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and simple nutrient requirement, one of the obstacles for lactic production is its
morphology that can increase in broth viscosity, but decrease in oxygen transfer.
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CHAPTER |

INTRODUCTION

Lactic acid, an organic acid discovered in 1780 by Scheele, is widely used in
many industrial applications such as food, pharmaceutical industry, cosmetic,
chemical and textile (Wee et al., 2006). Recently, the consumption of lactic acid
trends to be increased rapidly. Due to the ability to be used as a monomer for
poly(lactic acid), lactic acid can be applied in the production of biodegradable plastic
which is a worldwide concern from the global warming problem (Datta et al., 1995;
Litchfield, 1996).

Lactic acid has two optical isomers: L(+)- and D(-)-lactic acid. It can be
produced by fermentation of many microorganisms or chemical synthesis (John et al.,
2007). The production from chemical synthesis causes racemic DL-lactic acid. The
advantages of microbial fermentation includes the potential to use low cost substrate
and energy consumption and production of optically pure L(+)- or D(-)-lactic acid
(Abdel-Rahman et al., 2013). The purity of lactic acid is important for industry
application (Gao et al.,, 2011). The isomers of lactic acid produced from
microorganisms are dependent on the enzyme lactate dehydrogenase. Lactate
dehydrogenase catalyzes pyruvate to lactate in glycolysis (Ferain et al., 1994). The
efficiency of poly(lactic acid) production also depends on purity of the isomers. It has
been many studies about biological fermentation for lactic acid production which
lactic acid bacteria are commonly used in various industries due to the high
productivity. However, there still are some problems such as complex nutrient
requirement (Chopin, 1993) and production of racemic L(+)- and D(-)-lactic acid
from L-lactate dehydrongenase and D-lactate dehydrogenase, respectively (Abdel-
Rahman et al., 2013). Other microorganisms such as a fungus, Rhizopus oryzae, can
produce pure L(+)-lactic acid when starch or glucose is used as a carbon source (Oda
et al., 2002; Yin et al., 1997). However, lactic acid production from R. oryzae has
some limitations, for example, a high concentration of oxygen requirement, low yield
lactic acid production, and the contaminations of fumaric and ethanol produced during
lactic acid fermentation (Tay and Yang, 2002). Moreover, its filamentous morphology
is not suitable for fermentation in bioreactors (Zhang et al., 2007). Therefore, we are
interested in the expression of IdhA gene from R. oryzae in other microorganisms that
requires simple nutrients for growth and produces pure and high L(+)-lactic acid.



The aim of this research is to apply genetic engineering techniques to
overcome the problem of R. oryzae morphology. The genetically modified
Escherichia coli strain RB24 used in this study is generated by transforming the
plasmid harboring R. oryzae IdhA gene into E. coli background with knocked out
chromosomal IdhA and pta to allow the expression of R. oryzae IdhA on the plasmid
and reduce the contamination of other substances produced during fermentation,
respectively (Chang et al., 1999). This E. coli strain RB24 is expected to combined
the advantages of E. coli, which are rapid growth, simple nutritional requirements and
well-studied genetic information, and R. oryzae, which are simple medium
requirement and production of optically pure L(+)-lactic acid, in one particular
organism.

The previous study suggests that L(+)-lactic acid production from E. coli
RB24 in shake flask level under anaerobic condition gives a low yield of L(+)-lactic
acid when fermented with 100 g/L glucose (5.03+4.149 g/L) (Boonsombat, 2013).
Furthermore, the high residual glucose concentration may inhibit lactic
acid production. Therefore, it is necessary to study lactic acid production from this E.
coli harboring R. oryzae IdhA gene in various conditions, such as culture media,
fermentation conditions and types of plasmid. This data will be useful for further
improvement of lactic acid production from genetically modified E. coli.

Objective:

To study lactic acid production from Escherichia coli harboring Rhizopus
oryzae IdhA gene on the plasmids in various conditions.



CHAPTER Il

LITERATURE REVIEWS

2.1 Lactic acid

Lactic acid has been used for preservation of human food for a long time ago.
It was discovered by Carl Wilhelm Scheele, a Swedish Chemist, in 1780. In 1881, the
acid was commercially produced by Charles E. Avery at Littleton, Massachusetts,
USA. (Narayanan et al., 2004).

Lactic acid is an organic acid consisting of carboxyl group (-COOH), hydroxyl
group (-OH) and methyl group (-CH3) on the molecule. Lactic acid has two optical
isomers: L(+)- and D(+)-lactic acid represent in Figure 2.1. (Narayanan et al., 2004).

L(+)-lactic acid D(-)-lactic acid

®
O
Oy

. Carbon
. Oxygen
o Hydrogen

Figure 2.1 L(+)-lactic acid and D(-)-lactic acid structures.
(Reference: http://www.lactic-acid.com)

Lactic acid is soluble in water but insoluble in organic solvents (Ren, 2010).
Other properties of lactic acid are summarized in Table 2.1.


http://www.lactic-acid.com/

Table 2.1 Identification,

characteristics of lactic acid

physical-chemical properties and thermodynamic

Identification

Physical-chemical properties

CAS number

Einecs No.

H.S. Code

Formula

D/L: [50-21-5] Melting point L: 53°C

L: [79-33-4] D: 53°C

D: [10326-41-7] D/L: 16.8°C
200-018-0 Boiling point 122°C (12 mmHg)
2918.11 Specific gravity 1.2 g/mL
CH3CH(OH)COOH | Molar mass 90.08 g/mol

Thermodynamic characteristics

ltems

Characteristics

Dissociation constant (Kj)

Heat of dissociation (AH)

Free energy of dissociation (AF)
Heat of solution (AH)

Heat of dilution (AH)

Heat of fusion (AH)

Entropy of solution (AS)
Entropy of dilution (AS)

Entropy of fusion (AS)

Heat of combustion (AH.)

Specific Heat (C,) at 20°C

0.000137 (at 25°C)

-63 cal/mol (at 25°C)

5000 cal/mol

1868 cal/mol(for L(+)-lactic acid at 25°C)
-1000 cal/mol

2710 cal/mol (for racemic lactic acid)
4030 cal/mol (for L(+)-lactic acid)

6.2 cal/mol/°C
-3.6 cal/mol/°C

9.4 cal/mol/°C (for racemic lactic acid)
12.2 cal/mol/°C (for L(+)-lactic acid)

1361 KJ/mole

190 J/mole/°C

(Reference: (Ren, 2010))




2.2 Lactic acid application

Lactic acid has been applied in many industry including food, pharmaceutical,
cosmetic, agriculture industry and biodegradable plastic. The several applications of
lactic acid are shown in Figure 2.2.

Food industry

- acidulants

- preservatives

- flavours

- pH regulators

- improving microbial quality
- mineral fortification

Cosmetic industry

- moisturizers

- skin-lightening agents

- skin-rejuvenating agents
- pH regulators

- anti-acne agents

- humectants

= anti=tartar agents

/ Lactic acid \
| (CH,CHOHCOOH) |
\ /

N A

Pharmaceutical industry

Chemical industry

Chemical feedstock

- parenteral/I V. solution
- dialysis solution

- mineral preparations

- tablettings

- prostheses

- surgical sutures

- controlled drug delivery systems

- descaling agents

- pH regulators

- neutralizers

- chiral intermediates

- green solvents

- cleaning agents

- slow acid rclease agents
- metal complexing agents

- propylene oxide
- acetaldehyde

- acrylic acid

- propanoic acid

- 2,3-pentanedione
- ethyl lactate

- dilactide

- poly(lactic acid)

Figure 2.2 Diagram of the commercial uses and applications of lactic acid

(Reference: (Wee et al., 2006))

2.2.1 Food and beverage industry

Currently, most of lactic acid production is served for the demand in the food
industry such as a food ingredient for pH control, using with citric acid and propanoic
acid to achieve sour in food, dough conditioner, agitation withstand or other
conditions in baking process, providing an increase shelf life, pathogen inhibition of
food and use in cheese components. In addition, lactic acid can be used in beverage
instead of citric acid, phosphoric acid and other mild acids.



2.2.2 Pharmaceutical industry

Biodegradable plastic, made from lactic acid, can be used for producing
medical materials because it is more biocompatible for the implants and bioresorbable
by biological system in human body. Biopolymers from lactic acid have been used for
a long time with high potential such as sutures, staples, wound dressing, surgical
implants, and orthopedic fixation devices.

2.2.3 Cosmetic industry

Lactic acid has been used as an emulsifier in cosmetic applications. There are
many properties, for example, skin lightening which affects to tyrosinase inhibition,
moisturizer to provide skin hydration and skin rejuvenation with accelerated peeling.

2.2.4 Polylactic acid

Nowadays, most packaging is made from petrochemical process. However, the
major problem is the destruction process which leads to environmental pollution such
as greenhouse effect. Recently, renewable plastics from renewable resources have
come into the interest.

Polylactic acid (PLA) can be used for producing bioplastic that is degraded to
carbon dioxide and water by nature microbial. PLA can be polymerized from lactic
acid monomers which can be produced by microorganism fermentation from
renewable resources such as cassava, corns and sugarcanes.

photosynthesis fermentation
co, com -
+ starch, 7(;
H,O . :
sugars Lactic acid dehydration
aerobic
bacteria Ring-opening
enzymatic Polymerisation (o]
breakdown (ROF) ﬁ/‘ko

Lactic acid PLA [LnM—ORl OW/J\

O

2 W A W 4

Figure 2.3 Environmental circulation of polylactic acid

(Reference: http://www.ch.ic.ac.uk)


http://www.ch.ic.ac.uk/

The melting temperature range of PLA is 173 to 178 °C. However, the heat
resistance can be up to 110 °C. The crystallinity of PLA is about 37% with glass
transition temperature between 60 to 65 °C and it is suitable to biocompatibility.
Although PLA cannot be degraded in the general environment, it is decomposed by
plastic forming to landfill such as extrusion and injection molding.

PLA is a clear plastic that can be used for food packaging, but it is unsuitable
at high temperature which limits to some applications, for example, food warp film,
food containers, bag and textile. None of eruption mortality was reported from PLA
but it may cause skin irritation if directly exposed. In addition, carcinogens have not
been found in PLA, so it is safe for creatures and environment.

2.2.5 Agriculture industry
Lactic acid can be used as insecticide, herbicide and fertilizer components.
2.2.6 Other industries

Various applications of lactic acid are used in chemical and biological
processes of other organic acid production such as propanoic acid, acetic acid and
acylic acid. Lactic acid derivatives can be used in several applications, for example,
package, fibers and dyeing.



2.3 Production of lactic acid

Lactic acid can be produced by chemical synthesis and microbial fermentation
(Figure 2.4).

Petrochemical resources — Renewable resources
pre-treatment (acid hydrolysis
andror enzymaliic saccharification)
v
Acetaldehyde (CH,CHO) S8I7| Fermentable carbohydrates
addition of . ; :
. microbial fermenitation
l HCON and catalvst ¥ JETma
Lactonitrile (CH;CHOHCN) — Fermented broth
#{rd{'o{} sis by recovery and purification
H,50, il ’ ;
Only racemic DI1-lactic acid Optically pure 1.(+)- or D(-)-lactic acid
(a) Chemical synthesis (b) Microbial fermentation

i desirable due to

i) fimited nature of petrochemical resources
Figure 2.4 The two methods of lactic acid production

(Reference: (Wee et al., 2006)).

2.3.1 Chemical synthesis

The chemical synthesis can produce racemic mixture of D(-)-and L(+)-lactic
acid. In the first step, hydrogen cyanide reacts with acetaldehyde in liquid phase and
high pressures to produce lactonitrile. After that, lactonitrile is hydrolyzed by
concentrated acid, such as hydrochlolic acid or sulfuric acid, to obtain ammonium salt
and lactic acid. Then, lactic acid is esterified by methanol to produce methyl lactate
that can be eliminated and purified by distillation and hydrolysis with acidic catalyst
to produce lactic acid and methanol as the end products. The production of lactic acid
by chemical synthesis can be summarized as the following reactions (Narayanan et
al., 2004).



Step 1 Addition of hydrogen cyanide

CH3CHO + HCN —> CH3;CHOHCN
Acetaldehyde Hydrogen cyanide Lactonitrile

Step 2 Hydrolysis by sulphuric acid

CH3;CHOHCN + H,O + %%»H,SO, —» CH3;CHOHCOOH + 1/2(NH4)2804
Lactonitrile Sulphuric acid Lacticacid  Ammonium salt

Step 3 Esterification

CH3CHOHCOOH + CH3OH — CH3CHOHCOOCH; + Hy0O
Lactic acid Methanol Methyl lactate

Step 4 Hydrolysis by water

CH3CHOHCOOCH; + HO —— CH3CHOHCOOH + CH3;0H
Methyl lactate Lactic acid Methanol

Due to the purification of lactic acid isomer being significant for the polylactic
acid (PLA) efficiency, the chemical synthesis that produces racemic mixture of D(-)
and L(+)-lactic acid isomers may be complicated for further application. Moreover,
substrates for chemical synthesis process are from petrochemical resources that are
high production cost and caused environmental pollution.

2.3.2 Microbial fermentation

Lactic acid can be produced by various microorganisms including bacteria,
fungi, yeast, algae and cyanobacteria. The microbial fermentation gives some
advantages compared to the chemical synthesis including low substrate cost and
energy consumption (Datta and Henry, 2006). Lactic acid production from microbial
fermentation is dependent of two types of enzymes, NAD-dependent L-lactate
dehydrogenase and NAD-dependent D-lactate dehydrogenase, for converting pyruvic
acid to lactic acid (Garvie, 1980). The efficient production of lactic acid has been
attempted to be improved such as using various substrates from renewable resources,
simple nutrient requirements, improving strains by genetic engineering for optically
pure lactic acid, increases of yield and productivity with decrease of by-products.
Currently, the genetic engineering has been more favorable to improve microbial
strains for increasing yield and optical purity of lactic acid fermentation (Abdel-
Rahman et al., 2013).
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The microbial fermentation for lactic acid production generally used lactic
acid bacteria (LAB), Bacillus strains, Escherichia coli and Corynebacterium
glutamicum. The mainly limitations of these strains including (a.) they produce
racemic mixture L-lactic acid and D-lactic acid by L-lactate dehydrogenase and D-
lactate dehydrogenases; (b.) low production yield because of by-products; (c.)
complex nutrient requirements and (d.) high risk of cell lysis from bacteriophage
infection that inhibits lactic acid production. However, various studies reported that
these problems could be solved by genetic engineering including (a.) knockout of
genes for optically pure L- or D-lactic acid production; (b.) deletion of various genes
that produce by-products to increased lactic acid yield; (c.) use of bacteria strains for
lactic acid production in simple nutrient media and (d.) using mixed strains or
developed strains for bacteriophage resistance (Abdel-Rahman et al., 2013).

Lactic acid bacteria (LAB)

LAB is a group of bacteria that produces lactic acid as a main product by using
carbohydrate as a carbon source. LAB consists of bacteria in phylum Firmicutes
including Lactococcus, Lactobacillus, Streptococcus, Leuconostoc, Pediococcus,
Aerococcus, Carnobacterium, Enterococcus (Reddy et al., 2008). The optimal
conditions for LAB growth include pH 5.5 to 6.5 and temperature of 5 to 45 °C. The
major pathways of hexose and pentose metabolism in LAB are represented in Figure
2.5.

LAB can be classified as homofermentative and heterofermentative, dependent
on production of end product, as shown in Table 2.2. Homofermentative LAB
contains aldolase enzymes that produce lactic acid as major product. Therefore, this
group is interested for scaling up in industrial lactic acid production. However,
heterofermentative LAB produces other products, such as acetic acid, as by-products
by phosphoketolase pathways causing of low lactic acid yield. Lactobacilli are
preferable for lactic acid production in industrial scale because they have been studied
for a long time with high acidic resistance.
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Figure 2.5 Metabolic pathways for lactic acid production from various sugars in
lactic acid bacteria.

Enzymes: (1) hexokinase; (2) glucose 6-phosphate isomerase; (3) glucose 6-
phosphate dehydrogenase; (4) 6-phosphogluconate dehydrogenase; (5) arabinose
isomerase; (6) ribulokinase; (7) ribulose 5-phosphate 3-epimerase; (8) xylose
isomerase; (9) xylulokinase; (10) phosphoketolase; (11) acetate kinase; (12)
phosphotransacetylase; (13) aldehyde dehydrogenase; (14) alcohol dehydrogenase;
(15) lactate dehydrogenase; (16) transketolase; (17) transaldolase; (18) 6-
phosphofructokinase; (19) fructose bisphosphate aldolase; (20) triosephosphate
isomerase; (21) mannose phosphotransferase system; (22) phosphomannose
isomerase (23) maltose phosphorylase; (24) phosphoglucomutase ; (25) pB-
galactosidase; (26) phospho-B-galactosidase; (27) galactose 6-phosphate isomerase;
(28) tagatose 6-phosphate kinase; and (29) tagatose 1,6-diphosphate aldolase. Solid
lines indicate the homofermentative pathway. Thick-solid lines and dashed lines
indicate PP/glycolytic pathway and PK pathway, respectively. Lac-PTS:
phosphoenolpyruvate-lactose phosphotransferase system.

(Reference: (Abdel-Rahman et al., 2013))
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However, LAB requires complex nutrition because of the inability to produce
amino acids, peptides, nucleotides and vitamins for growth. This is a problem for
recovery process of lactic acid and also increases production cost. Furthermore, LAB
grows well at low temperature resulting in an increase in contamination risks and an
obstacle for the simultaneous saccharification and fermentation (SSF) which requires
higher temperature.
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Table 2.2 Homofermentative and heterofermentative lactic acid bacteria.

Characterization

Homofermentative LAB

Heterofermentative LAB

Product

Metabolic
pathways

Theoretical
yield of lactic
acid to sugars

Genera

Availability for
commercial
lactic acid
production

Lactic acid

Hexose: Embden-Meyerhof
pathways
Pentose: pentose phosphate
pathway

Hexose: 1.0 g/g (2.0
mol/mol)

Pentose: 1.0 g/g (1.67
mol/mol)

Lactococcus, Streptococcus,
Pediococcus, Enterococcus,
some Lactobacillus

Available due to high
selectivity

Lactic acid, ethanol, diacetyl,
formate, acetoin or acetic acid
and carbon dioxide

Hexose: phosphogluconate and
phosphoketolase pathway
Pentose: phosphoketolase
pathway

Hexose: 0.5 g/g (1.0 mol/mol)
Pentose: 0.6 g/g (1.0 mol/mol)

Leuconostoc, Oenococcus,
some Lactobacillus species

Not available due to high by-
product formation

(Reference: (Abdel-Rahman et al., 2013))
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2.4 Rhizopus oryzae

Rhizopus oryzae, a species in the genus Rhizopus, is usually optically pure
L(+)-lactic acid producer. The advantages of R. oryzae for lactic acid production
compared to other microorganisms including use of various starchy biomasses
without saccharification before utilize, simple nutritional requirement, easier process
of cell separation than other microorganisms (Zhang et al., 2007). However, the
filamentous form of R. oryzae effects on the fermentation broth circulation, the
oxygen consumption and lactic acid yield.

R. oryzae consists of two genes of lactate dehydrogenase, IdhA and IdhB.
L(+)-lactic acid production by IdhA to produced enzyme LdhA for conversion of
pyruvate to lactate while grown on glucose or xylose as carbon source in culture
media. In contrast, IdhB is transcribed when the fungus is grown on glycerol, ethanol
or lactate, LdhB converts lactate to pyruvate (Skory, 2000).

(o) (0) o (o)
\c/ NADH + H* \c/
[ NAD* I
?=O HO—CI—H
lactate
CHg dehydrogenase Chs
Pyruvate L-Lactate

Figure 2.6 Lactate dehydrogenase (LDH) is an enzyme that catalyzes the
stereospecific interconversion of lactate and pyruvate.

(Reference: http://www.proteopedia.org/wiki/index.php/User:Kelly _Roark/Sandbox1)

Immobilization techniques was applied in many studies for L(+)-lactic acid
fermentation of R. oryzae. In 2013, Yamane and Tanaka studied L(+)-lactic acid
production by R. oryzae using sponge-like cubic particles made of polyurethane foam
for immobilization. The high L(+)-lactic acid concentration of 145 g/L produced by
batch culture and 231 g/L produced by fed-batch culture were revealed (Yamane and
Tanaka, 2013). However, the immobilization took a long time for entrapment between
fungal cells and matrixes and limitation of surface area of the matrix (Z. Wang et al.,
2010).

R. oryzae can be used several renewable resources and lignocellulosic
biomasses. It was reported that the highest lactic acid concentration of 38.5 g/L was
obtained when R. oryzae TS-61 was fermented by using molasses as carbon source
and chicken feather protein hydrolysate (CEP) as nitrogen source (Taskin et al.,
2012).

However, there are some limitations from lactic production by R. oryzae such
as by-products (e.g., ethanol and fumaric acid), a high concentration of oxygen



requirement (Wee et al.,

Extracellular Glucose
Cytosol l
Glucose
v
Pyruvate
Aﬂ’ADP+H
1
( {
v
Acetaldenyde CO, CO2 Oxaloacetate
5 CNADH+H‘ = ~— NADH+H* P NADH+H*
NAD* L’NAD* NAD*
L-(+)-Malate
6 l\_.
v v H20
Ethanol L-(+)-Lactate Fumarate
I I I
v v v
Ethanol L-(+)-Lactate Fumarate

Figure 2.7 Glucose metabolism in Rhizopus oryzae.
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2006) and filamentous form of R. oryzae that result in an
obstacle to mass transfer and bulk mixing (Bai et al., 2003).

Mitochondria
——» Pyruvate

CoA
CO,

NADH+H*
NAD+

Acetyl-CoA

TCA
cycle

Fumarate

|

Fumarate
I
v

Fumarate

The numbers indicate key enzymes in each pathway: 1, pyruvate decarboxylase

(PDC); 2, alcohol dehydrogenase (ADH); 3,

lactate dehydrogenase (LDH); 4,

pyruvate carboxylase (PYC); 5, malate dehydrogenase (MDH); 6, fumarase (FUM).

(Reference: (Zhang et al., 2007))
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2.5 Escherichia coli

E. coli was usually applied for lactic acid fermentation by using sugars as
carbon and electron sources under anaerobic conditions. The glycolysis pathway
converts sugar into two molecules of pyruvate, which is involved in releasing of two
ATP and two NADH molecules. Under anaerobic conditions, pyruvate is converted to
acetyl-CoA and carbon dioxide by the pyruvate dehydrogenase. This enzyme is
activated under anaerobic conditions, controlled by the NADH/NAD ratio. (Forster
and Gescher, 2014).
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Figure 2.8 Anaerobic fermentative metabolism in Escherichia coli

Chemical structures are shown for all mixed-acid fermentation products and pyruvic acid.
Bold gray arrows: glucose transport systems; thin black arrows: glycolysis; bold black
arrows: fermentative reactions; dashed, green arrows: TCA cycle, only anabolic functions,
completely active under oxic conditions. Genes: malEFG (maltose ABC transporter), galP
(galactose: HC symporter), ptsG (fused glucose-specific PTS enzyme: 1IB and IIC
component), manXYZ (mannose PTS permease), glk (glucokinase), pgi (glucose-6-phosphate
isomerase), pfk (6-phosphofructokinase), fba (fructose-bisphosphate aldolase), tpi
(triosephosphate isomerase), gap (glyceraldehyde 3-phosphate dehydrogenase), pgk
(phosphoglycerate kinase), gpm (phosphoglycerate mutase), eno (enolase), pyk (pyruvate
kinase), ppc (phosphoenolpyruvate carboxylase), IdhA (lactate dehydrogenase), pfl (pyruvate
formate lyase), aceEF (pyruvate dehydrogenase complex), adhE (alcohol dehydrogenase), pta
(phosphate acetyltransferase), ack (acetate kinase), gltA (citrate synthase), acnB (aconitase),
icd (isocitrate dehydrogenase), sucA (2-oxoglutarate decarboxylase), sucB (2-oxoglutarate
dehydrogenase), sucCD (succinyl-CoA synthetase), sdhABCD (succinate dehydrogenase),
fumB (fumarate hydratase), frd (fumarate reductase),and mdh (malate dehydrogenase).
(Reference: (Forster and Gescher, 2014))
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2.5.1 Metabolic engineering of Escherichia coli

Recently, the genetic engineering technique is preferable to efficiently
improve lactic acid production in E. coli strains. This microorganism is advantageous
due to its rapid growth (rapid hexose and pentose metabolisms), simple nutritional
requirement and well-studied genetic information. The wild- type E. coli strain
produces ethanol and several organic acids including lactic acid, acetic acid, succinic
acid and formic acid. There have been many studies to improve lactic acid production
in E. coli by using metabolic engineering with glucose, xylose, sucrose, glycerol as
carbon sources. The genetically modified E. coli BAD-Idh strain, which was
generated by transforming the pBAD vector containing Enterococcus facelis KK1 L-
Idh gene into E. coli SZ85, gave the maximum L(+)-lactic acid concentration of 0.62
g/L from 1 g/L of fructose in 24 hours (Mulok et al., 2009). E. coli HBUT-D strain,
which the chromosomal D(-)-lactate dehydrogenase gene (IdhA) was replaced by
L(+)-lactate dehydrogenase (ldhL) from Pedicoccus acidilactici resulting in the E.
coli strain called WYZ- L with improved expression of the sucrose operon (cscA and
cscKB), gave the maximum L(+)-lactic acid concentration of 97 g/L from 100 g/L of
sucrose with a greater than 99% of optical purity (Y. Wang et al., 2013). The E. coli
K-12 with inactivated pfIB and IdhA background produces ethanol as a major product
(Kim et al., 2007). Furthermore, deletion of the frd, ackA, focA and plfB genes, called
SZ420 strain, converted glucose and xylose to ethanol with a yield of 90% under an
anaerobic condition (Zhou et al., 2008). Causey et al. (2003) constructed a
homoacetate pathway in E. coli by deleting focA-pfIB, frdBC, IdhA genes to decrease
the other fermentation end products and minimize the production of biomass.
Moreover, the citric acid cycle in the strains with adhE deletion was blocked by
deletion of a-ketoglutarate dehydrogenase, and then acetate was produced with a yield
of 86% (Causey et al., 2003).
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CHAPTER Il

METHODOLOGY

3.1 Material

3.1.1 Strain list

Strain Pi)igal gen?{%ﬂ? Plasmid Reference
JC13509 + + - Dr. Steven J Sandler
RB7 kan cat - (Boonsombat, 2013)
RB24 kan cat pRB85 (Boonsombat, 2013)
RB29 kan cat pBluescript Il | RB7 harboring

KS(+) pBluescript 11 KS(+)
RB30 + + pRB85 JC13509 harboring pRB85
RB31 + + pKS(+) JC13509 harboring

pBluescript 11 KS(+)

THW1 kan cat pTN1 JC13059 harboring pTN1

8 JC13509 used as wild type in this experiment contains partial genotype as F
lacMS286 $¢80dlllacBK1 sulB103 argE4 his-4 thi-1 xyl-5 mtl-1 Sm® T6", Derivative
of E. coli SK362. It was obtained from Dr. Steven J. Sandler, University of
Massachusetts, Amherst.

+ means wild type gene.

— means not harboring any plasmid.

pRB85 is pBluescriptll KS(+) containing IdhA gene (ORF and promoter region) from
R. oryzae NRRL395 (Boonsombat, 2013)

pTN1 is pQE30-Xa containing IdhA gene (ORF and promoter region) from R. oryzae

NRRL395

3.2 Primer list

Restriction
site
prRB33 | 5’-CTCAGTTTATAGGATCCAAGCAGTC-3’ | BamHI
prRB34 | 5’-TGTGTAAGCTTTACAATTCGATTGT-3’ Hindlll
prRB42 | 5’-GCGTCGGGATCCAGTAGTGGAG-3’ Hindlll
prRB43 | 5’-CTCAGTTTATAAAGCTTAAGCAGTC-3” | BamHI

Primer Sequence
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Chemical and reagents

Company and country

Acetic acid (CH3COOH)
Ammonium sulphate ((NH;)2SO,)
Ampicillin

Arginine

Bactro-agar

Calcium carbonate (CaCOs3)

Calcium nitrate tetrahydrate
(Ca(N03)2.4H20)

Copper(ll) sulfate

di-Sodium hydrogen phosphate
(NazHPO4)

D-lactate
Ethanol
Formic acid
Glucose
Glycerol
Histidine

Iron(Il) sulphate heptahydrate
(FeSO47H20)

Isopropyl B-D-1-thiogalactopyranoside
(IPTG)

L-lactate

Merck, USA

Sigma Aldrich, USA
Bio Basic, Canada
Sigma Aldrich, USA
Himedia, India
Sigma Aldrich, USA

Carlo Erba Reagent, Italy

Sigma Aldrich, USA

Bio Basic, Canada

Sigma Aldrich, USA
Merck, USA

Carlo Erba Reagent, Italy
Bio Basic, Canada
Sigma Aldrich, USA
Sigma Aldrich, USA

Merck, USA

Bio Basic, Canada

Sigma Aldrich, USA
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Chemical and reagents

Company and country

Magnesium sulphate heptahydrate
(MgSO47H20)

Manganese(ll) sulphate pentahydrate
(MnSQO,4.5H,0)

Peptone

Potassium di-hydrogen phosphate
(KH2POy,)

Potassium hydrogen phosphate
(K2HPOy)

Proline

Sodium chloride (NaCl)
Succinate

Sulfuric acid (H2SO,)
Thiamine

Yeast extract

Bio Basic, Canada

Merck, USA

Bio Basic, Canada

Merck, USA

Bio Basic, Canada

Sigma Aldrich, USA
Merck, USA
Sigma Aldrich, USA
Merck, USA
Sigma Aldrich, USA

Bio Basic, Canada
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Equipments and supplies

Company and country

Aminex HPX-87H column

Anaero Anaerobic Gas Generator: model
AnaeroPack

Autoclave: model HICLAVE HV-50
Cellulose acetate filter, pore size 0.45 pm
Electronic balance : model FX-180
Electronic balance : model FX-3000
Erlenmeyer flask 125 ml

Erlenmeyer flask 250 ml

Freezer -20°C

Freezer -70°C

Growth Cabinet

High speed micro refrigerated centrifuge:
model MTX-150

Laminar flow: model HF safe-12006,
Heal Force

Micro auto pipette: model Discovery
Comfort

Oven : model UNB-400

pH meter

Pipette tips

Sumi chiral 0A-5000L column

UV-visible recording spectrophotometer:
model UV-160

Bio-Rad, USA

Misubishi Gas Chemical, Japan

Hirayama, Japan

Sartorius, Germany

A&D Co., Ltd., Japan

A&D Co., Ltd., Japan

Pyrex, Germany

Pyrex, Germany

Sanyo, Japan

Thermo Fisher Scientific, USA
Sanyo, Japan

Tomy Seiko Co. Ltd., Japan

Heal Force, China

High Tech Lab, Poland

Memmert Co.,Ltd., Germany
Mattler Toledo, USA
Biologix Research, USA
SCAS, Japan

Shimadzu, Japan
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Equipments and supplies

Company and country

Vacuum pump: model DOA-V130-BN
Vortex mixer: model Vortex-Genie2
Water bath

YSI Select Biochemistry Analyzer:
model YSI 2700 selector

Incubator shaker: model innova 4300

High performance liquid
chromatography

Gast, USA
Scientific Industries, USA
Yamato, Japan

YSI Inc., USA

New Brunswick Scientific, USA

Shimadzu, Japan
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3.5 Methods
3.5.1 Preparation of inoculum

To prepare seed culture, the E. coli strains (except for THW1 strain) were
grown in 56/2 minimal or LB agar media at 37 °C for 24 hours. For strains harboring
plasmids, the 100 pg/ml Ampicillin was added in the medium. The cells were
transferred into 10 ml of 56/2 minimal or LB broth and incubated at 37 °C, 200 rpm
for 8 hours in a rotary shaker (The final ODgq is approximately 1.0). The lactic acid
fermentation was then performed as described in the next topic.

3.5.2 Lactic acid fermentation in shake flask level

The 5 ml of inoculum was transferred into 50.0 ml 56/2 minimal or
fermentation broth containing CaCO3; as pH controller. For the strains harboring
plasmids, 100 pg/ml Ampicillin was added into all media. Fermentation conditions as
in Table 3.1 were used in this experiment. The 2.0 ml of each sample was harvested at
different points of time. Each set of experiment was performed for 3 repeats.

Table 3.1 Fermentation conditions for lactic acid production in this study.

Condition

Aerobic 37 °C and 200 rpm for 48 hours
Limited oxygen 37 °C for 48 hours without shaking

Anaerobic 37 °C for 48 hours with Anaero Anaerobic Gas Generator

3.5.3 Lactic acid production in minimal medium

The 56/2 minimal medium was used to investigate lactic acid production from
the following E. coli strains; JC13509, RB7, RB24, RB29, RB30 and RB31. The
inoculum preparation and lactic acid fermentation in shake flask level was carried out
as mentioned previously. For strains harboring plasmids, 100 pug/ml Ampicillin was
added to all media.

3.5.3.1 The effect of initial concentration of glucose

To test the effect of initial concentration of glucose on lactic acid production,
the concentration of initial glucose in 56/2 minimal medium was varied as 2.0, 10, 20,
30 and 50 g/L.
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3.5.3.2 The effect of medium component on lactic acid production

The effect of medium components on lactic acid production, including carbon
sources and calcium carbonate amount, were investigated. To test the effect of
different carbon sources, lactic acid production in 56/2 minimal medium with 20 g/L,
or 2.0% (w/v), of initial glucose was compared with that of 1.0% (v/v) initial glycerol.
Then, the effect of CaCO3; amount was tested by fermenting in 56/2 minimal medium
with 10 g/L and 30 g/L (w/v) of CaCOs.

3.5.4 Lactic acid production from different fermentation media

The lactic acid production when using 56/2 buffer was compared with
fermentation broth. The steps of inoculum and fermentation were performed as
described previously (Topic 3.4.1 and 3.4.2). For strains harboring plasmids, 100
pg/ml Ampicillin was added to all media. Then, the lactic acid production from
variation of initial glucose concentrations (as 10, 20, 30, and 50 g/L) from each
medium was observed.

3.5.5 Lactic acid production from different plasmid type

3.5.5.1 Construction of E. coli strain harboring R. oryzae IdhA
gene on IPTG-induced plasmid

The IdhA gene from R. oryzae was amplified by PCR with the prRB42 and
prRB43 primers. The 1800 base pair PCR product was cut with restriction enzymes
Hindlll and BamHlI, then cloned into these sites of the plasmid pQE-30 Xa (Figure
3.1). Plasmid, verified by restriction enzyme digestion and DNA sequencing, was
named as pTN1. After that, pTN1 was transformed into E. coli strain RB7 competent
cells to generate the strain named THW1 by chemical transformation.

To prepare the competent cells, a colony of RB7 strain was inoculated in 2 ml
of LB broth and incubated at 37 °C, 200 rpm overnight, Then, the 100 pl of culture
was diluted into 10 ml LB broth, and allowed to grow to early log phase, or the ODgg
value was approximately 0.3. After being incubated on ice for 20 minutes, cells were
harvested by centrifuging at 4 °C, 4,000 rpm for 10 minutes. The pellet was then
resuspended in 3.3 ml of TBI with gently swirling on ice water and incubated on ice
for 2 hours. Cells were harvested again by centrifuging at 4 °C, 4,000 rpm for 10
minutes. After being resuspended in 1.1 ml TBII, the 100 ul of aliquot competent
cells was kept into each tube at -80 °C until used.
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The chemical transformation was carried out by adding 3 ul of pTN1 into 50
ul of RB7 competent cells. The mixture was incubated on ice for 20 minutes, then
being incubated at 42 °C for 2 minutes. After that, the mixture was immediately
returned to ice for 2 minutes. Then, 1 ml of LB broth was added to the reaction and
incubated at 37 °C for 2 hours. Finally, the mixture was spread on LB agar plates with
Ampicillin (100 pg/ml), and plates were incubated at 37 °C overnight.

IdRA  pRB85 PQE-30 Xa

M

cut with Hindlll and BamHl

|

! ligation

|

Transform into E. coli RB7

pQE-30 Xa

Figure 3.1 The diagram of the strain THW1 construction.
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3.5.6 Comparison of lactic acid production from different plasmid types

The lactic acid production from the strain RB24 harboring plasmid pRB85
(pBluescript 1l KS(+)) derivative was compared with the strain THW1 harboring
plasmid pTN1 (pQE-30 Xa derivative which could be induced by Isopropyl p-D-1-
thiogalactopyranoside, or IPTG). Inoculum preparation in LB medium and
fermentation in the fermentation broth was performed as mention above.
Fermentation was performed in 3 conditions as described in Table 3.1 with 10 g/L, 20
g/L, 30 g/L, 50 g/L and 70 g/L of initial glucose. However, for the strain THW1,
IPTG with the final concentration of 0.1 M was added in the step of inoculum
preparation.

3.5.7 Measurement of strain growth

The growth curve was determined from the ODggo values at different time
points. The 1.0 ml of each sample from fermentation culture was harvested every 3
hours for 12 hours. To eliminate the excess CaCOj that could cause light scattering,
0.37 M HCI was added prior to measure the absorbance by spectrophotometer at 600
nm (Skory, 2004).

3.5.8 Measurement of lactic acid, residual glucose and other fermentation

products

The samples harvested at different points of time were centrifuged at 10,000
rpm for 7 minutes. Then, the supernatant was filtrated by cellulose membrane and
diluted 10 times. The concentrations of lactic acid and residual glucose were prior
observed by YSI select biochemistry analyzer. Then, total lactic acid, acetic acid,
ethanol, formic acid, succinic acid and residual glucose concentrations were measured
by high performance liquid chromatography (HPLC) with IR detector and an Aminex
HPX-87H column chromatography using 5.0 mM H,SO, as the mobile phase
(injection volume 10 pl, 0.6 ml/min mobile phase, 50 °C column temperature). The
concentrations of optical of D(-)-lactic acid and L(+)-lactic acid isomers from each
sample were determined by UV detector at 254 nm and a Sumi chiral 0A-5000L
column using 2.0 mM CuSQO, as the mobile phase (injection volume 10 ul, 1.0 ml/min
mobile phase, 40 °C column temperature). The concentrations fermentation products
and residual glucose were calculated from standard calibration curve.
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RESULT AND DISCUSSION

The previous study revealed the E. coli harboring R. oryzae IdhA gene on the
plasmid (strain RB24) could produce lactic acid, however, a small and inconsistent
amount of the lactic acid was obtained (Boonsombat, 2013). Therefore, to improve
the production of lactic acid, it is important to study lactic from E. coli harboring R.
oryzae ldhA gene, including the strain RB24, in various conditions. In this study,
CaCOg3 was served as neutralizing agent and Ampicillin was added in the media to
maintain the plasmid.

4.1 Lactic acid production in minimal medium

In this experiment, minimal medium was prepared from 56/2 phosphate
buffer. The 56/2 minimal medium was composed of components that met the minimal
requirement for JC13509 derivative strains. Studying the lactic acid fermentation in
minimal medium should be easy to manipulate factors in the medium that may be
affected on lactic acid production. The steps of inoculum and fermentation were
performed as described previously (Topic 3.4.1 and 3.4.2). Fermentation conditions in
this experiment were divided as aerobic, limited oxygen and anaerobic.

The growth curve of E. coli JC13509, RB7, RB24, RB29, RB30 and RB31 in
56/2 minimal medium at 37 °C in 3 conditions for 12 hours is represented in Figure
4.1. The wild type strain, JC13509, seemed to grow better than other strains in all
conditions. However, the slightly lower growth from the other strains may be resulted
from many factors. The strain RB7 contains deactivated chromosomal IdhA and pta
that may be affected on growth. The others, including RB24, RB29, RB30 and RB31,
harbors plasmid, therefore, it is possible that the limited nutrients in minimal medium
was shared for plasmid replication, other that cell biomass and growth.

For lactic acid production and residual glucose concentration by using 56/2
minimal medium with 20 g/L of initial glucose concentration, it was found that, after
being fermented for 48 hours, the strain RB24 could produce lactic acid in all 3
conditions (Figure 4.2). However, the highest lactic acid concentration was measured
in limited condition. Although the system of IdhA expression in E.coli is functioned
during fermentative growth, the RB24 strain harboring the IdhA from R. oryzae on the
plasmid may still require some oxygen for LdhA expression and function as the native
enzyme. Furthermore, residual glucose concentrations of all strains in all conditions
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were more than 10 g/L (Figure 4.2). This excess glucose could inhibit lactic acid
production. Therefore, it was important to study suitable initial glucose concentration

for lactic acid production in 56/2 minimal medium.
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Figure 4.1 Cell growth during lactic acid fermentation in 56/2 minimal medium
under aerobic, limited oxygen and anaerobic conditions (p < 0.05).
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Figure 4.2 Lactic acid and residual glucose concentrations after being fermented of
strains in 56/2 minimal medium with initial glucose concentration of 20 g/L under A.
aerobic, B. limited oxygen, C. anaerobic conditions at 48 h (p < 0.05).
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4.1.1 The effect of initial concentration of glucose

In this study, fermentation was also carried out by using 56/2 minimal medium
with 3 conditions, but 5 initial glucose concentrations were varied. Amino acids
(arginine, thiamine, histidine, proline) were served as nitrogen source. Growth curves
of different initial glucose concentrations during fermentation under aerobic, limited
oxygen and anaerobic conditions were represented in Figure 4.3-4.5, respectively.
From Figure 4.3, under aerobic condition, growth of wild type strain, JC13509,
tended to be better than others, however, at some glucose concentrations, the strain
RB31 (wild type background with pBluescript 1l KS(+)) has similar growth to that of
wild type. It is possible that, some initial glucose concentrations, it has enough
nutrients and energy for the wild type background strain to both produce biomass and
replicate plasmid. From Figure 4.4 and 4.5, under limited and aerobic conditions,
growth of wild type strain seemed to be slightly better than other strains for all initial
glucose concentrations. With these conditions, chromosomal IdhA and pta is
somehow required for growth, moreover, nutrients and energy for growth were shared
for plasmid replication.

The lactic acid production and residual glucose concentration at 48 hours of all
fermentation conditions were represented in Figure 4.6. In this experiment, the result
suggested the similarity of lactic acid production in all fermentation conditions. As
expected, the strain RB24 could produce the highest amount of lactic acid due to the
R. oryzae IdhA gene on the plasmid. Even though the strain RB30 also contains
pRB85, pBluescript 11 KS(+) with R. oryzae IdhA, it contains E. coli chromosomal
IdhA. The previous study from Chang et al. in 1999 suggested that exogenous IdhA
could not express if chromosomal IdhA was still exist (Chang et al., 1999). However,
lactic acid production could be detected from the strains without R. oryzae IdhA,
including JC13509, RB7, RB29 and RB30, which may resulted from the other L-
lactate dehydrogenase, LIdD, of E. coli (Keseler et al., 2013).

Although the E. coli strain RB24 was expected to produce lactic acid, it seemed
not to produce lactic acid in all conditions nor all initial glucose concentration.
Considering of lactic acid production and residual glucose in fermentation media, the
optimal initial glucose concentration when using 56/2 minimal medium in this study
was 10 g/L. Less than 10 g/L of glucose concentration was used when fermented with
10 g/L to 50 g/L initial concentration of glucose. This may be caused from
components in 56/2 minimal medium could not be utilized inappropriately for
producing lactic acid. Therefore, one of the important factors for lactic acid
fermentation by microorganism is nutrient requirement that may be varied upon the
strain of each organism (Lawford and Rousseau, 1996). Lactic acid can be produced
by many microorganisms with the use of different media, nitrogen sources and carbon
sources depended on microbial metabolites (Bhalla et al., 2007). Therefore, studying
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of effect of different components in media on lactic acid production is important to
further improve lactic acid production.
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2 g/L, 10 g/L, 20 g/L, 30 g/L and 50 g/L of initial glucose under anaerobic condition
(37 °C without shaking for 12 h, anaerobically).



Lactic acid concentration (g/L)

Lactic acid concentration (g/L)

|

Lactic acid concentration (g/L)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

JC13509

B Aerobic condition
® Limited oxvgen condition

1 m Anaerobic condition

2.0 10.0 20.0 30.0 50.0
Initial glucose concentration (g/L)

RB7

2.0 10.0 20.0 30.0 50.0
Initial glucose concentration (g/L)

RB24

2.0 10.0 20.0 30.0 50.0
Initial glucose concentration (g/L)

Residual glucose concentration (g/L) Residual glucose concentration(g/L)

Residual glucose oncentration (g/L)

60 -

50 -

40 -

30

20 -

10 -

60 -

50 -

40 -

30 -

20 -

10 -

[o2}
o

[8)]
o

N
o

w
o

N
o

[uny
o

o

37

JC13509

2.0 10.0  20.0 30.0 50.0
Initial glucose concentration (g/L)

2.0 10.0  20.0 30.0 50.0
Initial glucose concentration (g/L)

RB24

2.0 100  20.0 300 500
Initial glucose concentration (g/L)



Initial glucose concentration (g/L)

38

0.30 50 -
g RB29 J RB29
2 0.25 E 40
.5 0.20 B Aerobic condition =
g ' B Limited oxvgen condition :,C_; 30 -
c o
§ 0.15 = Anaerobic condition s
[}
o 8 20 -
g 010 s
=] [ J
8 005 g 10
- 2
0.00 0 -
2.0 10.0 20.0 30.0 50.0 2.0 10.0 20.0 30.0 50.0
Initial glucose concentration (g/L) Initial glucose concentration (g/L)
0.30 - 60 -
- RB30 - RB30
(=]
) 0.25 - = 50 -
S
c =1
S 0.20 - £ 40 -
g g
5 015 - S 30 -
g 2
5 S
2 0.10 2 20 -
S e
p= 2
S 0.05 2 10 -
3 &
0.00 - 0 -
2.0 10.0 20.0 30.0 50.0 2.0 10.0 20.0 30.0 50.0
Initial glucose concentration (g/L) Initial glucose concentration (g/L)
0.30 60 -
— RB31 < RB31
) =
> 0.25 = 50 -
c B
S 020 5 40 -
£ s
§ 0.15 ; 30 -
c o
° S
© 0.10 2 20 -
Q —_
S g
£ 005 I I I 2 10 -
I+ j5}
| 4
0.00 0 -
2.0 10.0 20.0 30.0 50.0 2.0 10.0 20.0 30.0 50.0

Initial glucose concentration (g/L)

Figure 4.6 Lactic acid and residual glucose concentrations after being fermented in
56/2 minimal medium with 2 g/L, 10 g/L, 20 g/L, 30 g/L and 50 g/L of initial glucose
under aerobic, limited oxygen and anaerobic conditions at 48 h (p < 0.05).
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4.1.2 The effect of medium component on lactic acid production

In this experiment, carbon sources and amount of CaCOj3 neutralizer of 56/2
minimal medium were studied. From Figure 4.7, lactic acid production after being
fermented under anaerobic condition at 48 hours from 20 g/L of initial glucose (2%
(w/v) initial glucose) was compared with 1% (v/v) initial glycerol. Lactic acid
concentration when using 20 g/L of initial glucose as carbon source was higher than
1% (v/v) glycerol. It is possible that C6 carbon source is more suitable for metabolism
and fermentation than C3 carbon source. Moreover, during fermentation, decrease in
pH due to insufficient amount of CaCO; that may affect glycerol dehydrogenase
activities, glycerol metabolism enzyme (Gonzalez et al., 2008). Moreover, the excess
amount of CaCOj3 neutralizer was disadvantageous for lactic production from this
RB24 E. coli strain. From Figure 4.8, When 30 g/L of CaCO; in 56/2 minimal
medium was used for fermentation, at 48 hours, lower amount of lactic acid could be
detected than that of 10 g/L of CaCOs. Possibly, too much CaCO3; may inhibit to
lactic acid production (Bhalla et al., 2007).

From all previous experiments, very small amount of lactic acid was detected.
It is possible that 56/2 minimal medium is not suitable for lactic acid fermentation.
This medium only meets the minimal requirement for E. coli JC13509 derivatives that
cells may possibly choose to utilize provided nutrients for necessary functions, such
as maintaining cellular biochemical activities for surviving, rather than lactic acid
production. Furthermore, with the situation of limited nutrients, small amount of lactic
acid that was measured from fermentation under aerobic and limited oxygen
conditions may be resulted from the other L-lactate dehydrogenase, LIdD that
functions during aerobic metabolism (Keseler et al., 2013). Therefore, medium for
this E.coli RB24 strain to ferment lactic acid was the next issues to study.
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Figure 4.7 Comparison of lactic acid production after being fermented with 20 g/L of
initial glucose and 1.0% (v/v) initial glycerol in 56/2 minimal medium under

anaerobic condition (37 °C without shaking, anaerobically) at 48 h (p < 0.05).
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Figure 4.8 Comparison of lactic acid production and residual glucose concentrations
after being fermented with 10 g/L and 30g/L of CaCOj3 neutralizer in 56/2 minimal
medium under anaerobic condition (37 °C without shaking, anaerobically) at 48 h (p <
0.05).
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4.2 Lactic acid production from different fermentation media

From the previous experiments, even the highest concentration of lactic acid
was still low. It was hypothesized that amino acids (arginine, thiamine, histidine,
proline) are served as nitrogen source in minimal medium was not enough for lactic
acid production for the E. coli RB24. In this experiment, a kind of rich medium was
used. Lactic acid production from 3 fermentation conditions and initial glucose
concentrations of 10 g/L, 20 g/L, 30 g/L and 50 g/L were studied. Cell growth during
fermentation in aerobic, limited oxygen and anaerobic conditions are represented in
Figure 4.9-4.11, respectively. As expected, all strains grew better in fermentation
broth better than 56/2 minimal medium in all conditions and all initial glucose
concentrations. One of the major differences between 56/2 minimal medium and
fermentation broth is nitrogen source. Four amino acids (arginine, thiamine, histidine
and proline) are served as nitrogen sources in 56/2 minimal medium while yeast
extract and peptone were served as nitrogen sources in fermentation broth. Therefore,
fermentation broth should provide nutrients such as polypeptides, amino acid,
vitamins and many growth factors suitable for metabolism of E. coli (Hofvendahl and
Hahn-Haégerdal, 2000) that are sufficient for cell growth (Mili¢ et al., 2007).
Furthermore, yeast extract rich in vitamin B which increase lactic acid production
(Aeschlimann and Stockar, 1990).
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Figure 4.9 Cell growth during lactic acid fermentation in 56/2 minimal medium and
fermentation broth during fermentation under aerobic condition (37 °C with 200 rpm
for 12 h) (p < 0.05).
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Figure 4.11 Cell growth during lactic acid fermentation in 56/2 minimal medium and
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shaking for 12 h, anaerobically) (p < 0.05).
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The lactic production and residual glucose concentrations from the E. coli
RB24 when being fermented with 56/2 minimal medium and fermentation broth in 3
fermentation conditions and 10 g/L, 20 g/L, 30 g/L and 50 g/L of initial glucose
concentrations at 48 hours were represented in Figure 4.12- 4.14. As expected, lactic
acid production from the strain RB24 was better in fermentation broth than 56/2
minimal medium. This may be resulted from component in fermentation broth that
were rich and adequate for both cell growth and lactic acid production. However, the
optimal condition for fermentation by fermentation broth was found under anaerobic
condition.
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Figure 4.12 Comparison of lactic acid production by E. coli JC13509 after being
fermented under aerobic, limited oxygen and anaerobic conditions at 48 h with 56/2
minimal medium and fermentation broth containing 10 g/L, 20 g/L, 30 g/L and 50 g/L
of initial glucose concentration (p < 0.05).
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Figure 4.13 Comparison of lactic acid production by E. coli RB7 after being
fermented under aerobic, limited oxygen and anaerobic conditions at 48 h with 56/2
minimal medium and fermentation broth containing 10 g/L, 20 g/L, 30 g/L and 50 g/L
of initial glucose concentration (p < 0.05).
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Figure 4.14 Comparison of lactic acid production by E. coli RB24 after being
fermented under aerobic, limited oxygen and anaerobic conditions at 48 h with 56/2
minimal medium and fermentation broth containing 10 g/L, 20 g/L, 30 g/L and 50 g/L
of initial glucose concentration (p < 0.05).
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By using fermentation broth with rich nutrients, under aerobic condition, lactic
acid fermentation was performed at 37 °C, 200 rpm for 48 hours. In this condition,
with oxygen in the system, the cell could grow rapidly. From Figure 4.12-4.14, with
the initial glucose concentration of 10 g/L and 20 g/L, at the end of the fermentation,
it seemed that glucose was used up. However, with initial glucose concentration of 30
g/L and 50 g/L, it was suggested that only 20 g/L of glucose was used. However,
under this condition, the strain RB24 could not produce lactic acid. It was probably
caused by oxygen in fermentation system. Oxygen can serves as electron acceptor for
aerobic metabolism, therefore glucose in cell chooses to enter glycolysis in aerobic
metabolism, that resulted in higher energy obtained, rather fermentative growth.
Moreover, in aerobic condition, half of substrate carbon has been converted to cell
mass (Causey et al., 2003).

Under the limited oxygen condition (Figure 4.12-4.14), the residual glucose
concentration tended to be similar to ones in aerobic condition. During fermentation
with 10 g/L and 20 g/L of initial glucose concentration, the strain RB24 produced
lactic acid with concentration of 1.64 g/L, or 0.18 g/g of yield and concentration of
2.02 g/L of lactic acid, or of 0.12 g/g of yield, respectively. However, the amount of
lactic acid was still low. It was possible that glucose entered glycolysis until oxygen
was used up, then, it entered to fermentative growth that can produce lactic acid.

Under anaerobic condition (Figure 4.12-4.14), lactic acid fermentation was
performed in the closed system without oxygen in the system at 37 °C, for 48 hours.
With this condition, the strain RB24 gave the highest lactic acid concentration of 7.45
g/L with a yield of 0.42 g/g when using 30 g/L of initial glucose. It was suggested that
regulation of lactic acid expression required some components in E. coli anaerobic
metabolism even though the R. oryzae IdhA produce lactic acid aerobically.
Moreover, with the higher initial glucose concentration (50 g/L), the lower amount of
lactic acid production. It is possibly caused by inhibition of lactic acid production by
high glucose concentration (Gongalves et al., 1991).

Although the highest concentration of lactic acid was detected as 7.45 g/L,
considering with costs, it was not high enough. There were some factors were
required to study for further improvement of lactic production. Due to R. oryzae gene
was on the plasmid, gene product could be inconsistently produced and plasmid could
be lost. Therefore, in the next topic, plasmid type will be focused on. It was
hypothesized that if R. oryzae IdhA gene was on an inducible plasmid, recombinant
LdhA should be produced in higher amount and resulting in higher amount of lactic
acid.
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4.3 Lactic acid production from different plasmid type

4.3.1 Construction of E. coli strain harboring R. oryzae IdhA gene on
IPTG-induced plasmid

Although E. coli strain RB24 could produce the highest concentration of lactic
acid when using fermentation medium with 30 g/L of initial glucose in anaerobic
condition (7.45 g/L), the amount was still low. A hypothesis was that the expression
of R. oryzae IdhA on the plasmid on pBluescript 1l KS(+) may be not enough and
inconsistent. Therefore, in this experiment, the pQE-30 Xa plasmid was selected, so
the target gene could be forced to be expressed. The R. oryzae IdhA was amplified
from pRB85 with primer 42 and 43. The approximately 1800 base pairs DNA
fragment of R. oryzae IdhA (Figure 4.15) was cloned into pQE-30 Xa plasmid under
the control of lac promoter that could be induced by Isopropyl B-D-1-
thiogalactopyranoside (IPTG). This constructed plasmid was named as pTN1 and
then, transformed into E. coli strain RB7 to generate the strain name THW1. Before
transferring to fermentation broth, the strain THW1 was induced by 0.1 M IPTG, and
then also fermented for 48 hours with fermentation broth in 3 conditions, with various
initial glucose concentrations as 10 g/L, 20 g/L, 30 g/L, 50 g/L and 70 g/L. Cell
growth under aerobic, limited oxygen and anaerobic conditions were represented in
Figure 4.16-4.18, respectively. Growth of all strains tended to be similar in most
conditions and initial glucose concentrations. However, in some conditions, such as
20 g/L of initial glucose under anaerobic condition, the RB24 strain seemed to grow
slightly slower than the other strains. It is possible that some component on pRB85
may somehow cause lower growth in these conditions.
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Figure 4.15 1% Agarose gel electrophoresis of the plasmid pQE-30 Xa and DNA
fragment of R. oryzae IdhA cut with Hindlll and BamHI enzymes.

The size of plasmid pQE-30 Xa (lane 1-2) and DNA fragment of R. oryzae IdhA (lane
3-4) are approximately 3500 and 1800 base pairs, respectively. Lane M is 1 kbp DNA
ladders marker.
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Figure 4.16 Cell growth during lactic acid fermentation of JC13509, RB24 and
THW1 strains using fermentation broth with 10 g/L, 20 g/L, 30 g/L, 50 ¢g/L and 70
g/L of initial glucose concentration under aerobic condition for 12 h (p < 0.05).
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Figure 4.17 Cell growth during lactic acid fermentation of JC13509, RB24 and
THWT1 strains using fermentation broth with 10 g/L, 20 g/L, 30 g/L, 50 g/L and 70
g/L of initial glucose concentration under under limited oxygen condition for 12 h (p
<0.05).
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Figure 4.18 Cell growth during lactic acid fermentation of JC13509, RB24 and
THW1 strains using fermentation broth with 10 g/L, 20 g/L, 30 g/L, 50 ¢g/L and 70
g/L of initial glucose concentration under anaerobic condition for 12 h (p < 0.05).
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4.3.2 Comparison of lactic acid production from different plasmid types

The lactic acid production by THW1 was compared with RB24 by using
fermentation broth with various initial glucose concentrations. The strain THW1 was
induced by IPTG before. Lactic acid production and residual glucose concentration
under aerobic, limited oxygen and anaerobic conditions were represented in Figure
4.19-4.21, respectively.
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Figure 4.19 Lactic acid production and residual glucose concentrations from the
strain THW1 with IPTG induction compared with RB24 under aerobic condition after
being fermented with various initial glucose concentrations for 48 h (p < 0.05).
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Figure 4.20 Lactic acid production and residual glucose concentrations from the
strain THW1 with IPTG induction compared with RB24 under limited oxygen
condition after being fermented with various initial glucose concentrations for 48 h (p
<0.05).
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Figure 4.21 Lactic acid production and residual glucose concentrations from the
strain THW1 with IPTG induction compared with RB24 under anaerobic condition
after being fermented with various initial glucose concentrations for 48 h (p < 0.05).
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The results from Figure 4.19, 4.20 and 4.21 suggested that even though the
expression of R. oryzae IdhA was forced to be expressed in THW1 strain,
unfortunately, the amount of lactic acid was not higher than that of RB24 strain as
hypothesized. One possibility was that IPTG was added only once prior to
fermentation and used up. Furthermore, it is possible that glucose in the medium
affects to formation of CAP/CAMP complex that could repress lac promoter on the
pQE-30 Xa plasmid (Donovan et al., 1996). Gosset in 2005 improved
phosphoenolpyruvate:carbohydrate phosphotransferase system in E. coli that
modifications can be improve glucose transport system (Gosset, 2005). To better
understand in lactic acid production in these strains, other fermentation products after
being fermented with 20 g/L and 30 g/L of initial glucose under anaerobic condition
were measured and represented in Figure 4.22. As expected, D(-)-lactic acid was
detected in relatively high amount from wild type JC13509 strain compared with
RB24 and THW1 because of the exist of chromosomal IdhA gene that involved in
D(-)-lactic acid production, a main product of E. coli fermentative growth in shake
flask level (Zhou et al., 2003). However, D(-)-lactic acid amount was also higher than
L(+)-lactic acid in the strain RB24 and THW1. It is possible that recombinant LdhA
from eukaryotic R. oryzae could not function efficiently in prokaryotic E. coli host.
Moreover, D(-)-lactic acid that detected in these RB24 and THWL strains, even
though the chromosomal IdhA gene was deactivated, may resulted from the other D-
lactase dehydrogenase, the product of dld gene. Furthermore, during fermentation,
accumulation of by-products such as succinate, acetate and ethanol, may cause a
decrease in pH. The optimal pH can affect an increase in lactic acid and an decrease
in by-products production (Mulok et al., 2009; Yoo et al., 1996).
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production of each fermentation product after being fermented under anaerobic
condition for 48 h with 20 g/L and 30 g/L of initial glucose (p < 0.05).
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From all experiments, it was found that a small amount of the lactic acid was
detected from strains harboring plasmid with R.oryzae IdhA gene (RB24 and THW1).
The previous study also suggested that low amount of lactic acid was obtained from
E. coli with deactivated IdhA and pflB background that harbors R. oryzae IdhA gene
(Skory, 2000). Then, compare with genetic modification of E. coli for lactic acid
production from previous study (Table 4.1), E. coli RB24 lower amount of lactate
yield than previous study. It is possible that eukaryortic R. oryzae IdhA may not
function efficiently in prokaryotic E. coli host. Moreover, the lower enzyme activity
may affect the recycling of NADH in the conversion of pyruvate to lactic acid and
NAD®, so NAD" is not enough to use in glycolysis for ATP production under
anaerobic condition (Sanchez et al., 2005). In E. coli cell, under anaerobic condition,
ATP was derived from substrate level phosphorylation and acetate forming reaction
(Dien et al., 2001; Kabir et al., 2005). However, expected strains for L(+)-lactic acid
production in this study, including RB24 and THWL, are pta inactivated. Therefore,
for anaerobic growth of these strains, ATP was only derived from substrate level
phosphorylation (Bunch et al., 1997). Furthermore, considering of residual glucose
concentration, the strains may encounter with a problem in glucose transportation. An
accumulation of pyruvate may occurs in the cells due to the less effective recombinant
LdhA that could not convert pyruvate to lactate effectively (Figure 2.8). This pyruvate
accumulation can inhibit Cya, resulting in lower cAMP, and then subsequently
inhibits PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system) for
glucose transport (Steinsiek and Bettenbrock, 2012). Although the concentration of
pyruvate could not be detected in the fermentation broth, it possibly remained
intracellularly.

A benefit from our E. coli strains harboring R.oryzae IdhA gene, RB24 and
THWT1 is the reduction in some fermentation by-products (Figure 4.22). This may
resulted from the redirection of anaerobic pathway. Therefore, to improve L(+)-lactic
acid production these strains, IdhA expression, recombinant LdhA function efficiency,
other inhibitors in anaerobic growth and other factors in the fermentation process
should be further studied. Moreover, glucose transport is also required to study
further.
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CHAPTER V

CONCLUSION

Conclusion

There a lot of studies to improve the effectiveness for lactic acid production
and expected to applied to an industrial scale. Genetic engineering was used to
constructed E. coli strains harboring exogenous IdhA gene. However, to further
improve lactic acid production, it is important to study lactic acid production from
these E. coli strains in various conditions.

In this study, E. coli strain RB24, a genetically modified strain that harbors
IdhA from R. oryzae, was used to study lactic acid production in shake flask level. The
previous study suggested that this strain could produce lactic acid, but low yield was
obtained. In this experiment, 56/2 minimal medium was first used because it was easy
to vary some composition that may effect on lactic acid production from the E. coli
RB24 strain. It was found that very small amount of lactic acid was detected from the
strain RB24 after being fermented for 48 hours in all conditions. Furthermore, by
varying medium components, lactic acid concentration using 56/2 minimal medium
with 20 g/L of initial glucose as carbon source was higher than 1% (v/v) glycerol and
fermentation medium with 10 g/L of CaCO3; was higher than 30 g/L of CaCOs.
However, small amount of lactic acid that detected when being fermented with 56/2
minimal medium may be resulted from other oxygen induced L-lactate
dehydrogenase, LIdD, because of the detection of lactic acid from the strain without
R.oryzae IdhA gene along with an amount of lactic acid from aerobic and limited
oxygen conditions that seemed to be higher than that from anaerobic conditions.
Moreover, in this minimal medium, slow cell growth was found and less than 10 g/L
of glucose concentration was used when fermented with 10 g/L to 50 g/L of initial
concentrations of glucose. Therefore, 56/2 minimal medium was not suitable for lactic
acid fermentation due to the limited nutrients. In this situation, cells was possibly used
this limited nutrients for maintaining necessary biochemical activities for survival
rather that producing biomass, cell division, or producing lactic acid.

When using rich medium for fermentation, as expected, a higher cell growth in
fermentation broth than 56/2 minimal medium could be detected. Moreover, the
highest concentration of lactic acid (7.45 g/L) was obtained when fermentation
medium with 30 g/L of initial glucose concentration under anaerobic condition.
However, the amount of lactic acid produced was still low which could not use for
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further application or upscaling. Moreover, the higher initial glucose concentrations
tended to give the lower amount of lactic acid. This was possibly caused by the
inhibition of lactic acid production by high glucose concentration. Moreover, lactic
acid production from the strain RB24 is depended on R. oryzae IdhA gene on the
plasmid. Even though one of the advantages of using plasmid for gene expression is
more copy numbers, it is hard to control the stability. Then, R. oryzae was forced to
be expressed by cloning under the lac promoter of pQE-30 Xa which is induced by
IPTG, resulted in the strain named THW1. The lactic acid production from THW1
strain was still low and even lower than RB24. It is possible that, in this case, glucose
in the medium may repress lac operon. When other fermentation products were
measured, D(-)-lactic acid could be detected in the RB24 and THW1 strains, even
though the chromosomal IdhA gene was deactivated. This may be resulted from the
other D-lactase dehydrogenase, the product of dld gene.

From all experiments, it was suggested that R. oryzae IdhA gene could express
in E. coli host, but the exogenous eukaryotic protein may not function efficiently in
prokaryotic host which it may cause lower enzyme activity. Then, lactic acid could
not be efficiently generated from pyruvate. Besides low amount of lactic acid
production,  pyruvate is accumulated  which  further inhibits PTS
(phosphoenolpyruvate:carbohydrate phosphotransferase system) for glucose transport.
This may be a reason why a relatively high residual glucose concentration was
detected.

Suggestion

The yield of lactic acid in this study was low. To solve this problem, one of
the solutions is to continue to find new conditions for fermentation. However, the
result suggested that varying some parameters such as types of media, initial glucose
concentrations and fermentation conditions were not enough to obtain high yield of
lactic acid from the E. coli harboring plasmid with R. oryzae IdhA gene. Therefore, it
IS interesting to do more genetic modification of the strain RB24. The genetically
engineered E. coli involving in other anaerobic metabolic pathways such as adhE,
plfB and frdABC may improve the lactic acid production by redirection of lactic acid
pathway.

The R. oryzae IdhA gene expression in the E. coli strain RB24 may be quite
complicated to be regulated due to the presence of both R. oryzae IdhA promoter (on
the plasmid) and E. coli IdhA promoter on the host chromosome. Furthermore, for the
strain RB24, the R. oryzae IdhA expression is dependent on gene on the plasmid that
is quite difficult to control the stability. Therefore, to solve these problems, the new
genetically modified E. coli strain should be constructed by replacing chromosomal E.
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coli IdhA with R. oryzae IdhA under the control of E. coli IdhA promoter. By
integrating gene onto the chromosome, the gene stability can be increased and easier
to maintain. Moreover, it should be advantageous because antibiotic is not required
for maintaining plasmid. With the control of only host promoter, it should be easier to
find the conditions suitable for R. oryzae IdhA expression and further improve lactic
acid production.

As the results suggested the ineffective recombinant LdhA expressed from
R.oryzae IdhA in E. coli host, it is important to study the activity of this LdhA.
Moreover, parameters in glucose phosphoenolpyruvate:carbohydrate
phosphotransferase system (PTS) should be focused on further to solve the problem of
high residual glucose concentration that may inhibit lactic acid production.

In addition, during fermentation, because other factors such as pH can affect to
lactic acid and by-products yields, pH in fermentation media should be controlled.
Furthermore, time and temperature for IPTG induction of the R. oryzae IdhA gene on
the IPTG-inducible plasmid should be optimized to increase the target gene
expression efficiency.
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APPENDIX A

MEDIA AND SOLUTIONS

1. Ampicillin (200mg/ml)

Dissolve 1000 mg Ampicillin in 10 ml dH,O. Working solution is 100 pg/ml.
Prepare in 1 ml aliquots and store at -20°C.

2. LB medium
Peptone 10 ¢
Yeast extract 5 ¢
NaCl 10 ¢

Dissolve in 1000 ml of dH,0 and autoclave at 121 °C for 15 min.
3. LB agar
Add 2% (w/v) agar in LB medium and sterilize at 121 °C for 15 minutes.

4. Fermentation broth

Yeast extract 5 g
Peptone 5 g
KH2PO4 025 ¢
K,HPO, 025 ¢
Salt solution 5 ml
CaCO3 10 ¢

The concentration of glucose in fermentation broth was varied as 10, 20, 30,
50, 70 g/L in the study. Dissolve in dH,0, adjust pH to 6.8 and sterilize at 121 °C for
15 minutes.
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3.1 Salt solution

MgSQO,4.7H,0 400 mg
MnSO,4.5H,0 20 mg
FeSO,.7H,0 20 mg

Dissolve in 10 ml of dH,0.

5. 5X 56 phosphate buffer

Na;HPO4 484 ¢
KH,PO, 255 g
MgSO,.7H,0 10 ¢
(NH4),SO04 100 g
Ca(NO3),.4H,0 005 g
FeSO, 0.0025 g

Dissolve in 5000 ml of dH,0.
6. 56/2 phosphate buffer
5X 56 phosphate buffer 500 ml

dH,0O 500 ml
Arginine 02 g
Thiamine 0.001 g
Histidine 01 ¢
Proline 100 ¢

Sterilize by autoclaving at 121 °C for 15 minutes.
7. 56/2 minimal medium

Add glucose and CaCOj3; to the 56/2 phosphate buffer before use. 10 g/L of
CaCOg. In this study, the concentration of glucose in fermentation broth was varied as
2.0, 10, 20, 30, 50 g/L in the study. Use 1% (v/v) of glycerol instead of glucose in the
experiment of varying carbon source. CaCO3; was varied as 10 g/L and 30 g/L in this
study.
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8. TB-I (Transformation buffer I)

KOAC 147 g
MnCl, 50 g
RbCl 6 ¢
CaCl, 074 g
15% glycerol 75 ml

Adjust the final volume to 500 ml with dH,O. Sterilize by filtering through
0.22 um filter and store at 4 °C.

9. TB-II (Transformation buffer I1)

MOPS 1.04 g
CaCl, 55 ¢
RbClI 06 g
15% glycerol 75 ml

Adjust the final volume to 500 ml with dH,0O. Sterilize by filtering through
0.22 pum filter and store at 4 °C.



APPENDIX B

HPLC STANDARD CURVE

1. Standard curve of DL-lactic acid

For the standard curve, 2.0, 1.5, 1.0, 0.50, 0. 25 and 0.10 g/L of standard DL-
lactic acid were applied in HPLC.

Table B1 DL-lactic acid concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Aminex HPX-87H column with
RI detector.

DL-lactic acid concentration (g/L) Peak area
0.10 2323097
0.25 5502485
0.50 11133362
1.00 21970144
1.50 32656214

2.00 45035488
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DL-lactic acid standard curve
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Figure B1 A Standard DL-lactic acid curve from HPLC by using Aminex HPX-87H
column with RI detector for DL-lactic acid determination.

The equation from the graph in Figure B1 was used to calculate the DL-lactic
acid concentration in the each fermented sample. From this graph, the DL-lactic acid
concentration was calculated as the following:

y = 4E-08x + 0.0049

which x was the peak area of each sample and y was the DL-lactic acid
concentration in each sample. With this calculation, the average DL-lactic acid
concentrations from JC13509, RB7, RB24, RB29, RB30 RB31 and THWL1 strains
(from 3 repeats of each set of experiment) are represented in Table C1-C10.
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2. Standard curve of succinic acid

For the standard curve, 2.0, 1.0, 0.5, 0.25, 0.125, 0.0625 and 0.03125 g¢/L of
standard succinic acid were applied in HPLC.

Table B2 Succinic acid concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Aminex HPX-87H column with
RI detector.

Succinic acid concentration (g/L) Peak area
0.03125 2016
0.0625 6419
0.125 12123
0.25 25759
0.5 55848
1.0 107602

2.0 209656
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Succinic acid standard curve
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Figure B2 A standard succinic acid curve from HPLC by using Aminex HPX-87H
column with RI detector for succinic acid determination.

The equation from the graph in Figure B2 was used to calculate the succinic
acid concentration in the each fermented sample. From this graph, the succinic acid
concentration was calculated as the following:

y = 9E-06x - 0.0003

which x was the peak area of each sample and y was the succinic acid
concentration in each sample. With this calculation, the average succinic acid
concentrations from JC13509, RB24 and THW!1 strains are represented in Table C11.
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3. Standard curve of acetic acid

For the standard curve, 2.0, 1.0, 0.5, 0.25, 0.125, 0.0625 and 0.03125 g¢/L of
standard acetic acid were applied in HPLC.

Table B3 Acetic acid concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Aminex HPX-87H column with
RI1 detector.

Acetic acid concentration (g/L) Peak area
0.03125 849
0.0625 3811
0.125 13762
0.25 19742
0.5 41151
1.0 77699

2.0 147315




80

Acetic acid standard curve
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Figure B3 A standard acetic acid curve from HPLC by using Aminex HPX-87H
column with RI detector for acetic acid determination.

The equation from the graph in Figure B3 was used to calculate the acetic acid
concentration in the each fermented sample. From this graph, the acetic acid
concentration was calculated as the following:

y = 1E-05x - 0.0214

which x was the peak area of each sample and y was the acetic acid
concentration in each sample. With this calculation, the average acetic acid
concentrations from JC13509, RB24 and THW!1 strains are represented in Table C11.
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4. Standard curve of ethanol

For the standard curve, 2.0, 1.0, 0.5, 0.25, 0.125, 0.0625 and 0.03125 g¢/L of
standard ethanol were applied in HPLC.

Table B4 Ethanol concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Aminex HPX-87H column with
RI detector.

Ethanol concentration (g/L) Peak area
0.03125 1011
0.0625 3422
0.125 5763
0.25 10156
0.5 27029
1.0 51759

2.0 102829
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Ethanol standard curve
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Figure B4 A standard ethanol curve from HPLC by using Aminex HPX-87H column
with RI detector for ethanol determination.

The equation from the graph in Figure B4 was used to calculate the ethanol
concentration in the each fermented sample. From this graph, the ethanol
concentration was calculated as the following:

y = 2E-05x + 0.0114

which  x was the peak area of each sample and y was the ethanol
concentration in each sample. With this calculation, the average -ethanol
concentrations from JC13509, RB24 and THW!1 are represented in Table C11.
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5. Standard curve of formic acid

For the standard curve, 1.0, 0.5, 0.25, 0.125, 0.0625 and 0.03125 g/L of
standard formic acid were applied in HPLC.

Table B5 Formic acid concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Aminex HPX-87H column with
RI detector.

Formic acid concentration (g/L) Peak area
0.03125 776
0.0625 1493
0.125 2986
0.25 6149
0.5 13437

1.0 24905
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Formic acid standard curve
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Figure B5 A standard formic acid curve from HPLC by using Aminex HPX-87H
column with RI detector for formic acid determination.

The equation from the graph in Figure B5 was used to calculate the formic
acid concentration in the each fermented sample. From this graph, the formic acid
concentration was calculated as the following:

y = 4E-05x - 0.0002

which x was the peak area of each sample and y was the formic acid
concentration in each sample. With this calculation, the average formic acid
concentrations from JC13509, RB24 and THW!1 strains are represented in Table C11.
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6. Standard curve of residual glucose in medium culture

For the standard curve, 4.0, 2.0, 1.0, 0.5, 0.25, 0.125, 0.0625 and 0.03125 g/L
of standard glucose were applied in HPLC

Table B6 Glucose concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Aminex HPX-87H column with
RI detector.

Glucose concentration (g/L) Peak area

0.03125 3992
0.0625 8683

0.125 17375

0.25 34411

0.5 75216

1.0 146291

2.0 279532

4.0 590320
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Glucose standard curve
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Figure B6 A standard glucose curve from HPLC by using Aminex HPX-87H column
with RI detector for glucose determination.

The equation from the graph in Figure B6 was used to calculate the residual
glucose concentration in the each fermented sample. From this graph, the residual
glucose concentration was calculated as the following:

y = 7E-06x + 0.0115

which x was the peak area of each sample and y was the residual glucose
concentration in each sample. With this calculation, the average glucose
concentrations from all strains are represented in Table C1-C11.
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7. Standard curve of L(+)-lactic acid

For the standard curve, 2.0, 1.5, 1.0, 0.50, 0.25, 0.10 and 0.05 g/L of standard
L(+)-lactic acid were applied in HPLC.

Table B7 L(+)-lactic acid concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Sumi chiral 0A-5000L column
with UV detector at 254 nm.

L(+)-lactic acid concentration (g/L) Peak area
0.05 454907
0.10 670652
0.25 1798165
0.50 2617617
1.00 5472796
1.50 8076543

2.00 10814629
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Figure B7 A standard L(+)-lactic acid curve from HPLC by using Sumi chiral 0A-
5000L column with UV detector at 254 nm for L(+)-lactic acid determination

The equation from the graph in Figure B7 was used to calculate the L(+)-lactic
acid concentration in the each fermented sample. From this graph, the L(+)-lactic acid
concentration was calculated as the following:

y = 2E-07x - 0.0368

which x was the peak area of each sample and y was the L(+)-lactic acid
concentration in each sample. With this calculation, the average L(+)-lactic acid
concentrations from JC13509, RB24 and THW!1 strains are represented in Table C11.
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8. Standard curve of D(-)-lactic acid

For the standard curve, 2.0, 1.5, 1.0, 0.50, 0.25, 0.10 and 0.05 g/L of standard
D(-)-lactic acid were applied in HPLC.

Table B8 D(-)-lactic acid concentration and peak area by high performance liquid
chromatography (HPLC) measured by HPLC using Sumi chiral 0A-5000L column
with UV detector at 254 nm.

D(-)-lactic acid concentration (g/L) Peak area
0.05 515153
0.10 756693
0.25 2003667
0.50 2916220
1.00 6079535
1.50 8948894

2.00 11976627
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Figure B8 A standard D(-)-lactic acid curve from HPLC by using Sumi chiral 0A-
5000L column with UV detector at 254 nm for D(-)-lactic acid determination

The equation from the graph in Figure B8 was used to calculate the D(-)-lactic
acid concentration in the each fermented sample. From this graph, the D(-)-lactic acid
concentration was calculated as the following:

y = 2E-07x - 0.0396

which x was the peak area of each sample and y was the D(-)-lactic acid
concentration in each sample. With this calculation, the average D(-)-lactic acid
concentrations from JC13509, RB24 and THW!1 strains are represented in Table C11.
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9. Retention time of fermentation products
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Figure B9 The chromatogram of acetic acid, citric acid, ethanol, DL-lactic acid and
succinic acid by using a high performance liquid chromatography (HPLC) equipped
with Animex HPX-87H column and IR detector.
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Figure B10 The chromatogram of glucose by using a high performance liquid
chromatography (HPLC) equipped with Animex HPX-87H column and IR detector.
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Figure B11 The chromatogram of formic acid by using a high performance liquid
chromatography (HPLC) equipped with Animex HPX-87H column and IR detector.
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Figure B12 The chromatogram of D(-)-lactic acid and L(+)-lactic acid by using a
high performance liquid chromatography (HPLC) equipped with Sumi chiral OA-
5000L column and UV detector at 254 nm.
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Table B9 The retention time of each fermentation product by using a high-pressure
liquid chromatography (HPLC) equipped with Animex HPX-87H column and Sumi
chiral 0A-5000L column.

Retention time in Retention time in Sumi
Product : . . .
Aminex column (min) chiral column (min)
Acetic acid 15.36-15.39 ND
Ethanol 21.75-21.77 ND
Formic acid 14.10-14.30 ND
DL-lactic acid 9.20-9.30 ND
D(-)-lactic acid ND 16.90-17.20
L(+)-lactic acid ND 21.40-21.80

Succinic acid 12.00-12.10 ND




APPENDIX C

LACTIC ACID AND RESIDUAL CONCENTRATIONS
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