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PORNTEP PUANGPRAKHON: TRAVEL TIME ESTIMATION AND PREDICTION FOR URBAN 

ARTERIAL ROADS. ADVISOR: ASSOC. PROF. SORAWIT NARUPITI, Ph.D., 138 pp. 

Travel time information has been accepted as the core of advanced traveler information 

systems (ATIS) and advanced traffic management systems (ATMS). Providing the accurate travel time 

information to traffic operators and travelers allows them to make informed decisions, leading to more 

advantage for individual road users and the entire transportation system. Most of the traffic information 

providers normally deliver the current traffic conditions or current travel times to public assuming the 

state of traffic remains constant in the near future. Aimed at the more effective applications, short-term 

future traffic conditions have been proposed as a valuable piece of information in ATIS and ATMS, 

apart from instantaneous or estimated travel time for representing current traffic conditions. 

This dissertation aims at formulating the approaches for travel time estimation and short-

term travel time prediction using probe data. The urban roadways in CBD area of Bangkok metropolis 

with highly complex and nonlinear behaviors were selected as the study corridors for confirming the 

applicability of the proposed techniques. First, a modified algorithm for calculating travel time and 

travel speed on urban roadways from high-resolution GPS probe data called “Running Speed and 

Stopped Delay (RSSD) method” has been proposed. This technique was modified from the average 

speed method using the advantage of movable sensor in which the location and speed of the tracked 

vehicle could be automatically detected. Secondly, for the real world application, the new analytical 

algorithm for allocating travel time from low-resolution GPS probe data into individual road sections 

by integrating instantaneous speed together with tracked locations and time stamp has been proposed. 

The performance of the proposed model in travel time allocation was tested and compared with the 

widely used technique using real field data. Results indicated that the proposed technique provided a 

significant improvement in travel time allocation at both complete section and intersection levels 

compared to the baseline technique. Thirdly, a traffic data collection system from Bluetooth MAC 

Scanner (BMS) was developed and the framework for constructing link travel time information from 

Bluetooth probe data and the preliminary analysis was also provided. Next, the short-term travel time 

prediction model using multilayer feedforward neural networks with the information from both target 

section and neighboring sections as the candidates for model inputs has been proposed. The real 

Bluetooth dataset obtained from BMS systems installed on urban roadway networks in Bangkok CBD 

was used in verifying the applicability of the proposed technique. Results indicated the proposed 

forecast technique was superior in traffic condition with moderate and highly fluctuated travel time 

profiles (CV>0.4) which could be experienced on most urban road sections. 
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1. INTRODUCTION 

 
1.1 CONTEXT AND BACKGROUND 

 

Travel time is considered as an important quantitative indicator for evaluating 

performance of transportation networks. It is also one of the simplest and most 

understood measures for road users to make informed travel decisions. Traffic 

operators can also utilize travel time information in evaluating their ongoing traffic 

operational plan. In general, there are two general types of travel time which are 

normally informed to the users; (1) current travel time (or real-time traffic 

information) and (2) short-term forecasted travel time.  

 

Current travel time of road network has been well applied in various transportation 

purposes. In the view point of time horizon, current travel time provides information 

of the current traffic condition to road users that might help them in a short-term 

delivery e.g. precise travel time information could help to avoid congested sections 

and increase the service quality of commercial delivery. On the other hand, for long-

term scheduling or pre-trip planning, the predicted travel time information is essential. 

In the other viewpoint of traffic condition, in an area with relatively stable traffic 

conditions (e.g. on freeways or rural roadways) a fairly simple estimation method can 

be used to estimate and forecast travel time with the satisfactory accuracy, but in areas 

with rapidly changing traffic conditions or have complex behaviors (e.g. on urban 

roadways) a robust prediction model is necessary (Van Grol, Danech-pajouh et al. 

1999). The prediction of travel time is the major trend to enhance the application of 

travel time information in both transport and logistics fields. Moreover, the impetus of 

forecasted traffic information rather than relying only on current travel time 

information is to let the road users be proactive in the trip management at both the 

pre-trip planning stage and in the ongoing trip decision (Ishak and Al-Deek 2002). 

 

As the current state of practice, traffic data collection and travel time measurement 

can be divided by a sampling technique into two main categories (Lin and Zito 2005) 
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(1) using fixed sensors installed on roadway facilities such as registration plate 

matching, loop detectors, infrared sensors, and radio beacon, etc. to gather data from 

passage vehicles at selected points, and (2) using movable sensors or observers such 

as the GPS or Bluetooth probe vehicle (PV) method or the floating car technique, etc.   

 

1.2 PROBLEM STATEMENT 

 

In past decades, research on traffic states and travel time studies have been focused on 

data gathered from traditional inductive loop detectors and probe vehicles. For 

instance, using data from single loop detectors (Dailey 1999, Jin, Wang et al. 2010, 

Wei, Xiao et al. 2012), dual loop systems (Rakha and Zhang 2005, Soriguera and 

Robuste 2011), taxi probes (Herring, Hofleitner et al. 2010), bus probes (Pu and Lin 

2009, Vanajakshi, Subramanian et al. 2009), or test vehicles (Puangprakhon and 

Narupiti 2015, Puangprakhon and Narupiti 2017). Although the abovementioned 

systems are regarded as efficient approaches in traffic data collection, the 

disadvantages of loop detectors especially on signalized urban streets are noteworthy. 

Firstly, travel time and speed are the preferred pieces of traveler information 

(Vlahogianni, Golias et al. 2004), while loop detectors measure traffic volume and 

occupancy. As travel time and speed must be derived by using the traffic speed-

density-volume relationships (Petty, Bickel et al. 1998, Dailey 1999), uncertainties 

and errors in travel time calculation are unavoidable. Secondly, since loop detectors 

installed at signalized intersections are mainly designed for traffic signal control, 

when vehicle queues persist over the detector location travel time prediction is 

practically impossible (Sisiopiku 1994). (Sen, Soot et al. 1996) concluded that 

accurate travel time estimation using loop detectors on arterial sections could be 

possible in case of sufficient coverage of detectors on all lanes, all sections for all 

movements (especially turning movements), which could be cost prohibitive.  

 

For the probe vehicle system, PV equipped with a GPS receiver (GPS-PV) and a 

GSM/GPRS transmitter acts as a moving sensor that travel in a traffic stream and does 

not require instrumentation to be set up on the roadway. GPS-PV can directly measure 

speed and travel time between any two detected locations and are considered as one of 
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the most promising data sources for travel time information (Sen, Soot et al. 1996). It 

is also considered as one of the reliable and cost-effective measures that has potential 

to provide near real time traffic data on any part of large networks and offers a 

possible manner to supplement fixed-point traffic sensors with high installation and 

maintenance cost. From the above reasons, the GPS-PV technique seems to be very 

appropriate for travel time estimation and prediction problems. However, one of the 

most important drawbacks of this measure is its small penetration rate in reality 

(Wang, Papageorgiou et al. 2007). Moreover, the lack of reliability, the variety of data 

sources, and the randomness of its spatio-temporal coverage (Herring, Hofleitner et al. 

2010), make it insufficient to develop the reliable travel time estimation and 

prediction models on urban roadways. 

 

Recently, with the advancement of technology, Bluetooth scanners are being 

considered as one of the promising techniques for transport and travel time data 

collection (Khoei, Bhaskar et al. 2013). The concept of Bluetooth MAC scanner 

(BMS) in traffic data collection is simple. It scans and records MAC-ID together with 

time stamps of the discoverable Bluetooth devices (BT) within its communication 

zone e.g. from BT signal of Bluetooth probe such as mobile phones, car navigation 

systems, car infotainment systems, etc. The travel time of each vehicle between two 

consecutive BMS locations can be directly estimated by the difference of discovered 

time of the same MAC-ID of Bluetooth probe vehicles (BT-PV) at those stations. 

Various studies on developing traffic information have been conducted by using BT-

PV data collected from Bluetooth scanners. For instance, (Wang, Malinovskiy et al. 

2011) showed the promising results in travel time estimation while using the BMS 

system compared to the travel time recorded from Automatic License Plate 

Recognition (ALPR) devices on both freeways and urban roads. (Bhaskar, Kieu et al. 

2013) tested the BMS system on arterial roadways and showed the potential of BMS 

in providing urban traffic conditions. Although, the BMS system is considered as cost 

effective and efficient approach for gathering traffic data, the application of Bluetooth 

scanner system for travel time estimation and prediction on urban roadways is still the 

main challenges for traffic professionals due to the complex, non-linear, non-

stationary behavior and the disturbance from surrounding environment such as 
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movement of pedestrians at crossing, traffic signals, intersections and access from 

sideway, etc. 

 

In terms of techniques for traffic states or travel time prediction, many researchers 

have attempted to develop various prediction approaches e.g. using regression 

models, time series models, Kalman filtering models and artificial neural network 

(ANN), etc. Studies from the past have demonstrated that ANN models have the 

potential to predict travel time on urban roadways with highly complex and 

complicated traffic behaviors by providing the promising outcomes when sufficient 

historical data can be obtained. The main advantages of ANN models or data-driven 

approaches over other techniques are that they do not require extensive theoretical or 

traffic flow modeling; many software packages are available and ready to use; and 

they are fast and easy to implement (Dougherty 1995). Although previous works have 

demonstrated the favorable prediction outcomes from ANN, some drawbacks still 

need to be further studied. That is, most of the research have focused on freeways 

where traffic behavior is less complicated than urban roadways; the predicted travel 

time from various studies came from simulated data which cannot truthfully represent 

the complicated situation in reality; most of the previous studies accounted only the 

effects of historical travel time from the study segment which limit the applicability of 

the models when travel time from previous intervals are unavailable.  

 

1.3 RESEARCH OBJECTIVES 

 

The main objective of this dissertation is to develop the methodology for travel time 

estimation and short-term travel time prediction on urban roadway networks. Toward 

achieving the abovementioned purpose, the objectives of this research are 

 

(1) To develop the travel time estimation method for both data captured from 

GPS probe vehicles and the Bluetooth scanner system.  

(2) To develop more accurately short-term travel time forecasting on urban 

arterial roadways using Bluetooth data.  
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(3) To test the applicability of the developed models in the real traffic 

situation. 

(4) To evaluate the performance of the developed models by comparing  the 

results with those obtained by other models. 

 

1.4 RESEARCH SCOPE 

 

Travel time prediction study is a wide research area. The prediction models that have 

been developed in previous works can be classified by many means such as in terms 

of roadway type, prediction horizon, source of data, data driven or model based 

approach, etc. This dissertation will be scoped in the following way. 

 

(1) This research focuses only on signalized urban arterials. The other road 

types such as freeways, local roads, or non-signalized streets are not 

considered in this study.   

(2) This research experiments the travel time estimation from Probe-based 

data. A limited scope of experiment is conducted to prove a new concept 

of travel time estimation called Running Speed and Stopped Delay Method 

for high-resolution probe data, and called speed-time-distance method for 

low-resolution probe data. This method of travel time estimation will be 

assessed against a conventional method. The proposed method will be 

studied in detail. 

(3) This research will introduce the travel time estimation from Bluetooth 

probe vehicles. The methodology to handle Bluetooth data including 

filtering will be proposed. The detail on the data filtering and impact on 

resulting travel time estimation will be addressed. 

(4) This research elaborates on the methodology for forecasting travel time 

using the Artificial Neural Network (ANN) Model. The development of 

the model will be carried out using several inputs and model structures. 

Especially, the travel times of the adjacent road sections will be considered 

as model inputs. 
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(5)  For prediction, only on short-term prediction will be focused. From 

literature, there is no clear definition and boundary among short-term and 

long-term prediction. In this dissertation, 60 minutes (or 4 time steps 

ahead) is chosen as the longest prediction horizon for testing the 

applicability and performance of the proposed model.    

(6) The data source is one of the main issues in travel time study as the 

availability of data dominantly affects the modeling approach and research 

methodology. In travel time prediction, data are limited to traffic data 

captured from Bluetooth scanners installed at signalized intersections on 

urban roadways in Bangkok CBD. 

 

1.5 ORGANIZATION OF THE DISSERTATION 

 

This dissertation is organized into seven chapters as follow:  

Chapter 1 Introduction: as described in this chapter  

Chapter 2 Literature review: reviews the previous short-term travel time prediction 

works ranging from simple methods to the complicated ones. 

Chapter 3 Travel time estimation from GPS probe data: describes the concept and 

technique for developing traffic information on urban roadways from high and 

low resolutions probe data.  

Chapter 4 Travel time estimation from Bluetooth probe data:  presents the data used in 

this research and the preprocessing as well as preliminary analysis of Bluetooth 

data. 

Chapter 5 Development of models for travel time prediction and experimental 

corridors: describes the concept of neighboring section relationships, the 

developments of ANN models for travel time prediction, the experimental 

corridors and dataset in this study.  

Chapter 6 Travel time prediction results and discussions: present the travel time 

prediction results, analysis of results, and also comparison of the results 

obtained from the proposed methods with others traditional techniques.  

Chapter 7 Conclusions and future research: summarizes the findings of this research 

and contributions and also provides recommendations for future works. 
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2. LITERATURE REVIEW 

 

In this chapter, a review of the existing research related to travel time prediction 

techniques is described. The literature review can be classified under five broad 

categories; definition of the elements of urban networks, traffic data collection 

technologies, taxonomy of travel time prediction models, short-term travel time 

prediction, and the summary of the literature review. 

 

2.1 DEFINITION OF THE ELEMENTS OF URBAN ROADWAYS  

 

In this dissertation, the following definitions are used (Lui 2008). Figure 2.1 

illustrates the outline of different elements of urban roadways. 

 

An intersection is the location or a road junction where two or more roads meet or 

cross at the same grade or same level. 

An urban link is a section of an urban road which lies between two consecutive 

intersections. 

An urban section is a combination of one or more urban links and one or more 

intersections. Two types of urban section can be classified as follows:  

- Type A: an intersection is connected to the start of an urban link. 

- Type B:  the end of an urban link is connected by an urban intersection. This 

urban section will be used in the rest of this dissertation.  

 

 

 

  

 

 

 

Figure 2-1 Basic elements of an urban roadway. 

Road section 

Link 

Intersection 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 

2.2 TRAFFIC DATA COLLECTION TECHNOLOGIES 

 

Travel time is a fundamental measure in transportation as it is simple concept, easy to 

understand, and can be used in communication by a variety of stakeholders, including 

travelers, transportation planners, engineers, etc. In general, the broad definition of 

travel time can be defined as “the time necessary to traverse a route between any two 

points of interest”.  

 

Travel time can be directly measured by traversing time on the route(s) that connects 

any two or more points of interest. Travel time between any two points normally 

comprises the running time region and stopped delay time region (or moving 

sufficiently slow as to be stopped) (Turner, Eisele et al. 1998). Figure 2-2 illustrates 

the concepts of running time and stopped delay time. 

 

Figure 2-2 Concepts of running time and stopped delay time. 

 

The techniques for gathering travel time information can be broadly categorized into 

two main groups. The first one relies on the fixed-location sensors that can collect 

traffic information such as volumes, headways, time mean speeds, and lane 

occupancy. The sensors in this group are such as inductive loop detectors (ILD), 

infrared sensors, Doppler microwave, and video camera, etc. The second group relies 

on movable or mobile sensors such as GPS, Cell Phone, toll tag, and Bluetooth 

devices that “track” the vehicle location and time along the travel route. One of the 

key advantages of the movable sensors compared to the fixed sensor system is the 

direct measurement of point-to-point travel time. 
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From literature, numerous works on both arterials and freeway employed the fixed-

location sensors particularly inductive loop detectors in measuring traffic information 

such as traffic volume, occupancy and point speed (Coifman 2002) for the advanced 

traffic management systems (ATMS) and advanced traveler information systems 

(ATIS). Various researches have applied data gathered from loop detectors in 

developing travel time information in the form of both estimated and predicted travel 

times (Sisiopiku 1994, Anderson and Bell 1997, Palacharla and Nelson 1999, Li 2002, 

Stathopoulos and Karlaftis 2003, Lucas, Mirchandani et al. 2004, Robinson and Polak 

2005, Guo and Jin 2006).  

 

Although popular, the drawbacks of loop detectors in traveler information application, 

particularly on signalized urban roads, are notable. First, loop detectors measure 

occupancy and traffic volume while the preferred traveler information in ATIS is 

travel time and speed (Vlahogianni, Golias et al. 2004). In developing travel time and 

sometimes travel speed, many mathematical assumptions are required such as vehicle 

length and traffic speed-density-volume relationships (Petty, Bickel et al. 1998, 

Dailey 1999). Nonetheless, dual loop detectors were widely used in measuring traffic 

speed, and travel time must still be carefully derived (Coifman 2002), resulting in 

inevitable uncertainty and error in travel time calculation. Second, the main objective 

for mounting loop detectors at signalized intersections is for traffic signal control 

purposes that may not be suitable for providing travel time and speed information. For 

example, travel time prediction is practically impossible when vehicle queues persist 

beyond the detector location. (Sen, Soot et al. 1996) concluded that a sufficient 

coverage of detectors on all lanes, sections, and movements (especially turning 

movements) is required for the accurate estimation of travel times using loop 

detectors on arterial sections, which could be cost prohibitive. Third, in real-time 

travel time prediction, both real-time traffic measurements and real-time traffic signal 

timing information are necessary. These requirements become problems when traffic 

signal controls are not integrated in the system. Moreover, the cost prohibitiveness is 

a major concern in widespread deployment of fixed sensors such as loop detectors in 

large urban areas. 
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On the other hand, probe vehicles (PV) can directly measure travel speed and travel 

time between any two locations of interest and are considered one of the most 

promising data sources for travel time estimation and prediction (Sen, Soot et al. 

1996). Any vehicle can be a probe as long as the vehicle can be tracked continuously 

or at least recognized at the starting and ending points of a route. Examples are 

personal vehicles instrumented with automatic identification tags, traceable by 

cellular phone signals (Bar-Gera 2007), equipped with global positioning satellite 

(GPS) devices (Quiroga 2000, Taylor, Woolley et al. 2000) or equipped with 

Bluetooth devices (Bhaskar and Chung 2013). The PVs equipped with a GPS receiver 

(GPS-PV) and a GSM/GPRS transmitter act as a moving sensor traveling in a traffic 

stream and may not require instrumentation to be set up on the roadway. It can 

directly measure speed and travel time between any two detected locations and is also 

considered as one of the reliable and cost-effective measurement systems that has 

potential to provide near real time traffic data on any part of a large network. 

However, one of the most important drawbacks of these systems is its small 

penetration rate in reality. The Bluetooth scanner is considered as one of the 

promising techniques for transport and travel time data collection. It scans and records 

MAC-ID together with time stamps of the discoverable Bluetooth devices (BT) within 

its communication zone. The travel time of each vehicle between two consecutive 

BMS locations can be directly estimated from the difference of discovered times of 

the same MAC-ID of Bluetooth probe vehicles (BT-PV) between those stations. The 

BMS system is also considered as the cost effective and efficient approach that has 

high potential in gathering traffic data. 

 

2.3 TAXONOMY OF TRAVEL TIME PREDICTION MODELS 

 

In order to understand the differences among travel time prediction approaches, the 

key distinguishing factors between travel time prediction models are presented as 

follow: 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 

2.3.1 Difference between travel time estimation and travel time prediction  

 

Travel time is the time spent by a vehicle traversing a given road section, including all 

delays encountered. Travel times on a link experienced by individuals vary. The 

average of the arithmetic mean of all individual travel times in the same time interval 

is generally used as the travel time information, which can be classified into two 

broad categories:   

 

The estimated travel time is the travel time which is already experienced by the 

vehicles that have already departed the road section in the current or past time-periods 

(Van Lint 2004). 

 

The predicted travel time is the travel time that will be experienced by the vehicle in a 

future time-period (Van Lint 2004). 

 

2.3.2 Prediction horizon  

 

The prediction horizon is the time interval (or period) after the prediction is made. 

There are two types of travel time prediction categorized by prediction horizon; (1) 

short term prediction that usually reflects the forecasting time up to one or two hours 

(Hinsberger, Van et al. 2007), and (2) long term prediction that refers to time up to 

days, weeks, months or years. In general, the prediction models with longer horizon 

tend to rely on statistic e.g. ARIMA or regression, or rely on theoretical assumptions 

e.g. Wardrop equilibrium or Dynamic User Optimum. In this dissertation, we will 

focus only on short term travel time prediction with the prediction horizon up to 1 

hour.  

 

2.3.3 Modeling approach  

 

There are two main groups in travel time prediction approaches:  
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(1) Data driven technique employs statistical relations among historical travel 

time and future travel time without considering the traffic processes. In this 

approach, the main factors that affect the travel time prediction results are the 

data quality, the used technique, and the parameters used as inputs in the 

developments of models.  

(2) Model based technique uses the traffic flow theory and traffic flow models in 

the traffic condition and travel time prediction. From previous researches, 

using the traffic flow theory seems more appropriate. However, the major 

drawbacks of this technique are that; it needs highly accurate models and 

model inputs, and the accuracy of outputs from this technique strongly 

depends on the quality of input data, the calibration of models, and the used 

models. Furthermore, application on large networks requires a lot of effort in 

modeling, implementation, calibration and maintenance.  

 

Since our proposed method belongs to the first category (data driven technique), only 

the prediction methods related to this approach, i.e., statistical or data driven models, 

will be examined in this dissertation.  

 
2.3.4 Methodology  

 

The methodology of travel time prediction can be classified into two types;  

 

(1) The direct method predicts travel time directly from the current and historical 

travel time data recorded by the sensors. 

(2) The indirect method forecasts the future traffic conditions using other data 

from travel time such as travel speed, flow, occupancy and then using traffic 

flow fundamentals to estimate the future travel time from future traffic 

conditions. 
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2.3.5. Road type  

 

Types of road can be classified into two main groups, which are (1) freeway with no 

interruption from the surrounding environment e.g. intersections, traffic signals, 

roadside parking, and (2) urban roadway with the complex and highly nonlinear 

behavior due to the disturbance from surroundings. In this dissertation, due to the 

challenges in transport research, we focus only on urban roadways. 

 

2.4 SHORT-TERM TRAVEL TIME PREDICTION 

 

The timeliness and accuracy level of future traffic conditions is the key feature of 

traffic information. The accurate information on future travel time is more beneficial 

than the past or current traffic information, particularly on the section where travel 

time is highly fluctuated. A variety of methods both in theoretical background and 

testing procedure for travel time prediction are available in the literature. The next 

section describes an overview, applications and discussion of various travel time 

prediction approaches, including simple prediction model, time series analysis, 

Kalman filtering, and neural networks technique.    

 

2.4.1 Simple prediction models 

 
Simple methods for travel time prediction have been developed and applied in many 

ITS applications. These methods are also known as ad hoc or naïve techniques and 

they are attractive because their simple and no site specific manner. Simple 

techniques can be categorized into using real-time information, using historical 

information, or the combination of the two (Hamed 2004).   

 

The use of real-time or current travel time as the predicted value assumes that the 

travel time during any given time period is the same as that during previous time 

period. This technique is probably the simplest and most straightforward of all 

prediction techniques. It assumes that the current traffic condition is the best predictor 
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for traffic condition in the near future. This method is also known as “random walk” 

technique, which can be expressed as; 

 

𝑋̂𝑖+𝑗 = 𝑋𝑖,             𝑗 = 1, 2, …   (2-1) 

 

Another simple technique is the use of historical average, assuming the travel time 

during any specified time period equals the smoothed historical volume for that period 

as obtained from earlier observations, which can be expressed as; 

 

𝑋̂𝑖+𝑗 =
(𝑋𝑖+𝑋𝑖−1+⋯+𝑋𝑖−𝑁+1)

𝑁
        𝑗 = 1, 2, …   (2-2) 

 

The above-mentioned techniques are used as the benchmarks for evaluating 

performance of proposed travel time prediction models in numerous works such as in 

(Stephanedes, Michalopoulos et al. 1981, Park, Rilett et al. 1999, Williams and Hoel 

2003, Chen and Rakha 2014, Pongnumkul, Pechprasarn et al. 2014, Fan and Gurmu 

2015, Tak, Kim et al. 2016). 

 

2.4.2 Time series analysis 

 

A time series is a collection of observation or series of data points in time order with 

equally spaced time interval. The time series analysis is a statistical technique that 

deals with time series data. Time series model uses a set of time series data x(t) to 

catch and explain the system behavior and also to forecast the future condition at time 

t+D, where D is the prediction interval (Smith and Demetsky 2004). There are 

various forms of time series for representing different stochastic processes. The 

common time series forms include the auto regressive (AR) models, the auto 

regressive moving average (ARMA) models, the autoregressive integrated moving 

average (ARIMA) models, and the seasonal autoregressive integrated moving average 

(SARIMA) models. 

 

https://en.wikipedia.org/wiki/Data_point
http://www.statisticssolutions.com/directory-of-statistical-analyses/
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Some of the previous works that employed various time series models in forecasting 

traffic information on both freeways and arterials are as follow: 

 

(Williams and Hoel 2003) applied SARIMA models in addressing the traffic flow 

prediction problem on 2 freeway locations, one in the United States and one in the 

United Kingdom. Data from both freeways were gathered by inductive loop detectors. 

The U.K. data were from the outer loop in the southwest quadrant of the M25 

motorway which represented a modern major urban circumferential freeway, while 

the U.S. data were from northbound I-75 inside the northwest quadrant of the I-285 

perimeter freeway around Atlanta which represented a major urban radial freeway. 

The result indicated that One-step (a one-week lagged) seasonal ARIMA predictions 

consistently outperformed heuristic forecast benchmarks on both testing corridors by 

providing the best forecasting result based on MAD, RMSE and MAPE values. They 

concluded that a first seasonal difference taken at a one-week lag could be the key to 

proper application of ARIMA modeling to time-indexed traffic volumes. 

 

(Billings and Yang 2006) applied autoregressive integrated moving average (ARIMA) 

models in addressing the arterial travel time prediction problem on urban roadways. 

They used the GPS probe vehicles in data collection during afternoon peak hours 

(3.30-5.00 pm) on one of the most heavily traveled and congested roadways in the 

Duluth metro (3.7-mile with 10 signalized intersections on Minnesota State Highway 

194) for two weeks. The results indicated that the ARIMA models provided 

reasonable prediction results on most of the road sections, particularly on the section 

with higher speed limit. While on the sections with a shorter distance, lower speed 

limit, and the section with relatively high cross-street traffic, the prediction error 

seemed relatively large. They also stated that their proposed method could be easily 

modified and applied to short-term arterial travel time prediction for other urban 

areas. 

 

(Chowdhury, Nath et al. 2009) proposed two new methods which were based on 

moving average called “Successive Moving Average (SMA)” and “Chain Average 

(CA)” for travel time prediction. They tested their proposed methods with simulated 
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data generated from PNU (Pusan National University) trajectory data generator. This 

dataset was first collected from field data in Pusan city, South Korea using GPS 

sensors. Traffic patterns were then extracted, simulated, and generated as the 

trajectory data for testing the prediction models. They compared their methods with 

the two benchmark techniques; Naïve Bayesian Classification (NBC) (Lee, 

Chowdhury et al. 2008) and switching method (Schmitt E. J. and Jula 2007). The 

prediction results indicated that their proposed methods provided a more precise 

prediction in most test cases. They also concluded that their proposed techniques 

could provide an accurate prediction with low cost due to simplicity and could 

eliminate unwanted fluctuations in the data set in comparison with the conventional 

moving average method. 

 

(Khoei, Bhaskar et al. 2013) studied the travel time prediction on three urban 

signalized arterials in Brisbane. In their study, Bluetooth detectors installed along the 

urban corridors by the Brisbane City Council were used for traffic data collection 

(Bluetooth probe data) from November 2011 to June 2012 (8 months). From 8 months 

dataset, the travel time was classified into 3 categories: school holiday, public 

holiday, and working day. They applied SARIMA model with a seasonality of 24 

hours recurrent trend in travel time prediction from 5 minutes up to 90 minutes 

prediction horizons. The prediction results indicated that the SARIMA model 

produced good results for short-term travel time prediction up to 30 minutes ahead. In 

longer prediction horizons, the prediction errors increased accordingly due to the high 

variability in the day to day travel time trend. They also concluded that their proposed 

model performed much better in arterial corridors with normal shaped congestion 

peaks created by sufficient data points and with more similar recurrent trends in their 

historical travel time databases.  

 

The researches mentioned above indicate the potential of applying time series analysis 

in tackling the travel time prediction problems. However, an issue to consider is the 

assumption that historical patterns will remain the same in the future. The accuracy of 

these models is a function of similarity between real-time situations and historical 
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patterns. Variations in historical data or deviations in the relationship between real-

time and historical data could lead to significant inaccuracy in the prediction results. 

 

2.4.3 Kalman filtering 

 

The Kalman filter, which is called linear quadratic estimation (LQE) in the control 

theory, was first proposed by R.E. Kalman in 1960. In Kalman filtering algorithm, 

series of measurements observed over time which contain statistical noise and 

inaccuracies are used to estimate unknown variables by estimating a joint probability 

distribution over the variables for each timeframe. There are two main features of 

Kalman formulation and solution to the problem, the first one is vector modeling of 

the random processes under consideration, and the second is the recursive processing 

of noisy measurement or input data. Kalman filtering models consist of two main 

equations. The state equation estimates the current state variables, along with their 

uncertainties, and the measurement equation transfers the estimated state variables 

into observed variables once the outcome of the next measurement is observed. Then, 

the difference between observed and predicted variables is used to update the next 

state variables. Kalman filter models can fully respond to dynamic conditions using 

time-varying parameters which make it different from the methods using only 

historical data for prediction. 

 

Some of the previous works that employed Kalman filter as a forecasting technique to 

address traffic prediction problems on both freeways and arterials are as follows: 

 

(Nanthawichit, Nakatsuji et al. 2003) developed a method for traffic state estimation 

and short-term travel time prediction on freeways by integrating probe vehicle data 

with data collected from conventional inductive loop detectors. In their research, the 

state equation was represented by the macroscopic traffic flow model. The 

observation equation was constructed using data from both probe and inductive loops. 

Then, the estimated states were updated with information from both fixed detectors 

and probe vehicles. Their proposed method was tested under various traffic conditions 

based on simulated data from INTEGRATION software. The results from the traffic 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_noise
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Joint_probability_distribution
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state estimation indicated that the method using both fixed detector and probe data 

provided the smallest errors. The error could be reduced significantly (70-85% for 

speed and density) compared to the use of the macroscopic model only. Their 

proposed travel time prediction method also performed well compared to the 

autoregressive function with the KFT method proposed by (Chen and Chien 2001). 

 

(Xiaobo 2004) developed three dynamic recursive prediction models: a dynamic 

exponential smoothing model (DESM), an improved dynamic exponential smoothing 

model (IDESM), and a dynamic moving average model (DMAM), by incorporating 

the Kalman filtering model (KFM) into both an exponential smoothing model (ESM) 

and a moving average model (MAM). The models were tested on data from a selected 

highway in Southern New Jersey that was simulated using CORSIM simulation 

software. The prediction results under various traffic conditions (e.g., free-flow 

condition, recurrent and non-recurrent congested traffic conditions) showed that the 

IDESM outperformed other models in prediction of accuracy and stability. The author 

also suggested that the IDESM is easy to implement in the real world network for 

short-term travel time prediction. 

 

(Yang 2005) studied the arterial travel time prediction using the Kalman filtering and 

estimation technique. They used the Global Positioning System (GPS) test vehicle 

technique to collect travel time data after the graduation ceremony events on the 

Duluth Entertainment and Convention Center (DECC), Minnesota. In Yang’s study, 

three test vehicles were used to report travel time data. These vehicles were sent to the 

field and followed the pre-specified path, thereby running on three or five minutes 

headway. Then the discrete-time Kalman filter was applied to predict travel time 

exiting the study area. The results showed that the prediction error was acceptable 

(judged by traffic engineers) with MARE 17.61%. They pointed out that using shorter 

prediction time interval with higher number of intervals provided better prediction 

results than using the longer interval with lower number of intervals. They also 

suggested the use of interpolation technique for increasing the number of intervals in 

order to reduce the prediction time interval. 
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(Zhu, Kong et al. 2009) applied the Kalman filtering method in travel time prediction 

on large-scale urban arterial roads. The researchers proposed a new prediction method 

based on Kalman filter by estimating the state transition matrix from temporal and 

spatial perspectives separately. To estimate the parameters in the method, the 

hierarchical clustering analysis was used to gain the spatial factors of roads. In model 

testing, a large number of float car data collected from arterial roads in Beijing was 

used to evaluate the accuracy of the proposed prediction method. The prediction 

results indicated the mean absolute relative error of 14.66% with a minimum of 

6.37% and a maximum of 19.56%. The researchers also stated that their proposed 

prediction method could dynamically reflect the traffic fluctuation during the rush 

hours which could greatly improve the accuracy of the prediction. They also informed 

that their proposed method using the float car data was used in the Traffic Information 

System to supply service (based on the data of 2009). 

 

The researches cited above indicate the potential and effectiveness of using Kalman 

filtering in travel time prediction both on freeway corridors and on urban arterial 

roadways. Unlike time series analyses where historic data are used for prediction, the 

Kalman method uses adaptive parameters responsive to dynamic conditions. 

Therefore, theoretically, the Kalman filtering method could provide a prediction that 

quickly reflects the traffic fluctuations. Kalman filtering can also be applied with data 

from multiple sources in order to improve the prediction accuracy. Although the 

Kalman filtering technique has superior prediction capabilities than the time series 

techniques, it has been criticized for doing so only on a limited time interval.   

 

2.4.4 Artificial Neural Networks 

 

Artificial Neural Network (ANNs) can be defined as the technique for processing 

information that is inspired by the human brain system. The brain is principally 

composed of enormous number of neurons that are massively connected together to 

solve a specific problem. ANNs mimic the biological neurons functions to perform 

the sophisticated and intelligent computations similar to the human brain system. 

Neural networks are statistical models capable to capture and represent the complex 
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relationship between input and output. ANNs resemble the human brain systems by 

acquiring knowledge through training process, and storing connecting weights from 

the training process. The ANN model comprises several building blocks called 

neurons. Each neuron is composed of two units: the first one is sums of the weight 

coefficients and inputs, and the second unit is a nonlinear transfer function known as 

an activation function. The summed (and weighted) input is brought into the 

activation function to produce an output. If the output is not the same as the desired 

output, then an apparent error will be present. The error is fed back to the model and 

the weights are re-adjusted. This training process is repeated until the model 

performance is acceptable. Once the model has already been trained, the model 

weights are set and ready for use in the prediction task. The key capabilities of ANNs 

include pattern recognition, classification, detection, adaptive filtering, estimation, 

and prediction, etc. Since the rapid development of computational technology in last 

decades, the neural network has become a major technique in addressing various 

transportation problems (Dougherty 1995).  

 

Some of the previous works that applied various structures of ANNs in traffic 

prediction on both freeways and arterials are as follows: 

 

(Bae 1995) applied the multilayer feedforward neural networks (MFNNs) with 1 

hidden layer and 8 hidden neurons to interpret auto travel time from bus travel times 

which were gathered by the automatic vehicle location (AVL) system from equipped 

buses, acting as probe vehicles, for estimating bus arrival times and auto travel times. 

The inputs for MFNNs comprised both dynamic and static field data that could affect 

bus travel times, such as link length, number of lanes, parking availability, bus travel 

time passengers, etc. The prediction results indicated that the proposed MFNNs 

models provided better outcomes compared to the regression technique, particularly, 

on the network with nonlinear behavior.  

 

(Kisgyorgy and Rilett 2002) applied an ANN with two different approaches to predict 

travel time on a freeway corridor in San Antonio, Texas. The first approach used the 

Modular Neural Networks (MNN) that involved three steps: pre-processing the data, 
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identifying the clusters, and identifying the model structure of the ANN for each 

cluster, to predict speed from its measured value and then to calculate the future travel 

time using a standard formulation. In the second approach, the travel time was 

predicted directly with the ANN. In the third approach, travel time was predicted from 

actual speeds data. The results indicated that the model where travel times were 

directly predicted by neural networks from detector data provided best results. 

However, because of the lack of continuous collection of travel time data, this model 

could not be used in practice. 

 

(Ishak, Kotha et al. 2003) used three ANN topologies which were Jordan/Elman, 

partially recurrent networks, and time-lagged feedforward networks for short-term 

traffic prediction in the range of 5 to 20 minute-horizons on freeways using data 

obtained from inductive loop detectors under different networks and traffic 

conditions. The various combinations among data of target location, upstream and 

downstream locations were considered as model inputs. The results indicated that the 

optimized performance of the dynamic neural networks outperformed a statistical 

non-linear time series approach in most cases. Results also pointed out that no single 

topology consistently outperformed the others for all prediction horizons. Finally, 

authors provided the comparative evaluation of performance between optimal and 

non-optimal settings and suggested that the applied procedure could be used to 

identify the prediction reliability of information dissemination systems. 

 

(Lui, He et al. 2009) used the neural network model to address the problem of travel 

time prediction on urban arterials using data from loop detectors. They proposed a 

generic segment model based on the State Space Neural Network for travel time 

prediction on a basic segment of urban arterials. For a longer arterial covering several 

controlled intersections, it can be conducted by assembling each individual segment 

model. This method led to the significant reduction in number of parameters of the 

neural network, which made it simpler and easier to be implemented in practice. To 

verify their proposed model, an urban arterial in the Netherlands was selected as the 

test bed. The results indicated that the proposed model was capable of dealing with 

complex nonlinear urban arterial travel time predictions with satisfying accuracy. 
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However, although generally said that their proposed model was capable for travel 

time prediction problems, the larger difference between predicted and actual travel 

time occurred in the transition states when congestion was developed and dissolved. 

 

The researches cited above indicate that neural networks have proven to be a powerful 

method in the area of travel time forecasting. Neural networks can perform highly 

nonlinear mappings between input and output spaces, as the neural network approach 

is nonparametric. Therefore, one does not need any assumptions about the functional 

form of the underlying distribution of the data. Neural networks can be applied to 

forecast multiple period mean travel times more accurately than other competing 

approaches, such as time series and Kalman filtering.  

 

(Karlaftis and Vlahogianni 2011) reviewed numerous works in modern transportation 

studies and concluded that NN have mainly been used as data analytic methods in 

transport research due to various reasons e.g. the ability to work with multi-

dimensional data, flexibility in modeling, adaptability, and good predictive ability. 

 

The characteristics of time series analysis, Kalman filtering technique, and artificial 

neural networks in travel time prediction are summarized in Table 2.1 (Vlahogianni, 

Golias et al. 2004). These characteristics mainly are concerned with the statistical 

hypotheses made (stochastic versus deterministic, stationary or not) or any statistical 

predefined input parameter that could affect the structure of the model (linear or non-

linear), the difficulty/complexity in modeling multivariate data, the data requirements 

in terms of quantity and quality (data continuity). Finally, the last two rows give a 

short description of the main advantages and disadvantages of the methodologies 

regarding the efforts made in modeling traffic data. 
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Table 2-1 Summary of characteristics for the widely used models in travel time 

prediction. 

 Time series Kalman 

filtering 

Neural 

networks 

Hypothesis on the statistical 

nature of data  

Stochastic Stochastic 

Gaussian nature of 

initial conditions 

Not required 

Hypothesis on the temporal 

regularity  (stationarity) 

Weak stationarity Not required Not required 

Hypothesis on-linearity or 

non-linearity 

Input parameter* Input parameter* Not required 

Multivariate modeling Difficult  Straightforward Easily incorporated 

Data  - quantity Extensive Extensive Extensive 

Data  - quality Continuity Continuity Not required 

Results  - extraction Explicit Explicit Implicit 

Results  - accuracy Low but capable Medium Best 

Main advantages  Well-established 

theoretical 

background  

Multivariate nature Non-stationary and 

non-linear 

environment, wide 

mapping capability  

Main disadvantages Weak stationarity, 

low accuracy in 

extreme value 

Gaussian 

hypothesis 

Data extensive, 

complex internal 

structure 

Input parameter: the decision of linear or non-linear modeling must be predefined because it largely 

affects model structure. 

 

2.5 SUMMARY OF LITERATURE REVIEW 

 

This chapter covers an overview of the traffic data collection technologies, taxonomy 

of travel time prediction models, and short-term travel time prediction studies. 

 

Most existing data collection technologies fall into two categories, the fixed location 

sensor and mobile sensor (probe). The most widely used fixed location sensor is the 

inductive loop detector (ILD). Fixed location sensors are important traffic data 

sources but the deployment and maintenance cost is usually high and the aggregated 

data is not the most suitable input for real time ITS applications. It is not cost 
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effective for traffic data collection on urban arterial roads. Mobile sensors are 

developed along with ITS and become the most important data sources and 

demonstrate the high potential for ITS applications.  

 

The general forms of travel time information in ITS application can be grouped into 

two categories: the estimated travel time already experienced by the vehicles, and the 

predicted travel time that will be experienced by the vehicles in the future time 

periods.  

 

The travel time prediction horizon can be categorized into short-term prediction (with 

less than 1 hour prediction horizon), and long-term prediction (more than 1 hour up to 

years). 

 

In travel time prediction, there are two main techniques in modeling; 1) model based 

approach using the traffic flow theory and traffic flow models in the traffic condition, 

and 2) data driven approach which employs statistical relations among historical 

travel time and future travel time without considering the traffic processes. 

 

Methodologies for travel time prediction fall into two methods: 1) direct method that 

predicts travel time directly from the current and historical travel time data, and 2) 

indirect method that forecasts the future traffic conditions using other data such as 

travel speed, flow, occupancy then using traffic flow fundamentals to estimate the 

future travel times from future traffic conditions. 

 

Two different road types were mainly focused in literature the freeways with 

uninterrupted behavior and urban arterials with highly complex and nonlinear 

behavior. 

 

Previous studies imply that there are three main techniques in addressing traffic 

forecasting problems, which are time series analysis, Kalman filtering, and ANNs. 

Although there is no sole conclusion on which technique is always superior to the 

others, the potentials of ANNs in transport study are noteworthy, e.g. the ability to 
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work with multi-dimensional data, flexibility in modeling, adaptability, and good 

predictive ability.  

 

In this dissertation, the data driven approach (ANNs) with historical travel time of 

target and neighboring sections as inputs was selected for tackling the short-term 

travel time prediction problems on urban roadways using data from probe vehicles. 

Details of model development are given in Chapter 5. The results of short-term travel 

time prediction are presented in Chapter 6. 

 

The proposed techniques for travel time estimation from high resolution and low 

resolution GPS probe data are given in Chapter 3. Details of travel time estimation 

from Bluetooth data are provided in Chapter 4. 
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3. TRAVEL TIME ESTIMATION FROM GPS PROBE DATA 

 

In this chapter, the methods for travel time estimation from GPS-probe data are 

presented. The organization of this chapter starts with the simple techniques in 

approximating travel time and speed from the high-resolution GPS-probe data, 

followed by the error in travel speed estimation from simple techniques. Then the 

travel time allocation problem that represents low-resolution data in real world 

application is addressed. The techniques for tackling travel time allocation problems 

both the widely used and proposed techniques are described next, followed by the 

field experiment on travel time allocation. At last, concluding remarks of this chapter 

is presented.   

  

3.1 APPROXIMATION OF TRAVEL TIME AND SPEED FROM HIGH-

RESOLUTION GPS-PROBE DATA  

  

3.1.1 Calculation by the average speed method 

 

Travel time is defined as the time spent to travel between any two points. In general, 

the travel time is composed of running time and stopped delay time. The running time 

is time that the vehicle is in motion, while stopped delay time can be defined as time 

when the vehicle is completely stopped or moving considerably slow as to be stopped, 

typically less than 8 km/hr or 5 mph (Turner, Eisele et al. 1998). 

 

Based on the definition of travel time, section travel time ( ST ) or travel time spent for 

traversing any road section can be expressed in terms of running and stopped delay 

time as: 
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where ST  denotes the section travel time, Rt  is running time, Dt  is stopped delay 

time, L  is distance traveled or length of the road section, and Rv  is the average 

running speed.  

 

GPS reciever is capable to gather coordinates, speeds and time. The speed and the 

position from GPS recievers are independent since the speed is calculated from the 

receiver’s poll psudorange data (distance between the sattelite and the GPS reciever) 

and psudorate data. This allows us to calculate traveling distance from GPS speed and 

also permits us to calculate the segment speed (Quiroga and Bullock 1998).  

 

 

 

Figure 3-1 Time-space diagram of GPS points along the traveled segment 

 

Let d  be the distance traveled covered by probe vehicle during time 0t  and 
pt . From 

Figure 3.1, distance traveled can be expressed as: 
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This trapezoidal approximation is reasonable in case the time interval among GPS 

points is small enough and the distance between two adjacent GPS points are much 

smaller than the section length or distance traveled. 

 

The average speed ( du ) associated with distance traveled ( d ) can be expressed as:  

 

0tt

d

t

d
u

pd

d


   (3-4) 

 

where dt  denotes travel time spent for traversing through distance d .  

 

In case the first and the last GPS points corresponded to the road section are 

sufficiently close to the entrance and exit points of the section respectively, the 

distance traveled ( d ) and section length ( L ) should be very similar. As a result, the 

average section speed ( u ) from du  can be estimated and equation (3-4) can be 

rewritten as:  
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Generally, the section length ( L ) is known; consequently, section travel time then 

becomes  
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3.1.2 Calculation by the running speed and stopped delay method (RSSD) 

 

As illustrated in the previous section, travel time is composed of two parts: the 

running time and stopped delay time. Recalling equation (3-4), the distance traveled 

covered by the probe vehicle can be computed by: 
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dd utd    (3-7) 

 

As the distance traveled arises only from the running period, the equation can be 

rewritten so that the distance traveled is a function of running speed as: 

 

dRdR vtd ,,   (3-8) 

 

where 
dRt ,
 denotes the running time spent for traversing distance ( d ) and 

drv ,
 

denotes the average running speed associated with the distance traveled ( d ).   

 

Equation (3-5) can then be rewritten in terms of running speed and stopped delay as:  
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where 
dDt ,

 denotes the stopped delay time while the vehicle is traversing 

through distance ( d ).    

 

On the arterial road network which generally comprises signalized intersections, the 

road section is typically partitioned at the intersection(s). At those points, transferring 

of a vehicle from one to another section occurs after the vehicle has passed the signal 

(intersection) and occupied the next road section. It is theoretically recognized that 

while a vehicle is transferred from one road segment to the nearby segment, the vehicle 

speed needs to be more than zero. In other words, it must be in the running state 

(stopped vehicle cannot move). Furthermore, in case that the sampling time interval of 

GPS is small, the speed of the vehicle traversing between the last GPS point in the 

upstream segment and the first GPS point in the downstream segment is generally 

more than zero (no stopped delay time between two contiguous GPS points which lie 

on different segments).      
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Let’s reconsider the concept of travel time estimation. The section travel time ( ST ) is 

estimated from the relationship between the known traveled distance ( d ) and section 

length ( L ) (shortened or lengthened the known distance around the edge of the 

segment to the section length) together with the average speed (u ) (which comprises 

the running speed and stopped). However, from the above argument, it is reasonable to 

employ the running speed instead of the average speed in performing travel time 

estimation. The time changes as a result of shortened or lengthened distance are 

governed only by the running period. With this manner, the section travel time can be 

rewritten in terms of running time and stopped delay time as:  
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Consequently, the average section speed can be computed by  
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It could be noticed from equation (3-11b) that in case of no stopped delay time during 

traversing road section, the value of running speed must be equivalent to the average 

speed.  

 

3.2 ERROR IN TRAVEL SPEED ESTIMATION FROM GPS-PROBE DATA 

 

3.2.1 Average speed method 

 

From the concept of travel time that comprises running time and stopped delay time, 

the average speed on each section, u  can be approximated from the relationship 

between section length and the section travel time as follow: 
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Sentexit T
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The upper bound for error of speed ( u ) in terms of positional accuracy of individual 

GPS point ( ) and section travel time ( ST ) can be expressed by assuming the errors 

associated with tent and texit are independent (practically, u  values may be lower if the 

errors associated with tent and texit are both of the same sign and magnitude) and using 

the error propagation theory as: 
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The error of the average speed computed from equation (3-5) can also be expressed 

using the error propagation theory by assuming constant sampling time interval ( t ) 

between two contiguous GPS points as: 

 

v

S

S

vu
T

tTt

p

p


)5.0(5.0 



  (3-14) 

 

where p denotes the number of GPS points within the segment (in addition to 0p ), v

is the error in speed associated with each GPS point. 

 

Due to equation (3-13) and equation (3-14), a measurement error in section speed 

occurs from the error in positional and speed measurement respectively. Therefore, by 

combining equation (3-13) and (3-14), the threshold which makes equation (3-5) 

preferable for estimating the average section speed can be expressed as: 

 

)5.0(

2

tTt S

v





  (3-15)   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 

Table 3-1 Limiting error v from the baseline approach as function of ST and . 

(Assuming t = 1 s.) [Equation (3-15)] 

S
T (s) 

Limiting error 
v

 in speed measurement (km/h) 

  = 0.1 m   = 0.5 m   = 1 m   = 3 m   = 10 m 

10 0.17 0.83 1.65 4.96 16.52 

20 0.12 0.58 1.15 3.46 11.53 

50 0.07 0.36 0.72 2.17 7.24 

100 0.05 0.26 0.51 1.53 5.10 

200 0.04 0.18 0.36 1.08 3.60 

500 0.02 0.11 0.23 0.68 2.28 

1000 0.02 0.08 0.16 0.48 1.61 

 

Table 3.1 demonstrates some sample values of v calculated from equation (3-15) for 

several combinations among   and ST  by assuming constant sampling time interval 

t  = 1 sec. As could be noticed from Table 1, v  has a direct proportion to   which 

indicates that as the positional accuracy of GPS device increases (  decreases), the 

accuracy on speed must also increase ( v decreases) in order to maintain the advantage 

of equation (3-5) over equation (3-12).  Moreover, v  is inversely proportional to ST

and t  which signifies that as the section travel time or sampling time interval 

increases, the effect of positional error will be lower. In our study, we used the GPS 

devices which had 3 m positional accuracy and 0.36 km/h speed accuracy as the data 

collecting instruments. From Table 1, by assuming   = 3 m, the limiting error for v is 

much larger than 0.36 km/h. This means that equation (3-5) provides more accurate 

segment speed estimation result than equation (3-12). 

 

3.2.2 Running speed and stopped delay method (RSSD) 

 

As demonstrated in equation (3-11b), an average speed can be approximated using the 

relationship among running speed, stopped delay time, and total travel time. 

Consequently, from equation (3-9) and (3-11b), an error of the average speed 

calculated from the RSSD technique can be computed using the error propagation 

theory and by assuming that sampling time interval t  between two contiguous GPS 

points is constant, which can be expressed as: 
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(3-16) 

 

It was noted that in reality the detected vehicle speeds from GPS data normally 

comprise discrepancies due to the limitation of device accuracy. As a result, even 

though the vehicle is in the stopped delay period, the detected speeds from GPS at 

those points are generally fluctuated and not perfectly equal to zero. However, the 

error from discrepancies during these stopped delay times could be mitigated by 

setting up the threshold for detecting the stopped delay behavior of vehicles (e.g. by 

setting 0.5 km/h as the threshold and considering all the speed values lower than 0.5 

km/h as the absolutely stop behavior, 0 km//h) and filtering out the error in speed 

measurement during this period. This procedure leads to higher accuracy to the RSSD 

technique since some errors were disregarded during this process. 

 

By comparing equation (3-13) and (3-16), the threshold which makes equation (3-11b) 

preferable for estimating average speed can be expressed as: 
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Table 3.2 demonstrates sample values of 
v

 calculated from equation (3-17), in terms 

of congestion level or ratio between the stopped delay time and travel time, ( SdD Tt /, ) 

assuming the sampling time interval is 1 sec and the positional error of GPS is 3 m. It 

could be observed that in the uncongested segment or the segment without stopped 

delay time, the 
v

  values calculated from the average speed technique (equation (3-

15)) are equal to the ones from the RSSD technique (equation (3-17)). However, as the 

congestion increases (ratio of stopped delay time per section travel time ( SdD Tt /, ) 

increases), the effect of positional error increases, leading to higher limitation of error 

in speed associated with each GPS point ( v ) for providing the advantages of speed 

estimation by equation (3-11) over equation (3-12).  
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Table 3-2 Limiting error v from RSSD approach as function of ST and

dDt , .(Assuming t  = 1 s. and m3 )[Equation (3-17)] 

ST (s) 

Limiting error v in speed measurement (km/h) 

S

dD

T

t ,
= 0 

S

dD

T

t ,
= 0.2 

S

dD

T

t ,
= 0.4 

S

dD

T

t ,
= 0.6 

10 4.96 5.58 6.51 8.16 

20 3.46 3.88 4.50 5.58 

50 2.17 2.43 2.81 3.46 

100 1.53 1.71 1.98 2.43 

200 1.08 1.21 1.40 1.71 

500 0.68 0.76 0.88 1.08 

1000 0.48 0.54 0.62 0.76 

 

 

 
Figure 3-2 Limiting error in speed associated with each GPS device from the baseline 

and RSSD approaches. (Assuming st 1   and m3 ) 
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35 

 

Figure 3-3 Surface plotting of limiting error in speed associated with each GPS 

device in various traffic congestion levels from the RSSD approach. (Assumming 

st 1   and m3 ) 

 

Furthermore, the advantages of RSSD over the average speed approach in addressing 

speed estimation can be demonstrated by the limiting error in speed associated with 

each GPS device as presented in Figure 3.2 and 3.3. In the case that no stopped delay 

time (DT = 0) is experienced during traversing throughout the road segment, the 

limiting of GPS speed errors from both techniques are equivalent, as they are 

represented by the bold line in Figure 3.2. However, as the congestion level increases 

(ratio of stopped delay time to travel time (DT/TT) increases), the limiting error of 

GPS for the RSSD technique increases while the baseline method provides the same 

values as in the case of uncongested condition (as the limiting error of the baseline 

technique does not consider the effect of delay time, as illustrated in equation (3-15)). 

The abovementioned points out that in congested traffic condition the RSSD technique 

allows the use of lower accuracy devices than that of the baseline approach to maintain 

the accuracy level of travel speed estimation over equation (3-12). In other words, with 
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the same device, travel speed estimation from the RSSD technique offers higher 

accuracy of the estimation than by the baseline approach, particularly in highly 

congested traffic conditions.  

 

3.3 TRAVEL TIME ALLOCATION PROBLEMS  

 

3.3.1 Background of problems 

 

In the past decades, numerous research on travel time study in both freeway and 

arterial settings were carried out using probe-based data from various sources e.g. taxi 

probes (Herring, Hofleitner et al. 2010), bus probes (Pu and Lin 2009, Vanajakshi, 

Subramanian et al. 2009) test vehicles ((Billings and Yang 2006, Puangprakhon and 

Narupiti 2015), or synthetic data simulated from traffic simulation software 

((Nanthawichit, Nakatsuji et al. 2003). Up to now, most of the previous studies require 

high resolution data, e.g. sampling every 1 second or less, to address the complete 

section travel time estimation or prediction problems (Zheng and Zuylen 2013). 

Conversely, in reality, the probe data fed to the traffic data collection center come from 

a variety of sources with different sampling time intervals such as taxies, logistics 

vehicles, public buses or private cars, etc. Therefore, the transmission rates can be 

varied from very high frequency to low resolution depending on the data providers (the 

sampling time interval up to 60 seconds could generally be observed). Additionally, 

the polling positions or sampling points in probe-based data are randomly distributed 

and do not necessarily correspond to the end points of the section on the road segment. 

As a consequence, the allocation of travel time between two consecutive sampled GPS 

points across the end points of the section is considered as one crucial task in the 

section travel time estimation procedure.  

 

One of the simplest and easy-to-implement ideas for travel time allocation is done by 

assuming the constant driving speed between two consecutive sampling points. Then, 

the decomposed travel time in each section can be allocated by direct interpolation 

between the stamped times and reported positions of each vehicle. This technique 

provides reasonable estimation results in the traffic with nearly constant speed profiles 
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such as on freeways or motorways with the under-saturated traffic condition. However, 

in the urban context where the road network typically consists of traffic signals, 

intersections, and numerous access points and thus the vehicle speed profiles are 

generally fluctuated and far from constant, the estimation based on the constant speed 

assumption technique has difficulty in providing precise outcomes (Neumann 2013). 

 

For the above reason, various techniques have been proposed to address the travel time 

allocation problem. For instance, (Hellinga, Izadpanah et al. 2008) proposed the model 

which considers the probability of stopping and congestion delays based on the 

positions of vehicles along a road segment. Although the overall result from simulated 

data showed that this approach performed well compared to the benchmark technique, 

the section travel time was overestimated on the segment without traffic signals and 

the limitation on the number of stops in each section and this was a drawback of this 

technique. (Hofleitner and Bayen 2011) demonstrated the use of the statistical traffic 

flow theory in travel time decomposition problems. Their technique showed good 

agreement with the next Generation Simulation (NGSIM) data. Still, this technique is 

quite complex and requires many assumptions e.g. stationary traffic, probability of 

delay, etc. to allocate the travel time into individual sections. Although a number of 

works attempted to construct more complex models for representing the urban traffic, a 

finding from (Zheng, Van Zuylen et al. 2010) proved that the more complicated 

models did not always offer better outcomes than the simple and widely used 

technique (time-distance relationship technique). Conversely, in some cases, e.g. in the 

less frequent polling time interval or in the sparse data, the simple model tends to offer 

the healthier result than the complicated ones. This could be resulted from complex 

movement and delay behaviors on urban roadways that face many unexpected 

influencing factors, e.g. a bus waiting at a bus stop, double-parked vehicles or other 

causes. Therefore, (Zheng and Zuylen 2013) overcame the complexity of modeling by 

utilizing the Artificial Intelligent (AI) method in travel time allocation for urban roads. 

They employed the three-layer neural network with positions, section IDs, time stamps 

and speeds as the model inputs for complete section travel time estimation. The result 

from synthetic data illustrated that their approach outperformed the analytical model 

from (Hellinga, Izadpanah et al. 2008), particularly when the traffic demand was 
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increasing. They also suggested that the position could be the critical factor influencing 

the accuracy of the ANN model while adding of instantaneous speed as the input could 

improve the accuracy marginally. Yet, the ANN technique requires a lot of historical 

data for training and the ambiguous process going underneath with regards to the 

decisions of ANN is questioned. 

 

As aforementioned, accurate prediction on delays and trajectories of vehicles along the 

urban roads is not an easy task. However, the condition of the traffic movement at any 

point can basically be informed by the instantaneous speed detected from the probe 

vehicle. Therefore, (Puangprakhon and Narupiti 2014) demonstrated the integration of 

the instantaneous speed data together with time and position in the travel time 

allocation procedure. In their approach, the speeds at the end points of the section and 

travel times were approximated and tuned until convergence using the speed-time-

distance relationship. Verification through the results from field data also confirmed 

the better-quality of the results from this technique over the simple distance-time 

method in all scenarios. Moreover, the speed-time-distance techniques can easily be 

implemented and efficiently address the travel time allocation problem as proved by 

more precise complete section travel time estimation results. Research by (Neumann 

2013) pointed out the importance of individual decomposed travel time study 

particularly at the local level (e.g. an individual intersection) and also suggested that 

the travel time decomposition could be a crucial negative factor affecting the accuracy 

of probe-based section travel time as errors from each decomposed travel time do not 

accumulate but could balance out when being recombined into the complete section 

travel time. Therefore, study on quality of the decomposing technique at the local level 

is a necessitated task for ensuring the quality of travel time estimation at both local and 

complete section levels.  

 

3.3.2 Problem statements 

 

Section travel time or time spent for traveling through each section is considered as 

one of the most understood indicators for representing the condition of traffic on road 

networks. In probe-based data, the travel time between two consecutive observed 
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points can be directly considered as the travel time between those points. However, in 

general, the locations of sampled points from probe vehicles are randomly located on 

the road and usually do not correspond with the end points of the section. Therefore, 

in measuring section travel time, the time between two consecutive sampled points 

across the end points of the section needs to be allocated into an individual section as 

depicted in Figure 3.4. There are three possible cases from two observed points from 

probe-based data; two observed points lie on the same section (Figure 3.4(a)), two 

observed points lie on adjacent sections (Figure 3.4(b)), and two observed points lie 

on different sections with at least one section in between (Figure 3.4(c)). In the first 

case, since both observed points lie on the same section, travel time between those 

points can be directly measured from the sampling time interval without travel time 

allocation problems. While in the second and third cases, the measured travel time 

between two observed points )( 12 tt  is allocated or decomposed into existing sections 

( decLndecLdecL ttt ,,2,1 ,...,, ) between those points. 

 

Figure 3-4 Three possible travel time allocation cases from probe-based data. (a) 

sampled points lie on the same section; (b) sampled points lie on adjacent sections; (c) 

sampled points lie on different sections with at least one section in between. 

(a) 

(b) 

(c) 
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3.4 TRAVE TIME ALLOCATION TECHNIQUES 

 

3.4.1 Distance-time relationship method 

 

Travel time allocation by the distance-time relationship assumes “the speed of the 

probe vehicle is constant during traversing between two consecutive sampled points”. 

The decomposed travel time in each component section can be approximated by 

interpolating among locations and recorded times from sampled data regardless of 

instantaneous speed of those points. From Figure 3.4, Let n  be the number of 

incorporated sections between two consecutive sampled points, time stamps at the 

first and second points are 1t  and 2t  respectively, TTT is the travel time or time 

difference between those two points (calculated by 12 tt  ), which is generally 

equivalent to the probe sampling time interval, iL  is the distance between two 

sampled points projected on section i . The decomposed travel time of section i , 

decLit , , can be estimated by: 





n

i

i

i
TdecLi

L

L
TTt

1

,   (3-18) 

3.4.2 Speed-Time-Distance relationship method (Proposed Methods) 

 

The state or movement of traffic at each sampled location can be reflected by 

instantaneous speed recorded in probe data. Previous research from (Zheng and 

Zuylen 2013) has demonstrated the improvement of travel time estimation when the 

instantaneous speed was integrated into the estimation process. Therefore, not only 

information from time stamped and sampled location of probe vehicles, but also the 

instantaneous speed of those positions are assimilated into the approximation 

procedure of the speed-time-distance approach. In this technique, firstly, the speed at 

the end point of the section is approximated by direct interpolation assuming linear 

relationship between speeds and location of two sampled points. Then, the estimation 

of individual section travel time using the speed and distance relationship is estimated 
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and a tuning of individual section travel time is compared with the sampling time 

interval. Afterward, the speed at the end point of the section is re-calculated from the 

adjusted individual section travel time from the previous step. All the above 

mentioned processes are repeatedly performed until the individual section travel time 

is convergent. The procedure for allocating travel time into an individual section by 

the speed-time-distance approach can be outlined into six steps and is illustrated in 

Figure 3.5. 

 

 Step 1: Approximation of speed at the end of section.  

Assuming a linear relationship between instantaneous speed and recorded location 

from two consecutive sampled points across the end points of the section, the speed of 

the vehicle at the end points of the section, ev , can be estimated using the proportion 

among instantaneous speeds and distances as follows: 
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
  (3-19) 

 

where v is the difference of instantaneous speeds between two sampled points, 

computed by ( 12 vv  ),  1v  and 2v are instantaneous speeds recorded at first and second 

points, respectively. It should be noted that ev will be used as the dividing term in the 

next step.  For that reason, in the special case where 0ev (in case of 021  vv ), the 

small speed value (e.g. 1 km/h) should be applied to ev  for solvable purpose instead 

of 0 km/h.  

 Step 2: Approximation of decomposed travel time from the speed-distance 

relationship 

Due to the clear relationship among travel speed, travel time and traversing distance,   

( x during time 1t and 2t ) can be expressed in terms of speed profile as  vdtx (in the 

case that dt  is small enough). Consequently, the decomposed travel time of each 

section can be roughly estimated by applying the above relationship as follows:   
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

 


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,1)/(2 1
,  (3-20) 

 Step 3: Calculation of time difference between sampling time interval and 

estimated travel time 

The travel time between two consecutive sampled points must correspond to the 

sampling time interval.  Thus, the time difference between decomposed travel times 

from the previous step and a sampling time interval can be expressed as follows:  






n

i

decLiT tTTt

1

,

  

(3-21) 

 Step 4: Tuning the decomposed travel time to sampling time interval 

As discussed previously, summation of decomposed travel times calculated in Step 2 

needs to be equivalent to the sampling time interval. For that reason, in the tuning 

procedure, time difference calculated in Step 3 is added to the decomposed travel time 

in each section according to the ratio between individual section decomposed travel 

time and total decomposed travel time as illustrated in Eq. (3.22). It should be noted 

that to ensure that the adjusted decomposed travel times always have positive values 

and lie within the sampling time interval, the minimum and maximum boundaries 

TdecLi TTt  ,0 should be applied. 

}},0,min{max{

1

,

,

,

, Tn

i
decL

decL

decLdecL TT

t

t
ttt

i

i

ii



















 
 

(3-22) 

 Step 5: Re-estimation of speed at the end points of the section from adjusted 

decomposed travel time 

From the speed-time-distance relationship, the speeds at the end points of the section 

calculated from adjusted decomposed travel time in each section ( iev , ) can be 

estimated using Eq. (3-23). It should be noted that the lower and upper boundaries for 

iev ,  should be applied to ensure that the adjusted speeds in this step have positive 

values and are not more than the rational driving speed. In this paper, the speed limit 
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was employed as the upper boundary.  However, another appropriate value could be 

used instead; for instance, free flow speed. 

  
  
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(3-23)

 

 Step 6: Re-adjusting speed at the end point of section 

The adjusted speed at the end point of section ( ev ) can be approximated from the 

adjusted decomposed travel time in each section ( iev , ) by weighing with the distance 

proportion as follows:  

 
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(3-24)

 

Substitute ev  calculated from Eq. (3-24) into Eq. (3-20) in place of ev and recalculate 

Step 2 to Step 6 until the adjusted decomposed travel time of each section ( decLt ,
 ) is 

convergent. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 Calculation flowchart for travel time allocation of the proposed technique. 
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3.5 EXPERIMENTAL STUDY ON TRAVEL TIME ALLOCATION 

   

3.5.1 Study corridor and data gathering technique 

 

In order to validate the proposed technique, the 4.07 km in-bound urban roadway 

comprising 6 sections with different length varying from 0.2 to 1.24 km partitioned by 

5 signalized intersections in Bangkok Metropolis was selected as the test corridor for 

gathering high resolution probe data. The field data were collected from 15 GPS 

equipped probe vehicle runs throughout the study site with a sampling time interval of 

every 1 second. The time period for data collection was from 6:00 am to 4:00 pm to 

ensure that both congested and uncongested traffic conditions were included in the 

dataset.  From high resolution probe data, the testing scenarios were simulated to the 

sparsely distributed data into three testing campaigns for representing the more often 

used sampling time interval in reality; sampling every 15, 30 and 60 seconds, 

respectively.  

 

As the bias on the estimation results could occur if only one sampling position on the 

section was used, in this study various initial conditions of samplings were used.  

Therefore, the re-sampling technique was applied in this study for diminishing the 

bias in the sampling process. From each re-sampling time interval, for instance 

sampling every 30 seconds, the combination of different starting times can be 

expressed as follows: 

 

Combination 1: j, j+30, j+60, j+90,… 

Combination 2: j+1, j+31, j+61, j+91,… 

… 

Combination 30: j+29, j+59, j+89, j+119,… 

 

The expected section travel time from vehicle k which traversed through section i can 

be calculated by averaging the results from all combination cases as: 
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

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where m  is the number of combination cases (or sampling moment), 
jk

tt
,
 is the 

estimated travel time of section i  using data gathered from vehicle k  with the 

sampling moment j . 

 

3.5.2 Performance indicators 

 

To display the effectiveness of the proposed technique, the estimation results from the 

speed-time–distance technique in both complete section and local contexts were 

assessed and compared with the baseline technique by means of various indicators. 

The Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) 

were applied as the accuracy indicators for complete section travel time estimation, 

since MAPE can express the error in generic percentage whereas RMSE presents the 

differences between values from estimation and observation.     
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where estikTT ,,  denotes the estimated travel time of section i  using data recorded from 

vehicle k , obsikTT ,, is the observed travel time of section i  from vehicle k , and n  is the 

total number of probe runs throughout section i . 

 

In comparing the two approaches, the Percentage of Improvement (PoI) was selected 

as the indicator for performance measurement. The PoI of travel time estimation from 

the proposed technique compared to the benchmark technique on segment j , can be 

calculated as follows: 
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where jbaselineRMSE ,  denotes the RMSE on segment j  from the estimation using the 

baseline method (simple time-distance method), jproposedRMSE ,  denotes the RMSE on 

segment j  from the estimation using the speed-time-distance method.  

 

3.5.3 Results and discussions 

 
 
As discussed previously, the investigation on the validation and performance of travel 

time allocation techniques can be evaluated in both complete section and local levels. 

Therefore, in this section, the results are presented and discussed in both complete 

section and intersection levels for examining the correctness of the proposed 

technique compared with the baseline approach. For representing the application of 

probe vehicles in reality, the testing scenarios were simulated from the high resolution 

observed data (ground truth) and divided into three testing campaigns with sparsely 

sampling time intervals from 15, 30 and 60 seconds, respectively.  

Complete section travel time estimation 

Based on data collected from 15 probe runs throughout the studied corridor which 

comprises 6 sections and 7 intersections, the accuracy on travel time allocations from 

both the proposed (speed-time-distance relationship) and baseline techniques (time-

distance relationship) in complete section travel time estimation is illustrated in Table 

3.3.   

 

From Table 3.3, it can be observed that the less frequent sampling time interval 

decreases the correctness of estimation from both models. In the proposed technique, 

as the sampling time interval increases from 15 to 60 seconds, average MAPE 

increases from 1.14 to 6.59%, and average RMSE also increases from 1.05 to 6.17 

seconds. On the other hand, the baseline technique provides poorer estimation results 

as reflected by the steep increase on average MAPE from 2.04 to 10.46% and average 
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RMSE from 1.85 to 9.26 seconds, while the sampling time interval rises from 15 

seconds to 60 seconds respectively. In addition, as depicted by PoI values, the 

accuracy of estimation is significantly boosted in all test campaigns when employing 

the proposed technique, compared to the baseline approach.   

 

Table 3-3 Performance measurements at complete section level of proposed and 

baseline method in different sampling time intervals. 
Section AB BC CD DE EF FG Average 

Average observed travel time (s) 66.67 102.00 38.20 315.13 196.67 119.73 

Average observed speed (km/h) 17.56 28.08 20.25 28.43 20.62 15.43 

Sampling 

time 15 

seconds 

MAPE 

(%) 

Baseline 3.38 1.96 4.79 0.56 0.39 1.16 2.04 

Proposed 1.97 1.11 2.84 0.22 0.24 0.44 1.14 

RMSE 

(s) 

Baseline 3.23 2.18 2.23 1.31 0.74 1.39 1.85 

Proposed 2.23 1.26 1.27 0.63 0.41 0.5 1.05 

PoI (%) 31.02 42.15 42.99 51.76 44.92 64.18 46.17 

Sampling 

time 30 

seconds 

MAPE 

(%) 

Baseline 7.37 4.35 11.7 1.54 1.06 3.1 4.85 

Proposed 4.67 2.6 5.47 0.64 0.49 1.41 2.55 

RMSE 

(s) 

Baseline 6.74 4.97 5.4 3.46 1.96 3.85 4.40 

Proposed 4.68 2.82 2.31 1.69 0.97 1.92 2.40 

PoI (%) 30.56 43.22 57.35 51.09 50.62 50.20 47.17 

Sampling 

time 60 

seconds 

MAPE 

(%) 

Baseline 16.38 8.94 23.73 3.77 3.58 6.34 10.46 

Proposed 10.13 6.01 16.13 1.91 1.35 4.03 6.59 

RMSE 

(s) 

Baseline 12.56 10.19 10.86 7.92 6.09 7.93 9.26 

Proposed 9.01 7.57 6.89 5.06 2.68 5.84 6.17 

PoI (%) 28.23 25.74 36.58 36.09 56.09 26.35 34.85 

 

 

As shown in Figure 3.6, the total time spent in each section affects the accuracy level 

of section travel time estimation in the case that MAPE is employed as the indicator 

for accuracy. In this case, since the accuracy is represented by the error time per total 

travel time, in the longer section or section with higher travel time, the accuracy from 

both techniques are higher than in the shorter ones, indicated by lower MAPE values, 

as illustrated in Figure 3.4(a). This occurred because the portion of the known travel 

time (travel time in this section does not need to be allocated, as illustrated in Figure 

3.4(a)) is a lot greater than the unknown cases (Figure 3.4(b), (c), which need to be 

allocated) in the more time consuming section. In comparison, the relationship among 

section travel times and the time difference between estimated and observed values 

indicated by RMSE are fluctuated as illustrated in Figure 3.6(b). This could be caused 

by the local characteristics (e.g. traffic movement behaviors at each intersection) and 

the error combination from both ends of section as discussed previously. Even so, the 

proposed technique still provides superior results to those from the baseline approach 

as seen by the lower RMSE in all test scenarios. 
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Figure 3-6 Relationship between MAPE, RMSE and section travel time from the 

proposed and baseline method in various sampling time intervals. 

Travel time allocation at local level (intersection level) 

As described previously about the effects of balancing out of errors from both ends of 

section and also effects of portion of known travel time within the section (as 

illustrated in Fig. 3.4(a)), which could create biases in the complete section travel time 

estimation, this section introduces the analysis at local level (intersection level) for 

diminishing the bias and provides the closer look at the effectiveness of travel time 

allocation by the baseline and proposed techniques.   

 

In this section, the results and discussions on travel time allocation from both 

techniques at the local level (or at the intersection instead of complete section) are 

demonstrated. The section starts with the definition of local level and time region used 

in this study, followed by the travel time allocation results at each intersection, then 

the results according to the different movement behaviors at each intersection are 

demonstrated and discussed. 

 Definition and time region for evaluating local level travel time 

In this study, the time region for evaluating local level or intersection level was 

defined and shown in Figure 3.7.   Figure 3.7 displays an example of the speed and 

time tracked from the probe vehicle during traversing through section AB.  The time 

spent for traversing within this section can be determined by the time difference 

 

0

5

10

15

20

25

0 100 200 300 400

M
A

P
E

 (
%

) 

Travel time (s) 

Baseline (15 s)
Baseline (30 s)
Baseline (60 s)
Proposed (15 s)
Proposed (30 s)
Proposed (60 s)

 

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350

R
M

S
E

 (
s)

 

Travel time (s) 

Baseline (15 s)
Baseline (30 s)
Baseline (60 s)
Proposed (15 s)
Proposed (30 s)
Proposed (60 s)

(a) (b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49 

between entrance and exit time of the section (the entrance time is when the vehicle 

passed intersection A and the exit time is when the vehicle passed intersection B 

which were 08:08:00 and 08:09:19 respectively). In the case that the sampling time 

interval is 15 seconds, the time region used for evaluating the accuracy of travel time 

allocation at local level at intersection A will cover the region from 15 seconds before 

and after the time that the vehicle passed intersection A (from 08:07:45 to 08:08:15 as 

depicted in Figure 3.7). This is because, in the analysis part, this time period will 

cover all the combinations of sampling time at intersection A that are used for testing 

the accuracy of travel time allocation as previously described. Therefore, in this 

example, totally 15 combinations from 15 sampling cases starting from the first case 

recorded at 08:07:45 and 08:08:00 , second case at 08:07:46 and 08:08:01,…, and the 

fifteenth case at 08:08:00 and 08:08:15 will be combined together and used for 

evaluating the accuracy of both techniques at the local level of intersection A.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-7 Time region for local level (intersection level) analysis in the case that the 

sampling time interval is 15 seconds. 
 

 The evaluation of travel time allocation at the local level 

As illustrated in Table 3.4, travel time allocation resulted from the proposed technique 

is superior to that of the baseline approach in all intersections and sampling intervals. 

The estimation error is smallest in the shortest sampling interval, but increases as the 
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sampling interval increases. MAPE values in Table 3.4 are significantly greater than 

in Table 1 as all the allocation cases in local context are unknown as depicted in 

Figure 3.4(b) and 1(c), unlike in complete section level in Figure 3.4(a). Additionally, 

the average PoI values ranging between 30-40% also show considerably better results 

than the proposed technique in the local context. 

 Effects of stopping behavior at intersection region   

The movement behavior of the vehicle within the area of intersection (within the time 

region as depicted in Figure 3.7) could affect the accuracy level of both models due to 

different basic assumptions. Therefore, besides the overall picture at each intersection 

given in Table 3.4, an in-depth analysis by considering stopping behavior from the 

vehicle speed profile is performed. In this study we defined the “intersection with 

stopping behavior” as the intersection where the probe vehicle has at least one 

stopped delay within one sampling interval prior to or after the recorded time at the 

intersection point (as depicted by red region in Figure 3.7). 

 

As shown in Figure 3.8, the estimation errors from both techniques are significantly 

higher at the intersection with stopping behavior (which generally contained a highly 

fluctuated speed profile). Still, the proposed technique offers better outcomes in all 

cases. This is because the baseline approach allocates travel time by assuming a 

constant speed profile among two consecutive probe points and this is far from the 

real traffic behavior particularly with stop and go movement. On the other hand, the 

proposed technique could reflect the fluctuation of the speed profile by assuming a 

linear relationship among recorded instantaneous speeds and speed at the end points 

of the section using the speed-time-distance relationship in the tuning process to find 

speed at the end points of the section from travel time allocation. 

 

In Figure 3.8, although the proposed technique can represent better speed variation 

than the baseline approach, the PoI values at the intersection without stopping 

behavior are higher than the stopping ones. This is because the RMSE (or dividing 

term) of the “no stopping cases” are significantly lower than the “stopping case”. 

Therefore, even though the proposed technique can reduce higher quantity of RMSE 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51 

 

0

5

10

15

20

25

30

35

40

45

50

0 15 30 45 60 75

M
A

P
E

 (
%

) 

Sampling time interval (seconds) 

MAPE Baseline No Stopping

MAPE Proposed No Stopping

MAPE Baseline with Stopping

MAPE Proposed with Stopping

 

0

10

20

30

40

50

60

70

80

0

2

4

6

8

10

12

14

16

18

20

0 15 30 45 60 75

R
M

S
E

 (
se

co
n

d
s)

 

Sampling time interval (seconds) 

RMSE Baseline - No Stopping
RMSE Proposed- No Stopping
RMSE Baseline - With Stopping
RMSE Proposed - With Stopping
PoI - No Stopping
PoI - With Stopping

in the “stopping cases”, the effect from the smaller dividing term in “no stopping 

cases” will lead them to the higher PoI value. 

 

Table 3-4 Performance measurement at intersection level of proposed and baseline 

method in different sampling time intervals. 
Intersection A B C D E F G Average 

Sampling 

time 15 

seconds 

MAPE 

(%) 

Baseline 33.21 15.53 20.22 16.35 7.72 7.92 16.59 16.79 

Proposed 23.64 10.53 15.09 7.83 5.64 5.77 9.12 11.09 

RMSE 

(s) 

Baseline 3.30 1.28 1.79 1.37 0.68 0.75 1.42 1.51 

Proposed 2.63 0.88 1.37 0.74 0.45 0.58 0.77 1.06 

PoI (%) 20.46 31.16 23.64 46.03 33.41 23.11 46.10 31.99 

Sampling 

time 30 

seconds 

MAPE 

(%) 

Baseline 31.52 18.51 21.37 22.87 11.81 9.51 21.92 19.64 

Proposed 23.35 14.17 14.78 11.20 5.40 4.92 12.04 12.27 

RMSE 

(s) 

Baseline 5.85 3.48 4.05 3.73 2.23 1.62 4.07 3.58 

Proposed 4.67 2.37 2.44 2.17 0.93 0.95 2.11 2.23 

PoI (%) 20.16 31.86 39.81 41.75 58.32 41.10 48.21 40.17 

Sampling 

time 60 

seconds 

MAPE 

(%) 

Baseline 31.73 23.32 22.38 34.94 22.97 12.61 22.55 24.36 

Proposed 23.81 18.55 18.32 25.44 10.03 6.70 18.67 17.36 

RMSE 

(s) 

Baseline 10.74 7.81 8.45 11.49 7.92 4.32 8.89 8.52 

Proposed 8.46 6.50 6.45 8.48 3.68 2.14 6.98 6.10 

PoI (%) 21.19 16.82 23.65 26.16 53.59 50.54 21.50 30.49 

*Average decomposed travel times in each section (upstream and downstream sections) at intersection 

are 7.5, 15 and 30 seconds for sampling time interval 15, 30 and 60 seconds respectively.   

 
 

 

 

 

 

 

 

 

 

 
Figure 3-8 MAPE, RMSE and PoI of decomposed travel time from the baseline and 

proposed technique categorized by stopping behavior. 

 

 Effects of the average speed within time region of each intersection     

The average travel speed at intersection could be used to represent the state of traffic 

at that location, the higher movement speed the better traffic conditions. Therefore, 

the relationship between the average travel speed within the intersection region and 
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the error from each allocation technique were presented. In Figure 3.9, the percentage 

of error from travel time allocation per size of sampling interval is represented in the 

vertical axis (e.g. if allocation error is 3 seconds and sampling time interval is 15 

seconds, the error in decomposed travel time per sampling time interval will be 20 %), 

while the horizontal axis indicates the average travel speed of the probe vehicle inside 

the intersection region. From Figure 3.9, the errors of travel time allocation from both 

techniques decrease when the average travel speed at the intersection region increases. 

This points out the advantages of both techniques in the uncongested traffic condition. 

Besides, the speed profile in the uncongested condition (higher average speed) is 

smoother and close to the constant value due to the better agreement with the results 

from the baseline technique with constant speed assumption. However, in all 

sampling time intervals and all states of traffic, the proposed technique yields the 

superior results. 

 Effects of the speed fluctuation within the time region of each intersection     

A closer consideration is made on the effects of speed fluctuation at the intersection 

level on the accuracy of both techniques. The relationship between the travel time 

allocation errors and the standard deviation of speed is illustrated in Figure 3.10. The 

standard deviation of speed on the horizontal axis can be calculated from all recorded 

instantaneous speeds (recorded every 1 second) within the intersection region, while 

the vertical axis can be determined as described in the previous section. From Figure 

3.10, as the speed fluctuation increases (higher standard deviation), the error of 

estimation from the baseline technique increases massively; e.g. from 5% to 20% 

approximately when the standard deviation in speed changes from 5 km/h to 25 km/h, 

while the error from the proposed technique is still at the same level (approximately 

5%). Results illustrated in this section imply the superior outcomes from the proposed 

technique particularly in the region with highly fluctuated speed e.g. at signalized 

intersection, congested condition or interrupted flow.    
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Figure 3-9 Relationship between the average travel speed within intersection region 

and travel time allocation error. 
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Figure 3-10 Relationship between standard deviation of speed within intersection 

region and travel time allocation error. 
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3.6 CONCLUDING REMARKS 

 

This chapter provides contents about travel time estimation using information from 

GPS-probe data both with high and low-resulution.  

 

For the real world application, we have proposed the new analytical algorithm for 

allocating travel time into individual sections by integrating instantaneous speed 

together with tracked locations and time stamp. From traffic state information 

represented by instantaneous speed data, the proposed model applies the speed-time-

distance relationship for model tuning and then allocates travel time into each section. 

The performance of the proposed model in travel time allocation was tested and 

compared with the widely used technique in both complete section and local levels 

using high resolution (ground truth) field data. 

 

It is found that the proposed technique provides a significant improvement in travel 

time allocation at both complete section and intersection levels compared to the 

benchmark technique. Moreover, from the in-depth analysis at the local level, the 

stopping (traffic) behavior within the intersection region affects the level of accuracy 

on both models. Accuracy from both techniques is lower at the intersections with 

stopping behavior due to its complicated movement behavior. Still, the proposed 

technique outperforms the baseline approach in both intersections with low and high 

stopped delays.  The average speed of vehicle within the intersection region, which 

represents the local traffic state, also influences the model accuracy. Intersections 

with the higher average speed can achieve the higher accuracy level in both methods. 

Furthermore, analysis on the effects of speed fluctuation at the local level points out 

the outstanding performance of the proposed model in addressing the complicated 

movement behavior compared to the baseline approach. 

 

Although this chapter demonstrates the process of estimating travel time from GPS-

probe data and shows acceptable test result with real field data,  the main problems of 

GPS-probe data in constructing traffic information are the very low penetration rate 

and sparse distibution in practice. Therefore in this dissertation the GPS-probe data 
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will not be considerd in the developed travel time prediction model. Instead, The 

Bluetooth-probe data will be used. Details of Bluetooth-probe data and the technique 

for estimating travel time is described in the next chapter.      
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4. TRAVEL TIME ESTIMATION FROM BLUETOOTH PROBE 

DATA 

 

Based on a recent survey, researches on travel times study over past several years 

have mainly been focused on data collected from traditional inductive loop detectors 

and GPS probe vehicles system as the techniques for gathering traffic data. Even 

though the abovementioned approaches are regarded as efficient methods in traffic 

data collection, the requirement of mathematical and theoretical assumptions in 

converting data from loop detectors to section travel time and the low penetration 

rates of GPS probe vehicle in real situation are the main drawbacks of those systems, 

respectively. 

 

Recently, with the advancement in telecommunication technology, Bluetooth MAC 

(Media Access Control) scanners (BMS) have been introduced and become more 

popular in transport studies as a cost efficient approach for gathering data and making 

traffic database (Puckett and Vickich 2010). Various studies on traffic information 

have been successfully conducted using Bluetooth scanners as the data collection 

devices. For instance, (Wang, Malinovskiy et al. 2011) showed the promising results 

in travel time estimation using the BMS system compared to the travel time recorded 

by Automatic License Plate Recognition (ALPR) devices. (Bhaskar and Chung 2013) 

have tested the BMS system on arterial roadways and showed the potential of BMS in 

providing urban traffic conditions. (Barcelo, Montero et al. 2010, Blogg, Selmer et al. 

2010, Barcelo, Montero et al. 2012) have demonstrated the ability of the BMS system 

in extracting the Origin-Destination (O-D) of trips. Although, from literature, the 

BMS system is considered as a cost effective and efficient approach for gathering 

traffic data, the raw data from the BMS system commonly contain noise and outliers 

particularly on urban roadway networks due to the complex, non-linear, non-

stationary behavior and disturbance from surrounding environment such as movement 

of pedestrians at crossing, traffic signals, intersections and access from sideway 

(Nantes, Miska et al. 2014, Puangprakhon and Narupiti 2017). As aforementioned, in 
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developing travel time information, the robust methodology for removing noise and 

outliers is an important task. This chapter demonstrates the development of the BMS 

data collection system in Thailand and frameworks for eliminating outliers and 

constructing section travel time information on urban roadways from the BMS system 

for Advanced Traveler Information Systems (ATIS). 

 

The chapter is outlined as follows. In the next section, an overview of the Bluetooth 

scanner system and Bluetooth data is described. Thereafter, a method for extracting 

travel time from Bluetooth data is presented. Subsequently, the travel time estimation 

result from real field data is shown.   

 

4.1 BLUETOOTH SCANNER SYSTEM  

 

4.1.1 Bluetooth MAC scanner (BMS) 

 

Bluetooth or IEEE 802.15.1 is a device for short wireless range communication and 

data transmission. It is cheap and very popular for short range transmission among 

modern electronic devices (Abedi et al. 2013). In order to apply Bluetooth technology 

in traffic data collection, the BMS with the capability to scan and record Bluetooth 

MAC addresses from Bluetooth devices (each electronics device contains their own 

unique identifier known as a Media Access Control address, assigned by the 

manufacturer) within the communication zone is needed. In this study, a total of 40 

BMSs have been developed. Each of them comprises 5 main components, which are 

(1) main board (RASBERRY PI 2 Model 2) that can run the field software based on 

Linux operating system for processing and storing MAC addresses of the discovered 

devices, (2) Bluetooth adapter (Parini-UD 100) for broadcasting the short range 

communication to other Bluetooth devices, (3) antenna (TP link (9 dBi) to extend the 

Bluetooth communication range for traffic data collection purpose, (4) router (TP-

Link 3020 with 3g air-card) to transmit the discovered data to the server, and (5) 

power supply unit. The assembly of BMS unit and the installation are illustrated in 

Figure 4.1.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59 

 

Figure 4-1 Bluetooth MAC scanner (a) main components of Bluetooth scanner and 

(b) installation in a police box at an intersection with AC power supply. 

 

4.1.2 Travel time from Bluetooth MAC scanners 

 

As aforementioned, BMS can detect the active Bluetooth devices within its 

communication zone (with radius around 100 meters in this study). The obtained 

travel time between 2 BMSs is a zone-to-zone travel time rather than point-to-point 

travel time. Figure 4.2 illustrates the concept of travel times between two BMSs 

which can be categorized into three types (Bhaskar and Chung 2013). 

 

First, travel time from the stop line of the upstream to the stop line of the target 

section (S2S). This type is theoretically considered as section travel time, it is 

governed by the free-flow travel time and delay only from the target section. 

However, S2S travel time is hard to detect from the BMS system in reality because 

BMS can only discover the device IDs within its communication zone and cannot 

localize the real position of those devices.  

 

Second, travel time from entrance to entrance of BMS zones (En2En). This travel 

time contains partial delay of the upstream section, free flow travel time and partial 

delay of the target section. It is noted that, in general, vehicles tend to experience 

more delay and spend a lot of time before approaching the stop line at the signalized 

intersection. Therefore, this travel time could comprise enormous effect from the 

(a) (b) 
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upstream section and might indicate the congestion of the target section around the 

downstream intersection well. En2En travel time can be directly approximated from 

the captured data by calculating the difference between first detected time of each 

Bluetooth device at upstream and downstream intersections. 

 

Third, travel time from exit to exit of the BMS zone (Ex2Ex). This travel time is 

governed mostly by the delay and free-flow travel time of the target section. This type 

of travel time can be extracted from BMS data by considering the difference between 

the last detected time of the BT device at each BMS. Analysis from previous research 

(Bhaskar and Chung, 2013) also pointed out that Ex2Ex travel time should be used 

instead of En2En travel time in travel time estimation for ITS applications. Therefore, 

in the remaining parts of this chapter, Ex2Ex travel time will be used to represent the 

travel time of the target section (or study section). 

 

Figure 4-2 Three different section travel times from the BMS system 

 

 

4.2 FRAMEWORK FOR CONSTRUCTING TRAVEL TIME INFORMATION 

FROM BLUETOOTH DATA 

 

In this study BT data were collected from the BMS system installed on urban 

roadways in Bangkok CBD. The framework for estimating section travel time from 

Bluetooth data is depicted in Figure 4.3 which includes the following steps: 
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Data Matching: This step aims to match the same Bluetooth MAC-ID captured at two 

consecutive BMSs together. The travel time between BMSs or the time spent by each 

vehicle to pass between BMSs can be calculated by the difference of detected time of 

the same MAC-ID at those BMSs (Ex2Ex travel time).   

 

In this step, the time gap for separating trips needs to be set up since on urban 

roadways each BT device can detour and return to the same BMS zone for multiple 

times after traveling to the next zone. In such situation, the device can be found for 

multiple times in the first zone and only one time at the second (adjacent) zone, 

resulting in multiple travel time values. For our study the 10 minutes time gap is set as 

the threshold to separate trips; that means the record is considered as the last detected 

time of the trip at BMS when there are no other records from the same BT device 

discovered in the same BMS zone within 10 minutes from the last detected time (if 

another record of the identical MAC-ID is discovered at the same BMS after 10 

minutes from the last detected time it will be considered as another trip). In this case, 

the section travel time from the same device is determined as the minimum travel time 

value from all matching trips of this MAC-ID.   

 

Data Filtering: The objective of the filtering process is to remove the questionable 

and outlier data from the samples that are obtained in the matching stage. This process 

comprises 3 sub-tasks as follows:  

 Removing questionable ID: After the matching process, travel times 

from questionable BT devices such as the cloned devices (e.g. from 

logistic company, etc.) with the same ID that can be found at several 

locations at the same time are removed.  

 Removing questionable trips: This step aims at removing outlier trips by 

setting upper and lower boundaries to track the trip that is faster and 

slower than usual trips, for instance, the trips with faster travel speed 

than the available speed limit on roadways, or trips that use another 

route instead of a direct route for passing the distance between two 

BMSs, or from stopping vehicles. In this study, the trips that traveled 
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faster than the speed limit of road sections and spend more than one hour 

on any sections were removed.     

 Removing outlier trips: This step is to apply Median Absolute Deviation 

(MAD) filter or Hampel identifier (Gather and Fried 2004, Tsubota, 

Bhaskar et al. 2011, Kieu, Bhaskar et al. 2012, Khoei, Bhaskar et al. 

2013) which is a robust measure to eliminate data variation. In Hampel’s 

test statistical tables are not necessary. This method is not sensitive to 

outliers and has no restriction to the abundance of data set (Kuppusamy 

and Kaliyaperumal 2013). 

 

 

Figure 4-3 Framework for travel time estimation from BT data. 

 

Let’s assume that travel time values are univariate data, the MAD is 

the median of the absolute deviations from the data's median.  

 

median(X)
i

XmedianMAD   (4-1) 

MADk   (4-2) 

 

where k is a constant scale factor which depends on the type of the distribution (in 

case of a normal distribution k is 1.4826). In this research the 15 minutes moving time 

http://www.statisticshowto.com/robust-statistics/
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Absolute_deviation
https://en.wikipedia.org/wiki/Scale_factor
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window (equal to 15 minutes interval for travel time information reporting in this 

study) was selected for calculating MAD. The upper and lower boundaries for 

filtering outlier trips can be calculated by adding and subtracting f from MAD as 

illustrated in Eq. (4-3) and (4-4). The suggested f values from previous studies range 

from 1 to 5 (Davies and Gather 1993, Pearson 2002). The small f provides higher 

confidence in the travel time profile but some of the valid points can be considered as 

noise and disregarded. Conversely, higher f yields lower confidence in the travel time 

profile with some noisy points considered as valid. For this study, the f = 2 is applied 

in Eq. (4-3) and (4-4) as recommended by (Kieu, Bhaskar et al. 2012, Bhaskar, Kieu 

et al. 2013, Bhaskar, Kieu et al. 2015). The trip travel times beyond these boundaries 

are considered as outlier values and will be removed.  

 

fmedianBoundUpper   (4-3) 

fmedianBoundLower   (4-4) 

 

Travel time estimation: In this study, one day (24 hours) was divided into 96 intervals 

(15 minutes per interval) from 0:00:00-0:14:59, 0:15:00-0:29:59, …, 23:45:00-

23:59:59. The estimated travel time of each interval i  ( iTT ) can be calculated by 

averaging all filtered the trip travel times within that interval as follows: 

 




n

t
ti s

n
TT

1

1
     for 96...,,3,2,1i  (4-5) 

 

where st is the value of valid filtered travel time and n is the number of valid data 

point in a particular interval i. 
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4.3 EXPERIMENTAL SITE AND DATA GATHERING SYSTEM 

4.3.1 Study site 

 

The urban roadways in Bangkok CBD were selected as the study location for testing 

the applicability of the BMS system in travel time collection and estimation. The trial 

was conducted 24 hours per day for a total of 33 days from the 4
th

 February 2016 to 

7
th

 March 2016. A total of 40 BMSs have been placed inside the police box at the 

signalized intersections for gathering the Bluetooth signal form Bluetooth devices 

within their communication zones (approximately 100 meters from the location of 

BMS as recommended for traffic applications (Bhaskar and Chung 2013). The 

installation locations of all 40 BMSs are depicted in Figure 4.4, and names and 

positions of BMSs are described in Table 4.1. 

 

 

Figure 4-4 Installation locations of Bluetooth MAC scanners in Bangkok CBD 
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Table 4-1 Names of intersections and position of each BMS installation. 

Scanner  
Intersection  

name 
Latitude Longitude Scanner  

Intersection 

name 
Latitude Longitude 

1 Samyan 13.73292 100.52870 32 Yommarach 13.75735 100.52052 

6 Chaloem Pao 13.74538 100.53588 33 Saphan Laueng 13.73577 100.52155 

12 Narinthorn 13.72204 100.53018 34 Kasatsruk 13.74872 100.51661 

15 Chareon Phol 13.74743 100.52387 35 Surasak 13.72362 100.52065 

16 Pathumwan 13.74613 100.53082 36 Narathiwas 13.72858 100.52704 

17 Phong Phraram 13.74813 100.52078 37 Hua Lumpong 13.73800 100.51640 

18 Saphan Khaw 13.75664 100.51601 38 Surasak-Sathorn 13.71887 100.51980 

19 Urupong 13.75614 100.52357 39 Phatunam 13.75001 100.54099 

20 Noppawong 13.74563 100.51623 40 Ekkamai Tai 13.72037 100.58421 

21 Tai Duan 13.72295 100.55258 41 Thong Lor 13.72371 100.57931 

22 Tai Duan Phetburi 13.74989 100.54992 42 Bangrak 13.72229 100.51661 

23 Sala Daeng 13.72960 100.53661 43 Phetphraram 13.75510 100.52674 

24 Makkasan 13.75610 100.54241 44 Asoke 13.73638 100.56138 

25 Ratchathewee 13.75351 100.53151 46 Henry Dunant 13.73090 100.53359 

26 Maha Nakorn 13.73680 100.51919 47 Sarasin 13.73417 100.54584 

27 Pleonjit 13.74336 100.54749 48 
Maha Nakorn-Si 

Phraya 
13.73063 100.51816 

28 Sri Ayudharya 13.76197 100.52563 49 Silom-Narathiwas 13.72629 100.52807 

29 Witthayu 13.72667 100.54449 50 Phraram 4 13.72029 100.55910 

30 Phayathai 13.75797 100.53438 52 Rachprasong 13.74455 100.54018 

31 Nana 13.74190 100.55296 53 Chidlom 13.74409 100.54387 

 

4.3.2 Data gathering system 

 

In this research, the inquiry cycle for each BMS has been programmed at 1 second, 

which means that the BMS sends the inquiry messages and scan the replied signal 

from Bluetooth devices within its communication zone every 1 second. As a 

Bluetooth enabled device traveled along the road network, the BMS logged the 

unique Bluetooth MAC address together with detected time and detected location of 

that device. Recorded data from the BMS system were then sent to the server via 3G 

telecommunication network. Table 4.2 illustrates an example of recorded data from 

BMSs. The first column represents the record number; second column is the MAC-ID 

of the discovered Bluetooth device which is 48 bits long and normally comprises a 

sequence of twelve hexadecimal digits (six groups of two hexadecimal digits 

separated by colons); third column is the detected time of BT devices; and forth 
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column is the number of BMS station which represents the location of the BMS on 

network (as illustrated in Figure 4.4).  

 

Table 4-2 Data recorded from BMSs  
Record number BT MAC-ID Detected Time BMS ID 

1 AC:7A:4D:A3:E4:XX 4/2/2016 5:04:40 47 

2 AC:7A:4D:A3:E4:XX 4/2/2016 5:04:41 47 

3 AC:7A:4D:A3:E4:XX 4/2/2016 5:04:42 47 

4 64:D4:BD:D8:71:XX 4/2/2016 5:04:42 47 

5 64:D4:BD:D8:71:XX 4/2/2016 5:04:43 47 

6 64:D4:BD:D8:71:XX 4/2/2016 5:04:46 47 

7 AD:C5:EE:02:F5:XX 4/2/2016 5:04:42 16 

8 AD:C5:EE:02:F5:XX 4/2/2016 5:04:43 16 

9 00:1D:FD:07:B0:XX 4/2/2016 5:04:42 16 

10 64:D4:BD:D8:71:XX 4/2/2016 5:04:49 47 

. . . . 

. . . . 

Remarks: the last two digits in column 2 are blinded due to privacy concerns. 

 

4.4 RESULTS AND DISCUSSIONS 

 

4.4.1 Amount of data from each Bluetooth scanner 

 

The summary of MAC-ID and Unique MAC-ID detected from 40 BMSs installed at 

intersections on urban roadways in Bangkok CBD during weekdays on February 4-5, 

2016 is presented in Table 4.3. It could be observed that the total number of recorded 

MAC-ID at each location ranges from 5,573 at BMS 20 to 245,700 at BMS 28, with 

an average of 94,367, on Thursday 4
th

 February 2016 (excluding BMS No. 17 and 29 

due to malfunction problems). The number of Bluetooth devices or unique MAC-ID 

discovered at each location ranges from 988 to 8,383 devices per day, or 4,647 

devices per day on average. On Friday 5
th

 February 2016, the number of total and 

unique MAC-ID records at each BMS were comparatively the same values as the 

records on 4
th

 February 2016. These results show that the BMS has potential to 

capture Bluetooth devices within its communication zone on urban road networks for 

developing further traffic information. However, as previously mentioned, the BMSs 

at locations 17 and 29 failed to detect and record data compared to the others. This 

could happen from various reasons such as malfunction of software, hardware or 

BMS components, communication problems, or environmental constraints, etc.  
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4.4.2 Distribution of Bluetooth data along the day 

 

From 40 BMSs installed in Bangkok CBD, the distribution of captured Bluetooth data 

throughout the day during 4-5
th

 February 2016 is depicted in Figure 4.5. It is observed 

that from 0:00 to 05:00 of both days the detected BT points (less than 100,000 points 

per hour) were significantly lower than other periods of day. This event is consistent 

with the actual traffic behavior that the number of travelers and road users during the 

late nighttime to the early morning is commonly less than the number of daytime, 

resulting in a smaller number of detected Bluetooth data points. During daytime, the 

peak periods can be observed at two intervals: morning peak during 07:00-08:00 on 

both days and evening peak during 18:00-19:00 on February 4
th

 and during 17:00-

18:00 on February 5
th

. The captured data points during morning and evening peak 

hours of both days were more than 200,000 points/hour. This value was around three 

times more than the value in the late night period. When comparing between morning 

and evening peaks, the number of detected BT points in morning peaks was slightly 

smaller than the number in evening peaks on both days. Once considering the 

spreading of data points throughout the day, it is observed that the data distributions 

from both days spread in the same manner. This behavior indicates the feasibility of 

using the BMS system as a tool to collect traffic data on urban roadways for 

developing further travel information such as travel time or travel speed information. 

 

 

Figure 4-5 Number of captured Bluetooth points per hour during 4-5 February 2016. 
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Table 4-3 Total Mac-ID and Unique Mac-ID gathered by each Bluetooth Scanner. 

Scanner # 
Data on Thursday 4/2/2016 Data on Friday 5/2/2016 

Total MAC-ID Unique MAC-ID Total MAC-ID Unique MAC-ID 

1 147,480 5,308 158,445 5,447 

6 19,689 2,218 23,438 2,202 

12 66,172 5,147 63,910 5,298 

15 122,453 5,015 113,822 5,059 

16 77,840 4,039 71,976 4,089 

17 193 42 150 43 

18 116,794 5,374 105,560 5,054 

19 6,969 1,505 9,089 1,802 

20 5,573 988 4,343 911 

21 171,107 8,383 164,833 8,470 

22 125,014 7,568 126,371 7,683 

23 235,118 5,795 237,036 5,872 

24 77,880 5,123 96,723 5,129 

25 63,326 5,306 62,534 5,352 

26 172,843 7,189 177,968 7,206 

27 16,546 2,892 18,217 2,924 

28 245,700 7,226 258,109 7,888 

29 1 - 88 - 

30 63,206 4,929 66,918 5,008 

31 58,121 2,312 88,497 4,357 

32 91,501 6,763 100,559 7,137 

33 51,873 4,555 63,682 4,800 

34 97,059 5,454 97,082 5,806 

35 25,598 1,919 61,141 4,208 

36 238,580 3,188 234,968 3,236 

37 80,090 4,873 84,430 5,104 

38 84,791 6,724 97,477 7,043 

39 60,925 4,751 58,901 4,791 

40 59,842 4,521 62,266 4,618 

41 81,656 4,785 48,810 2,778 

42 86,559 2,770 93,819 2,830 

43 94,965 5,953 78,813 6,181 

44 52,886 4,859 66,398 5,287 

45 29,445 1,804 32,685 1,914 

46 91,998 4,620 105,814 4,828 

48 182,739 3,651 210,317 4,423 

49 37,780 3,239 40,548 3,501 

50 236,251 7,203 286,293 7,268 

52 51,199 3,914 63,106 3,879 

53 58,363 4,714 80,117 4,513 

Average* 94,367 4,647 100,395 4,839 

*Average from 38 BMSs except BMS No.17 and 29 due to malfunction issue. 
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4.4.3 Effects of the filtering process on travel time estimation  

 

The travel time data of section 16-15 from Phatumwan intersection (BMS 16) to 

Chareonphol intersection (BMS 15) with a distance of 767.5 meters is presented in 

Figure 4.5. Figure 4.6 depicts the snapshot of raw travel time calculated from captured 

BT devices after the matching process (before filtering) (Figure 4.6a) and the filtered 

travel time using the proposed method (Figure 4.6b), respectively. Figure 4.6(c) 

presents the estimated travel time for each time interval (15 minutes/interval as 

mentioned in Eq. (4-5)).  

 

In Figure 4.6(a), it can be observed that the amount of travel time data detected from 

BT devices between 00:00-05:00 is relatively small compared to the other times of the 

day, consistent with that discussed in the previous section. However, when 

considering the dispersion of data points, it is observed that there are some outlier 

points that significantly deviate from the main group. The occurrence of these outliers 

can happen from various reasons; for instance, from the stopping vehicle along the 

way, from the vehicle that takes short-cut or other routes then back to the study area 

again, or from non-vehicle trip, etc. In developing section travel time information, 

these outliers need to be deleted from the dataset for constructing unbiased data and 

estimation model. Figure 4.6(b) depicts the remaining travel time data after applying 

Hampel identifier or MAD filtering as previously proposed in Eq. (4-1 to 4-4) to 

remove the outliers. From the figure, it is clear that the largely dispersed data points 

from the main group were eliminated after filtering process. After filtering, this 

dataset were used in the travel time estimation process as aforementioned in Eq. (4-5). 
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Figure 4-6 Travel time from Pathumwan intersection (BMS 16) to Chareon Phol 

intersection (BMS 15) on 4
th

 February 2016 (a) travel times before filtering (b) travel 

times after filtering by MAD (c) estimated travel time for each interval (every 15 

minutes). 

 

Figure 4.6(c) depicts the estimated travel time of each interval (every 15 minutes) 

form both filtered and non-filtered dataset to point out the effects of outliers on travel 

time estimation results. It could be noticed that the estimated travel time from filtered 
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data yields results that are consistent with actual traffic behavior with small 

fluctuation among adjacent intervals particularly on the off-peak periods. On the other 

hand, the estimated travel times from the raw dataset (with outliers) demonstrates the 

highly fluctuated results even in the off-peak periods, and such behavior is quite 

contradictory to actual traffic behavior. These results indicate the cruciality of the 

filtering process in developing travel time information for urban roadway networks 

and also point out the potential of using MAD in the data filtering process. 

 

Figure 4-7 Number of trips/interval from section 16-15 during 4
th

 February 2016. 

 

Figure 4.7 depicts the number of trips in each time interval (15minutes) before and 

after the filtering process captured from section 16-15 (BMS 16 to BMS 15) on 4
th

 

February 2016. It could be noticed that the number of captured trips from both filtered 

and unfiltered data are quite low from midnight to early morning compared to the 

number during daytime period. The missing data problem was found in the 9
th

 (02:00-

02:15) interval, but it did not affect the study as later the night time was disregarded 

in the further consideration. In practice, the travel time estimation for the missing data 

often considers the travel time data of the previous interval as the representative of the 

missing one. The highest number of raw trips (35 trips/15 minutes) was captured in 

the 79
th

 (19:30-19:45) interval and there were 29 trips/15minutes left after the filtering 

process or approximately 2 trips/minute. The total number of raw trips captured from 

96 intervals were 1,419 trips (14.78 trips/interval) and 1,205 trips (12.55 

trips/interval) after filtering. It should be noted that just a small number of trips (only 
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2.23 trips/interval or around 15.08%) were considered as the outliers and were deleted 

in the filtering process while the travel time estimation result from the filtered dataset 

was significantly better and more consistent with the real traffic behavior. This also 

points out the potential of using Hampel identifier or MAD filtering in diminishing 

outliers from Bluetooth data.     

 

Details of the captured trips per interval, average travel time (Avg TT) and speed, and 

the standard deviation of travel time (stdev) before and after the filtering process of 

various sections from 06:00-22:00 of 4
th

 February to 7
th

 March 2016 were 

summarized in Table 4.4.  

 

Table 4-4 Average of captured trip per interval, average standard deviation of travel 

time, average travel time and speed before and after the filtering process of various 

sections.  

Road 

section 

Length 

(km) 

Without filtering Filtered data 

Avg. 

captured 

trip/interval 

Avg. 

stdev 

Avg tt 

(sec) 

Avg 

speed 

(kph) 

Avg. 

captured 

trip/interval 

Avg. 

stdev 

Avg tt 

(sec) 

Avg 

speed 

(kph) 

01-16 1.491 4.03 487.22 773.38 6.94 3.18 139.92 537.47 9.99 

16-01 1.491 5.54 468.28 568.15 9.45 5.51 90.97 349.29 15.37 

01-33 0.841 12.08 466.27 390.45 7.75 10.20 60.71 198.32 15.26 

33-01 0.841 5.21 514.48 529.81 5.71 5.23 80.81 252.58 11.98 

01-46 0.568 8.52 499.78 426.25 4.80 6.81 75.94 202.51 10.10 

46-01 0.568 8.43 493.24 370.37 5.52 8.57 65.21 160.32 12.75 

01-48 1.173 1.60 445.90 1277.97 3.31 1.42 293.98 1161.37 3.64 

48-01 1.173 5.27 501.18 585.84 7.21 5.30 109.20 340.98 12.39 

06-16 0.551 7.95 375.73 387.73 5.12 6.84 78.12 230.03 8.63 

16-06 0.551 1.95 354.63 547.53 3.63 1.89 36.60 317.48 6.25 

15-16 0.761 2.50 419.92 741.41 3.70 1.82 78.65 499.36 5.49 

16-15 0.761 9.53 435.42 347.54 7.88 9.53 42.07 149.78 18.30 

16-25 0.794 5.93 460.39 632.54 4.52 4.71 96.37 431.41 6.62 

25-16 0.794 10.50 397.03 342.08 8.35 10.36 66.61 179.69 15.90 

25-30 0.587 10.81 367.06 376.56 5.61 9.44 82.40 242.69 8.71 

30-25 0.587 20.96 291.26 259.76 8.14 20.78 66.79 180.52 11.71 

25-39 1.066 4.76 610.57 822.71 4.67 3.88 252.68 558.17 6.88 

39-25 1.066 5.55 525.19 654.53 5.87 5.57 105.61 396.55 9.68 

25-43 0.562 8.83 536.88 473.56 4.27 7.07 73.52 214.47 9.43 

43-25 0.562 13.14 418.83 366.94 5.51 13.22 81.25 215.16 9.40 

*Considered only data from 06:00 to 21:00 of 4
th

 February to 7
th

 March 2016  
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4.4.4 Effects of data fluctuation on travel time estimation  

 

For a more in-depth analysis, Figure 4.8 shows the difference between travel time 

estimation in each interval using pre- and post-filtering data on the 4
th

 and 5
th

 

February 2016. It can be seen that the travel time estimation results from both pre- 

and post-filtering data are not significantly different in the intervals with low standard 

deviation. As the standard deviation of the raw dataset increases, the difference 

among travel time estimation results increases accordingly. This can imply that, once 

the data in each interval is not significantly different or clustered together, the filtering 

process almost treats all the data as valid values with no outlier. On the other hand, 

when the data are very fragmented, some data points that greatly deviate from the 

median are considered as outliers and are taken out, then filtered data could produce 

reasonable estimation outcomes as aforementioned in the previous section. However, 

in some intervals with high standard deviation, if no abnormal data that significantly 

diverge from the group median is found, all the data within that interval will be 

considered as the valid values with no outlier as could be noticed in the region with 0 

(or close to 0) percent difference of estimated travel times between pre- and post-

filtering data. 

 

 

Figure 4-8 Difference between estimated travel time from raw and filtered data vs 

standard deviation within interval from BMS 16 to 15 during 4-5 February 2016. 
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4.5 CONCLUDING REMARKS 

 

A Bluetooth MAC scanner is one of the advanced and cheapest technology that has 

potential for implementation as an area-wide traffic data collection system. The 

successful implementations of the BMS system on freeways from many countries 

have been reported recently. On the other hand, the application of BMS on urban 

roadways is becoming the challenging topic for all traffic professionals due to the 

complicated behaviors and disturbances from surroundings. This chapter presents the 

development of traffic data collection system from BMSs starting from the basic 

components of BMS, the possible installation place for collecting traffic data on urban 

roadways, details of captured data, and also suggested framework for constructing 

travel time information from Bluetooth probe data. 

 

Results from the field data collection from 4
th

 February to 7
th

 March 2016 of 40 

BMSs show the sufficient number of collected raw data, approximately 100,000 data 

points per BMS per day or around 4,700 Bluetooth devices per BMS per day after 

grouping together by MAC-ID. The analysis on data spreading along time of day 

points out that during 00:00-05:00 the amount of captured data was considerably 

lower than on the amount during daytime, and this could create the missing data 

problem in some road sections.  However, the amount of captured data was higher and 

approximately sufficient for developing reliable traffic information during daytime, 

which is a period that highly requires traffic information for disseminating to road 

users. 

 

The data filtering by the Hampel identifier can successfully remove outliers that 

greatly deviate from the group median, resulting in the more reasonable travel time 

estimation results and proved consistency with real traffic behaviors. The in-depth 

analysis also points out that only small amount of data were considered as outliers and 

were taken out in the filtering process, but this could significantly improve the 

estimation results. 
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5. DEVELOPMENT OF MODELS FOR TRAVEL TIME 

PREDICTION AND EXPERIMENTAL CORRIDOR 

 

The main objective of this dissertation is to develop the methodology for short-term 

travel time prediction on urban roadway networks using data captured from the 

Bluetooth scanner system. Thus, this chapter provides details for developing and 

testing the travel time prediction model. The chapter starts with explanation on 

criteria for developing the travel time prediction model, then the concept of 

neighboring sections. The third is an overview of the travel time prediction 

methodology using Artificial Neural Network or ANN. After that, details of the 

experimental corridor and dataset for travel time prediction are explained. The fifth 

section is about the scenarios for testing.  The final section is the concluding remarks 

of this chapter. 

 

5.1 CRITERIA FOR DEVELOPING THE TRAVEL TIME PREDICTION 

MODEL 

 

This dissertation aims at developing an accurate and robust short-term travel time 

prediction model for signalized arterial roadways which can be implemented in 

practice. Before the model is presented, there are several criteria that should be 

clarified; 

 

1)  The model should be general and can be implemented at any location, at 

least in terms of the input-output relationship and model structure. 

2)  The model should be practically implemented based on the available and 

feasible data gathered from the Bluetooth scanner system. 

3)  The model should be able to provide acceptable output in various traffic 

conditions  
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5.2 THE BASIC CONCEPT OF NEIGHBORING SECTIONS FOR TRAVEL 

TIME PREDICTION MODEL DEVELOPMENT 

 

In order to develop the travel time prediction models from the historical data by 

incorporating the effects of neighboring sections, we need to express the idea of 

neighboring sections. Figure 5.1 illustrates the signalized arterial roads which consist 

of 14 uni-directional road sections and two signalized intersections. If we consider the 

section number 1 as a target section, its neighboring sections can be classified into 

three broad categories as follows:  

 

 

 

 

 

 

 

 

 

Figure 5-1 Signalized arterial roads. 
 

Upstream sections are the sections that send traffic to the target section. From Figure 

5.1 the upstream sections comprise;  

- Section number 2 is the road section that transfers its traffic to the target 

section by through movement. In this dissertation, we will call this section 

as upstream-direct section (UD).   

- Section number 3 is the road section that transfers its traffic to the target 

section by left turn movement (alternatively, it can be considered as this 

section is on the left hand side of the target section). In this dissertation, 

we will call this section as upstream-left section (UL).   

- Section number 4 is the road section that transfers its traffic to the target 

section by right turn movement (alternatively, it can be considered as this 

section is on the right hand side of the target section). In this dissertation, 

we will call this section as upstream-right section (UR).   
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Downstream sections are the sections that receive traffic from the target section. From 

Figure 5.1 the downstream sections comprise;  

- Section number 5 is the road section that receives the traffic from the 

target section by through movement. In this dissertation, we will call this 

section as downstream-direct section (DD).   

- Section number 6 is the road section that receives the traffic from the 

target section by left turn movement (alternatively, it can be considered as 

this section is on the left hand side of the target section). In this 

dissertation, we will call this section as downstream-left section (DL).   

- Section number 7 is the road section that receives the traffic from the 

target section by right turn movement (alternatively, it can be considered 

as this section is on the right hand side of the target section). In this 

dissertation, we will call this section as downstream-right section (DR).   

 

Signal sharing sections are the sections that share the traffic signal time with the 

target section. From Figure 5.1 the signal sharing sections comprise; 

- Section number 8 is the road section that shares the traffic signal time with 

the target section and is located on the opposite side of the target section. 

In this dissertation, we will call this section as share-direct section (SD).   

- Section number 9 is the road section that shares the traffic signal time with 

the target section and is located on the left hand side of the target section. 

In this dissertation, we will call this section as share-left section (SL).   

- Section number 10 is the road section that shares the traffic signal time 

with the target section and is located on the right hand side of the target 

section. In this dissertation, we will call this section as share-right section 

(SR).   

 

In this dissertation, we have proposed that the travel times of these neighboring 

sections could have a relationship with and affect the travel time of the target section. 

Therefore, all the aforementioned neighboring sections will carefully be considered as 

inputs into the travel time prediction model.      



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78 

5.3 OVERVIEW OF TRAVEL TIME PREDICTION METHODOLOGY 

USING ARTIFICIAL NEURAL NETWORK 

 

Artificial Neural Network (ANNs) can be defined as the technique for processing 

information that is inspired by the human brain system. The brain is principally 

composed of enormous number of neurons that are massively connected together to 

solve a specific problem. ANNs mimic the biological neurons functions to perform 

the sophisticated and intelligent computations similar to the human brain system. 

    

Numerous researches from the past point out the ability of ANNs in section travel 

time prediction; for instance, using the multilayer feedforward with back propagation 

(Park and Rilett 1999, Kisgyorgy and Rilett 2002, Huisken and Van Berkum 2003), 

the dynamics time-delayed neural networks (Shen L. and Huang M. 2011), state-space 

neural networks (Van Lint, Hoogendoorn et al. 2002, Van Lint, Hoogendoorn et al. 

2005, Abu-Lebdeh and Singh 2011) in travel time and traffic prediction. However, as 

neural networks are not transferable but location specific, previous models from 

literature cannot be deployed in other sites. Therefore, in this dissertation the neural 

network model for travel time prediction needs to be specifically developed for 

studying corridors in Bangkok CBD. 

 

Based on previous studies, using neural networks in travel time prediction can 

significantly improve the accuracy and the robustness of prediction outcomes. 

Although studies from the past have proposed various types of neural network 

structures for travel time prediction but there are no concrete conclusions on which 

one is the best. In this study, the multilayer feedforward neural network is selected as 

the main neural network structure for developing the travel time prediction model due 

to its simplicity in modeling, it is the major structure type used in previous literature, 

the successful test with various datasets from both simulation and from field study, 

and the capability of integration of spatial and temporal patterns into the model. 

 

The next sub-sections provide information of the neural network model from the basic 

components, definitions to the principles for selecting model components. 
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5.3.1 Multilayer feedforward neural networks (MFNN) 

 

Artificial Neural Network (ANN), or neural network, is one of the techniques for data 

mining. It is the mathematical model that simulates the human brain system to create 

tools that are capable of learning patterns recognition and knowledge extraction, as 

well as the abilities that are found in the human brain.  

 

MFNN is one of the most widely used structures of ANNs in various applications. In 

MFNN, an interconnection of nodes in which the flow of calculations is in single 

direction starts from the input layer to the output layer.  The number of layers can be 

computed by the number of layers of nodes. In general, a neural network consists of 

the following elements (Dougherty 1995). 

 

Nodes (artificial neurons, processing elements, or processing units): The basic 

element of ANNs is the neuron or node. Node receives the value of input (that is 

normalized between 0 to1 or -1 to 1) and computes the output(s) according to the 

selected transfer function. Figure 5.2 shows the basic function of node or artificial 

neuron. The neuron outputs is calculated as: 
 

𝑎 = 𝛷(∑ 𝑥𝑖𝑤𝑖 + 𝑏) (5-1) 

 

 

 

 

 

         

 

 

 

 

Figure 5-2 Artificial neuron 
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Connection weights: neural network comprises many nodes linked together by 

connections with varying weights that make the outputs of some nodes as the inputs.  

 

Bias: The bias is a function that has a constant input of 1. The bias can decrease or 

increase the net input of the activation function depending on its value (negative or 

positive). 

 

Transfer function/Activation function: The transfer function translates the input 

signals to output signals. There are four common types of transfer functions that are 

used in the neural network: Unit step (threshold), sigmoid, piecewise linear, and 

Gaussian. 

 

Layers: It is usual to organize the neurons in layers, with all nodes in neighboring 

layers connected to each other. In neural network, there are three common types of 

layer: input layer, output layer, and one or more hidden layers. 

 

The common topology of multilayer feedforward neural network is illustrated in 

Figure 5.3. 

 
 

 

 

 

 

 

 

 

 

 

Figure 5-3 Schematic diagram of a multilayer feedforward neural network 
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5.3.2 Model inputs for travel time prediction 

 

The number of input neurons on neural network corresponds to the number of 

variables used in forecasting future travel time. In this dissertation, to predict the 

travel time of the target section(s), relevant information that is expected to influence 

the target section(s) travel time are considered as the model inputs. In this study, the 

model inputs can be grouped as follows: 

 
 (1) The estimated travel time from previous interval(s): the previous research 

shows that the predicted travel time of the target section is dominantly 

influenced by its recent historical travel time. In this study, the travel 

times from 15, 30, 45, and 60 minutes prior to the current time are 

considered as candidates for model inputs. 

(2) The estimated travel time of neighboring sections: as aforementioned in 

section 5.3, the effects of neighboring sections could play important roles 

in travel time prediction on urban roadways. In this study, the estimated 

travel times from previous intervals (15, 30, 45, and 60 minutes in the 

past) of upstream, downstream and signal sharing sections are considered 

as candidates for model inputs.  

 

5.3.3 Input variable selection  

 

The Input Variable Selection (IVS) is a broad research area in artificial neural 

network modeling. The IVS methodologies can be grouped into three main classes 

(Blum and Langley 1997, Guyon and Elisseeff 2003) including; (1) wrapper 

algorithm that integrates IVS as part of the optimization of the model structure, (2) 

embedded algorithm that IVS is directly integrated into the training algorithm of 

ANN, and (3) filtering algorithm that contrasts to the previous classes by distinctly 

separating the IVS from the ANN training and adopting the statistical analysis in 

measuring the relevance of individual input variables. In this dissertation, rank 

correlation most commonly used in multivariate statistics and data mining (May, 
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Dandy et al. 2011) was used as the IVS method. The Pearson correlation, R, is defined 

by    

 

𝑅𝑋𝑌 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦)̅̅ ̅𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ∑ (𝑦−𝑦̅)2𝑛

𝑖=1

 (5-2) 

 

where 𝑛 is the sample size, 𝑥𝑖 , 𝑦𝑖 are the single samples indexed with 𝑖, 𝑥,̅ 𝑦̅ are the 

sample means 

 

Input variable ranking based on Pearson correlation is one of the most widely used 

techniques in IVS. The selection of variables can be done by sorting for the first  𝑘 

variables that have the highest correlation values, or using all variables whose 

correlations are significantly different from zero. A rule of thumb for the large sample 

size (n) is that the variables with absolute correlation higher than 2/√𝑛 are significant 

(May, Dandy et al. 2011).   

 

In this dissertation, all the candidate parameters were gradually entered as the model 

inputs by descending sorting of the correlation value. The overall process for 

developing the travel time prediction model is depicted in Figure 5.4.  

 

5.3.4 Selection of neurons in hidden layers 

 

The literature indicates that a multilayer feedforward neural network with one hidden 

layer is sufficient for approximating any complex non-linear function with any 

desired accuracy (Cybenko 1989, Hornik, Stinchcombe et al. 1989) and can provide 

acceptable outputs in travel time prediction (Faghri and J. Hua. 1992, Dougherty 

1995, Vanajakshi and Rilett 2004, Naik 2010). In this dissertation, a widely used 

three-layer feedforward networks that have a single hidden layer sandwiched between 

input and output layers was used as the main structure for constructing the travel time 

prediction model. However, the conclusive rules for selecting the number of hidden 

neurons are not available. Therefore, the hidden neurons from 1-50 were tested, by a 

widely-used trial-and-error approach, to identify the most appropriate number of 
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hidden neurons within hidden layers. Each model was tested with the training dataset 

that was gathered from real-field data during February 4-29, 2016 for multiple times 

(5 times). The appropriate model (appropriate number of hidden neurons and number 

of inputs) was based on the model that provides the least MAPE value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 Overall processes for developing the short-term travel time prediction 

model 

 

5.3.5 Selection of training algorithm  

 

The back propagation training algorithm is the widely used technique in artificial 

neural networks in minimizing errors between observed values and outputs from 

prediction. This technique is a very popular optimization task in finding the optimal 

weight sets in the training process (Nawi, Khan et al. 2013). There are several 
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nonlinear normalization approaches available for back propagation training such as 

the quasi-Newton, steepest gradient, conjugate gradient and the Levenberg-Marquardt 

(LM) algorithms. In this dissertation, the neural network models for travel time 

prediction were developed based on MATLAB programming as the main platform 

and therefore the built-in, LM algorithm based back propagation training, was used in 

neural network training.     

 

5.3.6 Selection of activation functions 

 

There are several activation functions available and have been used in previous 

studies. In this dissertation, two types of activation functions were used which are;  

 

(1) Log-sigmoid function to transform value ranging from plus and minus 

infinity to value between 0 and 1(depicted in Figure 5.5(a)) as the activation 

function for hidden layer(s) as depicted in Figure 5.6.  

 (2) Linear function as depicted in Figure 5.5b for the output layer as depicted in 

Figure 5.6.  

 

 

 

 

 

 

Figure 5-5 Activation functions (a) log-sigmoid transfer function (b) linear transfer 

function. 

 

 

 

 

 

 

Figure 5-6 Use of log-sigmoid and linear transfer function in ANNs 
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5.4 EXPERIMENTAL CORRIDOR AND DATASET FOR TRAVEL TIME 

PREDICTION 

 

As aforementioned in Chapter 4, a total of 40 Bluetooth scanners were installed at 

signalized intersections on urban roadways in Bangkok CBD for capturing signal 

from Bluetooth devices within their communication zones. During the data collection 

period, the missing data problem occurred in many periods and locations for various 

reasons such as (1) the runout of power supply for Bluetooth scanners which was a 

major problem during data collection, (2) the communication and data transmission 

problems from the mobile network, (3) no detection of Bluetooth devices in some 

intervals, etc. Therefore, it was necessary to carefully consider only the road section 

with low missing data problems and with enough captured data to use in this travel 

time prediction study. 

 

5.4.1 Study corridors and target sections 

 
From preliminary analyses on the availability of data, a corridor comprises 20 arterial 

sections partitioned at signalized intersections with different segment length ranging 

from 0.5 km to 1.49 km were selected as the study site. The main reason for selecting 

these sections was because these sections contained the more available Bluetooth 

probe data compared to other zones. The map of the study corridor is shown in Figure 

5.7. Details of each section in the corridor are illustrated in Table 5.1. It could be 

observed from Table 5.1 that the amount of captured data per 15 minutes of each 

section varies ranging from 1.42 to 20.78 vehicles/15 minutes. The average captured 

rate from all section is 7.07 vehicles/15 minutes.   

 

From the study corridors, four urban road sections were selected as target sections for 

the travel time prediction study which were section 01-16, 16-01, 16-25 and 25-16. 

Details of neighboring sections of each target section are illustrated in Table 5.2. 
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- Section 01-16 from Samyan to Pathumwan intersection which is a 4-lane 

road of 1,491 meters long with 3 signalized intersections within the section. 

The right-turn movement is prohibited at the downstream intersection of this 

section. The data capturing rate of this section is 3.18 vehicles/15 minutes, 

and the average travel time and speed of section are 537.47 seconds and 9.99 

km/h, respectively.  

- Section 16-01 from Pathumwan to Samyan intersection which is a 4-lane 

road of 1,491 meters long with 3 signalized intersections within the section. 

The data capturing rate of this section is 5.51 vehicles/15 minutes, the 

average travel time and speed of section are 349.29 seconds and 15.37 km/h, 

respectively. 

- Section 16-25 from Pathumwan to Rachathewi intersection which is a 2-3-

lane road (two lanes at the beginning of the section and expanded to three 

lanes at the end of the section) of 794 meters long. The right-turn movement 

is prohibited at the downstream intersection of this section. The data 

capturing rate of this section is 4.71 vehicles/15 minutes, and the average 

travel time and speed of section are 431.41 seconds and 6.62 km/h, 

respectively. 

- Section 25-16 from Rachathewi to Pathumwan intersection which is a 4-6-

lane road (four lanes at the beginning of the section and expanded to six 

lanes at the end of the section) with 794 meters long. The data capturing rate 

of this section is 10.36 vehicles/15 minutes, and the average travel time and 

speed of section are 179.69 seconds and 15.90 km/h, respectively. 
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Figure 5-7 Study corridor 

 

Table 5-1 Details of each section in the study corridor.  

Road 

section 

Length 

(km) 

Bluetooth-Probe data 

Avg. captured 

trip/15 minutes 
Avg TT (sec) 

Stdev of TT 

(sec) 

Avg speed 

(km/h) 

01-16* 1.491 3.18 537.47 139.92 9.99 

16-01* 1.491 5.51 349.29 90.97 15.37 

01-33 0.841 10.20 198.32 60.71 15.26 

33-01 0.841 5.23 252.58 80.81 11.98 

01-46 0.568 6.81 202.51 75.94 10.10 

46-01 0.568 8.57 160.32 65.21 12.75 

01-48 1.173 1.42 1161.37 293.98 3.64 

48-01 1.173 5.30 340.98 109.20 12.39 

06-16 0.551 6.84 230.03 78.12 8.63 

16-06 0.551 1.89 317.48 36.60 6.25 

15-16 0.761 1.82 499.36 78.65 5.49 

16-15 0.761 9.53 149.78 42.07 18.30 

16-25* 0.794 4.71 431.41 96.37 6.62 

25-16* 0.794 10.36 179.69 66.61 15.90 

25-30 0.587 9.44 242.69 82.40 8.71 

30-25 0.587 20.78 180.52 66.79 11.71 

25-39 1.066 3.88 558.17 252.68 6.88 

39-25 1.066 5.57 396.55 105.61 9.68 

25-43 0.562 7.07 214.47 73.52 9.43 

43-25 0.562 13.22 215.16 81.25 9.40 

Average  7.07 340.91 98.87 10.42 

Considered only data from 06:00 to 21:00 of 4
th

 February to 7
th

 March 2016  

*Target sections for travel time prediction; TT=travel time, Stdev=standard deviation of travel time 
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Table 5-2 Study sections and their neighboring sections.   
Target 

sections 

Upstream sections 

 

Downstream sections 

 

Signal sharing sections 

UD UL UR DD DL DR SD SL SR 

01-16 48-01 33-01 46-01 16-25 16-15  25-16 15-16 06-16 

16-01 25-16 06-16 15-16 01-48 01-46 01-33 48-01 46-01 33-01 

16-25 01-16 15-16 06-16 25-30 25-43  30-25 39-25 43-25 

25-16 30-25 39-25 43-25 16-01 16-06 16-15 01-16 06-16 15-16 

 

5.4.2 Dataset for developing the travel time prediction model 

 
The 33-day Bluetooth data from February, 4 2016 to March 7, 2016 in the study 

corridor was used to test and verify the accuracy of the proposed technique in 

addressing section travel time prediction problems. Details of raw data and travel time 

estimation technique from Bluetooth probe data were described in Chapter 4.   

 

From 24 hours of 33 days data (approximately 5 weeks), only the data collected 

during 06:00 – 21:00 were chosen as the full dataset in this study.  The main reasons 

are (1) the traffic condition during daytime is generally more fluctuated than in the 

nighttime particularly around morning and evening peaks that need to be predicted 

and informed to road users, (2) the highest number of people who like to get traffic 

information is in the daytime period, (3) the majority of detected Bluetooth data is in 

daytime which makes data more reliable than nighttime. 

 

In the model development process, full dataset as abovementioned was separated into 

2 groups. First group comprised data from 26 days from February 4-29, 2016 and was 

used as training dataset in the model training and learning process. The second group 

comprised 7 days (1week) data from March 1-7, 2016 and was used as validating 

dataset (or testing dataset) to test the applicability of the travel time prediction model.   
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5.5 TESTING SCENARIOS 

 

In this dissertation, test scenarios were separated into three cases which were; 

 

Scenario 1: Only the historical data of the target section were available for 

developing the ANN model. In this case, the travel time prediction 

models were developed using only historical travel time from the target 

section as the model inputs (commonly used in the ANN model). 

Scenario 2: Data of target and all neighboring sections were obtainable. In this case, 

the travel time prediction models were developed using both historical 

travel time from target and neighboring sections as the model inputs. 

Scenario 3: The historical data from the target section were absent, but the data of all 

neighboring sections were available. In this case, the travel time 

prediction models were developed by using only historical travel time 

from neighboring sections as the model inputs.  

 

From three testing scenarios mentioned above, all the target sections, which were 

section 01-16, 16-01, 16-25, and 25-16, would be tested to find the appropriate 

prediction models that predicted their future travel time in the 15, 30, 45, and 60 

minutes horizon.   

 

5.6 CONCLUDING REMARKS 

 

This chapter described the details of the ravel time prediction model on urban 

roadways using the ANN technique by integrating the neighboring sections as the 

candidates for model inputs. Details of experimental corridor, dataset used in analysis 

and testing scenarios were also presented.   

 

In this study, the multilayer feedforward neural network model with one hidden layer 

was selected as the main structure for the travel time prediction model. The candidate 

inputs for the travel time prediction model were historical travel times of the target 

section and its neighboring sections including; upstream, downstream and signal 
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sharing sections.  The input selection for the prediction model was based on the order 

of the correlation coefficients between desired output and each input parameter. The 

appropriate number of hidden neurons for each model was tested by the trial and error 

technique ranging from 1 to 50 hidden neurons.  

 

The study corridor was on urban roadways in Bangkok metropolitan, comprising 

totally 20 sections which could be grouped into 4 target sections and their neighboring 

sections. The Bluetooth probe dataset, gathered 24 hours a day during February 4, 

2016 to March 7, 2016, was used in this study.  

 

From 24 hours for 33 days dataset, only the data obtained during 06:00 to 21:00 were 

selected as the full dataset in this study. The full dataset was then divided into 2 

groups: (1) training dataset was the 26 days data captured during February 4-29, 2016 

for model training and learning process, and (2) validating dataset was the 7 days data 

captured during March 1-7, 2016 for verifying the model accuracy. 

 

The testing scenarios were categorized into three cases which were (1) only the 

historical data of the target section were available (commonly used in the ANN 

model), (2) all the historical data from both the target section and neighboring 

sections were available, and (3) historical data from the target section were absent, but 

the historical data of all neighboring sections were available for constructing the 

prediction model.   
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6. TRAVEL TIME PREDICTION RESULTS AND DISCUSSIONS 

 

In order to assess the applicability of the proposed method and to achieve research 

objectives, numerical analyses on the travel time prediction on urban roadways were 

performed in this chapter, which is organized into 5 sections. First, the study sections 

and travel time behaviors are elaborated, and the characteristics of travel time on the 

study sections are presented.  The correlation between (future) travel times and basic 

parameters (travel times) in the past on adjacent road sections are studied. Second, 

selection of inputs and hidden neurons for the travel time prediction model is 

presented.  The procedures for selecting ANN model parameters, number of hidden 

neurons and input parameters are described. Third, the proposed travel time prediction 

models (ANNs) are applied under three main scenarios. The results are presented and 

discussed. Fourth, model performance in various situations is analyzed. The four 

cases of the study sections are discussed using Coefficient of Variation (CV) and 

Mean Absolute Percentage Error (MAPE). And, the concluding remarks of this 

chapter are presented in the last section.  

 

6.1 STUDY SECTIONS AND TRAVEL TIME BEHAVIORS 

 

6.1.1 Travel times of the study sections  

 

As mentioned in the previous chapter, four urban road sections (study sections) were 

selected as target sections for the travel time prediction study, which are section 01-16 

(from Samyan to Pathumwan  intersection), section 16-01 (from Pathumwan to 

Samyan intersection), section 16-25 (from Pathumwan to Rachathewi intersection) 

and section 25-16 (from Rachathewi to Pathumwan intersection). The behaviors of the 

travel time of each study section on weekdays and weekend are depicted in a simple 

time sequence diagram in Figure 6.1(a)-(d). Please note that travel time values of 

these sections were averaged from training dataset that were collected during 

February 3, 2016 to February 29, 2016.  
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(a) Section 01-16 

 
(b) Section 16-01 

 
(c) Section 16-25 

 
(d) Section 25-16 

Figure 6-1 Travel times of the study sections on weekday and weekend (a) section 

01-16, (b) section 16-01, (c) section 16-25, (d) section 25-16 
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The travel time behavior of section 01-16 is depicted in Figure 6.1(a). The travel time 

in uncongested traffic condition of this section is around 200 seconds which can be 

observed from 7:45 to 9:30 a.m. on weekend. The difference between travel times on 

weekday and weekend of this section can clearly be noticed. On weekday, a small 

morning peak of around 500 seconds (2.5 times of uncongested condition) occurs 

between 7:30 and 8:30 a.m. while in the evening heavier traffic congestion can be 

observed from the higher peak. The buildup of the evening peak starts around 15:00 

(3 p.m.) and the highest value is around 1600 seconds (8 times of uncongested 

condition) at 18:00 (6 p.m.). Then the congestions fully dissipate at around 20:00 (8 

p.m.). On weekend, the morning peak cannot clearly be observed while in the evening 

the moderate congestion occurs with the peak travel time of around 800 seconds (4 

times of uncongested condition) at 17:15 (5:15 p.m.) and dissipates at 18:45 (6:45 

p.m.).  

 

The travel time behavior of section 16-01 is depicted in Figure 6.1(b). The travel time 

in uncongested traffic condition of this section is around 200 seconds which occurs 

from 7:00 to 9:30 a.m. on weekend. The difference between travel times on weekday 

and weekend of this section can slightly be noticed. On weekday, a small morning 

peak of around 400 seconds (2 times of uncongested condition) occurs at 7:45 a.m. 

while in the evening heavier traffic congestion can be observed from a higher peak. 

The buildup of peak starts at around 16:00 (4 p.m.) and the highest value of travel 

time is around 700 seconds (3.5 times of uncongested condition) at 17:45 (5:45 p.m.) 

then the congestion fully dissipates at around 20:00 (8 p.m.). On weekend, the 

morning peak cannot clearly be observed while in the evening the small congestion 

occurs with the peak travel time of around 600 seconds (3 times of uncongested 

condition) at 16:30 (4:30 p.m.).  

 

The travel time behavior of section 16-25 is depicted in Figure 6.1(c). The travel time 

in uncongested traffic condition of this section is around 120 seconds which can be 

observed at 7:00 a.m. on weekend. The difference between travel times on weekday 

and weekend of this section can clearly be noticed. On weekday, a small morning 

peak of around 540 seconds (4.5 times of uncongested condition) occurs from 7:30 to 
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8:30 a.m. while in the evening heavier traffic congestion can be observed from a 

higher peak. The highest peak travel time is around 1100 seconds (9 times of 

uncongested condition) between 18:00-18:15 (6:00-6:15 p.m.). On weekend, the 

morning peak cannot clearly be observed while in the evening the moderate 

congestion occurs with the peak travel time of around 600 seconds (5 times of 

uncongested condition) at 17:45 (5:45 p.m.).  

 

The travel time behavior of section 25-16 is depicted in Figure 6.1(d). The travel time 

in uncongested traffic condition of this section is around 100-120 seconds which can 

be observed from 7:00 to 10:00 a.m. on weekend. The difference between travel times 

on weekday and weekend of this section cannot clearly be noticed. The time spent for 

traveling on this section is quite constant for the entire day, the morning and evening 

peaks are also hard to spot. 

 

6.1.2 Correlations between future travel times and each parameter of the study 

sections 

 

Table 6.1-6.4 show the correlation of each parameter (including historical travel times 

of the target section, upstream sections, downstream sections, and signal sharing 

sections) with the future travel time in the next 15, 30, 45 and 60 minutes of section 

01-16, 16-01, 16-25 and 25-16 respectively. Please note that these correlation values 

were calculated from Bluetooth probe data collected between February 4, 2016 and 

February 29, 2016, which were the training dataset for developing the travel time 

prediction model.  

 

The correlation determines the level of association between the input (independent) 

parameter and the target (future) travel time.  The parameters are treated 

independently.  For the correlation for each pair of parameter, the greater the value, 

the higher correlation between the two variables.  Although the value of correlation 

could roughly show the level of acceptability of the association, in this study only the 

relative degree of correlation is of interest.  Therefore, the correlation values for all 

parameters are put in order.  One can see the importance of each parameter to the 
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resulting travel time forecast.  For instance, the value of 15-min travel time on the 

target section (T15) could have the highest association (explanatory power) to the 

travel time forecast (15, 30, 45, and 60 minutes) in most cases (Table 6.1-Table 6.3), 

except in the case on section 25-16 (Table 6.4), in which the 15-min travel times on 

the target section (T15) are ranked 1-3.   The rank of the correlation was used to 

determine the parameter(s) that would later be used as input(s) to the travel time 

prediction model. 

 

Considering types of parameters (target, up-direct, up-left, up-right, down-direct, 

down-left, down-right, shared-direct, shared-left, shared-right), one can observe 

correlation ranking in a big picture from Table 6.1-6.4 that the historical travel times 

of the target section are the most correlated parameters to the future travel times. 

However, the second most correlated parameter to the future travel time of the target 

varies from section to section. For instance, historical travel times of the direct-

downstream section are the second most correlated parameter to the future travel time 

of section 01-16; the historical travel times of the signal sharing section on the left 

hand side of the target section are the second most correlated parameter to the future 

travel time of section 16-01; historical travel times of the direct-downstream section 

are the second most correlated parameter to the future travel time of section 16-25; 

and historical travel times of the direct-upstream section are the second most 

correlated parameter to the future travel time of section 25-16. These different 

correlated parameters from the four study sections imply local specific behavior and 

consequently indicates that the appropriate model inputs at different locations should 

be different. 

 

Although the values of correlation are not the main consideration here, it is worth 

mentioning a point on correlation values here. From the degree of correlation, one can 

observe that not all parameters can be good explanatory variables to the travel time 

forecast.  Many of the low rank parameters have weak correlations. From the Tables, 

the correlation at each ranking varies. For instance, at Rank 5
th

  of the four target 

sections, the correlations range from 0.436-0.537, 0.368-0.546, 0.392-0.587, and 

0.043-0.127 on section 01-16, 16-01, 16-25, and 25-16 respectively. At Rank 10
th

, the 

correlations range from 0.330-0.375, 0.298-0.409, 0.345-0.447, and -0.024-0.103 on 
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section 01-16, 16-01, 16-25, and 25-16 respectively.  Notably, the study section 25-16 

has very a low correlation. It means that the correlation is also dependent on section 

and traffic characteristics.  
 

Table 6-1 Correlation between each parameter and the future travel times of section 

01-16 calculated from training dataset (February 2-29, 2016). 

Parameters 

Prediction horizons 

15 minutes 30 minutes 45 minutes 60 minutes 
Correlation Rank Correlation Rank Correlation Rank Correlation Rank 

Target-15 (T15) 0.735 1 0.607 1 0.547 1 0.503 2 

Target-30 (T30) 0.612 2 0.573 2 0.534 3 0.471 4 

Target-45 (T45) 0.537 5 0.512 5 0.467 6 0.436 5 

Target-60 (T60) 0.467 8 0.413 8 0.389 8 0.347 9 

Up-Direct-15 (UD15) 0.316 13 0.310 12 0.326 12 0.333 10 

Up-Direct-30 (UD30) 0.277 17 0.279 14 0.304 13 0.300 15 

Up-Diect-45 (UD45) 0.262 19 0.261 18 0.284 19 0.292 16 

Up-Direct-60 (UD60) 0.256 21 0.243 20 0.280 20 0.222 23 

Up-Left-15 (UL15) 0.353 9 0.327 11 0.379 9 0.375 7 

Up-Left-30 (UL30) 0.336 10 0.348 9 0.375 10 0.329 11 

Up-Left-45 (UL 45) 0.333 11 0.330 10 0.329 11 0.300 14 

Up-Left-60 (UL60) 0.329 12 0.288 13 0.299 14 0.267 19 

Up-Rigth-15 (UR15) 0.101 31 0.078 32 0.073 31 0.082 30 

Up-Right-30 (UR30)  0.078 35 0.069 34 0.060 33 0.080 31 

Up-Right-45 (UR45) 0.094 32 0.069 33 0.068 32 0.065 33 

Up-Right-60 (UR60) 0.088 34 0.059 35 0.038 36 0.034 35 

Down-Direct-15 

(DD15) 
0.581 3 0.559 3 0.536 2 0.516 1 

Down-Direct-30 

(DD30) 
0.555 4 0.517 4 0.503 4 0.493 3 

Down-Direct-45 
(DD45) 

0.522 6 0.488 6 0.484 5 0.425 6 

Down-Direct-60 

(DD60) 
0.478 7 0.451 7 0.406 7 0.366 8 

Down-Left-15 (DL15) 0.298 15 0.278 15 0.289 17 0.308 12 

Down-Left-30 (DL30) 0.300 14 0.271 17 0.295 15 0.306 13 

Down-Left-45 (DL45) 0.281 16 0.251 19 0.291 16 0.278 18 

Down-Left-60 (DL60) 0.250 23 0.237 21 0.263 21 0.229 22 

Down-Right-15 

(DR15) 

        

Down-Right-30 

(DR30) 

        

Down-Right-45 
(DR45) 

        

Down-Right-60 

(DR60) 

        

Share-Direct-15 

(SD15) 
0.043 36 0.053 36 0.046 35 0.091 29 

Share-Direct-30 

(SD30) 
0.090 33 0.087 31 0.101 28 0.069 32 

Share-Direct-45 
(SD45) 

0.116 29 0.128 28 0.087 29 0.047 34 

Share-Direct-60 

(SD60) 
0.200 25 0.149 27 0.079 30 0.003 36 

Share-Left-15 (SL15) 0.117 28 0.092 30 0.058 34 0.112 28 

Share-Left-30 (SL30) 0.113 30 0.094 29 0.120 27 0.138 27 

Share-Left-45 (SL45) 0.119 27 0.151 26 0.146 26 0.195 26 

Share-Left-60 (SL60) 0.178 26 0.190 25 0.205 25 0.204 25 

Share-Right-15 

(SR15) 
0.256 20 0.223 24 0.223 24 0.235 21 

Share-Right-30 

(SR30) 
0.271 18 0.231 22 0.244 23 0.285 17 

Share-Right-45 
(SR45) 

0.253 22 0.229 23 0.288 18 0.254 20 

Share-Right-60 

(SR60) 
0.244 24 0.272 16 0.244 22 0.213 24 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97 

Table 6-2 Correlation between each parameter and the future travel times of section 

16-01 calculated from training dataset (February 2-29, 2016). 

Parameters 
Prediction horizons 

15 minutes 30 minutes 45 minutes 60 minutes 
Correlation Rank Correlation Rank Correlation Rank Correlation Rank 

Target-15 (T15) 0.846 1 0.699 1 0.557 1 0.465 1 

Target-30 (T30) 0.722 2 0.575 2 0.464 4 0.368 5 

Target-45 (T45) 0.593 3 0.483 6 0.368 7 0.319 7 

Target-60 (T60) 0.486 8 0.383 9 0.312 11 0.273 11 

Up-Direct-15 (UD15) 0.018 37 0.025 36 0.030 36 0.053 33 

Up-Direct-30 (UD30) 0.023 35 0.035 33 0.045 33 0.029 38 

Up-Diect-45 (UD45) 0.032 32 0.046 31 0.025 38 0.036 37 

Up-Direct-60 (UD60) 0.048 30 0.042 32 0.037 35 0.041 36 

Up-Left-15 (UL15) 0.149 25 0.082 29 0.070 28 0.125 20 

Up-Left-30 (UL30) 0.119 27 0.085 27 0.110 23 0.115 21 

Up-Left-45 (UL 45) 0.102 28 0.084 28 0.045 32 0.055 32 

Up-Left-60 (UL60) 0.128 26 0.093 26 0.062 29 0.086 27 

Up-Rigth-15 (UR15) 0.034 31 0.029 34 0.054 30 0.109 23 

Up-Right-30 (UR30)  0.018 38 0.019 37 0.048 31 0.101 26 

Up-Right-45 (UR45) 0.020 36 0.052 30 0.102 25 0.114 22 

Up-Right-60 (UR60) 0.050 29 0.104 25 0.131 21 0.147 18 

Down-Direct-15 

(DD15) 
0.009 39 0.005 40 0.008 39 0.053 34 

Down-Direct-30 

(DD30) 
-0.005 40 0.012 39 0.042 34 0.068 31 

Down-Direct-45 

(DD45) 
-0.027 34 0.015 38 0.028 37 0.006 39 

Down-Direct-60 
(DD60) 

0.028 33 0.025 35 0.003 40 -0.003 40 

Down-Left-15 (DL15) 0.450 9 0.383 10 0.275 13 0.211 13 

Down-Left-30 (DL30) 0.409 10 0.298 14 0.201 15 0.164 15 

Down-Left-45 (DL45) 0.321 18 0.225 18 0.162 19 0.102 25 

Down-Left-60 (DL60) 0.259 22 0.198 22 0.103 24 0.052 35 

Down-Right-15 

(DR15) 
0.404 11 0.408 8 0.390 6 0.370 4 

Down-Right-30 

(DR30) 
0.396 12 0.369 11 0.337 9 0.315 8 

Down-Right-45 

(DR45) 
0.368 13 0.340 12 0.316 10 0.310 9 

Down-Right-60 
(DR60) 

0.340 16 0.314 13 0.307 12 0.298 10 

Share-Direct-15 

(SD15) 
0.351 15 0.262 16 0.206 14 0.196 14 

Share-Direct-30 

(SD30) 
0.314 19 0.245 17 0.179 16 0.125 19 

Share-Direct-45 

(SD45) 
0.275 20 0.206 21 0.122 22 0.079 28 

Share-Direct-60 
(SD60) 

0.242 23 0.171 24 0.083 27 0.078 29 

Share-Left-15 (SL15) 0.546 5 0.534 4 0.505 2 0.444 2 

Share-Left-30 (SL30) 0.581 4 0.541 3 0.483 3 0.426 3 

Share-Left-45 (SL45) 0.543 6 0.490 5 0.425 5 0.359 6 

Share-Left-60 (SL60) 0.502 7 0.438 7 0.365 8 0.273 12 

Share-Right-15 

(SR15) 
0.367 14 0.290 15 0.169 17 0.150 17 

Share-Right-30 

(SR30) 
0.321 17 0.220 19 0.164 18 0.154 16 

Share-Right-45 

(SR45) 
0.260 21 0.213 20 0.149 20 0.104 24 

Share-Right-60 
(SR60) 

0.227 24 0.174 23 0.096 26 0.077 30 
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Table 6-3  Correlation between each parameter and the future travel times of section 

16-25 calculated from training dataset (February 2-29, 2016). 

Parameters 
Prediction horizons 

15 minutes 30 minutes 45 minutes 60 minutes 
Correlation Rank Correlation Rank Correlation Rank Correlation Rank 

Target-15 (T15) 0.822 1 0.689 1 0.638 1 0.581 1 

Target-30 (T30) 0.698 2 0.636 2 0.577 2 0.496 2 

Target-45 (T45) 0.645 3 0.575 3 0.489 3 0.428 4 

Target-60 (T60) 0.587 5 0.489 5 0.426 6 0.392 5 

Up-Direct-15 (UD15) 0.507 7 0.473 6 0.440 5 0.387 6 

Up-Direct-30 (UD30) 0.479 8 0.440 8 0.384 8 0.354 8 

Up-Diect-45 (UD45) 0.436 11 0.372 11 0.345 10 0.315 12 

Up-Direct-60 (UD60) 0.367 12 0.329 13 0.289 16 0.242 21 

Up-Left-15 (UL15) 0.094 36 0.082 36 0.072 36 0.086 36 

Up-Left-30 (UL30) 0.102 35 0.093 35 0.111 35 0.100 35 

Up-Left-45 (UL 45) 0.121 34 0.140 34 0.135 33 0.139 31 

Up-Left-60 (UL60) 0.161 33 0.149 33 0.134 34 0.126 34 

Up-Rigth-15 (UR15) 0.231 28 0.182 32 0.148 32 0.135 33 

Up-Right-30 (UR30)  0.238 25 0.198 29 0.173 31 0.184 29 

Up-Right-45 (UR45) 0.237 26 0.209 28 0.215 23 0.185 28 

Up-Right-60 (UR60) 0.231 27 0.229 24 0.196 26 0.138 32 

Down-Direct-15 

(DD15) 
0.610 4 0.512 4 0.445 4 0.434 3 

Down-Direct-30 

(DD30) 
0.516 6 0.447 7 0.425 7 0.386 7 

Down-Direct-45 

(DD45) 
0.453 9 0.431 9 0.378 9 0.329 9 

Down-Direct-60 
(DD60) 

0.447 10 0.387 10 0.331 11 0.324 10 

Down-Left-15 (DL15) 0.282 20 0.262 21 0.238 22 0.249 20 

Down-Left-30 (DL30) 0.276 22 0.249 22 0.248 21 0.225 22 

Down-Left-45 (DL45) 0.239 24 0.242 23 0.203 25 0.181 30 

Down-Left-60 (DL60) 0.262 23 0.216 26 0.192 29 0.188 27 

Down-Right-15 

(DR15) 

        

Down-Right-30 

(DR30) 

        

Down-Right-45 

(DR45) 

        

Down-Right-60 
(DR60) 

        

Share-Direct-15 

(SD15) 
0.225 30 0.220 25 0.192 28 0.189 26 

Share-Direct-30 

(SD30) 
0.230 29 0.193 30 0.187 30 0.192 25 

Share-Direct-45 

(SD45) 
0.207 32 0.191 31 0.204 24 0.197 24 

Share-Direct-60 
(SD60) 

0.207 31 0.211 27 0.195 27 0.201 23 

Share-Left-15 (SL15) 0.279 21 0.272 20 0.265 20 0.259 17 

Share-Left-30 (SL30) 0.352 13 0.330 12 0.311 12 0.322 11 

Share-Left-45 (SL45) 0.342 14 0.317 14 0.305 13 0.293 15 

Share-Left-60 (SL60) 0.326 16 0.305 18 0.278 18 0.254 18 

Share-Right-15 

(SR15) 
0.321 17 0.308 16 0.304 14 0.313 13 

Share-Right-30 

(SR30) 
0.327 15 0.310 15 0.302 15 0.295 14 

Share-Right-45 

(SR45) 
0.319 18 0.305 17 0.285 17 0.275 16 

Share-Right-60 
(SR60) 

0.303 19 0.277 19 0.268 19 0.252 19 
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Table 6-4 Correlation between each parameter and the future travel times of section 

25-16 calculated from training dataset (February 2-29, 2016). 

Parameters 
Prediction horizons 

15 minutes 30 minutes 45 minutes 60 minutes 
Correlation Rank Correlation Rank Correlation Rank Correlation Rank 

Target-15 (T15) 0.401 1 0.218 3 0.172 3 0.160 2 

Target-30 (T30) 0.266 2 0.222 1 0.186 1 0.168 1 

Target-45 (T45) 0.254 3 0.221 2 0.173 2 0.154 3 

Target-60 (T60) 0.206 4 0.151 4 0.122 4 0.092 4 

Up-Direct-15 

(UD15) 
0.127 5 0.059 11 0.013 28 -0.005 32 

Up-Direct-30 

(UD30) 
0.100 8 0.055 14 0.021 22 -0.001 39 

Up-Diect-45 

(UD45) 
0.108 6 0.066 9 0.024 19 0.009 25 

Up-Direct-60 

(UD60) 
0.082 12 0.034 27 0.011 30 0.008 28 

Up-Left-15 (UL15) 0.045 31 0.025 34 0.023 20 0.006 30 

Up-Left-30 (UL30) 0.019 40 0.034 28 0.005 37 -0.005 33 

Up-Left-45 (UL 45) 0.041 32 0.036 24 0.009 33 0.001 38 

Up-Left-60 (UL60) 0.036 37 0.025 35 0.010 32 -0.005 34 

Up-Rigth-15 

(UR15) 
0.069 16 0.043 18 0.007 36 0.010 24 

Up-Right-30 

(UR30)  
0.069 18 0.035 25 0.033 11 0.031 8 

Up-Right-45 

(UR45) 
0.045 30 0.056 13 0.044 7 0.015 19 

Up-Right-60 

(UR60) 
0.072 15 0.066 8 0.028 16 -0.003 37 

Down-Direct-15 

(DD15) 
0.052 24 0.035 26 0.020 23 0.012 21 

Down-Direct-30 

(DD30) 
0.063 22 0.040 21 0.032 12 0.014 20 

Down-Direct-45 

(DD45) 
0.066 19 0.049 16 0.027 17 0.007 29 

Down-Direct-60 

(DD60) 
0.064 21 0.039 22 0.022 21 0.025 9 

Down-Left-15 

(DL15) 
0.069 17 0.076 6 0.039 8 0.017 15 

Down-Left-30 

(DL30) 
0.090 9 0.066 7 0.038 9 0.016 17 

Down-Left-45 

(DL45) 
0.082 11 0.061 10 0.030 15 0.016 16 

Down-Left-60 

(DL60) 
0.075 14 0.048 17 0.031 14 0.023 11 

Down-Right-15 

(DR15) 
-0.046 28 -0.040 20 -0.036 10 -0.034 6 

Down-Right-30 

(DR30) 
-0.040 33 -0.037 23 -0.031 13 -0.024 10 

Down-Right-45 

(DR45) 
-0.036 38 -0.032 29 -0.019 24 -0.011 22 

Down-Right-60 

(DR60) 
-0.026 39 -0.022 38 -0.013 29 -0.005 36 

Share-Direct-15 

(SD15) 
0.039 34 0.027 32 0.015 26 0.010 23 

Share-Direct-30 

(SD30) 
0.037 36 0.028 31 0.027 18 0.023 12 

Share-Direct-45 

(SD45) 
0.046 27 0.056 12 0.046 6 0.033 7 

Share-Direct-60 

(SD60) 
0.080 13 0.087 5 0.058 5 0.043 5 

Share-Left-15 

(SL15) 
0.087 7 0.041 15 0.019 31 0.008 26 

Share-Left-30 

(SL30) 
0.060 20 0.031 39 0.015 39 0.006 13 

Share-Left-45 

(SL45) 
0.037 25 0.024 33 0.008 34 -0.001 18 

Share-Left-60 

(SL60) 
0.045 26 0.024 40 0.005 40 -0.005 14 

Share-Right-15 

(SR15) 
0.103 10 0.050 19 0.011 25 -0.008 27 

Share-Right-30 

(SR30) 
0.066 23 0.019 30 -0.001 27 -0.022 31 

Share-Right-45 

(SR45) 
0.049 35 0.026 36 -0.008 35 -0.015 40 

Share-Right-60 

(SR60) 
0.048 29 0.013 37 0.000 38 0.021 35 

 
 

As the prediction horizon increases, the correlation values of all parameters decrease, 

and this points out the difficulty of the prediction in longer time horizons. The order 

of parameters that are correlated to the future travel time also slightly changes when 
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the time horizon changes, as seen from the Tables. For example, the five most 

correlated parameters to the future travel time in the next 15 minutes of section 01-16 

are historical travel times in the past 15 minutes of the target section, the past 30 

minutes of the target section, the past 15 minutes of the direct downstream section, the 

past 30 minutes of the direct downstream section, and the past 45 minutes of the target 

section, respectively. The five most correlated parameters to the future travel time in 

the next 45 minutes of section 01-16 are different; they are historical travel time of the 

past 15 minutes of the target section, the past 15 minutes of the direct downstream 

section, the past 30 minutes of the target section, the past 30 minutes of the direct 

downstream section, and the past 45 minutes of the direct downstream section, 

respectively. This behavior indicates different parameters should be used as the model 

inputs in different prediction horizons.  

 
6.2 SELECTION OF INPUTS AND HIDDEN NEURONS FOR THE TRAVEL 

TIME PREDICTION MODEL 

 

As a part of the model development process, the selection of input variables and the 

number of hidden neurons (or hidden nodes) is an indispensable issue for ANN 

modeling. The possible inputs for our prediction model consist of historical travel 

times (up to 4 previous horizons) of target and neighboring sections.  

 

Having a lot of inputs does not mean the models will be more accurate than those with 

lesser number of inputs. On the other hand, choosing the right and optimum inputs 

that are able to determine the prediction results will actually make the model more 

accurate and reliable. The number of hidden neurons of the ANN model is in the same 

manner; consideration should be given to the complexity of the problem. Having too 

few hidden neurons cannot explain the complex problems. On the other hand, if there 

are too many, it can cause the overfitting problems. 

 

Based on previous studies and literature review, it is found that each road section has 

different travel time behaviors, complexity, and also correlations with the other 

parameters. Therefore, the appropriate number of inputs and the hidden neurons for 

the travel time prediction model of each road section should be different. 
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6.2.1 Number of hidden neurons and inputs and the accuracy of travel time 

prediction  

 

This section presents the investigation on the effects of number of inputs and hidden 

neurons on the accuracy level of the travel time prediction. Figure 6.2(a) shows the 

relationship between the number of inputs, the number of hidden neurons and the 

MAPE of travel time prediction during the training process (using training dataset for 

model training) of section 01-16. It could be observed that as the number of inputs 

and hidden neurons increase, the MAPE of prediction from training data set is not 

much improved, but rather the greater fluctuation in the region with higher inputs and 

hidden neurons can be observed.  

 

Figure 6.2(b) demonstrates the relationship between the numbers of inputs, hidden 

neurons and the MAPE of the prediction based on validating dataset using the model 

structures (number of inputs, hidden neurons, and connecting weights) obtained from 

the training dataset. It could be noticed that the accuracies of travel time prediction 

from models with a higher number of inputs and hidden neurons are lower than the 

model with smaller number of inputs and hidden neurons. This manner is caused by 

the overfitting behaviors from the complicated model that contains 

more parameters than can be justified by the data. The models try to correspond to a 

particular set of data that may fail to reliably predict the additional dataset or future 

observations. 

 

From this section, it could be concluded that the more complex models with higher 

number of inputs and hidden neurons do not always provide higher accurate results. 

On the contrary, it could lead to worse prediction results due to overfitting problems. 

Therefore, selecting an appropriate number of inputs and hidden neurons is a very 

important task in the model development process. 

 

https://en.wikipedia.org/wiki/Parameter
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Figure 6-2 Effects of number of hidden neurons and number of inputs on the error of 

travel time predictions of section 01-16 (next 15 minutes) (a) MAPE of training 

dataset (b) MAPE of validating dataset 
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6.2.2 Selecting the number of hidden neurons and inputs for travel time 

prediction  

 

In this study, the k-fold (5-fold) cross validation technique was used to determine the 

appropriate number of inputs and hidden neurons in developing ANN models for 

urban roadway travel time prediction. 

 

The concept of 5-fold cross validation is illustrated in Figure 6.3. From this concept, 

the training dataset (which was captured on February 4-29, 2016) was grouped into 5 

equal sizes of subsamples. From these 5 subsamples, a single subsample was selected 

as the validation dataset for testing the model accuracy, and the remaining 5-1 

subsamples were used as dataset for model training. The cross-validation process was 

then repeated for 5 times, with each subsample exactly used once as the validation 

dataset. The supervised training with error back-propagation as described in chapter 5 

was used to find the appropriate connection weights within networks. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3 Five-fold cross validation in selecting number of inputs and hidden 

neurons for ANN models. 
 

Based on the 5-fold cross validation test with the training dataset, the appropriate 

number of inputs and hidden neurons for each case could be determined by the 

optimal model that provided the most accurate result. Since the appropriate structure 

of the model such as the number of inputs, hidden nodes, and the connecting weight 
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was determined, the capability of models in travel time prediction could be found by 

testing the resulting model with the validating dataset.  

 

6.2.3 Structures of appropriate ANN models obtained from training dataset 

 

Table 6.5-6.8 show the summary of the appropriate model structures of section 01-16, 

16-01, 16-25 and 25-16, which were determined from 5-fold cross validation with 

training dataset. The predicted horizons in the Tables were divided into 4 horizons; 

15, 30, 45 and 60 minutes in advance. The test scenarios were separated into three 

scenarios: Scenario 1: only the historical data of the target section were available for 

developing the ANN model, Scenario 2: data of the target and all neighboring sections 

were obtainable, and Scenario 3: historical data from the target section were absent, 

but the data of neighboring sections were available.  

 

From Table 6.5 and 6.8, one could observe different model structures among the three 

scenarios. For example, in scenario 1 of section 01-16 (Table 6.5), the appropriate 

prediction model for the next 15 minutes comprises 1 input (historical travel time of 

the study section from the previous 15 minutes) and 1 hidden neuron with MAPE of 

31.07% during the training process. In scenario 2, the appropriate prediction model 

for the next 15 minutes comprises 4 inputs (historical travel time of the study section 

from previous 15 and 30 minutes and historical travel time of the direct-downstream 

section from the previous 15 and 30 minutes) and 1 hidden neuron with MAPE of 

30.07%. In scenario 3, the appropriate prediction model for the next 15 minutes 

comprises 7 inputs (historical travel time of the downstream-direct section form the 

previous 15, 30, 45 and 60 minutes and historical travel time of the upstream-left 

section from the previous 15 and 30 minutes) and one hidden node with MAPE of 

32.73% from training dataset.  

 

However, in Table 6.6 and 6.7, the same model structure from different scenarios 

could be observed in some cases. For example, in scenario 1 and 2 of section 16-01 

(Table 6.6), the appropriate prediction model for the next 15 minutes comprises 3 

inputs (historical travel times of the target section from the previous 15, 30, and 45 

minutes) and 3 hidden neurons with the same MAPE of 21.49% during the training 
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process. This behavior indicates the strong influence of historical travel times of 

target section over the future travel times.  

 

From Table 6.5 to 6.8, in different prediction horizons of the same scenario, dissimilar 

model structures can be observed. For example, the appropriate model structures of 

section 01-16 for travel time prediction in the next 15 minutes and for the prediction 

in the next 30 minutes in scenario 2 (considering the historical travel time from both 

the target and neighboring sections) have the same 4 inputs (historical travel time of 

the study section from the previous 15 and 30 minutes and historical travel time of the 

direct-downstream section from the previous 15 and 30 minutes) and 1 hidden node. 

While, in travel time prediction for the next 45 minutes horizons, the appropriate 

model structure comprises only 3 inputs (historical travel time of the study section 

form the previous 15 and 30 minutes and historical travel time of direct-downstream 

section from previous 15 minutes) and 1 hidden neuron. 

 

Table 6-5 Selected inputs and hidden neurons for travel time predictions on section 

01-16 determined from 5-fold cross validation with training dataset. 

Scenario 1  

Only target sections  

Scenario 2 

All sections available 

Scenario 3  

Missing target section 
Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Next 15 Minutes 

T15 1 31.07 T15 1 30.58 DD15 1 32.73 

   T30    DD30    

   DD15   DD45    
   DD30   DD60    

      UL15   

      UL30    
      UL45   

Next 30 Minutes 
T15 1 37.73 T15 1 36.39 DD15 1 33.89 

   T30   DD30   

   DD15      
   DD30      

Next 45 Minutes 
T15 1 38.45 T15 1 36.35 DD15 4 34.59 

T30   T30      

T45   DD15      

T60         

Next 60 Minutes 
T15 2 34.97 T15 1 34.49 DD15  1 34.88 

T30   T30   DD30   
   T45   DD45   

   DD15   DD60   

   DD30   UL15    
   DD45   UL30   

   UL15   UD15   

      DL15    
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Table 6-6 Selected inputs and hidden neurons for travel time predictions on section 

16-01 determined from 5-fold cross validation with training dataset. 

Scenario 1  

Only target sections  

Scenario 2 

All sections available 

Scenario 3  

Missing target section 
Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Next 15 Minutes 

T15 3 21.49 T15 3 21.49 SL15  7 30.20 
T30   T30   SL30   

T45   T45   SL45   

      SL60    
      DL15   

      DL30   

      DR15   
      DR30   

      DR45   

      DR60   
      SD15   

      SR15   

30 Minutes 
T15 7 25.57 T15 7 25.57 SL15 2 30.98 
T30   T30   SL30   

      SL45   

45 Minutes 
T15 4 28.12 T15 4 28.12 SL15 4 31.03 

      SL30   
      SL45   

      DR15   

60 Minutes 
T15 2 28.66 T15 2 28.66 SL15 2 31.10 

 

Table 6-7 Selected inputs and hidden neurons for travel time predictions on section 

16-25 determined from 5-fold cross validation with training dataset. 

Scenario 1  

Only target sections  

Scenario 2 

All sections available 

Scenario 3  

Missing target section 
Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Next 15 Minutes 

T15 1 31.21 T15 1 31.21 DD15 3 51.34 

      DD30   
      DD45   

      DD60   

      UD15   
      UD30   

      UD45   

30 Minutes 
T15 1 34.35 T15 1 34.35 DD15 9 70.17 

      DD30   
      UD15   

45 Minutes 
T15 1 38.49 T15 1 38.49 DD15 4 55.80 

60 Minutes 
T15 5 64.56 T15 1 65.54 DD15 5 66.11 

T30   T30      
T45   T45      

T60   DD15      
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Table 6-8 Selected inputs and hidden neurons for travel time predictions on section 

25-16 determined from 5-fold cross validation with training dataset. 

Scenario 1  

Only target sections  

Scenario 2 

All sections available 

Scenario 3  

Missing target 

section 
Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Inputs Hidden 

nodes 

MAPE 

(training 

dataset) 

Next 15 Minutes 

T15 3 33.25 T15 3 34.86 UD15 2 35.50 
T30   T30   UD30   

T45   T45   UD45   

T60   T60   UD60   
   UD15   DL30   

   UD30   DL45   

   SL15   SD60   
      SL15   

      SR15   

30 Minutes 
T15 1 33.36 T15 1 32.97 UD15 3 34.71 

T30   T30   UD30   
T45   T45   UD45   

T60   T60   UR45   
   DL15   UR60   

   DL30   DL15   

   SD60   DL30   
   UR60   DL45   

      SD45   

      SD60   

45 Minutes 
T15 3 34.99 T15 2 34.04 UD45 1 35.81 
T30   T30   UL15   

T45   T45   UR30   

   T60   UR45   

   UR30   UR60   

   UR45   DD30   

   DD30   DD45   
   DL15   DD60   

   DL30   DL15   

   DL60   DL30   
   DR15   DL45   

   DR30   DL60   

   SD45   DR15   
   SD60   DR30   

      SD30   

      SD45   
      SD60   

60 Minutes 
T15 7 32.19 T15 6 33.66 UR30 5 35.07 

T30   T30   DD60   

T45   T45   DL15   
   T60   DL45   

   UR30   DL60   

   DD60   DR15   

   DL60   DR30   

   DR15   SD30   

   DR30   SD45   
   SD30   SD60   

   SD45   SL30   

   SD60   SL60   
   SL30      
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6.3 TRAVEL TIME PREDICTION RESULTS 

 

This section presents the results of the proposed technique in addressing the short-

term travel time prediction problems on urban roadways.  All analyses described here 

came from the results of travel time forecast using validating dataset conducted from 

the urban roadway sections in Bangkok Metropolis during March 1-7, 2016 as 

previously described in section 6.1.   

 

6.3.1 Testing scenarios and baseline methods  

 

To understand the capability and advantage of using data on neighboring sections in 

short-term travel time prediction, this research investigates travel time prediction from 

the ANN model using various input data, not only in the common situation (only 

target section data) but also in the case of rich data from neighboring sections and in 

the case of an absence of Bluetooth probe data on the target section. Therefore, the 

ANN models from the proposed technique were tested with three different testing 

scenarios as previously described in Chapter 5: 

 

Scenario 1: Only the historical data of the target section were available for 

developing the ANN model, or ANN(Target). 

Scenario 2: Historical data of target and all neighboring sections were obtainable, or 

ANN(All). 

Scenario 3: Historical data from the target section were absent but the data of all 

neighboring sections were available, or ANN(Miss).  
 

In addition to the above scenarios, the use of average travel time from the database 

(e.g. average travel time on Monday at 8:00-8:15 A.M. is calculated by averaging all 

travel time records obtained on Monday 8:00-8:15 A.M. from training dataset), the 

use of current travel time data for representing future travel time and the simple 

moving average method, which are commonly used in travel time prediction, were 

tested and compared with the proposed techniques. 

 

Simple moving average is a mean of previous N data points that can be calculated by 
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𝑆𝑀𝐴𝑡(𝑁) =
(𝑇𝑡+𝑇𝑡−1+⋯+𝑇𝑡−𝑁+1)

𝑁
 (6-1) 

 

Where SMA is the travel time average by the moving average method, Tt is travel 

time (average) on the corresponding section during time period t. 

 

The prediction for the future at any predicted horizons (𝑇̂𝑇+𝜏) is the same as the latest 

estimated value. The prediction equation using the moving average technique is stated 

in Equation (6-2)  

 

𝑇̂𝑇+𝜏 = 𝑆𝑀𝐴𝑡        𝑓𝑜𝑟 𝜏 = 1, 2, … (6-2) 

 

6.3.2 Travel time prediction results 

 

The accuracy of the proposed method for travel time prediction can be determined by 

testing the models structured described in Table 6.5-6.8 and their connection weights 

obtained during training processes with a new dataset. Therefore, all models were 

tested with the validating dataset for multiple times (5 times in this study). The 

average MAPE of travel time prediction from the proposed and baseline methods 

(including the case of using travel time from the database (database)), using current 

travel time (Current TT), and the case of the moving average methods with N =2 to 4 

or MA(2), MA(3), MA(4), respectively) are presented in Table 6.9.   

 

For section 01-16 with highly fluctuated travel time behavior as described in section 

6.1, the prediction model that provided best prediction results in 15, 45, and 60 

minutes rolling horizons was the ANN(All) models that used historical data from both 

the target and neighboring sections as the model inputs, with the MAPE of 29.27%, 

40.92% and 53.37%, respectively. While the model that provided best prediction 

results in 30 minutes rolling horizons was the ANN(Miss) model that used only 

historical data from neighboring sections as the model inputs, with the MAPE of 

33.20%. The baseline models including; using current travel time, and the moving 

average from 2, 3 and 4 previous horizons to represent future travel time performed 
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significantly worse than ANNs. Furthermore, in the case that historical data from the 

target section were absent, the ANN model developed by using only historical data 

from the neighboring sections, ANN(Miss), could provide superior prediction results 

than all the baseline models in all prediction horizons (even compared to the baseline 

models that used historical data of the target section as inputs).  

 

Table 6-9 MAPE of proposed and baseline methods in urban travel time prediction 

(tested with validating dataset obtained during March 1-7, 2016).  

Models 

Prediction horizon 

15 

Minutes 

30 

Minutes 

45 

Minutes 

60 

Minutes 

Section 01-16 
Database 55.64 57.47 61.66 60.85 

Current TT 37.69 52.89 56.01 59.52 

MA(2) 42.95 52.00 55.11 60.12 

MA(3) 44.70 51.82 55.99 61.31 

MA(4) 46.51 52.22 56.76 60.99 

ANN (Target) 32.77 37.16 50.05 60.01 

ANN (All) 29.27 35.58 40.92 53.37 

ANN (Miss) 33.59 33.20 49.97 54.03 

Section 16-01 
Database 39.74 39.71 40.13 41.79 

Current TT 19.90 24.30 26.97 30.06 

MA(2) 19.14 22.65 25.32 28.64 

MA(3) 19.12 22.20 24.67 27.21 

MA(4) 19.42 21.90 24.37 26.58 

ANN (Target) 18.82 20.98 22.82 25.27 

ANN (All) 18.82 20.98 22.82 25.27 

ANN (Miss) 25.97 30.57 32.91 31.84 

Section 16-25 
Database 48.01 48.03 49.43 48.98 

Current TT 33.63 47.81 59.02 64.86 

MA(2) 37.27 49.55 59.81 63.74 

MA(3) 41.18 51.72 60.09 64.16 

MA(4) 44.09 53.07 60.90 64.52 

ANN (Target) 31.84 43.88 51.03 61.62 

ANN (All) 31.84 43.88 51.03 59.15 

ANN (Miss) 47.89 48.09 49.74 59.44 

Section 25-16 
Database 22.73 23.72 23.94 24.25 

Current TT 23.28 27.39 29.29 29.26 

MA(2) 23.24 26.44 27.25 25.99 

MA(3) 23.41 26.06 25.34 24.93 

MA(4) 23.16 25.59 25.09 25.74 

ANN (Target) 29.20 30.07 32.02 48.35 

ANN (All) 29.01 29.76 32.20 47.64 

ANN (Miss) 29.66 32.27 47.64 47.78 
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For section 16-01 with slightly fluctuated travel time behavior as described in section 

6.1, the prediction model that provided best prediction results in 15, 30, 45, and 60 

minutes rolling horizons was the ANN(Target) models that used only historical data 

from the target section as the model inputs, with the MAPE of 18.82%, 20.98%, 

22.82% and 25.27%, respectively. The baseline models including using current travel 

time, and moving average from 2, 3 and 4 previous horizons performed slightly 

poorer than ANN(Target) and ANN(All). In the case that historical data from the 

target section were absent, the ANN(Miss) model that used only historical data from 

neighboring sections could provide tolerable prediction results with MAPE of 

25.97%, 30.57%, 32.91% and 31.84% in 15, 30, 45, and 60 minutes prediction 

horizon, respectively. 

 

For section 16-25 with moderately fluctuated travel time behavior as described in 

section 6.1, the prediction model that provided best prediction results in 15 and 30 

minutes rolling horizons was the ANN(Target) models that used only historical data 

from the target section as the model inputs, with the MAPE of 31.84% and 43.88%, 

respectively. While the model that provided best prediction results in 45 and 60 

minutes rolling horizons was the travel time from the database with the MAPE of 

49.43% and 49.98%, respectively. The baseline models including; using current travel 

time, and moving average from 2, 3 and 4 previous horizons preformed slightly worse 

than ANN(Target) and ANN(All). In the case that historical data from the target 

section were absent, the ANN(Miss) could provide comparable prediction results to 

the baseline models (even compared to the baseline models that used historical data of 

the target section as inputs). 

 

For section 25-16 with almost constant travel time behavior as described in section 

6.1, the prediction model that provided best prediction results in 15, 30, and 45 

minutes rolling horizons was the travel time from the database with the MAPE of 

22.73%, 23.72%, and 23.94% respectively followed by MA(4) models that average 

the historical data from the previous 4 horizons for representing future travel times, 

with the MAPE of 23.16%, 25.59%, and 25.09% respectively. While the model that 

provided best prediction results in 60 minutes rolling horizons was the travel time 
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from the database with the MAPE of 24.25% followed by MA(3) models that average 

the historical data from the previous 3 horizons for representing future travel times, 

with the MAPE of 24.93%. All the ANN models performed slightly worse than the 

baseline methods. 

 

6.4 ANALYSIS OF MODEL PERFORMANCE IN VARIOUS SITUATIONS 

 

This section provides the analysis of model performance in different travel time 

behaviors. Therefore, data captured in each day was divided into three time periods 

which were morning-peak (07:00-10:00), off-peak (10:00-16:00), and evening-peak 

period (16:00-21:00). The summaries of travel time behaviors of the 4 target sections 

in different periods of day are illustrated in Table 6.10. Please note that data in Table 

6.10 were determined from validating dataset obtained during March 1-7, 2016.  

 

The coefficient of variation (CV) in Table 6.10 is the ratio of the standard deviation to 

the mean as shown in Eq.(6-3). The higher CV, the higher dispersion level around the 

mean. This value allows to unbiasedly compare distributions of data in different 

measurement scales.  

  

𝐶𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑖𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝑡𝑑𝑒𝑣)

𝑀𝑒𝑎𝑛
   (6-3) 

 

 

Table 6-10 Summary of travel time behaviors of 4 target sections in different periods 

of day. 
Section 07:00-10:00 10:00-16:00 16:00-21:00 

Mean TT 

(sec) 

Stdev 

(sec) 

CV Mean 

TT (sec) 

Stdev 

(sec) 

CV Mean 

TT (sec) 

Stdev 

(sec) 

CV 

01-16 355.94 195.42 0.55 461.96 264.66 0.57 741.49 627.30 0.85 

16-01 276.76 100.85 0.36 332.75 125.61 0.38 409.47 212.40 0.52 

16-25 237.40 192.60 0.81 463.67 280.41 0.60 584.94 394.25 0.67 

25-16 172.60 47.25 0.27 172.85 58.90 0.34 178.79 82.46 0.46 

Small travel time fluctuation: CV ≤ 0.4 

Moderate travel time fluctuation:  0.40 < CV ≤ 0.60 

High travel time fluctuation: CV > 0.60 

 

 

It can be inspected from Table 6.10 that in section 01-16, 16-01, and 16-25 travel 

times in the morning-peak period are the lowest compared to those of the off-peak and 

evening-peak periods, indicating the relatively small congestion (or uncongested) in 

https://en.wikipedia.org/wiki/Standard_deviation
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this period. While in the evening-peak period the congested traffic could be noticed 

through the highest value travel time compared to the other periods of day.  In section 

25-16, the small and quite constant travel time could be observed, indicating the 

uncongested traffic condition for the entire day on this section. The variations of 

travel time (or travel time fluctuation) which can be represented by CV value are 

different from section to section and from time to time.  

 

For section 01-16, the overall travel time fluctuation was the 2
nd

 highest among the 4 

target sections. In the morning-peak and off-peak periods, moderate travel time 

fluctuations with the CV of 0.55 and 0.57 could be observed. Meanwhile, higher 

travel time fluctuation with CV of 0.85 occurred in the evening-peak period.   

 

For section 16-01, the overall travel time fluctuation was the 3
rd

 highest among the 4 

target sections. In the morning-peak and off-peak periods, small travel time 

fluctuations with the CV of 0.36 and 0.38 could be observed. Meanwhile, moderate 

travel time fluctuation with CV of 0.52 occurred in the evening-peak period.   

 

For section 16-25, the overall travel time fluctuation was the highest among 4 target 

sections. In the morning-peak, very high travel time fluctuation with CV of 0.81 could 

be observed. Meanwhile, in the off-peak and evening-peak periods, travel time 

fluctuated in a moderate fashion with the CV of 0.60 and 0.67.    

 

For section 25-16, the overall travel time fluctuation was the lowest among 4 target 

sections. In the morning-peak and off-peak periods, small travel time fluctuations 

with the CV of 0.27 and 0.34 could be observed. While, moderate travel time 

fluctuation with CV of 0.46 occurred in the evening-peak period.   

 

Table 6.11 provides the MAPE of predictions from proposed and baseline methods 

clustered by time period of day and prediction horizon.  It could be noticed that the 

best prediction models vary from case to case. For instance, on section 01-16, 

ANN(All) provided the best prediction results for all cases in 15 minutes prediction 

horizon and for the off-peak period for 45 minutes prediction horizon. ANN(Miss) 
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provided the best results for off-peak and evening peak periods in the 30 minutes 

prediction horizon, etc. The travel time from the database provided the best prediction 

results in the morning-peak periods for 30, 45, and 60 minutes prediction horizons.  

Considering only the data from the Table 6.11, it may not be possible to make a clear 

conclusion about the suitability of a specific model for each situation.  

 

Table 6-11 MAPE of prediction from various models in different time periods and 

prediction horizons. 

Models 

Prediction horizon 

15 Minutes 30 Minutes 45 Minutes 60 Minutes 

7-10 10-16 16-21 7-10 10-16 16-21 7-10 10-16 16-21 7-10 10-16 16-21 

Section 01-16 

Database 27.01 60.44 91.19 26.41 61.30 99.00 29.35 65.57 105.03 34.84 64.02 95.70 

Current TT 31.98 37.32 44.58 43.21 54.52 61.41 48.42 54.06 67.24 45.17 51.97 86.81 

MA(2) 34.11 43.57 52.10 42.61 51.14 64.09 45.98 47.17 77.13 44.62 46.64 97.74 

MA(3) 36.50 43.21 56.21 41.66 46.03 72.07 44.79 42.37 88.77 43.17 43.95 107.62 

MA(4) 36.87 42.45 63.50 39.45 43.19 80.25 42.20 41.21 96.18 39.64 42.12 112.73 

ANN(All) 26.26 31.53 34.21 30.76 35.64 42.97 36.07 37.13 51.36 49.09 47.88 64.46 

ANN(Target) 30.92 34.29 38.51 34.35 37.96 38.52 47.80 40.49 68.86 59.35 53.72 73.04 

ANN(Miss) 26.57 34.43 40.46 28.21 33.42 38.44 35.66 39.71 44.11 49.40 49.95 61.97 

Section 16-01 

Database 26.79 30.03 62.30 27.52 29.88 60.07 25.12 34.32 58.96 25.76 39.61 57.14 

Current TT 17.55 20.37 20.94 21.40 24.87 25.59 22.95 25.78 30.91 25.18 28.29 35.20 

MA(2) 16.24 19.94 20.19 20.62 22.50 24.15 20.77 23.73 30.04 23.39 25.80 35.17 

MA(3) 16.29 19.49 20.57 19.29 21.98 24.36 20.58 22.60 29.59 23.19 24.04 33.27 

MA(4) 15.73 19.76 21.49 18.58 20.94 25.13 20.48 22.11 29.39 22.51 23.21 32.92 

ANN(All) 18.38 19.23 19.26 19.65 21.13 21.90 21.13 23.02 24.20 22.85 26.24 26.65 

ANN(Target) 18.38 19.23 19.26 19.65 21.13 21.90 21.13 23.02 24.20 22.85 26.24 26.65 

ANN(Miss) 18.87 24.23 33.04 32.78 27.84 32.60 34.17 29.20 36.85 32.29 29.26 35.01 

Section 16-25 

Database 62.50 44.51 38.34 65.05 43.92 37.57 68.58 42.59 41.70 64.33 41.44 46.33 

Current TT 37.12 32.32 28.10 57.01 45.69 38.47 77.03 49.17 52.02 85.45 48.41 63.98 

MA(2) 43.11 37.01 29.66 59.21 46.66 41.26 81.02 46.29 55.53 83.98 44.32 68.82 

MA(3) 46.39 40.64 34.53 62.78 45.94 46.68 81.69 43.76 60.56 82.63 42.07 75.34 

MA(4) 51.03 40.84 39.75 67.21 43.70 51.14 80.83 42.16 66.93 81.45 39.24 82.12 

ANN(All) 39.12 29.77 28.94 60.34 39.45 37.01 74.65 41.55 45.44 87.53 45.84 55.07 

ANN(Target) 39.12 29.77 28.94 60.34 39.45 37.01 74.65 41.55 45.44 94.24 48.42 54.05 

ANN(Miss) 71.16 42.76 36.62 64.27 43.12 42.18 63.32 45.42 45.00 88.18 50.93 48.49 

Section 25-16 

Database 23.36 20.16 27.07 25.00 20.17 29.08 25.82 20.77 27.70 25.62 22.27 26.35 

Current TT 18.70 23.74 27.95 20.23 30.05 31.37 25.30 28.24 35.83 26.52 27.55 35.47 

MA(2) 17.43 22.85 30.80 20.55 26.06 34.11 23.65 24.78 35.78 25.43 23.09 31.65 

MA(3) 19.02 21.46 31.98 20.81 24.19 35.54 23.66 22.32 32.51 25.46 22.53 28.41 

MA(4) 19.30 20.28 32.70 21.68 22.68 35.22 24.16 22.06 31.39 25.54 22.91 30.85 

ANN(All) 31.42 28.46 27.10 32.32 30.16 26.04 33.84 33.17 28.88 46.69 48.57 47.17 

ANN(Target) 30.93 29.46 26.72 32.46 30.36 26.75 33.83 32.70 29.39 46.74 48.98 49.24 

ANN(Miss) 32.03 28.88 28.19 32.63 29.81 26.76 33.87 32.57 28.85 47.16 47.93 48.27 

 

 

To test the ability of the models in various situations, the relationship between MAPE 

of predictions in Table 6.11 and variations of travel time indicated by coefficient of 

variation (CV) in Table 6.10 were plotted and illustrated in Figure 6.4-6.7.   
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Figure 6-4 Relationship between MAPE of predictions and coefficient of variation 

(CV) for 15 minutes prediction. 

 

 
Figure 6-5 Relationship between MAPE of predictions and coefficient of variation 

(CV) for 30 minutes prediction. 
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Figure 6-6 Relationship between MAPE of predictions and coefficient of variation 

(CV) for 45 minutes prediction. 

 

 
Figure 6-7 Relationship between MAPE of predictions and coefficient of variation 

(CV) for 60 minutes prediction. 

 

  

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

P
E

 (
%

) 

Coeficient of Variation (CV) 

Database

Current TT

MA(2)

MA(3)

MA(4)

ANN(All)

ANN(Target)

ANN(Miss)

Linear (Database)

Linear (Current TT)

Linear (MA(2))

Linear (MA(3))

Linear (MA(4))

Linear (ANN(All))

Linear (ANN(Target))

Linear (ANN(Miss))

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

P
E

 (
%

) 

Coeficient of Variation (CV) 

Database

Current TT

MA(2)

MA(3)

MA(4)

ANN(All)

ANN(Target)

ANN(Miss)

Linear (Database)

Linear (Current TT)

Linear (MA(2))

Linear (MA(3))

Linear (MA(4))

Linear (ANN(All))

Linear (ANN(Target))

Linear (ANN(Miss))

Next 45 minutes 

Next 60 minutes 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

117 

From Figure 6.4-6.7 it could be observed that, in the small travel time fluctuation 

situations with CV≤0.40, the baseline models which predict travel time from the 

database (database), current travel time (current TT), MA(2), MA(3), and MA(4) 

perform slightly better than all the ANN models.  The model that provides the best 

prediction results is the MA(4). The moving average model, which mainly considers 

historical data of the target section, provides better estimation when the time series of 

travel time data on the section is nearly constant. For moderate travel time fluctuation 

with 0.4<CV≤0.6, the ANNs and the baseline models yield comparable prediction 

accuracy.  However, considering the results in detail, the ANN models provide 

slightly better results in the next 15, 30 and 45 minutes predictions. While the baseline 

models give somewhat healthier result in 60 minutes prediction. In the case that travel 

time is highly fluctuated (CV>0.60), the ANN models perform significantly better 

than the baseline models. 

 

As could be seen from the results in this section that the ANN models have potential 

in application to predict travel time on the urban roadways, where travel time 

behaviors naturally fluctuate due to various reasons; for example, from traffic friction 

along road sections, roadside entry/exit, on-street parking, from pedestrian crossing, 

or traffic signal, etc.  Four road sections show different travel time behaviors as seen 

from various CVs.  Generally speaking, the baseline models fail to effectively forecast 

travel time when the fluctuation is high. Although the baseline models can perform 

slightly better in less fluctuated traffic conditions (roughly speaking, off-peak or less 

congested section), the ANN models outperform the baseline models in fluctuated 

traffic conditions (high CV). 

 

One interesting point that should be addressed here is the potential of the ANN(Miss) 

model in travel time prediction. Unlike other models discussed in this chapter, the 

ANN(Miss) model does not require historical data from the target section. Therefore, 

in the case that historical data of the target road are missing, ANN(Miss) could be a 

good solution for use as a travel time prediction model with acceptable results.  
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6.5 SECTION TRAVEL TIME AND ROUTE TRAVEL TIME 

 

In order to illustrate the difference between travel time prediction errors on the trip 

made on a single road section and the trip with a combination of multiple sections 

(route), the travel time prediction results using validating dataset considering only the 

interval whose data were available in all target sections (for the purpose of combining 

each section together) are presented in Table 6.12. 

 

Table 6-12 MAPE of travel time prediction of the trip with different number of road 

sections. 

Section (s) 
Length 

(km) 
Database 

Current 

TT 
MA(2) MA(3) MA(4) 

ANN 

(All) 

ANN 

(Target) 

ANN 

(Miss) 

15 Minutes Prediction 

01-16 1.491 70.69 22.75 27.30 26.19 26.40 15.36 25.28 30.79 

16-01 1.491 54.74 14.29 14.52 13.94 14.59 11.71 11.71 23.04 

16-25 0.794 30.48 16.89 19.28 18.95 21.18 21.48 27.02 56.25 

25-16 0.794 24.39 38.71 34.35 37.21 30.97 33.62 33.90 36.71 

01-16,16-25 2.285 25.22 12.33 15.10 16.18 19.00 12.62 20.24 22.20 

25-16,16-01 2.285 31.45 17.52 12.60 12.84 13.94 17.00 16.81 21.74 

25-16,16-01, 

01-16,16-25 
4.570 18.54 11.42 11.76 11.36 12.44 10.09 14.14 10.38 

30 Minutes Prediction 

01-16 1.491 84.20 29.38 29.36 27.72 33.05 28.08 27.43 33.67 

16-01 1.491 42.27 20.23 16.50 17.64 17.35 16.76 16.76 17.67 

16-25 0.794 30.14 27.07 26.26 27.27 27.53 44.80 44.80 53.92 

25-16 0.794 29.39 37.96 39.12 36.80 31.83 33.31 34.02 36.29 

01-16,16-25 2.285 27.59 19.23 20.52 22.44 24.97 25.12 30.78 26.39 

25-16,16-01 2.285 26.36 16.66 14.78 14.58 14.59 24.48 24.69 14.16 

25-16,16-01, 

01-16,16-25 
4.570 19.58 15.01 14.42 14.67 15.33 17.80 21.25 16.78 

45 Minutes Prediction 

01-16 1.491 72.91 24.40 27.12 32.11 37.56 31.32 40.57 28.25 

16-01 1.491 32.14 21.64 21.51 19.84 19.82 21.42 21.42 22.20 

16-25 0.794 27.09 40.69 41.42 39.74 37.48 41.56 41.56 58.15 

25-16 0.794 24.87 36.77 33.94 34.34 28.46 32.86 31.88 33.24 

01-16,16-25 2.285 32.05 20.04 23.61 25.92 27.20 25.61 36.48 34.08 

25-16,16-01 2.285 26.05 18.47 16.63 18.35 17.97 22.57 22.39 14.71 

25-16,16-01, 

01-16,16-25 
4.570 21.12 14.38 15.87 17.11 17.34 16.83 21.03 19.48 

60 Minutes Prediction 

01-16 1.491 72.90 28.50 34.53 37.72 38.37 33.79 49.84 39.08 

16-01 1.491 22.39 21.89 19.32 21.29 19.54 20.62 20.62 22.67 

16-25 0.794 29.26 55.23 52.15 47.55 41.82 40.37 45.04 59.18 

25-16 0.794 24.44 37.38 38.96 37.66 32.00 42.66 41.68 45.39 

01-16,16-25 2.285 45.12 25.85 28.68 29.15 27.38 29.67 42.68 37.39 

25-16,16-01 2.285 23.22 19.21 22.31 22.06 19.91 23.61 23.76 18.35 

25-16,16-01, 

01-16,16-25 
4.570 24.16 15.05 15.92 15.65 13.70 13.35 22.76 19.34 
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It could be observed that the errors of predictions from the trip through a single road 

section tend to be higher than the trip through a combination of two road sections 

(route). Also, the prediction errors from the trip through two road sections tend to be 

higher than the trip through four road sections. For instance, the next 15 minutes 

prediction error of ANN(All) models from the trip through section 01-16 was 15.36%, 

and the trip through section 16-25 was 21.48%, while the prediction error of the trip 

that traversed both section 01-16&16-25 was 12.62% and the prediction error of the 

trip through 4 road sections (25-16&16-01&01-16&16-25) was only 10.09%.  

 

The above behavior is caused by the self-offsetting or balance out of error between 

different road sections on each trip. Therefore, from the results, it could be concluded 

that the error of travel time prediction on the trip consisting of multiple road sections 

is often less than the prediction error of an individual section.  

 

It should be noted that this section aims to show the effects of the number of sub-road 

sections for each trip on the travel time prediction accuracy. It could not be used to 

indicate which prediction method is more accurate because of the effect of the self-

offset of error as discussed above. The analysis of performance of each method in 

short-term travel time prediction is illustrated in section 6.3 and 6.4 

 

6.6 CONCLUDING REMARKS  

 

This chapter provided the results and analysis of travel time prediction on urban 

roadways, starting with the study sections and their travel time behaviors, then the 

selection of inputs and hidden neurons for ANN models, followed by travel time 

prediction results, and finally the analysis on the performance of the model in various 

situations. 

 

In this study, four target sections were selected as the target sections for testing the 

travel time prediction models from proposed and baseline techniques. The target 

sections had different travel time behaviors. For instance, some sections had highly 

fluctuated travel time, and some sections had almost constant travel time for the entire 
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day. The analyses on the correlation between future travel times of target sections and 

historical travel times of target and neighboring sections also indicated the differences 

in behaviors among the target sections. On all 4 target sections, the parameter that was 

most correlated to their future travel time was their historical travel times. However, 

the second most correlated parameter to future travel time varied, from historical 

travel time of down-direct, share-left, and up-direct sections, depending on the test 

sections and prediction horizons.  

 

In selection of inputs and hidden neurons for ANN models, the preliminary analyses 

pointed out that the more complex models with a greater number of inputs and hidden 

neurons did not always provide more accurate results. In fact, it could lead to worse 

prediction results due to overfitting problems. Therefore, the 5-fold cross validations 

technique was employed for selecting appropriate inputs and hidden neurons using 

training dataset (obtained during February 4-29, 2016). The results prediction models 

from the analyses differed from section to section, from prediction horizon to 

prediction horizon, and from scenario to scenario (three scenarios: only the historical 

data of the target section were available for developing the ANN model, historical 

data of the target and all neighboring sections were obtainable, historical data from 

target section were absent but the data of all neighboring sections were available).  

 

The result of short-term travel time prediction on urban roadways was tested by the 

new dataset (validating dataset) conducted during March 1-7, 2016 with the model 

structures obtained from training dataset. From 3 out of 4 target sections, the ANN 

models performed better than the baseline models (including; using current travel 

time, MA(2), MA(3) and (MA4)) in short-term travel time prediction. However, there 

was 1 target section that the baseline models outperformed ANNs. Therefore, the in-

depth analysis was performed in order to find out the performance of each model in 

different situations.   

 

The in-depth analysis indicated that in the small travel time fluctuation regions (CV ≤ 

0.4), the baseline models provided slightly better prediction results than ANN models. 

The model that provided the best prediction result in this region was MA(4). This was 
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because in the moving average model, in which historical data were mainly 

considered, provided better estimation when a time series was nearly constant. For 

moderate travel time fluctuation regions with 0.4<CV≤0.6, the ANNs and baseline 

models yielded comparable results (or ANNs were slightly better). In the case that 

travel time highly fluctuated (0.60<CV), the ANN models performed significantly 

better than the baseline models. 

 

Unlike other models, the ANN(Miss) model did not require historical data from the 

target section. Therefore, in the case that historical data of the target road are missing, 

the ANN(Miss) could be a good solution for use as a travel time prediction model 

with acceptable results. 

 

Furthermore, the analysis on the effects of the number of sub-road sections on each 

trip (route) pointed out that the error of travel time prediction on the trip consisting of 

multiple road sections is often less than the prediction error of individual section due 

to the self-offsetting or balance out of error between different road sections on each 

trip. 
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7. CONCLUSIONS AND FUTURE RESEARCH 

 

As the core of advanced traveler information system (ATIS) and advanced traffic 

management system (ATMS), travel time is increasingly on attention of researchers 

and professional in the area of transportation. Travel time could be considered as the 

simplest indicator for representing traffic conditions. It is also easy to understand and 

well accepted from all stakeholders. However, the development of accurate travel 

time information is not an easy task, particularly on urban roadways with the 

complicated behavior and disturbances from surroundings.  

 

The main objective of this dissertation is to develop the methodology for travel time 

estimation and short-term travel time prediction on urban roadway networks. At first, 

the research investigated the applicability of two data collection methods for travel 

time estimation -- GPS probe-based and Bluetooth-based.  These two data collection 

methods have high potentials for cost-effective and rich data gathering for further 

travel time estimation and prediction. Then, the methodology for short-term travel 

time prediction using ANNs in relation to travel time on neighboring sections was 

proposed and verified with the real Bluetooth probe data captured from the BMS 

system installed on urban roadways in Bangkok CBD.  

 

This dissertation will conclude with a summary of the primary research findings and a 

list of recommended future works to extend the science and knowledge on travel time 

estimation and prediction topics. 

 

7.1 CONCLUSIONS 

In this dissertation, we have proposed techniques for developing travel time 

information from GPS probe data and Bluetooth probe data. Moreover, the travel time 

prediction models using ANNs with information from target and neighboring sections 

were also proposed and compared with traditional techniques. The contributions of 

this dissertation are listed as follows: 
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Travel time estimation from high-resolution GPS probe data  

 

We have proposed a modified algorithm for calculating travel time and travel speed 

on urban roadways from probe data called the “Running Speed and Stopped Delay 

(RSSD) method”. This technique was modified from the average speed method using 

the advantage of movable sensors in which the location and speed of the tracked 

vehicle could be automatically detected. Consequently, the running speed and stopped 

delay time of a probe vehicle during its trip on any road segment could be extracted 

from recorded data. Moreover, for illustrating the applicability range of the RSSD 

technique, we also provided some discussions on the limits of error in speed 

associated with each GPS device to maintain the advantage of the proposed technique 

in travel speed estimation. 

 

Results from the analysis indicated the advantages of RSSD over the average speed 

approach in addressing travel time and speed estimation which could be demonstrated 

by the higher allowable limiting error in speed associated with each GPS device to 

maintain the same accuracy level with the benchmark method and also pointed out the 

higher accuracy level when the RSSD approach was employed as the travel time and 

speed estimation technique, particularly in the highly congested traffic conditions.    

 

Travel time estimation from low-resolution GPS probe data  

 

For the real world application, we have proposed the new analytical algorithm for 

allocating travel time into individual road sections by integrating instantaneous speed 

together with tracked locations and time stamp. From traffic state information 

represented by instantaneous speed data, the proposed model applied the speed-time-

distance relationship for model tuning and then allocated travel time into each section. 

The performance of the proposed model in travel time allocation was tested and 

compared with the widely used technique at both complete section and local levels 

using high resolution (ground truth) field data. 
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It was found that the proposed technique provided a significant improvement in travel 

time allocation at both complete section and intersection levels compared to the 

benchmark technique. Moreover, from the in-depth analysis at the local level, the 

stopping (traffic) behavior within the intersection region affected the level of accuracy 

on both models. Accuracy from both techniques was lower at the intersections with 

stopping behavior due to its complicated movement behavior. Still, the proposed 

technique outperformed the baseline approach in both intersections with low and high 

stopped delays.  The average speed of vehicles within the intersection region, which 

represented the local traffic state, also influenced the model accuracy. Intersections 

with the higher average speed could achieve the higher accuracy level of travel time 

estimation by both methods. Furthermore, an analysis on the effects of speed 

fluctuation at the local level pointed out the outstanding performance of the proposed 

model in addressing the complicated movement behavior compared to the baseline 

approach. 

 

Travel time estimation from Bluetooth probe data 

 

We have presented the development of the traffic data collection system from the 

Bluetooth MAC Scanner (BMS) system starting from the basic components of BMS, 

the possible installation locations for collecting traffic data on urban roadways, details 

of captured data, and also suggested a framework for constructing travel time 

information from Bluetooth probe data. 

 

Results from the field study with 40 BMSs installed on urban roadways in Bangkok 

CBD indicated the potential of BMS in traffic data collection by showing the 

sufficiency of raw data for constructing travel time information. The analysis on data 

spreading along the day pointed out that during 00:00-05:00 the amount of captured 

data was considerably lower than the data during daytime that could create the 

missing data problem in some road sections.  However, the amount of captured data 

was higher and approximately sufficient for developing reliable traffic information 

during daytime which was a period that highly requires traffic information for 

disseminating to road users. 
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Form the suggested framework, data filtering by Hampel identifier could successfully 

remove outliers that greatly deviated from the group median resulting in the more 

reasonable travel time estimation results and proved consistency with real traffic 

behavior. The in-depth analysis also pointed out that only a small amount of data were 

considered as outliers and were taken out in the filtering process, but this could 

significantly improve the estimation results. 

 

Travel time prediction from Bluetooth-probe data 

 

We have proposed the travel time prediction model using ANNs with the information 

from both target section and neighboring sections as the candidates for model inputs.  

 

In the model development, the multilayer feedforward neural network model with one 

hidden layer was selected as the main structure for the travel time prediction model. 

The candidate inputs for the travel time prediction model were historical travel times 

of the target section and its neighboring sections including; upstream, downstream 

and signal sharing sections.  The input selection for the prediction model was based 

on the order of the correlation coefficients between desired output and each input 

parameter. The appropriate number of hidden neurons for each model was tested by 

the cross validation technique from the number of hidden neurons ranging from 1 to 

50. 

 

The study corridor was on urban roadways in Bangkok Metropolitan comprising 4 

target sections. From the 33 days of Bluetooth probe dataset collected during 06:00 to 

21:00, the full dataset was then divided into 2 groups: (1) training dataset had 26 days 

of data for model training and learning process, and (2) validating dataset had 7 days 

of data for verifying the model accuracy.  

 

From 4 target sections, each target section had different travel time behaviors from 

highly fluctuated to almost constant travel time for the entire day. The analysis on the 

correlation between future travel times of target sections and historical travel times of 
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target and neighboring sections also indicated the difference in behaviors among 

target sections. In all 4 target section, the parameter that most correlated to their 

(target sections) future travel time was their (target sections) historical travel times. 

However, the second most correlated ones varied.  

 

In the selection of inputs and hidden neurons for the ANN model, the preliminary 

analyses pointed out that the more complex models with a greater number of inputs 

and hidden neurons did not always provide more accurate results. In fact, it could lead 

to worse prediction results due to overfitting problems. Therefore, the 5-fold cross 

validations technique was employed for selecting appropriate inputs and hidden 

neurons using training dataset. The results prediction models from the analyses 

differed from section to section, from prediction horizon to prediction horizon, and 

from scenario to scenario (three scenarios: only the historical data of target section 

were available for developing the ANN model, historical data of the target and all 

neighboring sections were obtainable, historical data from the target section were 

absent but the data of all neighboring sections were available).   

 

The result of short-term travel time prediction was tested by the new dataset 

(validating dataset) with the model structures obtained from the training dataset. From 

3 out of 4 target sections, the ANN models performed better than the baseline models 

(including using travel time from database, current travel time, MA(2), MA(3) and 

(MA4)) in short-term travel time prediction. However, there was 1 target section that 

the baseline models outperformed ANNs. Therefore, the in-depth analysis was 

performed in order to find out the performance of each model in different situations.   

 

The in-depth analysis indicated that in the small travel time fluctuation regions (CV ≤ 

0.4), the baseline models provided slightly better prediction results than the ANN 

models. The model that provided the best prediction result in this region was MA(4). 

This was because, in the moving average model in which historical data were mainly 

considered, the model provided better estimation when a time series was nearly 

constant. For moderate travel time fluctuation regions with 0.4<CV≤0.6, the ANNs 

and the baseline models yielded comparable results (or ANNs were slightly better). In 
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the case that travel time highly fluctuated (0.60<CV), the ANN models performed 

significantly better than the baseline models. 

 

Unlike other models, the ANN(Miss) model did not require historical data from the 

target section. Therefore, in the case that historical data of the target road were 

missing, ANN(Miss) could be a good solution for use as a travel time prediction 

model with acceptable results. 

 

Furthermore, the analysis on the effects of number of sub-road sections on each trip 

(route) pointed out that the error of travel time prediction on the trip consisting of 

multiple road sections is often less than the prediction error of individual section due 

to the self-offsetting or balance out of error between different road sections on each 

trip. 

 

7.2 FUTURE RESEARCH 

Based on the findings and limitation of this work, the following topics are 

recommended for future research. These topics improve and complement the study in 

this dissertation: 

 

In this dissertation, GPS probe and Bluetooth probe data were used to perform travel 

time estimation separately. A possible extension to our work is the combining of data 

coming from various sources by data fusion techniques, not only the data mentioned 

in this work but also from more sources such as RFID tags, video cameras, and 

inductive loop detectors, etc. A system with more data sources is expected to deliver 

more accurate and robust estimated travel time than a system with one individual set 

of data.     

 

Missing data is one of the main limitations in developing a robust travel time 

prediction model. In this study, we did not address the issue of missing data problem. 

However, during the preliminary analysis, the missing data occurred on every BMS 

station from several reasons, such as running out of electricity for the Bluetooth 
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scanner, obstacles from the environment or no Bluetooth devices entered to the 

communication zone. Therefore, the missing data issue should be considered in the 

future research in order to develop and provide sufficient candidate inputs for travel 

time prediction models.  

 

Based on travel time prediction results, none of the models yielded the best prediction 

outcomes in all traffic conditions. Each model provided decent results in some traffic 

conditions. Since traffic conditions change, the accuracy levels change and there were 

other suitable prediction models. Therefore, the use of hybrid structures of NN for 

tackling traffic prediction problems is one of the interesting topics that should be 

further concentrated on. 

 

Once the long-term historical travel time is available, the future study should address 

the long term travel time prediction problem that is necessary for traffic operators in 

operating an advanced traffic management system, and for logistic business in long-

term scheduling, etc. The environmental and seasonal effects such as effect of raining 

that could disturb the travel time behaviors can also be carried out. 
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