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CHAPTER I

INTRODUCTION

The formalism of quantum field theory familiar to particle physicists is

normally restricted to the description of equilibrium systems, at both zero and

finite temperatures. During the past several years, many physicists have become

interested in the development of nonequilibrium quantum field theory since there

are many quantum systems with nonequilibrium behaviors, whose mathematical

description cannot be obtained by using the equilibrium formalism.

The formulation of nonequilibrium quantum field theory is based on the

formalism developed by Schwinger and Keldysh, in which the time dimension has

a form of a closed loop, going from the infinite past to the infinite future and then

going back to the infinite past again. The corresponding path integral formalism

is know as the “closed-time path integral” [1, 2, 3]. When combined with the “2-

particle-irreducible” formalism [4, 5], the closed-time path integration provides a

powerful tool for studying the nonequilibrium quantum systems [6].

An important application of the nonequilibrium quantum field theory is

in the area of inflationary cosmology, in which a scalar field, called an inflaton,

plays an important role. As the temperature of the early universe is very high, we

have no right to assume that the physical processes of the early universe occurred

in the equilibrium situations. Thus the dynamics of the inflaton during and

after the inflation era has to be treated as the nonequilibrium dynamics. In Ref.

[7], the inflaton dynamics in the flat Friedmann-Robertson-Walker spacetime was

investigated where the damping of the inflaton field has been found. The effects of

fermion coupling to the inflaton have been studied in Ref. [8], where the authors

discussed the possibility of having fermion production after the end of inflation.

The purpose of this thesis is to review the methods and results of the

nonequilibrium quantum field theory as applied to cosmology. The organization
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of this thesis is as follows. We introduce the closed-time path integrals and the

2-particle-irreducible formalism in Chapter 2. In Chapter 3, after a brief review

on inflationary cosmology, we derive the dynamical equations of the nonequilib-

rium scalar field theory in curved spacetime and consider a specific case of the

Friedmann-Robertson-Walker metric. We then go on to obtain the dynamical

equations for the scalar field coupled to a fermion field in Chapter 4, and calculate

the nonlocal kernel that appears in the dynamical equation for the propagator.

Finally, the conclusions are made in Chapter 5.



CHAPTER II

CLOSED-TIME PATH INTEGRALS AND

2-PARTICLE IRREDUCIBLE FORMALISM

In this chapter, we will discuss the closed-time path integral technique

and the 2-particle irreducible formalism, which are the main tools for attacking

problems in nonequilibrium quantum field theory.

2.1 Closed-Time Path Integrals

Before discussing the closed-time path integral formalism, we first recall that

an important object in the conventional quantum field theory is the generating

functional (or the vacuum-to-vacuum transition amplitude) in the presence of an

external source J , defined by

Z[J ] = ⟨0(+∞)|UJ(+∞,−∞)|0(−∞)⟩, (2.1)

where U(+∞,−∞) is the time-evolution operator linking the vacuum states in

the infinite past and in the infinite future. For a scalar field theory, U(+∞,−∞)

takes the form

UJ(+∞,−∞) = T

(
exp

i

~
(H + ΦJ)

)
, (2.2)

where H and Φ are the Hamiltonian and the scalar field, respectively, and T is

the time-ordering operator. In the above expression, an integral over d4x of the

exponent is understood without explicitly writing it; we shall use this convention

from now on. It is important to note that the vacuum states in Eq. (2.1) are

the ground states at different time, and it is possible that these ground states

are different when the system under consideration undergoes a phase transition

or evolves in a nonequilibrium situation. Using the generating functional, the



4

connected generating functional W [J ] is defined by

W [J ] = −i~ lnZ[J ]. (2.3)

The effective action Γ[ϕ] is defined as the Legendre transform of W [J ],

Γ[ϕ] = W [J ]− ϕJ, (2.4)

where ϕ(x) ≡ δW [J ]/δJ(x) is called the “classical field” or the “mean field”

corresponding to the quantum field Φ(x) [9]. Using this definition of ϕ(x), one

can see that if the vacua in the asymptotic past and in the far future are equivalent

in the sense that the vacuum state in the asymptotic past evolves uniquely into

the vacuum state in the far future, ϕ(x) is just the vacuum expectation value of

the field operator Φ(x) at time t = x0, and the value of ϕ(x) can be obtained by

solving the equation

δΓ[ϕ]

δϕ(x)
= 0. (2.5)

However, in the nonequilibrium situation in which things change with time, all

we know are the initial conditions of the system, and so we cannot be sure if the

vacuum state in the infinite past will evolve uniquely into the vacuum state in

the far future. Having no idea of what the vacuum state in the far future looks

like, it is impossible to calculate the generating functional defined in Eq. (2.1)

and so the above formalism fails. To overcome this difficulty, one introduces the

closed-time path integral (CTP) formalism, in which Eq. (2.1) is replaced by the

“closed-time path generating functional” [2, 3, 10]

Z[J1, J2] = ⟨0(−∞)|UJ2(−∞,+∞)UJ1(+∞,−∞)|0(−∞)⟩ (2.6)

where UJ1(+∞,−∞) is defined in Eq. (2.2) with external source J1

UJ1(+∞,−∞) = T

(
exp

i

~
(H1 + Φ1J1)

)
, (2.7)
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and UJ2(−∞,+∞) is defined with the anti-temporal ordering operator T̃ instead

of the time-ordering one

UJ2(+∞,−∞) = T̃

(
exp

i

~
(H2 + Φ2J2)

)
. (2.8)

In this formalism, there are two fields Φ1 and Φ2, which evolve forward in time

with source J1 and backward in time with source J2, respectively. Actually,

these two fields correspond to the same field Φ of the original theory; we just

use the indices 1 and 2 to distinguish between the systems that evolve in the

forward and in the backward time directions. The Hamiltonians H1 and H2 are

of the same form, except that H1 and H2 are, respectively, the functionals of

Φ1 and Φ2. The interpretation of this CTP generating functional is as follows.

Starting with the ground state |0(−∞)⟩ in the asymptotic past, we evolve it using

UJ1(+∞,−∞) (with the source J1) into the infinite future, and then bring it back

to the infinite past using UJ2(−∞,+∞) (with the source J2), where it becomes

the initial ground state |0(−∞)⟩ again. We thus see that this formalism does not

require any knowledge about things in the future; all we need to know are the

initial conditions at t = −∞.

Using the CTP generating functional, the connected generating functional

W [J1, J2] and the effective action Γ[ϕ1, ϕ2] are defined by

W [J1, J2] = −i~ lnZ[J1, J2], (2.9)

and

Γ[ϕ1, ϕ2] = W [J1, J2]− (ϕ1J1 − ϕ2J2), (2.10)

where ϕa(x) ≡ (−1)a−1δW [J1, J2]/δJa(x)
1 (a = 1, 2) and the minus sign in front

of the last term came from the fact that the second half of the time development

1The factor (−1)a−1 must be added because the exponent in the definition of UJ2
contains

a factor
∫ −∞
∞ dtΦ2J2 = −

∫∞
−∞ dtΦ2J2.



6

is anti-temporal while the integral representing the term ϕ2J2 is along the forward

time direction. To find the meaning of ϕa(x), let us obtain ϕ1(x) using Eq. (2.6).

It is easy to see that

ϕ1(x) = −i~
δ lnZ[J1, J2]

δJ1(x)

=
⟨0(−∞)|UJ2(−∞,+∞)UJ1(+∞, x0)Φ1(x)UJ1(x

0,−∞)|0(−∞)⟩
Z[J1, J2]

,(2.11)

where x0 is the time variable of ϕ1(x) (ϕ2(x) can be obtained similarly). Setting

J1 = J2 = J and using Z[J, J ] = 1, we find that ϕ1(x) = ϕ2(x) = ϕ(x), where

ϕ(x) = ⟨0(−∞)|UJ(−∞, x0)Φ(x)UJ(x
0,−∞)|0(−∞)⟩. (2.12)

If we interpret UJ(x
0,−∞)|0(−∞)⟩, which is the state evolving from the vacuum

state in the infinite past |0(−∞)⟩, as the vacuum state at time x0, then ϕ(x)

is simply the vacuum expectation value (mean field) of Φ(x) at time x0. The

pictorial interpretation of the above process of obtaining the mean field ϕ(x) is

shown in Fig. 2.1, in which the condition J1 = J2 results in the disappearance of

the contributions from things at time t > x0 [2, 10]. This means that causality is

automatic in this formalism.

Figure 2.1: The pictorial interpretation of the mean-field evaluation. The first diagram
represents Eq. (2.11), while the second one shows the cancelation of things
at time t > x0 after we set J1 = J2.

The path integral representation of Eq. (2.6) can be formulated using the

following trick. We first enlarge the size of the time dimension by a factor of two,
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where x0 runs from −∞ to +∞ in the first half, and from +∞ back to −∞ in the

second half. (Thus the time dimension has the structure of a closed loop, hence

the name “closed-time path integral.”) As mentioned earlier, we denote the scalar

field by Φ1 (with the source J1) in the first half of the time dimension, and by Φ2

(with the source J2) in the second half, so that the path integral representation

of Eq. (2.6) takes the form2

Z[J1, J2, ] =

∫
DΦ1DΦ2 exp

{
i

~
[(S[Φ1] + J1Φ1)− (S[Φ2] + J2Φ2)]

}
(2.13)

subject to the conditions that Φ1(+∞) = Φ2(+∞) and J1(+∞) = J2(+∞). Note

that the minus sign in front of the Φ2 part of the exponent came from the fact

that Φ2 propagates backward in time while the integral over time is defined in

the forward time direction.

Figure 2.2: The closed-time contour used in the closed-time path integral.

Even though we formally have only one scalar field propagating along

two time branches (one from x0 = −∞ to +∞ and the other from t = +∞

to −∞), Z[J1, J2] has the mathematical structure of a functional integral over

two scalar fields, so we can evaluate it in the conventional way. Introducing the

metric cab = cab = diag(1,−1) (a, b = 1, 2), we can use it to raise and lower the

2Here, we assume that Φa are real scalar fields. In the general situation in which the fields
may be complex scalar fields or spinor fields, we have to write down the action for the backward
time branch as

∫ −∞
∞ dt

∫
d3xL (Φ, ∂µΦ) first, and then change the time variable from t to −t

(this causes Φ(x⃗, t) in the integral to change to Φ(x⃗,−t)). Expressing Φ(x⃗,−t) in terms of
Φ(x⃗, t) via the time-reversal transformation results in the dependence on the complex conjugate
of Φ(x⃗, t) of the Lagrangian density L . Thus, we should write S[Φ∗

2] instead of S[Φ2].
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indices according to the rule Ja = cabJb and Φa = cabΦ
b. Using this metric, the

generating functional can be written in the more compact form as

Z[Ja] =

∫
DΦa exp

{
i

~
(S[Φa] + JaΦa)

}
, (2.14)

where S[Φa] ≡ S[Φ1] − S[Φ2]. The corresponding effective action is defined as a

Legendre transform of W [Ja] = −i~ lnZ[Ja],

Γ[ϕa] = W [Ja]− ϕaJ
a, (2.15)

where ϕa(x) ≡ δW/δJa(x). The rest of the calculation is the same as that in the

conventional quantum field theory. As discussed earlier, the vacuum expectation

value of the original scalar field is ϕ(x) = δW/δJ1(x)|J1=J2 , which is obtained by

solving the equation

δΓ

δϕa(x)

∣∣∣∣
ϕ1=ϕ2=ϕ

= 0 (2.16)

describing the time-evolution of ϕ(x) (remember that, unlike the conventional

quantum field theory, ϕ(x) is time dependent in the nonequilibrium situation). It

is worth mentioning that this time evolution should respect causality, since ϕ(x)

depends on things that happened only in its past, by construction.

Let us now consider the propagators of the theory. We first recall that a

propagator is the vacuum expectation value of the time-ordering product of two

scalar fields. In the closed-time path integral formalism, this time ordering is

defined to be along the direction of the closed-time path. As there are two scalar

fields, one for each time branch, it is clear that there are four types of propagators

[2]; the first two being formed by the fields on the same time branch, while

the others being constructed from the fields on different time branches. In the

functional method, these propagators are obtained by performing the functional

differentiation on W [Ja] [9],

iGab(x, x
′) =

δ2W [J c]

δJ b(x′)δJa(x)
. (2.17)
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Using the same algebra as we have done to find the mean field ϕ(x), we find

iG11(x, x
′) =

δ2W [Ja]

δJ1(x′)δJ1(x)

∣∣∣∣
J1=J2=J

=
i

~

{
⟨0(−∞)|UJ(−∞, x′0)Φ(x′)UJ(x

′0, x0)Φ(x)UJ(x
0,−∞)|0(−∞)⟩

− ⟨0(−∞)|UJ(−∞, x′0)Φ(x′)UJ(x
′0,−∞)|0(−∞)⟩

× ⟨0(−∞)|UJ(−∞, x0)Φ(x)UJ(x
0,−∞)|0(−∞)⟩

}
=

i

~
⟨0(−∞)|T (Φ(x′)Φ(x))|0(−∞)⟩connected. (2.18)

Following the same procedure, the remaining propagators are found to be

iG12(x, x
′) =

δ2W [Ja]

δJ2(x′)δJ1(x)

∣∣∣∣
J1=J2=J

=
i

~
⟨0(−∞)|Φ(x′)Φ(x))|0(−∞)⟩connected , (2.19)

iG21(x, x
′) =

δ2W [Ja]

δJ2(x)δJ1(x′)

∣∣∣∣
J1=J2=J

=
i

~
⟨0(−∞)|Φ(x)Φ(x′))|0(−∞)⟩connected , (2.20)

iG22(x, x
′) =

δ2W [Ja]

δJ2(x′)δJ2(x)

∣∣∣∣
J1=J2=J

=
i

~
⟨0(−∞)|T̃ (Φ(x)Φ(x′))|0(−∞)⟩connected. (2.21)

Observe that G22(x, x
′) is defined using the reverse time ordering, due to the fact

that it contains only the fields on the reverse time branch (on which time runs

backward), while the time-ordering operator does not appear in G12 and G21 since

these propagators contains fields on different time branches (the field on the first

branch must be on the right for these propagators). Thus, unlike the conventional

quantum field theory in which only the Feynman propagator exists, there are four

propagators that contribute to each internal line of a Feynman diagram. Since

each interaction vertex is defined on either forward or reverse time branch, it is not

hard to see that a vacuum Feynman diagram with n vertices in the conventional

quantum field theory may be thought of as describing 2n diagrams in the CTP

formalism.
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The above set of propagators was obtained naively from the formalism,

but their physical meaning may not be clear. To make the physical sense out of

these propagators, it is appropriate to define another set of propagators. To do

so, we first observe that that Gab can be written in terms of the step function

Θ(t− t′) which is equal to 1 when t > t′ and zero otherwise. For example,

~G11 = ⟨0(−∞)|
(
Φ(x)Φ(x′)Θ(x0 − x′0) + Φ(x′)Φ(x)Θ(x′0 − x0)

)
|0(−∞)⟩ (2.22)

~G22 = ⟨0(−∞)|
(
Φ(x′)Φ(x)Θ(x0 − x′0) + Φ(x)Φ(x′)Θ(x′0 − x0)

)
|0(−∞)⟩.(2.23)

Using the identity Θ(x0−x′0)+Θ(x′0−x0) = 1 and noting that Gab’s satisfy the

constraint G11 + G22 − G12 − G21 = 0 (which implies that there are only three

independent propagators), we define the retarded propagator (GR), the advanced

propagator (GA) and the correlation propagator (GC) by [10]

GR(x, x
′) = G11(x, x

′)−G12(x, x
′)

=
1

~
Θ(x0 − x′0)⟨0(−∞)|[Φ(x),Φ(x′)]|0(−∞)⟩ , (2.24)

GA(x, x
′) = G11(x, x

′)−G21(x, x
′)

= −1

~
Θ(x′0 − x0)⟨0(−∞)|[Φ(x),Φ(x′)]|0(−∞)⟩ , (2.25)

GC(x, x
′) = G12 +G21

=
1

~
⟨0(−∞)|{Φ(x),Φ(x′)}|0(−∞)⟩. (2.26)

In practice, it is appropriate to express all equations of motion in terms of these

propagators, so as to make causality apparent.

Having mentioned that the effective action Γ[ϕ] is an important quantity

for obtaining the mean fields, let us now discuss how we can obtain it in practice.

The standard method for this purpose is known as the “background field” tech-

nique, in which one expresses the quantum field Φ(x) as a sum of a mean field

ϕ(x) and a fluctuation field φ(x), Φ(x) = ϕ(x) + φ(x). Here, ϕ(x) is treated as a

function whose explicit form will be determined from the equations of motion, and
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φ(x) is a quantum field whose (quantum-corrected) vacuum expectation value is

tuned to zero by adding the appropriate counter terms when doing quantum cal-

culations. To apply this method in the closed-time path integral formalism, we

first use Eqs. (2.14) and (2.15) to express the effective action in the form of a

functional integral:

Γ[ϕa] = −i~ ln

[∫
DΦa exp

(
i

~

{
S[Φa]−

δΓ

δϕa

(Φa − ϕa)

)}]
, (2.27)

where we have expressed the sources as Ja = −δΓ/δϕa. Decomposing Φa =

ϕa + φa, the functional integral over Φa becomes the one over φa. By imposing

the initial conditions that ϕa(t = −∞) = Φa(−∞) (which will be imposed when

solving the equations δΓ/δϕa(x) = 0 for determining ϕa(x)), we see that φa

vanishes at t = −∞. If we also assume that φa also vanishes at t = +∞, then

we can evaluate the functional integral over φa in the same way as we did in the

conventional quantum field theory without having to worry about the constraints

due to the initial conditions. With this field decomposition, we have

Γ[ϕa] = −i~ ln

[∫
Dφa exp

{
i

~

(
S[ϕa] +

(
δS

δϕa

− δΓ

δϕa

)
φa

+
1

2

δ2S

δϕaδϕb

φaφb + SQ

)}]
≡ S[ϕa] + Γ1[ϕa], (2.28)

where we have expanded the action S[ϕa + φa] in terms of the fluctuation fields

S[ϕa + φa] = S[ϕa] +
δS

δϕa

φa +
1

2

δ2S

δϕaδϕb

φaφb + SQ , (2.29)

with SQ being the part of the action containing the higher-order terms in the

fluctuation fields, and Γ1[ϕa] defined by

Γ1[ϕa] = −i~ ln

[∫
Dφa exp

{
i

~

(
1

2

δ2S

δϕaδϕb

φaφb + SQ − δΓ1

δϕa

φa

)}]
(2.30)

represents the quantum corrections to the classical action S[ϕa] (that Γ[ϕa] is of

this form is the main reason why it was named the effective action). In obtaining
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the above form of Γ1, we have used δΓ/δϕa = δS/δϕa + δΓ1/δϕa to express the

right-hand side in terms of the derivatives of Γ1. By comparing Eq. (2.30) with

Eq. (2.28), we can interpret Γ1 as the effective action of the theory of φa coupled

to the external sources δΓ1/δϕa, whose action is Sr ≡ (1/2)(δ2S/δϕaδϕb)φaφb +

SQ.

Let us now show that the vacuum expectation value of φa vanishes. Per-

forming the functional derivative of Eq. (2.30) with respect to ϕc, we get

0 =

∫
Dφa

i

~

(
1

2

δ3S

δϕcδϕbδϕa

φaφb +
δSQ

δϕc

− δΓ1

δϕc

− δ2Γ1

δϕcδϕa

φa

)
exp

{
i

~

(
1

2

δ2S

δϕaδϕb

φaφb + SQ − δΓ1

δϕa

φa

)}
. (2.31)

Using SQ = 1/6{δ3S/(δϕaδϕbδϕc)}φaφbφc + . . ., one can verify that

1

2

δ3S

δϕcδϕbδϕa

φaφb +
δSQ

δϕc

=
δ

δφc

(
1

2

δ2S

δϕaδϕb

φaφb + SQ

)
− δ2S

δϕcδϕb

φb. (2.32)

Substituting this result into Eq. (2.31) and using S + Γ1 = Γ, we obtain

0 = − δ2Γ

δϕcδϕa

⟨φa⟩+
∫

Dφa
δ

δφc

(
exp

{
i

~

(
1

2

δ2S

δϕaδϕb

φaφb + SQ − δΓ1

δϕa

φa

)})
(2.33)

where ⟨φa⟩ is the vacuum expectation value of φa. Since the integral on the

right-hand side is zero and the matrix δ2Γ/δϕaδϕb cannot be singular (because of

the identity (δ2Γ/δϕaδϕb)(δ
2W/δJ bδJ c) = δc

a) [10], then we must have ⟨φa⟩ = 0

and so the vacuum expectation values of the fluctuation fields vanish.

It is important to make a remark that even though there are two dynam-

ical equations for the mean fields δΓ/δϕa = 0, these equations are supposed to

yield only one dynamical equation for the mean field in the coincidence limit,

in which ϕ1 = ϕ2 ≡ ϕ and J1 = J2, otherwise we would get a nonsense result.

This requirement puts a constraint on the form of the effective action, which we

now explore. Recall that we have an identity Z[J, J ] = 1 (see Eq. (2.6)), which

implies

Γ[ϕ, ϕ] = −i~ lnZ[J, J ]− J ϕ+ J ϕ = 0. (2.34)
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The effective action thus vanishes in the coincidence limit and this puts a con-

straint on the form of Γ[ϕa] as follows. Introducing the new field variables △(x)

and Σ(x) defined by [1, 10]

△(x) = ϕ1(x)− ϕ2(x) (2.35)

Σ(x) =
1

2
(ϕ1(x) + ϕ2(x)). (2.36)

In the coincidence limit, we have △(x) = 0 and Σ(x) = ϕ(x). In terms of these

fields, the general form of the effective action is

Γ[△,Σ] = △(x)N1(x) + Σ(x)M1(x) +
1

2
△(x)N2(x, x

′)△(x′)

+
1

2
Σ(x)M2(x, x

′)Σ(x′) +
1

2
Σ(x)D2(x, x

′)△(x′) + . . . . (2.37)

The requirement that Γ mush vanish in the coincidence limit rules out the possi-

bility of having terms containing only Σ in the effective action, which means that

M1 and M2 in the above equation have to vanish. This result implies that the

original two dynamical equations give only one independent dynamical equation

in the coincidence limit as follows. In terms of Σ and ∆, the dynamical equations

are δΓ/δΣ = 0 and δΓ/δ∆ = 0. It is easy to see that, with the constraint on the

form of Γ just stated, the equation δΓ/δΣ = 0 is trivial in the coincidence limit,

and so the only nontrivial dynamical equation for determining the mean field is

(δΓ/δ∆)|Σ=ϕ,∆=0 = 0.

We end this section with the discussion about how one can incorporate

the initial conditions into the closed-time path integral. When dealing with the

nonequilibrium problem, we are normally given an information about the prob-

ability distribution of the initial states (at t = −∞), and then asked what will

happen in the future given the initial conditions. It is clear that this initial

probability distribution is the thing that was missing in the above formulation of

the closed-time path integral, which is supposed to describe the nonequilibrium
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system. This remark tells us that the CTP generating functional introduced pre-

viously has to be modified in order to completely describe the nonequilibrium

system. It turns out that the correct CTP generating functional takes the form

[3, 6]

Z[J1, J2, ρ] = Tr[UJ2(−∞,+∞)UJ1(+∞,−∞)ρ(−∞)], (2.38)

where ρ(−∞) is the density operator at the initial time, which contains all infor-

mation about the probability distribution of the initial states [6], and the trace

is taken over all initial states. The corresponding path integral representation is

found to be

Z[Ja, ρ] =

∫
DΦ1(−∞)DΦ2(−∞)

[
⟨Φ1(−∞)|ρ|Φ2(−∞)⟩

×
∫

DΦa exp
{ i

~
[(S[Φa] + JaΦa)]

}]
, (2.39)

where ⟨Φ1(−∞)|ρ|Φ2(−∞)⟩ is the matrix element of the density operator with

respect to the initial states, the functional integral over Φa is subject to the

constraint that each field approaches its given initial state Φa(−∞) as t → −∞,

and the functional integration over the initial states (Φ1(−∞) and Φ2(−∞)) is

performed after the integral over Φa has been evaluated. Evaluating the above

form of the functional integral is surely a formidable task. Luckily enough, we

will not have to deal with such a messy functional integral in this thesis, and will

assume that the system was initially in a pure state from now on.

2.2 2-Particle Irreducible Formalism

In this section, we will introduce the 2-particle irreducible formalism, which plays

an important role in the nonequilibrium quantum field theory. To begin with, let

us add an exponential factor [3, 5, 6]

exp

(
i

~
K[Φa]

)
(2.40)
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into the path integral, where

K[Φa] = K +Ka(x)Φa(x) +
1

2
Kab(x, x′)Φa(x)Φb(x

′) + . . . . (2.41)

In the above expression for K[Φa], the integration over all spacetime coordinates

should be understood without having to write it, and the kernels K’s with more

than one index (Kab(x, x′), Kabc(x, x′, x′′), . . .) are nonlocal in the sense that they

couple the fields at different spacetime points. With this exponential factor, we

define a new generating functional Z[Ja, Kab, . . .] by

Z[Ja, Kab, ..] =

∫
DΦa exp

[ i
~

{
S[Φa] + Ja(x)Φa(x) +

1

2
Kab(x, x′)Φa(x)Φb(x

′)

+
1

6
Kabc(x, x′, x′′)Φa(x)Φb(x

′)Φc(x
′′) + . . .

}]
, (2.42)

where we have absorbed K into the normalization factor and Ka into the external

sources Ja. The connected generating functional is defined in the usual way as

W [Ja, Kab, . . .] ≡ −i~ lnZ[Ja, Kab, . . .] but with non-local sources K’s, and the

effective action is defined by performing the multiple Legendre transformation on

W [Ja, Kab, . . .] as [3, 6, 10]

Γ[ϕa, Gab, . . .] = W [Ja, Kab, . . .]− Jaϕa −
1

2
Kab(ϕaϕb + ~Gab)

−1

6
Kabc(ϕaϕbϕc + ϕa~Gbc + ϕb~Gac + ϕc~Gab + ~

3
2Gabc)

− . . . , (2.43)

where the mean field ϕa(x) is defined by

δW

δJa(x)
= ϕa(x) (2.44)

and the nonlocal kernels (Gab(x, x
′), Gabc(x, x

′, x′′), . . .) are defined by

δW

δKab(x, x′)
=

1

2

{
ϕa(x)ϕb(x

′) + ~Gab(x, x
′)
}

(2.45)

δW

δKabc(x, x′, x′′)
=

1

6

{
ϕa(x)ϕb(x

′)ϕc(x
′′) + ϕa(x)~Gbc(x

′, x′′) + ϕb(x
′)~Gac(x, x

′′)

+ ϕc(x
′′)~Gab(x, x

′) + ~
3
2Gabc(x, x

′, x′′)
}
, (2.46)
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and so on. It is not hard to see that, with the form of the generating functional

in Eq. (2.42), ϕa(x) is still the vacuum expectation value of Φa(x), while the

nonlocal kernels G’s are the connected n-point functions (n ≥ 2) once all the

external sources have been set to zero. The corresponding inverse transformations

read

δΓ

δϕa(x)
= −Ja(x)− ϕb(x

′)Kab(x, x′)

−1

2
Kabc(x, x′, x′′){~Gbc(x

′, x′′) + ϕb(x
′)ϕc(x

′′)}

− . . . , (2.47)

δΓ

δGab(x, x′)
= −1

2
~Kab(x, x′)− 1

2
~Kabc(x, x′, x′′)ϕc(x

′′)− . . . , (2.48)

δΓ

δGabc(x, x′, x′′)
= −1

6
~

3
2Kabc(x, x′, x′′)− . . . , (2.49)

and so on. By setting all the external sources to zero in the above equations,

we obtain a set of (infinite) equations which determines the mean fields and all

the n-point functions (or correlation functions) [3]. As all information about a

quantum field theory is contained in the n-point functions, it would be wonderful

if we could solve the above set of equations and obtain all the n-point functions

of the theory. But since the number of these equations is infinite, this method

does not work in practice. An obvious way to improve the situation is to truncate

the infinite series in Eq. (2.41) at the nth power of Φa,

K[Φa] = K+Ka(x)Φa(x)+. . .+
1

n!
Ka1···an(x1, · · · , xn)Φa1(x1) · · ·Φan(xn), (2.50)

which results in a finite set of equations of motion for determining ϕa, Ga1a2 , . . . ,

Ga1···an , leaving the higher-order correlation functions undetermined. Such a for-

malism is known as the “n-particle-irreducible formalism.”

Let us consider the simplest case of the “2-particle-irreducible formalism,”

in which there are two external sources Ja and Kab, in detail. Applying this

formalism to the closed-time path integral, the CTP generating functional with
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external sources Ja and Kab takes the form

Z[Ja, Kab] =

∫
DΦa exp

[
i

~

{
S[Φa] + Ja(x)Φa(x) +

1

2
Kab(x, x′)Φa(x)Φb(x

′)

}]
.

(2.51)

The corresponding effective action is

Γ[ϕa, Gab] = W [Ja, Kab]− Jaϕa −
1

2
Kab(ϕaϕb +Gab), (2.52)

where W [Ja, Kab] = i~ lnZ[Ja, Kab], and the equations of motion are

δΓ

δϕa(x)
= −Ja(x)− ϕb(x

′)Kab(x, x′), (2.53)

δΓ

δGab(x, x′)
= −1

2
~Kab(x, x′). (2.54)

Let us now use the background field technique to evaluate the above effective

action. We start with a functional-integral form of the effective action,

exp

(
i

~
Γ[ϕa, Gab]

)
=

∫
DΦa exp

( i
~

{
S[Φa] + Ja(Φa − ϕa)

+
1

2
Kab(ΦaΦb − ϕaϕb − ~Gab)

})
. (2.55)

By decomposing the field operators as Φa(x) = ϕa(x)+φa(x) and performing the

same kind of calculation like what we did in the previous section, we obtain the

result

exp

(
i

~
Γ[ϕa, Gab]

)
=

∫
Dφa exp

(
i

~

{
S[ϕa + φa] + Jaφa

+
1

2
Kab(φaφb − 2ϕaφb − ~Gab)

})
.

=

∫
Dφa exp

(
i

~

{
S[ϕa] +

[
δS

δϕa

− δΓ

δϕa

]
φa

+
1

2

[
δ2S

δϕaδϕb

− 2

~
δΓ

δGab

]
φaφb

+
δΓ

δGab

Gab + SQ

})
, (2.56)

where we have expanded the action as in Eq. (2.29). The above result can be

rewritten as

Γ[ϕa, Gab] = S[ϕa] +
δΓ

δGab

Gab + Γ̃2[ϕa, Gab] (2.57)
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where Γ̃2 takes the form

Γ̃2[ϕa, Gab] = −i~ ln

(∫
Dφ exp

i

~

((
δS

δϕa

− δΓ

δϕa

)
φa

+
1

2

(
δ2S

δϕaδϕb

− 2

~
δΓ

δGab

)
φaφb + SQ

))
. (2.58)

Just like Γ1[ϕa] introduced in the previous section, Γ2[ϕa, Gab] is the effective

action of a new theory in which the field variables are the fluctuation fields φa.

However, unlike Γ1, the propagator of this theory does not correspond to the

whole of (δ2S/δϕaδϕb − (2/~)δΓ/δGab). The point is that, in the presence of

δΓ/δGab, it is expected that the action should contain some nonlocal bilinear

terms (that is, the terms of the form
∫
d4x

∫
d4x′ K̃ab(x, x′)ϕa(x)ϕb(x

′))3 and these

terms cannot be included as a part of the propagator. This motivates us to write

δ2S

δϕaδϕb

− 2

~
δΓ

δGab

= iG−1
ab + K̃ab, (2.59)

where the inverse propagator G−1
ab and K̃ab are the local and the nonlocal parts,

respectively. Using the above decomposition, Eq. (2.57) becomes

Γ[ϕa, Gab] = S[ϕa] +
~
2

δ2S

δϕaδϕb

Gab −
~
2
K̃abGab + Γ̃2[ϕa, Gab] + const. (2.60)

Before we continue, let us recall one important fact about the effective action

Γ[ϕa] of the previous section: Γ[ϕa] can be expressed as a sum of all vacuum loop

diagrams, where the diagrams containing n loops are multiplied by ~n. Such a

property is expected to hold for Γ[ϕa, Gab] under consideration. As the second

term on the right-hand side of Eq. (2.60) is multiplied by the first power of ~,

it must represent the sum of 1-loop diagrams.4 The rest of 1-loop diagrams is

contained in Γ̃2. As it is well known that only the term G−1
ab ϕaϕb of the action

3Since there are non-local source terms in our formalism, we expect that the theory of
fluctuation fields should possess the same structure.

4The third term of the form K̃abGab contains a nonlocal kernel K̃ab, and so cannot describe
any loop diagram.
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contributes to the 1-loop diagrams, we conclude that the 1-loop part of Γ̃2 takes

the form

−i~ ln
{∫

Dφ exp

[
i

~

(
1

2
(iG−1

ab φaφb)

)]}
= − i~

2
ln det(~G), (2.61)

which is just Γ̃2 without interactions and external sources. Thus, after removing

the 1-loop part from Γ̃2, we can write

Γ[ϕa, Gab] = S[ϕa] +
~
2

δ2S

δϕaδϕb

Gab −
i~
2
ln detG+ Γ2[ϕa, Gab] + const., (2.62)

where

Γ2[ϕa, Gab] ≡ −i~ ln

{
1

det(~G)
1
2

∫
Dφa exp

(
−1

2
(~Gab)

−1φaφb

+
i

~

(
SQ + J̃aφa +

1

2
K̃ab(φaφb − ~Gab)

))}
(2.63)

represents the diagrams with more than one loop. In the above equation, the

source terms are

J̃a = −
(
~
2

δ3S

δϕaδϕbδϕc

Gbc +
δΓ2

δϕa

)
(2.64)

K̃ab = −2

~
δΓ2

δGab

, (2.65)

where we have used Eq. (2.62) to express the derivatives of Γ[ϕa, Gab] in terms

of the derivatives of Γ2[ϕa, Gab] and some other quantities.

Let us now describe how one can calculate Γ2 in practice. Taking the

derivative of Eq. (2.62) with respect to Gab, we obtain

iG−1
ab =

δ2S

δϕaδϕb

+Kab +
2

~
δΓ2

δGab

. (2.66)

Setting Kab = 0, we see that the inverse propagator iG−1
ab is the sum of a

free inverse propagator δ2S/δϕaδϕb and (2/~)δΓ2/δGab, and so we conclude that

(2/~)δΓ2/δGab corresponds to the self-energy terms. Since the vacuum expecta-

tion values of the fluctuation fields φa vanish, we conclude that iG−1
ab is a sum
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of 1-particle-irreducible (1PI) diagrams. And since δ2S/δϕaδϕb is a “constant”

term in the sense that it represents a Feynman diagram with a single line, Eq.

(2.66) implies that δΓ2/δGab must also be the sum of 1PI diagrams. This leads us

to conclude that Γ2 is the sum of 2-particle-irreducible (2PI) diagrams (the dia-

grams that cannot be separated into two parts by cutting two internal lines) with

respect to the propagators Gab [5], so that Γ2[ϕa, Gab] is called the 2PI effective

action. In practice, we calculate Γ2[ϕa, Gab] using the formula

Γ2[ϕa, Gab] = −i~ × {the sum of all 2PI vacuum Feynman diagrams} . (2.67)

We thus can practically obtain Γ2 by calculating 2PI diagrams order by order in

perturbation; this motivated the name “2-particle-irreducible formalism.”

Once Γ2[ϕa, Gab] has been evaluated, we can substitute the resulting ef-

fective action back into Eqs. (2.53) and (2.54), and obtain the equations for

determining ϕa and Gab by setting Ja = Kab = 0. By setting ϕ1 = ϕ2 ≡ ϕ, the

equations for determining the mean fields and the propagators are obtained.



CHAPTER III

NONEQUILIBRIUM DYNAMICS

OF THE INFLATON

In this chapter, we will apply the method of nonequilibrium quantum

field theory to study the dynamics of the inflaton field which drives inflation in

cosmology. We will begin with a brief review on inflation, and then go on to derive

the dynamical equations of a scalar field theory coupled to gravity. Finally, we

will consider a specific case of the inflaton in the Friedmann-Robertson-Walker

(FRW) spacetime and derive the dynamical equations for the inflaton field and

its propagator in the nonequilibrium setting.

3.1 A Brief Review on Inflation

The inflation is the stage of the early universe in which gravity acts as a repulsive

force and causes the universe to expand with acceleration. By including the

inflation, some important problems of the Hot Big Bang model such as the horizon

problem and the flatness problem are solved [11, 12, 13]. Because of the success

of the prediction of the Hot Big Bang model, inflation must begin and end in the

very early stage of the universe. However, the duration of the inflation should be

long enough to solve the problems of the Hot Big Bang model.

We are interested in the spacetime described by the flat FRW metric,

which takes the form

gµν =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

 (3.1)

where the scale factor a(t) describes the spatial expansion of spacetime. The

corresponding Ricci tensor Rµν , scalar curvature R and Einstein tensor Gµν are

R00 = −3
ä

a
, (3.2)
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Rij = (2ȧ2 + aä)δij , (3.3)

R = −6
( ä
a
+
( ȧ
a

)2)
, (3.4)

G00 = 3
( ȧ
a

)2
, (3.5)

Gij = −(ȧ2 + 2aä)δij , (3.6)

where ȧ ≡ da/dt. The above form of the Einstein tensor implies that there

must be only two independent equations of motion coming from the Einstein

equation Gµν = 8πGTµν . The energy-momentum tensor Tµν that produces the

FRW metric, therefore, must have two independent components and takes the

perfect-fluid form

T00 = ρ , (3.7)

Tij = p a2 δij, (3.8)

where ρ and p are the energy density and the pressure of the fluid, respectively.

Using the FRW metric and the above energy-momentum tensor, we obtain the

Friedmann equations from the Einstein equation, which describe the dynamics of

the scale factor,

ä

a
= −4π

3
G(ρ+ 3 p) (3.9)

H2 =
8πG

3
ρ, (3.10)

where H ≡ ȧ/a is called the Hubble parameter. From the Friedmann equations,

we see that if ρ and p are positive, the spacetime will expand with deceleration.

For the Friedmann model to describe the state of inflation, we have to allow

the term (ρ + 3p) to become negative during some period of time in order to

create the accelerated expanding universe. For example, in the vacuum dominated

era in which the only contribution to the energy-momentum tensor is from the

cosmological constant Λ,

TΛ
µν =

Λ

8πG
gµν , (3.11)
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we have ρ = Λ/(8πG) and p = −ρ, by using Eqs. (3.1), (3.7) and (3.8). The

corresponding dynamical equation for the scale factor reads

ä =
8π

3
Gρa ≡ H2a, (3.12)

whose solution is

a = eHt, (3.13)

which describes the exponentially expanding universe. However, as time passes,

the condition (ρ+3p) must evolve into a positive value to recover the decelerated

universe in agreement with the standard cosmological prediction [11, 12]. To allow

inflation to occur, we need the matter that contributes the negative pressure to

the energy-momentum tensor. The simplest one that does this job is of the form

of a scalar field, known as the inflaton field. The action of the inflaton is normally

of the form

S[ϕ] =

∫
d4x

√
−g
(1
2
gµν∂µϕ∂νϕ− V (ϕ)

)
, (3.14)

where ϕ is the inflaton field and V (ϕ) is the potential term of the inflaton. The

corresponding equation of motion is obtained by varying the action with respect

to the inflaton field,

�ϕ+ V ′(ϕ) = 0, (3.15)

where � is the d’Alembertian operator � = gµν∇µ∇ν and V ′(ϕ) ≡ dV (ϕ)/dϕ.

To find the explicit form of the d’Alembertian operator in the case of FRW

spacetime, we first recall that � = gµν∇µ∇ν , and so its operation on ϕ is

gµν∇µ∇ν ϕ = gµν{∂µ∂ν ϕ− Γρ
µν∂ρ ϕ}. (3.16)

From the identity gµσgσν = δν
µ and Eq. (3.1), we have gµν = diag{1,−a−2(t),

− a−2(t),−a−2(t)}. Using the definition of the Christoffel symbol,

Γρ
µν =

1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν), (3.17)
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we find that the non-zero components are

Γi
j0 =

ȧ

a
δj

i

Γ0
ij = aȧδij, (3.18)

where i, j = 1, 2, 3 are the spatial indices. We thus obtain

gµν∇µ∇νϕ = gµν∂µ∂νϕ− giiΓ0
jjδ

j
i
dϕ

dt

=
d2ϕ

dt2
+ 3

ȧ(t)

a(t)

d ϕ

dt
, (3.19)

where we have assumed that the inflaton field is spatially independent since we

are interested in the spatially homogeneous and isotropic universe (so that we

can neglect the spatial derivative terms). Using the above result in Eq. (3.15),

the equation of motion of the inflaton field becomes

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0. (3.20)

Using the definition of the energy-momentum tensor Tµν ≡ 2 δS/δgµν in the

Lagrangian formulation of general relativity, we find that the energy-momentum

tensor of the inflaton field takes the form

T ϕ
µν = ∂µϕ ∂νϕ− gµν

(1
2
gαβ∂αϕ ∂βϕ− V (ϕ)

)
. (3.21)

Explicitly, the non-zero components of the energy-momentum tensor are

T ϕ
00 =

1

2
ϕ̇2 + V (ϕ) ≡ ρ (3.22)

T ϕ
ij = a2

(
1

2
ϕ̇2 − V (ϕ)

)
δij ≡ a2 p δij. (3.23)

If we consider the period of time during which the inflation field dominates the

universe, we can assume that Tµν = T ϕ
µν . Since the condition (ρ + 3p) < 0 will

hold if ϕ̇2 < V (ϕ) which is definitely possible, we see that the inflaton model is

a good candidate for describing inflation. Using Eqs. (3.10) and (3.22), we can

write the Hubble parameter in terms of the inflaton field as

H2 =
8π G

3

(
1

2
ϕ̇2 + V (ϕ)

)
. (3.24)
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Taking the time derivative on both sides, we find

2HḢ =
8π G

3
(ϕ̇ϕ̈+ ϕ̇V ′(ϕ))

= −8π GHϕ̇2,

Ḣ = −4π Gϕ̇2, (3.25)

where we have used Eq. (3.20). Using the identity ä/a = Ḣ + H2, we see that

the universe will exponentially expand during the inflation if |Ḣ| ≪ H2. Since

|Ḣ| ∝ ϕ̇2 and H2 ∝ (ϕ̇2 + V (ϕ)), we have the condition ϕ̇2 ≪ V (ϕ) under which

the Hubble parameter can be approximated as

H2 ≈ 8π G

3
V (ϕ). (3.26)

This approximation is called the slow-roll approximation due to the smallness of

ϕ̇. In this approximation, we assume that the inflaton field was originally at the

top of the large but flat potential. During the inflation, the inflaton field rolls

down very slowly to the vacuum state and the inflation stops when ϕ̇ is of the

same order as the inflaton potential [11, 13]. To keep ϕ̇2 small for a long-enough

time, we demand that the friction term 3Hϕ̇ in Eq. (3.20) must be large to keep

ϕ̇ close to a constant. This can be achieved if we assume that

ϕ̈ ≪ 3Hϕ̇. (3.27)

With this condition, Eq. (3.20) can be approximated as

3Hϕ̇+ V ′(ϕ) ≈ 0. (3.28)

The condition for the exponentially expanding universe becomes

|Ḣ|
H2

≈ 3

2

ϕ̇2

V (ϕ)

≈ 1

16π G

(
V ′(ϕ)

V (ϕ)

)2

≪ 1 (3.29)
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where we have used Eqs. (3.27) and (3.28) to obtain the last line. Also, by taking

the time-derivative of Eq. (3.28), we get

ϕ̈ ≈ d

dt

(
− 1

3H
V ′(ϕ)

)
= −V ′′(ϕ)ϕ̇

3H
+

1

3H2
ḢV ′(ϕ)

=
V ′(ϕ)

3

(
V ′′(ϕ)

3H2
− 1

16π G

V ′2(ϕ)

V 2(ϕ)

)
. (3.30)

As Eqs. (3.27) and (3.28) imply that ϕ̈ ≪ V ′(ϕ), the terms in the brackets in

Eq. (3.30) must be less than one. The second term is already very small by Eq.

(3.29), so that the first term gives us the condition [11]

1

8π G

∣∣∣∣V ′′(ϕ)

V (ϕ)

∣∣∣∣≪ 1. (3.31)

Eqs. (3.29) and (3.31) motivated us to define two parameters, ϵ and η, by

ϵ ≡ 1

16π G

(
V ′(ϕ)

V (ϕ)

)2

(3.32)

η ≡ 1

8π G

∣∣∣∣V ′′(ϕ)

V (ϕ)

∣∣∣∣ . (3.33)

These parameters are called the slow-roll parameters, which satisfy the slow-roll

conditions [12, 13],

ϵ ≪ 1, (3.34)

η ≪ 1, (3.35)

in the period of inflation. The condition for ϵ describes the accelerated expand-

ing universe, while the condition for η ensures that such an expansion will last

long enough to solve the problems in standard cosmology. Just after the end of

inflation, the universe is expected to be cold due to its enormous expansion, and

is still dominated by the inflaton field. To recover the Hot Big Bang universe,

the energy from the inflaton field must be dissipated out. This stage is called

reheating, in which the universe is warmed up and the Standard Model particles
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are produced [13]. When the inflation ends, we assume that the inflaton field

should be close to its own vacuum state, and subsequently undergoes damped

oscillation around the vacuum. The particle creation model uses the possibility

that the inflaton field may be coupled to other lighter fields. In the reheating

stage, the energy from the inflaton field is dissipated to those coupled fields due

to damped oscillation, and the particle production begins.

It should be emphasized that the inflaton field was treated as the classical

field in all above arguments. In the next section, the inflaton field will be treated

as a quantum field, and its equation of motion will be replaced by the dynamical

equation for its mean field (which plays the role of ϕ) obtained from the effective

action of quantum field theory.

3.2 Nonequilibrium Scalar Field Theory in

Curved Spacetime

In the discussion of the time evolution of the inflaton field, it is clear that the

system under consideration is time dependent, and therefore must be in a nonequi-

librium state. This motivates us to study the nonequilibrium dynamics of a scalar

field theory in curved spacetime. In this section, we will therefore derive the dy-

namical equations for the mean fields and the propagators in a scalar field theory

with quartic self-interaction terms in the nonequilibrium setting. Our assumption

here is that the system starts out in a pure state, so that the matrix element in

Eq. (2.39) is equal to one. The calculation is almost the same as in Chapter

2, except that the background spacetime is now curved. The classical action

corresponding to the ϕ4 theory takes the form [7, 14]

S[ϕ, gµν ] = Sϕ[ϕ, gµν ] + SG[gµν ], (3.36)

where

Sϕ[ϕ, gµν ] = −
∫

d4x
√
−g

1

2

{
ϕ(�+m2)ϕ+

λ

12
ϕ4

}
(3.37)
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SG[gµν ] = − 1

16πG

∫
d4x

√
−g (R− 2Λ) (3.38)

with g being the determinant of the metric tensor. Here, R is the scalar cur-

vature and Λ is the cosmological constant. The closed-time path (CTP) action

corresponding to the above action takes the form

S[ϕa, g
µν
a ] = S[ϕ1, g

µν
1 ]− S[ϕ2, g

µν
2 ], (3.39)

where

S[ϕi, g
µν
i ] = Sϕ[ϕi, g

µν
i ] + SG[gµνi ] (3.40)

with the index i = 1, 2 labeling two time branches. Using this CTP action, we

can write down the corresponding CTP-2PI generating functional as

Z[Ja, Kab, gµνa ] =

∫
DΦa exp

[
i

~

{
S[Φa, g

µν
a ] +

∫
d4x

√
−g (JaΦa)

+
1

2

∫
d4x

√
−g

∫
d4x′

√
−g′ (KabΦaΦb)

}]
, (3.41)

where ∫
d4x

√
−g JaΦa =

∫
d4x

√
−g1 J1Φ1 −

∫
d4x

√
−g2 J2Φ2. (3.42)

Note that gravity is treated as a classical background in the above generating

functional [14]. Let W [Ja, Kab, gµνa ] = −i~ lnZ[Ja, Kab, gµνa ], then the CTP-2PI

effective action is defined by

Γ[ϕa, Gab, g
µν
a ] = W [Ja, Kab, gµνa ]−

∫
d4x

√
−g Jaϕa

−1

2

∫
d4x

√
−g

∫
d4x′

√
−g′ Kab(ϕaϕb + ~Gab), (3.43)

where ϕa and Gab are defined as the Legendre transforms

ϕa(x) =
1√
−g

δW

δJa(x)
(3.44)

~Gab(x, x
′) = 2

1√
−g

1√
−g′

δW

δKab(x, x′)
− ϕa(x)ϕb(x

′) (3.45)
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with the corresponding inverse Legendre transforms

1√
−g

δΓ

δϕa(x)
= −Ja(x)−

∫
d4x′

√
−g′Kab(x, x′)ϕb(x

′) (3.46)

1√
−g

1√
−g′

δΓ

δGab(x, x′)
= −~

2
Kab(x, x′). (3.47)

The appearance of the factor 1/
√
−g in front of the above functional differenti-

ation can be explained as follows. We first recall that
√
−g d4x is an invariant

volume element in curved spacetime, so that the identity∫
d4x

√
−g

δ4(x− x′)√
−g′

= 1 (3.48)

implies that δ4(x−x′)/
√
−g′ is the covariant Dirac delta function. It follows that

(
√
−g)−1δ/δϕa(x) is the covariant functional differential operator in the sense

that

1√
−g

δϕa(x)

δϕb(x′)
= δa

b δ
4(x− x′)√

−g
(3.49)

is an invariant quantity; this explains the appearance of the factor 1/
√
−g in

front of the functional derivative.

Using the background field method, we decompose the field Φa as the

sum of a mean field ϕa and its fluctuation φa, that is, Φa = ϕa + φa, so that the

effective action takes the form

Γ[ϕa, Gab, g
µν
a ] = −i~ ln

{∫
Dφa exp

[
i

~

(
S[ϕa + φa, g

µν
a ] +

∫
d4x

√
−gJaφa

+
1

2

∫
d4x

√
−g

∫
d4x′

√
−g′ Kab(ΦaΦb − ϕaϕb − ~Gab)

)]}
= −i~ ln

{∫
Dφa exp

[
i

~

(
S[ϕa, g

µν
a ] +

∫
d4x

(
δS

δϕa

− δΓ

δϕa

)
φa

+
1

2

∫
d4x

∫
d4x′

(
δ2S

δϕa(x)δϕb(x′)
− 2

~
δΓ

δGab(x, x′)

)
φa(x)φb(x

′)

+SQ +

∫
d4x

∫
d4x′ δΓ

δGab(x, x′)
Gab(x, x

′)

)]}
, (3.50)

where SQ is the part of the action containing the higher-order terms in the field

fluctuations. For the ϕ4 theory under consideration, the explicit form of SQ is

SQ = −
∫

d4x
√
−g

λ

24
cabcd {4ϕaφbφcφd + φaφbφcφd} . (3.51)
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In obtaining the above result, we expanded the action as

S[ϕa + φa, g
µν
a ] = S[ϕa, g

µν
a ] +

∫
d4x

√
−g

(
1√
−g

δS

δϕa(x)

)
φa(x)

+
1

2

∫
d4x

√
−g

∫
d4x′

√
−g′

(
1√
−g

1√
−g′

δ2S

δϕb(x)δϕa(x′)

)
φb(x)φa(x

′)

+SQ (3.52)

and expressed Ja and Kab in terms of the derivatives of the effective action using

Eqs. (3.46) and (3.47). It can be seen that the form of the effective action in Eq.

(3.50) is the same as the one obtained in Chapter 2. This leads us to conclude

that

Γ[ϕa, Gab, g
µν
a ] = S[ϕa, g

µν
a ] +

~
2

∫
d4x

∫
d4x′ δ2S

δϕa(x)δϕb(x′)
Gab(x, x

′)

−i~
2
ln detG+ Γ2, (3.53)

where Γ2 is −i~ times the sum of 2PI vacuum Feynman diagrams with scalar

propagators ~Gab and interaction vertices defined by iSQ/~.

The lowest-order contribution to Γ2 consists of 2-loop diagrams. In the ϕ4

theory, there are two types of scalar vertices (four-point and three-point vertices)

and so there are two types of 2-loop diagrams: a double-bubble diagram and a

sunset diagram. The contributions of these diagrams to the effective action are

easily found:

Γdouble−bubble
2 = −i~

(
− i

~
λ

24

)∫
d4x

√
−g cabcd(~Gab(x, x))(~Gcd(x, x))

4!

2!2!

= −1

4
λ~2

∫
d4x

√
−g cabcdGab(x, x)Gcd(x, x) (3.54)

Γsunset
2 = −i~

(
− i

~
λ

6

)2 ∫
d4x

√
−g

∫
d4x′

√
−g′ cabcdca

′b′c′d′

×ϕa(x)ϕa′(x
′)(~3Gbb′(x, x

′)Gcc′(x, x
′)Gdd′(x, x

′))
3!

2!

=
i

12
λ2~2

∫
d4x

√
−g

∫
d4x′

√
−g′ cabcdca

′b′c′d′

×ϕa(x)ϕa′(x
′)Gbb′(x, x

′)Gcc′(x, x
′)Gdd′(x, x

′). (3.55)
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Figure 3.1: The double-bubble and sunset diagrams with the propagators ~G.

Using Eqs. (3.54) and (3.55), we find that, at 2-loop order, the effective action

in Eq. (3.53) becomes

Γ[ϕa, Gab, g
µν
a ] = S[ϕa, g

µν
a ] +

~
2

∫
d4x

∫
d4x′ δ2S

δϕb(x′)δϕa(x)
Gab(x, x

′)

−i~
2
ln detG− 1

4
λ~2

∫
d4x

√
−g cabcdGab(x, x)Gcd(x, x)

+
i

12
λ2~2

∫
d4x

√
−g

∫
d4x′

√
−g′ cabcdca

′b′c′d′

×ϕa(x)ϕa′(x
′)Gbb′(x, x

′)Gcc′(x, x
′)Gdd′(x, x

′). (3.56)

The dynamical equations can be obtained by performing the functional

differentiation on Γ with respect to gµνa , ϕa and Gab [7]:

1√
−g

δΓ

δgµνa (x)

∣∣∣∣
ϕ1=ϕ2=ϕ,gµν1 =gµν2 =gµν

= 0 (3.57)

1√
−g

δΓ

δϕa(x)

∣∣∣∣
ϕ1=ϕ2=ϕ,gµν1 =gµν2 =gµν

= 0 (3.58)

1√
−g

1√
−g′

δΓ

δGab(x, x′)

∣∣∣∣
ϕ1=ϕ2=ϕ,gµν1 =gµν2 =gµν

= 0. (3.59)

Let us first find the dynamical equations for the mean fields. The functional

derivatives with respect to ϕa of all terms in Eq. (3.56) are as follows:

1√
−g

δS

δϕa(x)
= −

∫
d4x′

√
−g′

{
cbc(�′ +m2)ϕc(x

′)δab
δ4(x′ − x)√

−g

+
λ

24
cbcde(4)ϕc(x

′)ϕd(x
′)ϕe(x

′)δab
δ4(x′ − x)√

−g

}
= −cab(�+m2)ϕb(x)−

λ

6
cabcdϕb(x)ϕc(x)ϕd(x) (3.60)
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1√
−g

δ

δϕa(x)

(
~
2

∫
d4x′

√
−g′

∫
d4x′′

√
−g′′

×
(

1√
−g′

1√
−g′′

δ2S

δϕb(x′)δϕc(x′′)

)
Gbc(x

′, x′′)

)
= −~

2

∫
d4x′

√
−g′

∫
d4x′′

√
−g′′ cbcdeδad(λϕe(x

′′))

×δ(x′′ − x′)√
−g′

δ(x′′ − x)√
−g

Gbc(x
′, x′′)

= −~
2
λcbcaeϕe(x)Gbc(x, x) (3.61)

1√
−g

δΓ2

δϕa(x)

=
1√
−g

δ

δϕa(x)

{ i

12
λ2~2

∫
d4x′

√
−g′

∫
d4x′′

√
−g′′ ca

′b′c′d′ca
′′b′′c′′d′′

×ϕa′(x
′)ϕa′′(x

′′)Gb′b′′(x
′, x′′)Gc′c′′(x

′, x′′)Gd′d′′(x
′, x′′)

}
=

i

6
λ2~2

∫
d4x′

√
−g′

∫
d4x′′

√
−g′′ ca

′b′c′d′ca
′′b′′c′′d′′

×δaa′δ(x
′ − x)√
−g

ϕa′′(x
′′)Gb′b′′(x

′, x′′)Gc′c′′(x
′, x′′)Gd′d′′(x

′, x′′)

=
i

6
λ2~2

∫
d4x′

√
−g′ cabcdca

′b′c′d′ϕa′(x
′)Gbb′(x, x

′)Gcc′(x, x
′)Gdd′(x, x

′).

(3.62)

Using the above result, we get

0 =
1√
−g

δΓ

δϕa(x)

=
1√
−g

δS

δϕa(x)
+

1√
−g

δ

δϕa(x)

(
~
2

∫
d4x′

∫
d4x′′ δ2S

δϕb′δϕc′′
Gb′c′′

)
+

1√
−g

δΓ2

δϕa(x)
, (3.63)

which results in the dynamical equations for the mean fields:{
cab(�+m2) +

λ

6
cabcdϕc(x)ϕd(x) +

~
2
λccdabGcd(x, x)

}
ϕb(x)

−
∫

d4x′
√

−g′ Σ(x, x′)aa
′
ϕa′(x

′) = 0, (3.64)

where the nonlocal function Σ(x, x′) is defined as

Σ(x, x′)aa
′
=

i

6
λ2~2cabcdca′b′c′d′Gbb′(x, x

′)Gcc′(x, x
′)Gdd′(x, x

′). (3.65)
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We next turn to the dynamical equations for the propagators:

0 =
1√
−g

1√
−g′

δΓ

δGab(x, x′)

=
1√
−g

1√
−g′

δ

δGab(x, x′)

{~
2

∫
d4y

∫
d4y′

δ2S

δϕb′(y)δϕa′(y′)
Ga′b′(y, y

′)

− i~
2
ln detG+ Γ2

}
. (3.66)

Using

δGab(x, x
′)

δGcd(y, y′)
= δa

cδb
dδ4(x− y)δ4(x′ − y′), (3.67)

each term on the right-hand side can be evaluated as follows:

1√
−g

1√
−g′

δ

δGab(x, x′)

{
~
2

∫
d4y

∫
d4y′

δ2S

δϕc(y)δϕd(y′)
Gcd(y, y

′)

}
=

~
2

∫
d4y
√
−gy

∫
d4y′

√
−g′y

×

(
1

√−gy

1√
−g′y

δ2S

δϕc(y)δϕd(y′)

)
δ(y − x)√

−g

δ(y′ − x′)√
−g′

δacδ
b
d

=
~
2

(
1√
−g

1√
−g′

δ2S

δϕa(x)δϕb(x′)

)
= −~

2

(
cab(�+m2) +

λ

2
cabcdϕc(x)ϕd(x)

)δ4(x− x′)√
−g′

(3.68)

− i~
2

1√
−g

1√
−g′

δ

δGab(x, x′)
(ln detG)

= −i~
2

1

detG

1√
−g

1√
−g′

δ

δGab(x, x′)
(detG)

= −i~
2
G−1

ab (x, x
′) (3.69)

1√
−g

1√
−g′

δΓ2

δGab(x, x′)

=
1√
−g

1√
−g′

δ

δGab(x, x′)

{
− 1

4
λ~2

∫
d4y
√

−gy c
a′b′c′d′Ga′b′(y, y)Gc′d′(y, y)

+
i

12
λ2~2

∫
d4y
√
−gy

∫
d4y′

√
−g′y c

a′b′c′d′ca
′′b′′c′′d′′

×ϕa′(y)ϕa′′(y
′)Gb′b′′(y, y

′)Gc′c′′(y, y
′)Gd′d′′(y, y

′)
}

= −1

2
λ~2

∫
d4y
√
−gy c

a′b′c′d′Gc′d′(y, y)
δ4(y − x)√

−g

δ4(y − x′)√
−g′

δaa′δ
b
b′
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+
i

4
λ2~2

∫
d4y
√

−gy

∫
d4y′

√
−g′y c

a′b′c′d′ca
′′b′′c′′d′′

×ϕa′(y)ϕa′′(y
′)Gc′c′′(y, y

′)Gd′d′′(y, y
′)
δ4(y − x)√

−g

δ4(y′ − x′)√
−g′

δab′δ
b
b′′

= −1

2
λ~2cabcdGcd(x, x)

δ4(x− x′)√
−g′

+
i

4
λ2~2ccadecc′bd′e′ϕc(x)ϕc′(x

′)Gdd′(x, x
′)Gee′(x, x

′). (3.70)

Substituting Eqs. (3.68)–(3.70) into Eq. (3.66), we obtain

iG−1
ab (x, x

′) = −
(
cab(�+m2) +

λ

2
cabcdϕcϕd + λ~cabcdGcd(x, x)

)δ4(x− x′)√
−g′

+
iλ2

2
~ccadecc′bd′e′ϕc(x)ϕc′(x

′)Gdd′(x, x
′)Gee′(x, x

′). (3.71)

Multiplying both sides by
√
−g′ Gbf (x

′, x′′) and performing an integration over x′

using the formula∫
d4x′

√
−g′ G−1

ab (x, x
′)Gbf (x

′, x′′) = δaf
δ4(x− x′′)√

−g
, (3.72)

we obtain the dynamical equations for the propagators:{
cac(�+m2) +

1

2
λcacdeϕd(x)ϕe(x) + λ~cacdeGde(x, x)

}
Gcb(x, x

′)

− i

2
λ2~

∫
d4x′′

√
−g′ cadefccd

′e′f ′
ϕd(x

′′)ϕd′(x)Gee′(x
′′, x)Gff ′(x′′, x)Gcb(x

′′, x′)

= −iδb
a δ

4(x− x′)√
−g

. (3.73)

Observe that the dynamical equations in Eqs. (3.64) and (3.73) are coupled

equations of the mean fields and the propagators, whose solutions are extremely

hard to obtain analytically.

Finally, let us consider the functional derivative of the effective action

with respect to the metric tensor:

0 =
1√
−g

δΓ

δgµνa (x)
=

1√
−g

δ

δgµνa (x)
(ΓT + SG)

=
1√
−g

δSG

δgµνa (x)
+

1

2
⟨Tµν⟩, (3.74)
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where we have defined ΓT [ϕa, Gab, g
µν
a ] ≡ Γ[ϕa, Gab, g

µν
a ]− SG[gµνa ] and

⟨Tµν⟩ ≡
2√
−g

δΓT

δgµνa
. (3.75)

Using the gravitational action in Eq. (3.38), we find

1√
−g

δSG

δgµνa
= − 1

16πG
(Gµν + Λgµν) , (3.76)

where G and Gµν are, respectively, the Newtonian gravitational constant and the

Einstein tensor, so that Eq. (3.74) becomes

Gµν + gµνΛ = 8π G⟨Tµν⟩ (3.77)

which is the Einstein equation (with the cosmological constant), provided that

we identify ⟨Tµν⟩ as the classical energy-momentum tensor. Thus, Eq. (3.75)

enables us to calculate the expectation value of the energy-momentum tensor

with quantum corrections included.

3.3 Nonequilibrium Inflaton Dynamics in

Friedmann-Robertson-Walker Spacetime

Having obtained the dynamical equations for the mean fields and the propaga-

tors in the previous section, we now consider a specific case of the Friedmann-

Robertson-Walker (FRW) spacetime. Keeping the terms up to the first order in

λ in Eq. (3.64), the dynamical equation for the mean field reads{
(�+m2) +

λ

6
ϕ(x)2 +

λ

2
~G(x, x)

}
ϕ(x) = 0, (3.78)

where we have taken the coincidence limit in which ϕ1 = ϕ2 ≡ ϕ and G(x, x) ≡

G11(x, x)|ϕ1=ϕ2=ϕ. Using the FRW metric presented in Section 3.1, the above

equation takes the form [7]

ϕ̈(x) + 3Hϕ̇(x) +
{
m2 +

λ

6
ϕ2(x) +

λ

2
~G(x, x)

}
ϕ(x) = 0. (3.79)
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The terms in the curly brackets can be interpreted as the potential terms for

the inflaton. By comparing the above result with Eq. (3.20), we see that, with

the quantum corrections taken into account, the inflaton potential depends on

G(x, x) apart from the self-interaction terms and the spacetime curvature effect.

Recall that ~G is the propagator of the fluctuation field φ, we find

~G(x, x) ≡ ~G11(x, x) = ⟨φ(x)φ(x)⟩

= ⟨φ2(x)⟩, (3.80)

so that G(x, x) is the variance of the fluctuation field [3, 7]. Note that, since the

two fluctuation fields in G(x, x) take their values at the same spacetime point,

there is no need to write down the time-ordering operator.

Even though G(x, x′) is formally the fluctuation-field propagator which

should be computed using the knowledge of the fluctuation fields and their in-

teractions, in the 2PI formalism, G(x, x′) is treated as an independent quantity

satisfying its own dynamical equation. Using the FRW metric and keeping the

terms up to the first order in λ, Eq. (3.73) becomes

− i

a3
δ4(x− x′) =

{ ∂2

∂t2
+ 3H

∂

∂t
− 1

a2
∇2 +m2

+
λ

2
ϕ2(x) + λ~G(x, x)

}
G(x, x′), (3.81)

where the coincidence limit has been taken. As the term G(x, x) in Eqs. (3.79)

and (3.81) is multiplied by ~, this term therefore provides the first-order quantum

correction to the dynamical equations. Eqs. (3.79) and (3.81) constitute a system

of second-order partial differential equations, from which the mean field and the

propagator can be determined. Solving these equations, however, is a formidable

task and people normally employ the numerical techniques to attack this problem.



CHAPTER IV

NONEQUILIBRIUM DYNAMICS OF

THE INFLATON WITH FERMION COUPLING

In the previous chapter, we have investigated the nonequilibrium scalar

ϕ4 theory in a classical gravitational background, and mentioned that this theory

should describe the nonequilibrium dynamics of the inflaton field. After the end

of inflation, the stage of reheating begins, and the inflaton energy is dissipated

out to creating the Standard Model particles via the coupling of the inflaton

field with other fields. This motivates us to study the nonequilibrium dynamics

of a scalar field coupled to a fermion field. In this chapter, we will derive the

dynamical equations for the mean fields and the propagators of the scalar ϕ4

theory coupled to a fermion via the Yukawa interaction, and analyze the causality

of the dynamical equations. Our calculation will be limited to a 1-loop level of

quantum calculations.

4.1 The Model and the Coarse-Grained Effec-

tive Action

Let us add a fermion to the scalar-field model considered in the previous chapter

such that its interaction with the scalar fields is of the form of the Yukawa in-

teraction [8]. The resulting action thus consists of the scalar-field ϕ4 action, the

Dirac action, the Yukawa action term, and the gravity action. The corresponding

CTP action takes the form

S[Φa,Ψa,Ψa, g
µν
a ] ≡ S[Φ+,Ψ+,Ψ+, g

µν
+ ]− S[Φ−,Ψ−,Ψ−, g

µν
− ], (4.1)

where

S[Φa,Ψa,Ψa, g
µν
a ] = Sϕ[Φa, g

µν
a ] +SΨ[Ψa,Ψa, g

µν
a ] +SG[gµνa ] +SY [Φa,Ψa,Ψa, g

µν
a ],

(4.2)
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with the index a = 1, 2 being the time-branch index, and Sϕ, SΨ, SG, and

SY being the ϕ4 scalar-field action, the Dirac action, the gravity action, and the

Yukawa interaction, respectively. As we will not consider the functional derivative

of the effective action with respect to the metric tensor, it is legitimate to set the

metric tensors on two time branches to be equal, that is, we set gµν+ = gµν− = gµν

in the above action. With this simplification, the two gravity actions in the CTP

action cancel each other, and so we will not be dealing with the gravity action

any more. The explicit forms of the other three parts of the action are

Sϕ[Φa, g
µν ] = −1

2

∫
d4x

√
−g
(
cabΦa(x)(�+m2)Φb(x)

+
λ

12
cabcdΦa(x)Φb(x)Φc(x)Φd(x)

)
(4.3)

SΨ[Ψa,Ψa, g
µν ] =

∫
d4x

√
−g

{
i

2
cab
(
Ψa(x)γ

µ∇µΨb(x)

−(∇µΨa(x))γ
µΨb(x)− µΨa(x)Ψb(x)

) }
(4.4)

SY [Φa,Ψa,Ψa, g
µν ] = −f

∫
d4x

√
−g
(
cabcΦa(x)Ψb(x)Ψa(x)

)
. (4.5)

The corresponding CTP-2PI generating functional is

Z[Ja, Kab, gµν ] =

∫
DΦaDΨaDΨa exp

{ i

~

[
S[Φa,Ψa,Ψa, g

µν ]

+

∫
d4x

√
−g Ja(x)Φa(x)

+
1

2

∫
d4x

√
−g

∫
d4x′

√
−g′ Kab(x, x′)Φa(x)Φb(x

′)
]}
(4.6)

and, with W = −i~ lnZ, the effective action is defined by

Γ[ϕa, Gab, g
µν ] = W [Ja, Kab, gµν ]−

∫
d4x

√
−g Ja(x)ϕa(x)

−1

2

∫
d4x

√
−g

∫
d4x′

√
−g′ Kab(x, x′){ϕa(x)ϕb(x

′) + ~Gab(x, x
′)}, (4.7)

where the mean fields ϕa and the propagators Gab are defined by the Legendre

transforms,

1√
−g

δW

δJa(x)
= ϕa(x) (4.8)

1√
−g

1√
−g′

δW

δKab(x, x′)
=

1

2

(
ϕa(x)ϕb(x

′) + ~Gab(x, x
′)
)
, (4.9)
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with the corresponding inverse transforms,

1√
−g

δΓ

δϕa(x)
= −Ja(x)−

∫
d4x′

√
−g′Kab(x, x′)ϕb(x

′) (4.10)

1√
−g

1√
−g′

δΓ

δGab(x, x′)
= −~

2
Kab(x, x′). (4.11)

In the above definition of the effective action, one should observe that we per-

formed the Legendre transforms with respect to the scalar fields, but not the

spinor field. The reason for this is that the fermion is treated as the environment

of the scalar fields, which will be integrated out when evaluating the generating

functional [10]. As a result, the 2PI part of the effecting action (to be obtained

below) is 2-particle-irreducible with respect to the scalar cuts only, and remains

1-particle-irreducible with respect to the fermion cuts.1 Thus, the above effective

action is called the “CTP-2PI coarse-grained effective action” [8], in contrast with

the fully 2-particle-irreducible effective action in which we perform the Legendre

transforms with respect to both scalar and fermion fields.

Using the background field method in which we express the scalar field

Φa as a sum of the mean field ϕa and its fluctuation φa, the effective action reads

exp

{
i

~
Γ[ϕa, Gab′ , g

µν ]

}
=

∫
DΦaDΨaDΨa exp

{ i

~

[
S[Φa,Ψa,Ψa, g

µν ]

+

∫
d4x

√
−g Ja(x)(Φa(x)− ϕa(x))

+
1

2

∫
d4x

√
−g

∫
d4x′

√
−g′Kab(x, x′){Φa(x)Φb(x

′)

−ϕa(x)ϕb(x
′)− ~Gab(x, x

′)}
]}

. (4.12)

The ϕ4 scalar-field part of the action is the same as in the previous chapter, while

the rest of the action takes the explicit form

SΨ[Ψa,Ψa, g
µν ] + SY [ϕa + φa,Ψa,Ψa, g

µν ]

= SΨ[ϕa,Ψa,Ψa, g
µν ] + SY [φa,Ψa,Ψa, g

µν ], (4.13)

1What this really means is that the corresponding Feynman diagrams cannot be separated
into two parts by cutting two internal lines, where one of these lines must be a scalar-field
propagator while the other line can be the propagator of any kind.
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where

SΨ[ϕa,Ψa,Ψa, g
µν ] =

∫
d4x

√
−g
( i
2
cab{Ψa(x)γ

µ∇µΨb(x)

−(∇µΨa(x))γ
µΨb(x)}

−{cabµ+ cabcfϕc(x)}Ψa(x)Ψb(x)
)

(4.14)

SY [φa,Ψa,Ψa, g
µν ] = −f

∫
d4x

√
−g cabcφa(x)Ψb(x)Ψc(x). (4.15)

Using Eq. (3.52) to expand the scalar-field part of the action, and using Eqs.

(4.10) and (4.11) to express Ja and Kab in terms of the functional derivatives of

Γ, Eq. (4.12) becomes

Γ[ϕa, Gab, g
µν ] = Sϕ[ϕa, g

µν ] +
δΓ

δGab

Gab + Γ1 (4.16)

where

Γ1 = −i~ ln
{∫

DφaDΨaDΨ̄a exp
[ i
~

(
SΨ[ϕa,Ψa, Ψ̄a, g

µν ]

+SY [φa,Ψa, Ψ̄a, g
µν ] +

∫
d4x

(
δSϕ

δϕa(x)
− δΓ

δϕa(x)

)
φa(x)

+
1

2

∫
d4x

∫
d4x′

(
δ2Sϕ

δϕb(x′)δϕa(x)
− 2

~
δΓ

δGab(x, x′)

)
φa(x)φb(x

′)

+SQ

)]}
, (4.17)

with SQ being the part of the action containing the higher-order terms in the

scalar-field fluctuations. To get the 2PI part from the above effective action, let

us define a nonlocal kernel K̃ab(x, x′) by (see Chapter 2)

1√
−g

1√
−g′

(
δ2Sϕ

δϕa(x)δϕb(x′)
− 2

~
δΓ

δGab(x, x′)

)
= iG−1

ab (x, x
′) + K̃ab(x, x′), (4.18)

where G−1
ab (x, x

′)/~ is the inverse of the propagator ~Gab(x, x
′), and let

i(F−1
ab )αβ(x, x

′) ≡ 1√
−g

1√
−g′

(
δ2SΨ[ϕ,Ψ,Ψ, gµν ]

δΨbβ(x′)δΨaα(x)

)
(4.19)

be the inverse of the fermion propagator, where α and β are spinor indices. (Note

that we normally think of F−1 as a matrix whose index is represented by a pair
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of indices (aα), with a being the time-branch index and α the spinor index.) We

find

Γ[ϕa, Gab, g
µν ] = Sϕ[ϕa, g

µν ] +

∫
d4x

∫
d4x′ ~

2

(
δ2Sϕ

δϕa(x)δϕb(x′)

)
Gab(x, x

′)

−i~
2

ln detG+ i~ ln detF + Γ2[ϕa, Gab, g
µν ] + const. (4.20)

where

Γ2[ϕa, Gab, g
µν ] = −i~ ln

(
det(~F )

det1/2(~G)

∫
DφaDΨaDΨa exp

{
−1

2

∫
d4x

√
−g

∫
d4x′

√
−g′ (~Gab)

−1(x, x′)φa(x)φb(x
′)

−
∫

d4x
√
−g

∫
d4x′

√
−g′Ψa(x)(~Fab)

−1(x, x′)Ψb(x
′)

+
i

~

(
SQ + SY [φa,Ψa,Ψa] +

∫
d4x

√
−g J̃a(x)φa(x)

+
1

2

∫
d4x

√
−g

∫
d4x′

√
−g′ K̃ab(x, x′){φa(x)φb(x

′)

− ~Gab(x, x
′)}
)} )

, (4.21)

with

J̃a(x) = − 1√
−g

(~
2

∫
d4x′

∫
d4x′′ δ3Sϕ

δϕa(x)δϕb(x′)δϕc(x′′)
Gbc(x

′, x′′)

+
δΓ2

δϕa(x)

)
(4.22)

K̃ab(x, x′) = − 1√
−g

1√
−g′

2

~
δΓ2

δGab(x, x′)
. (4.23)

The explicit forms of SQ and SY in Eq. (4.21) are

SQ =

∫
d4x

√
−g cabcd

(
− λ

24
φa(x)φb(x)φc(x)φd(x)

− λ

6
ϕa(x)φb(x)φc(x)φd(x)

)
(4.24)

SY =

∫
d4x

√
−g cabc

(
−fφa(x)Ψb(x)Ψc(x)

)
. (4.25)

The derivation of the above result is as follows. From Eq. (4.18), we find

δΓ

δGab

Gab =
~
2

δ2Sϕ

δϕaδϕb

Gab −
~
2

√
−g
√

−g′K̃abGab + const., (4.26)
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where the constant term is proportional to

√
−g
√
−g′G−1

ab Gab ≡
∫

d4x
√
−g

∫
d4x′

√
−g′G−1

ab (x, x
′)Gab(x, x

′) = 2. (4.27)

From Eq. (4.20), by performing the functional differentiation on Γ with respect

to ϕa(x) and Gab(x, x
′), we obtain(

δSϕ

δϕa(x)
− δΓ

δϕa(x)

)
= −

∫
d4x′

∫
d4x′′ ~

2

(
δ3Sϕ

δϕa(x)δϕb(x′)δϕc(x′′)

)
Gbc(x

′, x′′)

− δΓ2

δϕa(x)
(4.28)

1
√
−g

√
−g′

(
δ2Sϕ

δϕa(x)δϕb(x′)
− 2

~
δΓ

δGab(x, x′)

)
= iG−1

ab (x, x
′)− 1

√
−g

√
−g′

2

~
δΓ2

δGab(x, x′)
. (4.29)

Using Eqs. (4.18), (4.26), and (4.28) in Eq. (4.17), and comparing Eq. (4.29)

with Eq. (4.18), we obtain Eqs. (4.20)–(4.23).

With the form of the effective action in Eq. (4.20), we conclude that Γ2 is

the 2PI effective action with respect to the scalar cuts, and is equal to −i~ times

the sum of 2-particle irreducible diagrams (irreducible with respect to the scalar

propagators, not the fermion propagators). Let us now calculate the lowest-order

contribution to Γ2. At 2-loop order, there are three diagrams which contribute

to Γ2: a double-bubble diagram, a sunset diagram and the diagram in Fig. 4.1.

The first two diagrams have been calculated in Eqs. (3.54) and (3.55), and the

diagram in Fig. 4.1 contributes a term

ΓY
2 = −i~

∫
d4x

√
−g

∫
d4x′

√
−g′

1

2
cabcca

′b′c′(−1)

(
−if

~

)2

(~3Gaa′Tr {Fbb′Fc′c})

= − i

2
~2f2

∫
d4x

√
−g

∫
d4x′

√
−g′ cabcca

′b′c′Gaa′(x, x
′)

× Tr{Fbb′(x, x
′)Fc′c(x

′, x)} (4.30)

to Γ2, where the trace on the right-hand side is taken over spinor indices. Keeping

only the terms of the first order in λ, we discard the sunset diagram since it is
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of the order λ2. Thus, to the order λ, only the double-bubble diagram and the

diagram in Fig. 4.1 contribute to Γ2, so that

Γ2 = −λ~2

4

∫
d4x

√
−g cabcdGab(x, x)Gcd(x, x)

− i

2
f 2~2

∫
d4x

√
−g

∫
d4x′

√
−g′ cabcca

′b′c′Gaa′(x, x
′)

× Tr{Fbb′(x, x
′)Fc′c(x

′, x)}. (4.31)

Figure 4.1: A 2-loop diagram with two fermion propagators and a scalar-field propagator.

Having found the effective action, we are now ready to derive the dynam-

ical equations. Begin with the dynamical equations for the mean fields, we need

to calculate δΓ/δϕa:

0 =
1√
−g

δΓ

δϕa(x)

=
1√
−g

δSϕ

δϕa(x)
+

1√
−g

δ

δϕa(x)

(
~
2

∫
d4x′

∫
d4x′′ δ2Sϕ

δϕb(x′)δϕc(x′′)
Gbc(x

′, x′′)

)
+i~

1√
−g

δ

δϕa(x)
(ln detF ) +

1√
−g

δΓ2

δϕa(x)
. (4.32)

The first two terms on the right-hand side of Eq. (4.32) can be evaluated as

follows:

1√
−g

δSϕ

δϕa(x)
= −cab(�+m2)ϕb(x)−

λ

6
cabcdϕb(x)ϕc(x)ϕd(x) (4.33)

1√
−g

δ

δϕa(x)

(
~
2

∫
d4x′

∫
d4x′′

(
δ2Sϕ

δϕb(x′)δϕc(x′′)

)
Gbc(x

′x′′)

)
= −~

2
λcbcaeϕe(x)Gbc(x, x). (4.34)
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The third term in Eq. (4.32) can be expressed as

i~
1√
−g

δ

δϕa(x)
(ln detF ) = −i~

1√
−g

δ

δϕa(x)
(ln detF−1)

= −i~
∫

d4x′
√
−g′

∫
d4x′′

√
−g′′

1√
−g

δ(F−1
bc )βγ(x

′, x′′)

δϕa(x)

× 1√
−g′

1√
−g′′

δ ln detF−1

δ(F−1
bc )βγ(x′, x′′)

. (4.35)

Using the explicit form of (F−1
ab )αβ(x, x

′),

i(F−1
ab )αβ(x, x

′) =
δ4(x− x′)√

−g′
{cab(iγµ

αβ∇µ − µδαβ)− cabcfϕc(x)δαβ}, (4.36)

we can calculate

1√
−g

δ(F−1
bc )βγ(x

′, x′′)

δϕa(x)
= icbcaδβγ f

δ4(x′ − x′′)√
−g′′

δ4(x′ − x)√
−g

, (4.37)

and

1√
−g′

1√
−g′′

δ ln detF−1

δ(F−1
bc )βγ(x′, x′′)

= (Fcb)γβ(x
′, x′′), (4.38)

where we have used the formula2

δ
(
detF−1

)
=
(
detF−1

)
Tr{F (δF−1)}, (4.39)

with

Tr{F (δF−1)} ≡
∫

d4x
√
−g

∫
d4x′

√
−g′ (Fab)αβ(x, x

′)δ(F−1
ba )βα(x

′, x). (4.40)

Thus the third term on the right-hand side of Eq. (4.32) is simply

i~
1√
−g

δ

δϕa(x)
(ln detF ) = cbca~fTr {Fbc(x, x)} , (4.41)

where the trace on the right-hand side is taken over the spinor indices. To eval-

uate the fourth term, we first note that the double-bubble diagram does not

2An easy way to obtain this formula is to vary the identity ln{detM} = Tr{lnM}, valid
for a non-singular diagonalizable n × n matrix M . Since Tr{lnM} =

∑n
i=1 ln(mi) with mi’s

being the eigenvalues of M , we find (detM)−1δ(detM) = δ(Tr{lnM}) =
∑n

i=1(δmi)/mi =
Tr{M−1δM}. By changing M → F−1, we obtain Eq. (4.39).
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contain any ϕa(x) term, so we need to consider only the diagram with fermion

propagators:

1√
−g

δΓ2

δϕa(x)
= −

∫
d4x′

√
−g′

∫
d4x′′

√
−g′′

i

2
f 2~2cb′d′e′cb′′d′′e′′

× 1√
−g

δ

δϕa(x)

{
Gb′b′′(x

′, x′′)Tr{Fd′d′′(x
′, x′′)Fe′′e′(x

′′, x′)}
}

= −
∫

d4x′
√
−g′

∫
d4x′′

√
−g′′

i

2
f 2~2cb′d′e′cb′′d′′e′′Gb′b′′(x

′, x′′)

×Tr
{ 1√

−g

δFd′d′′(x
′, x′′)

δϕa(x)
Fe′′e′(x

′′, x′)

+ Fd′d′′(x
′, x′′)

1√
−g

δFe′′e′(x
′′, x′)

δϕa(x)

}
. (4.42)

The first term on the right-hand side of Eq. (4.42) can be evaluated as follows:

1√
−g

δFd′d′′(x
′, x′′)

δϕa(x)
Fe′′e′(x

′′, x′)

=

∫
d4y
√

−gy

∫
d4y′

√
−g′y

1√
−g

δF−1
bc (y, y′)

δϕa(x)

× 1
√−gy

1√
−g′y

δFd′d′′(x
′, x′′)

δF−1
bc (y, y′)

Fe′′e′(x
′′, x′)

=

∫
d4y
√

−gy

∫
d4y′

√
−g′y

(
icbcaf

δ4(y − y′)√
−g′y

δ4(y − x)√
−g

)
×
(
− Fd′b(x

′, y)Fcd′′(y
′, x′′)

)
Fe′′e′(x

′′, x′)

= −icbcafFd′b(x
′, x)Fcd′′(x, x

′′)Fe′′e′(x
′′, x′), (4.43)

where we have used the formula

δFab(x, x
′)

δF−1
cd (y, y′)

= −
√
−gy

√
−gy′Fac(x, y)Fdb(y

′, x′), (4.44)

which can be derived by differentiating both sides of the equation∫
d4x′′

√
−g′′ Fab(x, x

′′)F−1
bc (x′′, x) = δac

δ4(x− x′)√
−g

. (4.45)

By interchanging x′ ↔ x′′ in the above result and taking the trace, it can be seen

that the second term on the right-hand side of Eq. (4.42) is equal to the first
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term. Thus

1√
−g

δΓ2

δϕa(x)
= −

∫
d4x′

√
−g′

∫
d4x′′

√
−g′′f 3~2cb′d′e′cb′′d′′e′′cbca

×Gb′b′′(x
′, x′′)Tr{Fd′b(x

′, x)Fcd′′(x, x
′′)Fe′′e′(x

′′, x′)}. (4.46)

Using the results in Eqs. (4.33), (4.34), (4.41) and (4.46) in Eq. (4.32), we finally

obtain the dynamical equations for the mean fields:

{cab(�+m2) +
λ

6
cabcdϕc(x)ϕd(x) +

~
2
λccdabGcd(x, x)}ϕb(x)− cbca~fTr {Fcb(x, x)}

+

∫
d4x′

√
−g′

∫
d4x′′

√
−g′′f 3~2cb′d′e′cb′′d′′e′′cfgaGb′b′′(x

′, x′′)

× Tr{Fd′f (x
′, x)Fgd′′(x, x

′′)Fe′′e′(x
′′, x′)} = 0. (4.47)

In the coincidence limit, the above equation becomes(
�+m2 +

λ

6
ϕ2(x) +

λ~
2
G11(x, x)

)
ϕ(x)−~fTr {F11(x, x)}+~2f 3Σ(x) = 0, (4.48)

where

Σ(y) =

∫
d4x

√
−g

∫
d4x′

√
−g′

{
G11(x, x

′)Tr {F11(x, y)F11(y, x
′)F11(x

′, x)}

−G21(x, x
′)Tr {F21(x, y)F11(y, x

′)F12(x
′, x)}

−G12(x, x
′)Tr {F11(x, y)F12(y, x

′)F21(x
′, x)}

+G22(x, x
′)Tr {F21(x, y)F12(y, x

′)F22(x
′, x)}

}
. (4.49)

The dynamical equations for the propagators are obtained by setting

δΓ/δGab = 0:

0 =
~
2

1√
−g

1√
−g′

δ

δGab(x, x′)

(∫
d4x′′

∫
d4x′′′ δ2S

δϕc(x′′)δϕd(x′′′)
Gcd(x

′′, x′′′)

)
−i~

2

1√
−g

1√
−g′

δ ln detG

δGab(x, x′)
+

1√
−g

1√
−g′

δΓ2

δGab(x, x′)
. (4.50)

The terms on the right-hand side are evaluated as follows:

~
2

1√
−g

1√
−g′

δ

δGab(x, x′)

(∫
d4x′′

∫
d4x′′′

(
δ2S

δϕc(x′′)δϕd(x′′′)

)
Gcd(x

′′, x′′′)

)
= −~

2

(
cab(�+m2) +

λ

2
cabcdϕc(x)ϕd(x)

)
δ4(x− x′)√

−g′
(4.51)
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− i~
2

1√
−g

1√
−g′

δ

δGab(x, x′)
(ln detG) = − i~

2
G−1

ab (x, x
′) (4.52)

1√
−g

1√
−g′

δΓ2

δGab(x, x′)

=
1√
−g

1√
−g′

δ

δGab(x, x′)

(
−
∫

d4x′′
√

−g′′ ccdef
λ~2

4
Gcd(x

′′, x′′)Gef (x
′′, x′′)

− i

2
f2~2

∫
d4x′′

√
−g′′

∫
d4x′′′

√
−g′′′ ccdecc

′d′e′

×Gcc′(x
′′, x′′′)Tr{Fdd′(x

′′, x′′′)Fe′e(x
′′′, x′′)}

)
= −ccdab

λ~2

2
Gcd(x, x)

δ4(x− x′)√
−g′

− i

2
f2~2cadecbd′e′Tr{Fdd′(x, x

′)Fe′e(x
′, x)}. (4.53)

Using the results in Eqs. (4.51), (4.52) and (4.53) in Eq. (4.50), we obtain

0 = −~
2
(cab(�+m2) +

λ

2
cabcdϕc(x)ϕd(x))

δ4(x− x′)√
−g′

− i~
2
G−1

ab (x, x
′)

−ccdab
λ~2

2
Gcd(x, x)

δ(x− x′)√
−g′

− i

2
f 2~2cadecbd′e′Tr{Fdd′(x, x

′)Fe′e(x
′, x)}.(4.54)

Multiplying both sides of the above equation by
√
−g′ Gbe(x

′, x′′) and integrating

over x′, we finally obtain the dynamical equations for the propagators:

−iδae
δ4(x− x′′)√

−g′′
=
(
cab(�+m2) +

λ

2
cabcdϕc(x)ϕd(x)

+ccdabλ~Gcd(x, x)
)
Gbe(x, x

′′)

+

∫
d4x′

√
−g′ if 2~cadfcbd′f ′

Tr{Fdd′(x, x
′)Ff ′f (x

′, x)}Gbe(x
′, x′′). (4.55)

In the coincidence limit, the above equation for G11(x, x
′) becomes(

�+m2 +
λ

2
ϕ2(x) +

λ~
2
G11(x, x)

)
G11(x, x

′)

−~f 2

∫
d4x′′

√
−g′′K(x, x′′)G11(x

′′, x′) = −δ4(x− x′)√
−g′

, (4.56)

where

K(x, x′) = −iTr {F11(x, x
′)F11(x

′, x)− F12(x, x
′)F21(x

′, x)} . (4.57)
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Eqs. (4.48) and (4.56) constitute a system of integro-differential equations from

which the mean fields and the propagators can be determined. Solving these

equations requires the knowledge of the products of the fermion propagators; this

will be discussed in the next section.

4.2 Evaluation of the Kernel

In the section, we will evaluate the kernel K(x, x′) in Eq. (4.57) at the lowest

order in perturbation, and show that the causality is satisfied by the dynamical

equations for the propagators (Eq. (4.56)). For simplicity, we will work out the

calculation on Minkowski space.

Since we are considering the coincidence limit, we set Ψ1(x) = Ψ2(x) ≡

Ψ(x). Using the notations Fab′ ≡ Fab(x, x
′) for the fermion propagators and

θ(x, x′) ≡ Θ(x0−x′0) for the step function, we can write the fermion propagators

in terms of the fermion correlation functions as

F11′ = ⟨Ψ(x)Ψ(x′)⟩θ(x, x′)− ⟨Ψ(x′)Ψ(x)⟩θ(x′, x)

F22′ = ⟨Ψ(x)Ψ(x′)⟩θ(x′, x)− ⟨Ψ(x′)Ψ(x)⟩θ(x, x′)

F12′ = −⟨Ψ(x′)Ψ(x)⟩

F21′ = ⟨Ψ(x)Ψ(x′)⟩, (4.58)

which imply that

F11′ = θ(x, x′)F21′ + θ(x′, x)F12′ (4.59)

F22′ = θ(x′, x)F21′ + θ(x, x′)F12′ . (4.60)

Treating Fab′ as a matrix with spinor indices as the matrix indices, for example

(F21′)αβ ≡ ⟨Ψα(x)Ψβ(x
′)⟩, it can be verified that

(Tr {F11′F1′1})∗ = Tr {F22′F2′2} (4.61)

(Tr {F12′F2′1})∗ = Tr {F1′2F21′} . (4.62)
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Using θ(x, x′)θ(x′, x) = 0, we also find the relations

Tr {F11′F1′1} = Tr {F21′F1′2} θ(x, x′) + Tr {F12′F2′1} θ(x′, x) (4.63)

Tr {F22′F2′2} = Tr {F21′F1′2} θ(x′, x) + Tr {F12′F21′} θ(x, x′), (4.64)

which tell us that the traces of the products of two fermion propagators are not

all independent.

Let us now evaluate the kernel

K(x, x′) = −iTr {F11′F1′1 − F12′F2′1} . (4.65)

Using the familiar forms of the fermion propagators [15],

F11(x, x
′) =

∫
d4p

(2π)4
e−ip·(x−x′) i(p/+ µ)

p2 − µ2 + iε
(4.66)

F22(x, x
′) = −

∫
d4p

(2π)4
e−ip·(x−x′) i(p/+ µ)

p2 − µ2 − iε
(4.67)

F12(x, x
′) =

∫
d4p

(2π)4
e−ip·(x−x′)2π(p/+ µ)δ(p2 − µ2)Θ(−p0) (4.68)

F21(x, x
′) =

∫
d4p

(2π)4
e−ip·(x−x′)2π(p/+ µ)δ(p2 − µ2)Θ(p0), (4.69)

we find

Tr {F11(x, x
′)F11(x

′, x)}

= −
∫

d4p

(2π)4
d4q

(2π)4
e−i(p−q)·(x−x′) Tr{(p/+ µ)(q/+ µ)}

(p2 − µ2 + iε)(q2 − µ2 + iε)
. (4.70)

The trace over spinor indices can be easily evaluated with the result

Tr{(p/+ µ)(q/+ µ)} = 4(p·q + µ2). (4.71)

In terms of Feynman parameters [15], we can write

1

(p2 − µ2 + iε)(q2 − µ2 + iε)

=

∫ 1

0

dαdβ δ(α+ β − 1)
1

[α(q2 − µ2 + iε) + β(p2 − µ2 + iε)]2

=

∫ 1

0

dαdβ δ(α+ β − 1)
1

[p2 − µ2 + iε+ α(k2 − 2p·k)]2

=

∫ 1

0

dα
1

[(p− αk)2 − E(α; k2 + iε)]2
, (4.72)
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where3

E(α; k2 + iε) ≡ µ2 − α(1− α)k2 − iε, (4.73)

and we have defined k ≡ p− q on the third line. Eq. (4.70) then becomes

Tr {F11(x, x
′)F11(x

′, x)}

= −4

∫
d4p

(2π)4
d4k

(2π)4

∫ 1

0

dα e−ik·(x−x′) (p2 − p·k + µ2)

[(p− αk)2 − E(α; k2 + iε)]2

= −4

∫
d4p

(2π)4
d4k

(2π)4

∫ 1

0

dα e−ik·(x−x′) (p
2 + (2α− 1)p·k + E(α; k2 + iε))

[p2 − E(α; k2 + iε)]2
, (4.74)

where we have changed p → p+ αk to obtain the last line. It is easy to see that

the term p·k does not contribute to the integral, as it is an odd function of p. To

evaluate the right-hand side of Eq. (4.74), we first perform an integration over p.

This can be done by observing that if Re{E(α; k2 + iε)} = µ2 − α(1− α)k2 > 0,

the integrand has simple poles at p0 = ±{
√

|p|2 +Re{E(α; k2 + iε)}− iε} on the

complex p0-plane. As the integrand is proportional to (p0)−2 for large |p0|, then

we can rotate the integration contour on the complex p0-plane counterclockwise

by 90◦. The procedure leads us to define a Euclidean 4-momentum variable pE

by setting p0 ≡ ip0E and p ≡ pE, so that the integral over p becomes∫
d4p

(2π)4
(p2 + E(α; k2 + iε))

[p2 − E(α; k2 + iε)]2
= −i

∫
d4pE
(2π)4

(p2E − E(α; k2 + iε))

[p2E + E(α; k2 + iε)]
2 . (4.75)

This integral clearly diverges in 4 dimensions, so we evaluate it using dimensional

regularization:∫
dnp

(2π)n
(p2 + E(α; k2 + iε))

[p2 − E(α; k2 + iε)]2
= −i

∫
dnpE
(2π)n

(p2E − E(α; k2 + iε))

[p2E + E(α; k2 + iε)]
2

= − i

(4π)n/2

{n
2
Γ
(
1− n

2

)
− Γ

(
2− n

2

)}
× 1

E(α; k2 + iε)1−n/2
, (4.76)

3Note that the formal definition of E(α, k2) is E(α, k2) ≡ µ2−α(1−α)k2. Since α(1−α) ≥ 0
for α ∈ [0, 1], then it is clear we can express E(α; k2 + iε) in the form in Eq. (4.73).
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where we have used the formulae [15]∫
dnpE
(2π)n

1

(p2E +∆)k
=

1

(4π)n/2
Γ(k − n

2
)

Γ(k)

(
1

∆

)k−n
2

(4.77)∫
dnpE
(2π)n

p2E
(p2E +∆)k

=
1

(4π)n/2
n

2

Γ(k − n
2
− 1)

Γ(k)

(
1

∆

)k−n
2
−1

. (4.78)

To analyze Eq. (4.76) in the vicinity of n = 4, we let n = 4−ε. Using the formula

Γ(x + 1) = xΓ(x) for the Gamma function, we can expand various terms in the

above integral as:

1

(4π)n/2
=

1

(4π)2

{
1 +

ε

2
ln(4π) +O(ε2)

}
(4.79)

1

E(α; k2 + iε)1−n/2
= E(α; k2 + iε)

{
1− ε

2
lnE(α; k2 + iε) +O(ε2)

}
(4.80)

Γ
(
2− n

2

)
= Γ

(ε
2

)
=

2

ε
− γ +O(ε) (4.81)

Γ
(
1− n

2

)
= Γ

(ε
2
− 1
)

=
Γ(ε/2)

(ε/2− 1)

= −
(
2

ε
− γ +O(ε)

)(
1 +

ε

2
+O(ε2)

)
= −

{
2

ε
− γ + 1 +O(ε)

}
, (4.82)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Using the above result, Eq.

(4.76) becomes∫
dnp

(2π)n
(p2 + E(α; k2 + iε))

[p2 − E(α; k2 + iε)]2
= − i

(4π)2
{
3E(α; k2 + iε) lnE(α; k2 + iε)

−3E(α; k2 + iε)

[
2

ε
− γ + ln(4π) +

1

3

]
+O(ε)} . (4.83)

In the limit of ε → 0, the right-hand side of Eq. (4.83) contains a divergent

term. To get rid of this divergence, it is convenient to use the modified minimal

subtraction or MS renormalization scheme [15], in which we make a replacement[
2

ε
− γ + ln(4π) +

1

3

]
−→ ln(Λ2), (4.84)
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where Λ is a mass scale; this is equivalent to imposing a series of renormalization

conditions. Thus Eq. (4.83) becomes∫
dnp

(2π)n
(p2 + E(α; k2 + iε))

[p2 − E(α; k2 + iε)]2
= − 3i

(4π)2
E(α; k2 + iε) ln

(
E(α; k2 + iε)

Λ2

)
.

(4.85)

Substituting the above result into Eq. (4.74), we finally obtain

Tr {F11(x, x
′)F11(x

′, x)} = i

∫
d4k

(2π)4
e−ik·(x−x′)A2(k

2 + iε), (4.86)

where

A2(k
2 + iε) ≡ 3

4π2

∫ 1

0

dαE(α; k2 + iε) ln

(
E(α; k2 + iε)

Λ2

)
, (4.87)

which is valid for the case of Re{E(α; k2 + iε)} > 0.

The result for the case of Re{E(α; k2 + iε)} < 0 can be obtained by

performing an analytic continuation of the integrand of A2(k
2) in Eq. (4.87),

treated as a function of E(α; k2), to its values on the negative real axis of the

complex E(α; k2)-plane. In practice, however, it is more convenient to treat

A2(k
2) as a multi-valued function of complex k0, and define the integral over k0

as a contour integral on the complex k0-plane. This can be done as follows. We

first note that since α(1− α) ≥ 0 for α ∈ [0, 1], we can write E(α; k2 + iε) as

E(α; k2 + iε) = µ2 − α(1− α)(k2 + iε), (4.88)

which enables us to think of E(α; k2) = µ2−α(1−α)k2 as a function of complex

k0 by noting that, since k2 = (k0)2 − |k|2, we can write

k2 + iε =

{
(k0 + iε)2 − |k|2 for k0 > 0
(k0 − iε)2 − |k|2 for k0 < 0

(4.89)

This implies that we can remove the term iε from Eqs. (4.86) and (4.87) by

writing

Tr {F11(x, x
′)F11(x

′, x)} = i

∫
d4k

(2π)4
e−ik·(x−x′)A2(k

2), (4.90)
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where the integral over k0 is an integral on the complex k0-plane, whose contour

is obtained by tilting the real axis slightly in the counterclockwise direction (see

Fig. 4.2). Now,

E(α; k2) = µ2 − α(1− α)k2

= −α(1− α)

{
(k0)2 − |k|2 − 1

α(1− α)
µ2

}
= α(1− α)(B − k0)(B + k0), (4.91)

where B ≡
√
|k|2 + µ2/α(1− α), which tells us that the function ln(E(α; k2))

has two branch points at k0 = ±B and two branch cuts from ±B to ±∞ on the

real axis as shown in Fig. 4.2.

Figure 4.2: The contour of the k0 integral in Eq. (4.90).

As the locations of the branch points depend on the value of α, one might

think that we need to evaluate the k0-integral before performing an integration

over α. Such a complication, however, can be avoided as follows. Along the

contour where k0 is just above (below) the real axis for Re{k0} > 0 (Re{k0} < 0),

by using Eq. (4.91), it is easy to verify that

ln(E(α; k2)) = ln(|E(α; k2)|) + iπ sgn(k0)Θ(−E(α; k2)), (4.92)

where the “sign” function is defined by

sgn(k0) =

{
1 for k0 > 0

−1 for k0 < 0
(4.93)
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and the step function,

Θ(−E(α; k2)) =

{
0 for E(α; k2) > 0 (or |k0| <

√
|k|2 + µ2/α(1− α) )

1 for E(α; k2) < 0 (or |k0| >
√

|k|2 + µ2/α(1− α) )
,

(4.94)

tells us where the imaginary part of the function ln(E(α; k2)) is non-vanishing.

Thus

A2(k
2) =

3

4π2

∫ 1

0

dαE(α; k2)

{
ln

(
|E(α; k2)|

Λ2

)
+ iπ sgn(k0)Θ(−E(α; k2))

}
(4.95)

and the integration over k0 is performed along the real axis. This result thus

allows us to perform an integration over α before performing an integration over

k0. It is important to note that the presence of sgn(k0) on the right-hand side

implies the breaking of the time-reversal invariance of Tr {F11(x, x
′)F11(x

′, x)},

which means that Tr {F11(x, x
′)F11(x

′, x)} is not symmetric under the interchange

of x and x′.

Since the step function Θ(−E(α; k2)) is non-vanishing when the condi-

tions

[1−
√

1− 4µ2/k2] < 2α < [1 +
√
1− 4µ2/k2] (4.96)

and k2 − 4µ2 ≥ 0 are both satisfied, then the second term of Eq. (4.95) can be

easily evaluated:

3i

4π
sgn(k0)

∫ 1

0

dα E(α; k2)Θ(−E(α; k2))

=
3i

4π
sgn(k0)Θ(k2 − 4µ2)

∫ [1+
√

1−4µ2/k2]/2

[1−
√

1−4µ2/k2]/2

dα
[
µ2 − α(1− α)k2

]
= − i

8π

k0

|k0|
k2

(
1− 4µ2

k2

)3/2

Θ(k2 − 4µ2), (4.97)

where the step function Θ(k2 − 4µ2) came from the condition k2 − 4µ2 ≥ 0, and

we have written sgn(k0) = k0/|k0|. Thus

A2(k
2) =

3

4π2

∫ 1

0

dαE(α; k2) ln

(
|E(α; k2)|

Λ2

)
− i

8π

k0

|k0|
k2

(
1− 4µ2

k2

)3/2

Θ(k2−4µ2).

(4.98)
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Substituting the above result into Eq. (4.90), we finally obtain

Tr {F11(x, x
′)F11(x

′, x)}

=
3i

4π2

∫
d4k

(2π)4
e−ik·(x−x′)

{∫ 1

0

dαE(α; k2) ln

(
|E(α; k2)|

Λ2

)
− i

8π

k0

|k0|
k2

(
1− 4µ2

k2

)3/2

Θ(k2 − 4µ2)

}
. (4.99)

Using the above result, it is easy to verify that Tr {F11(x, x
′)F11(x

′, x)} is a pure-

imaginary quantity, and so, by using

Tr {F22(x, x
′)F22(x

′, x)} = (Tr {F11(x, x
′)F11(x

′, x)})∗ ,

we find

Tr {F22(x, x
′)F22(x

′, x)} = −Tr {F11(x, x
′)F11(x

′, x)} . (4.100)

We next evaluate Tr {F12(x, x
′)F21(x

′, x)}. Since Tr {F11′F1′1 + F22′F2′2} =

0 and Tr {F21′F1′2} = (Tr {F12′F2′1})∗, by adding Eqs. (4.63) and (4.64) together,

we find that the real part of Tr {F12(x, x
′)F21(x

′, x)} is zero:

ReTr {F12(x, x
′)F21(x

′, x)} = 0 . (4.101)

Using the above result in Eq. (4.63), we find

Tr {F12(x, x
′)F21(x

′, x)} = sgn(x′0 − x0) Tr {F11(x, x
′)F11(x

′, x)} , (4.102)

where

sgn(x′0 − x0) ≡ θ(x′, x)− θ(x, x′)

=

{
1 x′0 > x0

−1 x′0 < x0 (4.103)

Using Eqs. (4.99) and (4.102), we finally obtain the kernel:

K(x, x′) ≡ −iTr {F11(x, x
′)F11(x

′, x)− F12(x, x
′)F21(x

′, x)}

= 2θ(x, x′) ImTr {F11(x, x
′)F11(x

′, x)}

=
3

2π2
θ(x, x′)

∫
d4k

(2π)4
e−ik·(x−x′)

{∫ 1

0

dαE(α; k2) ln

(
|E(α; k2)|

Λ2

)
− i

8π

k0

|k0|
k2

(
1− 4µ2

k2

)3/2

Θ(k2 − 4µ2)

}
. (4.104)
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The fact that K(x, x′) is proportional to θ(x, x′) tells us that causality is satisfied

by the dynamical equation for the propagator (Eq. (4.56)).

Let us now make some remarks about this kernel. First of all, it is not

hard to see that this kernel does not mathematically make sense, as the integral

defining it severely diverges, and so it is questionable if it can be used consistently

in the dynamical equation for the propagator. Anyway, if we ignore this problem

for a moment and look at the form of its integrand, we see that the second term is

non-vanishing when k2 > 4µ2. This condition for the non-vanishing of the second

term is very interesting, since k0 = 2µ is the threshold energy for producing two

fermions of mass µ. Moreover, as this term contains a factor k0/|k0|, it breaks

the time-reversal invariance of the theory. We thus expect that such a term, if

its integral over d4k makes sense at all, should describe the fermion production

after the end of inflation, and therefore is responsible for the damping of the

mean field of the inflaton. However, with the (unpleasant) result of this section,

all we can say for now is that the mathematical structure of the nonequilibrium

dynamics of a scalar field coupled to a fermion needs to be explored much more

than this before we can be sure if we can rely on this theory in describing the

fermion production in the universe.



CHAPTER V

CONCLUSIONS

In nonequilibrium quantum field theory, the effective action is the main

quantity that we are interested in since we can determine the quantum corrections

at each order in ~ and derive the dynamical equations satisfied by the mean

fields and the propagators. Following the work by Hu and Ramsey [7, 8], we

have obtained the effective actions and the dynamical equations for the mean

fields and the propagators of a scalar field theory in curved spacetime with and

without coupling with a fermion field, and a specific case of the FRW spacetime

was considered where we have obtained the quantum-corrected equation of motion

of the inflaton field and its propagator. An interesting point that we found is that

the inflaton potential depends on its own quantum fluctuations in the form of its

propagator and, at the same time, the time evolution of the propagator depends

on the value of the inflaton field. It was hoped that these results should be useful

in analyzing the nonequilibrium dynamics of the inflaton field and the dynamics

of fermion production in the universe. Unfortunately, the dynamical equations

so obtained are of the form of the integro-differential equations which cannot be

solved analytically.

In the case with fermion coupling, it is expected that the integral terms

in the dynamical equations should give us the damping behavior of the inflaton

field whenever the condition for fermion production is satisfied. If everything

goes as planed, we should be able to obtain the decay feature of the inflaton field

without having to add the phenomenological damping terms to the equations of

motion by hand. However, the calculation of the nonlocal kernel defined in Eq.

(4.57) (which appears in the dynamical equation for the propagator) resulted in a

mathematically problematic form of the kernel as the integral defining it severely

diverges. Despite this problem, we have verified that, with this kernel, causality
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is respected by the dynamical equation for the propagator, and the time-reversal

invariance is broken when the inflaton energy reaches the threshold to create a

fermion pair.

The salient feature of this thesis is that the calculational result for the

kernel in Eq. (4.57) is different from a similar calculation in Ref. [8], in which

the authors used Cutkosky rules [15] to evaluate the other traces of products of

fermion propagators from Tr{F11(x, x
′)F11(x

′, x)} (unfortunately, what they did

is conceptually wrong). We have checked that the relationships among the traces

of products of fermion propagators (derived from the definitions of fermion prop-

agators) are not satisfied by the result obtained in Ref. [8]. Moreover, causality

is not satisfied by the kernels obtained in Ref. [8]. To correct the results in

Ref. [8], we firstly evaluated the term Tr{F11(x, x
′)F11(x

′, x)} via the traditional

method of quantum field theory. In contrast with the calculation method used

in Ref. [8], we have used the relationships among fermion propagators to ob-

tain the other traces of products of fermion propagators. Instead of obtaining

Tr{F12(x, x
′)F21(x

′, x)} in terms of the discontinuity of Tr{F11(x, x
′)F11(x

′, x)},

we have obtained

Tr {F12(x, x
′)F21(x

′, x)} = sgn(x′0 − x0) Tr {F11(x, x
′)F11(x

′, x)} ,

(see Eq. (4.102)) by using Eqs. (4.63), (4.64) and (4.100). Then, the kernel in

Eq. (4.57) was found to be

K(x, x′) =
3

2π2
θ(x, x′)

∫
d4k

(2π)4
e−ik·(x−x′)

{∫ 1

0

dαE(α; k2) ln

(
|E(α; k2)|

Λ2

)
− i

8π

k0

|k0|
k2

(
1− 4µ2

k2

)3/2

Θ(k2 − 4µ2)

}
,

(see Eq. (4.104)) which satisfies the causality requirement. We thus have obtained

a new result which, we hope, will be useful in future study of nonequilibrium

quantum field theory.
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