

ONE-PASS-THROW-AWAY LEARNING OF TEMPORAL CLASS-SHIFT BY MULTI-
STRATUM NETWORK

Mr. Mongkhon Thakong

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Science and Information

Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2015
Copyright of Chulalongkorn University

การเรียนรู้โดยอ่านข้อมูลครั้งเดียวแล้วทิ้งของการเปลี่ยนคลาสตามเวลาโดยเครือข่ายแบบหลายช้ัน

นายมงคล ทะกอง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปรญิญาวิทยาศาสตรดุษฎีบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2558
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title ONE-PASS-THROW-AWAY LEARNING OF
TEMPORAL CLASS-SHIFT BY MULTI-STRATUM
NETWORK

By Mr. Mongkhon Thakong
Field of Study Computer Science and Information Technology
Thesis Advisor Assistant Professor Suphakant Phimoltares, Ph.D.
Thesis Co-Advisor Professor Chidchanok Lursinsap, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

 Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

 Chairman

(Saichon Jaiyen, Ph.D.)

 Thesis Advisor

(Assistant Professor Suphakant Phimoltares, Ph.D.)

 Thesis Co-Advisor

(Professor Chidchanok Lursinsap, Ph.D.)

 Examiner

(Associate Professor Peraphon Sophatsathit, Ph.D.)

 Examiner

(Assistant Professor Saranya Maneeroj, Ph.D.)

 External Examiner

(Associate Professor Sartra Wongthanavasu, Ph.D.)

 iv

THAI ABSTRACT

มงคล ทะกอง : การเรียนรู้โดยอ่านข้อมูลครั้งเดียวแล้วทิ้งของการเปลี่ยนคลาสตามเวลาโดย
เ ค รื อ ข่ า ย แ บบหล ายชั้ น (ONE-PASS-THROW-AWAY LEARNING OF TEMPORAL
CLASS-SHIFT BY MULTI-STRATUM NETWORK) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.
ศุภกานต ์พิมลธเรศ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ. ดร.ชิดชนก เหลือสินทรัพย{์, 67 หน้า.

การศึกษาปัญหาที่เกิดขึ้นจากการประยุกต์ใช้ในธุรกิจหลายๆ ด้านของข้อมูลในลักษณะที่
เป็นแบบสตรีมมิ่งนั้น ข้อมูลอาจจะหมดอายุชั่วคราวและเปลี่ยนแปลงคลาสได้ ถ้าเกิดเหตุการณ์ที่ไม่
ทราบสาเหตุแน่ชัดในลักษณะที่คลาสของข้อมูลหมดอายุขึ้น โครงสร้างของการเรียนรู้ข้อมูลที่
เกี่ยวข้องและการเชื่อมโยงควรจะต้องถูกลบออกไป ดังนั้นการเรียนรู้แบบใหม่โดยการใช้โครงสร้าง
แบบยืดหยุ่นซึ่งเรียกว่า การเรียนรู้เครือข่ายแบบหลายชั้น ได้ถูกเสนอเพื่อจัดการกับปัญหาที่ข้อมูลมี
การเปลี่ยนแปลงคลาส การเรียนรู้ที่เป็นแนวคิดใหม่นี้จัดการกับปัญหาข้อมูลสตรีมมิ่งที่หมดอายุและ
เปลี่ยนแปลงคลาส โดยจะสามารถเรียนรู้ได้เร็วขึ้นและใช้หน่วยความจ าน้อย รูปแบบการเรียนรู้โดย
อ่านครั้งเดียวแล้วทิ้งในลักษณะรูปแบบของฟังก์ชันแบบเรียกซ้ า ซึ่งผลการทดลองแสดงให้เห็นว่า
อัลกอริทึมที่เสนอมีประสิทธิภาพที่ดีกว่าวิธีการอื่น ทั้งประสิทธิภาพของเวลาการเรียนรู้และการใช้
พื้นที่หน่วยความจ า

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2558

ลายมือช่ือนิสิต

ลายมือช่ือ อ.ที่ปรึกษาหลัก

ลายมือช่ือ อ.ที่ปรึกษาร่วม

 v

ENGLISH ABSTRACT

5273922223 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: DATA STREAM CLASSIFICATION / INCREMENTAL LEARNING / EXPIRED DATA
/ CONCEPT DRIFT / NONSTATIONARY ENVIRONMENTS

MONGKHON THAKONG: ONE-PASS-THROW-AWAY LEARNING OF TEMPORAL
CLASS-SHIFT BY MULTI-STRATUM NETWORK. ADVISOR: ASST. PROF.
SUPHAKANT PHIMOLTARES, Ph.D., CO-ADVISOR: PROF. CHIDCHANOK
LURSINSAP, Ph.D.{, 67 pp.

The problem of learning streaming non-expired and temporally expired data
occurring in various business applications was studied. If there exists a class whose all
data are eventually expired with some unknown reasons, then the relevant neurons
and their links must be entirely removed. A new learning based on dynamic network
structure called Multi-Stratum Network Learning (MSNL) was proposed to cope with
this problem of data life change. Furthermore, to speed up the learning time and to
maintain a minimum space complexity for streaming data, the new concept of one-
pass-throw-away learning in forms of recursive functions for handling the expiration
class was introduced. The experimental results signified that the proposed algorithm
outperformed the other incremental-like learning algorithms in terms of time and
space complexities.

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2015

Student's Signature

Advisor's Signature

Co-Advisor's Signature

 vi

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I am deeply grateful to my advisors, Assistant Professor Dr. Suphakant
Phimoltares and Professor Dr. Chidchanok Lursinsap, for their invaluable guidance
throughout the study of this dissertation. Their insightful advice and knowledge
greatly helped me to work the completion of this dissertation. Furthermore, I am
also grateful to Dr. Saichon Jaiyen, who suggests me in all the development of Ph.D.
research.

I am also like to extend my sincere thank to Associate Professor Dr.
Peraphon Sophatsathit, Assistant Professor Dr. Saranya Maneeroj, and Associate
Professor Dr. Sartra Wongthanavasu for their suggestions in this dissertation.

I would like to express my gratitude to Udon Thani Rajabhat University for
their scholarship in supporting me during my education.

I would like to express my gratitude to Department of Mathematics and
Computer Science, Faculty of Science, Chulalongkorn University for supporting me
during my education.

I am grateful to the Advanced Virtual and Intelligence Computing (AVIC)
center for their material support in accommodating all the study of this dissertation.

I would also like to thank all my colleagues at AVIC center, who give me
for their friendship and encouragement throughout the study.

I would like to thank my parents and family for their great love and
encouragement. I would not accomplish the Ph.D. degree without their love.

Additionally, I would like to thank those whose names are not mentioned
here but have greatly inspired and encouraged me until the completion of this
dissertation.

CONTENTS
 Page

THAI ABSTRACT .. iv

ENGLISH ABSTRACT .. v

ACKNOWLEDGEMENTS ... vi

CONTENTS .. vii

LIST OF FIGURES .. ix

LIST OF TABLES .. xii

CHAPTER I INTRODUCTION ... 1

1.1 Problem identification ... 1

1.2 Problem formulation ... 2

1.3 Research objective ... 4

1.4 Scope of work ... 5

1.5 Research advantage ... 5

1.6 Outline of the dissertation ... 5

CHAPTER II LITERATURE REVIEW .. 6

2.1 VEBF learning algorithm .. 9

2.2 Merging LDA operation .. 12

CHAPTER III PROPOSED METHOD .. 14

3.1 Proposed width vector initialization algorithm ... 17

3.2 Updating center vector, covariance matrix, and scatter matrices 18

3.3 Special structure of class 0 .. 22

3.4 Hybrid LDA-PCA algorithm .. 25

3.5 Dynamical structure of proposed network for learning the expiration and
live classes ... 26

 viii

 Page

3.6 Dynamical structure of proposed network for learning with special structure
of class 0 .. 29

3.7 Proposed learning and testing algorithms with special structure of class 0 30

3.8 Example of hybridization multi-stratum learning process 33

3.9 Proposed learning and testing algorithms in case of expiration and live
classes ... 35

3.10 Example of multi-stratum learning process .. 38

CHAPTER IV EXPERIMENTAL RESULTS AND DISCUSSION ... 41

4.1 Setting live and expired states to experimental data sets 43

4.2 Performance evaluation and comparison .. 45

4.2.1 Experimental results with special structure of class 0 46

4.2.2 Experimental results with temporal class change ... 52

4.2.3 Experiments on concept drift problem ... 58

4.3 Discussion ... 59

4.3.1 Analysis of complexity with special structure of class 0 59

4.3.2 Analysis of complexity with temporal class change 60

CHAPTER V CONCLUSION .. 61

REFERENCES ... 62

VITA ... 67

LIST OF FIGURES
Page

Figure 1.1 An example of how expired data are captured. There are three classes
denoted by stars, thick dots, and squares. (a) Before some data are expired. (b)
After the data are expired. All those expired data are captured by dashed
ellipses. ... 4

Figure 2.1 The summary of VEBF learning algorithm. ... 10

Figure 3.1 An example of temporal class change. .. 15

Figure 3.2 Overview of learning process. .. 16

Figure 3.3 The proposed stratous structure for handing live and expired class
changes. The upper stratum is for expired class and the lower stratum is for all
live classes. .. 26

Figure 3.4 The dynamical structure of proposed network. (a) Suppose at the
beginning all incoming data are in class 1 and learned by the sub-structure of
class 1. (b) Some additional new incoming data in class 2 are learned by the sub-
structure of class 2. (c) Some data in class 2 are expired and learned by sub-
structure of class 0 in upper stratum. (d) All data in class 2 are expired and there
are some new incoming data of class 3 learned by the sub-structure of class 3.
The sub-structure of class 2 is entirely removed and the expired data of class 2
are moved to class 0 in the upper stratum. (e) Some expired data in class 0 are
revived and recreated the sub-structure of class 2 in lower stratum. (f) Other
expired data in class 0 are changed to new class 4 learned by the sub-structure
of class 4 in the lower stratum. ... 28

Figure 3.5 The dynamical structure of proposed network with special structure of
class 0 ... 30

x

Figure 3.6 An example of how Hybrid-MSNL works. Assume that there two
neurons of classes C1 and C2 in forms of versatile elliptic functions. (a) The
beginning situation. There are ten data in C1 and four data in C2. (b) Two expired
data in C1 but none in C2. The versatile elliptic function of C1 is shrunk. (c) The
versatile elliptic function of C1 after being shrunk. (d) Expanding the versatile
elliptic function of C1 to cover three new incoming data. (e) Three more new
expired data of C1. The versatile elliptic function of C1 is shrunk. (f) The final
situation. ... 34

Figure 3.7 An example of how MSNL works. Assume that there two neurons of
classes C1 and C2 in forms of versatile elliptic functions. (a) The beginning
situation. There are 10 data in C1 and four data in C2. (b) Two expired data in C1
but none in C2. The versatile elliptic function of C1 is shrunk. (c) Expanding the
versatile elliptic function of C1 and C2 to cover three new incoming data and
four new incoming data, respectively. (d) Three more new expired data of C1.
The versatile elliptic function of C1 is shrunk. (e) The versatile elliptic function of
C1 after being shrunk. (f) There are two expired data changed to new class C3. 40

Figure 4.1 The comparison of overall average accuracy in terms of in terms of
expired and non-expired data .. 48

Figure 4.2 The average accuracy of BanknoteAuthen data set .. 49

Figure 4.3 The average accuracy of BanknoteAuthen data set without expired data .. 49

Figure 4.4 The average accuracy of BanknoteAuthen data set with percentage 5%
of expired training data .. 50

Figure 4.5 The average accuracy of BanknoteAuthen data set with percentage
10% of expired training data ... 50

Figure 4.6 The average accuracy of BanknoteAuthen data set with percentage
15% of expired training data ... 51

Figure 4.7 The average accuracy of BanknoteAuthen data set with percentage
20% of expired training data ... 51

xi

Figure 4.8 The comparison of overall average accuracy in terms of expired and
class-changed data .. 54

Figure 4.9 The average accuracy of Thyroid data set ... 55

Figure 4.10 The average accuracy of Thyroid data set without expired data 55

Figure 4.11 The average accuracy of Thyroid data set with percentage 10% of
expired and class-changed training data .. 56

Figure 4.12 The average accuracy of Thyroid data set with percentage 20% of
expired and class-changed training data .. 56

Figure 4.13 The average accuracy of Thyroid data set with percentage 30% of
expired and class-changed training data .. 57

Figure 4.14 Classification error of algorithms on the classical SEA data stream 58

Figure 4.15 Classification error of algorithms on the Weather data set 59

LIST OF TABLES
Page

Table 4.1 The benchmark data sets in my experiments with special structure
class 0 ... 41

Table 4.2 The benchmark data sets in experiments with temporal class change 42

Table 4.3 Setting the parameters in experiments ... 46

Table 4.4 The average performance of data sets with special structure of class 0 47

Table 4.5 The average performance of data sets with temporal class change 53

CHAPTER I
INTRODUCTION

1.1 Problem identification

Current learning algorithms were designed to cope only with timeless data or
stationary-class data. This implies that the lifetime of the data is assumed no expiration
and the data belong to a certain class forever. But in some situations or scenarios, this
implication is not always true. For example, changes in student status may include
suspension, withdrawal, lapsing and reinstatement, and change of program under
conditions of university even though the features of this student have never been
changed. In this study, I focused on the development of a new learning algorithm and
network structure to cope with data with expiration and data whose class can be
temporally changed. The amount of training data is variable. However, if the training
data are not assumed to gradually flow into the network, the actual amount of total
data will overwhelm the space complexity of the learning network. When the class of
any datum is expired or changed, its features are still the same. The network structure
can learn this datum in the training process. But the structure cannot be used to
distinguish this datum whether its class is expired or changed to another class in the
testing process. This is because the features are firstly classified according to its target
by a neuron  . When its class is changed to a new class, another neuron  is used
to secondly learn this datum. Hence when predicting the actual class of this datum
after its class change, both neurons  and  will response to this datum. This creates
a non-deterministic situation.

To overcome these problems, a new incremental learning algorithm in various
environments based on versatile elliptic basis function (VEBF) called a multi-stratum
network has been proposed. The proposed learning algorithm can learn expired and
class-changed data without storing all the previous training set. In abrupt changing
environments, the proposed algorithm can preserve a good balance in both stability
and plasticity using to maintain some relevant information in the network and to learn
a new class in such this situation during training process. For improving the performance

2

of the proposed algorithm in training process, the training data can be learned with a
training datum or a chunk of training data for adapting the network.

1.2 Problem formulation

Let 1{ , , }N X x x be a set of training data. Each datum ix consists of a d
features, i.e., ,1 ,{ , , }i i i dx x x with a label of class target () {0,1, , }i k m   at time
k . A datum is expired if () 0i k  otherwise it is in one of m classes. At the beginning
all (1) {1, , }i m   . After a period of time a , this datum ix is expired which implies
that () 0i a  . However, datum ix can be one of the queried data at any time and
the classifier must be able to indicate that ix is already expired. The following
constraints are imposed on these studied problems.

1. For any datum ix , the feature set ,1 ,
{ , , }

i i d
x x is fixed regardless of time and

class target.

2. For any datum ix , time k in ()i k is randomly defined.

3. Once datum ix is expired at time a , i.e. () 0i a  , it is discarded forever from
both training and testing processes for k a .

4. Any datum ix may or may not appear in testing set during the evaluation
process.

5. Only streaming data are involved in this study. They are learned by one-pass-
throw-away training process to maintain a linear learning time complexity with
respect to the number of data.

6. Since streaming data are concerned, any datum ix will be arbitrarily allowed
to reenter or not to reenter the testing process.

In this study, the problem of data expiration is transformed into the problem
of learning class change by treating any datum whose life time is expired as a datum
in class 0. This implies that the datum must be trained twice and captured by at least
two sets of neurons of different classes. The first training process occurs when the
datum is not in class 0. The second training process is when the datum changes its

3

class when it is expired. It is possible that a non-deterministic situation may occur due
to the capture of data by neurons from different classes. However, the network must
be able to identify the exact class of any queried data. Although some data are expired,
their class cannot be omitted from consideration to maintain the correctness of
classification. Furthermore, if the number of expired data increases, then the size of
the network may proportionally increase as well. This is an undesirable scenario. The
increasing rate of network size should be slower than the increasing rate of the number
of expired data. Therefore, the studied problem concerns the following issues.

1. What is the appropriate network structure to capture this datum before and
after its class change?

2. How to perform one-pass-throw-away training in temporal class change
situation for the data are streaming data?

3. How to identify the correct class of any datum whose class is temporally
changed?

4. How to keep track of expired data with low space complexity?

Figure 1.1 shows an example of how expired data are handled. There are three
classes denoted by stars, thick dots, and squares as shown in Figure 1.1(a). When some
data in each class are expired, these expired data are captured by some neurons as
shown in Figure 1.1(b). Note that any expired data are captured by two neurons, one
from expiration class and another from non-expiration class. The proposed method
must be able to handle this non-deterministic situation.

4

(a)

(b)

Figure 1.1 An example of how expired data are captured. There are three classes
denoted by stars, thick dots, and squares. (a) Before some data are expired. (b)
After the data are expired. All those expired data are captured by dashed
ellipses.

1.3 Research objective

The main objective of this dissertation is to develop a new learning algorithm
for classifying expired or class-changed data.

5

1.4 Scope of work

In this dissertation, the scope of work is constrained as follows:

1. The proposed algorithm is focused on the classification problems whose data
are expired and changed class labels.

2. The benchmark data sets are taken from the University of California at Irvine
(UCI) repository of machine learning database [1] to simulate the expiration or
class change and popular data sets for the concept drift problems. Those data
from the concept drift problems were given by U.S. National Oceanic and
Atmospheric Administration collected from temperature, pressure, visibility,
and other-related events of weather measurements as described in [2] and by
New South Wales Electricity Market collected from time and demand
fluctuations in Australia as described in [3].

1.5 Research advantage

The proposed learning algorithm can efficiently apply to various business
applications whose data are expired and changed class labels, e.g., electricity market,
weather prediction, spam and fraud detection. After learning, all trained data can be
discarded forever.

1.6 Outline of the dissertation

The remainder of the dissertation is organized as follows. Chapter II reviews the
related literatures and the relevant backgrounds. Chapter III describes the concept of
my proposed methods. Chapter IV shows the experimental results. Chapter V
concludes the study.

CHAPTER II
LITERATURE REVIEW

Incremental learning algorithms have been developed and widely applied for

solving classification problems [4-8], such as data stream problems [9-12], large-scaled
problems [6], and pattern recognition problems [13]. There are a lot of techniques that
can be applied to solve these problems. For instance, the technique described in [11]
built a decision tree incrementally to solve classification problem. Incremental kernel
principal component analysis (IKPCA) [14], incremental principal component analysis
(IPCA) [7], and incremental linear discriminant analysis (ILDA) [15] were proposed for
online feature extraction in the classification system. The technique studied in [6]
extended online incremental support vector machine (OI-SVM) to solve large-scaled
problems consisting both in stationary environment and in non-stationary
environment. For high dimensional data, [16] presented self-organizing incremental
neural network by optimizing distance metric in learning process. The versatile elliptic
basis function (VEBF) [4] can be used for one-pass-throw-away learning without storing
all previous data. The adjusted self-organizing incremental neural network classifier
(ASC) [8] automatically learns the number of prototypes needed to determine the
decision boundary. In case of application to imaging field, incremental multiple-object
recognition and localization (IMORL) [17] can automatically and adaptively learn from
continuous video streams. These techniques can be applied to the real-world
applications.

A similar problem of learning in non-stationary environment was studied. In this
environment, data can change their classes over time. This leads to the dynamical
change of class distribution in the data space. The learning in non-stationary
environments is known as concept drift as described in [18, 19]. Types of changing in
non-stationary environment consist of: gradual or trend changes, and abrupt (sudden)
changes [3]. The recent learning algorithm under various environments has been
developed and widely studied in several classification problems such as electricity
market prediction [20], weather prediction [3], credit card fraud protection [21], spam

7

detection [10], and surgery prediction [22]. For instance, the technique based on
dynamic fuzzy pattern matching (DFPM) [23] was proposed to recognize pattern for
the online monitoring of non-stationary environments. Linear discriminant analysis was
applied by [24] to observe and model under gradual or abrupt changes in data
distribution. Ensemble of subset online sequential extreme learning machine (ESOS-
ELM) [25] was proposed a change detection technique to promptly detect concept
drift situations. The trigger-based ensemble (TBE) [22] was designed to handle concept
drift in surgery prediction that the guidelines of referral were changed due to scientific
developments and clinical practices. The technique of multiple expert systems also
called ensemble systems under concept drift situations [26] was proposed to adjust
each expert based on its loss function and weighted majority vote (WMV) [27] provided
to be used adaptation bounds on the loss function. The difficult challenge of learning
in various environments is how to preserve all acquired knowledge, so that it must
decide to whatever knowledge should replace or retain for improving of its
performance [28]. However, learning should retain any previously acquired knowledge
which is still essentially known as “stability-plasticity dilemma”, where “stability”
means to maintain existing knowledge and “plasticity” describes the ability to learn
new knowledge [3]. In recent machine learning survey under non-stationary
environments, the developed techniques have been proposed for solving problems
under various assumptions and the following issues:

Window-based technique: The earliest technique has been developed with
underlying non-stationary environments by moving window containing block of the
last training data. With this technique, the window size is considered. If a longer window
is used for adapting, an environment of a system is slowly varied but stable and well
trained classifier is obtained. On the other hand, a smaller window used for adjusting
the system reacts quickly in fast changing environment but its performance may be
low due to insufficient training data in the window. For this technique, selecting or
adapting the window size is further studied [19]. The classifier proposed in [29] is based
on windows of various sizes, which is more versatile and able to learn abrupt change
of class concept than the classifier with a window of single size.

8

Ensemble of classifiers: Many recent techniques use multiple classifiers for
solving problems in non-stationary environments. SEA [29] is the first ensemble of
classifiers has been proposed for learning problems in non-stationary environments to
each consecutive time window of training set. Learn++.NSE [3] can learn in these
situations and can provide well-modeled knowledge of a good balance in both stability
and plasticity. In addition, it still does not discard any of the classifiers which may
contain relevant information for learning a new classifier in the future. They are
composed of several classifiers which are combined to gain the final hypothesis.
However, it seems that this solution consumes large time and space complexities.

Basically, the incremental learning algorithms not only append the training data
when the learned data are fed into the network sequentially, but also can adjust the
network during the learning process without storing all the previous data. The following
actions are carried out [30]:

(1) Aggregating the new data into the existing knowledge without storing all the
previous data.

(2) Retaining all previous knowledge.
Many researchers have proposed several techniques to maintain the above-mentioned
criterion and to increase their performance. Although many incremental learning
algorithms, such as VEBF [4], ASC [8], IPCA [7], ILDA [16], IMORL [17], the learn++ family
of algorithms (e.g., learn++.NC [31], learn++.MF [32], and learn++.NSE [3]) in non-
stationary environments were proposed, they still do not deal with the problem of
data that expires over the time. The VEBF algorithm is interesting among all
incremental learning algorithms, because it can learn by using only incoming datum
and consumes less space and time complexities. However, the VEBF algorithm cannot
be applied is situations where the class labels are changed over time or the data are
expired in the testing process.

9

2.1 VEBF learning algorithm

This section provides some backgrounds related to the studied problem and
proposed algorithm. The proposed algorithm adapted some partial concept of one-
pass-throw-away to create hidden neurons in the learning process. The summary of
one-pass-throw-away learning and VEBF learning algorithm in [4] is the following.

The concept of VEBF learning algorithm is based on the operation of capturing
one incoming datum at a time. If the incoming datum does fall into the inside of any
VEBF neuron, then no new VEBF neuron is introduced to capture this datum.
Otherwise, a new small VEBF neuron is introduced into the network to capture this
datum. Furthermore, if there are many VEBF neurons capturing data of the same class
and locating close to each other, then these VEBF neurons are grouped and replaced
by a larger VEBF neuron. Once a datum is captured, it is completely discarded from
the training process. The brief VEBF training algorithm is given in Algorithm 1 and the
summary of VEBF algorithm can be described by steps of flowchart as shown in
Figure 2.1.

Algorithm 1: VEBF Learning Algorithm
1. Let 0A be the initial width vector.
2. Present the training datum j

x .
3. If there exists the hidden neurons then
4. Find a closest hidden neuron labeled with the same class as the class of j

x
5. Let kC be the center vector of the closest VEBF neuron k found in Step 4.
6. Update the center vector kC by including j

x .
7. If j

x lies inside k then
8. Update parameters of k based on the direction of data distribution.
9. Else
10. Introduce a new neuron.
11. EndIf
12. Else
13. Introduce a new neuron.

10

14. EndIf
15. If there exists any two close neurons of the same class then
16. Merge the two neurons into one new neuron using Equations (5) – (9).
17. EndIf
18. Go to step 2 until the training set is empty.

Figure 2.1 The summary of VEBF learning algorithm.

The output of the th

k neuron with respect to an input x is computed from a
rotated elliptic function shown in Equation (1).

  2

2
1

()
() 1

T
d

k i

k

i i


  

x C u
x (1)

where kC is the center vector of ellipse, iu is the th
i eigenvector of data covariance

matrix distribution, and 2

i
 is the variance or eigenvalue of iu .

For any hidden neuron k , the relevant parameters which are the new center,
new covariance matrix, and new variance must be computed. Since all trained data
are discarded and only the new incoming datum is used for adjusting these parameters,
therefore the computation of these parameters must be written in forms of recursive
functions. The following attributes are defined and involved in the adjusting process.

11

kC is the center of k . kS is the covariance matrix of data captured by k . kN is
the number of data captured by k . kA is the width vector of k . kl is the class label

of k . Suppose a new datum 1kN 
x arrives and falls inside the boundary of k . The

value of ()k x must be less or equal to 0.
The new center ()new

k
C of k can be computed from the old center by ()old

k
C

the following recursive function.

1() ()

()
1 1

kNnew oldk
k k

k k

N

N N


 

 

x
C C (2)

The new covariance matrix ()new

k
S of k can be formed by the following

recursive computation with the old covariance matrix ()old

k
S as follows.

() ()
1 1() ()

() () () ()

()

1 1 1

() ()

k k

T old old T
N Nnew oldk k k

k k

k k k

new new T old old T

k k k k

N

N N N

 
   

  



x x C C
S S

C C C C

 (3)

The total data captured by k becomes 1kN  . The new variance ()new

i
 of each

eigenvector iu can be easily computed from the old variance ()old

i
 by the following

equation.

() () () ()
() , 1

new old new old T

i i k k i i d     C C u (4)

Suppose any two hidden neurons a and b are merged into one new hidden
neuron c . Let () ()

(, , , ,)
old old

a a a a a a
N A l  C S and () ()

(, , , ,)
old old

b b b b b b
N A l  C S be two

hidden neurons. After merging, the new attributes can be computed by the following
equations.

 () () ()1new old old

c a a b b

a b

N N
N N

 


C C C (5)

  

() () ()

() () () ()

2
()

new old olda b
c a b

a b a b

T
old old old olda b

a b a b

a b

N N

N N N N

N N

N N

  
 

 


S S S

C C C C

 (6)

12

c a bN N N  (7)

() 2 , 1,2, ,new

i i
i d     (8)

c a bd d d  (9)

i is the th
i eigenvalue of the new covariance matrix ()new

c
S . After merging, a and

b are removed from the network.

2.2 Merging LDA operation

A concept of LDA is mapping the projection matrix * in order to maximize
class separability of the data set. The projection matrix * is maximized as follows:

*
argmax

T

T






 


B

W
 (10)

where B is the between-class scatter matrix and W is the within-class scatter matrix.
Those are given by

1 1

()()
m m

T

k k

k

k

k

kN
 

   B B C C C C (11)

1

m

k

k

W S (12)

kC , kS , kN are the center vector, the covariance matrix, and the number of data of
class k , respectively and C is the center vector of the data set.

The projection matrix * that is a d d matrix whose columns correspond to
the discriminant eigenvectors obtained by solving the following eigenvalue problem:

* *  D (13)

where 


1
D W B and  is an eigenvalue matrix.
In the LDA merging operation discussed by [15], the models a and b can

be denoted as the following 3-tuples:

13

({ },{ },{ })a a a aN  S C (14)

({ },{ },{ })b b b bN  S C (15)

where aS and bS are the class covariance matrices, aC and bC are the class center
vectors, and aN and bN are the number of data captured by the model a and b

, respectively. Suppose there are m classes of ()old
N data vectors and all-instances

center vector ()old
C in the data set. Then, incremental LDA updates the all-instances

center vector ()new
C , the within-class scatter matrix ()new

W , and between-class scatter
matrix ()new

B given by the following.

() () () ()
() / ()

bN
new old old old

i b

i

N N N  C C z , (16)

() () () () ()
()()

new new new new new T

c c c

c

N  B C C C C , (17)

() ()
, for 1,2,...,

new new

c

c

c m W S (18)

where ()new

c
C is the new center vector and ()new

c
S is the new covariance matrix of class

c given by using Equations (5) and (6), respectively.

CHAPTER III
PROPOSED METHOD

This study concerns two types of classes. The first type is the class of all expired

data. The second type is the classes of non-expired data. To distinguish these two
classes in this discussion, the class of first type is called expiration class and any class
of the second type is called live class. When a datum in expiration class, it is treated
as a datum in class 0. This datum must be learned by a sub-network of class 0.
However, if all data in class i are expired, the sub-network of class i must be entirely
removed from the learning system. This situation is obviously different from the
scenario studied in [4] and the others' previously mentioned. Those studies concerned
only the condition of increasing new data which imply that the network is expanded
throughout the training period. But in the studied case, the structure of network can
be expanded or shrunk according to the temporal status of the incoming data. Another
different issue from the others' studies is the problem of how to reconcile the
indeterminate situation as previously discussed and the expansion of expired data.
Regardless of the class, any expired data must be included in class 0. This implies that
if all data are expired and the structure of sub-network for handling expired data is not
appropriately designed, then the space complexity of the structure will be very high.
The difficulty of my scenario is the arbitrary class change of data. There are two
important scenarios to be considered.

The first scenario concerns the arbitrary class change to any other live classes.
Datum ix may change its classes several times throughout its lifetime but its features
never change. This implies that the location of datum ix is fixed in the features space.
When there is a class change, datum ix must be covered by function ()k i x of the
most recent class. In response to the class query of datum ix , the most recent class
of ix must be tested first. The problem is how to keep track of these temporal class
changes. Figure 3.1 shows an example of class change. At the beginning, ix is in class
1 and, later on, its class changes to classes 2, 3, and 1, respectively. Hence, the most
recent class is class 1 and the function ()k i x of class 1 must be examined first if

15

there is class query of ix . Furthermore, datum ix must be deleted from those
previous classes 2 and 3. The members in each live class can vary according to the
class change of each datum.

Figure 3.1 An example of temporal class change.

The second scenario is when datum ix is expired and moved to class 0.

Obviously, class 0 will be the permanent class of ix after its expiration. Any class query
concerning datum ix after its expiration must receive the answer that ix is in class 0.
Furthermore, the number of members in class 0 keeps increasing. This implies that the
class query of any datum j

x must be checked with the data in class 0 first. If j
x is

not in class 0, then the existence of j
x in other classes will be checked next. Notice

that the sub-network representing Class 0 must be retained throughout the training
and testing periods due to the permanent class changes of all data in this class.

To resolve those discussed problems, the following issues will be concentrated
in my proposed method. The first issue is created with the structure of the network of
the non-expired and expired data. The structure must be expandable and shrinkable

16

according to the situations. The second issue is the representation of expired data and
deterministic testing method. Each issue is detailed in the following sections.

Figure 3.2 shows diagram of the overview of learning process consisting of
proposed width vector initialization algorithm, algorithms for learning non-expired data,
expired data, and class-changed data using VEBF and Hybrid LDA-PCA algorithms. To
improve the performance of learning algorithm, VEBF algorithm has been applied to
find axes with maximum variance whereas Hybrid LDA-PCA algorithm will be applied
to seek the axes of the neuron for best class separability. In terms of non-deterministic
situation that data are expired or changed classes, the updated parameters consisting
of center vector and covariance matrix can be computed by using theorems 1 and 2.
Furthermore, the updated parameters consisting of between-class scatter matrix and
within-class scatter matrix can be computed by using proposition 1. To limit space
complexity of increasing the expired data, a special structure of class 0 provided for
storing all expired data in order to update vectors u and  using theorems 3 and 4 is
proposed.

Figure 3.2 Overview of learning process.

Width vector
initialization

Theorems 1, 2

and Proposition 1

Updateu , 

17

3.1 Proposed width vector initialization algorithm

The initial width of a VEBF is very important to the learning speed and outcome
accuracy. If it is too large, the VEBF may cover some data from the other classes. But
if it is too small, it must be temporally adjusted to cover the new incoming data, which
obviously increases the unnecessary computational time. As mentioned before, one

of the limitations of VEBF algorithm is to find the appropriate initial width k computed
by the following equation.

; 1k avD k d    (19)

where

2
1 1

1 N N

av i j

i j

D
N  

  x x (20)

As shown in Equation (19), the initial value of k can be computed from the
Euclidean distances among data points in a training set. The constant  is used to

adjust the value of avD to make k close to its actual value which is unknown.
Different training sets require different  values. To avoid this difficulty of determining

the value of  , the following steps were proposed to compute the initial k for

1 k d  . No concept of using a constant  to adjust avD is deployed in my algorithm.
The initial width should be derived from the density of distances among all pairs of
training data as follows.

Algorithm 2: Initializing Width of VEBF
Input: Training set 1{ , , }N X x x .
Output: Initial values of 1, , d  .
1. For each ,

i j
x x X and i j do

2. Compute
,i j i jD  x x .

3. EndFor
4. Let I be a number of intervals.

18

5. Compute , , , ,max () min ()i j i j i j i jD D

I



 be the value of instance.

6. Let 1{ , , }IB  b b be a set of bins for storing ,i j
D .

7. Let , ,min ()i j i jq D .
8. For ,

, ;
i j

i j D do

9. Put ,i j
D in bin kb where ,

1
i j

D q
k



 
  
 

.

10. EndFor
11. If k has maximum number of ,i j

D , then

12. Set initial
1 2 1

2
d q k


        .

13. EndIf

3.2 Updating center vector, covariance matrix, and scatter matrices

Unlike the scenario in [4], some data in any VEBF of every class except class 0
in my study can be removed due to their expiration or added when they are new
incoming data. This implies that the structure of a VEBF must be expandable and
shrinkable. Furthermore, the center vector and covariance matrix must be re-
computed. When adding a new datum, the recursive functions for re-computing the
center and covariance of any VEBF were already given in [4] and the within-class and
between-class scatter matrices of LDA concept were discussed in [5] as well. But when
removing a datum or a chunk of data from a network, the recursive functions for re-
computing the center vector and covariance matrix have not been discussed before.
Moreover, the within-class and between-class scatter matrices can be also computed
in the recursive functions. The details of these recursive functions are the following.

Theorem 1. For k of any non-expiration class, let X in dR be a set of current

N data vectors. Suppose ()old

k
C is the center vector of set X and ()old

k
S is the

covariance matrix. If j kx is expired and moved to class 0, then

() ()

1 1

jnew old

k k

N

N N
 

 

x
C C (21)

19

and

() () () ()1
()()

1

new old new new T

k k k j k j

N

N N
    


S S C x C x . (22)

Proof The center vectors ()new

k
C and ()old

k
C are

()

1

1

1

N
new

k i j

iN 

 
  

  
C x x

()

1 1

jold

k

N

N N
 

 

x
C (23)

()

1

1 N

old

k i

iN 

 C x and 1N  . (24)

The covariance matrices ()new

k
S and ()old

k
S are

() () ()

1

()
1 N

old T old old

k i i

i

T

k k
N 

 S x x C C (25)

() () ()

1

1
()

1 1

TN
j jnew T new new T

k i i k k

iN N

  
 


x x
S x x C C . (26)

Subtracting Equation (26) by (25), we have

() () () () ()

1 1

1 1
() ()

1 1

TN N
j jnew old T new new T T old old T

k k i i k k i i k

i iN N N 

    
 

 
x x

S S x x C C x x C C

() () () () () ()

1

1 1
() () ()

1 1 1

TN
j jT old old T new new T old old T

i i k k k k k k

i

N

N N N N

 
       


x x

x x C C C C C C

() () () () ()1
() ()

1 1 1

T

j jold new new T old old T

k k k k k

N

N N N
   

  

x x
S C C C C (27)

Therefore,

() () () () () ()1
() ()

1 1 1

T

j jnew old old new new T old old T

k k k k k k k

N

N N N
  




 

x x
S S S C C C C

   () () ()1

1

T
old new new

k k j k j

N

N N
    


S C x C x (28)

When a chunk of data is expired and moved to class 0, the recursive functions

for computing the center vector and covariance matrix of k are summarized in the
following theorem.

20

Theorem 2. For k of any non-expiration class, let X in dR be a set of data chunks.
Set X has N data points. Assume that a chunk of data Z X whose | | LZ is
expired and moved to class 0. Let ()

k

X
C be the center vector of set X ; ()

k

X
S be the

covariance matrix of X ; ()

k

Z
C be the center vector of set Z ; and ()

k

Z
S be the

covariance matrix of Z . The new center ()new

k
C and new covariance matrix ()new

k
S of

set X Z can be computed as follows.

() () ()
()

new

k k k

N
N L

N L
 



X Z
C C C (29)

and

() () ()

() () () ()

2
()()

()

new

k k k

T

k k k k

N L

N L N L

NL

N L

  
 

 


X Z

X Z X Z

S S S

C C C C

 (30)

Proof Let

()

1

1 N

k i

iN 

 
X

C x (31)

and

()

1

1 L

k l

lL 

 
Z

C x . (32)

From Theorem 1, the new center vector can be written as

() ()

1 1

jnew old

k k

N

N N
 

 

x
C C (33)

Similarly, the new center vector of a chunk of training samples is easily obtained as
follows:

() () ()1
()

new

k k kN L
N L

 


X Z
C C C (34)

For the covariance matrix, let

21

() () ()

1

1
()

N
T T

k i i k k

iN 

 
X X X

S x x C C (35)

() () ()

1

1
()

L
T T

k l l k k

lL 

 
Z Z Z

S x x C C (36)

Hence,

() () ()

1 1

1
()

N L
new T T new new T

k i i l l k k

i lN L  

 
   

  
 S x x x x C C

 () () () () () ()1
() ()

T T

k k k k k kN N L L
N L

    


X X X Z Z Z
S C C S C C

  2 () () 2 () () () () () ()

2

1
() () () ()

()

T T T T

k k k k k k k k
N L NL NL

N L
  



X X Z Z X Z Z X
C C C C C C C C

() () () () () ()

2 2
() ()

() ()

T T

k k k k k k

N L NL NL

N L N L N L N L
    

   

X Z X X Z Z
S S C C C C

 () () () ()

2 2
() ()

() ()

T T

k k k k

NL NL

N L N L


 

X Z Z X
C C C C

() () () () () ()

2
()()

()

T

k k k k k k

N L NL

N L N L N L
    

  

X Z X Z X Z
S S C C C C (37)

Proposition 1. For k , the following attributes { , , , , }k k k k kN A lC S of any non-
expiration class, let X in dR be a set of data chunks of any class k and C is the all-
instance center vector. There are m classes of the data set. Assume that a chunk of
data Z X whose | | LZ is expired and moved to class 0. The between-class and
within-class scatter matrices can be updated by analogy to LDA merging, as follows:

() () () () ()

1

()()()
m

new new new new new T

k k k

k

N L


   B C C C C , (38)

() ()

1

m
new new

k

k

W S (39)

where ()new
C is new all-instance center vector, and ()new

k
C and ()new

k
S are the new center

vector and covariance matrix in class k computed by using Theorems 1 and 2.

22

3.3 Special structure of class 0

The network must be able to identify a testing datum whether it is expired or
it belongs to any class 0i  , regardless of its temporal aspect. This implies that there
must be a special structure to keep track of these expired data throughout the
operational period of the network. However it is obvious that the process of keeping
track of these data may increase the space complexity of the structure because all
expired data must be captured. In this study, I limited the space complexity of this
special structure to ()d L  , where d is the number of dimensions and L is the
amount of new incoming data. The problem is how to limit this space complexity so
that it has a minimum effect on the classification accuracy of the network. To resolve
this problem, two relevant issues were considered.

The first issue concerns the representation of all expired data in terms of a

column vector u in dR such that for any expired datum , 0
T

i i
x u x . The value 0 is

the class number. At the beginning, the value of u is computed from the first incoming
chunk of data Z represented in forms of a matrix [1,] 1[, ,]L L V x x . The size of [1,]L

V
is equal to d L . Without loss of generality of class number, the value of u is
computed by this simple equations

[1,] =
T T

Lu V t (40)

[1,]
T T

L


u t V . (41)

Vector t is the column vector representing class numbers or targets of all incoming
data and [1,]L


V is the pseudoinverse matrix of [1,]L

V . The process of pseudoinverse matrix
is employed in this computation because it is possible that the amount of incoming
data may not be equal to the number of dimensions, i.e., L d . Since u is computed
from [1,]L


V , therefore [1,]

T T

L u V t . To make [1,]

T

Lu V equal to T
t , a vector  is

computed by the following equation and added to u .

[1,]

T T T

L  t u V (42)

23

The second issue focuses on how to recursively compute the values of [1,], L


u V ,

and  with respect to only those new incoming data. In my approach, all learned data

are thrown away. This makes the typical pseudoinverse process of LV impossible. The
concept proposed by Greville [33], Tapson and Van Schaik [34], Udwadia and Kalaba
[35], and Predrag, Marko, Igor, Sladjana [36] were applied to formulate the recursive
computations for u , [1,]L


V , and  . The following notations are defined in order to

formulate the recursive computations:

 ()iu : the values of u at time i .

()i : the values of  at time i .

[,]i j
t : column vector t containing the th

i to the th
j elements.

[,]i j
V : sub-matrix of [1,]L

V consisting of a set of column vectors from columns
 i to j .

Matrix [1,]L
V is decomposed into two sub-matrices, i.e., [1,] [1,] [1,][]L p p LV V V and [1,]L

t
is also separated into two sub-column vectors denoted as [1,] [1,] [1,][]

T T T

L p p Lt t t . We

assume that data from 1x to p
x are the first chunk of incoming data and the rest 1p

x

to Lx are new currently incoming data. From the results in [35, 36], I have

[1,] [1,]

[1,]

()
T

p p L

L T

I






 
 
  

V V R
V

R

[1,]

T

p

T

 
 
  




V QR

R
 (43)

Matrices Q and R are computed as follows.

[1,] [1,] p p L



Q V V (44)

 
1

[1,](())
T T

p I



 R V Q Q Q (45)

The value of ()iu and ()i can be recursively formulated as stated in the following
Theorems.

24

Theorem 3. Given [1,]

T

p Lt ,   
1

[1,] [1,] [1,](,())
T

T T T

p p p LI


 

 R V Q Q Q Q V V ,

(1)
T

i u , and [1,]p L
V , then vector ()

T
iu is equal to

[1,] [1,](1) (1)
T T T T T

p L p Li i     u u V R t R .
Proof Let

[1,] [1,] ()
T T

L Li


u t V

[1,] [1,]

[1,] [1,]

()
[]

T

p p LT T

p p L T

I






 
 
 






V V R
t t

R

[1,] [1,] [1,] [1,] [1,] [1,]

T T T T T

p p p p p L p L

 

  t V t V V R t R

[1,] [1,](1) (1)
T T T T T

p L p Li i     u u V R t R (46)

Theorem 4. Given [1,]

T

p Lt ,   
1

[1,] [1,] [1,](,())
T

T T T

p p p LI


 

 R V Q Q Q Q V V

, (1)
T

i u , [1,]p


V , and [1,]p L

V , then vector ()
T

i is equal to

[1,] [1,] [1,] [1,] [1,][(1) ((1)) () ()]
T T T T T T

p L p L p p L p Li i i
 

        u V t R V t u V .
Proof Let

[1,] [1,]() ()
T T T

L Li i  t u V

[1,] [1,] [1,] [1,][] [() ()]
T T T T

p p L p p Li i  t t u V u V

[1,] [1,] [1,] [1,][() ()]
T T T T

p p p L p Li i   t u V t u V

[1,] [1,] [1,] [1,]

[1,] [1,]

[((1) (1))

()]

T T T T T T

p p L p L p

T T

p L p L

i i

i

 

 

     



t u u V R t R V

t u V

[1,] [1,] [1,]

[1,] [1,]

[(1) ((1)) ()

()]

T T T T

p L p L p

T T

p L p L

i i

i

 

 

 

     



u V t R V

t u V
 (47)

25

3.4 Hybrid LDA-PCA algorithm

To enhance the incremental learning algorithm, the new one-pass-throw-away
learning algorithm based on LDA and PCA hybridization [5] can be used to compute
the directions of the hyperellipsoid in the network by combining the orthonormal basis
of the PCA discussed in [4] and the scatter matrices of the LDA. A detail of the algorithm
is described in Hybrid LDA-PCA learning algorithm.

Algorithm 3: Hybrid LDA-PCA Algorithm
Inputs: Chunk of non-expired data Z .
Output: Set of h .
1. Initialize the width vector 0A based on Algorithm 2.
2. For each i x Z do
3. If there exists the hidden neurons then
4. Find a closest hidden neuron labeling the same class of datum ix

 measured by:
arg min()i h

h

t  x C

 where hC is the center vector of the th
h neuron.

5. Compute the new center vector tC and the new covariance matrix
 tS based on Equations (5) and (6), respectively.

6. If () 0t i x then
7. Compute the within-class scatter matrix W .
8. If W is a non-singular matrix then
9. Compute the eigenvectors and the eigenvalues by using

Equation (13) based on the LDA concept.
10. Else
11. Compute the eigenvectors and the eigenvalues by

using the orthonormal basis of VEBF algorithm.
12. EndIf
13. EndIf
14. Else

26

15. Create a new neuron.
16. EndIf
17. EndFor

3.5 Dynamical structure of proposed network for learning the expiration and
live classes

Since obtaining the correct class of any datum concerns the most recent class
change of datum, a new structure was proposed to handle this complexity in this
research. The structure consists of two strata as shown in Figure 3.3. Assume that there
are four classes which are 0, 1, 2, and 3. Without loss of generality, I assume that the

network of each class i has only one output denoted by iy . The upper stratum is for
class 0. A 3-layer feed-forward network is employed to learn all data in this class. The
lower stratum is for all live classes. All classes in the lower layer is learned by a 3-layer
network. The hidden layer of this network consists of several groups of neurons, i.e.
one group for one class.

Figure 3.3 The proposed stratous structure for handing live and expired class changes.
The upper stratum is for expired class and the lower stratum is for all live classes.

27

Figure 3.4 shows the concept of how the proposed structure is evolved during
the learning process of streaming data. The output neuron of class i is denoted by

iy . Suppose during the first period all incoming data are in class 1 and they are learned
by hidden neurons in class-1 group as shown in Figure 3.4(a). Then the data in class 2
flow in during the next period. All class-2 data are learned by the hidden neurons in
class-2 group as shown in Figure 3.4(b). If some already learned data in class 2 are
expired, these expired data will be assigned to class 0 in upper stratum as shown in
Figure 3.4(c). Next all data in class 2 are expired and there are some new incoming
class-3 data. This causes the entire structure of class 2 to be removed and all expired
data are moved to class 0 in the upper stratum whilst the hidden neurons in class-3
group are created as shown in Figure 3.4(d). After that if some expired data are revived
to class 2, then the sub-structure of class 2 will be recreated in lower stratum again as
shown in Figure 3.4(e). Subsequently, other some expired data are changed to new
class 4, the sub-structure of class 4 will be created as shown in Figure 3.4(f).

(a) (b)

28

(c) (d)

(e) (f)

Figure 3.4 The dynamical structure of proposed network. (a) Suppose at the beginning
all incoming data are in class 1 and learned by the sub-structure of class 1. (b) Some
additional new incoming data in class 2 are learned by the sub-structure of class 2. (c)
Some data in class 2 are expired and learned by sub-structure of class 0 in upper
stratum. (d) All data in class 2 are expired and there are some new incoming data of
class 3 learned by the sub-structure of class 3. The sub-structure of class 2 is entirely
removed and the expired data of class 2 are moved to class 0 in the upper stratum.
(e) Some expired data in class 0 are revived and recreated the sub-structure of class 2
in lower stratum. (f) Other expired data in class 0 are changed to new class 4 learned
by the sub-structure of class 4 in the lower stratum.

29

3.6 Dynamical structure of proposed network for learning with special structure
of class 0

The structure for class 0 is different from the other classes. The difference is
the sub-structure for handling class 0. Figure 3.5 shows the concept of proposed
structure. The output neuron of class i is denoted by iy . Suppose during the first
period all incoming data are in class 1 and they are learned by hidden neurons in
class-1 group as shown in Figure 3.5(a). Then the data in class 2 flow in during the next
period. All class-2 data are learned by the hidden neurons in class-2 group as shown
in Figure 3.5(b). If some already learned data in class 2 are expired, then these expired
data are assigned to class 0 as shown in Figure 3.5(c). To distinguish class-0 structure
from the other class structures, a square is used to denote the special structure of
class 0. Next we assume that all data in class 2 are expired and there are some new
incoming data of class 3. This causes the entire structure of class 2 to be removed and
all expired data are moved to class 0 as shown in Figure 3.5(d). Note that the size of
class 0 keeps increasing. Furthermore, the sub-structure of class 3 is created to learn
the new incoming data.

(a) (b)

30

(c) (d)

Figure 3.5 The dynamical structure of proposed network with special structure of
class 0

3.7 Proposed learning and testing algorithms with special structure of class 0

To keep track of increasing expired data, the special structure of class 0 was
proposed for storing all expired data. From the key idea of the proposed network
mentioned, my proposed algorithm named Hybridization Multi-Stratum Network
Learning (Hybrid-MSNL) is composed of the following three main steps.

The first step is to learn all data of different classes in the first incoming chunk
by using the concept of Hybrid LDA-PCA algorithm. After learning, there exists a set of
neurons with relevant parameters as discussed in this Section. We assume that there
is no expired data in the first chunk of incoming data. Each incoming datum ix is
tagged with its class. Those already learned data are discarded from the learning
process forever.

The second step is to learn other temporally incoming data chunks. Some data
may be in class 0 or in any class 0i  . Those data whose class 0i  are learned by
the same algorithm as those data in the first data chunk. Some new neurons in different
classes may be introduced to the network to learn these non-expired data. But for
those expired data, all previously learned neurons from these data which are not
formerly expired are considered. The number of data in these considered neurons is
decreased. After decreasing, if the number of data in any one of these neurons is equal

31

to zero, then the neuron and its links are entirely removed from the network. For any
neuron a , its parameters () ()

(, , , ,)
old old

a a a a a
N A lC S are updated afterwards. The

parameters
[1,] , , (1)
T T T

p L i t R u , (1)
T

i  , and [1,]p LV of special structure of class 0
are updated as well. This step is continued until there is no more incoming data. The
details of steps 1 and 2 are described in Algorithm 4.

The third step is to predict the class of any testing datum ix denoted as
()iclass x by using the facts in Theorems 3 and 4 for those expired data and the

following condition for non-expired data. Let hs be a set of neurons with class label

hl .

 () arg min () |ik k h
h

iclass    x x s (48)

where ()ik x according to Equation (1) is the output of hidden neuron k and hl is
the class label of (.)k . Algorithm 5 shows the detail of this predicting process.

Algorithm 4: Hybridization Multi-Stratum Network Learning (Hybrid-MSNL)
Input: Chunks of data.
Output: Set of h , T

u , and T .
1. Get the first data chunk and learn these data by using Hybrid LDA-PCA algorithm.

Discard all data after learning.
2. Get the second data chunk and separate the data into expired data set E and

non-expired data set Z .
3. Learn data set Z by using Hybrid LDA-PCA algorithm and applying Theorems 1 and

2 to adjust all parameters of each h .
4. Let hcount be the number of data learned by h obtained from steps 1 and 3.
5. Let p be the amount of expired data in E .
6. Form [1,]p

V and compute
[1,]p


V , (1)

T
u , and (1)

T
 .

7. For each j
x E do

8. If () 0
h j

 x then
9. Set 1h hcount count  .
10. If hcount is equal to 0 then
11. Remove h and its links from the network.

32

12. EndIf
13. EndIf
14. EndFor
15. Discard sets E , Z , and all learned data.
16. Let 1i  denote the time step.
17. While there exists a new incoming data chunk do
18. Set 1i i  .
19. Separate the data into expired data set E and non-expired data set Z .
20. Learn data set Z by using Hybrid LDA-PCA algorithm and applying Theorems

1 and 2 to recursively adjust all parameters of each h .

21. For each newly created h do

22. Let hcount be the number of data learned by each h obtained
from step 20.

23. EndFor
24. Let L be the amount of expired data in E .
25. Form [1,]L

V and recursively compute
[1,]L


V , ()

T
iu , and ()

T
i by using Theorems

3 and 4 with (1)
T

i u , and (1)
T

i  .
26. For each j

x E do
27. If () 0

h j
 x then

28. 1h hcount count  .
29. If hcount is equal to 0 then
30. Remove h and its links from the network.
31. EndIf
32. EndIf
33. EndFor
34. Discard sets E , Z , and learned data.
35. EndWhile

33

Algorithm 5: Predicting Class of Testing Datum

Input: A testing datum j
x , T

u , T , and all k .
Output: Predicted ()

j
class x .

1. If T T

j  u x is equal to 0 then
2. Set () 0jclass x .
3. Else

4. Let hs be a set of neurons.
5. Set  () arg min () |

jk k h
h

j
class    x x s .

6. EndIf

3.8 Example of hybridization multi-stratum learning process

To illustrate how Hybrid-MSNL works, Figure 3.6 shows an example of the
snapshot of events when some data are expired and some are new incoming. Suppose
there are two neurons of classes 1C and 2C in the forms of two versatile elliptic
functions. At the beginning shown in Figure 3.6(a), there are ten data denoted by ten
“+” symbols in class 1C and four data denoted by four “” symbols in class 2C .
After that, two data in class 1C are expired. This causes the neuron in class 1C to
shrink its size and the expired data are removed to class 0 as shown in Figure 3.6(b) -
(c). In Figure 3.6(d), there are more new incoming data, i.e., three of class 1C and six
of class 2C . Those data of class 2C lie outside the versatile elliptic function but those
of 1C lie inside the versatile elliptic function. Therefore only the versatile elliptic
function of 1C must be expanded to cover the new incoming data. For the last event
shown in Figure 3.6(e), three data in 1C are expired but none is expired in 2C . To
reduce the possible prediction error, the size of versatile elliptic function of 1C , the
expired data are moved to class 0 as shown in Figure 3.6(f).

34

(a) (b)

(c) (d)

(e) (f)

Figure 3.6 An example of how Hybrid-MSNL works. Assume that there two neurons of
classes C1 and C2 in forms of versatile elliptic functions. (a) The beginning situation.
There are ten data in C1 and four data in C2. (b) Two expired data in C1 but none in
C2. The versatile elliptic function of C1 is shrunk. (c) The versatile elliptic function of
C1 after being shrunk. (d) Expanding the versatile elliptic function of C1 to cover three
new incoming data. (e) Three more new expired data of C1. The versatile elliptic
function of C1 is shrunk. (f) The final situation.

35

3.9 Proposed learning and testing algorithms in case of expiration and live
classes

Since any data can be temporally expired, therefore it is possible that any
neuron and its links can be entirely removed from the network when all data learned
by the neuron are expired. From this observation, my proposed algorithm named
Multi-Stratum Network Learning (MSNL) is composed of the following three main
steps.

The first step is to learn all data of different classes in the first incoming chunk
by using the concept of VEBF algorithm. After learning, there exists a set of neurons
with relevant parameters as discussed in previous Section. We assume that there is no
expired data in the first chunk of incoming data. Each incoming datum ix is tagged
with its class. Those already learned data are discarded from the learning process
forever.

The second step is to learn other temporally incoming data chunks. Some data
may be in class 0 or in any class 0i  . Those data whose class 0i  are learned by
the same algorithm as those data in the first data chunk. Some new neurons in different
classes may be introduced to the network defined in its lower stratum to learn these
non-expired data. But for those expired data, all previously learned neurons from these
data which are not formerly expired are considered. The number of data in these
considered neurons is decreased. After decreasing, if the number of data in any one
of these neurons is equal to zero, then the neuron and its links are entirely removed
from the network. For any neuron a , its parameters () ()

(, , , ,)
old old

a a a a a
N A lC S are

updated afterwards. Since each datum ix can have different class changes during its
lifetime, thus achieving the correct response of class query for ix requires a time
tracking process of the neuron used to learn ix . To distinguish the neurons in the

upper and lower strata, notations ()lo

a
 and ()up

b
 denote neuron a in the lower

stratum and b in the upper stratum, respectively. Let a be the time stamp of neuron
()lo

a
 when it learns ix .

The value of learning time a of the neuron ()lo

a
 in lower stratum can be

computed as the following equation.

36

() ()
() ()

() ()

(1)
old new

new old a a
a a old new

a a

N N

N N

 
 

  
   

 

 (49)

where 0 0.5  . The structure of class 0 are updated in upper level as well. This
step is continued until there is no more incoming data. The details of steps 1 and 2
are described in Algorithm 6.

The third step is to predict the class of any testing datum ix denoted as

()iclass x by using the following condition. Let hs be a set of neurons in lower level
with class label h .

() (lo)

k i
() arg max(| and () 0)lo

i k k h
h

class     x s x (50)

or

 () ()
() arg min () |

lo lo

i k i k h
h

class    x x s (51)

where ()
()

k

lo

i
 x according to Equation (1) is the output of hidden neuron ()

k

lo
 in lower

stratum. Algorithm 7 shows the detail of this predicting process.

Algorithm 6: Multi-Stratum Network Learning (MSNL)
Input: Chunks of data.

Output: Sets of ()

k

lo
 , ()

k

up
 , and k .

1. Get the first ()old
N data chunk and learn these data by using VEBF algorithm. Discard

all data after learning.

2. Let ()

k

old
N be the number of data learned by each neuron in any stratum.

3. Set initial time stamp 0k  for each neuron k .
4. Get the second data chunk and separate the data into expired data set E and

non-expired data set Z .

5. Learn data set Z by using VEBF algorithm and adjust all parameters of each ()lo

k


by applying Theorems 1 and 2.

6. Learn data set E by using VEBF algorithm and adjust all parameters of each ()

k

up


used by applying Theorems 1 and 2.

7. Let ()

k

new
N be the number of data learned by each neuron k in any stratum.

37

8. Update each k of each neuron k in lower stratum by using ()

k

old
N and ()

k

new
N

with Equation (49).

9. Reset ()

k

old
N = ()

k

new
N for each neuron k .

10. For each neuron ()lo

k
 in the lower stratum do

11. If ()

k

old
N of neuron ()lo

k
 is equal to 0 then

12. Remove ()lo

k
 and its links from the network in the lower stratum.

13. EndIf
14. EndFor
15. Discard sets E , Z , and all learned data.
16. While there exists a new incoming data chunk do
17. Separate the data into expired data set E and non-expired data set Z .
18. Learn data set Z by using VEBF algorithm.
19. For any datum x i Z and ()

(x) 0
up

k i
  do

20. If x i is learned by neuron ()up

k
 then

21. Remove x i from ()up

k
 and adjust all parameters of ()up

k


by using Theorems 1 and 2.
22. EndIf
23. EndFor

24. Let ()

k

new
N be the number of data learned by each neuron k in any stratum.

25. Update each k of each neuron k in lower stratum by using ()

k

old
N and ()

k

new
N

 with Equation (49).

26. Reset ()

k

old
N = ()

k

new
N for each neuron k .

27. For each neuron ()up

k
 in the upper stratum do

28. If ()

k

old
N of neuron ()up

k
 is equal to 0 then

29. Remove ()lo

k
 and its links from the network in

the upper stratum.
30. EndIf
31. EndFor
32. Learn data set E by using VEBF algorithm in upper stratum and

38

adjust all parameters of ()

k

up
 used by applying Theorems 1 and 2.

33. For each neuron ()lo

k
 in the lower stratum do

34. If ()

k

old
N of neuron ()lo

k
 is equal to 0 then

35. Remove ()lo

k
 and its links from the network in

the lower stratum.
36. EndIf
37. EndFor
38. Discard sets E , Z , and learned data.
39. EndWhile

Algorithm 7: Predicting Class of Testing Datum

Input: A testing datum j
x , all of ()

k

lo
 and ()

k

up
 , and k .

Output: Predicted ()
j

class x .
1. If ()

(x) 0
up

k i
  then

2. Set () 0jclass x .

3. ElseIf ()
0

k

lo
  then

4. Let hs be a set of neurons in lower stratum such that ()
0

k

lo
  .

5. Set () (lo)

k i
() arg max(| and () 0)lo

i k k h
h

class     x s x .

6. Else

7. Let hs be a set of neurons in lower stratum.
8. Set  () ()

() arg min () |
lo lo

i k i k h
h

class    x x s .

9. EndIf

3.10 Example of multi-stratum learning process

To illustrate how MSNL works, Figure 3.7 shows an example of the snapshot of
events when some data are expired and some are new incoming. Suppose there are
two neurons of classes 1C and 2C in forms of two versatile elliptic functions. At the
beginning shown in Figure 3.7(a), there are ten data denoted by ten stars in class 1C
and four data denoted by four thick dots in class 2C . After that, two data in class 1C

39

are expired. This causes the neuron in class 1C to shrink its size and the expired data
are removed to class 0 as shown in Figure 3.7(b). In Figure 3.7(c), there are more new
incoming data, i.e., three of class 1C and four of class 2C . Those data of class 2C lie
outside the versatile elliptic function but those of 1C lie inside the versatile elliptic
function. Therefore only the versatile elliptic function of 2C must be expanded to
cover the new incoming data. In Figure 3.7(d), three data in 1C are expired but none
is expired in 2C . To reduce the possible prediction error, the size of versatile elliptic
function of 1C is shrunk. After shrinking the versatile elliptic function of 1C , the expired
data are moved to class 0 as shown in Figure 3.7(e). For the last event shown in Figure
3.7(f), the class labels of two expired data are changed to new class 3C .

40

Figure 3.7 An example of how MSNL works. Assume that there two neurons of classes
C1 and C2 in forms of versatile elliptic functions. (a) The beginning situation. There are
10 data in C1 and four data in C2. (b) Two expired data in C1 but none in C2. The
versatile elliptic function of C1 is shrunk. (c) Expanding the versatile elliptic function of
C1 and C2 to cover three new incoming data and four new incoming data, respectively.
(d) Three more new expired data of C1. The versatile elliptic function of C1 is shrunk.
(e) The versatile elliptic function of C1 after being shrunk. (f) There are two expired
data changed to new class C3.

CHAPTER IV
EXPERIMENTAL RESULTS AND DISCUSSION

In case of non-expired and expired data, the performance of proposed

algorithm was evaluated and compared with the existing methods. The percentage of
the average accuracy and the computational time were concentrated as the evaluating
measures. Total 10 benchmarked data sets (both 2-class and multi-class labels) shown
in Table 4.1 were collected from the University of California at Irvine (UCI) repository
of machine learning database [1] and popular data sets were taken from the concept
drift problems. Those data from the concept drift problems were given by New South
Wales Electricity Market collected from time and demand fluctuations in Australia as
described in [2] and by U.S. National Oceanic and Atmospheric Administration taken as
temperature, pressure, visibility, and other-related events of weather measurements
as described in [3].

Table 4.1 The benchmark data sets in my experiments with special structure
class 0

Data sets Source # Instances # Attributes # Classes
Derm UCI 358 34 6
VehicleSilhouette UCI 846 18 4
Leaf UCI 340 15 36
EyeDetectioin UCI 14980 14 2
Spambase UCI 4601 57 2
PimaDiabetes UCI 768 8 2
BanknoteAuthen UCI 1372 4 2
Skin UCI 245057 3 2
Weather Concept drift 18159 8 2
Electric Concept drift 45312 8 2

42

In case of expired and class-changed data, the performance of proposed MSNL
algorithm was evaluated and compared with the existing methods. The percentage of
the averaged accuracy and the computational time were concentrated as the
evaluating measures. Total 12 benchmarked data sets (both 2-class and multi-class
labels) as shown in Table 4.2 were collected from UCI database [1] given different from
Table 4.1 and popular data sets for the concept drift problems the same as Table 4.1.

Table 4.2 The benchmark data sets in experiments with temporal class change

Data sets Source # Instances # Attributes # Classes
Balance UCI 625 4 3
BreastCancer UCI 683 9 2
Haberman UCI 306 3 2
Sonar UCI 208 60 2
Thyroid UCI 215 5 3
Vertebral UCI 310 6 3
Movement UCI 360 90 15
Wine UCI 178 13 3
Image UCI 2310 19 7
Waveform UCI 5000 21 3
Weather Concept drift 18159 8 2
Electric Concept drift 45312 8 2

Since the compared algorithms were not designed to handle the situation of

data expiration, the following experimental set-up was conducted to fairly evaluate
their performances. The data in both class 0 and the other classes were mixed into
one training data chunk for VEBF algorithm, OI-SVM, ASC, learn++.NSE, and WMV
methods. Algorithm 8 was used to generate the data in class 0 and changed class data.
For my experimental set-up, the same set of data used by those compared algorithms
was also used in my experiment. But the data were randomly partitioned into several
chunks to test my concept of one-pass-throw-away learning approach.

43

4.1 Setting live and expired states to experimental data sets

Cross Validation (CV) is a commonly used technique for assessing the
performance of a model. For state-of-the-art cross validation, distribution optimally
balanced standard stratified cross validation (DOB-SCV) as presented in [37] is a
technique to reduce the impact of partition-induced covariate shift with the reliability
of classifier performance through cross validation. In processing steps of DOB-SCV, first
of all, an unassigned example is randomly selected and then its 1k  nearest
unassigned neighbors of the same class are considered. After that, it assigns each of
those examples to a different fold. The process is repeated until all examples are
assigned. The whole process is repeated for each class. From the concept of DOB-SCV,
it can be applied for creating expired and class-changed data with optimal distribution
in the entire data set. The detail of how to create expired and class-changed data
based on DOB-SCV in each fold is summarized in Algorithm 8. Suppose that the training
and testing sets are already formed and no expired data exist in these sets prior to the
execution of Algorithm 8.

During the testing process, my proposed network must be able to determine
the recent class of any datum ax after its class has been previously changed several
times. Therefore, some datum already learned are included in the testing set to
evaluate this capability of the network. Let M be the original set of classes in a given
data set before my class set-up process. In all experiments, without loss of generality,
only 10 percent of training data were used for setting up live and expired states in
training and testing processes. One of the following four events regarding the live and
expired states is randomly set up for each training and testing datum ax .

Suppose datum ax is originally in class j M .
1. Event 0: Set ax to class 0.
2. Event 1: Set ax to its original class j .
3. Event 2: Set ax to any other class k M and k j .
4. Event 3: Set ax to a new class M  .

44

Algorithm 8: Setting Expired and Class-Changed Data for Training and Testing
Input: A training set ()TrainT and a testing set ()testT obtained by applying DOB-SCV
concept.
Output: The training set ()TrainT and testing set ()testT with some expired and class-
changed data in both sets.
1. Let f be the number of folds and e be the maximum number of expired data.
2. For each class j in ()TrainT do
3. Set 0i  .

4. While i
m

e
 do

5. Randomly select a datum ax and its closest neighbor bx in
the same class j .

6. Let  be the duplicate of ax .
7. Let  be the duplicate of bx .
8. Set target classes of  and  to 0.
9. Randomly select an event {0,1,2,3} .
10. Case event do
11. 0: Set () ()

{ , }
train train

T T    .
12. Set () ()

{ , }
test test

T T    .
13. 1: Set target classes of ax and bx to the same class j .
14. Set () ()

{ , } { , }
train train

a b
T T     x x .

15. Set () ()
{ , }

test te

a

st

b
T T  x x .

16. 2: Set target classes of ax and bx to k M and k j .
17. Set () ()

{ , } { , }
train train

a b
T T     x x .

18. Set () ()
{ , }

test te

a

st

b
T T  x x .

19. 3: Set target classes of ax and bx to a new class M  .
20. Set () ()

{ , } { , }
train train

a b
T T     x x .

21. Set () ()
{ , }

test te

a

st

b
T T  x x .

22. EndCase
23. Update i i f  .
24. EndWhile

45

25. EndFor

4.2 Performance evaluation and comparison

The performance of the proposed algorithm was compared with families of
incremental learning of VEBF neural network [4], OI-SVM neural network [6], ASC neural
network [8], concept drift incremental learning of learn++.NSE [3], and WMV [27]. The
same initial width vector set-up was adopted from VEBF algorithm given by Algorithm
2. Moreover, the value of this initial width was used in VEBF algorithm and also defined
for tuning the optimal expansion of Gaussian kernel in the experiments of OI-SVM and
ASC methods. Other user-defined parameters were optimized by using the technique
of grid search reported in [6, 8] to obtain the optimal values in the experiments of OI-
SVM and ASC methods. The sigmoid parameters for the learn++.NSE recommended in
[3] were set to 0.5 and 10. The learn++.NSE and WMV applied classification and
regression tree (CART) as their base classifier and the ensemble size was limited to the
number of MSNL neurons according to each experiment. The parameters and their
values used in MSNL experiment were given by Table 4.3. All results summarized in
this section are averaged according to 10 runs. By considering the data sets, we
randomly divided each data set into five disjoint subsets (a 5-fold cross validation
strategy). Then, four subsets were used as the training data and the rest as the testing
data. Each of five subsets was taken turns to be a testing subset and the rest were the
training subsets. This taking turns was repeated five times in each run. Consequently,
the average accuracy and computational time were used for evaluating the
performance of each algorithm.

46

Table 4.3 Setting the parameters in experiments
Data sets # Classes (m) I 

Balance m=3 10*m 0.3
BreastCancer m=2 4*m 0.2
Haberman m=2 50*m 0.3
Sonar m=2 50*m 0.3
Thyroid m=3 50*m 0.2
Vertebral m=3 4*m 0.2
Movement m=15 4*m 0.2
Wine m=3 10*m 0.2
Image m=7 50*m 0.2
Waveform m=3 8*m 0.3
Weather m=2 10*m 0.2
Electric m=2 10*m 0.2

4.2.1 Experimental results with special structure of class 0
The names of data sets, number of instances, number of attributes (or

dimensions), and number of classes used in my experiments are summarized in Table
4.1. The comparison results from different algorithms for all data sets are shown in
Table 4.4 and Figure 4.1 displays these average accuracy in terms of expired and non-
expired data in a form of graph. The comparison was focused on the learning time and
the average accuracy of classification with standard deviation shown in parenthesis.
There were five folds in each experiment. My Hybrid-MSNL achieved the almost highest
average accuracy for all data sets because Hybrid-MSNL gradually and temporally
adjusted the neural parameters according to the new incoming data chunk during the
learning process but the other algorithms adjusted their neural parameters based on
the whole data set. This may imply that local information of how the data are
distributed in the space is rather crucial to speed up the learning time complexity and
accuracy. For some data sets, my approach spent more learning time than learn++.NSE
and WMV methods.

47

Table 4.4 The average performance of data sets with special structure of class 0

Data sets

Hybrid-MSNL VEBF OI-SVM NSE WMV

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Derm 2.94 78.37(3) 2.6 74.16(3) 16.7 65.97(2) 1.19 29.53(1) 1.293 54.01(1)

Vehicle-

Silshouette 19.8 75.47(2) 22.9 59.81(1) 205 51.58(2) 15.68 42.1(1) 15.57 51.79(1)

Leaf 0.98 76.78(3) 1.57 69.56(4) 206.79 68.59(3) 1.38 57.09(2) 1.03 55.62(1)

EyeDetect 121.98 78.23(2) 129.42 59.47(4) 13591.59 67.34(5) 30.05 60.16(2) 34.53 70.42(2)

Spam 57.09 81.28(3) 69.89 71.84(8) 2754 61.5(4) 18.24 73.86(1) 17.18 73.37(2)

PimaDiabetes 2.61 80.66(4) 2.47 61.77(4) 11.25 68.2(9) 1.487 51.31(1) 1.584 63.47(1)

Banknote-

Authen 2.47 98.24(1) 1.49 61.61(4) 5.96 71.65(3) 1.438 62.43(2) 1.423 55.43(3)

Skin 317 82.99(3) 1896 79.48(2) 30163 75.89(5) 1984 66.03(2) 1576 56.08(2)

Weather 18.12 80.52(5) 29.59 60.65(6) 154.89 55.89(7) 19.67 70.42(2) 15.89 65.49(3)

Electric 29.86 75.29(3) 41.61 59.15(3) 2497.14 60.16(5) 26.81 61.22(4) 17.87 64.19(3)

48

Figure 4.1 The comparison of overall average accuracy in terms of in terms of expired
and non-expired data

To demonstrate the effect of percentage of expired data versus the accuracy,

five experiments with different percentages 0%, 5%, 10%, 15%, and 20% of expired
data were tested. The overall average accuracy of class 0 and the other classes with
different percentage of expired data obtained from each algorithm for BanknoteAuthen
data set is shown in Figure 4.2. Each experimental result with different percentage
depicts in a form of graph shown in Figures 4.3 – 4.7. The results concerning this effect
for the other data sets are not shown due to the sizes of Figures. Observe that the
average accuracy of expiration class of Hybrid-MSNL and learn++.NSE is rather stable
and almost independent from the percentage of expired data. But this is not true for
the other algorithms. However, for the non-expiration classes, my approach produced
slightly less accuracy than that of OI-SVM, but my approach produced more accuracy
than learn++.NSE and others'.

0

20

40

60

80

100

120

Derm Vehicle Leaf Eyedetect Spam Pima Bank Skin Weather Electric

Hybrid-MSNL VEBF OI-SVM NSE WMV

49

Figure 4.2 The average accuracy of BanknoteAuthen data set

Figure 4.3 The average accuracy of BanknoteAuthen data set without expired data

0

10

20

30

40

50

60

70

80

90

100

Hybrid-MSNL VEBF OI-SVM NSE WMV

50

Figure 4.4 The average accuracy of BanknoteAuthen data set with percentage 5% of
expired training data

Figure 4.5 The average accuracy of BanknoteAuthen data set with percentage 10% of
expired training data

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Class-0

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Other class

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Class-0

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Other class

51

Figure 4.6 The average accuracy of BanknoteAuthen data set with percentage 15% of
expired training data

Figure 4.7 The average accuracy of BanknoteAuthen data set with percentage 20% of
expired training data

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Class-0

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Other class

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Class-0

0

20

40

60

80

100

H
yb

ri
d

-M
SN

L

V
EB

F

O
I-

SV
M

N
SE

W
M

V

Other class

52

4.2.2 Experimental results with temporal class change
The names of data sets, number of instances, number of attributes (or

dimensions), and number of classes used in my experiments are summarized in Table
4.2. The comparison results from different algorithms for all data sets are shown in
Table 4.5 and Figure 4.8 displays these average accuracy in terms of expired and class-
changed data in a form of graph. The comparison was focused on the learning time
and the accuracy of classification with standard deviation shown in parenthesis. There
were five folds in each experiment. My MSNL achieved the highest average accuracy
for all data sets because MSNL gradually and temporally adjusted the neural
parameters according to the new incoming data chunk during the learning process but
the other algorithms adjusted their neural parameters based on the whole data set.
This may imply that local information of how the data are distributed in the space is
rather crucial to speed up the learning time complexity and accuracy. For some data
sets, my approach spent more learning time than VEBF, WMV, and ASC methods.

53

Table 4.5 The average performance of data sets with temporal class change

Data
sets

MSNL VEBF OI-SVM ASC NSE WMV

Training
time

Accuracy
(%) with its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Training
time

Accuracy
(%) with
its
standard
deviation

Balance 0.75 87.64(3) 1.17 74.28(2) 16.7 76.85(3) 10.32 60.29(1) 1.26 69.97(5) 0.68 65.12(4)

Breast-

Cancer 1.37 88.36(6) 2.26 66.74(6) 1.93 75.69(2) 1.92 74.57(6) 1.47 73.66(1) 1.41 69.12(3)

Haberman 1.36 89.48(3) 1.71 69.13(10) 8.77 68.2(10) 9.72 69.09(12) 2.15 68.41(3) 1.29 61.73(4)

Sonar 0.42 86.63(3) 0.39 79.85(7) 0.76 64.26(10) 0.67 58.79(13) 0.48 70.4(4) 0.46 65.09(4)

Thyroid 0.71 90.36(6) 0.86 73.56(5) 1.08 82.55(3) 0.121 68.55(10) 0.94 84.99(8) 0.82 76.37(5)

Vertebral 0.15 88.04(4) 0.15 75.43(9) 2.32 86.52(6) 0.18 76.09(6) 0.17 80.43(2) 0.16 73.44(4)

Movement 6.68 90.59(7) 8.64 76.98(10) 6.47 70.95(4) 6.09 61.11(3) 7.34 62.86(5) 6.26 62.7(3)

Wine 0.41 81.17(4) 0.47 72.87(3) 0.67 65.71(9) 0.97 68.43(6) 0.49 75.86(5) 0.29 72.76(2)

Image 17.7 87.68(2) 25.9 78.96(11) 44.43 65.57(12) 79.12 75.67(2) 68.78 68.11(3) 36.52 60.73(9)

Waveform 15.7 75.82(6) 16.6 65.26(3) 40.56 67.91(5) 29.58 49.77(3) 29.08 65.53(3) 14.34 59.09(6)

Weather 24.12 82.85(5) 25.59 61.69(6) 159.89 58.76(8) 120.23 53.66(7) 58.67 71.22(6) 37.89 66.39(7)

Electric 34.99 78.46(8) 35.12 67.47(7) 249.43 70.49(10) 213.87 65.97(8) 95.52 69.53(9) 59.11 68.69(6)

54

Figure 4.8 The comparison of overall average accuracy in terms of expired and class-

changed data

To demonstrate the effect of percentage of data expired and changed class
versus the accuracy, four experiments with different percentages 0%, 10%, 20%, and
30% of expired and class-changed data were tested. The overall average accuracy of
non-expired, expired, and class-changed classes with different percentage of expired
data obtained from each algorithm for Thyroid data set is shown in Figure 4.9. Each
experimental result with different percentage depicts in a form of graph shown in
Figures 4.10 - 4.13. The results concerning this effect for the other data sets are not
shown due to the sizes of Figures. Observe that the average accuracy of MSNL is rather
stable and almost independent of the percentage of expired data and data changed
class. But this is not true for the other algorithms. However, for live classes, my
approach produced slightly less accuracy than that of OI-SVM and learn++.NSE.

0

10

20

30

40

50

60

70

80

90

100

Hybrid-MSNL VEBF OI-SVM ASC NSE WMV

55

Figure 4.9 The average accuracy of Thyroid data set

Figure 4.10 The average accuracy of Thyroid data set without expired data

0

10

20

30

40

50

60

70

80

90

100

MSNL VEBF OI-SVM ASC NSE WMV

56

Figure 4.11 The average accuracy of Thyroid data set with percentage 10% of expired
and class-changed training data

Figure 4.12 The average accuracy of Thyroid data set with percentage 20% of expired
and class-changed training data

0

10

20

30

40

50

60

70

80

90

100

MSNL VEBF OI-SVM ASC NSE WMV

Expired or Changed Classes

0

10

20

30

40

50

60

70

80

90

100

MSNL VEBF OI-SVM ASC NSE WMV

Non-expired Class

0

10

20

30

40

50

60

70

80

90

100

MSNL VEBF OI-SVM ASC NSE WMV

Expired or Changed Classes

0

10

20

30

40

50

60

70

80

90

100

MSNL VEBF OI-SVM ASC NSE WMV

Non-expired Class

57

Figure 4.13 The average accuracy of Thyroid data set with percentage 30% of expired
and class-changed training data

0

10

20

30

40

50

60

70

80

90

100

MSNL VEBF OI-SVM ASC NSE WMV

Expired or Changed Classes

0

10

20

30

40

50

60

70

80

90

100

MSNL VEBF OI-SVM ASC NSE WMV

Non-expired Class

58

4.2.3 Experiments on concept drift problem
The SEA data stream of classical concept drift problem discussed in [29] was

tested to evaluate the performance of the proposed algorithm and ensemble methods
of classifiers for handling the concept drift scenario. Also, a real-world data set of non-
stationary environments, weather prediction [3] is another data stream experimented
in this problem. They were separated into chunks using test-then-train strategy. Figure
4.14 and Figure 4.15 show the experimental results in classification error of SEA and
Weather data sets, respectively. From these figures, the proposed MSNL performed
tracking the drifting distribution achieving accuracies nearly the same as Learn++.NSE
and WMV. In some time steps of Weather real-world data set, MSNL performed better
than Learn++.NSE and WMV.

Figure 4.14 Classification error of algorithms on the classical SEA data stream

Time step

Er
ro

r

59

Figure 4.15 Classification error of algorithms on the Weather data set

4.3 Discussion

The proposed algorithm can be applied with randomly expiring or class-
changing of data under non-stationary situation. This situation is similar to concept drift
problem or non-stationary environment. The results in the experiments serve that the
proposed MSNL is robust to changing on various environments. However, the updated
parameters of each neuron of the proposed network are slightly shrunk or exceedingly
expanded according to incoming data that are expired or even changed in classes
during the learning process affecting the performance of proposed algorithm.

4.3.1 Analysis of complexity with special structure of class 0
In case of non-expired data, the learning time complexity of proposed

algorithm is equal to that of VEBF algorithm with respect to the number of non-expired
data. But in case of expired data, the learning time complexity involves the
computational time of pseudoinverse matrix process [36] and time to compute ()

T
iu

and ()
T

i . If there are L expired data vectors in dR , then pseudoinverse time
complexity is 2

()O d L . The time complexity to compute both ()
T

iu and ()
T

i is
()O L .

Time step

Er
ro

r

60

Similar to the time complexity, the space complexity concerns two aspects.
The first one is the space complexity for leaning non-expired data. The analysis of this
complexity is rather complex because it must involve the number of expired data
covered by each neuron. As previously discussed, a neuron with its links can be entirely
removed from the network if all its learned data are expired data. Obviously, this
situation effects the analysis of space complexity. Therefore, the analysis of space
complexity for non-expired data will be the further study. The second aspect is the
space complexity for expired data. Let p be the first data chunk. Since all expired
data are captured in forms of vectors ()

T
iu and ()

T
i which can be recursively

computed from
[1,] [1,], , (1)

T

p p L i


 V V u , and (1)
T

i  , hence the space complexity is
equal to () () () () (max(,))O pd O dL O d O d O p L    .

4.3.2 Analysis of complexity with temporal class change
In case of live data, the learning time complexity of proposed algorithm is equal

to that of VEBF algorithm with respect to the number of live data. However, in case of
expired data, the learning time complexity is additionally computed as twice of the
previous case because a neuron of expired data can be recreated after being removing
from the network of live data in the lower stratum. For case of class change, the
learning time complexity is also the same as that of the case previously discussed due
to the removal of neuron from the network of expired data and revived to the network
of live data again.

Similar to the time complexity, the space complexity concerns two aspects.
The first one is the space complexity for learning live data. The analysis of this
complexity is rather complex because it must involve the number of expired data
covered by each neuron. As previously discussed, a neuron with its links can be entirely
removed from the network if all its learned data are expired. Obviously, this situation
effects the analysis of space complexity. Therefore, the analysis of space complexity
for live data will be the further study. The second aspect of expired and class changed
data is similar to in case of the non-expired data.

CHAPTER V
CONCLUSION

In various applications, the lifetime of data must be concerned to determine

the classes. The problem of learning both live and expired data was studied. A new
learning algorithm using the structure of multi-stratum network named Multi-Stratum
Network Learning (MSNL) was proposed to learn these data. The main structure
consists of two strata. The first stratum is similar to the conventional feed-forward
structure but the proposed structure can be dynamically and temporally changed
according to the status of incoming data, i.e. live and class change. A set of new
recursive functions for computing mean, variance, and covariance matrix when some
data are removed was proposed to achieve the minimum computational space
complexities and to speed up the learning time. The second stratum is for storing only
those expired data. The comparison of experimental results from MSNL and the other
algorithms with several benchmarked data sets signified that MSNL achieved a fast
speed as well as higher accuracy than the others'.

REFERENCES

[1] A. Asuncion and D. J. Newman. UCI Repository of Machine Learning, University
of California, Irvine, School of Information and Computer Sciences [Online].
Available: http://archive.ics.uci.edu/ml/

[2] M. Harries, "SPLICE-2 comparative evaluation: Electricity pricing," Tech. Rep., p.
9905, 1999.

[3] R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary
environments," IEEE Trans. Neural Netw., vol. 22, pp. 1517-1531, 2011.

[4] S. Jaiyen, C. Lursinsap, and S. Phimoltares, "A very fast neural learning for
classification using only new incoming datum," IEEE Trans. Neural Netw., vol.
21, pp. 381-392, 2010.

[5] M. Thakong, S. Phimoltares, S. Jaiyen, and C. Lursinsap, "One-pass-throw-away
learning algorithm based on hybridization of LDA and PCA," in International
Conference on Information Science and Applications, Chonburi, Thailand,
2013, pp. 445-448.

[6] J. Zheng, H. Yu, F. Shen, and J. Zhao, "An online incremental learning support
vector machine for large-scale data," Neural Comput. Appl., vol. 22, pp. 1023-
1035, 2013.

[7] S. Ozava, S. Pang, and N. Kasabov, "Incremental learning of chunk data for
online pattern classification systems," IEEE Trans. Neural Netw., vol. 16, pp.
1061-1074, 2008.

[8] S. Furao and O. Hasegawa, "A fast nearest neighbor classifier based on self-
organizing incremental neural network," Neural Netw., vol. 21, pp. 1537-1547,
2008.

[9] H. He, S. Chen, and X. X. K. Li, "Incremental learning from stream data," IEEE
Trans. Neural Netw., vol. 22, pp. 1901-1914, 2011.

[10] H. Abdulsalam, D. B. Skillicorn, and P. Martin, "Classification using streaming
random forests," IEEE Trans. Knowl. Data Eng., vol. 23, pp. 22-36, 2011.

http://archive.ics.uci.edu/ml/

63

[11] X. Wu, P. Li, and X. Hu, "Learning from concept drifting data streams with
unlabeled data," Neurocomputing, vol. 92, pp. 145-155, 2012.

[12] N. Wattanakitrungroj and C. Lursinsap, "Memory-less unsupervised clustering
for data streaming by versatile ellipsoidal function," in the 20th ACM
Conference on Information and Knowledge Management, Glasgow, United
Kingdom, 2011, pp. 967-972.

[13] S. Ozawa, A. Roy, and D. Roussinov, "A multitask learning model for online
pattern recognition," IEEE Trans. Neural Netw., vol. 20, pp. 430-445, 2009.

[14] T. Tokumoto and S. Ozawa, "A fast incremental kernel principal component
analysis for learning stream of data chunks," in the International Joint
Conference on Neural Networks, San Jose, California, USA, 2011, pp. 2881-
2888.

[15] S. Pang, T. Ban, Y. Kadobayashi, and N. K. Kasabov, "LDA merging and splitting
with applications to multi-agent cooperative learning and system alteration,"
IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 42, pp. 552-563, 2012.

[16] S. Okada and T. Nishida, "Online incremental clustering with distance metric
learning for high dimensional data," in the International Joint Conference on
Neural Networks, San Jose, California, USA, 2011, pp. 2047-2053.

[17] H. He and S. Chen, "IMORL: Incremental multiple-object recognition and
localization," IEEE Trans. Neural Netw., vol. 19, pp. 1727-1738, 2008.

[18] R. Elwell and R. Polikar, "Incremental learning in nonstationary environments
with controlled forgetting," in the International Joint Conference on Neural
Networks, Atlanta, Georgia USA, 2009, pp. 771-778.

[19] L. Kuncheval and I. Zliobaite, "On window size change for classification in
changing environments," Intell. Data Anal., vol. 13, pp. 861-872, 2009.

[20] D. Martinex-Rego, B. Perez, O. Fontenla-Romero, and A. Alonso-Betanzos, "A
robust incremental learning method for non-stationary environments,"
Neurocomputing, vol. 74, pp. 1800-1808, 2011.

[21] H. Wang, W. Fan, P. S. Yu, and J. Han, "Mining concept-drifting data streams
using ensemble classifiers," in the Ninth ACM SIGKDD International Conference

64

on Knowledge Discovery and Data Mining, Washington, DC, USA, 2003, pp.
226-235.

[22] A. A. Beyene, T. Welemariam, M. Persson, and N. Lavesson, "Improved
concept drift handling in surgery prediction and other applications," Knowl.
Inf. Syst., vol. 43, pp. 389-416, 2014.

[23] L. Hartert and M. Sayed-Mouchaweh, "Dynamic supervised classification
method for online monitoring in non-stationary environments,"
Neurocomputing, vol. 126, pp. 118-131, 2014.

[24] Y. Yeh and Y. F. Wang, "A rank-one update method for least squares linear
discriminant analysis with concept drift," Pattern Recognit., vol. 45, pp. 1267-
1276, 2013.

[25] B. Mirza and N. L. Z. Lin, "Ensemble of subset online sequential extreme
learning machine for class imbalance and concept drift," Neurocomputing,
vol. 149, pp. 316-329, 2015.

[26] G. Ditzler, G. Rosen, and R. Polikar, "Discounted expert weighting for concept
drift," in IEEE Symposium of Computational Intelligence in Dynamic and
Uncertain Environments, Singapore, 2013, pp. 61-67.

[27] G. Ditzler, G. Rosen, and R. Polikar, "Domain adaptation bounds for multiple
expert systems under concept drift," in the International Joint Conference on
Neural Networks, Beijing, China, 2014, pp. 595-601.

[28] A. Dries and U. Ruckert, "Adaptive concept drift detection," Statistical Anal.
Data Mining, vol. 2, pp. 311-327, 2009.

[29] W.N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large-scale
classification," in Seventh ACM SIGKDD International Conference on
Knowledge Discovery Data Mining, San Francisco, CA, USA, 2001, pp. 377-382.

[30] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, "Learn++: An incremental
learning algorithm for supervised neural networks," IEEE Trans. Syst. Man,
Cybern. C, Appl. Rev., vol. 31, pp. 497-508, 2001.

[31] M. Muhlbaier, A. Topalis, and R. Polikar, "Learn++.NC: Combining ensemble of
classifiers with dynamically weighted consult-and-vote for efficient

65

incremental learning of new classes," IEEE Trans. Neural Netw., vol. 20, pp.
152-168, 2009.

[32] R. Polikar, J. DePasquale, H. S. Mohammed, G. Brown, and L. I. Kuncheva,
"Learn++.MF: A random subspace approach for the missing feature problem,"
Pattern Recognit., vol. 43, pp. 3817-3832, 2010.

[33] T. N. E. Greville, "Some Applications of the pseudoinverse of a matrix," Siam
Review, vol. 2, pp. 15-22, 1960.

[34] J. Tapson and A. Van Schaik, "Learning the pseudoinverse solution to network
weights," Neural Netw., vol. 45, pp. 94-100, 2013.

[35] F. E. Udwadia and R. E. Kalaba, "General forms for the recursive
determination of generalized inverses: unified approach," Journal of
Optimization Theory and Applications, vol. 101, pp. 509-521, 1999.

[36] S. Predrag, M. Marko, S. Igor, and M. Sladjana, "Application of the partitioning
method to specific toeplitz matrices," Int. J. Appl. Math. Comput. Sci., vol. 23,
pp. 809-821, 2013.

[37] J. G. Moreno-Torres, J. A. Sáez, and F. Herrera, "Study on the impact of
partition-induced data set shift on k-fold cross-validation," IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, pp. 1304-1312, 2012.

APPENDIX

67

VITA

VITA

Name: Mr. Mongkhon Thakong

Date of Birth: May 12, 1977

Educations:

1999 Graduate Bachelor Degree of Mathematics, Department of
Mathematics, Faculty of Science, Khon Kaen University

2002 Graduate Post-baccalaureate Certificate in Information Technology
System Development, National Institute of Development Administration

2007 Graduate Master Degree of Computer Science, Department of
Computer Science, Faculty of Science, Khon Kaen University

Publications:

M. Thakong, S. Phimoltares, S. Jaiyen, and C. Lursinsap, One-pass-throw-
away learning algorithm based on hybridization of LDA and PCA, in: Proceedings of
the International Conference on Information Science and Applications, 2013,
Chonburi, Thailand, pp. 445-448.

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I INTRODUCTION
	1.1 Problem identification
	1.2 Problem formulation
	1.3 Research objective
	1.4 Scope of work
	1.5 Research advantage
	1.6 Outline of the dissertation

	CHAPTER II LITERATURE REVIEW
	2.1 VEBF learning algorithm
	2.2 Merging LDA operation

	CHAPTER III PROPOSED METHOD
	3.1 Proposed width vector initialization algorithm
	3.2 Updating center vector, covariance matrix, and scatter matrices
	3.3 Special structure of class 0
	3.4 Hybrid LDA-PCA algorithm
	3.5 Dynamical structure of proposed network for learning the expiration and live classes
	3.6 Dynamical structure of proposed network for learning with special structure of class 0
	3.7 Proposed learning and testing algorithms with special structure of class 0
	3.8 Example of hybridization multi-stratum learning process
	3.9 Proposed learning and testing algorithms in case of expiration and live classes
	3.10 Example of multi-stratum learning process

	CHAPTER IV EXPERIMENTAL RESULTS AND DISCUSSION
	4.1 Setting live and expired states to experimental data sets
	4.2 Performance evaluation and comparison
	4.2.1 Experimental results with special structure of class 0
	4.2.2 Experimental results with temporal class change
	4.2.3 Experiments on concept drift problem

	4.3 Discussion
	4.3.1 Analysis of complexity with special structure of class 0
	4.3.2 Analysis of complexity with temporal class change

	CHAPTER V CONCLUSION
	REFERENCES
	VITA

