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Chapter 1

Introduction

1.1 Background

Optimal control problem of nonlinear systems is one of the most attractive
problem in control theory because of the complexity with the classical control theory
occurs when the plant we used is nonlinear. As we know, If the plant of the dynamic
systems is linear, it is possible to find the optimal control by solving the Riccati
equation. In nonlinear systems, The Hamilton-Jacobi-Bellman (HJB) from [1], [2]
partial differential equations (PDE) will become more challenge. It is difficult to find
the closed form of solution or rarely an analytical solution. Many researches proposed
the method to approximate the HIB solution. Power series approximation [3], State-
Dependent Riccati equation (SDRE) [4], Successive Garlerkin approximation [5],
approximating sequence of Riccati equation (ASRE) [3]. All of above is based on some
hypothesis in the dynamic system. From [6] proposed the numerical methods for
solving the optimal control problem into 3 types. First, dynamical programming
approach compute the Hessian matrix and satisfy the necessary condition. However,
the computation increases exponentially with the number of states and control
variables. Second, indirect method approach solves the necessary condition in the form
of two-point boundary value problems (TPBV). Finally, the essence of direct method
is the discretization of the optimal control problem. In this study, we interest to solve
optimal control problem in nonlinear system with TPBV. SDRE becomes useful when
we solved TPBV because SDRE can satisfy TPBV by some condition. Almost
application can be expressed in state-dependent linear like which can be solved by
SDRE so it is suitable to compare it with indirect method for solving TPBV. You can
see the example of application by [7], [8], [9].

Model predictive control (MPC) approach [10], [11], [9] has received a great
attention over the past. The main idea of model based predictive is to use open-loop
optimal control instead of closed-loop optimal control with finite time in the future.
MPC is a kind of optimal control problem for finding a state feedback law which does
not only depend on time. Time interval in performance measure of MPC is finite. The
state feedback law depends on the state. The optimal feedback law the best performance
as it is possible in the sense that performance measure is minimized. When nonlinear
MPC (NMPC) is considered, the open-loop optimal control is calculated from the
current to the finite future time. And the current control input is based on the MPC
strategy [12], that is, (TPBV) [1], [2] or SDRE [4] need to be solved in on line to finding
the control input at every sampling time. There are many people try to apply it to
nonlinear systems and prove that closed-loop is asymptotically stable if terminal state
is zero [11]. It is well known that the controller from finite optimal control do not
guaranteed the closed-loop stability. The MPC can be guaranteed by adding some
condition into finite horizon optimal control problem which can be prove in [9].
However, the most of NMPC are based on the knowledge of full state. This mean that
the NMPC can be applied when you can measure all the state of the systems. In real
environment, we cannot observe all the states of the system.



To overcome the above problem, we propose to use an observer to observe the
state of the system. Many researches proposed the observer to use with linear systems
such as [13] which is solving Sylvester observer equation. In this study, the reduced-
observer can be solved by using Kalman-type observe. The reduced-form need to be
found and use Kalman gain to be feedback to the reduced-system. The stability of the
observer need to be concern to ensure the convergence of the reduced-system.

Observer based NMPC use NMPC with output feedback which is found by
using observer. Inverted pendulum, inverted pendulum on linear motion cart and
inverted pendulum on circular motion cart are the example for optimal control problem,
NMPC, observer and output feedback NMPC.

This paper proposes you to use observer in feedback control [14], [15], [16] to
overcome the above problem. The nonlinear systems can be written in form as reduced-
form.

1.2 Objective

1. To solve the optimal control problem with TPBV.

To estimate all states of the systems by using observer.

3. To apply output feedback to nonlinear model predictive control with guaranteed
stability of the closed loop system of NMPC.

4. Toachieve the regulation and reference tracking criteria.

N

1.3 Scope of research

Simulation and programming development are carried out on MATLAB.
Nonlinear systems can be expressed in affine control input.

Final states are free and the terminal time is fixed.

Control input has constraints from physical limitation.

Nonlinear systems can be observed and controlled.

Measured output is only some of the states.

oW E

1.4 Methodology

1. Review the optimal control theory, nonlinear model predictive control, observer for
nonlinear systems, output feedback for nonlinear systems with observer.

2. Develop the optimal control and test with examples and compare the results.

3. Develop the nonlinear model predictive control and apply to the same examples and
compare the results between optimal control problem and NMPC.

4. Develop observer of nonlinear systems and apply to the same examples and compare
the results.

5. Apply the output feedback nonlinear model predictive control using observer.

Compare all the results and discussion.

7. Complete thesis writing.

o



1.5 Expected outcome

Most of MPC approximated the process dynamics as linear system and applied
linear MPC. In real environment, many applications are nonlinear systems. To conserve
nonlinearity, it is useful to use NMPC. The observer becomes useful when we cannot
measure all the output because NMPC can be achieved only when we know all the
states. We expect to design observer to estimate the states and feedback to NMPC,
Thus, we will be able to control the nonlinear systems. We focus on the regulation and
reference tracking as the main control objectives.



Chapter 2

Optimal Control for Nonlinear Systems

In the past, classical control is process that deals with the characteristic of
system by solving differential equation in a frequency domain. In fact, systems in real
environment have more complexity than we learned in a classical control. The
knowledge about classical control is not enough to explain the characteristic of those
systems. Optimal control become useful to have an effect on those complex systems.
The objective of optimal control is to find the control input that gives the minimum cost
function or performance measure and satisfy physical constraints of the systems.

2.1 Problem formulation

To find the control input which minimize the cost function
&r
J =h(x(tr) tr) + j g(x(®),u(t), t)dt (1)
to

where h is terminal cost scalar function and g is scalar function. t, and ¢, are initial

and terminal time, respectively.
Constraints are

x(t) = f(x(0), u(t), t) )
x(t) = xo 3)
Initial state and control input for interval time t € [to,tf] drive the system by two

parameters. The minimum performance is achieved by some control input. We call it
as the optimal control.

2.2 The Hamilton-Jacobi-Bellman equation

Let the optimal control be (u(t)*) and it depends on the state.
u(t) = a(x(t),t) (4)
We can rewrite the minimum cost function as
ty
J*(x(),t) = M) ser, {h(x(tf), tr) + f g(x(t),u(t),t)dt} (5)
to
where () = f(x*(t),u (t),t)

x(t) = x,

Using the principle of optimality and Taylor series to rewrite the new formulation
0 =J*,(x(0),t) + miny @ {g(x(), u(t),0) + J*," (x(@©), [f (x(t), u(t), )]} (6)

v 2 e 2 pefi itoni
where J*, £ Pl I 2 P Define the Hamiltonian H as

H (2@, u(®),J" pt) 2 gx(®),u®),t) + ], (x®), O[f (x(©),u®), )] (7)



It can be shown that

H(x(®), u (x(0), ], t).J*, t) = mingyH (x(), u®),J*, t) (8)
The Hamilton-Jacobi-Bellman equation is
0=J",(x@®,t) + H(x(®),u"(x(0),J" . t),]" ., t) (9)

Unfortunately, above equation is based on knowledge of the optimal control input. In
fact, the solution of the Hamilton-Jacobi-Bellman equation (HJB) is not easy to solve
but we have many ways to approximate the solution of HIB equation. In the next
section, we review some of the methods to approximate the HIB solution.

2.3 The variational to optimal control

The HJB equation is difficult sufficient condition to solve. Fortunately, the
optimal control can be derived using a necessary condition for optimal control also
called “Pontryagin’s minimum principle”.

Necessary condition for optimal control

The objective of the optimal control problem is to find the control input which
makes the system (2) drives the trajectories. The minimum cost function occurs when
the optimal control is found with the optimal trajectories.

x(6) = f(x(6), u(t), t)
We can rewrite (1) as
tr dh(x(t),t)

J = it ) + [ [y g (a0, u(), e (10)
to

In this work, we are interested in a fix terminal condition. Eq. (10) will not change by
the h(x(t,), ty) term so we can relax this term and rewrite (10) by using chain rule as
follows

t T

Applying the Lagrange multiplier to (11) and we define it as J,
tr oh T oh
Jo= [ Hoe@u©,0+ 2 @@.0] w0+ @@ 0
t

0

(12)
P OIf @O, u(®), ) - X(t)]} at

where p(t) is the Lagrange multiplier. Sometimes we call it as “co-state of systems”.
For easy understanding, define

9a(x(), x(1), u(®), p(t), t) = g(x(t), u(t), t) +

oh T oh . :
|5 c©.0] 20 + 52 @®, 0+ P OU O, u®,0 - %]
(12) can be written as



(9O, X0, u(®), p(8), O}t (13)

to
From the calculus of variations, we can apply it with the chain rule and write it as the
variation of J,. While §x;, 6t¢, 6x(t), Su(t), 6p(t) are the variation of terminal state,

terminal time, state, input, Lagrange multiplier, respectively.
The variation of J, is
* ag * M * * r
8w = 0 = |2 (x' (1), % (1) w' (1) 0" (57 7) | o

v [ga<x*(tf),x*(tfxu*(tf),p*af), )

T T
(), (&) u(tr), P* (tp), tf)] x'*(tf)l Sty

t i T
s f f “aga(x(t),x(g),u(t),p(t),t)]
¢ X

(14)

0

9 [0ga(x(t), x(t), u(t), p(t),t)
ot ax

N Iaga(x(t),x(g)llu(t)lp(t),t)] Su()

4 T
N Iaga(x(t),x(g)z;u(t),p(t),t)] spo) b de

The inside integral term must be zero if it is an extremal. An outside integral term will
be considered as boundary conditions. In this study, we specify that ¢ is fixed. Finally,
we get these necessary conditions. Compare the HIB equation with these conditions
you will see that you can consider J*_ in (7) as the Lagrange multiplier p(t) in (12)

]6(t)

7{
(0 = 5= o (0, ©),0) (15)
po=-2-=-[e (t).u*(t),t)] PO -2 OO0 ()

’ d
[— EOWO0| PO+ EOEO) 0
x*(to) = X (18)
oh

p'(t) =55 (x*(tf)) (19)

where u*(t) is optimal control input which makes optimal trajectories x*(t) and
optimal Lagrange multipliers p*(t).

The next section, we will present techniques to approximate the solution which
satisfy all of these necessary conditions (15)-(19). In this work, we introduce two
iterative techniques for finding the optimal control input and one approach which is not



involve to iterative method. These two iterative techniques use the concept of an open
loop optimal control.

2.4 Two-point boundary-value problems

If optimal control problem is linear systems with quadratic cost function, it is not
difficult to find the optimal control by solving the Riccati equation. When systems are
nonlinear system, we have to solve the HIB equation which is generally impossible to
find the closed form of the HIB solution. The variational approach gives us a means to
solve nonlinear two-point-boundary-value (TPBV) problem.

Assume that control input and final state are free and terminal time is fixed.

*0(0) = Z—ﬁ - FOD,u0 (@), 1) (20)
| P
PO =5
of : T
= ELow,u00,0 | 900 @
9. i
7 (x( (), u®(t), t)
0= Z—Z = %(x(i) ©,uD (), ¢) ] PO () + Z—‘Z(x@ ©ud@),t) (22
xD(ty) = x4 (23)
(D) e Oh O
PO () = —(x9(y)) (24)

The main principle uses the following idea.

“The idea is starting from an initial guess is used to obtain the solution which is not
satisfied all of the necessary conditions. Then adjust the next control input to make the
solution come closer to all of the necessary conditions. We will stop updating the
control input until all of the necessary conditions are satisfied.”

2.4.1 The steepest descent method

This method is developed by using knowledge of optimization of function by using
steepest descent. Let f be a function of y,,y, which are independent. A necessary
condition is

0 d
of 1", y2") = [_a)]; (}’1*;372*)] Ay, + [_6)]; (}’1*’3’2*)] Ay, =0
af *\T —
@(}’ )'Ay =0

This implies that Z—i(y*) = 0 for any Ay # 0. Let z(y®) be the unit vector in the

(25)

A

gradient direction at the point y®.
Ay = y(+D) _ 5O



However, we can proceed to the next iteration in the opposite direction z(y®) with
some value, give the variable 7 is that meaning. Thus,

Ay = y(i+1) - y(i) = —TZ(y(i)) (26)
From (25), (26), it can be shown that

. 9 .
of(y®) = —ré(y*)TZ(y(‘))

Because z(y®) is the unit vector in the gradient direction. As a result, we have

af(y?) <o
Figure 2-1 shows the procedure of the steepest descent method. It starts from the
starting point and go through the deepest path in the opposite gradient direction
repetitively until the criterion is satisfied.

Figure 2-1 Steepréfstf descent behavior

Next, we will apply this knowledge to the optimization of functional by using steepest
descent. From the necessary conditions (20)-(24)

K00 = 5 = FO(0,u90), 0 (20)
. A
po®) = - o
of . . . T
=— [a—i (x“)(t).u(‘)(t),t)] p® () 1)

99 ( i
~ 3 (x( )(t),u( )(t), t)

X [of , . . T d . .
0= = % (x® (), u®(®), t)] p®(t) + % (xOO,uD®,0)  (22)
xD(to) = x, (23)
. oh , .
pO(t) =5 (x(1r)) (24)

First, let discuss about the variation of J, in (14). Consider the control input.



To find the control input which satisfies all of the necessary conditions is impossible.
However, we can adjust some condition to make the solution comes closer to satisfy
the necessary condition. Suppose (22) is not satisfied so the variation of J, is

tr ([02 (x(2), %(D), u(®), p(t), O]
5. - f {[ (x(), X a)uu( ).p(t) )l Su(t)} ” 7
to
Let
_ ) OH (x(t), x(t), u(t),p(t), t
Thus,
tr ([02€ (x(2), %(6), u(®), p(t), )] aF (x(t), £(t), u(t), p(t), t
%:_Tf {[ (x()x<a>uu(>p(> )l <x<>x(;uu<>p<> >}dt$0
to
The equality will be hold if and only if (22) is satisfied.
The steepest descent algorithm
1. Select the discrete approximation of the control input.
u®(t) = ud(ty), t€[tot;] k=01,..,N—1 (29)

2. Using input (29) to integrate the state equation (20) from ¢, to t; with initial
condition (23).

3. Calculate p®@(t;) in (24) and let it be terminal condition for integration
backward from ¢, to t, of co-state equation.

4. Calculate equation (22) and let it be stopping criterion.

If stopping criterion is satisfied, then that control will be the optimal control.
If stopping criterion is not satisfied, then update new control by

. . ®
w0 () = ud(t) — 125 (1), k=01,..,N—1 (30)

ou
2.5 State dependent Riccati equation

Consider nonlinear affine control systems
x() = f(x) + g(u(t) (40)
The nonlinear systems can be expressed in state dependent linear like form as
x(t) = A(x)x(t) + B(x)u(t) (41)

where f(x) = A(x)x(t), g(x) = B(x). The objective is to minimize the performance
measure (1) subject to (40) or (41) with initial condition (3).
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SDRE which satisfies the necessary condition (15)-(19) can be proved by assume that
co-state of the system is state dependent linear like in x(t)

p(t) = P(x)x(t) (42)
Consider with the nonlinear discrete-time system
X1 = fa (e i, &) (43)
X1 = Al x + B g )uy (44)
the control feedback law as
u, = —k(x)x, = —R7'B(x)P(xy) (45)

where P(x) is the positive definite matrix and is the solution of state dependent
differential Riccati equation (SDDRE) in discrete-time.

A(xk)T(P(xk) — PO)B(xi) (R + B(xk)P(xk)B(xk)_l)_lB(xk)TP(xk)) (46)
A(x) —P(x) + Q=0
As you can see above, control feedback law of SDRE is similar to optimal

control when we consider linear system with quadratic cost function. Only
matrix in SDRE depends on state at each sampling time.

2.6 Numerical examples

Inverted pendulum

Figure 2-2 Inverted pendulum

The state equations of inverted pendulum are described by

x1(t) = x,(t)

e (6) = mglsin x; (t) — ml%x2(t) sin x; (t) cos x; (t) — (L cos x; (t))u(t)
X2l = J + ml?(sinx,(t))?

where x; (t) is angular position and x, (t) is angular velocity.
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Figure 2-3 and 2-4 compare the results between the steepest descent method and
SDRE where initial control signal is zero and sin wave for the steepest descent
method.

0 0.1 02 03 04 05 06 0.7

o — §teepest Descent

Optimal Control (N)
o

= Time(s)
£ 0.1 T T
c
2 Q:
=
%. 0 — Steepest Descent
g’ _01 1 L 1 I 1 I I
f,: 0 01 02 0.3 04 05 06 0.7
W Time(s)
g~ ]
E 1 T T T
},’ m— Steepest Descent
2 90 =1
=
i) . A A A A . A
é 0 0.1 02 0.3 04 05 06 07
Time(s)

Figure 2-3 Optimal control, angular position and velocity with zero input guess for steepest
descent and SDRE
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04 0.5 06
Time(s)
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Figure 2-4 Optimal control, angular position and velocity with sin input guess for steepest
descent and SDRE
The cost function with steepest descent is 1.5239 x 10~* when guess input is zero and

is 0.0021 when guess input is sin wave while cost function with SDRE is

6.1298 x 107%,
Table 2-1 Comparison of three methods for solving nonlinear optimal control
roblem.
Steepest descent The variation of | SDRE
extremals
Cost function 1.5239 x 10~* 1.2492 x 10~ 6.1298 x 1074
Initial guess u(t) t € [to, t7] p(0) -
Advantage It gives minimum cost | Once converge, | It has closed form
function when initial it is fast. solution.
guess is close to optimal
control
Disadvantage Convergence is slow May diverge for | The systems must
when it converges poor guess be expressed in
state dependent
linear like form.

Conclusion

If the initial co-state is far from the optimal condition, then it takes more time
to converge to the optimal solution. In the case we guess initial co-state close to the
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optimal solution, it takes a few iterations to find the optimal control the process. This
method is based on free final state like the steepest descent method. Notice that steepest
descent approach can minimize the cost function lower than that of SDRE. In this case,
we have a good initial control input. If the time horizon is longer or we lack a good
control input, SDRE is the better method to solve the optimal control problem. SDRE
still has the limitation on the form of the dynamic system must be expressed as state
dependent linear like form.
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Chapter 3

Nonlinear Model Predictive Control

3.1 Problem formulation

NMPC controller

Y
\

Dynamic

5 Pl
optimizer 2t

A
A4

\ J

x >

State estimator |

A

System model

Reference point |«

Figure 3-1 Structure of MPC [17]

Since NMPC is designed to discrete-time system, we shall discretize the systems by the
discretization method [10].

xX(tirr) = fOe(ti), u(ti), ) = fa(x(6)) + Bau(ty)
fd(x(tk)) = x(ty) + Tsfc(x(tk))
By = TsB,

where T; is the sampling time. x; , is state x in element ith at time index k.
Let the cost function be defined as

N-1

Jo =Ts Z(x(tk)TQx(tk) + u(tp)TRu(ty)) + x(ty)"Qx(ty)

k=0
where Q and R are weighting matrices of state and control input. We discretize
nonlinear system (1) using a fourth order Runge Kutta method and subdividing the
interval time [, ty]into NV subinterval . Let Ty be a sampling time and t, be the kth
sample, t, =ty + kTs.

X(tks1) = fa (x(tk)fu(tk)) = x(t) + % (ky + 2ky + 2k5 + ky) (47)

where ky = f(x(te), u(ty), ty)

T, T,
ko = f (200 + ey w6, 6+ 2)

T, T,
ke = f (000 + ey ut), 1 + )
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ko = fQx(ty) + Tsks, ulty), ty + Ts)

so the objective of NMPC is to minimize the performance measure as follows

N-1

T (g (x(tkﬂ'lk)'u(tkﬂ'lk)) +h (x(tk+N|k)'u(tk+N|k)))

i=0
N-1

=T (x(tk+i|k)TQx(tk+i|k) + u(tk+i|k)TRu(tk+i|k)> (48)

i=0

T
+ x(tianie) QX(trrnix)
with dynamical constraint
X(tirivile) = fa (x(tk+i+1|k)'u(tk+i+1|k))
x(twe) = x(te)
The above problem is called regulation problem. The performance measure is quadratic
with state and control input. We can track state of the system to reference signal by
using the performance measure which is quadratic function of error between state and

reference signal and control input. The objective is to minimize the performance
measure

-1

=T Z (9 xe(tk+i|k) u(tk+i|k)) + h(xe(tk+N|k) u(tk+N|k))>

i

=0
=T <Z xe(tk+l|k) Qe (tiriin) + ultrsine) Ru(tkﬂlk)) (49)

i=0

+ xe(tk+N|k)TQxe(tk+N|k)

subjectto X (tk+i+1|k) =fq (x (tk+i|k)'u (tk+i|k))
x(tipe) = x(t)

where x, (tiripx) = X(trripr) — r(trsi), T(t) is reference signal.

In chapter 2, the algorithm to solving the optimal control for regulation problem is
described. In this chapter, solving the NMPC problem is similar to the regulation. The
different are Hamiltonian in (7) and necessary conditions (15)-(19). The control
feedback law in SDRE algorithm is u(t;) = =R B (x;) (P (x)) — r(t))

(50)
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3.2 NMPC algorithm

>
: ot

U* N\ o2

Figure 3-2 Process of MPC [17]

Figure 3-2 shows the concept of MPC that is
1. Obtain the present state of plant x(t;)
2. Determine the open-loop optimal control problem by solving optimization with the
cost function (48) for regulation problem (49) for the tracking problem
a(ty) = u*(to + kTy)
where T is sampling time.
3. Apply only the first control input % (t) = #(t;) oninterval [t;, t; + Tg] to the plant.
4. Repeat from Step 1 to 3 for the next sampling ¢;, ;.

As the MPC concept, we see that MPC is a kind of optimal control problem. In
nonlinear model predictive control, an open-loop optimal control law from the current
time to the future time is calculated. The optimal control law can be achieved by solving
the nonlinear optimal control problem at every sampling time.

3.3 Stability analysis

It is well known that the controller from NMPC with finite horizon is not
guaranteed to be stable [18]. The stability can be achieved by adding terminal state term
to cost function. The following part shows the stability analysis when we add terminal
state term to cost function

tr
J = h(x(tr), tr) +f g(x(©),u(o), t)dt

to

where h(0) = 0 and h(x(t),t) = 0 forall x(¢t),t # 0

Stability theorem [9] suggests that the NMPC is asymptotically stable if the terminal
state exists such that the following condition satisfied

A(x(tr), t) + g(x(®),u(®),t) <0 (51)
Define V*(x*(t), t) as the cost function of open-loop optimal control problem.
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Proof: Define V(x(t),t) as the cost function of NMPC. V(x(t),t) is nonincreasing
function. For time period t € [t,, Ts)

V(x(to), 7) = V*(x"(t0), 7)
= V*(x*(tO))T) - g(x*(s);u*(s),s)ds

to (52)
=V(x(ty), 1) — | gx(s),u(s),s)ds <V(x(ty),1)
to
For time period t, + T
Vi(x(tg+Ts),to + Ts) = V*(x"(to + Ts), to + Ts) (53)
we know that
V(x(to + TS)J tO + TS) - V*(x*(to + TS)’ to + TS) (54)

V' (x(ty + Ts), to + Ts) — V(x(to), to)
= h(x(to+ Ts +t;), to + Ts + t7) — h(x* (¢ + tf), to + )
to+Ts+ts to+Ts (55)
+ f g(x(s),u(s),s)ds — f g(x*(s),u*(s),s)ds

otTs to
Integrating (51), we have
h(x(to + Ts + t5),to + Ts + t) — h(x(to + tr), 6o + tf)
to+Ts+ty (56)
+[ 77 g u),s)ds <
t

o+Ts

From (53), (54), (55), (56), we have
to +TS

V(te + T, to +T3) = V(x(te), to) < — f 9GS uls)s)ds  (57)

to
Let to = O,TS =t
G

V(x(t),t)—V(x(0),0) < —j g(x(s),u(s),s)ds (58)
0

Now V (x(t ), t ) is nonincreasing function so stability theorem is satisfied.

3.4 Numerical examples

Design of state feedback NMPC for inverted pendulum
The objective is to minimize the performance measure (48) and to control angular
position and velocity to converge to zero. Let parameters be chosen as
Q =100x1I,,R =10,t; = 0.8,T; = 0.01,x, = [0.08 0]".
Figure 3-3 shows responses of the system converge to zero.



18

Control Input (N)
(=]
3)

0.1 02 0.3 04 05 0.6 0.7

0
£o) Time(s)
o
< 01 T
2
= 0051
g “"L
. Or
3
3 .0.05 . \ A : : . .
é 0 0.1 0.2 0.3 04 05 06 0.7
g Time(s)
E 4 -
2
L 1
S -3 7 7 ” g g ; :
g o 01 0.2 03 04 05 06 0.7
< "
Time(s)

Figure 3-3 Control input, angular position and velocity of inverted pendulum for
regulation problem

NMPC can stabilize pendulum at the vertically upright position. Notice that
angular position starts at 0.08 rad. To stabilizing pendulum, control input forces the
system with positive value at the bottom of pendulum. Angular velocity should be
negative value because of control input force. Negative value of angular velocity drives
pendulum back into origin. As soon as angular position becomes negative, control input
forces in the opposite direction to keep pendulum into vertically upright position.

Design of state feedback NMPC to inverted pendulum for tracking problem

We assume that all states of system are measurable. The objective is to minimize
the performance measure (49) and track sinusoid signal. As shown in the figure 3-4,
responses of the system can track sinusoid signal. NMPC can track sinusoid signal.
Notice that angular position starts at 0.08 rad. To control pendulum, control input forces
the system with positive value at the bottom of pendulum. Angular velocity should be
negative value because of control input force. Negative value of angular velocity drives
pendulum back into origin. Then control input becomes negative to drive pendulum to
go through 0.2 rad. As soon as angular position can track sinusoid signal, amplitude of
control input decreases. Trajectory of control input is still sinusoid like angular position.
Control input overlaps with angular position.

Next, we change to reference input to square wave signal. As shown in figure
3-5, responses of the system can track square wave signal. Notice that angular position
starts at 0.08 rad. To control pendulum, control input forces the system with negative
value at the bottom of pendulum.
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Angular velocity should be positive value because of control input force. Positive value
of angular velocity drives pendulum to go through 0.2 rad. As soon as angular position
can track sinusoid signal, amplitude of control input decreases. Control input forces
close to zero for short time and change value to positive value suddenly to drive
pendulum into -0.2 rad.

On regulation problem, state feedback NMPC is applied to inverted pendulum.
It takes a long-time horizon than the optimal control to make the response converge to
zero. On tracking problem, NMPC can control the angular position of inverted
pendulum to track the reference signal. Notice that the angular position moves all the
time so the angular velocity must move all the time too for tracking sinusoid signal. On
the other hand, tracking square wave has a short time for constant value at 0.2 and -0.2
so the angular position tracks the value for short time. The angular velocity will be close
to zero at that time before changing the direction.

Inverted pendulum on linear motion cart

o O

Figure 3-6 Inverted pendulum on linear motion cart

The state observation of the single inverted pendulum on cart is described as

x1(t) = x3(t) ®

. g sinx(t

dy(D) =

—ml sin x; (t) cos x; () x5 (t) + mg(t) sin x; (t) cos x; (t) — ml? cos x; (t) u(t)
(M + m (sinx,(t))?)

x3(t) = x4(t)
mlsin x; (t) x3(t) — mg sin x; (t) cos x;(t) + u(t)
(M + m (sinx,(t))?)
where x; (t), x,(t), x3(t), x4 (t) are angular position, angular velocity, cart position
and cart velocity, respectively. The cart moves only on the horizon plane.

Xy (t) =
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Table 3-1 Paramete values of inverted pendulum on linear motion cart

Parameters Symbol Value Unit
Mass of pendulum m 0.23 kg
Mass of cart M 0.6096 kg
Length of pendulum l 0.94 m
Gravity force g 9.81 m/s?

Design of state feedback NMPC for inverted pendulum on linear motion cart
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Figure 3-7 Cart, angular position and cart, angular velocity of inverted pendulum on
linear motion cart for regulation problem

Let design parameters be chosen as Q =10 xI,,R =100, and ¢t =7.2,T; =
0.01,x, =[0.08 0 0.2 0.02]7. The objective is to minimize the performance
measure (48) and to control all responses converge to zero. As the figure 3-7 shown,
responses of the system converge to zero.

NMPC can stabilize pendulum into vertically upright position while cart moves
in horizon axes. Notice that angular position starts at 0.08 rad. To stabilizing pendulum,
control input forces cart to moves in positive position. When cart moves, it has force at
the bottom of pendulum. Angular velocity should be negative value because of control
input force. Negative value of angular velocity drives pendulum back into origin. As
soon as angular position close to zero, control input forces cart to move in the opposite
direction to keep pendulum into vertically upright position. Figure 3-8 shows control
input which drives cart move to stabilize pendulum into vertically upright position and
figure 3-9 shows phase plane trajectories between angular position and cart position.
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Figure 3-8 Control input of inverted pendulum on linear motion cart for regulation
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regulation problem
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Control input and phase plane of angular position and cart position are shown
by figures 3-8, 3-9. Initial point is [0.08 0.2]7, then control input at each time moves
cart while stabilizing pendulum in vertically upright position is continue. When
response close to zero, control input close to zero.

Design of state feedback NMPC for inverted pendulum on linear motion cart for
tracking problem

We assume that we can measure all states of system. The objective is to drive cart
position track reference signal.
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Figure 3-10 Control, angular position and velocity of inverted pendulum on linear
motion cart for tracking sinusoid signal
Let design parameters be chosen as Q =10Xx1I,,R =100 and t; =7.2,T; =

0.01,x, =[0.08 0 0.2 0.02]7. The objective is to minimize the performance
measure (49) and track sinusoid. As the figure 3-10 shown, responses of the system can
track sin wave signal.

NMPC can stabilize pendulum into vertically upright position while cart moves
in horizon axes. Notice that angular position starts at 0.08 rad. To stabilizing pendulum,
control input forces cart to moves in positive position. When cart moves, it has force at
the bottom of pendulum. Angular velocity should be negative value because of control
input force. Negative value of angular velocity drives pendulum back into origin. As
soon as angular position close to zero, control input forces cart to track sinusoid signal
while moving cart still keep pendulum into vertically upright position. Figure 3-11
shows control input which drives cart move to stabilize pendulum into vertically upright
position and figure 3-12 shows phase plane trajectories between angular position and
cart position.
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Control input and phase plane of angular position and cart position are shown
in figure 3-13. Initial point is [0.08 0.2]7, then control input at each time moves cart
in sinusoid trajectories while stabilizing pendulum in vertically upright position is
continue. Only earliest stage is different because initial point of cart position is far from
reference signal. Control input in earliest stage drives cart moves to track reference
signal. As soon as cart can track to reference signal, control input value decreases in
order to drive cart slowly while stabilize pendulum in vertically upright position.
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Figure 3-13 Control, angular position and velocity of inverted pendulum on linear
motion cart for tracking square wave signal

Let design parameters be chosen as Q =10x1,,R =100 and ¢t =7.2,T, =
0.01,x, =[0.08 0 0.2 0.02]7. The objective is to minimize the performance
measure (49) and track square wave signal. As shown in figure 3-16, responses of the
system can track square wave signal.

NMPC can stabilize pendulum into vertically upright position while cart moves
in horizon axes. Notice that angular position starts at 0.08 rad. To stabilizing pendulum,
control input forces cart to moves in positive position. When cart moves, it has force at
the bottom of pendulum. Angular velocity should be negative value because of control
input force. Negative value of angular velocity drives pendulum back into origin. As
soon as angular position close to zero, control input forces cart to track square wave
signal while moving cart still keep pendulum into vertically upright position. Figure 3-
14 shows control input which drives cart move to stabilize pendulum into vertically
upright position and figure 3-15 shows phase plane trajectories between angular
position and cart position.
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Figure 3-14 Control input of inverted pendulum on linear motion cart for tracking
square wave signal
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Control input and phase plane of angular position and cart position are shown
by figure 3-15. Initial point is [0.08 0.2]7, then control input at each time moves cart
in square trajectories while stabilizing pendulum in vertically upright position is
continue. Control input drives cart moves to track square wave signal. Notice that cart
always moves over amplitude value of square wave because cart has to stabilize
pendulum in vertically upright position. When cart moves in opposition direction, force
of gravity has effect on pendulum. To stabilize pendulum, cart moves over amplitude
value to compensate gravity force.

On regulation problem, NMPC can be applied with the single inverted
pendulum on linear motion cart. As shown in figure 3-8, initial position starts at initial
point and move to the zero point by applying control input.

On tracking problem, NMPC can control the cart position of inverted pendulum
on linear motion cart to track the reference signal. Notice that the cart position moves
all the time so the cart velocity must move all the time too for tracking sin wave signal.
The angular position and velocity still close to zero because the objective of problem is
to minimize the cost function (49) which means that we want x, converge to zero. On
the other hand, tracking square wave has a short time for constant value at 0.2 and -0.2
so the cart position tracks the value for short time. The cart velocity will be close to
zero at that time before changing the direction. When the direction is changed, the force
will make the angular position and velocity move opposite direction as they before.
You can see that the angular position has trajectory similar to opposite direction to the
car velocity.

Design of state feedback NMPC for inverted pendulum on circular motion cart

Figure 3-16 Inverted pendulum on circular motion cart

The state observation of the inverted pendulum on circular cart
x1(t) = x3(¢)
T,p — Bex,(t) — mLr sin x3(t)x,(t) + %mgr sin x5 (t) cos x5(t)

(Jo + mr? — Zmrz(cos x5(t))?)

x%3(8) = x,(0)



x4 (1)

T(t) — Bex,(t) — mLr sin x5 (t)x,(t) + %mgr sin x5 (t) cos x5(t)

3r cos x3(t)

(]e +mr? — %mrz(cos X3 (t))z)

N +3g sin x5 (t)
4L

(t) =

Mg KeKgy (1(6) = KK, (£))

R

where x,(t), x5 (t), x5(t), x,(t) are cart position, cart velocity, angular position and
angular velocity, respectively. Cart moves only on the circle plane.

Table 3-2 Parameter values of inverted pendulum on circular motion cart

Parameters Symbol Value Unit
Equivalent inertia Je 0.0023 Kgm?
Mass of pendulum m 0.15 Kg
Length of pendulum L 0.3 M
Length of cart r 0.2 M
Equivalent viscous friction Be 0.004 rad
S
Motor efficiency due to Nm 0.87 -
rotational loss
Gearbox efficiency Ng 0.85 -
Motor torque constant K; 0.00767 Nm
A
Gearbox ratio K, 3.7 -
Motor voltage constant K, 0.00767 N_m
A
Motor armature resistance R, 2.6 Ohm
Gravity force g 9.8
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Design of state feedback NMPC for the single inverted pendulum on circular
motion cart
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Figure 3-17 Cart, angular position and cart, angular velocity of inverted pendulum
on circular motion cart for regulation problem

Let design parameters be chosen as Q =10x1,,R =100 and ¢ =7.2,T; =

0.01,x, =[0.2 0.02 0.08 0]7. The objective is to minimize the performance
measure (48) and to control all the response to converge to zero. As the figure 3-17
shown, responses of the system converge to zero.

NMPC can stabilize pendulum into vertically upright position while cart moves
in circle track. Notice that angular position starts at 0.08 rad. To stabilizing pendulum,
control input forces cart to moves in negative position. When cart moves, it has force
at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position close to zero, control input forces cart to move in
the opposite direction to keep pendulum into vertically upright position. Figure 3-18
shows control input which drives cart move to stabilize pendulum into vertically upright
position and figure 3-19 shows phase plane trajectories between angular position and
cart position.
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Figure 3-18 Control input of inverted pendulum on circular motion cart for
regulation problem
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Figure 3-19 Phase plane trajectories of inverted pendulum on circular motion cart for
regulation problem
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Control input and phase plane of angular position and cart position are shown
by figure 3-18, 3-19. Initial pointis [0.08 0.2]7, then control input at each time moves
cart while stabilizing pendulum in vertically upright position is continue. When
response close to zero, control input close to zero.

Design of state feedback NMPC for inverted pendulum on circular motion cart
for tracking problem

We assume that we can measure all states of system. The objective is to drive cart
position track the reference signal.
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Figure 3-20 Control, angular position and velocity of inverted pendulum on circular
motion cart for tracking sinusoid signal

Let design parameters be chosen as Q =10x1,,R =100 and ¢t =7.2,T; =

0.01,x, =[0.2 0.02 0.08 0]7. The objective is to minimize the performance
measure (48) and track sinusoid signal. As the figure 3-20 shown, responses of the
system can track sinusoid signal.

NMPC can stabilize pendulum into vertically upright position while cart moves
in circle track. Notice that angular position starts at 0.08 rad. To stabilizing pendulum,
control input forces cart to moves in negative position. When cart moves, it has force
at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position close to zero, control input forces cart to track
sinusoid signal while moving cart still keep pendulum into vertically upright position.
Figure 3-21 shows control input which drives cart move to stabilize pendulum into
vertically upright position and figure 3-22 shows phase plane trajectories between
angular position and cart position.
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Figure 3-21 Control input of inverted pendulum on circular motion cart for tracking
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Control input and phase plane of angular position and cart position are shown
by figure 3-22, 3-23. Initial pointis [0.08 0.2]7, then control input at each time moves
cart in sinusoid trajectories while stabilizing pendulum in vertically upright position is
continue. As soon as cart can track to sinusoid signal, control input value decreases in
order to drive cart slowly while stabilize pendulum in vertically upright position.
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Figure 3-23 Control, angular position and velocity of inverted pendulum on circular
motion cart for tracking square wave signal

Let design parameters be chosen as Q =10 X 1I,,R =100 and t; =7.2,T; =

0.01,x, =[0.2 0.02 0.08 0]7. The objective is to minimize the performance
measure (48) and track square wave signal. As the figure 3-23 shown, responses of the
system can track square wave signal.

NMPC can stabilize pendulum into vertically upright position while cart moves
in circle track. Notice that angular position starts at 0.08 rad. To stabilizing pendulum,
control input forces cart to moves in negative position. When cart moves, it has force
at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position close to zero, control input forces cart to track
square wave signal while moving cart still keep pendulum into vertically upright
position. Figure 3-24 shows control input which drives cart move to stabilize pendulum
into vertically upright position and figure 3-25 shows phase plane trajectories between
angular position and cart position.
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Figure 3-24 Control input of inverted pendulum on circular motion cart for tracking
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Figure 3-25 Phase plane trajectories of inverted pendulum on circular motion cart for
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Control input and phase plane of angular position and cart position are shown
by figure 3-25, 3-26. Initial pointis [0.08 0.2]7, then control input at each time moves
cart in sinusoid trajectory while stabilizing pendulum in vertically upright position is
continue. When cart moves in opposition direction, force of gravity has effect on
pendulum. To stabilize pendulum, cart moves over amplitude value to compensate
gravity force. As soon as cart can track to square wave signal, control input value
decreases in order to drive cart slowly while stabilize pendulum in vertically upright
position.

On regulation problem, NMPC can be applied with inverted pendulum on
circular motion cart. As figure 3-9, 3-19 shown, the initial position starts at initial point
and move to the zero point by applying control input.

On tracking problem, NMPC can control cart position of inverted pendulum on
linear motion, circular motion cart to track reference signal. Notice that cart position
moves all the time so cart velocity must move all the time for tracking sinusoid signal.
Angular position and velocity still close to zero because the objective of problem is to
minimize the cost function (49) which means that we want x, converge to zero. On the
other hand, tracking square wave has a short time for constant value at 0.2 and -0.2 so
cart position tracks the value for short time. Cart velocity will be close to zero at that
time before changing the direction. When the direction is changed, the force will make
angular position and velocity move opposite direction as they before. You can see that
angular position has trajectory similar to direction to car velocity.
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Chapter 4
Output Feedback NMPC
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Figure 4-1 State estimation with NMPC

In Chapter 3 shows the process of state feedback NMPC to control the systems. State
feedback for NMPC problem is based on the measurement of all states. Unfortunately,
we cannot measure all the states of the systems in real environment. Thus, observer
come to play an important role to overcome this problem.

Consider nonlinear systems (2) with the output

Xiv1 = fa (e, wie)
59
Vi = Cxy (59)
To simplify the notation, we use x;, to represent x(ty).

Many observers were proposed for nonlinear systems such as high gain observer [32].
High gain parameters have to be carefully designed to protect peak phenomenon. Peak
phenomenon can cause the observed state outside the region of attraction. Extended
Kalman filter (EKF) was proposed as an observer which first order approximation from
nonlinear systems at each sampling time. It is suitable to use EKF with NMPC because
NMPC is real-time optimization.

4.1 State observer of nonlinear systems

In this thesis, we consider observer.

Z = Lxy, (60)
where z,, € R""? is the reduced state vector and L € R™P)*" s a matrix which
makes (é) invertible. Reduced-form of observer can be expressed as
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Zg\ _ (L
(yk) - (C) Xk (61)
Thus,
Zr+1\ _ (L _(L
(Yk+1) = (C) Xk+1 = (C) (fa (xr, uk)) (62)
<2k+1) _ (g(ZAk:uk'yk)> 63
Vr+1 h(Zy, uk, yi) (63)
Kalman observer can be divided into 2 parts.
1.Measurement update
Zk+1 = Zrrak + Kiv1€p41 (64)
-1
Kies1 = FiPiesricHier" (Hiee1PrsacHisr| + Visr) (65)
Pyyq = (F — Kk+1Hk+1)Pk+1|k (66)
2.Time update
2k+1|k = g(Zg, U, i) (67)
Pryik = FePeE" + wy (68)
A 09 (g, ur,yx)
where eyy1 = Yier1 — h(Zk, Uk, Yi), Fie = gzgfikyk o
Zr=Zk

ON(Zis1 s, S . .
Hy,, = 2 Zertlin y"+1)| , Wy, Uy is positive definite matrix.

0z Zrr1=Zpr1k
In Kalman filter of linear systems, wy, v, are covariance matrices of systems and
measurement noise. However, the EKF which is not optimal estimator for nonlinear
systems. wy,, v, are important for stability of observer.

4.2 Stability analysis of observer

The Lyapunov approach is employed to achieve stability analysis of EKF. The values
of wy, vy, play important role to the convergence of EKF of nonlinear systems.
Define &1, éx+1)x as state estimation error and state prediction error, respectively.

€41 = Zi41 — Zk41 (69)

€1k = Zk41 — ZAk+1|k (70)
The candidate Lyapunov function V, ;is

Viyr = ék+1TPk+1_lék+1 (71)
Proof: V1 is nonincreasing function.
Vi1 = Vie < =6V (72)

The EKF is used by first order approximation. We assume that
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Er+1)k = A Fiéy (73)
x+1 = BrHr+16k (74)
then, we substitute (64) by (65) and subtract it from z,, ;. We have
€1 = Cr1lk — Kir1€k41 (75)
€1 = AFr €y — Kiy1BrHi+18x (76)

Substituting (75) into (71)

Virr = (i Fii — Kiy 1 BicHi181) T Pryr ™ (@i Fiie — Kiew1 BicHis18x) (77)

From (71) and (77), we have linear matrix inequality (LMI)

(aiFi = Kiv1BeHis1) Presr @eFie = Kiwa BiHisr < (1= 8P ! (78)
If (77) is satisfied, then we can obtain nonincreasing Lyapunov function.

Lemma [16]. Define
(1 = 8)a(F = Kis1Hies 1) PiFie” + wye
p = max(lagl, |Bel) £ —=—7~7= 3
o (P) (0(((Fx — Kiy1Hy41)Pi))
where @, g are the maximum eigenvalues and minimum eigenvalues, respectively.
then the LMI (78) is satisfied.

Theorem [16]. If the following statements hold
1. There exists a finite number M > 0 for all k > M, positive real numbers n,, n,

nyl, < 0.(k—M,k)"P(k — M, k)0, (k — M, k) < n,I,
where
Hk—M
0.(k —M,k) = H"-Mtle-M Pk — M, k) = diag(W_p ™5 ..., v Y
HyFy—1Fe—2 o Fie-m
2. Fy, H, are bounded matrix.
3. (78) is satisfied by choosing the proper wy,

then the local asymptotic convergence is achieved for EKF.

Note that the first statement is observability of linearized nonlinear systems [19].
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4.3 Observer based NMPC
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Figure 4-2 Observer based NMPC [17]

In chapter 3, we present the state feedback NMPC approach to nonlinear control system.
This approach is based on the knowledge of states. In previous section, we present EKF
to estimate the unknow state by using the information of the output. This section
presents applying EKF to feedback for NMPC.

Problem formulation
The objective is to minimize the cost function (48) or (49)

Ip = Ts(Z?’:ol(xmuk QXpije + uk+i|kTRuk+i|k) t Xk+n|k ka+N|k) (48)

or

N-1
_ o TAa T o TAa
Ip= Ts( (xek+i|k Qxek+i|k + Uk +ilk Ruk+i|k) + Xertn|k Qxek+N|k> (49)
=0
subject to Xpyir1jk = fa( Xkl Uk+ilk)

%o = Xo (79)
Yi+ilk = CXpeyijic

Zktilk = Ly
where ’?ek+i|k = X+ilk — Tk+i» Tx 1S reference signal at time instant k.

(2k+1+i|k> _ <g(2k+i|k;uk+i|k:}’k+i|k)) (80)
Yi+1+ilk h(2k+i|k,uk+i|k'yk+i|k)
20 =Zy (81)

Then use EKF to estimate the state.
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1. Measurement update

Zks1 = Zkr1k T Kk+1€k+1 (64)
-1
Kiv1 = FiePrpecHirr” (Hes1PrsteHisr + Viy1) (65)
Piyy = (Fie = Kir1His 1) Praji (66)
2. Time update
Zisrie = 9(Zio Wi, Vi) (67)
Pryix = FePcF" + wy (68)
” 09y, uk,yx)
where egy1 = Yi+1 — h(Zg, Uk, Vi), Fi = ‘QZSTL:(” N
Zr=Zg
Hypq = ah(z"+1g‘z’;“’y"“)| Wy, vy s positive definite matrix.
Zk+1=2k+1|k
- 3\ <2k+1>
= 82
7 (C) Yk+1 (82)

4.4 Numerical examples

First, we design EKF for nonlinear systems with zero input and step input to compare
behavior of the observer.

Inverted pendulum

We assume that we can measure angular position. Figure 4-3 shows comparison
between real output and estimated output from zero input while figure 4.3 is response
from step input. Figure 4-3, 4-4 have the same parameters which are t; = 0.8, T; =
0.01,x, = [0.08 0]”.

We introduce to choose parameter wy, v, in terms of error of output &, as

wi = (&) 8 + )lnp, v = (H P H" + ely_p, vy = 1015, = 1073,¢ = 1072
Blue line is real output, red line is estimated output when initial state Z, = 1 and green
line is estimated output when the initial state Z, = 10.
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Inverted pendulum on linear motion cart
We assume that we can measure cart and angular position.
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pendulum on linear motion cart with zero input

)
T 15 T r : -
£ L :
2 1 0 1
‘0 ' 01 FU"__SW
O o5 001 002 003 004 005 T 1
s |l 7 2,=(-0.5,-0.5]
g e e —
£ z,=(1,1]

05 : : : : : : :
2 0 0.1 0.2 0.3 04 05 06 0.7 0.8

Time (s)
— 1 r - y - - T -
g i 1 i Full state
= | 1 0 T
> 057§ > 4 — zo=[-0.5.-0.5]I
2 : J
S old 001002 003 0.04 005 pt ]
s I - z =[1,1]
g vd"\
o 05
S
-1 4 L 4 L . 4 .
0 0.1 0.2 0.3 04 05 06 0.7 0.8
Time (s)
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Figure 4-5 shows comparison between real output and estimated output from zero input
while figure 4.6 is response from step input. Figure 4-5 and 4-6 have the same
parameters which are t; = 7.2,Ts = 0.01,x, = [0.08 0 0.2 0.2]".
We choose parameter wy, v;, in terms of error of output &, as

wi = (Y@ 8 + &)ln_p, vy = (H P Hy" + €l y = 101%,6 = 1073,{ = 1072
Blue line is real output, red line is estimated output when Z, = [-0.5 —0.5]7 and
green line is estimated output when 2, = [1  1]7.

Inverted pendulum on circular motion cart
We assume that we can measure angular position and cart position.
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Figure 4-7 Comparison between real output and estimated output of inverted
pendulum on circular motion cart with zero input
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Figure 4-8 Comparison between real output and estimated output of inverted
pendulum on circular motion cart with step input

Figure 4-7 shows comparison between real output and estimated output from zero input
while figure 4-8 is response from step input. Figure 4-7, 4-8 have the same parameters
whichare t, = 7.2,T; = 0.01,x, = [-0.08 0 0.2 0.2]".

We choose the parameter wy, v, in terms of error of output &, as

wi = (Y (&) 6k + ) y_p, v = (H P Hy + €ly_p, vy = 1015, = 1073, = 1072
Blue line is real output, red line is estimated output when 2, = [-0.5 —0.5]7 and
green line is estimated output when Z, = [1  1]7.

Observer can be applied to inverted pendulum. It can track to real outputs if it
has measured outputs by using extended Kalman observer. Although initial reduced-
state is far from real points, it still can track real outputs like closed initial reduced-
states. Because measured outputs are the same value, Kalman gain multiply by error
between measured outputs and estimated outputs. If initial reduced-state is far from real
points, it makes estimated outputs far from the real points. When Kalman gain multiply
by errors, it makes reduced-systems closed to real systems.

Comparison between state and output feedback NMPC with inverted pendulum

Let design parameters be chosen as Q@ =100x1,,R=10 and tr =0.8,T; =
0.01,x, = [0.08 0]7. Measured output is angular position so we want to estimate
angular velocity to be output feedback in the next step. On the estimation process, let
initial angular velocity be 10 rad/s and let matrix w;, and v, be expressed in terms of
error of output as
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wi = (@) e + ey, Vi ={H P H +ely_p, ¥ =1010¢e=1=10"2
The objective is to minimize the performance measure (48) and to control angular
position and angular velocity to converge to zero. Control input for output feedback
NMPC is not similar to state feedback NMPC as shown in figure 4-9 because angular
velocity of the observer is different from the real value.
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Figure 4-9 Control input, angular position and velocity of inverted pendulum for
regulation problem

Output feedback NMPC can stabilize pendulum into vertically upright position.
Angular position starts at 0.08 rad. Control input forces the system with positive value
at the bottom of pendulum to stabilize pendulum. Angular velocity should be negative
value because of control input force. Negative value of angular velocity drives
pendulum back into origin. As soon as angular position becomes negative, control input
forces in the opposite direction to keep pendulum into vertically upright position.
Control input for output feedback NMPC has amplitude larger than that of state
feedback NMPC because angular velocity of observer starts at 10 rad/s. Control input
of output feedback NMPC forces with larger magnitude than that of state feedback
NMPC which the angular velocity starts at 0 rad/s.



46

T
E
|
2
1™
@
c
-]
.i: 8
[72]
o
o
E 12 1
S A
=
< 1 12
X

>

bS]

o

o

©

=

12
04 06 0.8 1 12
Time(s)

Figure 4-10 Angular position error, trace of matrix v, of inverted pendulum for
regulation problem

Figure 4-10 shows error of angular position and trace value of matrix vy. Error of
angular position is very small value when we consider wy in terms of error of angular
position and covariance error of system. It means wy, vy converge to 1.

Comparison between state and output feedback NMPC for inverted pendulum
for tracking problem
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Figure 4-11 Control input of inverted pendulum for tracking sinusoid signal
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Figure 4-12 Angular position and velocity of inverted pendulum for tracking sinusoid
signal

Let design parameters be chosen as Q = 100 x1,,R =10, and t; =0.8, T, =
0.01,x, = [0.08 0]7. Measured output is angular position so we want to estimate
angular velocity to be output feedback in the next step. On estimation process, let initial
angular velocity be 10 rad/s and let w;, and v, be expressed in terms of error of output
aswy = (V&) e + &)y, v = CHRPHy" + el y = 1010, = 1, = 1072,

The objective is to minimize the performance measure (49) and track sinusoid
signal. As shown in figure 4-12, responses of the system can track sinusoid signal.
Control input for output feedback NMPC is similar to state feedback NMPC except the
magnitude in a few initial steps because initial estimated state is different from real
value.

Output feedback NMPC can track sinusoid signal. Angular position starts at
0.08 rad. Control input forces the system with positive value at the bottom of pendulum
to stabilize pendulum. Angular velocity should be negative value because of control
input force. Negative value of angular velocity drives pendulum back into origin. Then
control input becomes negative to drive pendulum to go through 0.2 rad. As soon as
angular position can track sinusoid signal, amplitude of control input decreases.
Trajectory of control input is similar to angular position. Control input overlaps with
angular position. Control input for output feedback NMPC has amplitude larger than
that of state feedback NMPC because angular velocity of observer starts at 10 rad/s.
Control input forces larger magnitude than that of state feedback which the angular
velocity starts at 0 rad/s.
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Figure 4-13 Angular position error, trace of matrix v, of inverted pendulum for
tracking sinusoid signal

Figure 4-13 shows error of angular position and trace value of matrix vy. Error of
angular position is very small value when we consider wyin terms of error of angular
position and covariance error of system. It means wy, vy converge to 1. Although trace
of vy converges to 1, it has deviation because of sinusoid signal.
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Figure 4-14 Control input of inverted pendulum for tracking square wave signal
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Figure 4-15 Angular position and velocity of inverted pendulum for tracking square
wave signal

The objective is to minimize the performance measure (49) and track square
wave signal. As the figure 4-13 shown, responses of the system can track square wave
signal. Control input for output feedback NMPC is similar to state feedback NMPC
except the magnitude because a few initial estimated state is different from the actual
state.

Output feedback NMPC can track square wave signal. Angular position starts
at 0.08 rad. To control pendulum, control input forces the system with negative value
at the bottom of pendulum. Angular velocity should be positive value because of control
input force. Positive value of angular velocity drives pendulum to go through 0.2 rad.
As soon as angular position can track sinusoid signal, amplitude of control input
decreases. Control input forces with negative value suddenly to drive pendulum into
-0.2 rad. Notice that control input for output feedback NMPC has amplitude larger than
state feedback NMPC because angular velocity of observer starts at 10 rad/s. To
stabilize pendulum for output feedback, control input forces with higher magnitude than
state feedback NMPC which angular velocity starts at O rad/s.
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Figure 4-16 Angular position error, trace of matrix v, of inverted pendulum for
tracking square wave signal
Figure 4-16 shows error of angular position and trace value of matrix vy. Error of
angular position is very small when we consider wyin terms of error of angular position
and covariance error of system. Although trace of vy converges, it has deviation because
of square wave reference. As it is suddenly changed from 0.2 rad to -0.2 rad or -0.2 rad
to 0.2 rad, trace of v, and error of angular position is higher than when cart stops.

Comparison state and output feedback NMPC with inverted pendulum on linear
motion cart
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Figure 4-17 Cart and angular position of inverted pendulum on linear motion for
regulation problem
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Figure 4-18 Cart and angular position of inverted pendulum on linear motion for
regulation problem
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Figure 4-19 Control input of inverted pendulum on linear motion for regulation
problem

Let design parameters be chosen as Q =10 X 1I,,R =100, and t; =7.2,T; =
0.01,x, =[0.08 0 0.2 0.02]7. Measured outputs are cart and angular position so
we want to estimate cart and angular velocity to be output feedback in the next step. On
the estimation process, let initial cart and angular velocity to be -1 rad/s and let matrix
wy, and v, are in terms of error of output as

wi = (Y& 6k + )y v = (H P H + €l ¥y = 1010, =1, = 1072
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regulation problem

The objective is to minimize the performance measure (48) and to control
angular position and velocity to converge to zero. Control input for output feedback
NMPC is not similar to NMPC full state feedback because initial estimated states are
different from real values.

Output feedback NMPC can stabilize pendulum into vertically upright position
while cart moves in horizon axes. Angular position starts at 0.08 rad. Control input
forces cart to moves in positive position to stabilize pendulum. When cart moves, it has
force at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position is close to zero, control input forces cart to move in
the opposite direction to keep pendulum into vertically upright position. Figure 4-19
shows control input which drives cart move to stabilize pendulum into vertically upright
position and figure 4-20 shows phase plane trajectories between angular position and
cart position. Only earliest stage, control input for output feedback NMPC has
amplitude more than state feedback NMPC because angular velocity starts at -1 rad/s
and cart velocity at -1 rad/s. Control input forces with higher magnitude than that of
state feedback at earliest stage. As soon as observer uses output information to estimate
cart and angular velocity, control input of output feedback NMPC converges to control
input of state feedback NMPC.
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Figure 4-21 Cart and angular position error, trace of matrix v, of inverted pendulum
on linear motion cart for regulation problem

Figure 4-21 shows error of cart and angular position and trace value of matrix vy. Error

of cart and angular position are very small when we consider wyin terms of error of cart

and angular position and covariance error of system. It means wy, vy converge to 2.

Comparison state and output feedback NMPC with inverted pendulum on linear
motion cart for tracking problem
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Figure 4-22 Cart and angular position of inverted pendulum on linear motion for
tracking sinusoid signal
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Figure 4-23 Cart and angular velocity of inverted pendulum on linear motion for
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Figure 4-24 Control input of inverted pendulum on linear motion for tracking
sinusoid signal
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Let design parameters be chosen as Q =10 xI,,R =100, and tr =7.2,T; =
0.01,x, =[0.08 0 0.2 0.02]7. Measured outputs are cart and angular position so
we want to estimate cart and angular velocity to be output feedback in the next step. On
the estimation process, let initial cart and angular velocity be -1 rad/s and let wy, and vy,
be expressed in terms of error of output as

Wi = (]/(ék)Ték + E)In_p y U = ZHkPkaT + SIn_p, Y = 1015,8 = 10_3,6 = 10_2

The objective is to minimize the performance measure (49) and track sinusoid
signal. As the figure 4-22, 4-23 shown, responses of the system can track sinusoid
signal. Control input for output feedback NMPC is not similar to NMPC full state
feedback because initial estimated states are different from real points.

Output feedback NMPC can stabilize pendulum into vertically upright position
while cart moves in horizon axes. Angular position starts at 0.08 rad. Control input
forces cart to moves in positive position to stabilize pendulum. When cart moves, it has
force at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position close to zero, control input forces cart to track
sinusoid signal while moving cart keeps pendulum into vertically upright position.
Figure 4-24 shows control input which drives cart move to stabilize pendulum into
vertically upright position and figure 4-25 shows phase plane trajectories between
angular position and cart position. Output feedback NMPC has different trajectory from
state feedback NMPC because we assume that angular velocity starts at -1 rad/s and
cart velocity at -1 rad/s which have the different sign when comparing to the actual
state.
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Figure 4-26 Cart and angular position error, trace of matrix v, of inverted pendulum
on linear motion cart for tracking sinusoid signal

Figure 4-26 shows error of cart and angular position and trace value of matrix vy. Error
of cart and angular position are very small value when we consider wyin terms of error
of cart and angular position and covariance error of system. It means wy, v, converge
to 2. Although trace of vy is close to 2, it has deviation because of sinusoid signal. As
soon as cart moves trace of vy and error of cart and angular position change with
sinusoid function.
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Figure 4-28 Cart and angular velocity of inverted pendulum on linear motion for
tracking square wave signal
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The objective is to minimize the performance measure (49) and track the
reference signal which is square wave. As shown in figure 4-27, 4-28, responses of the
system can track square wave signal. Notice that control input for output feedback
NMPC is not similar to that of state feedback NMPC because the initial estimated states
are different from the real states.
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Output feedback NMPC can stabilize pendulum into vertically upright position
while cart moves in horizon axes. Angular position starts at 0.08 rad. To stabilizing
pendulum, control input forces cart to moves in positive position. When cart moves, it
has force at the bottom of pendulum. Angular velocity should be negative value because
of control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position is close to zero, control input forces cart to track
square wave signal while moving cart still keep pendulum into vertically upright
position. Figure 4-29 shows control input which drives cart move to stabilize pendulum
into vertically upright position and figure 4-30 shows phase plane trajectories between
angular position and cart position. Output feedback NMPC has the same trajectory from

state feedback NMPC because we assume that angular velocity starts at -1 rad/s and
cart velocity at -1 rad/s which are have the same sign with the actual state. As soon as
observer uses output information to estimate cart and angular velocity, control input of
output feedback converges to control input of state feedback.
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Figure 4-31 Cart and angular position error, trace of matrix v, of inverted pendulum
on linear motion cart for tracking square wave signal

Figure 4-31 shows error of cart and angular position and trace value of matrix vy. Error
of cart and angular position are very small value when we consider wyin terms of error
of cart and angular position and covariance error of system. It means wy, v, converge
to 2. Although trace of vy is close to 2, it has deviation because of square wave signal.
As soon as cart moves suddenly from 0.2 rad to -0.2 rad or -0.2 rad to 0.2 rad, trace of
vy and error of cart and angular position change.
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Figure 4-32 Cart and angular position of inverted pendulum on circular motion for
regulation problem
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Figure 4-33 Cart and angular velocity of inverted pendulum on circular motion for
regulation problem
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Let design parameters be chosen as Q =10 X1I,,R =100, and t; =7.2,T; =
0.01,x, =[0.2 0.02 0.08 0]7. Measured output is cart and angular position so
we want to estimate cart and angular velocity to be output feedback in the next step. On
the estimation process, let initial cart and angular velocity be -1 rad/s and let w;, and v,
be expressed in terms of error of output as

w = (@) 6 + )y vk = (H P H + €ly_p, ¥y = 10106 =1, = 1072
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The objective is to minimize the performance measure (48) and to control the
angular position and angular velocity to converge to zero. Control input for output
feedback NMPC is not similar to NMPC full state feedback because initial estimated
states are different from real points.

Output feedback NMPC can stabilize pendulum into vertically upright position
while cart moves in circle track. Angular position starts at 0.08 rad. Control input forces
cart to moves in negative position to stabilize pendulum. When cart moves, it has force
at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position is close to zero, control input forces cart to move in
the opposite direction to keep pendulum into vertically upright position. Figure 4-34
shows control input which drives cart move to stabilize pendulum into vertically upright
position and figure 4-35 shows phase plane trajectories between angular position and
cart position. Control input for output feedback NMPC has the same trajectory from
state feedback NMPC because we assume that angular velocity starts at -1 rad/s and
cart velocity at 1 rad/s which are have the same sign with the actual state.

£
g 0.02 . ; — :
5 5 %10
5 0.01
£ 0.01)0005| |
g ;yoo 01 020 2 456 8 10 12
- A
5 o A i ;
2 0 2 4 6 8 10 12
% Time(s)
< 0.02 - . .
- 5
10
g 5
c 0.01
£ 0011 005 -'L " h\
5 0
8 JAZo o1 | 02 2 4N6 8 10 12
T
S 0 2 4 6 8 10 12
Time(s)
6 v . . . -
S g 2.0002
s " g I“-L 2.00015 | e
Q
] 2 2.0001
S 7 0 041 02 6 8 A0 12
5 i 3 i i i
0 2 4 6 8 0 12
Time(s)

Figure 4-36 Cart and angular position error, trace of matrix v, of inverted pendulum
on circular motion cart for regulation problem

Figure 4-36 shows error of cart and angular position and trace value of matrix vy. Errors
of cart and angular position are very small value when we consider wyin terms of error
of cart and angular position and covariance error of system. It means wy, vy converge
to 2.
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Comparison state and output feedback NMPC with inverted pendulum on
circular motion cart for tracking problem
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Figure 4-37 Cart and angular position of inverted pendulum on circular motion for
tracking sinusoid signal
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Figure 4-38 Cart and angular velocity of inverted pendulum on circular motion for
tracking sinusoid signal
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Let design parameters be chosen as Q =10 X1I,,R =100, and t; =7.2,T; =
0.01,x, =[0.2 0.02 0.08 0]7. Measured output are cart and angular position so
we want to estimate cart and angular velocity to be output feedback in the next step. On
the estimation process, let initial cart and angular velocity be -1 rad/s and let w;, and v,
be expressed in terms of error of output as

wi = (Y& ek + )y, v = (H P H" + ey, vy = 1010, 6 = 1, = 1072
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The objective is to minimize the performance measure (49) and track the
reference signal which is sin wave. As the figure 4-36, 4-37 shown, responses of the
system can track sinusoid signal. Control input for output feedback NMPC is not similar
to NMPC full state feedback because the initial estimated states are different from real
states.

Output feedback NMPC can stabilize pendulum into vertically upright position
while cart moves in circle track. Angular position starts at 0.08 rad. Control input forces
cart to moves in negative position to stabilize pendulum. When cart moves, it has force
at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position is close to zero, control input forces cart to track
sinusoid signal while moving cart still keep pendulum into vertically upright position.
Figure 4-38 shows control input which drives cart move to stabilize pendulum into
vertically upright position and figure 4-39 shows phase plane trajectories between
angular position and cart position. Output feedback NMPC has the same trajectory from
state feedback NMPC because we assume that angular velocity starts at -1 rad/s and
cart velocity at 1 rad/s which are have the same sign with the actual state.
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Figure 4-41 Cart and angular position error, trace of matrix v, of inverted pendulum
on circular motion cart for tracking sinusoid signal

Figure 4-41 shows error of cart and angular position and trace value of matrix vy. Error
of cart and angular position are very small value when we consider wyin terms of error
of cart and angular position and covariance error of system. It means wy, v, converge
to 2. Although trace of vy is close to 2, it has deviation because of sinusoid signal. As
soon as cart moves trace of v, and error of cart and angular position change with
sinusoid function.
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Figure 4-42 Cart and angular position of inverted pendulum on circular motion for
tracking square wave signal
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Figure 4-43 Cart and angular velocity of inverted pendulum on circular motion for
tracking square wave signal
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Figure 4-44 Control input of inverted pendulum on circular motion for tracking
square wave signal
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The objective is to minimize the performance measure (49) and track the
reference signal which is square wave. As shown in the figure 4-42, 4-43, responses of
the system can track square wave signal. Control input for output feedback NMPC is
not similar to NMPC full state feedback because the initial estimated states are different
from real states.

Output feedback NMPC can stabilize pendulum into vertically upright position
while cart moves in circle track. Angular position starts at 0.08 rad. Control input forces
cart to moves in negative position to stabilize pendulum. When cart moves, it has force
at the bottom of pendulum. Angular velocity should be negative value because of
control input force. Negative value of angular velocity drives pendulum back into
origin. As soon as angular position is close to zero, control input forces cart to track
square wave signal while moving cart keeps pendulum into vertically upright position.
Figure 4-44 shows control input which drives cart move to stabilize pendulum into
vertically upright position and figure 4-45 shows phase plane trajectories between
angular position and cart position. Output feedback NMPC has the same trajectory from
state feedback NMPC because we assume that angular velocity starts at -1 rad/s and
cart velocity at 1 rad/s which have the same sign with the actual state.
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Figure 4-46 Cart and angular position error, trace of matrix v, of inverted pendulum
on circular motion cart for tracking square wave signal

Figure 4-46 shows error of cart and angular position and trace value of matrix vy. Error
of cart and angular position are very small value when we consider wyin terms of error
of cart and angular position and covariance error of system. It means wy, vy converge
to 2. Although trace of vy is close to 2, it has deviation because of square wave signal.
As soon as cart moves suddenly from 0.2 rad to -0.2 rad or -0.2 rad to 0.2 rad, trace of
vy and error of cart and angular position change.
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Conclusion

Output feedback NMPC can solve the optimal control problem with estimated
output feedback very well. Observer can be applied to the tracking problem with
inverted pendulum, inverted pendulum on cart by assuming that we can only measure
some output. Initial estimated state has an impact on the control input for NMPC. If
initial estimated state is close to the real state, control input for output feedback NMPC
is similar to state feedback NMPC. State trajectories of output feedback NMPC are
close to that of state feedback NMPC. On the other hand, if initial estimated state is far
from the real state, control input for output feedback NMPC has larger magnitude than
state feedback NMPC. State trajectories of output feedback NMPC is different from
state feedback NMPC as the results of phase plane trajectories. Although state
trajectories are different, the objective still be achieved.
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Chapter 5

Conclusion and future work

Optimal control problem for nonlinear systems is solving the HIJB equation
which is difficult to find the exact solution so the TPBV problem which is the necessary
condition for the optimal nonlinear control problem is applied to approximate the
solution.

This thesis proposes two methods for solving the optimal control problem, that
is, the steepest descent method and SDRE. They have different advantage and
disadvantages. It depends on how much information you have. If you know trend of
optimal control, it is suitable to use the steepest descent, If the system can be expressed
in state-dependent linear like model, it is suitable to use SDRE.

NMPC strategy proposes to use the first control input to apply into the systems
so we can see NMPC as the optimal control problem for nonlinear systems at every
sampling time. All above we have achieved is based on the knowledge of full state of
the systems. Unfortunately, we cannot measure all the state with the sensor in real life
so this problem becomes a challenge. Using the output feedback is the way to overcome
this problem.

Observer becomes useful to estimate the state and give it to be feedback. Many
observers were proposed such as high-gain observer. High gain observer uses some
parameters to estimate state of system. Peak phenomenon is important thing to be
careful. When peak phenomenon occurs, the observed state may be outside the region.
In this thesis, we use extended Kalman filter as observer for nonlinear systems to avoid
peak phenomenon. Generally, Kalman filter is the optimal estimator for linear systems.
Observer was applied by first-order approximation. Observer estimate state in real-time
by using the information of output at real-time while NMPC is consider as optimal
control problem at every sampling. Observer cannot guarantee the stability of system
but state feedback NMPC can. Output feedback NMPC is developed in this thesis. As
the numerical results are shown, observer can estimate state very well. The stability of
the observer was proved on chapter 4.

Output feedback NMPC is applied to inverted pendulum, inverted pendulum on
linear motion cart, inverted pendulum circular motion on cart. It can control all the
states converge to zero in regulation problem. For tracking problem, we use observer
based NMPC to track cart position to sin wave or square wave signal.

In future work, this thesis can be extended to real experiment with the real
inverted pendulum to compare the results between simulation and real experiment.
Another chemical system which can be expressed in state dependent linear like model
is suitable to use output feedback NMPC.
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