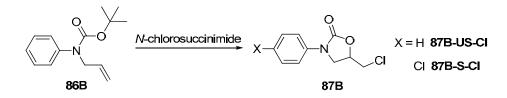
2.5.3 *tert*-Butyl (3-fluorophenyl)allylcarbamate (86D): Compound 86D was synthesized from *tert*-butyl 3-fluorophenylcarbamate (83D) (635 mg, 3.01mmol), 1 M solution of *tert*-BuOK in THF (4.5 mL, 4.5 mmol) and allylbromide (1.0 mL, 12.0 mmol) in THF (20 mL) to afford 86D as clear white crystal (640 mg, 85%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.25 (dd, J = 8.0, 15.0 Hz, 1H, 2-ArH), 7.01 (dd, J =


9.5, 14.0 Hz, 2H, 5-Ar*H*, 6-Ar*H*), 6.87 (ddt, *J* = 1.0, 2.5, 8.5, 8.5 Hz, 1H, 4-Ar*H*), 5.90 (m, 1H, NCH₂CHCH₂), 5.15 (m, 1H, NCH₂CHCH₂), 4.22 (td, *J* = 1.5, 1.5, 5.5 Hz, 2H, NCH₂CHCH₂), 1.45 (s, 9H, C(CH₃)₃)

2.6 Halogenation of alkene

2.6.1 Chlorination

- Synthesis of chloro 2-oxazolidinones

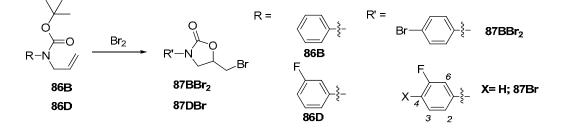

Method I

Scheme 2.7 Preparation of 5-(Chloromethyl)-3-(4-chlorophenyl)oxazolidin-2-one (87BCl₂) using Cl₂

Chlorine gas (generated from KMnO₄ with conc. HCl) was added into the solution of *tert*-butyl allyl(phenyl)carbamate **86B** (100 mg, 0.429 mmol) in CHCl₃ 10 mL at ambient temperature and stirred for 1 hour. The reaction mixture was added with aqueous solution of NaHCO₃ for neutralization then extracted with CHCl₃ (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product. Purification was accomplished by column chromatography (SiO₂) eluting with hexane/EtOAc (4:1) to obtain the 5-(chloromethyl)-3-(4-chlorophenyl)oxazolidin-2-one (**87BCl**₂) as white solid (53 mg, 50%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ (ppm): 7.49 (d, *J*=9.0 Hz, 2H, Ar-*H*_{ortho}), 7.34 (d, *J* = 9.0 Hz, 2H, Ar-*H*_{meta}), 4.90 (m, 1H, NCH₂CHCH₂Cl), 4.14 (t, *J* = 9.0 Hz, 1H, NCH₂CHCH₂Cl), 3.92 (m, 1H, NCH₂CHCH₂Cl), 3.79 (m, 2H, NCH₂CHCH₂Cl). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 153.7, 136.3, 129.5, 129.1, 119.4, 70.8, 47.9, 44.5. v_{max} (neat) . HRMS m/z: 267.9960 [M+Na]⁺

Method II General procedure

Scheme 2.8 Preparation of 5-(Chloromethyl)-3-phenyloxazolidin-2-one (87BCl) and 5-(Chloromethyl)-3-(4-chlorophenyl)oxazolidin-2-one (87BCl₂) using NCS


N-chlorosuccinimide (NCS) was added into the solution of *tert*-butyl allyl(phenyl)carbamate in CHCl₃ 10 mL at ambient temperature and stirred 24 hours under an nitrogen atmosphere. The reaction mixture was added with cold water until a solution turned to turbid then extracted with CHCl₃ (3 x 10 mL). The combined organic layers were washed with brine dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as the pale yellow oil. Purification was accomplished by column chromatography (SiO₂) eluting with hexane/EtOAc (85:15).

5-(Chloromethyl)-3-phenyloxazolidin-2-one (87BCl): According to bromo 2-oxazolidinone preparation above, compound **87BCl** was synthesized from the NCS (172 mg, 1.29 mmol), *tert*-butyl allyl(phenyl)carbamate (100 mg, 0.429 mmol) in CHCl₃ 10 mL to afford **87BCl** as white solid (6.0 mg, 6%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.55 (dd, *J*=1.0, 8.5 Hz, 2H, Ar-*H*_{ortho}), 7.39 (m, 1H, Ar-*H*_{ometa}), 7.16 (t, *J* = 7.5 Hz, 1H, Ar-*H*_{para}), 4.88 (m, 1H, NCH₂CHCH₂Cl), 4.18 (t, *J* = 9.0 Hz, 1H, NCH₂CHCH₂Cl), 3.97 (dd, *J* = 5.5, 9.0 Hz, 1H, NCH₂CHCH₂Cl), 3.78 (m, 2H, NCH₂CHCH₂Cl). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 153.9, 137.7, 129.16, 124.3, 118.3, 70.8, 48.1, 44.5. $v_{\rm max}$ (neat) 3029, 2957, 1731, 1594, 1501, 1479, 1408. HRMS m/z: 234.0354 [M+Na]⁺

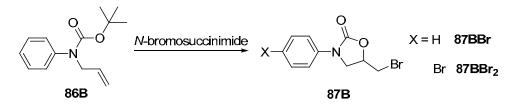
5-(Chloromethyl)-3-(4-chlorophenyl)oxazolidin-2-one(87BCl₂): Compound 87BCl₂ was synthesized from the NCS (172 mg, 1.29 mmol), *tert*-butyl allyl(phenyl)carbamate (100 mg, 0.429 mmol) in DMF 10 mL to afford **87BCl₂** as white solid (28 mg, 26%).

2.6.2 Bromination

Synthesis of bromo 2-oxazolidinones Method III General procedure I

Scheme 2.9 Preparation of 5-(Bromomethyl)-3-(4-bromophenyl)oxazolidin-2-one (87BBr₂), 5-(bromomethyl)-3-(3-fluorophenyl)oxazolidin-2-one (87DBr)

Bromine (Br₂) was added into the solution of *tert*-butyl allyl carbamate in CHCl₃ at ambient temperature, stirred for 1 hour under nitrogen atmosphere. The reaction mixture was added with saturated aqueous solution of $Na_2S_2O_3$ until an orange solution turned to a colorless solution, neutralized solution with saturated NaHCO₃ then extracted with CHCl₃ (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (4:1).


5-(Bromomethyl)-3-(4-bromophenyl)oxazolidin-2-one(87BBr₂): According to bromo 2-oxazolidinone preparation above, compound **87BBr₂** was synthesized from *tert*-butyl allyl(phenyl)carbamate (100 mg, 0.429 mmol, bromine (0.070 mL, 1.36 mmol) in CHCl₃ 10 mL to afford **87BBr₂** as a white solid (136 mg, 94 %). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.48 (m, 4H, Ar- $H_{\rm ortho}$, Ar- $H_{\rm meta}$, Ar- $H_{\rm para}$), 4.88 (m, 1H, NCH₂CHCH₂Br), 4.16 (m, 1H, NCH₂CHCH₂Br), 3.90 (dd, J = 6.0, 9.0 Hz, 1H, NCH₂CHCH₂Br), 3.65 (dd, J = 4.0, 11.0 Hz, 1H, NCH₂CHCH₂Br), 3.57 (dd, J =

7.5, 11.0 Hz, 1H, NC*H*₂CHCH₂Br). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 153.7, 136.8, 132.0, 119.7, 117.1, 70.5, 49.0, 32.5. Mp124-125 °C. $\nu_{\rm max}$ (neat) 3102, 2961, 1754, 1498, 1417, 1403. HRMS m/z: 357.8845 [M+Na]⁺

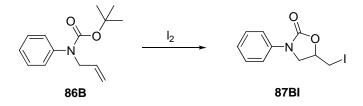
5-(bromomethyl)-3-(3-fluorophenyl)oxazolidin-2-one (87DBr): Compound **87DBr** was synthesized from **87D** (50 mg, 0.182 mmol and bromine (0.030 mL, 0.585 mmol) in CHCl₃ 10 mL. to afford **87BBr₂** as a white solid (44 mg, 88 %).¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.44 (m, 1H, 6-Ar*H*), 7.33 (m, 1H, 2-Ar*H*), 7.24 (dd, *J* = 7.0, 13.0 Hz, 1H, 3-Ar*H*), 6.85 (dd, *J* = 8.0, 14.0 Hz, 1H, 4-Ar*H*), 4.88 (m, 1H, NCH₂CHCH₂Br), 4.16 (m, 1H, NCH₂CHCH₂Br), 3.90 (m, 1H, NCH₂CHCH₂Br), 3.64 (m, 1H, NCH₂CHCH₂Br), 3.57 (m, 1H, NCH₂CHCH₂Br).

Method IV

General procedure II

Scheme 2.10 Preparation of 5-(Bromomethyl)-3-phenyloxazolidin-2-one (87BBr) and 5-(Bromomethyl)-3-(4-bromophenyl)oxazolidin-2-one (87BBr₂) using NBS

N-bromosuccinimide (NBS) was added into the solution of *tert*-butyl allyl(phenyl)carbamate in CH₃CN 20 mL at ambient temperature and stirred 24 hours under an nitrogen atmosphere. Cold water was added until a solution turned to turbid then extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as the pale yellow oil. Purification was accomplished by column chromatography (SiO₂) eluting with hexane/EtOAc (4:1).

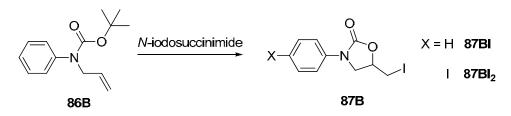

5-(Bromomethyl)-3-phenyloxazolidin-2-one (87BBr): According the preparation above, compound **87BBr** was synthesized from the NBS (84 mg, 0.472 mmol), *tert*-butyl allyl(phenyl)carbamate (0.050 mg, 0.214 mmol) in CH₃CN 20 mL

to afford **87BBr** as white solid (71 mg, 99%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.55 (dd, J = 1.0, 9.0 Hz, 1H, Ar- $H_{\rm ortho}$), 7.40 (m, 1H, Ar- $H_{\rm meta}$), 7.17 (tt, J = 1.0, 7.5 Hz, 1H, Ar- $H_{\rm para}$), 4.87 (m, 1H, NCH₂CHCH₂Br), 4.19 (t, J = 9.0, Hz, 1H, NCH₂CHCH₂Br), 3.94 (dd, J = 6.0, 9.0 Hz, 1H, NCH₂CHCH₂Br), 3.66 (dd, J = 4.0, 10.5 Hz, 1H, NCH₂CHCH₂Br), 3.56 (dd, J = 7.5, 10.5 Hz, 1H, NCH₂CHCH₂Br). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 153.9, 137.7, 129.2, 124.4, 118.4, 70.6, 49.3, 32.6. Mp 97-98 °C. $\nu_{\rm max}$ (neat) 3034, 2917, 1755, 1594, 1504, 1480, 1410. HRMS m/z: 277.9750 [M+Na]⁺

5-(bromomethyl)-3-(4-bromophenyl)oxazolidin-2-one(87BBr₂): Compound **87BBr₂** was synthesized from the NBS (380 mg, 2.13 mmol) *tert*-butyl allyl(phenyl)carbamate (100 mg, 0.429 mmol) in CH₃CN 10 mL to afford **87BBr₂** as white solid (98 mg, 68%).

2.6.3 Iodination

- Synthesis of iodo 2-oxazolidinones Method V

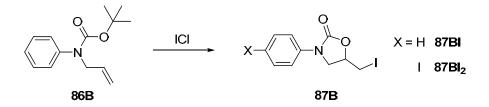


Scheme 2.11 Preparation of 5-(iodomethyl)-3-phenyloxazolidin-2-one (87BI) using I_2

Iodine (I₂) (913 mg, 3.60 mmol) was dissolved with toluene 20 mL at 50 °C. Then *tert*-butyl allyl(phenyl)carbamate (150 mg, 0.643 mmol) was added into the solution at 50 °C and stirred 24 hours under an nitrogen atmosphere. The reaction mixture was added with saturated aqueous solution of saturated Na₂S₂O₃ until a dark brown solution turned to a colorless solution then extracted with EtOAc(3 x 10 mL). The combined organic extracted layers were washed with brine dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as the pale yellow oil. The crude product was purified by column chromatography (SiO₂) eluting with

hexane/EtOAc (85:15) to afford 5-(iodomethyl)-3-phenyloxazolidin-2-one (**87BI**) as white solid (410 mg, 64%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.53 (d, J = 8.0 Hz, 1H, Ar- $H_{\rm ortho}$), 7.38 (t, J = 8.0 Hz, 1H, Ar- $H_{\rm meta}$), 7.15 (t, J = 7.5 Hz, 1H, Ar- $H_{\rm para}$), 4.70 (m, 1H, NCH₂CHCH₂I), 4.16 (t, J = 9.0 Hz, 1H, NCH₂CHCH₂I), 3.78 (dd, J = 6.0, 9.0 Hz, 1H, NCH₂CHCH₂I), 3.45 (dd, J = 4.0, 10.5 Hz, 1H, NCH₂CHCH₂I), 3.35 (dd, J = 8.0, 10.5 Hz, 1H, NCH₂CHCH₂I). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 154.0, 137.7, 129.0, 124.3, 118.3, 71.1, 50.9, 6.2. Mp 97-98 °C. $v_{\rm max}$ (neat) 3041, 2916, 1742, 1602, 1502, 1473, 1403. HRMS m/z: 325.9623 [M+Na]⁺

Method VI General procedure


Scheme 2.12 Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI) and 5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (87BI₂) using NIS

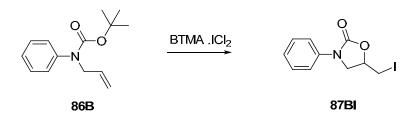
N-iodosuccinimide (NIS) was added into the solution of *tert*-butyl allyl(phenyl)carbamate in CH₃CN at ambient temperature and stirred overnight under an nitrogen atmosphere. DI water and saturated Na₂S₂O₃ were added until a orange solution turned to a colorless solution then extracted with EtOAc (3 x 10 mL). The combined organic extracted layer were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as pale yellow oil. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (85:15).

5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI): According the preparation above, compound **87BI** was synthesized from the *N*-iodosuccinimide (NIS) (212 mg, 0.946 mmol) *tert*-butyl allyl(phenyl)carbamate (100 mg, 0.429 mmol) in CH₃CN 20 mL to afford **87BI** as white solid (121 mg, 93%).

5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (**87BI**₂): Compound **87BI**₂ was synthesized from the NIS (480 mg, 2.13 mmol), *tert*-butyl allyl(phenyl)carbamate (100 mg, 0.429 mmol) and TFA (0.23 mL, 3.00 mmol) in CH₃CN 20 mL to afford **87BI**₂ as white solid (137 mg, 74%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.68 (d, J = 8.5 Hz, 1H, Ar- $H_{\rm meta}$), 7.32 (d, J = 8.5 Hz, 1H, Ar- $H_{\rm ortho}$), 4.74 (m, 1H, NCH₂CHCH₂I), 4.15 (t, J = 9.0 Hz, 1H, NCH₂CHCH₂I), 3.76 (dd, J = 6.0, 9.0 Hz, 1H, NCH₂CHCH₂I), 3.47 (dd, J = 4.0, 10.0 Hz, 1H, NCH₂CHCH₂I), 3.35 (dd, J = 8.5, 10.0 Hz, 1H, NCH₂CHCH₂I). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 153.7, 137.9, 137.5, 120.0, 87.8, 71.1, 50.6, 6.0. Mp 148-149 °C. $v_{\rm max}$ (neat) 3095, 2914, 1747, 1487, 1417, 1394. HRMS m/z: 451.8568 [M+Na]⁺

Method VII General procedure

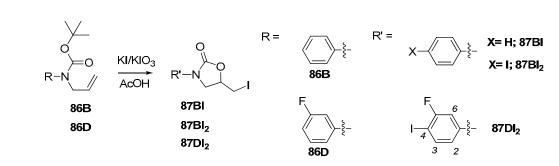
Scheme 2.13 Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI) and 5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (87BI₂) using ICl


Iodinemonochloride (ICl) was added into the solution of *tert*-butyl allyl(phenyl)carbamate and CaCO₃ in mixed solvent CHCl₃ and MeOH (3:1) at ambient temperature and stirred 24 hour under an nitrogen atmosphere. A solution of 40% sodiumbisulfite was added to the reaction mixture until a dark brown solution turned to a colorless solution extracted with CHCl₃ (3 x 10 mL). The combined organic extracted layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (85:15).

5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI): According the preparation above, compound 87BI was synthesized from ICl (24 mg, 0.517 mmol), *tert*-butyl

allyl(phenyl)carbamate (100 mg, 0.429 mmol), CaCO₃ (86 mg, 0.86 mmol) in mixed solvent CHCl₃ and MeOH (3:1) to afford **87BI** as white solid (93 mg, 71%).

5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (87BI₂): Compound 87BI₂ was synthesized from ICl (0.10 mL, 1.20 mmol), *tert*-butyl allyl(phenyl)carbamate (100 mg, 0.429 mmol), CaCO₃ (386 mg, 3.86 mmol) in mixed solvent CHCl₃ and MeOH (3:1) to afford 87BI₂ as white solid (137 mg, 74% yield).

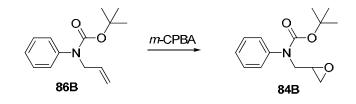

Method VIII

Scheme 2.14 Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI) using BTMA·ICl₂

Benzyltrimethylaluminium dichloroiodate (BTMA·ICl₂) (158 mg, 0.472 mmol) was added into the solution of *tert*-butyl allyl(phenyl)carbamate (50 mg, 0.214 mmol) in CHCl₃ at ambient temperature and stirred 24 hours under an nitrogen atmosphere. A saturated Na₂S₂O₃ was added to the reaction mixture until a yellow solution turned to a colorless solution then extracted with CHCl₃ (3 x 10 mL). The combined organic extracted layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo*. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (85:15) to afford 5-(iodomethyl)-3-phenyloxazolidin-2-one (**87BI**) as white solid (93 mg, 71%).

Method IX General procedure

Scheme 2.15 Preparation of 5-(Iodomethyl)-3-phenyloxazolidin-2-one (87BI), 5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (87BI₂), and 3-(3-fluoro-4-iodophenyl)-5-(iodomethyl)oxazolidin-2-one (87DI₂) using KI/KIO₃


KI and KIO₃ was added into the solution of *tert*-butyl allyl(phenyl)carbamate (**86B**) in acetic acid 5 mL at 120 °C and stirred until the pink vapor of iodine fade away from reaction (about 3 hours) under an nitrogen atmosphere. DI-water and saturated Na₂S₂O₃ was added to the reaction mixture until a dark brown solution turned to a colorless solution then extracted with CHCl₃ (3 x 10 mL). The combined organic extracted layers were neutralized with saturated aqueous solution of saturated NaHCO₃, washed with brine dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as pale yellow oil. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (85:15).

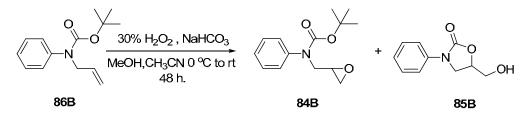
5-(Iodomethyl)-3-phenyloxazolidin-2-one (**87BI**): According to the preparation above, compound **87BI** was synthesized from KI (43 mg, 0.260 mmol), KIO₃ (55 mg, 0.0.259 mmol), **86B** (50 mg, 0.214 mmol) in acetic acid 5 mL to afford **87BI** as white solid (59 mg, 91%).

5-(Iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one (87BI₂): Compound 87BI₂ was synthesized from KI (156 mg, 0.940 mmol), KIO₃ (202 mg, 0.948 mmol), 86B (100 mg, 0.429 mmol) in acetic acid 5 mL to afford 87BI₂ as white solid (163 mg, 89% yield). **3-(3-fluorophenyl)-5-(iodomethyl)oxazolidin-2-one** (**87DI**₂): Compound **87DI** was synthesized from KI (100 mg, 0.602 mmol), KIO₃ (128 mg, 0.600 mmol), **86D** (50 mg, 0.200 mmol) in acetic acid 5 mL to afford **87BI**₂ as pale yellow oil (57 mg, 64% yield). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.71 (dd, J = 7.0, 8.5 Hz, 1H, 6-Ar*H*), 7.48 (dd, J = 2.5, 10.0 Hz, 1H, 2-Ar*H*), 7.07 (dd, J = 2.5, 8.5 Hz, 1H, 3-Ar*H*), 4.75 (m, 1H, NCH₂C*H*CH₂I), 4.15 (t, J = 9.0 Hz, 1H, NCH₂CHC*H*₂I), 3.76 (dd, J = 6.0, 9.0 Hz, 1H, NCH₂CHCH₂I), 3.48 (dd, J = 4.0, 10.5 Hz, 1H, NCH₂CHC*H*₂I), 3.36 (dd, J = 9.0, 10.5 Hz, 1H, NCH₂CHCH₂I). ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ (ppm): 163.1, 160.7, 153.5, 139.3, 115.1, 106.2, 105.9, 74.7, 74.4, 71.2, 50.8, 5.9. v_{max} (neat) 3099, 2942, 1752, 1595, 1471, 1402. HRMS m/z: 469.8629 [M+Na]⁺

2.7 Oxidation of terminal alkene

Method I General procedure

Scheme 2.16 Preparation of *tert*-Butyl oxiran-2-ylmethyl(phenyl)carbamate (84B)

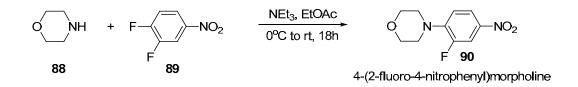

70% 3-chloroperbenzoic acid (*m*-CPBA) was added into a solution mixture of *tert*-butyl allyl carbamate (**86**) in CH₂Cl₂ (20 mL) at 0 °C to ambient temperature and stirred overnight under nitrogen atmosphere. The reaction mixture was added with the solution of saturated NaHCO₃ for neutralization then extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracted layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as the dark brown oil. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (85:15).

tert-Butyl oxiran-2-ylmethyl(phenyl)carbamate 84B: According to the preparation above, compound 84B was synthesized from 70% 3-chloroperbenzoic

acid (*m*-CPBA) (2.65 g, 15.3 mmol), **86B** (511 mg, 2.19 mmol) in CH₂Cl₂ 20 mL to obtain **3B** as clear oil (25 mg, 5%).

tert-Butyl oxiran-2-ylmethyl(phenyl)carbamate 84B: Compound 84B was synthesized from *m*-CPBA (214 mg, 1.24 mmol), 83B (203 mg, 0.868 mmol) and (R,R) Jacobsen catalyst (22 mg, 0.035 mmol)in CH₂Cl₂ 20 mL to obtain 84B as clear oil (24 mg, 11%).

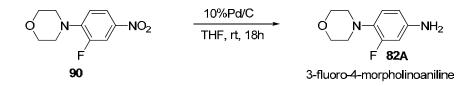
Method II



Scheme 2.17 Preparation of 84B using Payne oxidation

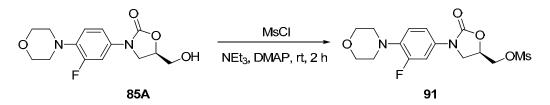
30% H₂O₂ (1.00 mL, 14 equiv.) was added into a solution mixture *tert*-butyl allyl(phenyl)carbamate (150 mg, 0.643 mmol) and NaHCO₃ (54 mg, 0.643 mmol) in MeOH (3.21 mL) and CH₃CN (0.68 mL, 20 equiv) at 0 °C and stirred for 48 hours at ambient temperature. The reaction mixture was evaporated under reduced pressure, extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers was washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as the pale yellow oil. Purification was accomplished by column chromatography with 5-50% EtOAc in hexane, and 10 % Methanol in EtOAc to obtain the *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate (**84B**) (54 mg, 34%) as clear oil and 5-(hydroxymethyl)-3-phenyloxazolidin-2-one (**85B**) as white solid. (27 mg, 22%)

2.8 Preparation of Linezolid


2.8.1 Preparation of 4-(2-fluoro-4-nitrophenyl)morpholine

Scheme 2.18 Preparation of 4-(2-fluoro-4-nitrophenyl)morpholine (90)

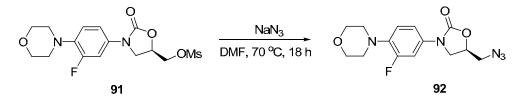
In a 250 mL, a round bottomed flask equipped with a magnetic stirring bar, to a stirred of a solution of morpholine (**88**) (2.75 mL, 31.58 mmol) and NEt₃ (4.40 mL, 31.60 mmol) in EtOAc(20 mL) was added dropwise into 3,4-difluoronitrobenzene (**89**) (3.18 mL, 31.49 mmol) at 0 °C to ambient temperature and stirred for 18 h under an nitrogen atmosphere. The reaction mixture was added with saturated aqueous solution of NH₄Cl and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as a yellow solid. Purification was accomplished by mixed solvent crystallization using acetone and water to afford a 4-(2-fluoro-4nitrophenyl)morpholine (**90**) as yellow crystal (6.65 g, 93%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.99 (ddd, J = 0.96, 2.5, 9.0 Hz, 1H, Ar- $H_{\rm ortho}$), 7.91 (dd, J =2.5, 13.0 Hz, 1H, Ar- $H_{\rm ortho}$), 6.92 (t, J = 8.76, 1H, Ar- $H_{\rm meta}$), 3.87 (m, 4H, OCH₂), 3.28 (m, 4H, NCH₂) ¹³C NMR (100 MHz,CDCl₃) $\delta_{\rm C}$ (ppm): 154.2, 151.7, 145.4, 140.7), 120.9, 116.8, 112.6, 66.5, 49.8. ESIMS m/z: 227.1 [M+H]⁺


2.8.2 Preparation of 3-fluoro-4-morpholinoaniline

Scheme 2.19 Preparation of 3-fluoro-4-morpholinoaniline (82A)

Hydrogen gas (in balloon) was added into a solution mixture of 4-(2-fluoro-4nitrophenyl)morpholine (**83A**) (6.12 g., 27.05 mmol) and 10% palladium on carbon (2.88 g, 2.70 mmol) in dry tetrahydrofuran (100 mL) at ambient temperature. The mixture was stirred for 18 h at room temperature under hydogen atmosphere. The reaction mixture was filtered through celite and the solids were washed with tetrahydrofuran. The filtrate was concentrated *in vacuo* to yield the crude product as a white and pale red solid. Purification was accomplished by column chromatography (SiO₂) eluting with hexane/EtOAc (4:1) to obtain the 3-fluoro-4-morpholinoaniline (**82A**) as white solid (4.76 g, 90%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ (ppm): 6.79 (t, *J*=9.02 Hz, 1H, Ar-*H*_{meta}), 6.41 (m, 2H, Ar-*H*_{ortho}), 3.85 (m, 4H, OC*H*₂), 3.57 (s, 2H, N*H*), 2.96 (m, 4H, NC*H*₂).

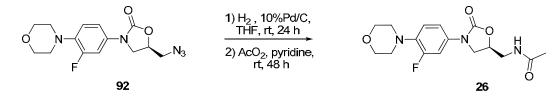
2.8.3 Preparation of (3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5yl) methylmethanesulfonate (91)



Scheme 2.20 Preparation of (3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl) methylmethanesulfonate (91)

In a 100 mL, a round bottomed flask equipped with a magnetic stirring bar a 3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one mixture of (85A) (100 mg, 0.338 mmol), NEt₃ (0.14 mL, 1.00 mmol) and 10% mol DMAP in dried CH₂Cl₂ 20 mL was stirred at 0 °C. The solution of MsCl was added into the mixture by syringe. The mixture was stirred at 0 °C to ambient temperature for 2 hours under a nitrogen atmosphere. The reaction mixture was added with aqueous solution of 2 M HCl and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated in vacuo. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (1:1)furnish (3-(3-fluoro-4-morpholinophenyl)-2to

oxooxazolidin-5-yl) methylmethanesulfonate (**91**) as a white solid (120 mg, 95%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ (ppm): 7.45 (dd, J = 2.5, 14.0 Hz, 1H, Ar- $H_{\rm ortho}$), 7.10 (ddd, J = 1.0, 2.5, 8.5 Hz, 1H, Ar- $H_{\rm ortho}$), 6.98 (t, J = 9.0 Hz, 1H, Ar- $H_{\rm meta}$), 4.92 (m, 1H, CH₂CHO), 4.50 (dd, J = 4.0, 11.5 Hz, 1H, CHCH₂OMs), 4.42 (dd, J = 4.0, 11.5 Hz, 1H, CHCH₂OMs), 4.42 (dd, J = 4.0, 11.5 Hz, 1H, NCH₂CH), 3.91 (m, 5H, NCH₂CH, OCH₂), 3.10 (s, 1H, OSO₂CH₃), 3.07 (m, 4H, NCH₂).


2.8.4 Preparation of 5-(azidomethyl)-3-(3-fluoro-4-morpholinophenyl) oxazolidin-2-one (92)

Scheme 2.21 Preparation of 5-(azidomethyl)-3-(3-fluoro-4-morpholinophenyl) oxazolidin-2-one (92)

Sodium azide (190 mg, 1.15 mmol) was added into the solution of **91** (109 mg, 0.292 mmol) in DMF (20 mL). The mixture was heated up to 70 °C for 18 hours. After cooling, the reaction mixture was added with DI-water and ethyl acetate. The phases were separated, and the aqueous portion was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated *in vacuo* to yield the crude product as the pale yellow oil. The crude product was purified by column chromatography (SiO₂) eluting with hexane/EtOAc (1:1) to obtain 5-(azidomethyl)-3-(3-fluoro-4-morpholinophenyl)oxazo lidin-2-one (**92**) as a colorless oil (175 mg, 94%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ (ppm): 7.44 (dd, J = 2.5, 14.5 Hz, 1H, Ar- $H_{\rm ortho}$), 7.11 (ddd, J = 1.0, 2.5, 8.5 Hz, 1H, Ar- $H_{\rm ortho}$), 6.93 (t, J = 9.0 Hz, 1H, Ar- $H_{\rm meta}$), 4.78 (m, 1H, CH₂CHO), 4.04 (t, J = 9.0 Hz, 1H, NCH₂CH), 3.86 (m, 4 H, OCH₂), 3.81 (dd, J = 6.0, 9.0 Hz, 1H, NCH₂CH), 3.70 (dd, J = 4.49, 13.24 Hz, 1H, CHCH₂N₃), 3.58 (dd, J = 4.5, 13.0 Hz, 1H, CHCH₂N₃), 3.05 (m, 4H, NCH₂).

2.8.5 Preparation of N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl methyl)acetamide (26)

Scheme 2.22 Preparation of N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl methyl)acetamide (26)

Hydrogen gas (in balloon) was added into a solution mixture azido compound 92 (85 mg, 0.266 mmol) and 10% palladium on carbon in dried tetrahydrofuran (10 mL) at ambient temperature. The mixture was stirred for 18 h at room temperature under hydogen atmosphere and concentrated in vacuo then equipped with a magnetic stirring bar. The reaction mixture was added with pyridine (1.0 mL, 12.4 mmol), flushed with nitrogen gas and cooled to 0 °C. An acetic anhydride (0.08 ml, 0.85 mmol) was added slowly in the reaction mixture. The reaction mixture was stirred for 18 h under nitrogen atmosphere at room temperature. The reaction mixture was filtered through celite and the solids were washed with ethyl acetate. The filtrate was concentrated in vacuo to yield the crude product as a white and pale red solid. Purification was accomplished by column chromatography (SiO₂) eluting with MeOH/EtOAc (1:4) to obtain 26 as orange solid and then recrystallization with EtOAc and hexane to obtain pale yellow solid (37 mg, 42%). ¹H NMR (400 MHz,CDCl₃) $\delta_{\rm H}$ (ppm): 7.41 (dd, J = 2.0, 14.5 Hz, 1H, Ar- $H_{\rm ortho}$), 7.05 (d, J = 9.0 Hz, 1H, Ar- H_{ortho}), 6.90 (t, J = 9.0 Hz, 1H, Ar- H_{meta}), 6.59 (t, J = 6.0 Hz, 1H, (CO)NH), 4.76 (dt, J = 4.5, 9.5, 9.5 Hz, 1H, NCH₂CHCH₂), 4.00 (t, J = 9.0 Hz, 1H, NCH₂CHCH₂NH(CO)), 3.85 (m, 4H, OCH₂CH₂N), 3.75 (dd, J = 7.0, 9.0 Hz, 1H, NCH₂CHCH₂NH(CO)), 3.63 (t, J = 6.0 Hz, 2H, NCH₂CHCH₂NH(CO)), 3.03 (m, 4H, OCH₂ CH₂N), 2.00 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ_C (ppm): 171.2, 156.6, 154.4, 136.5, 136.4, 132.9, 132.8, 118.8, 113.9, 113.9, 107.6, 107.3, 72.0, 66.9, 50.9, 47.5, 41.8, 23.0. ESIMS m/z: 338.4 [M+H]⁺

2.9 Stereochemistry study

2.9.1 High performance liquid chromatography (HPLC)

Normal-phase HPLC, the %ee was performed on normal-phase HPLC with UV detector at 260 nm. The samples 1 mg in hexane and a little amount of isopropanol were filtered through a nylon membrane filtter (0.45 μ m). A Chiralcel[®] OJ-H column (cellulose tris(4-methylbenzoate)coated on 5 μ m silica gel particle HPLC column 250 x 4.6 mm ID) analytical column and Chiralcel[®] OD column (cellulose tris (3,5-dimethylphenylcarbamate)coated on 10 μ m silica gel particle HPLC column 250 x 4.6 mm ID) analytical column were used for analytical purpose. The eluents were hexane (solvent A) and isopropanol (solvent B). The isocratic system was A : B (70 : 30) over a period of 40 minutes at flow rate 0.8 mL/min. on OJ-H column, and A : B (99 : 1) over a period of 30 minutes at flow rate 1.0 mL/min. on OD column. The %ee value was calculated by peak area data.

2.9.2 Gas chromatography (GC)

Chiral GC, the %ee were performed on chiral GC with FID detector (makeup gas, N_2 : 30 mL/min, hydrogen : 30 mL/min, air : 300 mL/min). Samples 1 mg were dissolved in a little amount of acetone. 30%BSiMe in OV-1701 as stationary phase (15.356 m x 0.25 mm x 0.25 µm) analytical column was use for analytical purpose. The carrier gas was hydrogen 50 cm/s. The injector temperature was 250 °C. The isothermal system depended on each samples over a period of 30 to 60 minutes. The %ee value was calculated by peak area data.

2.9.3 Optical rotations

The sample 20 mg was dissolved in $CHCl_3$ 2 mL and added in cuvett (10 mm length). The specific rotation was measured using sodium light (D line, 589.3 nm) at ambient temperature on Jasco P-1010 Polarimeter.

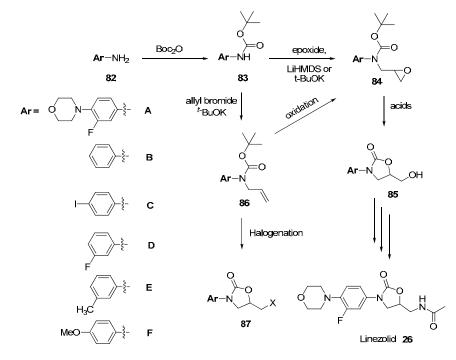
2.9.5 Percent inversion (%inv)

To determine the quantitative value of inversion products compared with retention products, the percent of *R* and *S* configuration products were translated into percent inversion (%inv) representing percent occurrences of S_N2 products. In the case of the reaction that convert *S* to *R* configuration, %inv can be calculated according to the following equation 2.1

$$\% inv = \frac{100(Pdt. (R) - Sm.(R))}{Sm.(S) - Sm.(R)}$$
 (equation 2.1)

where; Pdt. (R) = R products Sm. (R) = R starting material Sm. (S) = S starting material

Moreover, it can be calculated following equation 2.2

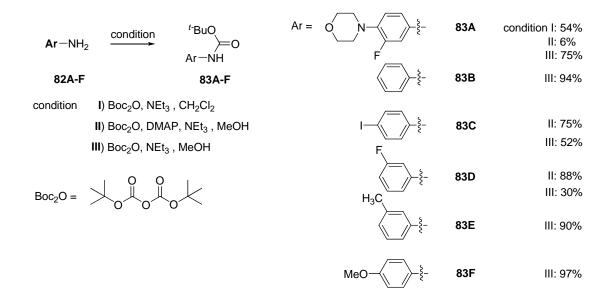

$$\%S_{N}2 = \frac{50(\ \%ee\ Pdt. - \\%ee\ Sm.)}{\%ee\ Sm.}$$
(equation 2.2)

CHAPTER III

RESULTS AND DISCUSSION

Synthesis

Two synthesis pathways of *N*-Aryl-2-oxazolidinone involving two different cyclizations of two types of *tert*-butyl carbamates were investigated. In the first pathway, β -(*N*-arylcarbamyl)epoxides (**84**) were prepared as cyclization substrate by either alkylation of aryl carbamates (**83**) with epoxides or epoxidation of aryl allylcarbamates (**86**) (Scheme 3.1). Acid induced cyclization of **84** afforded *N*-aryl-2-oxazolidinone (**85**) applicable for the synthesis of the antibacterial medicine, Linezolid (Zyvox) (**26**). In the second pathway, allylcarbamates (**86**) were prepared as key intermediates by allylation of an aryl carbamate (**83**). The cyclization of intermediates **86** was carried out by treating with various halogenating reagents to provide either a monohalogenated or dihalogenated *N*-aryl-2-oxazolidinone (**87**) (Scheme 3.1).



Scheme 3.1 Synthesis of *N*-aryl-2-oxazolidinones.

3.1 The first synthetic pathway: acid-induced intramolecular cyclization of propylene oxide carbamates

3.1.1 Synthesis of aryl carbamates

Di-tert-butyl dicarbonate (Boc₂O) is one of the most popular reagents frequently used for amine protection in organic synthesis [76]. Boc group is easy to be incorporated, highly stable in basic conditions, and easily deprotected in strong acid amine, 3-fluoro-4conditions [77]. The protection of primary aromatic performed by reacting morpholinoaniline (82A) was initially Boc₂O in dichloromethane in the presence of triethylamine base at room temperature for 24 hours (Scheme 3.2 condition I). The protected primary aromatic amines, tert-butyl 3fluoro-4-morpholinophenylcarbamate (83A) was obtained in moderate yield as the starting material **82A** did not completely react and remained in the reaction mixture. In an attempt to improve the reaction efficiency, 4-dimethylaminopyridine (DMAP) [78] was used in condition II. However, the yield dropped dramatically from 54 to 6% and the reaction gave a complex mixture indicating that many side reactions occurred under this condition. In condition III where the solvent was changed from dichloromethane to methanol, the higher yield was obtained (75%). This condition was also used effectively for the synthesis of other carbamates 83B, 83E and 83F. Surprisingly, condition III gave relatively low yields of carbamates 83C and 83D (52 and 30%) but the higher yields (75 and 88%) were obtained using condition II (Scheme 3.2). With all the information available at this stage, no clear explanation can be made for these observations.

Scheme 3.2 Synthesis of O-tert-butyl-N-arylcarbamates 83A-F with Boc₂O

The ¹H NMR spectra of *O-tert*-butyl-*N*-arylcarbamates **83A-F** in CDCl₃ are illustrated in Figure 3.1. Most characteristically, the methyl protons of *t*-butyl group (**a**) were observed as a singlet in the range of 1.50-1.60 ppm and the NH protons (**b**) were observed as a broad peak in the range of 6.40-6.60 ppm. The aromatic protons were observed in the range of 6.80-7.50 ppm depending on its substituents. For instance, in the case of 3-fluoro-4-morpholinophenylcarbamate, a starting material for Linezolid, the two *ortho* aromatic protons (**c** and **c'**) were observed as a pair of doublet signals at 7.28 ppm and 6.92 ppm respectively, the *meta* protons (**d**) was observed as a triplet signal at 6.82 ppm. Two multiplet signals at 3.00 and 3.84 ppm belong to two methylene protons (**x** and **z**) respectively.

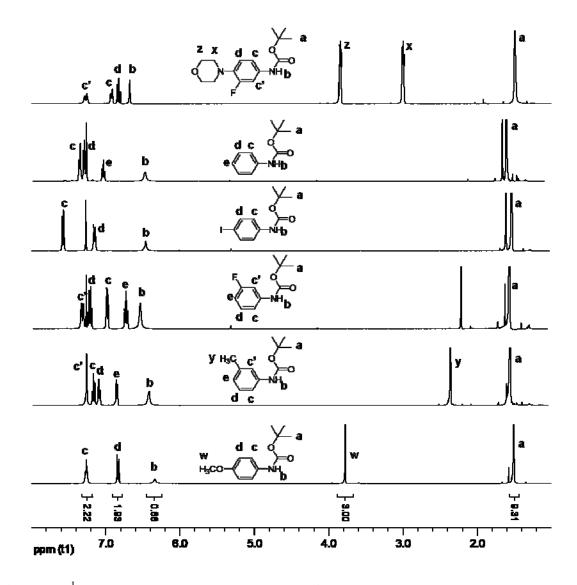
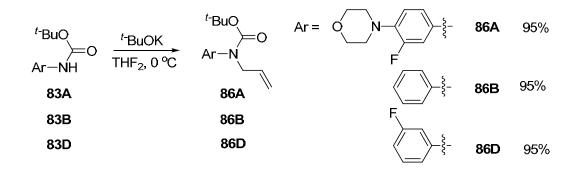



Figure 3.1 ¹H NMR spectra of aryl carbamate 83A-F in CDCl₃

3.1.2 N-allylation of tert-butylarylcarbamates

The *N*-allylation of **83A**, **83B** and **83D** was achieved with four equivalents of allylbromide in the presence of 1M *tert*-BuOK in dried THF as a base at 0 °C to give the corresponding *N*-allyl carbamates (**86A**, **86B** and **86D**) in excellent yields (95%) (Scheme 3.3).

Schemes 3.3 N-allylation of O-tert-butyl-N-arylcarbamates 83A, 83B and 83D

The ¹H NMR spectra of **86A**, **86B** and **86D** in CDCl₃ are shown in Figure 3.2. Upon the allylation, the broad peak of N-H proton disappeared with the emergence of a new doublet signal corresponding to the two methylene protons (**f** and **g**) of the allyl moiety at 4.30-4.10 ppm. The signals of methyne proton (**h**) appeared as a multiplet around 6.00-5.80 ppm and those of two terminal alkene protons (**i** and **j**) appeared around 5.20-5.10 ppm. The signals of the aromatic protons were observed in the range of 7.80-6.60 ppm depending on the substituent.

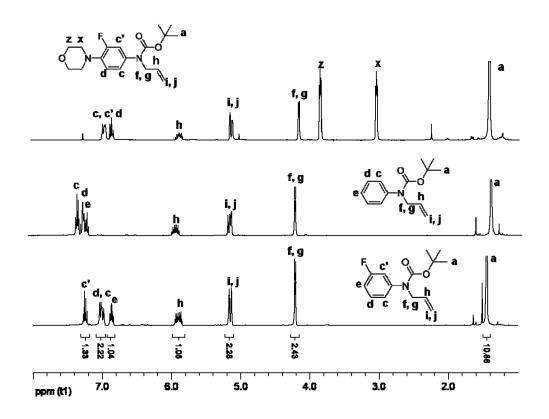


Figure 3.2 ¹H NMR spectra of *N*-aryl-*N*-allylcarbamates 86A, 86B and 86D in CDCl₃


3.1.3 Synthesis of β-(*N*-arylcarbamyl)propylenoxides (*N*-aryl-*N*-(2,3-propyleneoxy)carbamate)

In order to prepare the desired epoxide, direct epoxidation of alkene by various types of oxidants [62-64] or either alkylation of aryl carbamate with commercial epoxide [79] may be used. The methods performed and their results are discussed as follows.

- Attempt in epoxidation of O-tert-butyl-N-aryl-N-allylcarbamates

Chloroperbenzoic acid (*m*-CPBA) is a common oxidizing agent used for oxidation of unfunctionalized alkene [62, 80]. Initially, the oxidation reaction was carried out on *tert*-butyl (phenyl)allylcarbamate (**86B**) by using *m*-CPBA as the oxidizing agent for finding suitable reaction condition (Scheme 3.4). In the first attempt the desired aryl epoxycarbamate **84B** was not observed (Table 3.1, entry 1 and 2).

The hydrogen peroxide in the presence of sodium hydrogen carbonate, Payne oxidation, was used successfully for the oxidation of unfunctionalized alkene [81]. Interestingly, when this oxidation was applied to **86B**, the desired epoxide **84B** was obtained in 34% along with 22% of 5-(hydroxymethyl)-3-phenyloxazolidin-2-one, the cyclization product (entry 3). The epoxidation yield was worse with other solvents such as MeOH to ^{*t*}BuOH, or DMF or upon addition of some additives, which have been reported to improve the epoxidation yield [81], such as manganese sulfate, sodium acetate and salicylic acid. The poor epoxidation yields for this particular *N*-allylcarbamate probably stem from either the steric hindrance nature of the Boc group or the sensitivity of the N atom to oxidation.

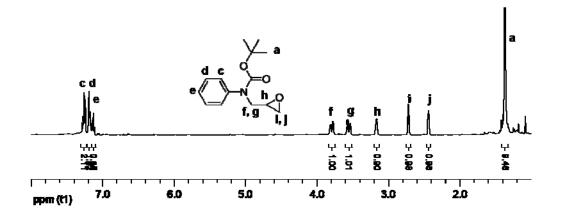
Scheme 3.4 Epoxidation of *N*-allylcarbamates 86A and 86B

Epoxidation of alkene **86A** were also investigated using both *m*-CPBA and Oxone[®] as an oxidizing agent. Unfortunately, the desired product **84A** was not obtained for both cases (entry 10 and 11). The reaction gave only the N-oxide product as previously reported in the literature work [82].

Entry	CM	Reaction conditions	%	%	By
	SM		Yield ^c	Recovery	Product
1	86B	<i>m</i> -CPBA ^a , CHCl ₃ , rt, 3h	_d	66	-
2		<i>m</i> -CPBA, CH_2Cl_2 , 0 °C, on	5	75	-
3		H ₂ O ₂ ^b , NaHCO ₃ , MeOH/CH ₃ CN, 0 °C, 48h	34	38	22
4		H ₂ O ₂ , NaHCO ₃ , MnSO ₄ , MeOH/CH ₃ CN, 0 °C, 48h	-	72	-
5		H ₂ O ₂ , NaHCO ₃ , ^{t-} BuOH/CH ₃ CN, 0 °C, 48h	-	85	-
6		H ₂ O ₂ , NaHCO ₃ , NaOAc, ^{t-} BuOH/CH ₃ CN, 0 °C, 48h	-	77	-
7		H ₂ O ₂ , NaHCO ₃ , DMF, 0 °C, 48h	-	91	-
8		H ₂ O ₂ , NaHCO ₃ , MnSO ₄ , DMF, 0 °C, 48h	-	93	-
9		H ₂ O ₂ , NaHCO ₃ , salicylic acid, DMF, 0 °C, 48h	-	95	-
10	86A	<i>m</i> -CPBA, CH ₂ Cl ₂ , 0 °C, 1h.	-	-	?
11		Oxone®, NaHCO ₃ , Acetone/H ₂ O, 0 °C, 3h	-	-	-

Table 3.1 The epoxidation of 86A and 86B with various oxidants

^a 70% *m*-CPBA, ^b 30% H₂O₂, ^c isolated yield, ^d not observed


Metal catalyzed epoxidations were also investigated because they have been utilized successfully for epoxidation of unfunctionalized alkenes in many literature reports [83]. The Katsuki-Jacobsen Mn-salen complex has been proven to be general and efficient catalyst for enantioselective epoxidation of various unfunctionalized alkenes [84]. If this catalyst was applicable for epoxidation of 86A, it would provide a straight forward stereoselective synthetic route of linezolid (Zyvox[®]). Initially, the model compound 86B was used for condition optimization in the catalytic asymmetric the presence of (R,R)epoxidation. In Jacobsen catalyst (JC), tertbutylallyl(phenyl)carbamate 86B was epoxidized by m-CPBA to give 84B in low yield (Table 3.2, entry 1). The variation of the solvent (from CH₂Cl₂ to CHCl₃, CH₃CN or THF), the addition of a radical stabilizer NMO, changing the oxidant to H₂O₂, led to poorer results (entry 2-7). Surprisingly, chlorinated oxazolidinone (87BCl) was obtained in 31% yield when NaOCl was use as the oxidant without the expected epoxide 84B (entry 8). The trial to use Katsuki-Jacobsen catalyst for epoxidation of **86A** also did not give any positive results. Only a complex mixture of oxidized starting material, especially the oxidezed morpholonyl group of **86A**, was obtained. Therefore, this epoxidation pathway is not likely to give linezolid synthesis.

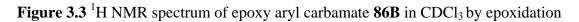
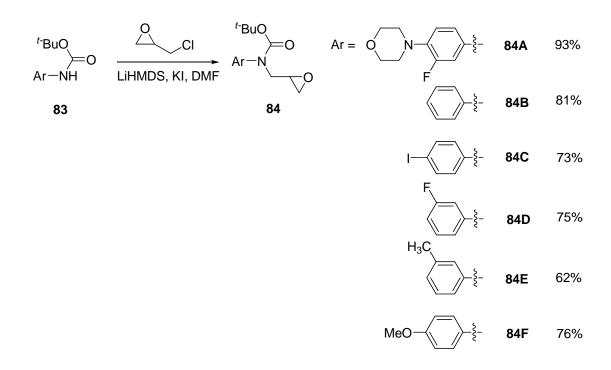
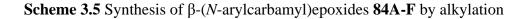

Entry	SM	Reaction conditions	%	%	By
Lintig	51.1		Yield ^d	Recovery	product
1	86B	<i>m</i> -CPBA,(R , R)JC, CH ₂ Cl ₂ , 0 °C, 6h	11	82	-
2		<i>m</i> -CPBA ^a , (<i>R</i> , <i>R</i>)JC, CHCl ₃ , 0 °C, 6h	- ^e	78	-
3		<i>m</i> -CPBA,(R , R)JC, CH ₃ CN, 0 °C, 3h	-	92	-
4		<i>m</i> -CPBA, (<i>R</i> , <i>R</i>)J <i>C</i> , THF, 0 °C, 48h	-	52	-
5		<i>m</i> -CPBA, (<i>R</i> , <i>R</i>)JC, NMO, CH ₂ Cl ₂ , 0 °C, 48h	-	63	-
6		H ₂ O ₂ ^b , NaHCO ₃ , (<i>R</i> , <i>R</i>)JC, MeOH/CH ₃ CN, 0 °C, 48h	-	73	-
7		H ₂ O ₂ , NH ₄ OAc, (<i>R</i> , <i>R</i>)JC, MeOH/CH ₂ Cl ₂ , 0 °C, 48h	-	64	-
8		NaOCl ^c , (<i>R</i> , <i>R</i>)JC, 4-PPNO, CH ₂ Cl ₂ , pH 11.3, rt, 20h	-	47	31
9	86A	<i>m</i> -CPBA, (<i>R</i> , <i>R</i>)JC, CH ₂ Cl ₂ , 0 °C, 3h	-	-	?
10		<i>m</i> -CPBA, (<i>R</i> , <i>R</i>)JC, NaHCO ₃ /CH ₂ Cl ₂ , 0 °C, 48h	-	-	-
11		H_2O_2 , (<i>R</i> , <i>R</i>)JC, NH ₄ OAc, MeOH/CH ₂ Cl ₂ , 0 °C, 1h	-	-	-
12		H_2O_2 , (<i>R</i> , <i>R</i>)JC, NaHCO ₃ , MeOH/CH ₃ CN, 0 °C, 1h	-	-	-
13		NaOCl, (<i>R</i> , <i>R</i>)JC, 4-PPNO, CH ₂ Cl ₂ , pH 11.3, rt, 48h	-	-	-

Table 3.2 The epoxidation of 86A and 86B with various oxidants in the presence of(R,R) Jacobsen catalyst (JC)

^a 70% *m*-CPBA, ^b 30% H₂O₂, ^c 5% NaOCl, ^d isolated yield, ^e not observed


The ¹H NMR spectrum of the β -(*N*-arylcarbamyl)epoxides **84B** in CDCl₃ showed that the signals of the two methylene protons (**f** and **g**) next to the N atom shifted from 4.20 ppm to 3.80-3.58 ppm and split in to a pair of doublet of doublets. (Figure 3.3). The oxirane methyne proton (**h**) gave a multiplet signal in the range of 3.20-3.00 ppm. The signals at 2.72 and 2.44 ppm belonged to two oxirane methylene protons (**i** and **j**). All of the *ortho*, *meta* and *para* aromatic protons were observed at 7.26, 7.18 and 7.13 ppm, respectively.



- Alkylation reaction of *O-tert*-butyl-*N*-arylcarbamate

Alkylation reaction of the carbamates with an appropriate alkylating reagent containing epoxide group can be an alternative route to synthesize carbamylepoxides. In this work, **84A-F** were prepared from the alkylation reaction of aryl carbamates (**83A-F**) with epichlorohydrin in the presence of potassium iodide lithium bis(trimethylsilyl)amide (LiHMDS) in moderate to good yields (Scheme 3.5).

The ¹H NMR spectra of **84A-F** in CDCl₃ are shown in Figure 3.4. The characteristic signals of epoxide protons were clearly observed in the range of 4.00-2.30 ppm indicating the successful incorporation of the epoxide group into the carbamates. The signals of oxirane methyne (**h**) and methylene protons (**i** and **j**) were observed around 3.20-3.00 ppm and 2.80-2.50 ppm, respectively. The signal of methylene protons next to N atom (**f** and **g**) were observed as near 4.00-3.20 ppm.

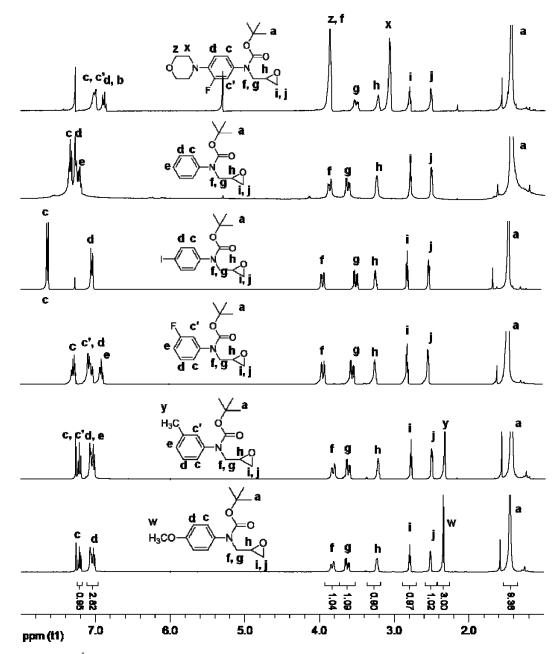
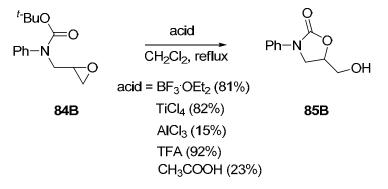
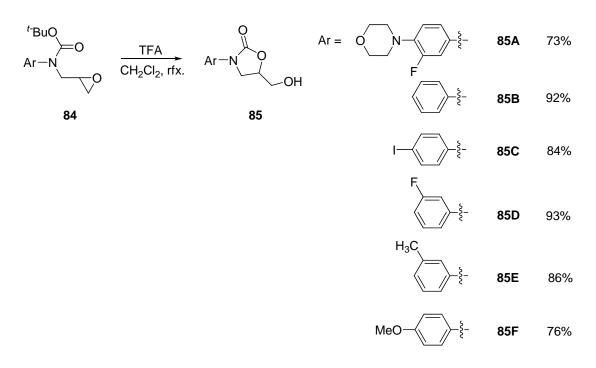



Figure 3.4 ¹H NMR spectra of *O-tert*-butyl- β -(*N*-arylcarbamyl)epoxides 84A-F in CDCl₃

3.1.4 Formation of 2-oxazolidinone ring


First, the formation of 2-oxazolidinone ring from β -(*N*-arylcarbamyl)epoxide by acid induced cyclization reaction was studied using **84B** as a model compound (Scheme 3.6). Using an excess amount of acid (5 equiv), under reflux condition for 3 hours, the effect of the types of acids *i.e.* trifluoroacetic acid (TFA), acetic acid (CH₃COOH), boron trifluoride diethyletherate (BF₃·OEt₂), titanium(IV) chloride (TiCl₄), and aluminium trichloride (AlCl₃) on the reaction yield was investigated. The corresponding 2-oxazolidinone **85B** was obtained in high yields (81-92%) when strong acid such as BF₃·OEt₂, TFA and TiCl₄ was used under the default condition. When weaker acid such as CH₃COOH or AlCl₃ was used, the reactions resulted in much poorer yields (15-23%). The reaction induced by CH₃COOH was not completed under this condition and the starting material remained in the reaction mixture. The longer reflux time however did not significantly increase the yield. In the case of AlCl₃, long reflux time led to a complex unidentified mixture.

Scheme 3.6 Optimization of acid induced cyclization of β-(*N*-arylcarbamyl)epoxide 84B to form 2-oxazolidinone 85B

According to the optimization results, TFA is the reagent of choice for the synthesis of other oxazolidin-2-ones (**85A-F**) as it gave the highest yield with its ease of handling and relatively low cost. Although TFA is commonly used for the deprotection of Boc group, in this particular cyclization, the Boc carbonyl oxygen participated in the cyclization and remained as part of the oxazolidin-2-one structure (Scheme 3.7). It is also important to point out here that compound **85E** which is Toloxatone, a well known antidepressant and monoamine oxidase inhibitor (MAOI),

was produced from **84E** in 86% yield [40]. Furthermore, **84A** can be used as a precursor for the synthesis of linezolid antibacterial medicine [35].

Scheme 3.7 Synthesis of 2-oxazolidinones 85A-F using TFA for cyclization

The ¹H NMR spectra of the various 2-oxazolidinone (**85A-85F**) in CDCl₃ are shown in Figure 3.5. The signals of aliphatic protons in the 2-oxazolidinone ring appeared around 4.80-3.60 ppm with the disappearance of the Boc signal. In details, the methyne protons next to ester group (**h**) are observed as a multiplet signal in the range of 4.60-4.80 ppm. The two groups of overlapping signals in the range of 4.20-3.60 ppm correspond to the methylene protons next to hydroxyl group (**i** and **j**) and methylene protons next to N atom within the 2-oxazolidinone ring (**f** and **g**)

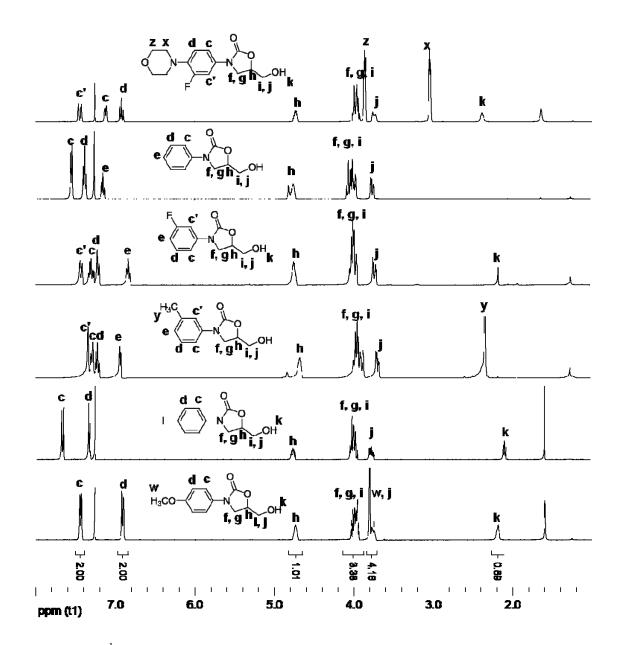
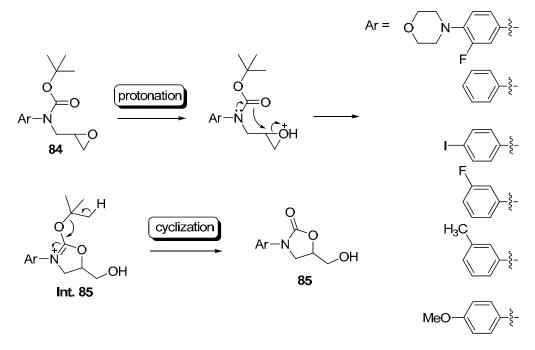
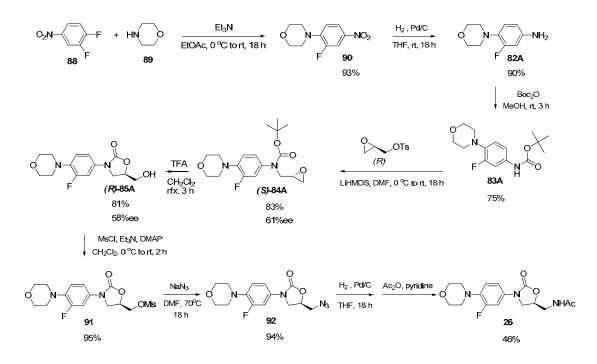



Figure 3.5 ¹H NMR spectra of *N*-aryl 2-oxazolidinones 85A-F in CDCl₃

3.1.5 Mechanism of acid-induced intramolecular cyclization

The proposed mechanism for the acid induced cyclization of β -(*N*-arylcarbamyl)epoxide **84** is illustrated in Scheme 3.8. It begins with the protonation of an epoxide moiety which in turn attacked by the carbonyl oxygen atom in a 5-*exo-tet* fashion to form a 5-mebered iminium ring intermediate. In the final step, the lost of *tert*-butyl group in the form of *iso*-butene is probably the thermodynamic driving force to create the 2-oxazolidinone **85** as the final product.



Scheme 3.8 Proposed mechanism for acid-induced intramolecular cyclization of β-(*N*-arylcarbamyl)epoxide 84

3.1.6 Synthesis of Linezolid

The best condition for acid induced oxazolidinone formation from 84A, described in the previous section, was incorporated into the total synthesis of antibacterial linezolid (Scheme 3.9). The synthesis started with a nucleophilic substitution of 3,4-difluoronitrobenzene (88) with morpholine (89) in ethylacetate in of triethylamine reaction afforded the presence base. The 3-fluoro-4morpholinylnitrobenzene (90) in excellent yield (93%). The conversion of the nitro group of 90 to amino group was readily achieved by a catalytic hydrogenation on Pd/C in THF giving 82A in 90% yield. Upon treatment of 82A with Boc₂O and triethylamine in methanol, O-tert-butyl- N-(3-fluoro-4-morpholinophenyl)carbamate (83A) was obtained in good yield (75%). An aryl carbamate 83A was alkylated with (R)-glycidyl tosylate in the presence of KI and LiHMDS base to furnish carbamylepoxide 84A in high yield (83%). The carbamylepoxide 84A was cyclized to oxazolidinone 85A in high yield (81%) by the TFA induced cyclization as described in section 3.1.4. The hydroxyl group of oxazolidinone 85A was converted to 91, having an active methanesulfonate leaving group, in high yield (95%)by reacting with

methanesulfonyl chloride (MsCl) in the presence of triethylamine and 10% mol DMAP in dicloromethane. Substition of mesylate group with an azide using sodium azide in 75 °C DMF overnight gave 5-(azidomethyl)-3-(3-fluoro-4-morpholinophenyl)oxazolidin-2-one (**92**) in excellent yield (94%). In the final step, catalytic hydrogenation of the azide group to produce an amino group and subsequent acetylation with AcO_2 in pyridine afforded linezolid **26** in moderate yield (46%) [35] (Scheme 3.9).

Scheme 3.9 The total synthesis of Linezolid

The ¹H NMR spectra of **85A**, **91**, **92** and linezolid **26** are illustrated in Figure 3.6. As the broad peak of hydroxy proton (**k**) around 2.20-2.40 ppm of **85A** disappeared, the new signals of three methyl protons (**m**) corresponding to the mesyl moiety appeared at 3.20 ppm. Substitution of N₃ deleted signal of methyl protons **m**. The reduction followed by acetylation generated acetamide moiety which showed methyl protons (**o**) at 2.00 ppm and NH proton (**n**) at 6.40 ppm. For the signals of aromatic part, they are almost identical to those of the starting material, as it is far from the molecular part being modified.

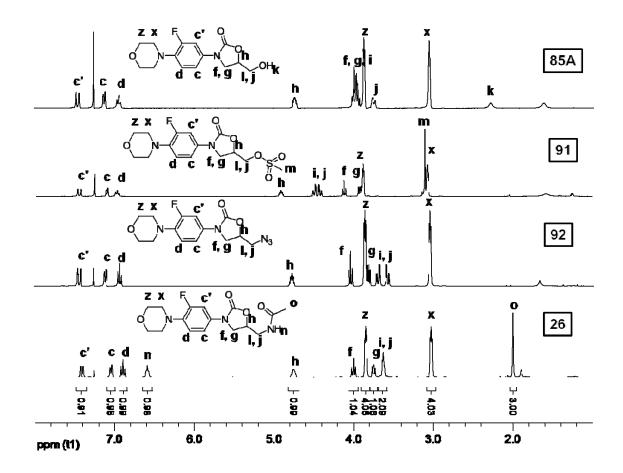
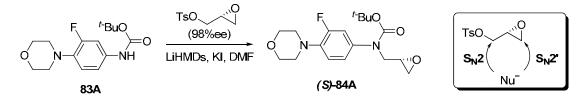



Figure 3.6 ¹H NMR spectra of the total synthesis of Linezolid (26) and some of its precursors (85A, 91 and 92) in CDCl₃

3.1.7 Study of stereochemistry of the products from alkylation and cyclization

Stereochemistry of β -(*N*-arylcarbamyl)epoxides **84** and 2-oxazolidinones **85** were analyzed by chiral HPLC in the synthesis using commercially available (*R*)-glycidyl tosylate (98 %ee). In the synthesis of (*R*)-**84A** (similar to scheme 3.5), the aryl carbamate **83A** and was allowed to react with (*R*)-glycidyl tosylate in the presence of KI and LiHMDS as base in DMF solvent at various temperatures. At -60 °C, the reaction gave **84A** in moderate yield (40%) (Table 3.3, entry 3) but much improved yields were obtained at higher temperatures (57-79 %, entry 1-2). It is important to note that %ee of the product (~60%) is significantly lower than the %ee of the starting epoxide (~98%) and the reaction starting temperature did not affect this %ee. The lower %ee of the product comparing to the starting glycidyl tosylate suggests that the generated carbamate anion may nucleophilically attack at either the

to sylated carbon ($S_N 2$ fashion) or the less steric epoxide carbon ($S_N 2'$ fashion) (Scheme 3.10).

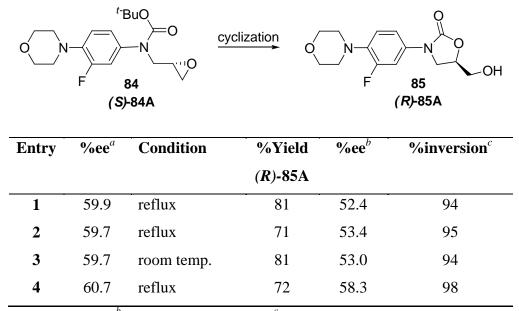
Scheme 3.10 Synthesis of β -(*N*-arylcarbamyl)epoxides (*S*)-84A

The $S_N 2$ and $S_N 2'$ attack produce the product with opposite configurations: *S* and *R*, respectively. Thereby, %ee can be used to calculate the $S_N 2:S_N 2'$ regioselective ratio (equation 1). As the product was obtained in 60%ee from the starting material with 98%ee, the reaction thus proceeded through $S_N 2: S_N 2'$ at 81:19% giving the regioselectivity of 4:1.

 $%S_N 2 = 50$ (%ee Product + %ee Starting Material)/%ee Starting Material (equation 1)

Entry	Reaction	%Yield	%ee ^{<i>a</i>}	$S_N 2^b$	Regio
	Temperature	(S)-84A			selectivity
1	rt	79	59.9	81	4:1
2	0 °C to rt	57	59.7	81	4:1
3	-60 °C to rt	40	60.7	81	4:1

Table 3.3 Alkylation of carbamate **83A** with (*R*)-glycidyl tosylate (98 %ee)


^a determined from Chiral HPLC, ^b calculated from eq.1

After the epoxide (S)-84A (~60% ee) was obtained, treating this epoxide with TFA produced 2-oxazolidine (R)-85A in high yield (72-81%) with 52-58% ee (Table 3.4). Under acidic condition, the epoxide ring may be opened by stereospecific S_N2 or non-stereoselective S_N1 mechanisms (Scheme 3.11) [85]. In S_N2 mechanism, the carbonyl oxygen attacks the protonated epoxide ring from the back-side to generate (R)-85A. In S_N1 mechanism, the epoxide ring opens after the protonation to give achiral carbocation that consequently lead to racemic products. Using equation 1, the

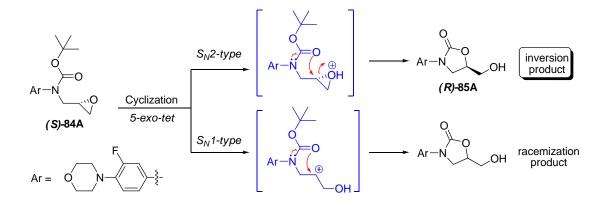
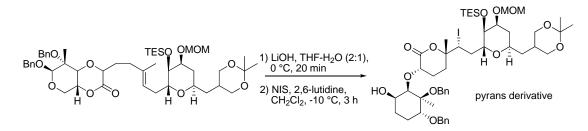
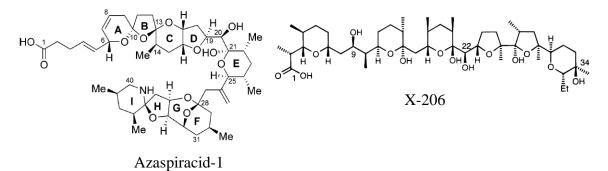

%ee of the product obtained from four trials of cyclization can be translated into % inversion of 94% or higher indicating that the cyclization proceed mostly through $S_N 2$ mechanism.

 Table 3.4 Acid induced cyclization of carbamylepoxide (S)-84A to form

 oxazolidinone (R)-85A


^{*a*} from alkylation reaction, ^{*b*} determined from Chiral HPLC, ^{*c*} calculated from eq.1


Scheme 3.11 Possible S_N1- and S_N2-type mechanism for the formation of 2oxazolidinones 85A from acid induced intramolecular cyclization of (S)-84A

3.2 The second synthetic pathway: halo-induced intramolecular cyclization

Closely related to the epoxide-mediated cyclization, halo-induced cyclization is a unique method for cyclization of alkene based on the intramolecular attack of the nucleophilic atom on an olefin activated electrophilic halogen [86]. In 2003, Armen, Z. and co-workers reported that the halo-mediated cyclization (iodolactonization) to synthesize the corresponding pyrans from alkene as starting material [87] (Scheme 3.12). It is similar to the processes using mercury (II) salts for stoichiometric cyclization that was used in the total synthesis of the antibiotic X-206 [88] (Figure 3.7). Moreover, Nicolaou, K. C. and co-workers have found the advantage of iodine or N-iodosuccinimide (NIS) as compound using intramolecular halo-etherification reactions. NIS-induced iodoetherification play a crucial role in the G-ring azaspiracid-1, as a result of marine metabolites responsible for human poisoning from the consumption of tained shellfish [89] (Figure 3.7). Our investigation on the haloinduced cyclizations of alkene, simpler synthesis of oxazolidinone was discovered. In this work allylcarbamate (86) was treated with various halogenated sources. The synthesis of halogen containing oxazolidinone proceeded smoothly from tert-butyl (phenyl) allylcarbamate with several halogenated reagents such as chlorine, bromine, iodine. N-chlorosuccinimide, *N*-bromosuccinimide, *N*-iodosuccinimide, iodinemonochloride, PhCH₂NMe₃ICl₂, and mixed solution of potassium iodide and potassiumiodate in acetic acid. These reagents do not only play a critical role in cyclization step to form the oxazolidinone ring but also generate the halo substituted aromatic derivatives in which the substitution position is para one. Moreover, the great thing about this *p*-halo-substituted product can be further functionalized by various reagents to make a series of oxazolidinone derivatives (Scheme 3.8). In details, the investigation of the halo-induced cyclization was accomplished by using a conventional halogen reagent such as chlorine (Cl_2) , bromine (Br_2) and iodine (I_2) first, compared to the other halogenated sources reagent. In each condition, the halogen amount, solvent type and other related factors were systematically validated to obtain the optimized condition.

Scheme 3.12 Synthesis of diastereoselective iodolactonization from alkene



3.2.1 Using chlorine (Cl₂) and *N*-chlorosuccinimide (NCS)

Cl₂: The different types of solvent were examined for optimization in the chloro-induced intramolecular cyclization. As the results, it is important to note that not only halo-induced intramolecular cyclization was proceeded but the electrophilic aromatic substitution (S_EAr) triggered by a reactive Cl⁺ ion from Cl₂ also occurred to produce 5-(chloromethyl)-3-(4-chlorophenyl)oxazolidin-2-one (**87BCl**₂). (In order to make the product name easily understandable, **87BX**₂ will represent the *p*-halo-substituted aryl product and sometimes it may be called as *p*-halo-aryl, while **87BX** represents the unsubstituted aryl and sometimes it may be called as unsubstituted product. When the CH₃CN, CH₂Cl₂, CHCl₃ and were used as solvent at ambient temperature for 1 hour, the desired chloro-substituted cyclization product (**87BCl**₂) was observed as major product in low to moderate yield, 29%, 47% and 50% respectively (Table 3.5, entry 1, 2 and 3). However, even the long reaction time did not provide higher yield but mixture was presented. Because of the fairly low yielding and high toxicity of using Cl₂ as a reagent, continuing to study the chloro-induced cyclization by using other reagent in order to obtain a higher yield and lower toxicity.

NCS: Using an *N*-chlorosuccinimide (NCS) as a Cl⁺ ion source in solvents such as CH₂Cl₂, CHCl₃, CH₃CN, THF, and DMF were systematically verified, and the suitable solvent for chlorination reaction was found to be acetonitrile (Table 3.5, entry 8-11). To improve the yield, using reflux condition to complete the reaction was done but the yield did not increase significantly (entry 9). Moreover, the increasing amount of NCS also did not improve the yields (entry 5, 7, and 11) as much as expected. From these chlorination results, almost all products were obtained as unsubstituted oxazolidinone (**87BCl**). The % yield of these conditions, lower than 35%, suggested the low reactivity of NCS which was supported by the remaining of the starting material in % recovery of higher than 70%. Interestingly, changing the solvent to DMF produced the *p*-Cl-aryl product (**87BCl**₂) occurred in low yield (27%) but the starting material was not recovered at all (entry 14).

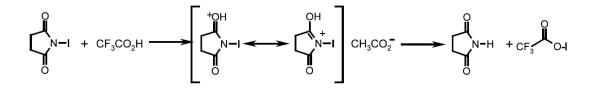
Table 3.5 Preparation of various chloro-2-oxazolidinones using Cl₂ and NCS

Entry	Halogen	Reaction conditions	%Yield ^a		
	sources		87BCl	87BCl ₂	
1	Cl ₂	Excess, CH ₃ CN, rt, 1h	_b	29	
2		Excess, CH ₂ Cl ₂ , rt, 1h	-	47	
3		Excess, CHCl ₃ , rt, 1h	-	50	
4	NCS	2.2 equiv, CH ₂ Cl ₂ , rt, 48h	-	-	
5		3.0 equiv, CH ₂ Cl ₂ , rt, 48h	trace	-	
6		2.2 equiv, CHCl ₃ , rt, 48h	-	-	
7		3.0 equiv, CHCl ₃ , rt, 48h	6	-	
8		2.2 equiv, CH ₃ CN, rt, 48h	25	-	
9		2.2 equiv, CH ₃ CN, rfx., 48h	32	-	
10		2.2 equiv, CH ₃ CN, TFA, 48h	trace	-	
11		3.0 equiv, CH ₃ CN, rt, 48h	trace	-	
13		3.0 equiv, THF, rt, 24h	-	-	
14		3.0 equiv, DMF, rt, 24h	-	27	

^a isolated yield, ^b not observed

3.2.2 Using bromine (Br₂) and *N*-bromosuccinimide (NBS)

Br₂: In this experimental, three kinds of solvents CH_2Cl_2 , $CHCl_3$ and CH_3CN were mainly used for optimization. The reaction at room temperature for 1 hour, the desired bromo-substituted cyclization product (**87BBr**₂) in good to excellent yields (73%-94%) (Table 3.6, entry 1-5). Among these conditions, the bromo-cyclization reaction in CHCl₃ conclusively gave the highest yield with the shortest time. It is worth to pointing out that this cyclization product can be suitably used as oxazolidinone scaffold for the preparation of oxazolidinone derivatives because the two bromides, on aromatic (X₂) or aliphatic (X₁) moiety, could be easily replaced by the variety of functional groups. In the aromatic moiety (X₂=Br), this bromide was usually substituted with the amines by the Buchwald-Hartwig reaction [90]. However, using Br₂ could only produce **87BBr**₂ but not the **87BBr**. Because of the toxicity, difficult handling and harmfulness of bromine (Br₂), changing the reagent to others brominated source reagent would be able to avoid such unsafe situation and hopefully exclusively provide **87BBr**₂.


NBS: Using an *N*-bromosuccinimide (NBS) is safer than Br_2 and it acts as a Br^+ ion source in various solvents, CH_2Cl_2 , $CHCl_3$, CH_3CN , and DMF. As the results, this reagent could produce both of unsubstituted products (**87BBr**) and *p*-Br-aryl product (**87BBr**₂). Acetonitrile was found to be an effective solvent for bromination of **86B** to **87BBr**₂ in excellent yield (99%) (Table 3.6, entry 9). Adding more amounts of NBS leads to the desired scaffold oxazolidinone (**87BBr**₂) (68%, entry 11). There is an information reported by Anne, S. C. and co-worker indicating that the addition of TFA could generate more reactive bromonium ion then NIS itself and improve the yield of **87BBr**₂ [91] (Scheme 3.13). Therefore, addition of 5 equiv of NBS and TFA was attempted the desired *p*-Br-aryl product (**87BBr**₂) could be successfully provide in 81 % (entry 12). Interestingly, In the case of using DMF as solvent, both unsubstituted product (**87BBr**) and *p*-Br-aryl product (**87BBr**) were equally obtained (entry 13).

	Reaction conditions		$X_1 = Br X_2 = H$ $X_1 = X_2 = Br$	87BBr 87BBr ₂
86B		87B		

Table 3.6 Preparation of various bromo-2-oxazolidinones using Br2 and NBS

Entry	Halogen	Desettion and Referen	%Yi	eld ^a
	sources	Reaction conditions	87BBr	87BBr ₂
1	Br ₂	3.0 equiv, CH ₃ CN, rt, 1h	_b	73
2		2.2 equiv, CH ₂ Cl ₂ , rt, 1h	-	81
3		3.0 equiv, CH ₂ Cl ₂ , rt, 1h	-	83
4		2.2 equiv, CHCl ₃ , rt, 1h	-	91
5		3.0 equiv, CHCl ₃ , rt, 1h	-	94
6	NBS	2.2 equiv, CH ₂ Cl ₂ , rt, 24h	47	-
8		2.2 equiv, CHCl ₃ , rt, 24h	34	-
9		2.2 equiv, CH ₃ CN, rt, 24h	99	-
10		3.0 equiv, CH ₃ CN, rt, 24h	88	-
11		5.0 equiv, CH ₃ CN, rt, 24h	-	68
12		5.0 equiv, TFA, CH ₃ CN, rt, 24h	-	81
13		3.0 equiv, DMF, rt, 24h	46 ^c	44 ^c

^a isolated yield, ^b not observed, ^c calculated from the ratio of ¹HNMR analysis

Scheme 3.13 Active species for the iodination

3.2.3 Using iodine (I₂) and iodinated reagents

From the easiness of further functionalization point of view, as seen in various organometallic coupling reactions [92], the scaffold development of iodo-substituted oxazolidinone (87) is far more interesting than chloro- and bromo-substituted cases. It has high potential to open the new useful and convenient pathway for oxazolidinone derivatization.

I₂: To obtain a desired iodide substituted oxazolidinone scaffold (**87BI**₂), the synthesis was started with the iodination of allylcarbamate using iodine (I₂) in toluene at 50 °C (Table 3.7, entry 4). After the addition follow by an iodonium bridge formation was completed, the cyclization step was subsequently occurred. Only an unsubstituted product (**87BI**) was obtained in fair yield (64%) without the occurrence of the aromatic iodo-substitution. The changing of solvent from toluene to chloroform and acetonitrile was performed (entry 1-3), in order to see the solvent effect on the reaction. However, in the both case of CHCl₃ and CH₃CN, the reaction either at room temperature or at 60 °C for 24 hours gave the product **87BI**, the only the product **87BI** in moderate yield (53-60%, entry 1-3). From the results of iodo-induced cyclization that were mentioned above, It can be summarized that only halo-induced intramolecular cyclization was successful but electrophilic aromatic substitution (S_EAr) of I⁺ at aromatic position did not occur under these conditions due to the low reactivity of iodonium ion.

NIS: Using *N*-iodosuccinimide (NIS) in various solvents could produce only unsubstituted product (**87BI**). In the case of using acetonitrile as a solvent, the highest yield of **87BI** was obtained. The increasing of NIS from 2.2 equiv to 3 and 5 equiv were also investigated (Table 3.7, entry 6, 8, 10, and 11). Unfortunately, these conditions did not give the desired *p*-I-aryl product (**87BI**₂) but only the **87BI** in high yield (88-97%) which may due to the lower reactivity of iodonium ions compared to that of bromonium ions. When TFA was added to the reaction, both **87BI** and **87BI**₂ were observed as the mixture (entry 12 and 13). Then, increasing of the amount of both NIS up to 5 equiv and TFA led to the absence of the **87BI** and completely converted starting material **86B** to the **87BI**₂ in high yield (74%, entry 14).

Table 3.7 The preparation of various iodo-2-oxazolidinones using l₂, NIS, ICl,

BTMA·ICl₂ and KI/KIO₃

	Reaction conditions	$X_2 \rightarrow N \rightarrow O X_1$	$X_1 = I X_2 = H$ 87BI $X_1 = X_2 = I$ 87BI ₂
86B		87B	

Entry	Halogen	Reaction conditions	%Yield ^a		
	sources		87BI	87 BI ₂	
1	l ₂	3.0 equiv, CHCl ₃ , rt, 24h	60	_b	
2		3.0 equiv, CHCl ₃ , rfx., 24h	55	-	
3		3.0 equiv, CH ₃ CN, rt, 24h	53	-	
4		3.0 equiv, Toluene, 50 °C	64	-	
5	NIS	2.2 equiv, CH ₂ Cl ₂ , rt, 24h	89	-	
6		3.0 equiv, CH ₂ Cl ₂ , rt, 24h	88	-	
7		2.2 equiv, CHCl ₃ , rt, 24h	90	-	
8		3.0 equiv, CHCl ₃ , rt, 24h	92	-	
9		2.2 equiv, CH ₃ CN, rt, 24h	93	-	
10		3.0 equiv, CH ₃ CN, rt, 24h	96	-	
11		5.0 equiv, CH ₃ CN, rt, 24h	97	-	
12		2.2 equiv, TFA, CH ₃ CN, rt, 24h	46 ^c	41 ^c	
13		2.2 equiv, TFA, CH ₂ Cl ₂ , rt, 24h	60°	8 ^c	
14		5.0 equiv, TFA, CH ₃ CN, rt, 24h	-	74	
15	ICl	1.2 equiv, CaCO ₃ , CHCl ₃ /MeOH, rt, 24h	71	-	
16		3.0 equiv, CaCO ₃ , CHCl ₃ /MeOH, rt, 24h	33 ^c	55 [°]	
17		3.0 equiv, CaCO ₃ , CHCl ₃ /MeOH, rfx., 24h	20 ^c	72 ^c	
18		4.0 equiv, CaCO ₃ , CHCl ₃ /MeOH, rt, 24h	44 ^c	46 ^c	
19		5.0 equiv, CaCO ₃ , CHCl ₃ /MeOH, rt, 24h	-	96	
20	BTMA·ICl ₂	3.0 equiv, CH ₂ Cl ₂ , rt, 24h	61	-	
21		2.2 equiv, CHCl ₃ , rt, 24h	87	-	
22		2.2 equiv, CaCO ₃ , CHCl ₃ /MeOH, rfx., 24h	60	-	
23		3.0 equiv, CaCO ₃ , CHCl ₃ /MeOH, rfx., 24h	61	-	
24	KI/KIO ₃	1.2 equiv, KI/KIO ₃ , AcOH, rt, 3h	91	_	
25		2.2 equiv, KI/KIO ₃ , AcOH, rfx., 3h	-	89	
26		3.0 equiv, KI/KIO ₃ , AcOH, rfx., 3h	-	86	

^a isolated yield, ^b not observed, ^c Yields calculated from the ratio of ¹HNMR analysis

BTMA·ICl₂: Using a BTMA·ICl₂ in conditions describe in Table 3.7 produced **87BI** in high yield without the substitution product **87BI**₂ (entry 20-23). The product only occurred in unsubstituted from due to the low reactivity of iodonium ions.

ICl(I): An iodinemonochloride (ICl) was used as an I⁺ ion source in CHCl₃/MeOH at room temperature for 24 h, the amount of ICl(I) seemed to play an important role in this reaction. When using only 1.2 equiv of ICl, unsubstituted product (**87BI**) was solely occurred in good yield (71%, Table 3.7, entry 15). However, in the case of 3.0-4.0 equiv of ICl, the reaction gave both products in the raio shown in entry 16-18. And if the reaction was carried on 5 equiv the reaction give only the *p*-I-aryl product (**87BI**₂) in high yield (96%) (entry 19).

KI/KIO₃: In order to obtain the desired iodonium ions for the iodination reaction, a mixed solution of KI and KIO₃ in acetic acid is an effective and convenient method. When the amount of KI/KIO₃ is below 2.2 equiv, the unsubstituted product (**87BI**) was observed in excellent yield (91%, Table 3.7, entry 24). Additionally, using the amount of KI/KIO₃ equal to or more than 2.2 equiv in refluxing acetic acid, the desired substituted oxazolidinone scaffold product (**87BI**₂) could be obtained in high yield (86-89%, entry 25 and 26) due to the highly reactive iodonium ions.

The ¹H NMR spectra of the various 2-oxazolidinones **87B** in CDCl₃ show the different signals of various protons in the chemical shift between 7.80–3.20 ppm (Figure 3.8). As the singlet peak of Boc proton disappeared, new signals corresponding to 2-oxazolidinone around 4.80-3.20 ppm, two methylene protons (**f** and **g**), (4.20-3.80 ppm), methyne protons (**h**), (5.00-4.60 ppm) and two other methylene protons (**i** and **j**) (3.80-3.20 ppm), were observed. Notably, the chemical shift values of protons **i** and **j** are slightly down field when the adjacent atom are Cl, Br and I depending on the electronegativity value of Cl, Br and I, respectively. In the aromatic part, the signals are observed in the range of 6.80-7.50 ppm depending on different environments(**c**, **d** and **e**). When the electrophilic aromatic substitution reaction was occurred, the signal of aromatic are changed from three multiplet signal

of **c**, **d** and **e** (unsubstituted product, 87BX, X = Cl, Br and I) to two doublet signal of **c** and **d** (substituted product, $87BX_2$, X = Cl, Br and I).

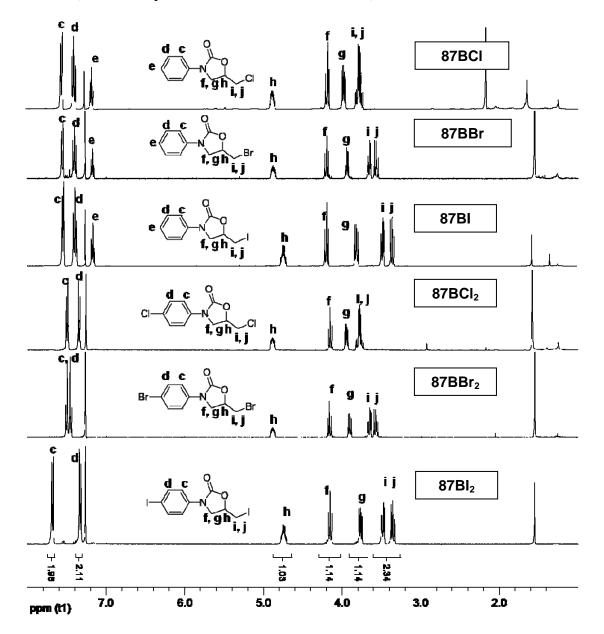
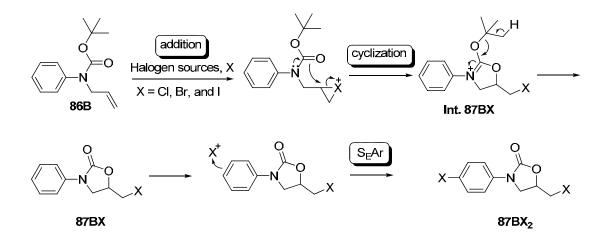



Figure 3.8 ¹H NMR spectra of various *N*-aryl 2-oxazolidinones 87B in CDCl₃

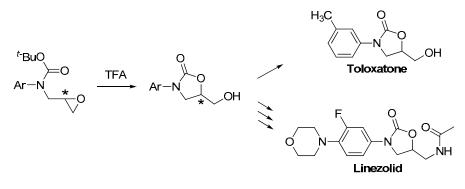
3.2.4 Mechanism of halo-induced intramolecular cyclization

The mechanism for the halo-induced-cyclization of *tert*-butyl (phenyl)allylcarbamate **86B** by various halogen sources was proposed herein. The addition reaction of alkene moiety allowed the protonation of the halogenbridge

cation, on which the carbonyl oxygen would immediately attack to form the cyclized 5-memberd-ring cation intermediate **Int. 87BX**. The lost of *tert*-butyl group gives the corresponding 2-oxazolidinone containing halogen atom derivative **87BX**. Additionally, the electrophilic aromatic substitution reaction was occurred to produce 2-oxazolidinone containing two halogen atom derivative **87BX**₂ as the final product (Scheme 3.14).

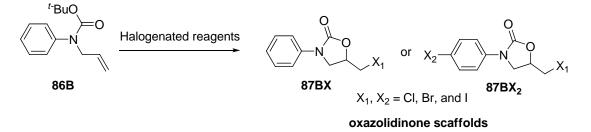
Scheme 3.14 The proposed mechanism of halo-induced intramolecular cyclization

CHAPTER IV


CONCLUSION

4.1 Conclusion

The series of *N*-aryl-2-oxazolidinone, containing various aromatic moieties were synthesized in novel two synthetic pathways and their key intramolecular cyclizations were systematically and thoroughly optimized.


1) Acid-induced cyclization of β -(*N*-arylcarbamyl)epoxides

 β -(*N*-arylcarbamyl)epoxides, cyclization substrates, were easily synthesized from the alkylation of epichlorohydrin and *N*-arylcarbamates. Cyclization of β -(*N*-arylcarbamyl)epoxides with acid readily gave the corresponding *N*-aryl-2-oxazolidinones in excellent yields (73%-93%). Mechanistically, the Boc carbonyl oxygen intramolecularly attacks the epoxide ring under acidic conditions in *5-exo-tet* fashion to give the desired oxazolidin-2-ones. The cyclization reaction conditions were thoroughly optimized by varying acids. Trifluoroacetic acid was found to be the most effective acid in cyclization step. Toloxatone, a well known antidepressant and monoamine oxidase inhibitor (MAOI), was successfully produced from this method in high yield. Linezolid (Zyvox[®]), our main target antibacterial medicine, was also stereochemically synthesized by using this optimized acid-induce cyclization with overall percent yield of 27%.

2) Halo-induced intramolecular cyclization

Simple and facile halo-induced intramolecular cyclization method was developed. The target halo-oxazolidinone products were obtained in excellent yields by treating tert-butyl allyl (phenyl)carbamate with halogenated reagents. Several halogenated reagents were used such as chlorine, bromine, iodine, N-Chlorosuccinimide, N-Bromosuccinimide, N-Iodosuccinimide, iodinemonochloride, BTNMe₃ICl₂, and mixed reagent of potassium iodide and potassiumiodate in acetic acid. The condition optimization was also accomplished by varying factors e.g. amount of reagent, solvent, temperature and reaction time. Interestingly, two halooxazolidinone scaffolds, unsubstituted oxazolidinone (87BX) and p-halo-aryl oxazolidinone (87BX₂), could be produced from this halo-induced intramolecular cyclization reaction depending on the reactivity of the particular halonium ion. Moreover, the selective syntheses for only 87BX derivative or 87BX₂ derivative were successfully developed. In general, cyclization reaction to yield 87BX prefers the relatively unreactive halonium ion (NCS, NBS, NIS, I2, BTNMe₃ICl₂), on the other hand, the relatively more reactive halonium ion (Cl₂, Br₂, KI/KIO₃) tend to have both cyclization reaction and electrophilic aromatic substitution to produce 87BX₂. From the easiness of further functionalization point of view, the scaffold development of iodo-substituted oxazolidinone (87BI₂) is far more interesting than chloro and bromosubstituted cases with high potential to open the new useful and convenient pathway for oxazolidinone derivatization.

4.2 Suggestion for the future work

Further research in continuation of this thesis may include:

- To synthesize oxazolidinone derivatives based on using **87BX**₂ oxazolidinone scaffold.

REFERENCES

- Yoshitaka, N.; Anthony, M. B.; Shunsuke, K.; Joseph W. Z.; Scott, D. R. Total Synthesis of (-)-Lycoperine A.Org. Lett. 12 (2010): 72.
- [2] Anna, S. D.; Bernd, D.; Thomas, E.; and Anna, M. B. Synthesis of New Acridone Derivatives, Inhibitors of NS3 Helicase, Which Efficiently and Specifically Inhibit Subgenomic HCV Replication. J. Med. Chem. ASAP.
- [3] Victor, E. K.; Anatoly, G. A.; Eugene, N. M.; Ingrid, L. V.; Vadim, A. M.; Olga, B. R.; Peter, W.; Michaela, S.Quantitative Structure-Activity Relationship Studies of [(Biphenyloxy)propyl]isoxazole Derivatives. Inhibitors of Human Rhinovirus 2 Replication. *J. Med. Chem.* 50 (2007): 4205.
- [4] Tariq A. M.; Gerard, D. W. Streptogramins, Oxazolidinones, and Other Inhibitors of Bacterial Protein Synthesis. *Chem. Rev.* 105 (2005): 529.
- [5] Santanu, M. J. W. Y.; Sebastian, H.; Benjamin, L. O. Asymmetric Enamine Catalysis. *Chem. Rev.* 107(2007): 5471.
- [6] Nolwenn, J. A. M.; Lidia, O.; Benjamin, L. Organocatalytic Asymmetric Transfer Hydrogenation of Nitroolefins. *J. Am. Chem. Soc.* 129 (2007): 8976.
- [7] Qingzhi, G.; Tohru, M.; Makoto, M.; Hisashi, Y.; Asymmetric Hetero Diels-Alder Reaction Catalyzed by Stable and Easily Prepared CAB Catalysts. J. Org. Chem. 57(1992): 1951.
- [8] Kun, H.; Zhi-Zhen, H.; Xin-Liang, L. Highly Enantioselective α-Aminoxylation of Aldehydes and Ketones in Ionic Liquids. *J. Org. Chem.* 71(2006): 8320.
- [9] Yu, H.; Ying, W.;Guangyi, S.; Erjun, Z,; Lijun, H.; Yunqi, L.; Yongfang, Li. Polythiophene Derivative with the Simplest Conjugated-Side-Chain of Alkenyl: Synthesis and Applications in Polymer Solar Cells and Field-Effect Transistors. J. Phys. Chem. B. 112(2008): 13476.

- [10] Rau´l, B.; Rafael, G. M.; Carlos, S.; Jose, L. S.; Elena, M. O.; Peter, B. An Ambipolar Peryleneamidine Monoimide-Fused Polythiophene with Narrow Band Gap. *Org. Lett.* 9 (2007): 2171.
- [11] Riccardo, N.; Victor, E.; Claudio, N. A Heterostructure Composed of Conjugated Polymer and Copper Sulfide Nanoparticles. *J. Phys. Chem. B* 109(2005): 15798.
- [12] Henri, B. K.; Olhrier, R. Catalytic Asymmetric Diels-Alder Reactions. *Chem. Rev.* 92(1992): 1007.
- [13] Gilson, Zeni.; Richard, C. L. Synthesis of Heterocycles via Palladium π -Olefin and π -Alkyne Chemistry. *Chem. Rev.* 104(2004): 2285.
- [14] Janine, M. C.; Grant, S. H.; Denis, R. L. Biotransformation of the Trichoderma metabolite 6-n-pentyl-2H- pyran-2-one by cell suspension cultures of Pinus radiate. *Phytochemistry* 53 (2000): 447.
- [15] Rathin, J.; Shubhankar, S.; Jayanta, K. R. Substrate dependent intramolecular palladium-catalysed cyclisation and subsequent β-H Elimination or C– H activation: a generalmethod for the synthesis of fused pyran rings. *Tetrahedron Lett.* 49 (2008): 851
- [16] Venkat, R. M.; Jehnan, L.; Michelle, S.; Donald, J. W.; Jennifer, G.; Sy, T.; Kin, S. L.; Barbara, C. M. P. Lipoxazolidinones A, B, and C: Antibacterial 4-Oxazolidinones from a Marine Actinomycete Isolated from a Guam Marine Sediment. J. Nat. Prod. 70(2007): 1454.
- [17] Tomoya, K.; Yoshio, H.; Rajesh, S.; Yoshie, M.; Yuka, T.; Tooru, K.;
 Yoshiaki, K. Design and synthesis of a new polymer-supported Evanstype oxazolidinone: an efficient chiral auxiliary in the solid-phase asymmetric alkylation reactions. *Tetrahedron.* 61 (2005): 3819.
- [18] Yukito, Y.; Yoshihiro, M.; Yoshiaki, N. Ruthenium-Catalyzed Intramolecular Cyclization of 3-Butyne-1,2-diols into Furans. Organometallics, 27 (2008): 3614.
- [19] Prabal P. S.; Yadav, A. K.; Ila, H.; Junjappa, H. Novel Route to 2,3 Substituted Benzo[β]thiophenes via Intramolecular Radical Cyclization.
 J. Org. Chem. 74(2009): 5496.

- [20] Noel, A. P.; Fred, L. C.; Emma, C. C.; Wayne, L. C.; Dennis, M. D.; Peter, G. B.; Daniel, D. H.; Jeremy, J. E. Practical Synthesis of 1-Aryl-6-(hydroxymethyl)-2-ketopiperazines via a 6-exo Amide–Epoxide Cyclization. *Org. Lett.* 6(2004): 4069.
- [21] Stephen, P. F.; Michael, W. T. Cyclization of Aryl Silanes withUnexpected Retention of Silicon. Org. Lett. 4(2002): 3797.
- [22] Jack, E. B. Rules for Ring Closure. J.C.S. Chem. Comm. (1976): 734.
- [23] Jack, E. B.; Richard, C. T.; Lawrence, I. K.; Lee, S. Rules for Ring Closure: Ring Formation by Conjugate Addition of Oxygen Nucleophiles. J. Org. Chem. 42(1977): 3846.
- [24] Nicolaides, D. N.; Gautam, D. R.; Litinas, K. E.; Papamehael, T. J. Chem. Soc., Perkin Trans. 1(2002): 1455.
- [25] Anil, K. S.; Amutha, V. S.; Christopher, B. G. Efficient synthesis of halo indanones via chlorosulfonic acid mediated Friedel–Crafts cyclization of aryl propionic acids and their use in alkylation reactions. *Tetrahedron* 63 (2007): 389.
- [26] Jodi, T. W.; Perdip, Singh, B.; John, S. S. Synthesis of 3,4-Disubstituted Piperidines by Carbonyl Ene and Prins Cyclizations: A Switch in Diastereoselectivity between Lewis and Brønsted Acid Catalysts. Org. Lett. 4 (2002): 3727.
- [27] Sauers, R. R.; Van Arnum, S. D. ç-Hydroxyalkynyl Ketones as Useful Scaffolds for the Preparation of Combinatorial Libraries of Furans, Isoxazoles and Pyrazoles. J. Comb. Chem. 6 (2004): 350.
- [28] Adam, S.; Kraig, A. W.; Roman, D. 5-Endo-Dig Electrophilic Cyclization of 1,4-Disubstituted But-3-yn-1-ones: Regiocontrolled Synthesis of 2,5-Disubstituted 3-Bromo-and 3-Iodofurans. Org. Lett. 7 (2005): 1769.
- [29] Xiaolei, G.; and Barry, B. S. Syntheses of (-)-TAN-2483A, (-) Massarilactone B, and the Fusidilactone B Ring System. Revision of the Structures of and Syntheses of (±)-Waol A (FD-211) and (±)-Waol B (FD-212). J. Org. Chem. 69 (2004): 5517.

- [30] Eileen, W. C. C.; Reena, T. M.; Majid, M.; Begum, M.; Yashvant, P.; Peter,
 B. W. Stereoselective Diels–Alder reactions of 3-phosphonopropenoyl derivatives of 1,3-oxazolidin-2-ones. *Tetrahedron* 62 (2006): 12398.
- [31] Adam, W.; Bosio, S. G.; Turro, N. J. Highly Diastereoselective Dioxetane Formation in the Photooxygenation of Enecarbamates with an Oxazolidinone Chiral Auxiliary: Steric Control in the [2 + 2] Cycloaddition of Singlet Oxygen through Conformational Alignment. J. Am. Chem. Soc. 124 (2002): 8814.
- [32] John, A. B.; Liang, Z.; Mandy, L.; Kenneth, J. S. Enantioselective Synthesis of Bridged Bicyclic Ring Systems. J. Org. Chem. 72 (2007): 9402.
- [33] Hein, J. E.; Geary, L. M.; Jaworski, A. A.; Hultin, P. G. Practical Synthesis of Fluorous Oxazolidinone Chiral Auxiliaries from α-Amino Acids. J. Org. Chem. 70 (2005): 9940.
- [34] Li, G.; Xu, X.; Chen, D.; Timmons, C.; Carducci, M. D.; Headley, A. D.Asymmetric Halo Aldol Reaction (AHA). *Org. Lett.* 5 (2003): 329.
- Brickner,S. J.; Hutchinson, D. K; Barbachyn,M. R.; Manninen,P. R.;
 Ulanowicz, D. A.; Garmon,S. A.; Grega, K. C.; Hendges, S. K.; Toops,
 D. S.; Ford, C. W.; Zurenko.G. E. Synthesis and Antibacterial Activity of U-100592 and U-100766, Two Oxazolidinone Antibacterial Agents for the Potential Treatment of Multidrug-Resistant Gram-Positive Bacterial Infections. J. Med. Chem. 39 (1996): 673.
- [36] Reddy, G. S. K. K.; Akbar, A.; Madhavi, N. L. N.; Saima, G. A.; Hong, C.; Robin, S. N..; Celia, A. S.; and Tariq, M. R. Design and Synthesis of HIV-1 Protease Inhibitors Incorporating Oxazolidinones as P2/P2' Ligands in Pseudosymmetric Dipeptide Isosteres. *J. Med. Chem.* 50(2007): 4316.
- [37] Slee A. M.; Wuonol, M. A.; Mcripley, R. J.; Zajac, I.; Zawada, M. J.;
 Bartholomew, P. T.; Gregory, W. A.; Forbes, M. Oxazolidinones, a New Class of Synthetic Antibacterial Agents: In Vitro and In Vivo Activities of DuP 105 and DuP 721. *Antimicrob. Agents Chemother.* 31 (1987): 1791.

- [38] Chia-Lin, J. W.; Walter, A. G.; Mark, A. W. Chiral synthesis of dup 721, a new antibacterial agent. *Tetrahedron*. 45 (1989): 1323.
- [39] Chung, H. P.; David R. B.; Wang, C. L. J.; Frank, D. M.; Walter, A. G.;
 Mark, A. W.; Ronald, J. M.; Virginia, S. E.; Andrew, M. S.; Martin, F. Antibacterials. Synthesis and structure-activity studies of 3-aryl-2-oxooxazolidines. 4. Multiply-substituted aryl derivatives. *J. Med. Chem.* 35(1992): 1156.
- [40] Moureaul, F.; Woutersl, J.; Vercauterenz, DP.; Collinl, S.; Evrardl, G.; Durantl, F.; Ducrey, F.; Koenig, JJ.; Jarreau, FX. A reversible monoamine oxidase inhibitor, toloxatone: structural and electronic properties. *Eur. J. Med. Chem.* 27(1992): 939.
- [41] Eugene, S.; Timothy, S. M.; Joseph, D.; Laura, L.; Joseph, A. I.; Erin, M. D.; Joyce, S.; Franocis, F. Rχ-01, a New Family of Oxazolidinones That Overcome Ribosome-Based Linezolid Resistance. *Antimicrob. Agents Chemother*. 52(2008): 3550.
- [42] Steve, M. S.; Hiroyuki, A.; Ganoza, M. C.; Dean, L. S. The Oxazolidinone Linezolid Inhibits Initiation of Protein Synthesis in Bacteria. *Antimicrob. Agents Chemother.* 42(1998): 3251.
- [43] David, C. E.; Jeffrey, C. C.; Tyler, N. W.; Mitchell, D. H.; Jayna, L. D.;
 Ippoliti, J. T. Synthesis of novel oxazolidinone antimicrobial agents. *Bioorg. Med. Chem.* 16 (2008): 2651.
- [44] Antonello, M.; Marino, A.; Monica, E.; Gianluca, S.; Silvio, M.; Olivia, B.;
 Paola, T.; Valentina, G.; Bruno, M. 3-(1H-Pyrrol-1-yl)-2 oxazolidinones as Reversible, Highly Potent, and Selective Inhibitors
 of Monoamine Oxidase Type A. J. Med. Chem. 45(2002: 1180.
- [45] Natesan, S.; Deekonda, S.; Manoj, K. K.; Magadi, S. K.; Rao, N. V. S. M.; Hemanth, S.; Chandrashekar, C.; Bonthu, S. R.; Mohammed, A. R.; Jagattaran, D.; Javed, I.; Ramanujam, R. Synthesis of Conformationally Constrained Analogues of Linezolid: Structure-Activity Relationship (SAR) Studies on Selected Novel Tricyclic Oxazolidinones. J. Med. Chem. 45(2002): 3953.

- [46] Michael, R. B.; Douglas, K. H.; Steven J. B.; Michael, H. C.; James, O. K.;
 Sally, P. K.; Suzanne, E. G.; Kevin, C. G.; Susan, K. H.; Dana, S. T.;
 Charles, W. F.; Gary, E. Z. Identification of a Novel Oxazolidinone (U-100480) with Potent Antimycobacterial Activity. *J. Med. Chem.* 39(1996): 680.
- [47] William R. P.; Bruce, A. P.; Delara, B. G.; Azhwarsamy, J.; Koji, Y.; Jiong, J. C.; Cuong, V. L.; Paul, M. H.; Robert, C. G.; Lai, C.; Mark, A. L.; Mark, T. M.; Jeffery, A. M.; Meredith, L. G.; Michael, R. B. The Synthesis of N-Aryl-5(S)-aminomethyl-2-oxazolidinone Antibacterials and Derivatives in One Step from Aryl Carbamates. *Organic Process Research & Development* 7(2003): 533.
- [48] Adam R. R.; Priyadarshini, J.; Revathy, V.; Corinne, H.; Sara, L.; Dinesh, V.
 P.; Mikhail, F. G. Conformational Constraint in Oxazolidinone Antibacterials. Synthesis and Structure-Activity Studies of (Azabicyclo[3.1.0]hexylphenyl)oxazolidinones. J. Med. Chem. 48(2005): 5009.
- [49] Prasad, J. V. N. V.; Frederick, E. B.; Lou, C.; Michael, D.; Qizhu, D.;
 Gavardinas, K.; Susan, E. H.; Michael, D. H.; Wenhua, J.; Takushi, K.;
 Samarendra, N. M.; Michael M.; Karina, R.; M. P.; Xiujuan, W.
 Synthesis and structure–activity studies of novel benzocycloheptanone oxazolidinone antibacterial agents. *Bioorg. Med. Chem.*16 (2006): 5392.
- [50] Lirong, S.; Xiaobei, C.; Shilei, Z.; Haoyi, Z.; Ping, L.; Guangshun, L.;
 Wenjing, L.; Wenhu, D.; Wei, W. An Organocatalytic Approach to the Construction of Chiral Oxazolidinone Rings and Application in the Synthesis of Antibiotic Linezolid and Its Analogues. *Org. Lett.* 10 (2008): 5489.
- [51] Srinivasarao V. N.; Arumugam, S. Short and practical enantioselective synthesis of linezolid and eperezolid via proline-catalyzed asymmetric a-aminooxylation. *Tetrahedron Lett.* 47 (2006): 6799.
- [52] Giuseppe, B.; Marcella, B.; Armando, C.; Manuela, L.; Paolo, M.; Letizia, S.Direct Catalytic Synthesis of Enantiopure 5-Substituted

Oxazolidinones from Racemic Terminal Epoxides. *Org. Lett.* 7 (2005): 1983.

- [53] Roberto, Mora´n-R.; Ramo´n, L.; Vicente, G. Regioselective and Stereospecific Synthesis of Enantiopure 1,3-Oxazolidin-2-ones by Intramolecular Ring Opening of 2-(Boc-aminomethyl)aziridines. Preparation of the Antibiotic Linezolid. Org. Lett. 9 (2007): 575.
- [54] Roci´o, Robles-M.; Javier, A.; Juan, C. C. Gold-Catalyzed Synthesis of Alkylidene 2-Oxazolidinones and 1,3-Oxazin-2-ones. *J. Org. Chem.* 71(2006): 5023.
- [55] Gleave, D. M.; Steven, J. B. Oxazolidinone Antibacterial Agents. An Enantioselective Synthesis of the [6,5,5] Tricyclic Fused Oxazolidinone Ring System and Application to the Synthesis of a Rigid DuP 721 Analogue. J. Org. Chem. 61 (1996): 6470.
- [56] Yumiko, O.; Yuka, H.; Yoko, S.; Kouichi, T.; Yoshihiro, I.; Shuichi, H.;
 Hiroshi, N. Convenient Synthesis of Oxazolidinones by the Use of
 Halomethyloxirane, Primary Amine, and Carbonate Salt. J. Org. Chem.
 70 (2005): 5737.
- [57] Rajesh, K. M.; Cristina, M. C.; Kevin, D. R.; Edward, T. Synthesis of 2-Oxazolidinones from β-Lactams: Stereospecific Total Synthesis of (-)-Cytoxazone and All of Its Stereoisomers. *Org. Lett.* 9 (2007): 575.
- [58] Stephen, C. B.; Steven, J. K. A Method for the Parallel Synthesis of Multiply Substitutedn Oxazolidinones. J. Comb. Chem. 4 (2002): 162.
- [59] Madhusudhan G.; Reddy G. O.; Rajesh, T.; Ramanatham, J.; Dubey, P. K. Stereoselective synthesis of novel (R)- and (S)-5-azidomethyl-2oxazolidinones from (S)-epichlorohydrin: a key precursor for the oxazolidinone class of antibacterial agents. *Tetrahedron Lett.* 49 (2008): 3060.
- [60] David, J. A.; Indra, P..; David, R. S. 1,2-Amino Alcohols and Their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis. *Chem. Rev.* 96(1996): 835.
- [61] Morison, R. T.; Boyd, R. N. Organic Chemistry, 2nd Ed, London; Prentice-Hall International Inc., 1996.

- [62] Wade Jr, L. G. Organic Chemistry, 2nd Ed, USA; Prentice-Hall Inc, 1991.
- [63] Wasson, R. L.; House, H. O. In Organic Syntheses, Rabjohn, N., Ed., Collect. Vol. IV, New York; Wiley, 1963, 552.
- [64] Wonwoo, N.; Joan, S. V. Reevaluation of the significance of oxygen-18 incorporation in metal complex-catalyzed oxygenation reactions carried out in the presence of oxygen-18-labeled water (H₂¹⁸O). J. Am. Chem. Soc. 115(1993): 1772.
- [65] Zeev, G.; Santiago, I. Asymmetric Catalysis by a Chiral Ruthenium Porphyrin: Epoxidation, Hydroxylation, and Partial Kinetic Resolution of Hydrocarbons. *Org. Lett.*, 13 (1999): 2077.
- [66] Murahashi, S. I.; Oda, Y.; Naota, T. "Iron and Ruthenium-Catalyzed oxidations of Alkenes with Molecular Oygen in the Presence of Alehydes and Acids" J. Am. Chem. Soc. 114 (1992): 7913.
- [67] Johnson, R. A; Sharpless, K. B. Catalytic Asymmetric Epoxidation of Unfunctionalized Olefins in Catalytic Asymmetric Synthesis. Ojima, I. Ed, VCH, New York, 1993, 103-202.
- [68] László, K.; Barbara, C. Strategic Applications of Named Reactions in Organic Synthesis. London; Elsevier Academic Press. 2005; p 408.
- [69] Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. Catalytic Asymmetric Epoxidation of Unfuctionalized Olefins. *Tetrahedron Lett.* 31 (1990): 7345.
- [70] Minutolo, F; Pini, D.; Salvadori, P. Polymeer-Bound Chiral (salen)Mn(III)Complex as Heterogeneous Catalyst in Rapid and Clean Enantioselective Epoxidation of Unfunctionalised Olefins. *Tetrahedron Lett.* 37 (1996): 3375.
- [71] Paquette, L. A., Ed. Encyclopedia of Reagents for Organic Synthesis. J. New York; Wiley & Sons: 1995; p 4585.
- [72] Lee, N. H.; Muci, A. R.; Jacobsen, E. N. Enantiomercally Pure Epoxychromans via Asymmetric Catalysis. *Tetrahedron Lett.* 32 (1991): 5055.
- [73] László, K.; Barbara, C. Strategic Applications of Named Reactions in Organic Synthesis. London; Elsevier Academic Press. 2005; p 222.

- [74] Wade Jr, L. G. Organic Chemistry, 6th Ed, USA; Prentice-Hall Inc, 2006; p 186.
- [75] Wade Jr, L. G. Organic Chemistry, 6th Ed, USA; Prentice-Hall Inc, 2006; p 182.
- [76] Roger, B. C.; Daniel, E. An orthogonal protection strategy for the synthesis of 2-substituted piperazines. *Tetrahedron* 63 (2007): 3057.
- [77] Bryan, L.; Martin, B.; Richard, B.; Charles, K.-F. C.; Stephen, T. C.; Takushi, K.; Nandell, K.; William, K.; Tung, L.; Kyle, R. L.; Brian, M.; Ronald, M.; Lisa, N.; Silke, W.; Michael, W.; John, W.; Zhijun, Z.; Zhongli, Z. Aqueous Phosphoric Acid as a Mild Reagent for Deprotection of *tert*-Butyl Carbamates, Esters, and Ethers. *J. Org. Chem.* 71 (2006): 9045.
- [78] Yochai, B.; Alfred, H. Di-tert-butyl Dicarbonate and 4-(Dimethylamino) pyridine Revisited. Their Reactions with Amines and Alcohols. J. Org. Chem. 65 (2000): 6368.
- [79] Hans-P, B. Solid-Phase Synthesis of Oxazolidinones by Cycloaddition of Resin-Bound Epoxides with Isocyanates. J. Comb. Chem. 5 (2003): 789.
- [80] Waldemar, A.; Aurelia, P.; Karl, P.; Eva-M, P. Opposite ð-Face Selectivity for the DMD and m-CPBA Epoxidations of Chiral 2,2-Dimethyloxazolidine Derivatives of Tiglic Amides: Control by Steric Interactions versus Hydrogen Bonding. *Org. Lett.*, 8 (2000): 1019.
- [81] Huirong, Y.; David, E. R. Epoxidation of Alkenes with Bicarbonate-Activated Hydrogen Peroxide. J. Am. Chem. Soc. 122 (2000): 3220.
- [82] Slatter, J. G.; Stalker, D. J.; Feenstra, K. L.; Welshman, I. R.; Bruss, J. B.;
 Sams, J. P.; Johnson, M. G.; Sanders, P. E.; Hauer, M. J.; Fagerness, P. E.; Stryd, R. P.; Peng, G. W.; Shobe, E. M. Pharmacokinetic,
 Metabolism, and Excretion of Linezolid fowllowing an Oral Dose of
 [¹⁴C]Linezolid to Healthy Human Subjects. *Drug Metabolism and Disposition.* 29 (2001): 1136.
- [83] Michael, P.; Gregory, J. M.; Eric, N. J. Low Temperature Asymmetric Epoxidation of Unfunctionalized Olefins Catalyzed by (Salen)Mn(III) Complexes. *Tetrahedron Lett.* 36 (1995): 5457.

- [84] Michael, P.; Gregory, J. M.; Eric, N. J. Highly Enantioselective, Low-Temperature Epoxidation of Styrene. J. Am. Chem. SOC. 116(1994): 9333.
- [85] Richard, N.; James, M. C. Principles of Organic Synthesis. 3rd Ed, UK;
 Blackei Academic & Professional, 1993; p 590.
- [86] Chambedin, A. R.; Robert, L.; Mulholland, J.; Scott, D. K.; Warren, J. H. Modeling Chemical Reactivity. 7. The Effect of a Change in Rate-Limiting Step on the Stereoselectivity of Electrophilic Addition to Allylic Alcohols and Related Chiral Alkenes. J. Am. Chem. SOC. 109 (1987): 672.
- [87] Armen, Z.; Alexandre, B.; Robert, A. H. A Convergent Total Synthesis of Hemibrevetoxin B. J. Am. Chem. Soc. 125(2003): 7822.
- [88] David, A. E.; Steven, L. B.; Joel, M. Total Synthesis of the Polyether Antibiotic X-206. J. Am. Chem. SOC. 110 (1988): 2506.
- [89] Nicolaou, K. C.; Theocharis, V. K.; Stepan, V.; Goran, P.; Wenjun, T.;
 Michael, O. F.; David, Y. K. C.; Yiwei, L.; Taotao, L.; Yoich, M. A.
 Y. Total Synthesis and Structural Elucidation of Azaspiracid-1. Final Assignment and Total Synthesis of the Correct Structure of Azaspiracid-1. J. Am. Chem. Soc. 128 (2006): 2859.
- [90] Mallesham, B.; Rajesh, B. M.; Reddy, P. R.; Srinivas, D.; Sanjay, T. Highly Efficient CuI-Catalyzed Coupling of Aryl Bromides with Oxazolidinones Using Buchwald's Protocol: A Short Route to Linezolid and Toloxatone. Org. Lett. 5(2003): 963.
- [91] Anne, S. C.; Franc, oise, C.; Pierre, E. B. Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimide and catalytic trifluoroacetic acid. *Tetrahedron Lett.* 43 (2002): 5047.
- [92] Folkert, R.; Fei, Z.; Charles, J. E.; Gunther, K.; Dan, C.; Georgine, I.; Ruth,
 I.; Grace, P.; Michael, B. G. Novel Substituted (Pyridin-3yl)phenyloxazolidinones: Antibacterial Agents with Reduced Activity against Monoamine Oxidase A and Increased Solubility. *J. Med. Chem.* 50 (2007): 4868.

APPENDICES

APPENDIX A

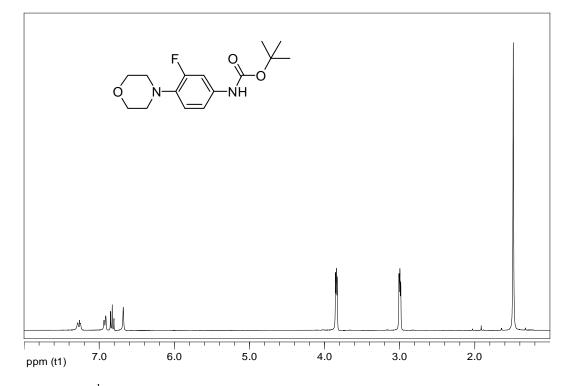


Figure A1 ¹H NMR spectrum of *tert*-butyl 3-fluoro-4-morpholinophenylcarbamate

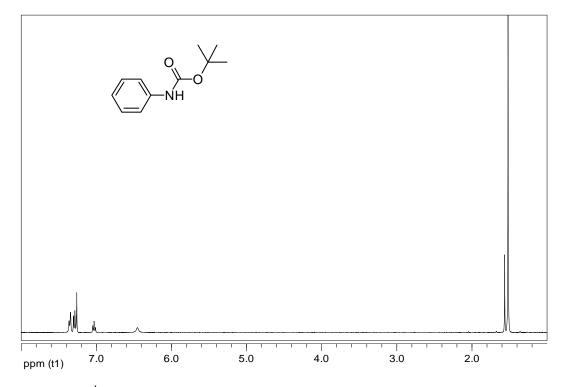


Figure A2 ¹H NMR spectrum of *tert*-butyl phenylcarbamate

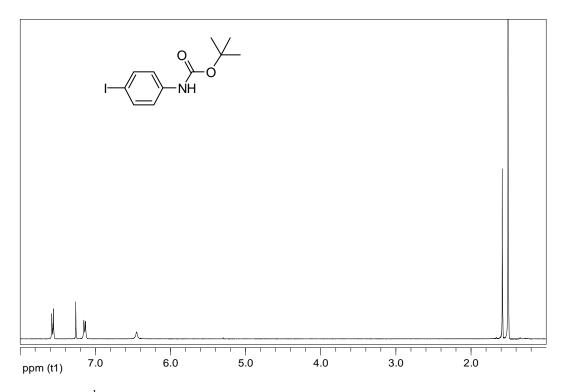


Figure A3 ¹H NMR spectrum of *tert*-butyl 4-iodophenylcarbamate

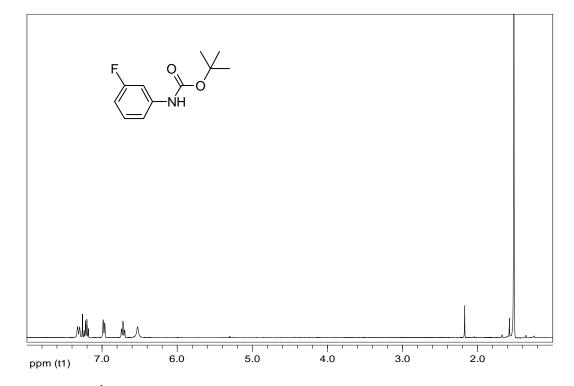


Figure A4 ¹H NMR spectrum of *tert*-butyl 3-fluorophenylcarbamate

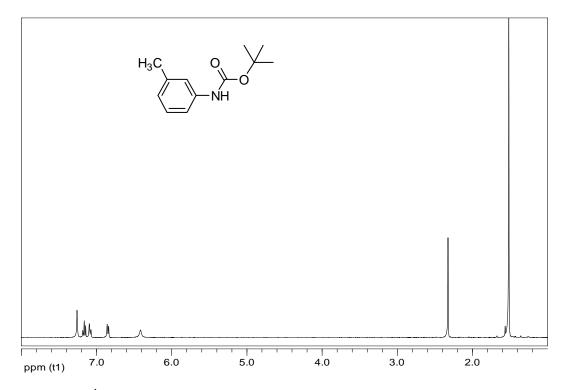


Figure A5 ¹H NMR spectrum of *m*-tolylcarbamate

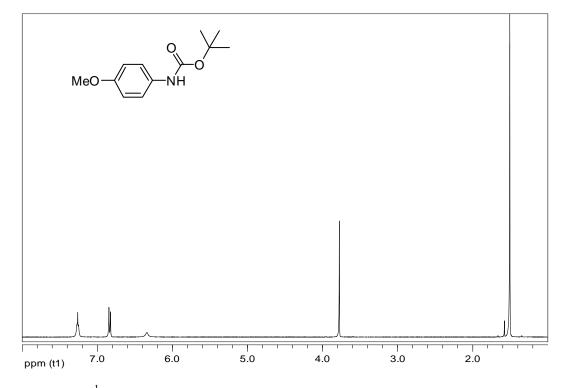
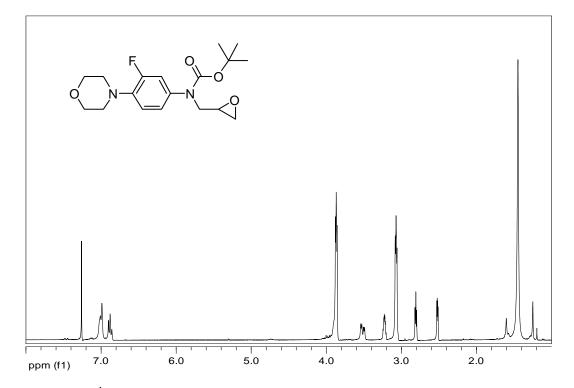



Figure A6 ¹H NMR spectrum of *tert*-butyl 4-methoxyphenylcarbamate

Figure A7 ¹H NMR spectrum of 3-fluoro-4-morpholinophenyl(oxiran-2-ylmethyl) carbamate

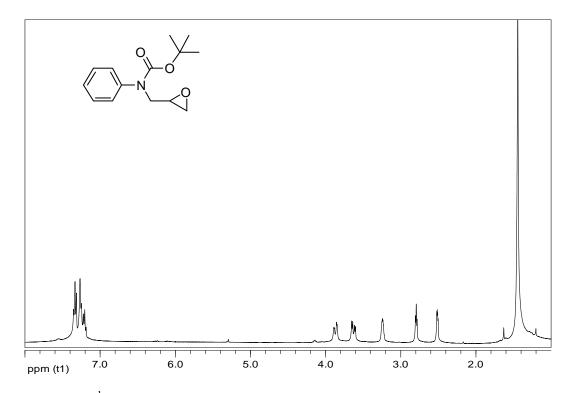
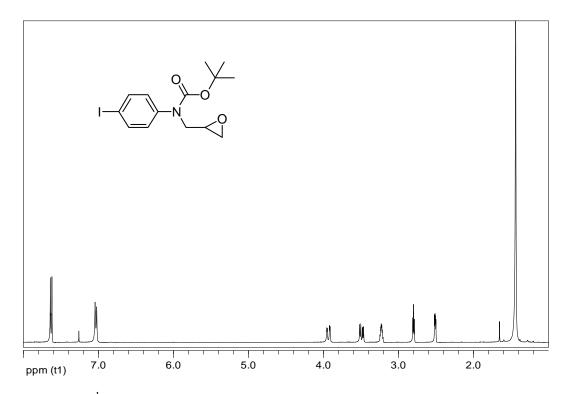
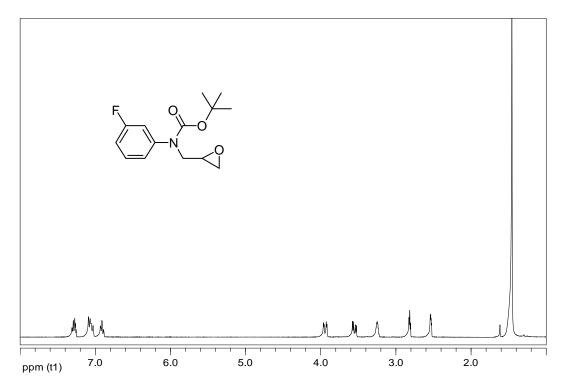




Figure A8 ¹H NMR spectrum of *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate

Figure A9 ¹H NMR spectrum of *tert*-butyl-4-iodophenyl(oxiran-2-ylmethyl) carbamate

Figure A10 ¹H NMR spectrum of *tert*-butyl-3-fluorophenyl(oxiran-2-ylmethyl) carbamate

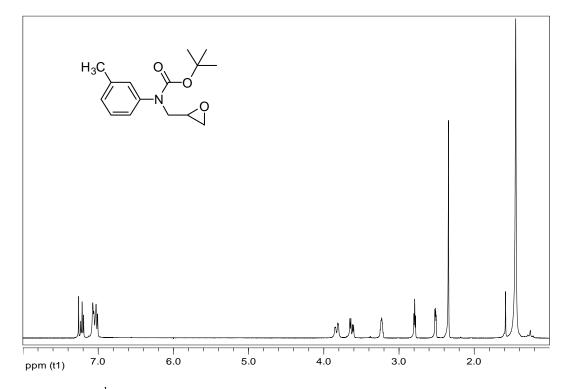
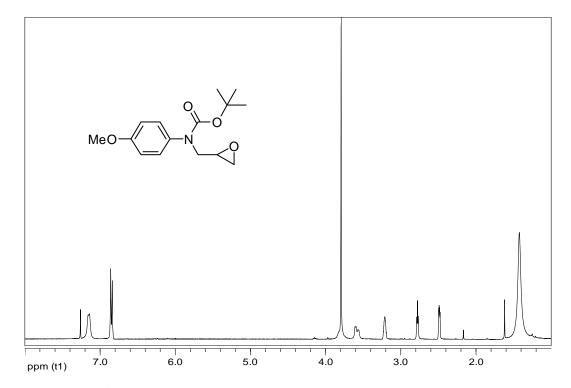
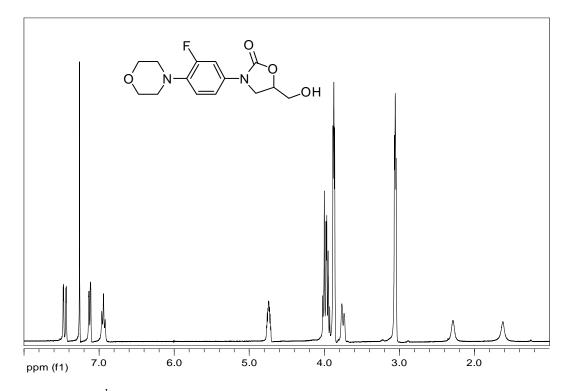




Figure A11 ¹H NMR spectrum of *tert*-butyl oxiran-2-ylmethyl(*m*-tolyl)carbamate

Figure A12 ¹H NMR spectrum of *tert*-butyl 4-methoxyphenyl(oxiran-2-ylmethyl) carbamate

Figure A13 ¹H NMR spectrum of 3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one

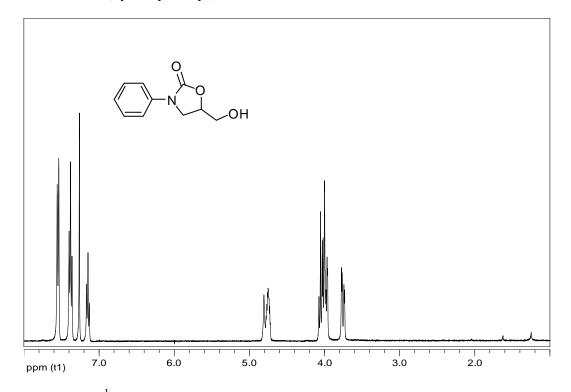
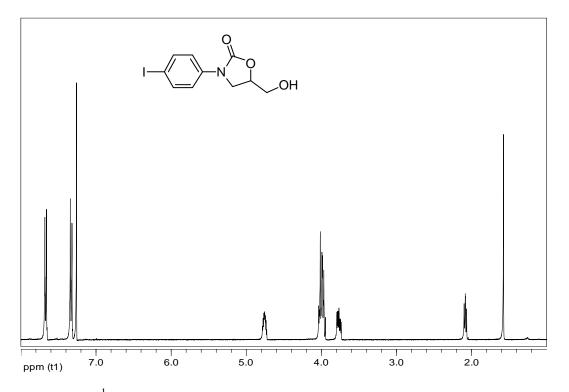
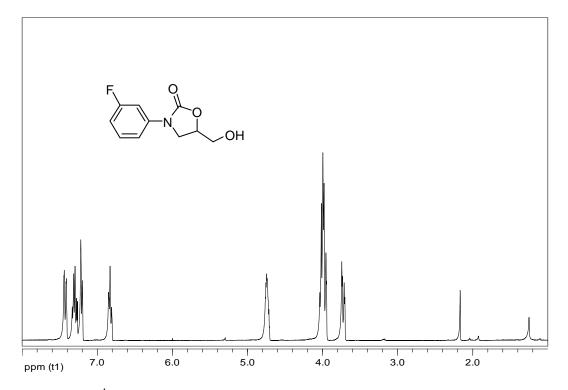




Figure A14 ¹H NMR spectrum of 5-(hydroxymethyl)-3-phenyloxazolidin-2-one

Figure A15 ¹H NMR spectrum of 5-(hydroxymethyl)-3-(4-iodophenyl)oxazolidin-2one

Figure A16 ¹H NMR spectrum of 3-(3-fluorophenyl)-5-(hydroxymethyl)oxazolidin-2-one

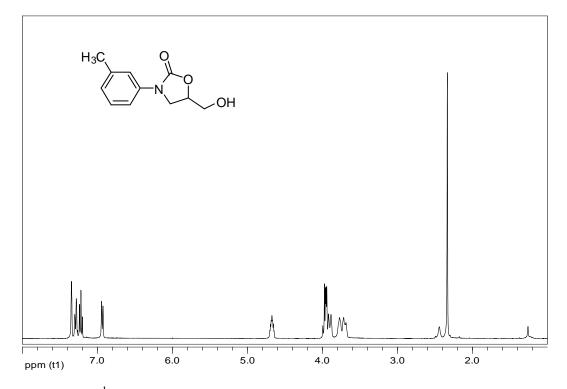
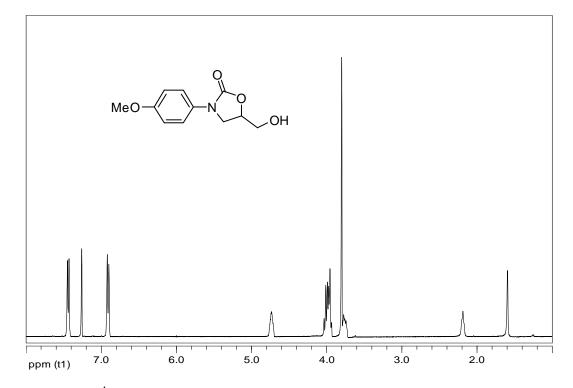
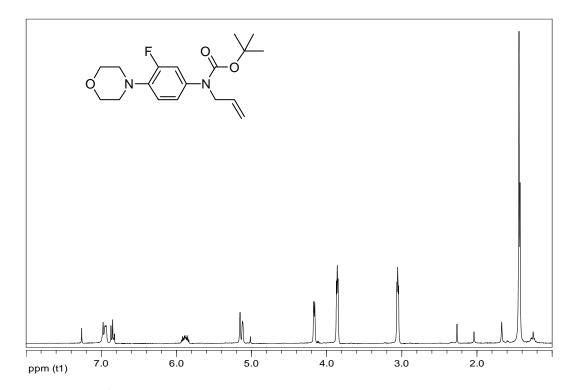




Figure A17 ¹H NMR spectrum of 5-(hydroxymethyl)-3-*m*-tolyloxazolidin-2-one

Figure A18 ¹H NMR spectrum of 5-(hydroxymethyl)-3-(4-methoxyphenyl)oxazolidin-2-one

Figure A19 ¹H NMR spectrum of *tert*-butyl allyl(3-fluoro-4-morpholinophenyl) carbamate



Figure A20 ¹H NMR spectrum of *tert*-butyl allyl(phenyl)carbamate

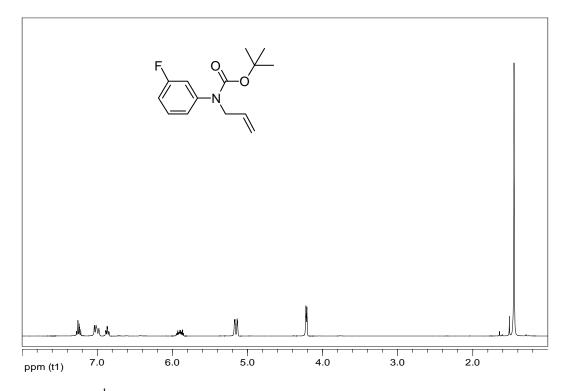
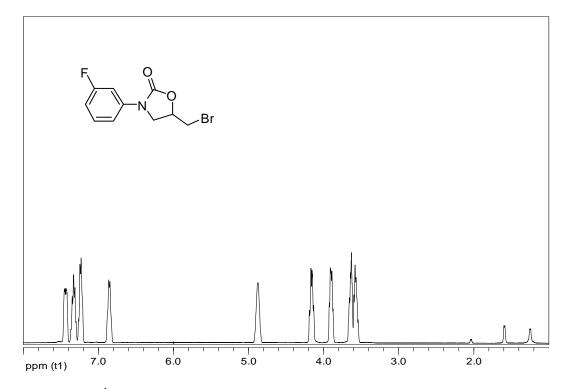



Figure A21 ¹H NMR spectrum of *tert*-butyl allyl(3-fluorophenyl)carbamate

Figure A22 ¹H NMR spectrum of 5-(bromomethyl)-3-(3-fluorophenyl)oxazolidin-2one

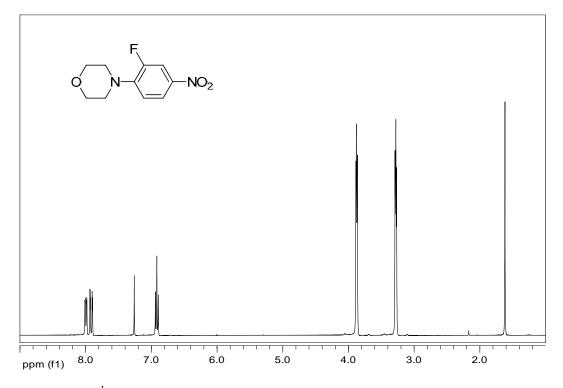
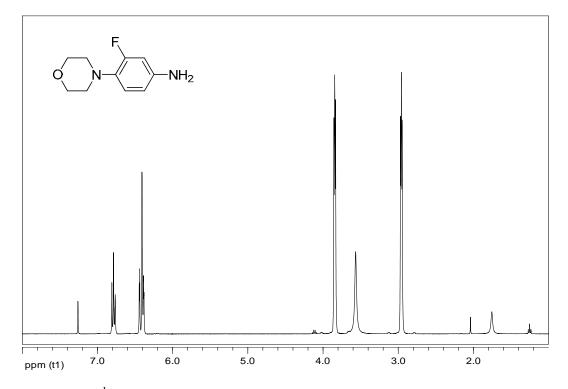
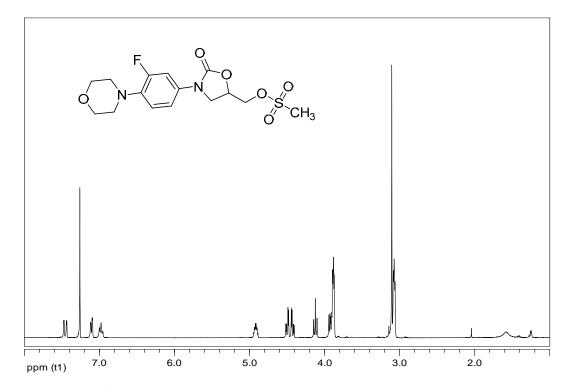
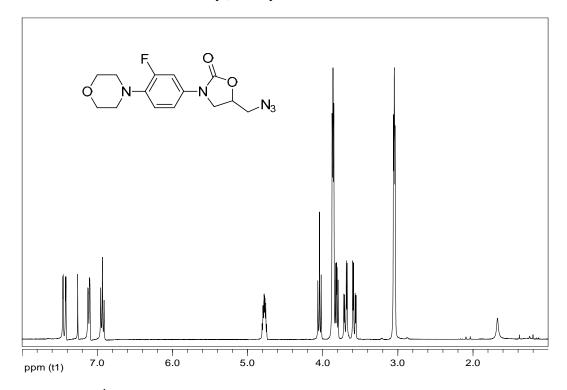


Figure A23 ¹H NMR spectrum of 4-(2-fluoro-4-nitrophenyl)morpholine

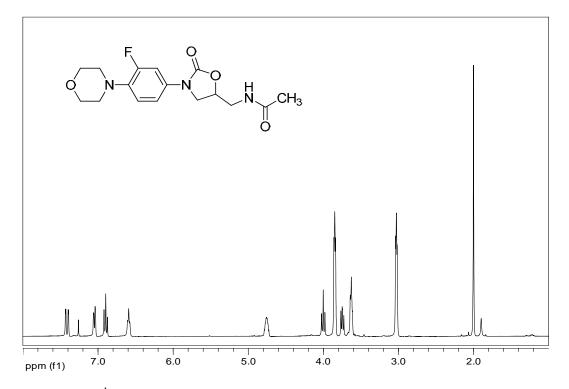

Figure A24 ¹H NMR spectrum of 3-fluoro-4-morpholinoaniline

Figure A25 ¹H NMR spectrum of (3-(3-fluoro-4-morpholinophenyl)-2oxooxazolidin-5-yl) methylmethanesulfonate

Figure A26 ¹H NMR spectrum of 5-(azidomethyl)-3-(3-fluoro-4-morpholinophenyl) oxazolidin-2-one

Figure A27 ¹H NMR spectrum of N-((3-(3-fluoro-4-morpholinophenyl)-2oxooxazolidin-5-yl methyl)acetamide

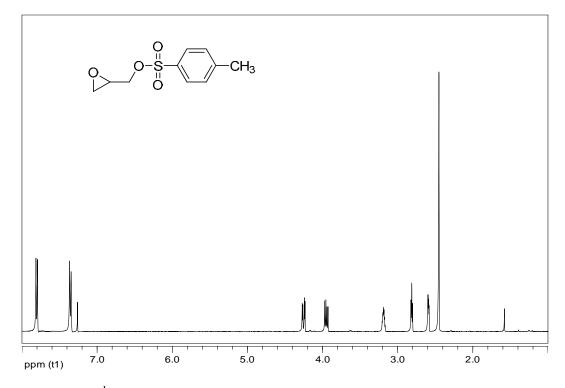


Figure A28 ¹H NMR spectrum of glycidyltosylate

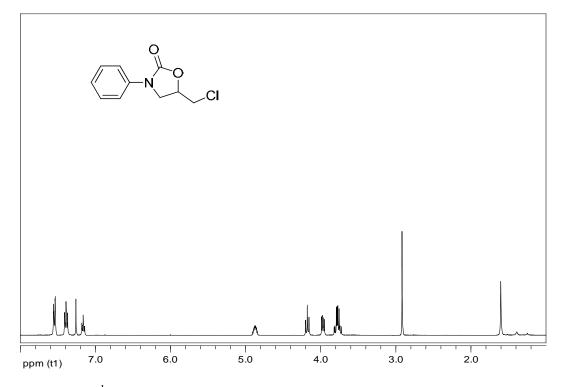
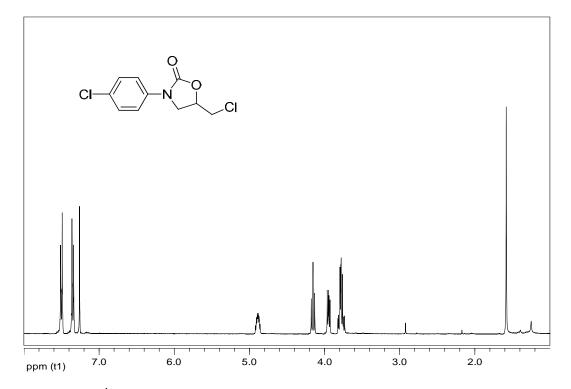



Figure A29 ¹H NMR spectrum of 5-(chloromethyl)-3-phenyloxazolidin-2-one

Figure A30 ¹H NMR spectrum of 5-(chloromethyl)-3-(4-chlorophenyl) oxazolidin-2-one

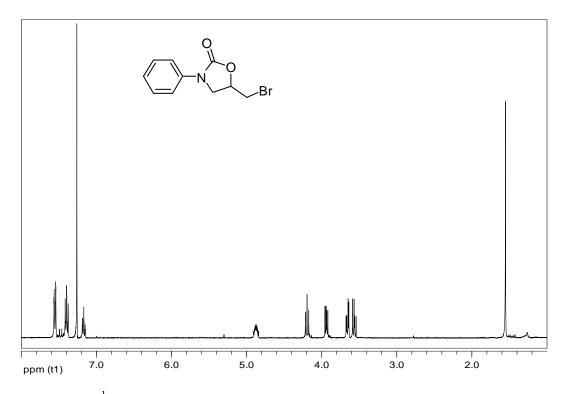


Figure A31 ¹H NMR spectrum of 5-(bromomethyl)-3-phenyloxazolidin-2-one

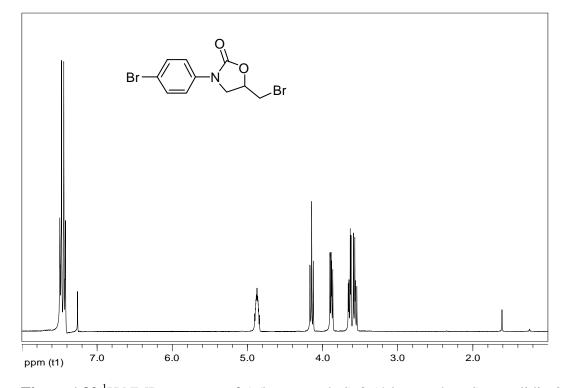


Figure A32 ¹H NMR spectrum of 5-(bromomethyl)-3-(4-bromophenyl)oxazolidin-2one

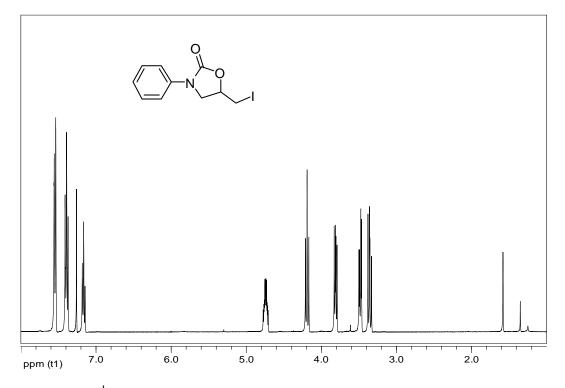


Figure A33 ¹H NMR spectrum of 5-(iodomethyl)-3-phenyloxazolidin-2-one

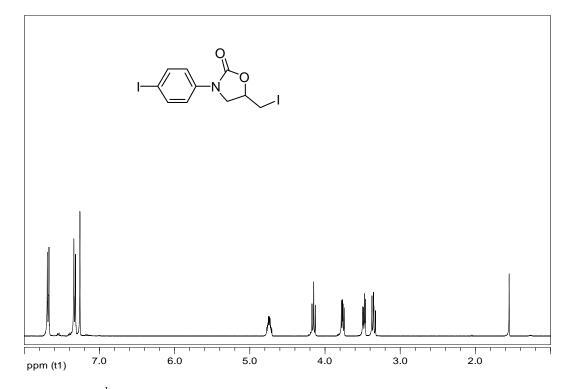
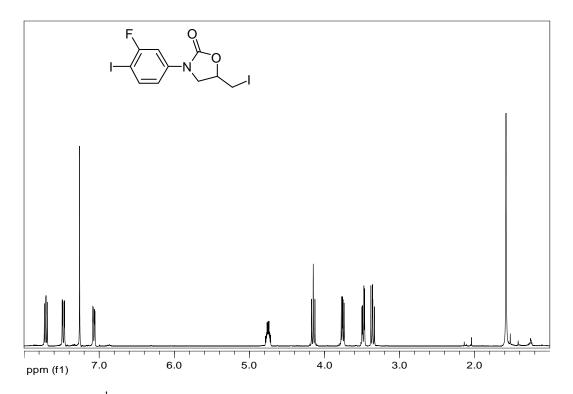



Figure A34 ¹H NMR spectrum of 5-(iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one

Figure A35 ¹H NMR spectrum of 3-(3-fluoro-4-iodophenyl)-5-(iodomethyl) oxazolidin-2-one

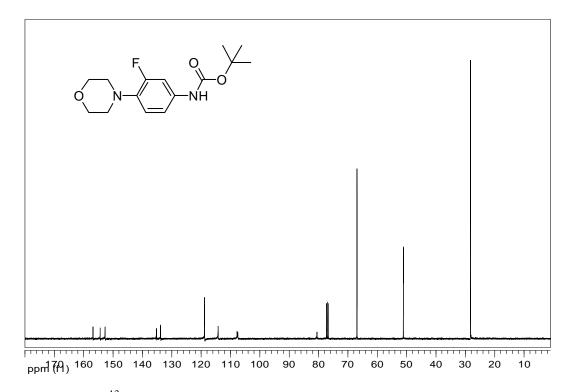


Figure A36¹³C NMR spectrum of *tert*-butyl 3-fluoro-4-morpholinophenylcarbamate

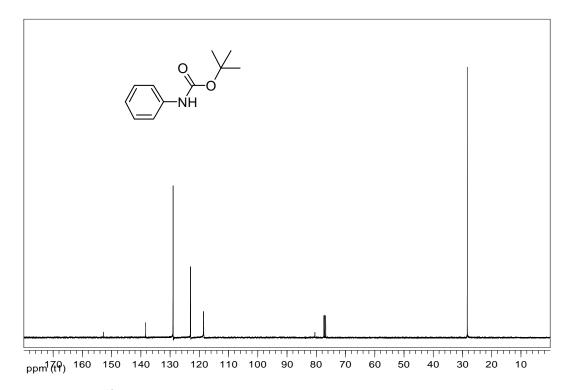
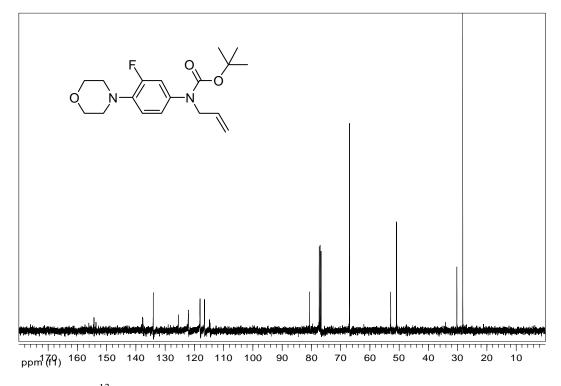



Figure A37 ¹³C NMR spectrum of *tert*-butyl phenylcarbamate

Figure A38 ¹³C NMR spectrum of *tert*-butyl allyl(3-fluoro-4-morpholinophenyl) carbamate

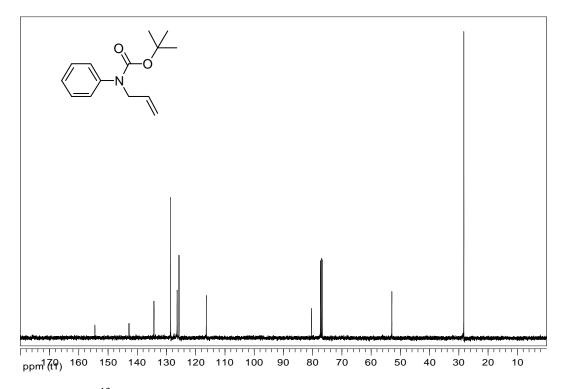


Figure A39 ¹³C NMR spectrum of *tert*-butyl allyl(phenyl)carbamate

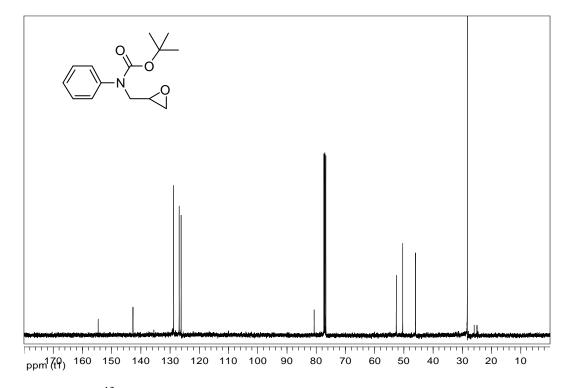
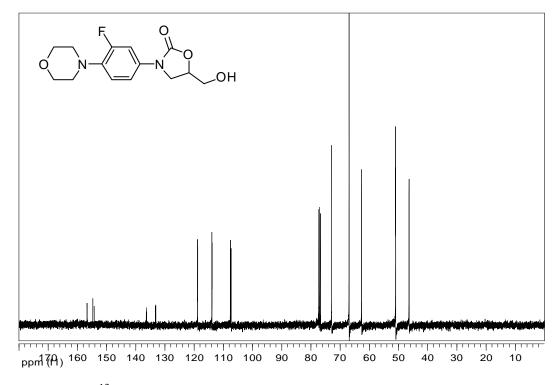
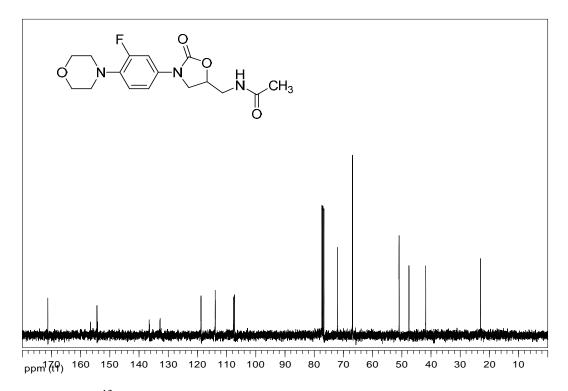
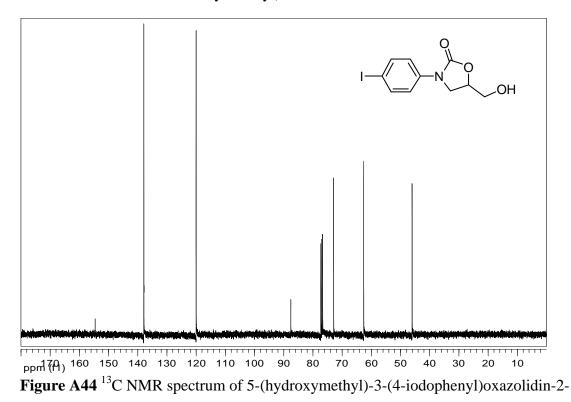


Figure A40¹³C NMR spectrum of *tert*-butyl oxiran-2-ylmethyl(phenyl)carbamate


Figure A41 ¹³C NMR spectrum of 4-(2-fluoro-4-nitrophenyl)morpholine

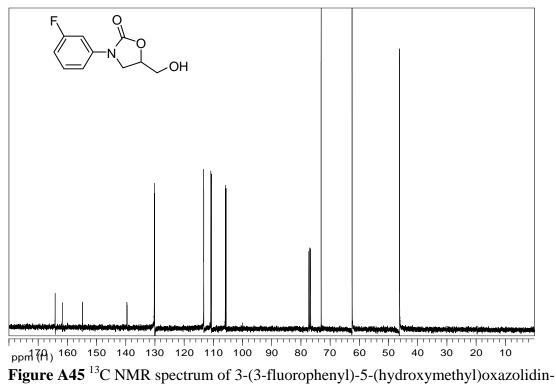


Figure A42 ¹³C NMR spectrum of 3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one

Figure A43 ¹³C NMR spectrum of *N*-((3-(3-fluoro-4-morpholinophenyl)-2oxooxazolidin-5-yl methyl)acetamide

2-one

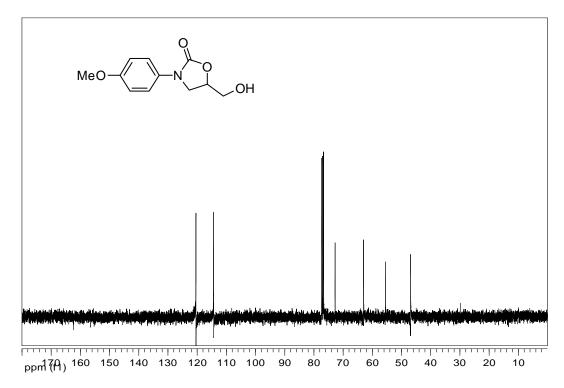


Figure A46¹³C NMR spectrum of 5-(hydroxymethyl)-3-(4-methoxyphenyl)oxazolidin-2-one

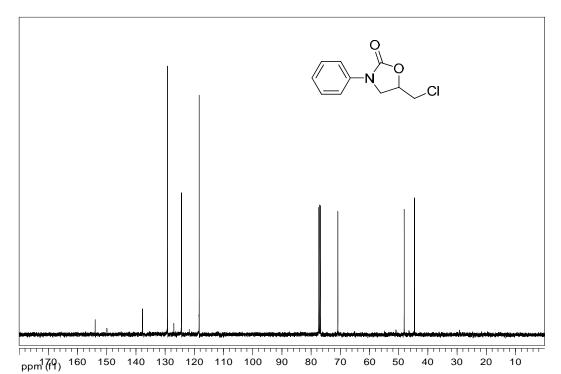


Figure A47¹³C NMR spectrum of 5-(chloromethyl)-3-phenyloxazolidin-2-one

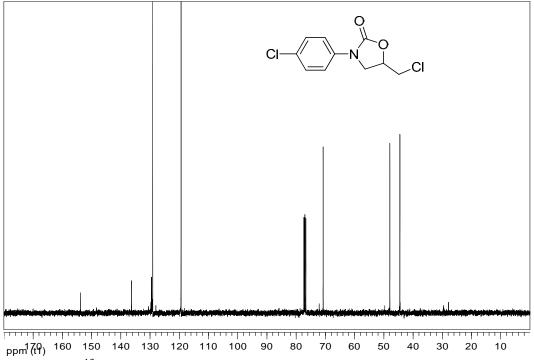


Figure A48 ¹³C NMR spectrum of 5-(chloromethyl)-3-(4-chlorophenyl)oxazolidin-2one

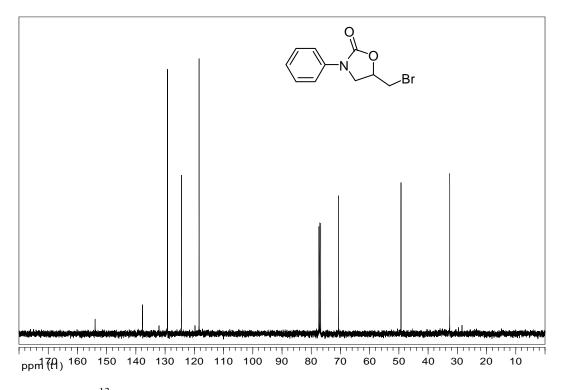


Figure A49¹³C NMR spectrum of 5-(bromomethyl)-3-phenyloxazolidin-2-one

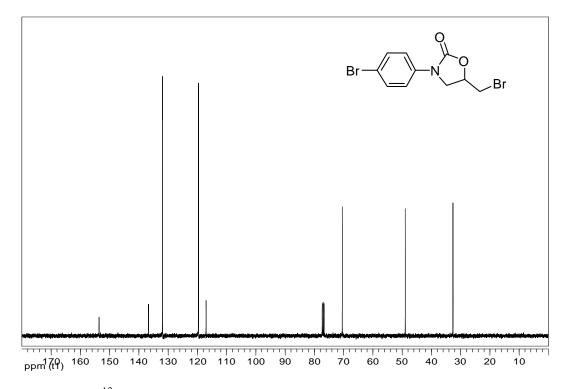


Figure A50 ¹³C NMR spectrum of 5-(bromomethyl)-3-(4-bromophenyl)oxazolidin-2one

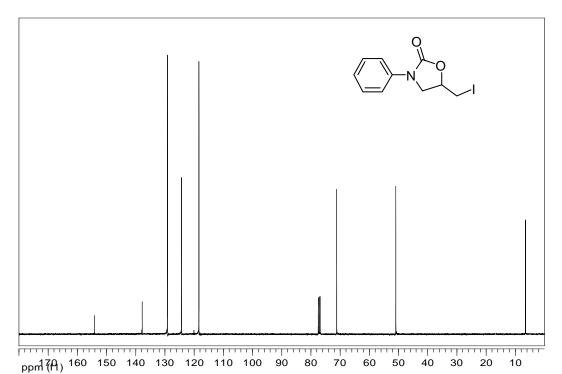


Figure A51¹³C NMR spectrum of 5-(iodomethyl)-3-phenyloxazolidin-2-one

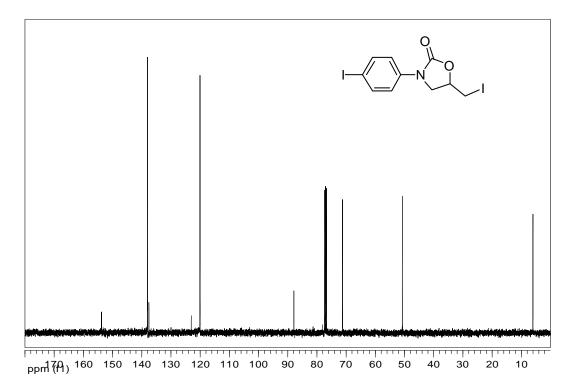
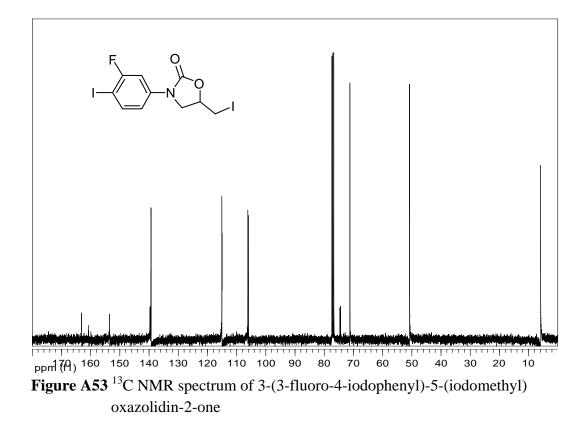
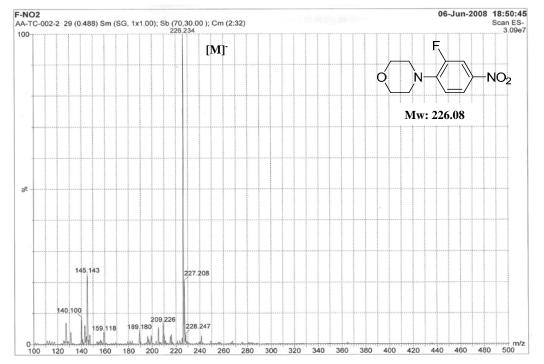




Figure A52 ¹³C NMR spectrum of 5-(iodomethyl)-3-(4-iodophenyl)oxazolidin-2-one

APPENDIX B

MASS SPECTRA

Figure B1 Mass spectrum (ESI-) of 4-(2-fluoro-4-nitrophenyl)morpholine

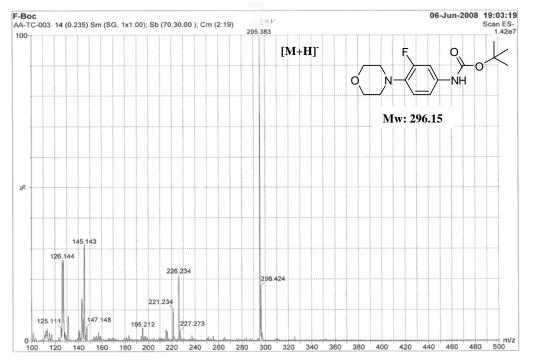


Figure B2 Mass spectrum (ESI-) of tert-butyl 3-fluoro-4-morpholinophenylcarbamate

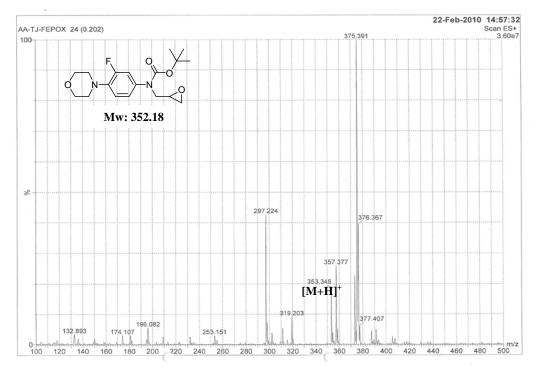


Figure B3 Mass spectrum (ESI+) of *tert*-butyl 3-fluoro-4-morpholinophenyl (oxiran-2-ylmethyl)carbamate

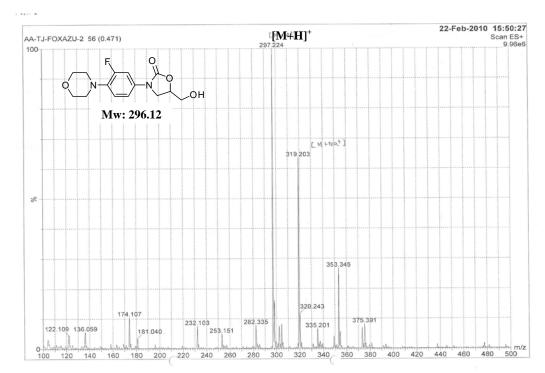
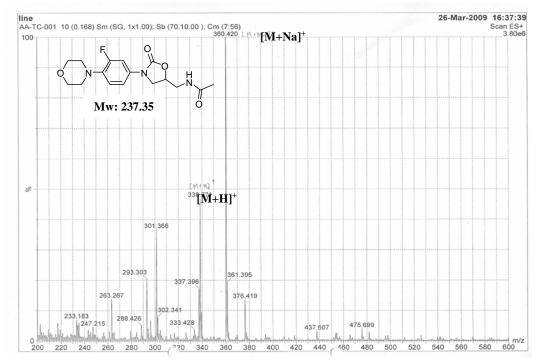



Figure B4 Mass spectrum (ESI+) of 3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one

Figure B5 Mass spectrum (ESI+) of *N*-((3-(3-fluoro-4-morpholinophenyl)-2oxooxazolidin-5-yl)methyl)acetamide

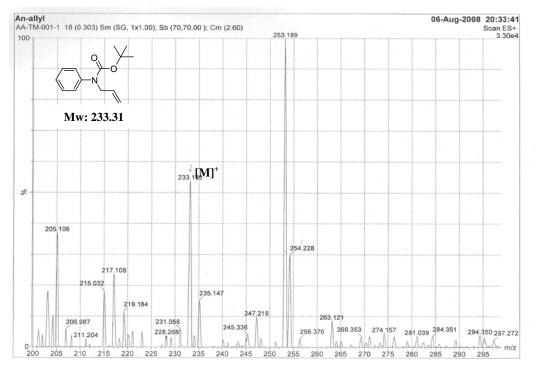


Figure B6 Mass spectrum (ESI+) of tert-butyl allyl(phenyl)carbamate

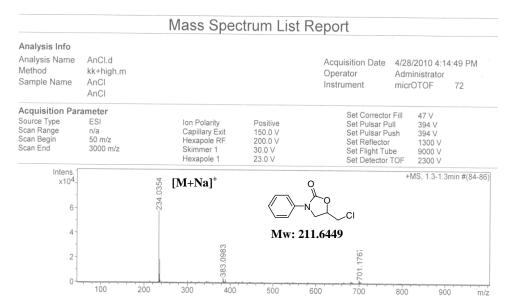


Figure B7 Mass spectrum (ESI+) of 5-(chloromethyl)-3-phenyloxazolidin-2-one

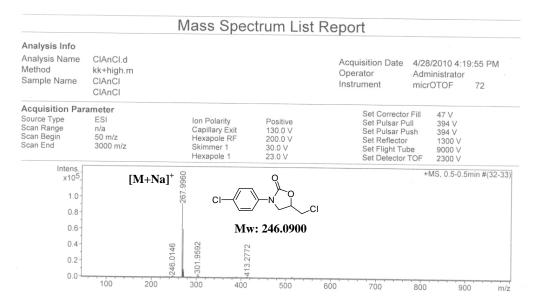


Figure B8 Mass spectrum (ESI+) of 5-(chloromethyl)-3-(4-chlorophenyl)

oxazolidin-2-one

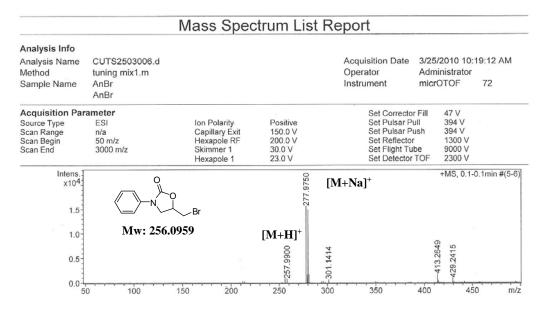


Figure B9 Mass spectrum (ESI+) of 5-(bromomethyl)-3-phenyloxazolidin-2-one

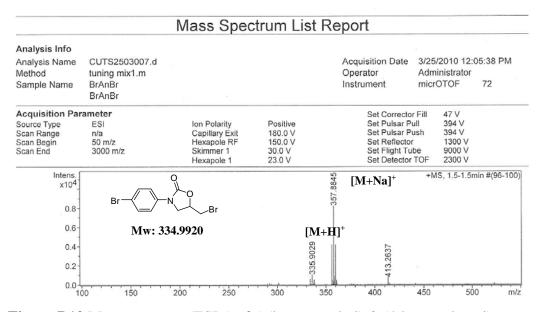


Figure B10 Mass spectrum (ESI+) of 5-(bromomethyl)-3-(4-bromophenyl) oxazolidin-2-one

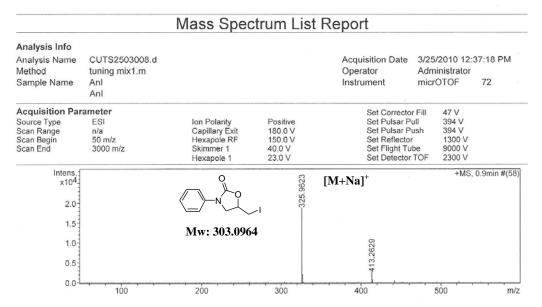


Figure B11 Mass spectrum (ESI+) of 5-(iodomethyl)-3-phenyloxazolidin-2-one

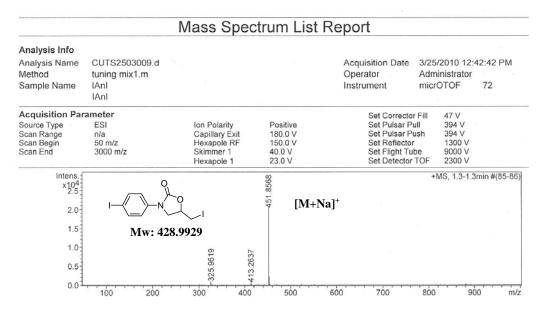
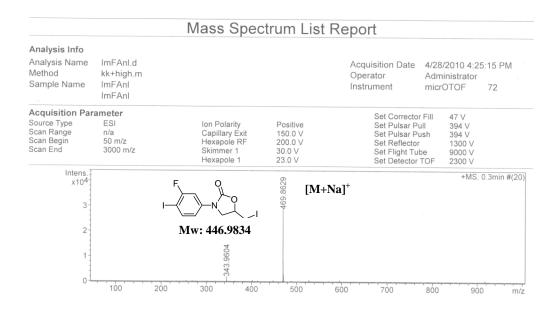
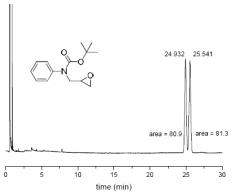
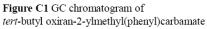
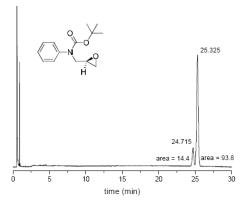


Figure B12 Mass spectrum (ESI+) of 5-(iodomethyl)-3-(4-iodophenyl)oxazolidin-2one

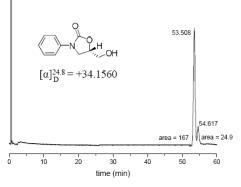
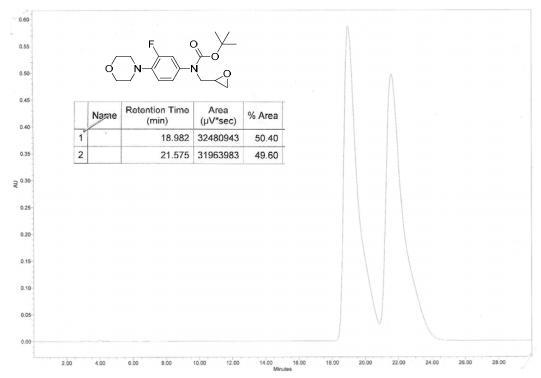





Figure B13 Mass spectrum (ESI+) of 3-(3-fluoro-4-iodophenyl)-5-(iodomethyl) oxazolidin-2-one

APPENDIX C

CHROMATROGRAMS

Figure C2 GC chromatogram of (*R*)-tert-butyl oxiran-2-ylmethyl(phenyl)carbamate

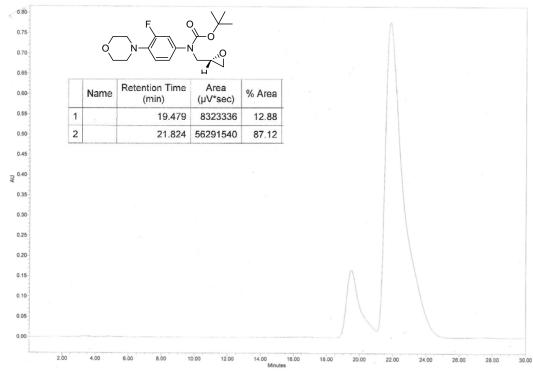

Figure C3 GC chromatogram of 5-(hydroxymethyl)-3-phenyloxazolidin-2-one

Figure C4 GC chromatogram of (*S*)-5-(hydroxymethyl)-3-phenyloxazolidin-2-one

Figure C5 HPLC chromatogram of chromatogram of *tert*-butyl 3-fluoro-4morpholinophenyl(oxiran-2-ylmethyl)carbamate

Figure C6 HPLC chromatogram of *(S)-tert*-butyl 3-fluoro-4-morpholinophenyl (oxiran-2-ylmethyl)carbamate

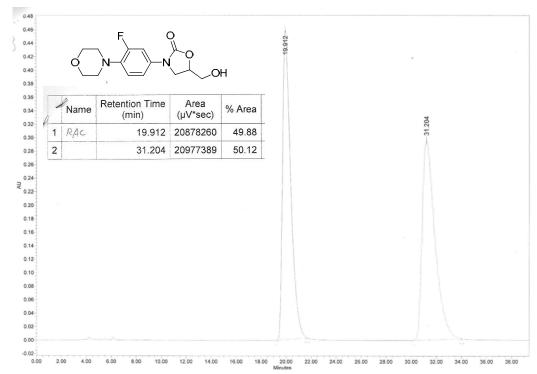
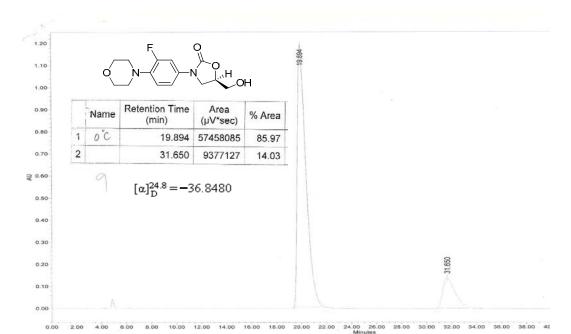



Figure C7 HPLC chromatogram of 3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one

Figure C8 HPLC chromatogram of *(R)*-3-(3-fluoro-4-morpholinophenyl)-5-(hydroxymethyl)oxazolidin-2-one

VITAE

Mr. Thanakrit Chantra was born on September 10th, 1984 in Pichit, Thailand. He received a Bachelor's Degree of Science, majoring in Chemistry from Faculty of Science, Chulalongkorn University in 2007. He has been graduate student in organic chemistry under supervision of Dr. Anawat Ajavakom and Assoc. Prof. Dr. Mongkol Sukwattanasinitt. He graduated with a master degree in organic chemistry at Chulalongkorn University in 2010. His current address is 10/3, Klongkum, Bungkum, Bangkok, 10240.