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CHAPTER I  
INTRODUCTION 

 

1.1 Problem identification 

Current learning algorithms were designed to cope only with timeless data or 
stationary-class data. This implies that the lifetime of the data is assumed no expiration 
and the data belong to a certain class forever. But in some situations or scenarios, this 
implication is not always true. For example, changes in student status may include 
suspension, withdrawal, lapsing and reinstatement, and change of program under 
conditions of university even though the features of this student have never been 
changed. In this study, I focused on the development of a new learning algorithm and 
network structure to cope with data with expiration and data whose class can be 
temporally changed. The amount of training data is variable. However, if the training 
data are not assumed to gradually flow into the network, the actual amount of total 
data will overwhelm the space complexity of the learning network. When the class of 
any datum is expired or changed, its features are still the same. The network structure 
can learn this datum in the training process. But the structure cannot be used to 
distinguish this datum whether its class is expired or changed to another class in the 
testing process. This is because the features are firstly classified according to its target 
by a neuron  . When its class is changed to a new class, another neuron   is used 
to secondly learn this datum. Hence when predicting the actual class of this datum 
after its class change, both neurons   and   will response to this datum. This creates 
a non-deterministic situation. 

To overcome these problems, a new incremental learning algorithm in various 
environments based on versatile elliptic basis function (VEBF) called a multi-stratum 
network has been proposed. The proposed learning algorithm can learn expired and 
class-changed data without storing all the previous training set. In abrupt changing 
environments, the proposed algorithm can preserve a good balance in both stability 
and plasticity using to maintain some relevant information in the network and to learn 
a new class in such this situation during training process. For improving the performance 
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of the proposed algorithm in training process, the training data can be learned with a 
training datum or a chunk of training data for adapting the network. 

 

1.2 Problem formulation 

Let 1{ , , }N X x x  be a set of training data. Each datum ix  consists of a d  
features, i.e., ,1 ,{ , , }i i i dx x x  with a label of class target ( ) {0,1, , }i k m    at time 
k . A datum is expired if ( ) 0i k   otherwise it is in one of m  classes. At the beginning 
all (1) {1, , }i m   . After a period of time a , this datum ix  is expired which implies 
that ( ) 0i a  . However, datum ix  can be one of the queried data at any time and 
the classifier must be able to indicate that ix  is already expired. The following 
constraints are imposed on these studied problems. 

1. For any datum ix , the feature set ,1 ,
{ , , }

i i d
x x  is fixed regardless of time and 

class target. 

2. For any datum ix , time k  in ( )i k  is randomly defined. 

3. Once datum ix  is expired at time a , i.e. ( ) 0i a  , it is discarded forever from 
both training and testing processes for k a . 

4. Any datum ix  may or may not appear in testing set during the evaluation 
process. 

5. Only streaming data are involved in this study. They are learned by one-pass-
throw-away training process to maintain a linear learning time complexity with 
respect to the number of data. 

6. Since streaming data are concerned, any datum ix  will be arbitrarily allowed 
to reenter or not to reenter the testing process. 

 

In this study, the problem of data expiration is transformed into the problem 
of learning class change by treating any datum whose life time is expired as a datum 
in class 0. This implies that the datum must be trained twice and captured by at least 
two sets of neurons of different classes. The first training process occurs when the 
datum is not in class 0. The second training process is when the datum changes its 
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class when it is expired. It is possible that a non-deterministic situation may occur due 
to the capture of data by neurons from different classes. However, the network must 
be able to identify the exact class of any queried data. Although some data are expired, 
their class cannot be omitted from consideration to maintain the correctness of 
classification. Furthermore, if the number of expired data increases, then the size of 
the network may proportionally increase as well. This is an undesirable scenario. The 
increasing rate of network size should be slower than the increasing rate of the number 
of expired data. Therefore, the studied problem concerns the following issues. 

1. What is the appropriate network structure to capture this datum before and 
after its class change?  

2. How to perform one-pass-throw-away training in temporal class change 
situation for the data are streaming data? 

3. How to identify the correct class of any datum whose class is temporally 
changed? 

4. How to keep track of expired data with low space complexity?  

 

Figure 1.1 shows an example of how expired data are handled. There are three 
classes denoted by stars, thick dots, and squares as shown in Figure 1.1(a). When some 
data in each class are expired, these expired data are captured by some neurons as 
shown in Figure 1.1(b). Note that any expired data are captured by two neurons, one 
from expiration class and another from non-expiration class. The proposed method 
must be able to handle this non-deterministic situation. 
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(a) 

 

 
(b) 

Figure 1.1 An example of how expired data are captured. There are three classes 
denoted by stars, thick dots, and squares. (a) Before some data are expired. (b) 
After the data are expired. All those expired data are captured by dashed 
ellipses. 

 

1.3 Research objective 

The main objective of this dissertation is to develop a new learning algorithm 
for classifying expired or class-changed data. 
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1.4 Scope of work 

In this dissertation, the scope of work is constrained as follows: 

1. The proposed algorithm is focused on the classification problems whose data 
are expired and changed class labels. 

2. The benchmark data sets are taken from the University of California at Irvine 
(UCI) repository of machine learning database [1] to simulate the expiration or 
class change and popular data sets for the concept drift problems. Those data 
from the concept drift problems were given by U.S. National Oceanic and 
Atmospheric Administration collected from temperature, pressure, visibility, 
and other-related events of weather measurements as described in [2] and by 
New South Wales Electricity Market collected from time and demand 
fluctuations in Australia as described in [3]. 

 

1.5 Research advantage 

The proposed learning algorithm can efficiently apply to various business 
applications whose data are expired and changed class labels, e.g., electricity market, 
weather prediction, spam and fraud detection. After learning, all trained data can be 
discarded forever.  

 

1.6 Outline of the dissertation 

The remainder of the dissertation is organized as follows. Chapter II reviews the 
related literatures and the relevant backgrounds. Chapter III describes the concept of 
my proposed methods. Chapter IV shows the experimental results. Chapter V 
concludes the study. 
 

 
 
  



 

 

CHAPTER II  
LITERATURE REVIEW 

 
Incremental learning algorithms have been developed and widely applied for 

solving classification problems [4-8], such as data stream problems [9-12], large-scaled 
problems [6], and pattern recognition problems [13]. There are a lot of techniques that 
can be applied to solve these problems. For instance, the technique described in [11] 
built a decision tree incrementally to solve classification problem. Incremental kernel 
principal component analysis (IKPCA) [14], incremental principal component analysis 
(IPCA) [7], and incremental linear discriminant analysis (ILDA) [15] were proposed for 
online feature extraction in the classification system. The technique studied in [6] 
extended online incremental support vector machine (OI-SVM) to solve large-scaled 
problems consisting both in stationary environment and in non-stationary 
environment. For high dimensional data, [16] presented self-organizing incremental 
neural network by optimizing distance metric in learning process. The versatile elliptic 
basis function (VEBF) [4] can be used for one-pass-throw-away learning without storing 
all previous data. The adjusted self-organizing incremental neural network classifier 
(ASC) [8] automatically learns the number of prototypes needed to determine the 
decision boundary. In case of application to imaging field, incremental multiple-object 
recognition and localization (IMORL) [17] can automatically and adaptively learn from 
continuous video streams. These techniques can be applied to the real-world 
applications.  

A similar problem of learning in non-stationary environment was studied. In this 
environment, data can change their classes over time. This leads to the dynamical 
change of class distribution in the data space. The learning in non-stationary 
environments is known as concept drift as described in [18, 19]. Types of changing in 
non-stationary environment consist of: gradual or trend changes, and abrupt (sudden) 
changes [3]. The recent learning algorithm under various environments has been 
developed and widely studied in several classification problems such as electricity 
market prediction [20], weather prediction [3], credit card fraud protection [21], spam 



 

 

7 

detection [10], and surgery prediction [22]. For instance, the technique based on 
dynamic fuzzy pattern matching (DFPM) [23] was proposed to recognize pattern for 
the online monitoring of non-stationary environments. Linear discriminant analysis was 
applied by [24] to observe and model under gradual or abrupt changes in data 
distribution. Ensemble of subset online sequential extreme learning machine (ESOS-
ELM) [25] was proposed a change detection technique to promptly detect concept 
drift situations. The trigger-based ensemble (TBE) [22] was designed to handle concept 
drift in surgery prediction that the guidelines of referral were changed due to scientific 
developments and clinical practices. The technique of multiple expert systems also 
called ensemble systems under concept drift situations [26] was proposed to adjust 
each expert based on its loss function and weighted majority vote (WMV) [27] provided 
to be used adaptation bounds on the loss function. The difficult challenge of learning 
in various environments is how to preserve all acquired knowledge, so that it must 
decide to whatever knowledge should replace or retain for improving of its 
performance [28]. However, learning should retain any previously acquired knowledge 
which is still essentially known as “stability-plasticity dilemma”, where “stability” 
means to maintain existing knowledge and “plasticity” describes the ability to learn 
new knowledge [3]. In recent machine learning survey under non-stationary 
environments, the developed techniques have been proposed for solving problems 
under various assumptions and the following issues: 

Window-based technique: The earliest technique has been developed with 
underlying non-stationary environments by moving window containing block of the 
last training data. With this technique, the window size is considered. If a longer window 
is used for adapting, an environment of a system is slowly varied but stable and well 
trained classifier is obtained. On the other hand, a smaller window used for adjusting 
the system reacts quickly in fast changing environment but its performance may be 
low due to insufficient training data in the window. For this technique, selecting or 
adapting the window size is further studied [19]. The classifier proposed in [29] is based 
on windows of various sizes, which is more versatile and able to learn abrupt change 
of class concept than the classifier with a window of single size. 
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Ensemble of classifiers: Many recent techniques use multiple classifiers for 
solving problems in non-stationary environments. SEA [29] is the first ensemble of 
classifiers has been proposed for learning problems in non-stationary environments to 
each consecutive time window of training set. Learn++.NSE [3] can learn in these 
situations and can provide well-modeled knowledge of a good balance in both stability 
and plasticity. In addition, it still does not discard any of the classifiers which may 
contain relevant information for learning a new classifier in the future. They are 
composed of several classifiers which are combined to gain the final hypothesis. 
However, it seems that this solution consumes large time and space complexities. 

Basically, the incremental learning algorithms not only append the training data 
when the learned data are fed into the network sequentially, but also can adjust the 
network during the learning process without storing all the previous data. The following 
actions are carried out [30]: 

(1) Aggregating the new data into the existing knowledge without storing all the 
previous data.  

(2) Retaining all previous knowledge.  
Many researchers have proposed several techniques to maintain the above-mentioned 
criterion and to increase their performance. Although many incremental learning 
algorithms, such as VEBF [4], ASC [8], IPCA [7], ILDA [16], IMORL [17], the learn++ family 
of algorithms (e.g., learn++.NC [31], learn++.MF [32], and learn++.NSE [3]) in non-
stationary environments were proposed, they still do not deal with the problem of 
data that expires over the time. The VEBF algorithm is interesting among all 
incremental learning algorithms, because it can learn by using only incoming datum 
and consumes less space and time complexities. However, the VEBF algorithm cannot 
be applied is situations where the class labels are changed over time or the data are 
expired in the testing process.  
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2.1 VEBF learning algorithm 

This section provides some backgrounds related to the studied problem and 
proposed algorithm. The proposed algorithm adapted some partial concept of one-
pass-throw-away to create hidden neurons in the learning process. The summary of 
one-pass-throw-away learning and VEBF learning algorithm in [4] is the following. 

The concept of VEBF learning algorithm is based on the operation of capturing 
one incoming datum at a time. If the incoming datum does fall into the inside of any 
VEBF neuron, then no new VEBF neuron is introduced to capture this datum. 
Otherwise, a new small VEBF neuron is introduced into the network to capture this 
datum. Furthermore, if there are many VEBF neurons capturing data of the same class 
and locating close to each other, then these VEBF neurons are grouped and replaced 
by a larger VEBF neuron. Once a datum is captured, it is completely discarded from 
the training process. The brief VEBF training algorithm is given in Algorithm 1 and the 
summary of VEBF algorithm can be described by steps of flowchart as shown in  
Figure 2.1. 
 
Algorithm 1: VEBF Learning Algorithm 
1. Let 0A  be the initial width vector.  
2. Present the training datum j

x .  
3. If there exists the hidden neurons then  
4.   Find a closest hidden neuron labeled with the same class as the class of j

x   
5. Let kC  be the center vector of the closest VEBF neuron k  found in Step 4. 
6. Update the center vector kC  by including j

x . 
7. If j

x  lies inside k then 
8.     Update parameters of k  based on the direction of data distribution.  
9. Else 
10.     Introduce a new neuron.  
11. EndIf  
12. Else  
13.   Introduce a new neuron.  
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14. EndIf  
15. If there exists any two close neurons of the same class then  
16.   Merge the two neurons into one new neuron using Equations (5) – (9).  
17. EndIf  
18. Go to step 2 until the training set is empty.  
 

 
Figure 2.1 The summary of VEBF learning algorithm. 

 
The output of the th

k  neuron with respect to an input x  is computed from a 
rotated elliptic function shown in Equation (1). 

  2

2
1

( )
( ) 1

T
d

k i

k

i i


  

x C u
x  (1) 

where kC is the center vector of ellipse, iu  is the th
i  eigenvector of data covariance 

matrix distribution, and 2

i
  is the variance or eigenvalue of iu . 

For any hidden neuron k , the relevant parameters which are the new center, 
new covariance matrix, and new variance must be computed. Since all trained data 
are discarded and only the new incoming datum is used for adjusting these parameters, 
therefore the computation of these parameters must be written in forms of recursive 
functions. The following attributes are defined and involved in the adjusting process. 
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kC  is the center of k . kS  is the covariance matrix of data captured by k . kN  is 
the number of data captured by k . kA  is the width vector of k . kl is the class label 

of k . Suppose a new datum 1kN 
x  arrives and falls inside the boundary of k . The 

value of ( )k x  must be less or equal to 0.  
The new center ( )new

k
C  of k  can be computed from the old center by ( )old

k
C  

the following recursive function.  

1( ) ( )

( )
1 1

kNnew oldk
k k

k k

N

N N


 

 

x
C C  (2) 

The new covariance matrix ( )new

k
S  of k  can be formed by the following 

recursive computation with the old covariance matrix ( )old

k
S  as follows. 

( ) ( )
1 1( ) ( )

( ) ( ) ( ) ( )

( )

1 1 1

( ) ( )

k k

T old old T
N Nnew oldk k k

k k

k k k

new new T old old T

k k k k

N

N N N

 
   

  



x x C C
S S

C C C C

 (3) 

The total data captured by k  becomes 1kN  . The new variance ( )new

i
  of each 

eigenvector iu  can be easily computed from the old variance ( )old

i
  by the following 

equation. 

( ) ( ) ( ) ( )
( ) , 1

new old new old T

i i k k i i d     C C u  (4) 

Suppose any two hidden neurons a  and b  are merged into one new hidden 
neuron c . Let ( ) ( )

( , , , , )
old old

a a a a a a
N A l  C S  and ( ) ( )

( , , , , )
old old

b b b b b b
N A l  C S  be two 

hidden neurons. After merging, the new attributes can be computed by the following 
equations.  

 ( ) ( ) ( )1new old old

c a a b b

a b

N N
N N

 


C C C  (5) 

  

( ) ( ) ( )

( ) ( ) ( ) ( )

2
( )

new old olda b
c a b

a b a b

T
old old old olda b

a b a b

a b

N N

N N N N

N N

N N

  
 

 


S S S

C C C C

 (6) 
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c a bN N N   (7) 

( ) 2 , 1,2, ,new

i i
i d       (8) 

c a bd d d   (9) 

i  is the th
i  eigenvalue of the new covariance matrix ( )new

c
S . After merging, a  and 

b  are removed from the network.  
 
2.2 Merging LDA operation 

A concept of LDA is mapping the projection matrix *  in order to maximize 
class separability of the data set. The projection matrix *  is maximized as follows: 

*
argmax

T

T






 


B

W
 (10) 

where B is the between-class scatter matrix and W  is the within-class scatter matrix. 
Those are given by 

1 1

( )( )
m m

T

k k

k

k

k

kN
 

   B B C C C C  (11) 

1

m

k

k

W S  (12) 

kC , kS , kN  are the center vector, the covariance matrix, and the number of data of 
class k , respectively and C  is the center vector of the data set. 

The projection matrix *  that is a d d matrix whose columns correspond to 
the discriminant eigenvectors obtained by solving the following eigenvalue problem: 

* *  D  (13) 

where 


1
D W B  and   is an eigenvalue matrix. 
In the LDA merging operation discussed by [15], the models a  and b  can 

be denoted as the following 3-tuples: 
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({ },{ },{ })a a a aN  S C  (14) 

({ },{ },{ })b b b bN  S C  (15) 

where aS and bS  are the class covariance matrices, aC  and bC  are the class center 
vectors, and aN  and bN  are the number of data captured by the model a  and b

, respectively. Suppose there are m  classes of ( )old
N  data vectors and all-instances 

center vector ( )old
C  in the data set. Then, incremental LDA updates the all-instances 

center vector ( )new
C , the within-class scatter matrix ( )new

W , and between-class scatter 
matrix ( )new

B  given by the following. 

( ) ( ) ( ) ( )
( ) / ( )

bN
new old old old

i b

i

N N N  C C z , (16) 

( ) ( ) ( ) ( ) ( )
( )( )

new new new new new T

c c c

c

N  B C C C C , (17) 

( ) ( )
, for 1,2,...,

new new

c

c

c m W S  (18) 

where ( )new

c
C is the new center vector and ( )new

c
S  is the new covariance matrix of class 

c  given by using Equations (5) and (6), respectively. 
 
  



 

 

CHAPTER III  
PROPOSED METHOD 

 
This study concerns two types of classes. The first type is the class of all expired 

data. The second type is the classes of non-expired data. To distinguish these two 
classes in this discussion, the class of first type is called expiration class and any class 
of the second type is called live class. When a datum in expiration class, it is treated 
as a datum in class 0. This datum must be learned by a sub-network of class 0. 
However, if all data in class i  are expired, the sub-network of class i  must be entirely 
removed from the learning system. This situation is obviously different from the 
scenario studied in [4] and the others' previously mentioned. Those studies concerned 
only the condition of increasing new data which imply that the network is expanded 
throughout the training period. But in the studied case, the structure of network can 
be expanded or shrunk according to the temporal status of the incoming data. Another 
different issue from the others' studies is the problem of how to reconcile the 
indeterminate situation as previously discussed and the expansion of expired data. 
Regardless of the class, any expired data must be included in class 0. This implies that 
if all data are expired and the structure of sub-network for handling expired data is not 
appropriately designed, then the space complexity of the structure will be very high. 
The difficulty of my scenario is the arbitrary class change of data. There are two 
important scenarios to be considered.  

The first scenario concerns the arbitrary class change to any other live classes. 
Datum ix  may change its classes several times throughout its lifetime but its features 
never change. This implies that the location of datum ix  is fixed in the features space. 
When there is a class change, datum ix  must be covered by function ( )k i x  of the 
most recent class. In response to the class query of datum ix , the most recent class 
of ix  must be tested first. The problem is how to keep track of these temporal class 
changes. Figure 3.1 shows an example of class change. At the beginning, ix  is in class 
1 and, later on, its class changes to classes 2, 3, and 1, respectively. Hence, the most 
recent class is class 1 and the function ( )k i x of class 1 must be examined first if 
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there is class query of ix . Furthermore, datum ix  must be deleted from those 
previous classes 2 and 3. The members in each live class can vary according to the 
class change of each datum. 

 
 

 
Figure 3.1 An example of temporal class change. 

 
The second scenario is when datum ix  is expired and moved to class 0. 

Obviously, class 0 will be the permanent class of ix  after its expiration. Any class query 
concerning datum ix  after its expiration must receive the answer that ix  is in class 0. 
Furthermore, the number of members in class 0 keeps increasing. This implies that the 
class query of any datum j

x  must be checked with the data in class 0 first. If j
x  is 

not in class 0, then the existence of j
x  in other classes will be checked next. Notice 

that the sub-network representing Class 0 must be retained throughout the training 
and testing periods due to the permanent class changes of all data in this class. 

To resolve those discussed problems, the following issues will be concentrated 
in my proposed method. The first issue is created with the structure of the network of 
the non-expired and expired data. The structure must be expandable and shrinkable 
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according to the situations. The second issue is the representation of expired data and 
deterministic testing method. Each issue is detailed in the following sections.  

Figure 3.2 shows diagram of the overview of learning process consisting of 
proposed width vector initialization algorithm, algorithms for learning non-expired data, 
expired data, and class-changed data using VEBF and Hybrid LDA-PCA algorithms. To 
improve the performance of learning algorithm, VEBF algorithm has been applied to 
find axes with maximum variance whereas Hybrid LDA-PCA algorithm will be applied 
to seek the axes of the neuron for best class separability. In terms of non-deterministic 
situation that data are expired or changed classes, the updated parameters consisting 
of center vector and covariance matrix can be computed by using theorems 1 and 2. 
Furthermore, the updated parameters consisting of between-class scatter matrix and 
within-class scatter matrix can be computed by using proposition 1. To limit space 
complexity of increasing the expired data, a special structure of class 0 provided for 
storing all expired data in order to update vectors u  and   using theorems 3 and 4 is 
proposed. 

 

 
 

Figure 3.2 Overview of learning process. 
 

 

Width vector 
initialization 

Theorems 1, 2 

and Proposition 1 

Updateu ,   
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3.1 Proposed width vector initialization algorithm 

The initial width of a VEBF is very important to the learning speed and outcome 
accuracy. If it is too large, the VEBF may cover some data from the other classes. But 
if it is too small, it must be temporally adjusted to cover the new incoming data, which 
obviously increases the unnecessary computational time. As mentioned before, one 

of the limitations of VEBF algorithm is to find the appropriate initial width k  computed 
by the following equation. 

; 1k avD k d     (19) 

where  

2
1 1

1 N N

av i j

i j

D
N  

  x x  (20) 

As shown in Equation (19), the initial value of k  can be computed from the 
Euclidean distances among data points in a training set. The constant   is used to 

adjust the value of avD  to make k  close to its actual value which is unknown. 
Different training sets require different   values. To avoid this difficulty of determining 

the value of  , the following steps were proposed to compute the initial k  for 

1 k d  . No concept of using a constant   to adjust avD  is deployed in my algorithm. 
The initial width should be derived from the density of distances among all pairs of 
training data as follows. 
 
Algorithm 2: Initializing Width of VEBF 
Input: Training set 1{ , , }N X x x . 
Output: Initial values of 1, , d  . 
1. For each ,

i j
x x X and i j  do 

2.  Compute 
,i j i jD  x x . 

3. EndFor 
4. Let I  be a number of intervals. 
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5. Compute , , , ,max ( ) min ( )i j i j i j i jD D

I



  be the value of instance.  

6. Let 1{ , , }IB  b b  be a set of bins for storing ,i j
D .  

7. Let , ,min ( )i j i jq D .  
8. For ,

, ;
i j

i j D  do 

9.  Put ,i j
D  in bin kb  where ,

1
i j

D q
k



 
  
 

.  

10. EndFor 
11. If k  has maximum number of ,i j

D , then 

12.  Set initial 
1 2 1

2
d q k


        . 

13. EndIf 
 

3.2 Updating center vector, covariance matrix, and scatter matrices 

Unlike the scenario in [4], some data in any VEBF of every class except class 0 
in my study can be removed due to their expiration or added when they are new 
incoming data. This implies that the structure of a VEBF must be expandable and 
shrinkable. Furthermore, the center vector and covariance matrix must be re-
computed. When adding a new datum, the recursive functions for re-computing the 
center and covariance of any VEBF were already given in [4] and the within-class and 
between-class scatter matrices of LDA concept were discussed in [5] as well. But when 
removing a datum or a chunk of data from a network, the recursive functions for re-
computing the center vector and covariance matrix have not been discussed before. 
Moreover, the within-class and between-class scatter matrices can be also computed 
in the recursive functions. The details of these recursive functions are the following.  
 

Theorem 1. For k  of any non-expiration class, let X  in dR  be a set of current 

N  data vectors. Suppose ( )old

k
C  is the center vector of set X  and ( )old

k
S  is the 

covariance matrix. If j kx  is expired and moved to class 0, then  

( ) ( )

1 1

jnew old

k k

N

N N
 

 

x
C C  (21) 



 

 

19 

and 

( ) ( ) ( ) ( )1
( )( )

1

new old new new T

k k k j k j

N

N N
    


S S C x C x . (22) 

Proof The center vectors ( )new

k
C  and ( )old

k
C  are 

( )

1

 
1

1

N
new

k i j

iN 

 
  

  
C x x  

( )

1 1

jold

k

N

N N
 

 

x
C  (23) 

( )

1

  
1 N

old

k i

iN 

 C x  and 1N  . (24) 

The covariance matrices ( )new

k
S  and ( )old

k
S  are  

( ) ( ) ( )

1

( ) 
1 N

old T old old

k i i

i

T

k k
N 

 S x x C C  (25) 

( ) ( ) ( )

1

1
( )

1 1

TN
j jnew T new new T

k i i k k

iN N

  
 


x x
S x x C C . (26) 

Subtracting Equation (26) by (25), we have 

( ) ( ) ( ) ( ) ( )

1 1

1 1
( ) ( )

1 1

TN N
j jnew old T new new T T old old T

k k i i k k i i k

i iN N N 

    
 

 
x x

S S x x C C x x C C  

( ) ( ) ( ) ( ) ( ) ( )

1

1 1
( ) ( ) ( )

1 1 1

TN
j jT old old T new new T old old T

i i k k k k k k

i

N

N N N N

 
       


x x

x x C C C C C C

( ) ( ) ( ) ( ) ( )1
( ) ( )

1 1 1

T

j jold new new T old old T

k k k k k

N

N N N
   

  

x x
S C C C C  (27) 

Therefore,  

( ) ( ) ( ) ( ) ( ) ( )1
( ) ( )

1 1 1

T

j jnew old old new new T old old T

k k k k k k k

N

N N N
  




 

x x
S S S C C C C   

   ( ) ( ) ( )1

1

T
old new new

k k j k j

N

N N
    


S C x C x  (28) 

 
When a chunk of data is expired and moved to class 0, the recursive functions 

for computing the center vector and covariance matrix of k  are summarized in the 
following theorem. 
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Theorem 2. For k  of any non-expiration class, let X  in dR  be a set of data chunks. 
Set X  has N  data points. Assume that a chunk of data Z X  whose | | LZ  is 
expired and moved to class 0. Let ( )

k

X
C  be the center vector of set X ; ( )

k

X
S  be the 

covariance matrix of X ; ( )

k

Z
C  be the center vector of set Z ; and ( )

k

Z
S  be the 

covariance matrix of Z . The new center ( )new

k
C  and new covariance matrix ( )new

k
S  of 

set X Z  can be computed as follows.  

( ) ( ) ( )
( )

new

k k k

N
N L

N L
 



X Z
C C C  (29) 

and 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
( )( )

( )

new

k k k

T

k k k k

N L

N L N L

NL

N L

  
 

 


X Z

X Z X Z

S S S

C C C C

 (30) 

Proof Let  

( )

1

1 N

k i

iN 

 
X

C x  (31) 

and 

( )

1

1 L

k l

lL 

 
Z

C x . (32) 

 
From Theorem 1, the new center vector can be written as  

( ) ( )

1 1

jnew old

k k

N

N N
 

 

x
C C  (33) 

Similarly, the new center vector of a chunk of training samples is easily obtained as 
follows: 

( ) ( ) ( )1
( )

new

k k kN L
N L

 


X Z
C C C  (34) 

For the covariance matrix, let 
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( ) ( ) ( )

1

1
( )

N
T T

k i i k k

iN 

 
X X X

S x x C C  (35) 

( ) ( ) ( )

1

1
( )

L
T T

k l l k k

lL 

 
Z Z Z

S x x C C  (36) 

Hence,  

( ) ( ) ( )

1 1

1
( )

N L
new T T new new T

k i i l l k k

i lN L  

 
   

  
 S x x x x C C  

 ( ) ( ) ( ) ( ) ( ) ( )1
( ) ( )

T T

k k k k k kN N L L
N L

    


X X X Z Z Z
S C C S C C   

    2 ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

( )

T T T T

k k k k k k k k
N L NL NL

N L
  



X X Z Z X Z Z X
C C C C C C C C  

( ) ( ) ( ) ( ) ( ) ( )

2 2
( ) ( )

( ) ( )

T T

k k k k k k

N L NL NL

N L N L N L N L
    

   

X Z X X Z Z
S S C C C C  

   ( ) ( ) ( ) ( )

2 2
( ) ( )

( ) ( )

T T

k k k k

NL NL

N L N L


 

X Z Z X
C C C C  

( ) ( ) ( ) ( ) ( ) ( )

2
( )( )

( )

T

k k k k k k

N L NL

N L N L N L
    

  

X Z X Z X Z
S S C C C C  (37) 

 
Proposition 1. For k , the following attributes { , , , , }k k k k kN A lC S  of any non-
expiration class, let X  in dR  be a set of data chunks of any class k  and C  is the all-
instance center vector. There are m  classes of the data set. Assume that a chunk of 
data Z X  whose | | LZ  is expired and moved to class 0. The between-class and 
within-class scatter matrices can be updated by analogy to LDA merging, as follows: 

( ) ( ) ( ) ( ) ( )

1

( )( )( )
m

new new new new new T

k k k

k

N L


   B C C C C , (38) 

( ) ( )

1

m
new new

k

k

W S  (39) 

where ( )new
C  is new all-instance center vector, and ( )new

k
C  and ( )new

k
S  are the new center 

vector and covariance matrix in class k  computed by using Theorems 1 and 2. 
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3.3 Special structure of class 0 

The network must be able to identify a testing datum whether it is expired or 
it belongs to any class 0i  , regardless of its temporal aspect. This implies that there 
must be a special structure to keep track of these expired data throughout the 
operational period of the network. However it is obvious that the process of keeping 
track of these data may increase the space complexity of the structure because all 
expired data must be captured. In this study, I limited the space complexity of this 
special structure to ( )d L  , where d  is the number of dimensions and L  is the 
amount of new incoming data. The problem is how to limit this space complexity so 
that it has a minimum effect on the classification accuracy of the network. To resolve 
this problem, two relevant issues were considered.  

The first issue concerns the representation of all expired data in terms of a 

column vector u  in dR  such that for any expired datum , 0
T

i i
x u x . The value 0  is 

the class number. At the beginning, the value of u  is computed from the first incoming 
chunk of data Z  represented in forms of a matrix [1, ] 1[ , , ]L L V x x . The size of [1, ]L

V  
is equal to d L . Without loss of generality of class number, the value of u  is 
computed by this simple equations 

[1, ]  = 
T T

Lu V t  (40) 

[1, ]  
T T

L


u t V . (41) 

Vector t  is the column vector representing class numbers or targets of all incoming 
data and [1, ]L


V  is the pseudoinverse matrix of [1, ]L

V . The process of pseudoinverse matrix 
is employed in this computation because it is possible that the amount of incoming 
data may not be equal to the number of dimensions, i.e., L d . Since u  is computed 
from [1, ]L


V , therefore [1, ]

T T

L u V t . To make [1, ]

T

Lu V  equal to T
t , a vector   is 

computed by the following equation and added to u . 

[1, ]

T T T

L  t u V   (42) 
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The second issue focuses on how to recursively compute the values of [1, ], L


u V , 

and   with respect to only those new incoming data. In my approach, all learned data 

are thrown away. This makes the typical pseudoinverse process of LV  impossible. The 
concept proposed by Greville [33], Tapson and Van Schaik [34], Udwadia and Kalaba 
[35], and Predrag, Marko, Igor, Sladjana [36] were applied to formulate the recursive 
computations for u , [1, ]L


V , and  . The following notations are defined in order to 

formulate the recursive computations: 

 ( )iu  : the values of u  at time i . 

( )i  : the values of   at time i . 

[ , ]i j
t  : column vector t  containing the th

i  to the th
j  elements. 

[ , ]i j
V  : sub-matrix of [1, ]L

V  consisting of a set of column vectors from columns  
 i to j . 

Matrix [1, ]L
V  is decomposed into two sub-matrices, i.e., [1, ] [1, ] [ 1, ][ ]L p p LV V V  and [1, ]L

t  
is also separated into two sub-column vectors denoted as [1, ] [1, ] [ 1, ][ ]

T T T

L p p Lt t t . We 

assume that data from 1x  to p
x  are the first chunk of incoming data and the rest 1p

x  

to Lx  are new currently incoming data. From the results in [35, 36], I have  

[1, ] [ 1, ]

[1, ]

( )
T

p p L

L T

I






 
 
  

V V R
V

R
 

[1, ]

T

p

T

 
 
  




V QR

R
 (43) 

Matrices Q  and R  are computed as follows. 

[1, ] [ 1, ]  p p L



Q V V  (44) 

 
1

[1, ](( ) )  
T T

p I



 R V Q Q Q  (45) 

The value of ( )iu  and ( )i  can be recursively formulated as stated in the following 
Theorems. 
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Theorem 3. Given [ 1, ]

T

p Lt ,   
1

[1, ] [1, ] [ 1, ]( ,( )   )
T

T T T

p p p LI


 

 R V Q Q Q Q V V , 

( 1)
T

i u , and [ 1, ]p L
V , then vector ( )

T
iu  is equal to 

[ 1, ] [ 1, ]( 1) ( 1)
T T T T T

p L p Li i     u u V R t R . 
Proof Let 

[1, ] [1, ] ( ) 
T T

L Li


u t V  

[1, ] [ 1, ]

[1, ] [ 1, ]

( )
[ ]

T

p p LT T

p p L T

I






 
 
 






V V R
t t

R
 

[1, ] [1, ] [1, ] [1, ] [ 1, ] [ 1, ]

T T T T T

p p p p p L p L

 

  t V t V V R t R  

[ 1, ] [ 1, ]( 1) ( 1)
T T T T T

p L p Li i     u u V R t R  (46) 
 

Theorem 4. Given [ 1, ]

T

p Lt ,   
1

[1, ] [1, ] [ 1, ]( ,( )   )
T

T T T

p p p LI


 

 R V Q Q Q Q V V

, ( 1)
T

i u , [1, ]p


V , and [ 1, ]p L

V , then vector ( )
T

i  is equal to 

[ 1, ] [ 1, ] [1, ] [ 1, ] [ 1, ][ ( 1) ( ( 1) ) ( ) ( ) ]
T T T T T T

p L p L p p L p Li i i
 

        u V t R V t u V . 
Proof Let 

[1, ] [1, ]( ) ( )
T T T

L Li i  t u V  

[1, ] [ 1, ] [1, ] [ 1, ][ ] [ ( ) ( ) ]
T T T T

p p L p p Li i  t t u V u V  

[1, ] [1, ] [ 1, ] [ 1, ][ ( ) ( ) ]
T T T T

p p p L p Li i   t u V t u V  

[1, ] [ 1, ] [ 1, ] [1, ]

[ 1, ] [ 1, ]

[ ( ( 1) ( 1) )

( ) ]

T T T T T T

p p L p L p

T T

p L p L

i i

i

 

 

     



t u u V R t R V

t u V
 

[ 1, ] [ 1, ] [1, ]

[ 1, ] [ 1, ]

[ ( 1) ( ( 1) ) ( )

( ) ]

T T T T

p L p L p

T T

p L p L

i i

i

 

 

 

     



u V t R V

t u V
 (47) 
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3.4 Hybrid LDA-PCA algorithm 

To enhance the incremental learning algorithm, the new one-pass-throw-away 
learning algorithm based on LDA and PCA hybridization [5] can be used to compute 
the directions of the hyperellipsoid in the network by combining the orthonormal basis 
of the PCA discussed in [4] and the scatter matrices of the LDA. A detail of the algorithm 
is described in Hybrid LDA-PCA learning algorithm. 
 
Algorithm 3: Hybrid LDA-PCA Algorithm 
Inputs: Chunk of non-expired data Z .  
Output: Set of h .  
1. Initialize the width vector 0A  based on Algorithm 2. 
2. For each i x Z  do  
3.   If there exists the hidden neurons then  
4.       Find a closest hidden neuron labeling the same class of datum ix   

    measured by: 
arg min( )i h

h

t  x C  

    where hC  is the center vector of the th
h  neuron.  

5.       Compute the new center vector tC  and the new covariance matrix  
    tS  based on Equations (5) and (6), respectively.  

6.       If ( ) 0t i x  then  
7.    Compute the within-class scatter matrix W .  
8.    If W  is a non-singular matrix then  
9.     Compute the eigenvectors and the eigenvalues by using  

Equation (13) based on the LDA concept.  
10.    Else  
11.     Compute the eigenvectors and the eigenvalues by 

using the orthonormal basis of VEBF algorithm.  
12.    EndIf  
13.       EndIf  
14.   Else  
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15.       Create a new neuron.  
16.   EndIf  
17. EndFor 
 
3.5 Dynamical structure of proposed network for learning the expiration and 
live classes 

Since obtaining the correct class of any datum concerns the most recent class 
change of datum, a new structure was proposed to handle this complexity in this 
research. The structure consists of two strata as shown in Figure 3.3. Assume that there 
are four classes which are 0, 1, 2, and 3. Without loss of generality, I assume that the 

network of each class i  has only one output denoted by iy . The upper stratum is for 
class 0. A 3-layer feed-forward network is employed to learn all data in this class. The 
lower stratum is for all live classes. All classes in the lower layer is learned by a 3-layer 
network. The hidden layer of this network consists of several groups of neurons, i.e. 
one group for one class. 
 

 
Figure 3.3 The proposed stratous structure for handing live and expired class changes. 
The upper stratum is for expired class and the lower stratum is for all live classes. 
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Figure 3.4 shows the concept of how the proposed structure is evolved during 
the learning process of streaming data. The output neuron of class i  is denoted by 

iy . Suppose during the first period all incoming data are in class 1 and they are learned 
by hidden neurons in class-1 group as shown in Figure 3.4(a). Then the data in class 2 
flow in during the next period. All class-2 data are learned by the hidden neurons in 
class-2 group as shown in Figure 3.4(b). If some already learned data in class 2 are 
expired, these expired data will be assigned to class 0 in upper stratum as shown in 
Figure 3.4(c). Next all data in class 2 are expired and there are some new incoming 
class-3 data. This causes the entire structure of class 2 to be removed and all expired 
data are moved to class 0 in the upper stratum whilst the hidden neurons in class-3 
group are created as shown in Figure 3.4(d). After that if some expired data are revived 
to class 2, then the sub-structure of class 2 will be recreated in lower stratum again as 
shown in Figure 3.4(e). Subsequently, other some expired data are changed to new 
class 4, the sub-structure of class 4 will be created as shown in Figure 3.4(f). 

 
 
 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 3.4 The dynamical structure of proposed network. (a) Suppose at the beginning 
all incoming data are in class 1 and learned by the sub-structure of class 1. (b) Some 
additional new incoming data in class 2 are learned by the sub-structure of class 2. (c) 
Some data in class 2 are expired and learned by sub-structure of class 0 in upper 
stratum. (d) All data in class 2 are expired and there are some new incoming data of 
class 3 learned by the sub-structure of class 3. The sub-structure of class 2 is entirely 
removed and the expired data of class 2 are moved to class 0 in the upper stratum. 
(e) Some expired data in class 0 are revived and recreated the sub-structure of class 2 
in lower stratum. (f) Other expired data in class 0 are changed to new class 4 learned 
by the sub-structure of class 4 in the lower stratum.  
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3.6 Dynamical structure of proposed network for learning with special structure 
of class 0 

The structure for class 0 is different from the other classes. The difference is 
the sub-structure for handling class 0. Figure 3.5 shows the concept of proposed 
structure. The output neuron of class i  is denoted by iy . Suppose during the first 
period all incoming data are in class 1 and they are learned by hidden neurons in 
class-1 group as shown in Figure 3.5(a). Then the data in class 2 flow in during the next 
period. All class-2 data are learned by the hidden neurons in class-2 group as shown 
in Figure 3.5(b). If some already learned data in class 2 are expired, then these expired 
data are assigned to class 0 as shown in Figure 3.5(c). To distinguish class-0 structure 
from the other class structures, a square is used to denote the special structure of 
class 0. Next we assume that all data in class 2 are expired and there are some new 
incoming data of class 3. This causes the entire structure of class 2 to be removed and 
all expired data are moved to class 0 as shown in Figure 3.5(d). Note that the size of 
class 0 keeps increasing. Furthermore, the sub-structure of class 3 is created to learn 
the new incoming data. 
 

  
(a) (b) 
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(c) (d) 

Figure 3.5 The dynamical structure of proposed network with special structure of 
class 0 
 
3.7 Proposed learning and testing algorithms with special structure of class 0 

To keep track of increasing expired data, the special structure of class 0 was 
proposed for storing all expired data. From the key idea of the proposed network 
mentioned, my proposed algorithm named Hybridization Multi-Stratum Network 
Learning (Hybrid-MSNL) is composed of the following three main steps.  

The first step is to learn all data of different classes in the first incoming chunk 
by using the concept of Hybrid LDA-PCA algorithm. After learning, there exists a set of 
neurons with relevant parameters as discussed in this Section. We assume that there 
is no expired data in the first chunk of incoming data. Each incoming datum ix  is 
tagged with its class. Those already learned data are discarded from the learning 
process forever.  

The second step is to learn other temporally incoming data chunks. Some data 
may be in class 0 or in any class 0i  . Those data whose class 0i   are learned by 
the same algorithm as those data in the first data chunk. Some new neurons in different 
classes may be introduced to the network to learn these non-expired data. But for 
those expired data, all previously learned neurons from these data which are not 
formerly expired are considered. The number of data in these considered neurons is 
decreased. After decreasing, if the number of data in any one of these neurons is equal 
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to zero, then the neuron and its links are entirely removed from the network. For any 
neuron a , its parameters ( ) ( )

( , , , , )
old old

a a a a a
N A lC S  are updated afterwards. The 

parameters 
[ 1, ] , , ( 1)
T T T

p L i t R u , ( 1)
T

i  , and [ 1, ]p LV  of special structure of class 0 
are updated as well. This step is continued until there is no more incoming data. The 
details of steps 1 and 2 are described in Algorithm 4. 

The third step is to predict the class of any testing datum ix  denoted as 
( )iclass x  by using the facts in Theorems 3 and 4 for those expired data and the 

following condition for non-expired data. Let hs  be a set of neurons with class label 

hl .  

 ( ) arg min ( ) |ik k h
h

iclass    x x s  (48) 

where ( )ik x  according to Equation (1) is the output of hidden neuron k and hl  is 
the class label of (.)k . Algorithm 5 shows the detail of this predicting process.  
 
Algorithm 4: Hybridization Multi-Stratum Network Learning (Hybrid-MSNL)  
Input: Chunks of data.  
Output: Set of h , T

u , and T .  
1. Get the first data chunk and learn these data by using Hybrid LDA-PCA algorithm. 

Discard all data after learning.  
2. Get the second data chunk and separate the data into expired data set E  and 

non-expired data set Z .  
3. Learn data set Z  by using Hybrid LDA-PCA algorithm and applying Theorems 1 and 

2 to adjust all parameters of each h .  
4. Let hcount  be the number of data learned by h  obtained from steps 1 and 3.  
5. Let p  be the amount of expired data in E .  
6. Form [1, ]p

V  and compute 
[1, ]p


V , (1)

T
u , and (1)

T
 .  

7. For each j
x E  do  

8.   If ( ) 0
h j

 x  then  
9.       Set 1h hcount count  .  
10.       If hcount  is equal to 0 then  
11.    Remove h  and its links from the network.  
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12.       EndIf  
13.   EndIf  
14. EndFor  
15. Discard sets E , Z , and all learned data.  
16. Let 1i   denote the time step.  
17. While there exists a new incoming data chunk do  
18.   Set 1i i  .  
19.   Separate the data into expired data set E  and non-expired data set Z .  
20.   Learn data set Z  by using Hybrid LDA-PCA algorithm and applying Theorems 

1 and 2 to recursively adjust all parameters of each h .  

21.   For each newly created h  do  

22.    Let hcount  be the number of data learned by each h  obtained  
from step 20.  

23.   EndFor  
24.   Let L  be the amount of expired data in E .  
25.   Form [1, ]L

V  and recursively compute 
[1, ]L


V , ( )

T
iu , and ( )

T
i  by using Theorems 

3 and 4 with ( 1)
T

i u , and ( 1)
T

i  .  
26.   For each j

x E  do  
27.       If ( ) 0

h j
 x  then  

28.    1h hcount count  .  
29.    If hcount  is equal to 0 then  
30.        Remove h  and its links from the network.  
31.    EndIf  
32.   EndIf  
33.  EndFor  
34. Discard sets E , Z , and learned data.  
35. EndWhile  
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Algorithm 5: Predicting Class of Testing Datum  

Input: A testing datum j
x , T

u , T , and all k .  
Output: Predicted ( )

j
class x .  

1. If T T

j  u x  is equal to 0  then  
2.  Set ( ) 0jclass x .  
3. Else  

4.  Let hs  be a set of neurons.  
5.   Set  ( ) arg min ( ) |

jk k h
h

j
class    x x s .  

6. EndIf  
 

3.8 Example of hybridization multi-stratum learning process 

To illustrate how Hybrid-MSNL works, Figure 3.6 shows an example of the 
snapshot of events when some data are expired and some are new incoming. Suppose 
there are two neurons of classes 1C  and 2C  in the forms of two versatile elliptic 
functions. At the beginning shown in Figure 3.6(a), there are ten data denoted by ten 
“+” symbols in class 1C  and four data denoted by four “” symbols in class 2C . 
After that, two data in class 1C  are expired. This causes the neuron in class 1C  to 
shrink its size and the expired data are removed to class 0 as shown in Figure 3.6(b) - 
(c). In Figure 3.6(d), there are more new incoming data, i.e., three of class 1C  and six 
of class 2C . Those data of class 2C  lie outside the versatile elliptic function but those 
of 1C  lie inside the versatile elliptic function. Therefore only the versatile elliptic 
function of 1C  must be expanded to cover the new incoming data. For the last event 
shown in Figure 3.6(e), three data in 1C  are expired but none is expired in 2C . To 
reduce the possible prediction error, the size of versatile elliptic function of 1C , the 
expired data are moved to class 0 as shown in Figure 3.6(f). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.6 An example of how Hybrid-MSNL works. Assume that there two neurons of 
classes C1 and C2 in forms of versatile elliptic functions. (a) The beginning situation. 
There are ten data in C1 and four data in C2. (b) Two expired data in C1 but none in 
C2. The versatile elliptic function of C1 is shrunk. (c) The versatile elliptic function of 
C1 after being shrunk. (d) Expanding the versatile elliptic function of C1 to cover three 
new incoming data. (e) Three more new expired data of C1. The versatile elliptic 
function of C1 is shrunk. (f) The final situation. 
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3.9 Proposed learning and testing algorithms in case of expiration and live 
classes 

Since any data can be temporally expired, therefore it is possible that any 
neuron and its links can be entirely removed from the network when all data learned 
by the neuron are expired. From this observation, my proposed algorithm named 
Multi-Stratum Network Learning (MSNL) is composed of the following three main 
steps.  

The first step is to learn all data of different classes in the first incoming chunk 
by using the concept of VEBF algorithm. After learning, there exists a set of neurons 
with relevant parameters as discussed in previous Section. We assume that there is no 
expired data in the first chunk of incoming data. Each incoming datum ix  is tagged 
with its class. Those already learned data are discarded from the learning process 
forever.  

The second step is to learn other temporally incoming data chunks. Some data 
may be in class 0 or in any class 0i  . Those data whose class 0i   are learned by 
the same algorithm as those data in the first data chunk. Some new neurons in different 
classes may be introduced to the network defined in its lower stratum to learn these 
non-expired data. But for those expired data, all previously learned neurons from these 
data which are not formerly expired are considered. The number of data in these 
considered neurons is decreased. After decreasing, if the number of data in any one 
of these neurons is equal to zero, then the neuron and its links are entirely removed 
from the network. For any neuron a , its parameters ( ) ( )

( , , , , )
old old

a a a a a
N A lC S  are 

updated afterwards. Since each datum ix  can have different class changes during its 
lifetime, thus achieving the correct response of class query for ix  requires a time 
tracking process of the neuron used to learn ix . To distinguish the neurons in the 

upper and lower strata, notations ( )lo

a
  and ( )up

b
 denote neuron a  in the lower 

stratum and b  in the upper stratum, respectively. Let a  be the time stamp of neuron 
( )lo

a
  when it learns ix . 

The value of learning time a  of the neuron ( )lo

a
  in lower stratum can be 

computed as the following equation. 
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( ) ( )
( ) ( )

( ) ( )

(1 )
old new

new old a a
a a old new

a a

N N

N N

 
 

  
   

 

 (49) 

where 0 0.5  . The structure of class 0 are updated in upper level as well. This 
step is continued until there is no more incoming data. The details of steps 1 and 2 
are described in Algorithm 6.  

The third step is to predict the class of any testing datum ix  denoted as 

( )iclass x  by using the following condition. Let hs  be a set of neurons in lower level 
with class label h .  

( ) (lo)

k i
( ) arg max( | and ( ) 0)lo

i k k h
h

class     x s x  (50) 

or 

 ( ) ( )
( ) arg min ( ) |

lo lo

i k i k h
h

class    x x s  (51) 

where ( )
( )

k

lo

i
 x  according to Equation (1) is the output of hidden neuron ( )

k

lo
  in lower 

stratum. Algorithm 7 shows the detail of this predicting process. 
 
Algorithm 6: Multi-Stratum Network Learning (MSNL)  
Input: Chunks of data.  

Output: Sets of ( )

k

lo
 , ( )

k

up
 , and k . 

1. Get the first ( )old
N data chunk and learn these data by using VEBF algorithm. Discard 

all data after learning.  

2. Let ( )

k

old
N  be the number of data learned by each neuron in any stratum. 

3. Set initial time stamp 0k   for each neuron k . 
4. Get the second data chunk and separate the data into expired data set E  and 

non-expired data set Z .  

5. Learn data set Z  by using VEBF algorithm and adjust all parameters of each ( )lo

k
  

by applying Theorems 1 and 2.  

6. Learn data set E  by using VEBF algorithm and adjust all parameters of each ( )

k

up
  

used by applying Theorems 1 and 2.  

7. Let ( )

k

new
N  be the number of data learned by each neuron k  in any stratum. 
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8. Update each k  of each neuron k  in lower stratum by using ( )

k

old
N  and ( )

k

new
N  

with Equation (49).  

9. Reset ( )

k

old
N = ( )

k

new
N  for each neuron k .  

10. For each neuron ( )lo

k
  in the lower stratum do 

11.   If ( )

k

old
N  of neuron ( )lo

k
  is equal to 0 then  

12.   Remove ( )lo

k
  and its links from the network in the lower stratum.  

13.   EndIf  
14. EndFor 
15. Discard sets E , Z , and all learned data.  
16. While there exists a new incoming data chunk do  
17.  Separate the data into expired data set E  and non-expired data set Z .  
18.   Learn data set Z  by using VEBF algorithm. 
19.   For any datum x i Z and ( )

(x ) 0
up

k i
   do  

20.   If x i  is learned by neuron ( )up

k
  then  

21.     Remove x i  from ( )up

k
  and adjust all parameters of ( )up

k
   

by using Theorems 1 and 2.  
22.    EndIf  
23.   EndFor 

24.   Let ( )

k

new
N  be the number of data learned by each neuron k  in any stratum.  

25.  Update each k  of each neuron k  in lower stratum by using ( )

k

old
N  and ( )

k

new
N   

 with Equation (49).  

26.   Reset ( )

k

old
N = ( )

k

new
N  for each neuron k .  

27.   For each neuron ( )up

k
  in the upper stratum do 

28.    If ( )

k

old
N  of neuron ( )up

k
  is equal to 0  then   

29.    Remove ( )lo

k
  and its links from the network in  

the upper stratum.  
30.    EndIf  
31.   EndFor 
32.   Learn data set E  by using VEBF algorithm in upper stratum and  
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adjust all parameters of ( )

k

up
  used by applying Theorems 1 and 2. 

33.   For each neuron ( )lo

k
  in the lower stratum do 

34.    If ( )

k

old
N  of neuron ( )lo

k
  is equal to 0  then  

35.    Remove ( )lo

k
  and its links from the network in  

the lower stratum.  
36.    EndIf  
37.   EndFor  
38.   Discard sets E , Z , and learned data.  
39. EndWhile  

 
Algorithm 7: Predicting Class of Testing Datum  

Input: A testing datum j
x , all of ( )

k

lo
  and ( )

k

up
 , and k .  

Output: Predicted ( )
j

class x .  
1. If ( )

(x ) 0
up

k i
   then  

2.   Set ( ) 0jclass x . 

3. ElseIf ( )
0

k

lo
   then  

4.   Let hs  be a set of neurons in lower stratum such that ( )
0

k

lo
  .  

5.   Set ( ) (lo)

k i
( ) arg max( | and ( ) 0)lo

i k k h
h

class     x s x .  

6. Else  

7.   Let hs  be a set of neurons in lower stratum.  
8.   Set  ( ) ( )

( ) arg min ( ) |
lo lo

i k i k h
h

class    x x s .  

9. EndIf  
 
3.10 Example of multi-stratum learning process 

To illustrate how MSNL works, Figure 3.7 shows an example of the snapshot of 
events when some data are expired and some are new incoming. Suppose there are 
two neurons of classes 1C  and 2C  in forms of two versatile elliptic functions. At the 
beginning shown in Figure 3.7(a), there are ten data denoted by ten stars in class 1C  
and four data denoted by four thick dots in class 2C . After that, two data in class 1C  
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are expired. This causes the neuron in class 1C  to shrink its size and the expired data 
are removed to class 0 as shown in Figure 3.7(b). In Figure 3.7(c), there are more new 
incoming data, i.e., three of class 1C  and four of class 2C . Those data of class 2C  lie 
outside the versatile elliptic function but those of 1C  lie inside the versatile elliptic 
function. Therefore only the versatile elliptic function of 2C  must be expanded to 
cover the new incoming data. In Figure 3.7(d), three data in 1C  are expired but none 
is expired in 2C . To reduce the possible prediction error, the size of versatile elliptic 
function of 1C  is shrunk. After shrinking the versatile elliptic function of 1C , the expired 
data are moved to class 0 as shown in Figure 3.7(e). For the last event shown in Figure 
3.7(f), the class labels of two expired data are changed to new class 3C . 
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Figure 3.7 An example of how MSNL works. Assume that there two neurons of classes 
C1 and C2 in forms of versatile elliptic functions. (a) The beginning situation. There are 
10 data in C1 and four data in C2. (b) Two expired data in C1 but none in C2. The 
versatile elliptic function of C1 is shrunk. (c) Expanding the versatile elliptic function of 
C1 and C2 to cover three new incoming data and four new incoming data, respectively. 
(d) Three more new expired data of C1. The versatile elliptic function of C1 is shrunk. 
(e) The versatile elliptic function of C1 after being shrunk. (f) There are two expired 
data changed to new class C3. 
 
 



 

 

CHAPTER IV  
EXPERIMENTAL RESULTS AND DISCUSSION 

 
In case of non-expired and expired data, the performance of proposed 

algorithm was evaluated and compared with the existing methods. The percentage of 
the average accuracy and the computational time were concentrated as the evaluating 
measures. Total 10 benchmarked data sets (both 2-class and multi-class labels) shown 
in Table 4.1 were collected from the University of California at Irvine (UCI) repository 
of machine learning database [1] and popular data sets were taken from the concept 
drift problems. Those data from the concept drift problems were given by New South 
Wales Electricity Market collected from time and demand fluctuations in Australia as 
described in [2] and by U.S. National Oceanic and Atmospheric Administration taken as 
temperature, pressure, visibility, and other-related events of weather measurements 
as described in [3]. 
 
Table 4.1 The benchmark data sets in my experiments with special structure  
class 0 

Data sets Source # Instances # Attributes # Classes 
Derm UCI 358 34 6 
VehicleSilhouette UCI 846 18 4 
Leaf UCI 340 15 36 
EyeDetectioin UCI 14980 14 2 
Spambase UCI 4601 57 2 
PimaDiabetes UCI 768 8 2 
BanknoteAuthen UCI 1372 4 2 
Skin UCI 245057 3 2 
Weather Concept drift 18159 8 2 
Electric Concept drift 45312 8 2 
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In case of expired and class-changed data, the performance of proposed MSNL 
algorithm was evaluated and compared with the existing methods. The percentage of 
the averaged accuracy and the computational time were concentrated as the 
evaluating measures. Total 12 benchmarked data sets (both 2-class and multi-class 
labels) as shown in Table 4.2 were collected from UCI database [1] given different from 
Table 4.1 and popular data sets for the concept drift problems the same as Table 4.1. 
 
Table 4.2 The benchmark data sets in experiments with temporal class change 

Data sets Source # Instances # Attributes # Classes 
Balance UCI 625 4 3 
BreastCancer UCI 683 9 2 
Haberman UCI 306 3 2 
Sonar UCI 208 60 2 
Thyroid UCI 215 5 3 
Vertebral UCI 310 6 3 
Movement UCI 360 90 15 
Wine UCI 178 13 3 
Image UCI 2310 19 7 
Waveform UCI 5000 21 3 
Weather Concept drift 18159 8 2 
Electric Concept drift 45312 8 2 

 
Since the compared algorithms were not designed to handle the situation of 

data expiration, the following experimental set-up was conducted to fairly evaluate 
their performances. The data in both class 0 and the other classes were mixed into 
one training data chunk for VEBF algorithm, OI-SVM, ASC, learn++.NSE, and WMV 
methods. Algorithm 8 was used to generate the data in class 0 and changed class data. 
For my experimental set-up, the same set of data used by those compared algorithms 
was also used in my experiment. But the data were randomly partitioned into several 
chunks to test my concept of one-pass-throw-away learning approach.  
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4.1 Setting live and expired states to experimental data sets 

Cross Validation (CV) is a commonly used technique for assessing the 
performance of a model. For state-of-the-art cross validation, distribution optimally 
balanced standard stratified cross validation (DOB-SCV) as presented in [37] is a 
technique to reduce the impact of partition-induced covariate shift with the reliability 
of classifier performance through cross validation. In processing steps of DOB-SCV, first 
of all, an unassigned example is randomly selected and then its 1k   nearest 
unassigned neighbors of the same class are considered. After that, it assigns each of 
those examples to a different fold. The process is repeated until all examples are 
assigned. The whole process is repeated for each class. From the concept of DOB-SCV, 
it can be applied for creating expired and class-changed data with optimal distribution 
in the entire data set. The detail of how to create expired and class-changed data 
based on DOB-SCV in each fold is summarized in Algorithm 8. Suppose that the training 
and testing sets are already formed and no expired data exist in these sets prior to the 
execution of Algorithm 8.  

During the testing process, my proposed network must be able to determine 
the recent class of any datum ax  after its class has been previously changed several 
times. Therefore, some datum already learned are included in the testing set to 
evaluate this capability of the network. Let M  be the original set of classes in a given 
data set before my class set-up process. In all experiments, without loss of generality, 
only 10 percent of training data were used for setting up live and expired states in 
training and testing processes. One of the following four events regarding the live and 
expired states is randomly set up for each training and testing datum ax .  

Suppose datum ax  is originally in class j M .  
1. Event 0: Set ax  to class 0. 
2. Event 1: Set ax  to its original class j . 
3. Event 2: Set ax  to any other class k M  and k j . 
4. Event 3: Set ax  to a new class M  . 
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Algorithm 8: Setting Expired and Class-Changed Data for Training and Testing  
Input: A training set ( )TrainT  and a testing set ( )testT  obtained by applying DOB-SCV 
concept.  
Output: The training set ( )TrainT  and testing set ( )testT  with some expired and class-
changed data in both sets.  
1. Let f  be the number of folds and e  be the maximum number of expired data.  
2. For each class j  in ( )TrainT  do  
3.   Set 0i  .  

4.   While i
m

e
  do  

5.    Randomly select a datum ax  and its closest neighbor bx  in  
the same class j .  

6.    Let   be the duplicate of ax . 
7.    Let   be the duplicate of bx . 
8.    Set target classes of   and   to 0. 
9.    Randomly select an event {0,1,2,3} . 
10.    Case event do  
11.     0: Set ( ) ( )

{ , }
train train

T T    . 
12.        Set ( ) ( )

{ , }
test test

T T    . 
13.    1: Set target classes of ax  and bx  to the same class j . 
14.        Set ( ) ( )

{ , } { , }
train train

a b
T T     x x . 

15.       Set ( ) ( )
{ , }

test te

a

st

b
T T  x x . 

16.    2: Set target classes of ax  and bx  to k M  and k j . 
17.       Set ( ) ( )

{ , } { , }
train train

a b
T T     x x . 

18.       Set ( ) ( )
{ , }

test te

a

st

b
T T  x x . 

19.    3: Set target classes of ax  and bx  to a new class M  . 
20.       Set ( ) ( )

{ , } { , }
train train

a b
T T     x x . 

21.       Set ( ) ( )
{ , }

test te

a

st

b
T T  x x . 

22.    EndCase 
23.   Update i i f  .  
24.   EndWhile  
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25. EndFor  
 
4.2 Performance evaluation and comparison  

The performance of the proposed algorithm was compared with families of 
incremental learning of VEBF neural network [4], OI-SVM neural network [6], ASC neural 
network [8], concept drift incremental learning of learn++.NSE [3], and WMV [27]. The 
same initial width vector set-up was adopted from VEBF algorithm given by Algorithm 
2. Moreover, the value of this initial width was used in VEBF algorithm and also defined 
for tuning the optimal expansion of Gaussian kernel in the experiments of OI-SVM and 
ASC methods. Other user-defined parameters were optimized by using the technique 
of grid search reported in [6, 8] to obtain the optimal values in the experiments of OI-
SVM and ASC methods. The sigmoid parameters for the learn++.NSE recommended in 
[3] were set to 0.5 and 10. The learn++.NSE and WMV applied classification and 
regression tree (CART) as their base classifier and the ensemble size was limited to the 
number of MSNL neurons according to each experiment. The parameters and their 
values used in MSNL experiment were given by Table 4.3. All results summarized in 
this section are averaged according to 10 runs. By considering the data sets, we 
randomly divided each data set into five disjoint subsets (a 5-fold cross validation 
strategy). Then, four subsets were used as the training data and the rest as the testing 
data. Each of five subsets was taken turns to be a testing subset and the rest were the 
training subsets. This taking turns was repeated five times in each run. Consequently, 
the average accuracy and computational time were used for evaluating the 
performance of each algorithm. 
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Table 4.3 Setting the parameters in experiments 
Data sets # Classes (m) I    

Balance m=3 10*m 0.3 
BreastCancer m=2 4*m 0.2 
Haberman m=2 50*m 0.3 
Sonar m=2 50*m 0.3 
Thyroid m=3 50*m 0.2 
Vertebral m=3 4*m 0.2 
Movement m=15 4*m 0.2 
Wine m=3 10*m 0.2 
Image m=7 50*m 0.2 
Waveform m=3 8*m 0.3 
Weather m=2 10*m 0.2 
Electric m=2 10*m 0.2 

 

4.2.1 Experimental results with special structure of class 0 
The names of data sets, number of instances, number of attributes (or 

dimensions), and number of classes used in my experiments are summarized in Table 
4.1. The comparison results from different algorithms for all data sets are shown in 
Table 4.4 and Figure 4.1 displays these average accuracy in terms of expired and non-
expired data in a form of graph. The comparison was focused on the learning time and 
the average accuracy of classification with standard deviation shown in parenthesis. 
There were five folds in each experiment. My Hybrid-MSNL achieved the almost highest 
average accuracy for all data sets because Hybrid-MSNL gradually and temporally 
adjusted the neural parameters according to the new incoming data chunk during the 
learning process but the other algorithms adjusted their neural parameters based on 
the whole data set. This may imply that local information of how the data are 
distributed in the space is rather crucial to speed up the learning time complexity and 
accuracy. For some data sets, my approach spent more learning time than learn++.NSE 
and WMV methods. 
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Table 4.4 The average performance of data sets with special structure of class 0 

 
 
 
 
 
 
 
 
 
 
 
 

Data sets 

Hybrid-MSNL VEBF OI-SVM NSE WMV 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Derm  2.94 78.37(3) 2.6 74.16(3) 16.7 65.97(2) 1.19 29.53(1) 1.293 54.01(1) 

Vehicle-

Silshouette  19.8 75.47(2) 22.9 59.81(1) 205 51.58(2) 15.68 42.1(1) 15.57 51.79(1) 

Leaf  0.98 76.78(3) 1.57 69.56(4) 206.79 68.59(3) 1.38 57.09(2) 1.03 55.62(1) 

EyeDetect  121.98 78.23(2) 129.42 59.47(4) 13591.59 67.34(5) 30.05 60.16(2) 34.53 70.42(2) 

Spam  57.09 81.28(3) 69.89 71.84(8) 2754 61.5(4) 18.24 73.86(1) 17.18 73.37(2) 

PimaDiabetes  2.61 80.66(4) 2.47 61.77(4) 11.25 68.2(9) 1.487 51.31(1) 1.584 63.47(1) 

Banknote-

Authen  2.47 98.24(1) 1.49 61.61(4) 5.96 71.65(3) 1.438 62.43(2) 1.423 55.43(3) 

Skin  317 82.99(3) 1896 79.48(2) 30163 75.89(5) 1984 66.03(2) 1576 56.08(2) 

Weather  18.12 80.52(5) 29.59 60.65(6) 154.89 55.89(7) 19.67 70.42(2) 15.89 65.49(3) 

Electric  29.86 75.29(3) 41.61 59.15(3) 2497.14 60.16(5) 26.81 61.22(4) 17.87 64.19(3) 
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Figure 4.1 The comparison of overall average accuracy in terms of in terms of expired 
and non-expired data 

 
To demonstrate the effect of percentage of expired data versus the accuracy, 

five experiments with different percentages 0%, 5%, 10%, 15%, and 20% of expired 
data were tested. The overall average accuracy of class 0 and the other classes with 
different percentage of expired data obtained from each algorithm for BanknoteAuthen 
data set is shown in Figure 4.2. Each experimental result with different percentage 
depicts in a form of graph shown in Figures 4.3 – 4.7. The results concerning this effect 
for the other data sets are not shown due to the sizes of Figures. Observe that the 
average accuracy of expiration class of Hybrid-MSNL and learn++.NSE is rather stable 
and almost independent from the percentage of expired data. But this is not true for 
the other algorithms. However, for the non-expiration classes, my approach produced 
slightly less accuracy than that of OI-SVM, but my approach produced more accuracy 
than learn++.NSE and others'.  
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Figure 4.2 The average accuracy of BanknoteAuthen data set 

 
 

 
Figure 4.3 The average accuracy of BanknoteAuthen data set without expired data 
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Figure 4.4 The average accuracy of BanknoteAuthen data set with percentage 5% of 
expired training data 
 
 

 
Figure 4.5 The average accuracy of BanknoteAuthen data set with percentage 10% of 
expired training data 
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Figure 4.6 The average accuracy of BanknoteAuthen data set with percentage 15% of 
expired training data 
 
 

 
Figure 4.7 The average accuracy of BanknoteAuthen data set with percentage 20% of 
expired training data 
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4.2.2 Experimental results with temporal class change 
The names of data sets, number of instances, number of attributes (or 

dimensions), and number of classes used in my experiments are summarized in Table 
4.2. The comparison results from different algorithms for all data sets are shown in 
Table 4.5 and Figure 4.8 displays these average accuracy in terms of expired and class-
changed data in a form of graph. The comparison was focused on the learning time 
and the accuracy of classification with standard deviation shown in parenthesis. There 
were five folds in each experiment. My MSNL achieved the highest average accuracy 
for all data sets because MSNL gradually and temporally adjusted the neural 
parameters according to the new incoming data chunk during the learning process but 
the other algorithms adjusted their neural parameters based on the whole data set. 
This may imply that local information of how the data are distributed in the space is 
rather crucial to speed up the learning time complexity and accuracy. For some data 
sets, my approach spent more learning time than VEBF, WMV, and ASC methods.  
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Table 4.5 The average performance of data sets with temporal class change 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data 
sets 

MSNL VEBF OI-SVM ASC NSE WMV 

Training 
time 

Accuracy 
(%) with its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time 

Accuracy 
(%) with 
its 
standard 
deviation 

Training 
time  

Accuracy 
(%) with 
its 
standard 
deviation 

Balance  0.75 87.64(3) 1.17 74.28(2) 16.7 76.85(3) 10.32 60.29(1) 1.26 69.97(5) 0.68 65.12(4) 

Breast-

Cancer  1.37 88.36(6) 2.26 66.74(6) 1.93 75.69(2) 1.92 74.57(6) 1.47 73.66(1) 1.41 69.12(3) 

Haberman  1.36 89.48(3) 1.71 69.13(10) 8.77 68.2(10) 9.72 69.09(12) 2.15 68.41(3) 1.29 61.73(4) 

Sonar  0.42 86.63(3) 0.39 79.85(7) 0.76 64.26(10) 0.67 58.79(13) 0.48 70.4(4) 0.46 65.09(4) 

Thyroid  0.71 90.36(6) 0.86 73.56(5) 1.08 82.55(3) 0.121 68.55(10) 0.94 84.99(8) 0.82 76.37(5) 

Vertebral  0.15 88.04(4) 0.15 75.43(9) 2.32 86.52(6) 0.18 76.09(6) 0.17 80.43(2) 0.16 73.44(4) 

Movement  6.68 90.59(7) 8.64 76.98(10) 6.47 70.95(4) 6.09 61.11(3) 7.34 62.86(5) 6.26 62.7(3) 

Wine  0.41 81.17(4) 0.47 72.87(3) 0.67 65.71(9) 0.97 68.43(6) 0.49 75.86(5) 0.29 72.76(2) 

Image  17.7 87.68(2) 25.9 78.96(11) 44.43 65.57(12) 79.12 75.67(2) 68.78 68.11(3) 36.52 60.73(9) 

Waveform  15.7 75.82(6) 16.6 65.26(3) 40.56 67.91(5) 29.58 49.77(3) 29.08 65.53(3) 14.34 59.09(6) 

Weather  24.12 82.85(5) 25.59 61.69(6) 159.89 58.76(8) 120.23 53.66(7) 58.67 71.22(6) 37.89 66.39(7) 

Electric  34.99 78.46(8) 35.12 67.47(7) 249.43 70.49(10) 213.87 65.97(8) 95.52 69.53(9) 59.11 68.69(6) 
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Figure 4.8 The comparison of overall average accuracy in terms of expired and class-

changed data 
 

To demonstrate the effect of percentage of data expired and changed class 
versus the accuracy, four experiments with different percentages 0%, 10%, 20%, and 
30% of expired and class-changed data were tested. The overall average accuracy of 
non-expired, expired, and class-changed classes with different percentage of expired 
data obtained from each algorithm for Thyroid data set is shown in Figure 4.9. Each 
experimental result with different percentage depicts in a form of graph shown in 
Figures 4.10 - 4.13. The results concerning this effect for the other data sets are not 
shown due to the sizes of Figures. Observe that the average accuracy of MSNL is rather 
stable and almost independent of the percentage of expired data and data changed 
class. But this is not true for the other algorithms. However, for live classes, my 
approach produced slightly less accuracy than that of OI-SVM and learn++.NSE.  
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Figure 4.9 The average accuracy of Thyroid data set 

 
 

 
Figure 4.10 The average accuracy of Thyroid data set without expired data 
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Figure 4.11 The average accuracy of Thyroid data set with percentage 10% of expired 
and class-changed training data 
 
 

 
Figure 4.12 The average accuracy of Thyroid data set with percentage 20% of expired 
and class-changed training data 
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Figure 4.13 The average accuracy of Thyroid data set with percentage 30% of expired 
and class-changed training data 
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4.2.3 Experiments on concept drift problem 
The SEA data stream of classical concept drift problem discussed in [29] was 

tested to evaluate the performance of the proposed algorithm and ensemble methods 
of classifiers for handling the concept drift scenario. Also, a real-world data set of non-
stationary environments, weather prediction [3] is another data stream experimented 
in this problem. They were separated into chunks using test-then-train strategy. Figure 
4.14 and Figure 4.15 show the experimental results in classification error of SEA and 
Weather data sets, respectively. From these figures, the proposed MSNL performed 
tracking the drifting distribution achieving accuracies nearly the same as Learn++.NSE 
and WMV. In some time steps of Weather real-world data set, MSNL performed better 
than Learn++.NSE and WMV.  
 
 

 
Figure 4.14 Classification error of algorithms on the classical SEA data stream 
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Figure 4.15 Classification error of algorithms on the Weather data set 

 
4.3 Discussion 

The proposed algorithm can be applied with randomly expiring or class-
changing of data under non-stationary situation. This situation is similar to concept drift 
problem or non-stationary environment. The results in the experiments serve that the 
proposed MSNL is robust to changing on various environments. However, the updated 
parameters of each neuron of the proposed network are slightly shrunk or exceedingly 
expanded according to incoming data that are expired or even changed in classes 
during the learning process affecting the performance of proposed algorithm.  
 

4.3.1 Analysis of complexity with special structure of class 0 
In case of non-expired data, the learning time complexity of proposed 

algorithm is equal to that of VEBF algorithm with respect to the number of non-expired 
data. But in case of expired data, the learning time complexity involves the 
computational time of pseudoinverse matrix process [36] and time to compute ( )

T
iu  

and ( )
T

i . If there are L  expired data vectors in dR , then pseudoinverse time 
complexity is 2

( )O d L . The time complexity to compute both ( )
T

iu  and ( )
T

i  is 
( )O L . 
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Similar to the time complexity, the space complexity concerns two aspects. 
The first one is the space complexity for leaning non-expired data. The analysis of this 
complexity is rather complex because it must involve the number of expired data 
covered by each neuron. As previously discussed, a neuron with its links can be entirely 
removed from the network if all its learned data are expired data. Obviously, this 
situation effects the analysis of space complexity. Therefore, the analysis of space 
complexity for non-expired data will be the further study. The second aspect is the 
space complexity for expired data. Let p  be the first data chunk. Since all expired 
data are captured in forms of vectors ( )

T
iu  and ( )

T
i  which can be recursively 

computed from 
[1, ] [ 1, ], , ( 1)

T

p p L i


 V V u , and ( 1)
T

i  , hence the space complexity is 
equal to ( ) ( ) ( ) ( ) (max( , ))O pd O dL O d O d O p L    . 
 

4.3.2 Analysis of complexity with temporal class change 
In case of live data, the learning time complexity of proposed algorithm is equal 

to that of VEBF algorithm with respect to the number of live data. However, in case of 
expired data, the learning time complexity is additionally computed as twice of the 
previous case because a neuron of expired data can be recreated after being removing 
from the network of live data in the lower stratum. For case of class change, the 
learning time complexity is also the same as that of the case previously discussed due 
to the removal of neuron from the network of expired data and revived to the network 
of live data again.  

Similar to the time complexity, the space complexity concerns two aspects. 
The first one is the space complexity for learning live data. The analysis of this 
complexity is rather complex because it must involve the number of expired data 
covered by each neuron. As previously discussed, a neuron with its links can be entirely 
removed from the network if all its learned data are expired. Obviously, this situation 
effects the analysis of space complexity. Therefore, the analysis of space complexity 
for live data will be the further study. The second aspect of expired and class changed 
data is similar to in case of the non-expired data. 
  



 

 

CHAPTER V  
CONCLUSION 

 
In various applications, the lifetime of data must be concerned to determine 

the classes. The problem of learning both live and expired data was studied. A new 
learning algorithm using the structure of multi-stratum network named Multi-Stratum 
Network Learning (MSNL) was proposed to learn these data. The main structure 
consists of two strata. The first stratum is similar to the conventional feed-forward 
structure but the proposed structure can be dynamically and temporally changed 
according to the status of incoming data, i.e. live and class change. A set of new 
recursive functions for computing mean, variance, and covariance matrix when some 
data are removed was proposed to achieve the minimum computational space 
complexities and to speed up the learning time. The second stratum is for storing only 
those expired data. The comparison of experimental results from MSNL and the other 
algorithms with several benchmarked data sets signified that MSNL achieved a fast 
speed as well as higher accuracy than the others'.  
 
 
 



 

 

REFERENCES 
 

[1] A. Asuncion and D. J. Newman. UCI Repository of Machine Learning, University 
of California, Irvine, School of Information and Computer Sciences [Online]. 
Available: http://archive.ics.uci.edu/ml/ 

[2] M. Harries, "SPLICE-2 comparative evaluation: Electricity pricing," Tech. Rep., p. 
9905, 1999. 

[3] R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary 
environments," IEEE Trans. Neural Netw., vol. 22, pp. 1517-1531, 2011. 

[4] S. Jaiyen, C. Lursinsap, and S. Phimoltares, "A very fast neural learning for 
classification using only new incoming datum," IEEE Trans. Neural Netw., vol. 
21, pp. 381-392, 2010. 

[5] M. Thakong, S. Phimoltares, S. Jaiyen, and C. Lursinsap, "One-pass-throw-away 
learning algorithm based on hybridization of LDA and PCA," in International 
Conference on Information Science and Applications, Chonburi, Thailand, 
2013, pp. 445-448. 

[6] J. Zheng, H. Yu, F. Shen, and J. Zhao, "An online incremental learning support 
vector machine for large-scale data," Neural Comput. Appl., vol. 22, pp. 1023-
1035, 2013. 

[7] S. Ozava, S. Pang, and N. Kasabov, "Incremental learning of chunk data for 
online pattern classification systems," IEEE Trans. Neural Netw., vol. 16, pp. 
1061-1074, 2008. 

[8] S. Furao and O. Hasegawa, "A fast nearest neighbor classifier based on self-
organizing incremental neural network," Neural Netw., vol. 21, pp. 1537-1547, 
2008. 

[9] H. He, S. Chen, and X. X. K. Li, "Incremental learning from stream data," IEEE 
Trans. Neural Netw., vol. 22, pp. 1901-1914, 2011. 

[10] H. Abdulsalam, D. B. Skillicorn, and P. Martin, "Classification using streaming 
random forests," IEEE Trans. Knowl. Data Eng., vol. 23, pp. 22-36, 2011. 

 

http://archive.ics.uci.edu/ml/


 

 

63 

[11] X. Wu, P. Li, and X. Hu, "Learning from concept drifting data streams with 
unlabeled data," Neurocomputing, vol. 92, pp. 145-155, 2012. 

[12] N. Wattanakitrungroj and C. Lursinsap, "Memory-less unsupervised clustering 
for data streaming by versatile ellipsoidal function," in the 20th ACM 
Conference on Information and Knowledge Management, Glasgow, United 
Kingdom, 2011, pp. 967-972. 

[13] S. Ozawa, A. Roy, and D. Roussinov, "A multitask learning model for online 
pattern recognition," IEEE Trans. Neural Netw., vol. 20, pp. 430-445, 2009. 

[14] T. Tokumoto and S. Ozawa, "A fast incremental kernel principal component 
analysis for learning stream of data chunks," in the International Joint 
Conference on Neural Networks, San Jose, California, USA, 2011, pp. 2881-
2888. 

[15] S. Pang, T. Ban, Y. Kadobayashi, and N. K. Kasabov, "LDA merging and splitting 
with applications to multi-agent cooperative learning and system alteration," 
IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 42, pp. 552-563, 2012. 

[16] S. Okada and T. Nishida, "Online incremental clustering with distance metric 
learning for high dimensional data," in the International Joint Conference on 
Neural Networks, San Jose, California, USA, 2011, pp. 2047-2053. 

[17] H. He and S. Chen, "IMORL: Incremental multiple-object recognition and 
localization," IEEE Trans. Neural Netw., vol. 19, pp. 1727-1738, 2008. 

[18] R. Elwell and R. Polikar, "Incremental learning in nonstationary environments 
with controlled forgetting," in the International Joint Conference on Neural 
Networks, Atlanta, Georgia USA, 2009, pp. 771-778. 

[19] L. Kuncheval and I. Zliobaite, "On window size change for classification in 
changing environments," Intell. Data Anal., vol. 13, pp. 861-872, 2009. 

[20] D. Martinex-Rego, B. Perez, O. Fontenla-Romero, and A. Alonso-Betanzos, "A 
robust incremental learning method for non-stationary environments," 
Neurocomputing, vol. 74, pp. 1800-1808, 2011. 

[21] H. Wang, W. Fan, P. S. Yu, and J. Han, "Mining concept-drifting data streams 
using ensemble classifiers," in the Ninth ACM SIGKDD International Conference 



 

 

64 

on Knowledge Discovery and Data Mining, Washington, DC, USA, 2003, pp. 
226-235. 

[22] A. A. Beyene, T. Welemariam, M. Persson, and N. Lavesson, "Improved 
concept drift handling in surgery prediction and other applications," Knowl. 
Inf. Syst., vol. 43, pp. 389-416, 2014. 

[23] L. Hartert and M. Sayed-Mouchaweh, "Dynamic supervised classification 
method for online monitoring in non-stationary environments," 
Neurocomputing, vol. 126, pp. 118-131, 2014. 

[24] Y. Yeh and Y. F. Wang, "A rank-one update method for least squares linear 
discriminant analysis with concept drift," Pattern Recognit., vol. 45, pp. 1267-
1276, 2013. 

[25] B. Mirza and N. L. Z. Lin, "Ensemble of subset online sequential extreme 
learning machine for class imbalance and concept drift," Neurocomputing, 
vol. 149, pp. 316-329, 2015. 

[26] G. Ditzler, G. Rosen, and R. Polikar, "Discounted expert weighting for concept 
drift," in IEEE Symposium of Computational Intelligence in Dynamic and 
Uncertain Environments, Singapore, 2013, pp. 61-67. 

[27] G. Ditzler, G. Rosen, and R. Polikar, "Domain adaptation bounds for multiple 
expert systems under concept drift," in the International Joint Conference on 
Neural Networks, Beijing, China, 2014, pp. 595-601. 

[28] A. Dries and U. Ruckert, "Adaptive concept drift detection," Statistical Anal. 
Data Mining, vol. 2, pp. 311-327, 2009. 

[29] W.N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large-scale 
classification," in Seventh ACM SIGKDD International Conference on 
Knowledge Discovery Data Mining, San Francisco, CA, USA, 2001, pp. 377-382. 

[30] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, "Learn++: An incremental 
learning algorithm for supervised neural networks," IEEE Trans. Syst. Man, 
Cybern. C, Appl. Rev., vol. 31, pp. 497-508, 2001. 

[31] M. Muhlbaier, A. Topalis, and R. Polikar, "Learn++.NC: Combining ensemble of 
classifiers with dynamically weighted consult-and-vote for efficient 



 

 

65 

incremental learning of new classes," IEEE Trans. Neural Netw., vol. 20, pp. 
152-168, 2009. 

[32] R. Polikar, J. DePasquale, H. S. Mohammed, G. Brown, and L. I. Kuncheva, 
"Learn++.MF: A random subspace approach for the missing feature problem," 
Pattern Recognit., vol. 43, pp. 3817-3832, 2010. 

[33] T. N. E. Greville, "Some Applications of the pseudoinverse of a matrix," Siam 
Review, vol. 2, pp. 15-22, 1960. 

[34] J. Tapson and A. Van Schaik, "Learning the pseudoinverse solution to network 
weights," Neural Netw., vol. 45, pp. 94-100, 2013. 

[35] F. E. Udwadia  and R. E. Kalaba, "General forms for the recursive 
determination of generalized inverses: unified approach," Journal of 
Optimization Theory and Applications, vol. 101, pp. 509-521, 1999. 

[36] S. Predrag, M. Marko, S. Igor, and M. Sladjana, "Application of the partitioning 
method to specific toeplitz matrices," Int. J. Appl. Math. Comput. Sci., vol. 23, 
pp. 809-821, 2013. 

[37] J. G. Moreno-Torres, J. A. Sáez, and F. Herrera, "Study on the impact of 
partition-induced data set shift on k-fold cross-validation," IEEE Trans. Neural 
Netw. Learn. Syst., vol. 23, pp. 1304-1312, 2012. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 



 

 

67 

 

 

 
VITA 
 

VITA 

 

Name: Mr. Mongkhon Thakong 

Date of Birth: May 12, 1977 

Educations: 

1999 Graduate Bachelor Degree of Mathematics, Department of 
Mathematics, Faculty of Science, Khon Kaen University 

2002 Graduate Post-baccalaureate Certificate in Information Technology 
System Development, National Institute of Development Administration 

2007 Graduate Master Degree of Computer Science, Department of 
Computer Science, Faculty of Science, Khon Kaen University 

Publications: 

M. Thakong, S. Phimoltares, S. Jaiyen, and C. Lursinsap, One-pass-throw-
away learning algorithm based on hybridization of LDA and PCA, in: Proceedings of 
the International Conference on Information Science and Applications, 2013, 
Chonburi, Thailand, pp. 445-448. 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I  INTRODUCTION
	1.1 Problem identification
	1.2 Problem formulation
	1.3 Research objective
	1.4 Scope of work
	1.5 Research advantage
	1.6 Outline of the dissertation

	CHAPTER II  LITERATURE REVIEW
	2.1 VEBF learning algorithm
	2.2 Merging LDA operation

	CHAPTER III  PROPOSED METHOD
	3.1 Proposed width vector initialization algorithm
	3.2 Updating center vector, covariance matrix, and scatter matrices
	3.3 Special structure of class 0
	3.4 Hybrid LDA-PCA algorithm
	3.5 Dynamical structure of proposed network for learning the expiration and live classes
	3.6 Dynamical structure of proposed network for learning with special structure of class 0
	3.7 Proposed learning and testing algorithms with special structure of class 0
	3.8 Example of hybridization multi-stratum learning process
	3.9 Proposed learning and testing algorithms in case of expiration and live classes
	3.10 Example of multi-stratum learning process

	CHAPTER IV  EXPERIMENTAL RESULTS AND DISCUSSION
	4.1 Setting live and expired states to experimental data sets
	4.2 Performance evaluation and comparison
	4.2.1 Experimental results with special structure of class 0
	4.2.2 Experimental results with temporal class change
	4.2.3 Experiments on concept drift problem

	4.3 Discussion
	4.3.1 Analysis of complexity with special structure of class 0
	4.3.2 Analysis of complexity with temporal class change


	CHAPTER V  CONCLUSION
	REFERENCES
	VITA

