CHAPTER II

PRELIMINARIES

In this thesis, we shall assume that the reader is
familiar with common terms used in set theory and basic
knowledge of abstract algebra. The materials are standard

and can be found in the reference(d] .

However, we shall review some important definitions

and results. We shall use the following notations:

N

the set of all positive‘integers.
Z = the set of all integ;rs.

Q ; the set of all ratiomal numbers,
- )

= the set of allrcomplex numbers.

An integer p in Z is said to be a prime if (i) p#ti
and. (ii) 4f alp,then'a:il or a=Yp. 1In this thesis, we shall
consider only positive prime. So when we say that peE Z is

a prime we always assume that pé N -

t
Review Concepts in Algebra.

We say that (G,o) is a semigroup, if G is a nonempty
set and o is a binéry operation on G, which is satisfied the
associative law: for any a,b,c,6G, (acb)ec = ao(bec).

A semigroup (G,e) is called a commutative semigroup,if
(G,0) satisfied the commut ative law: for any a,bétG, asb=boa.

A group (G,°) is a semigroup which satisfied the

following axioms:

(i). There exists an element e in G such that



eca=a=aoe, for all aeG. This element e is an identity -
element for o on G.
{ii) . For esch a in G, there exists an element a—l
-1 .

‘ - -1 . g
in G such that aca 1=e=a - The element a is an inverse

of a with respect to o,

If (G,+) is a group, then we shall call (+) the
addition. We denote the identity and the inverse of a by O
and -~a respectively. Similarly, (G,.) is a group, then we
shall call () the mutiplication and the identity

is denoted by 1. ; : -

Let S be any nonempty subset of a‘group(G,f). We say
that S is a subgroup of (G,e), if (S,¢) is a group. The sub-
group of (G, o) generated by S, denoted by (8> , is the
smallest subgroup of (G,s) which contains S. It can be
shown that if S is a nonempty subset of a commutative group
(G,+), then<S?> is the set of all finite sum ;f;xiai?_where

i=1
xiEZ and 8,6 8§ » 1£f 3= {al,..,an}, then we denote (S)

by (al,..,an>. i1 & <a1,-..,an> = {x1a1+—«»+xnanlx1,..,xn€Z}‘
Let (G,o) be a group. The subgroup N of G is said to

be a normal subgroup of G, if for every ge G and n €N, gng_lEN.

It can be shown that the set

5% = {ev | sec}
with the operation (%) defined by
(8, M) *(g,N) = (g.°8,)N (8;,8,€G)

is -a commugative group and it is called the factor group pf

G relative to N.
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We say that (R,;,-),is a ring, if R is a nonempty
set and (+),(-) are two binary operatioms-on R, which
satisfies the following:

(i) (R,+) is a commutt@ative group.

(is) (R,+) 48 a semigroup.

(iii) The distributive laws hold: for all a,b,céR,

a+*(b+c) = a.b+a-c and (bf?)ié = . be¢a+c -a.

A ring (R,+,+) is called a ring with identity ,if¢1€R.

A ring (R,+,+) is called -a commutative ring, if (R, )
is a commugative semigroup.
In the sequel, the term ring in this thesis will

alWways mean a commutative ring with identity 1.

Let R be a ring and a,b belong to R. Then we say
that a divides b (denoted.alb),provided that there exists
céR such that b=ac. We call u in R a unit provided that at

belongs to R. We say that a,b in R ame associates(denoted/”

anvb), iff there is a unit u of R such that a=bu. We call a in

R irreducible if a is a nonzero, nonunit and whenever we

have a=bc with b,c in R one of b and ¢ must be a unit in R,

An intégral domain D is a ring which has no zero

divisors, We say that the factorization of an element a in
integral domain D into irreducible factorsis unique if

Wwhenever d s
..fpr an a—' ql..‘qs,

a= p,

where Pl,..,pr,ql,..,qs are ‘irreducible, then
(i) I'=8

and (ii) there is a permutation 7 of {1,2,..,r} such that

P, and qﬂﬂi) are associates for all i=1,2,..,r. An integral
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domain D is said to be a unique factorization domain(U.F.D.),

if each nonzero nonunit element of D has a unique factoriza-~

tion into irreducible Ffactors

A ring (R,+,:) is called a field, if (R-{0Y},.) is

a commu tative group,

Let R be a ring. By an R-module we mean an commu-—
tative group M (written additively),  together with a

function f:RXM—M, for which we write f(r,m)=rm (reR,meM);

satisfying
(i) (r+s)m = rmssm,
(ii) r(m+n) = rm+rn,
(iii) r(sm) =/(rs)m,

(iv) 1m =m,

for all r,s R, m,neM,

Let S be any nonempty subset of M. It can be shown

that {(SD> is. a zZ-module,

Let (F,+,+) be a field and (V,+) be’'a commutative

group. We say that V is a vec tor space over F if.V is a
F-module. The elements of F and V will be referred.to as
scalars and véctors, respectively. . If V is a vector space

over F and {xl,..,xn} is .a finite subset of V, then for aiEF

R n ) ; g " C :
1$ign, .zga;xi is called a linear combination of {xl,..,xn}.
d=
The vectorsxl,..,x €V are said to be linearly dependent over
ot :

F, if there exis.t scalars al,..,anEEF, not all of them zero

such that :%:aixi= O. An arbitrary set A of vectors is
i=1

said to be a linearly dependent set, if some finite subset

of A is linearly dependent. Otherwise, the set A is called



a linearly independent. IfHSZ? is a linearly independent
subsef of V such that for every véV, v can be written as a
linear combination of vectors ian?, we say thath}is a basis
of V. It can be shown that every vector in V has a unique
representation as a linear combination of elements of 9%?

" and that every basis of V has the same cardinal number.

Let V be a vector space having a basis consis;ing of n
elements. We say that n is the dimension of V. If V consists
of O alone, then the basis of V is empty so that V. has

dimension O,

2.1 The integersof a quadratic field.

The materials in this section are taken from [11.
Theorems will be stated without proofs. Their proofs can be

found in [1].

Defintion 2.1.1 Let d be any integer. We say that d is a

square-free integer, if d is nonzero and is not divisible

by a perfect square other then 1.

Remark: if 'd is a square-free integer, then it can be shown

that, the set
'{buﬂﬁ\b,ceﬁ}

formsa subfield of Gj.

Definition 2.1.2. By a quadratic field we mean any subfield

of € of the form {b+cf5 l b,cedg} , where d is a square-

free integer. We shall denote this field by Q( [d) .

In the sequel, d will always denote a square~-free

integer. And 4 # 1.



Definition 2.1.8. Let n = bsc[d. be any element of G(Jd),

where b,ce 1 . The element a = b-cld is called the

conjugate of a.

_ *
Theorem 2.1.4.([1],Proposition 8.2.3.) Let a,a,,a, be any

elements of Q(J/d). Then

2 / ’ ’ 4 ¥ g
+ = + i . ' 2\
(i) . (al-ag) = a,Ta, T T

(ii)e (alagf PR 4

192 ,
a, , &

(iii). If a,#0, then (=) = ;}-
| 1)) Ra 2

(iv). a =a’ if and only if aeB .

Definition 2.1.5. Let a = b+c[d be any element of Cl(ﬁg),
where b,ce ( . The trace of a, denoted T(a), is defined as.

T(a)

]

a+a” = 2b. The norm of a, denoted N(a), is defined as

N(a) aa’ = b2-c25.

Theorem 2.1.6 ([1],proposition 8.2.5) Let a,a,,a, be any
elements of Q@ (Jd). Then
{1)- T(al+a2) = T(a1)+TCa2);N(ala2)'= N(al)N(aQ).
(ii). T(a),N(a) are rational numbers.
(iii). N(a) =‘0 if and only if a = 0:
(iv). a is a zero of the polynémial x2—T(a)x+N(a),

i.e. a satisfies the equation XQ—T(a)x+N(a)=O,'

Definition 2.1.7. Let a be any element of Q(Jd). We say

that a is an integer of (}(IH), provided that T(a),N(a)

* Here;tﬂ ,Proposition 8.2.3. means that this theorem is
taken from proposition § of dection 8.2 in [1] . Similar

notations will also be used in the sequel.




belong to Z . We denote the set of integers of Q(ﬁ) by Id.

Theorem 2.1.8, ([i],Theorem 8.3.2.) The set of Id consists

of the numbers of the form x+yg%, where: x and y belong to

Z and :
Ja if d= 2,3 (mod4),

Dy =5 1440
T

if d =1 (mod4).

Remark 2.1.9. From the above theorem, we can see that Id=

<},U%> and it can be shown that I, is an integral domain.

Theorem 2,1.10. (riT,Theorem 8.3.4.) The set Id has the

following properties:
(i) All elements x+y/a , where x,yg Z , are in I ..
(ii) If a is ix Id’ then d is also,

(iii) If a is i Id and is a rational number, then aezz

Remark., In the sequel, we shall simply call any element of
Id an integer, (idi) of Theorem 2.1.10. tells us that an
integer is rational if and only if it is in 7. Hence any

element of Z is an integer which is a rational. So any

element of Z will be called a rational integer.

Theorem 2.1.11.( [1],Proposition 8,3.5.) Let a€Q(Jd): Then

there is a nonzero rational integer n -such that na is in Id‘

Remark 2.1.12. It can be shown that

(i) @Q(Jd) is a vector space over @Q which has a
basis {1,JE}.
(ii) If {a,b} is a basis of Q(Jd) and c is a nonzero

element of Q([d), then {ac,bc} 'is a basis of Q(Jd).



Definition 2.1.13. Let a,b belong to ()(IE). The determinant

Zop 2
a a

Ala,b) = o= (at-bay?
' b b

is called the discriminant of a,b.

Lemma 2.1.14. ([1], Lemma 8.5.3.) Let a,b belong to Q(Jd).

Then
(i) A(a,b) is a rational number.

(ii) If a,b € I,, then A(a,b) is a rational integer.

(iii) {a,b} is a basis of ((Jd) if and only if A(a,b)#0.

Remark 2.,1.15., It can be shown that if {al,a2} and {as,a4}

are bases of Q(Jd) and <a1,a2> = <a3,a4> , then

(i) there exist N, a0y s0a,0, € Z such that

a n n a n n
L\ ¥ /I 3\ and det /nl 2 =t1,
D) B/ a4} \ 5 By

(ll) A(‘al’ag) = A(asia4)"

Theorem 2.1.16 ([1],Lemma 8.7.2.) An element a of I is a

unit of I, if and only if N(a). =*1,

Theorem 2.1.17 ([1] ,Lemma 9.i.1.) Let a,b belong to I, and

assume that a‘b, then'N(h)lN(b).

Theorem 2.1.18. ([1] ,Lemma 9.1.2.) Let a € I, and lN(aﬂ:p,

where p is a rational prime. Then a is an irreducible
element of Id.

Theorem 2.1,190.([q ,Theorem 9.1.3.) Let a be a nonzero

nonunit element of 1 Then a can be written in the form

d°

a=>b °"bt’ where: b

2 b are irreducible elements of Id'

1,.9, t
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2.2, The sp-modules,

Definition 2.2.1. Let A and B be any two nonempty subsets.

of (1((&). The product AB of A and B is the set of all sums

of the form

alb1+a b ot " --+anbn,

where 8 re058, belong to A and bl""bn belong to B, In case

={a}, we shall also denote AB simply by aB.

Remark 2.2.2. For any subsets A,B,C of Q(Jd), it can be

shown that.

(i), AB = BA,
"(ii). (AB)C = A(BC),
and (iii). aB = {ableB}, if a€@(Jd) and B is closed

under addition.

Let a be any elements of q}(IE). Then the

17%g
additive subgroup <al,a2> is a ZZ-module. We shall give a

special name to such a/Z-module in which {al,aQ} formsa
basis of Q( [d).

Definition 2.2.3. Let M be any subset of @Q(Jd). M is called

an sp-module, if there exists a basis {al,az} of d}(f&)

su;h that M = <a1,a2> °

Theorem 2.2.4. ( [1] ,Theorem 8.5.6.) Let M be a subset of

Q({d). Then M is an sp-module if and only if the following
three conditionshold:
(i). M is a Z-module,
(ii). M contains a basis of Q(Jd).
(iii). there is a nonzero rational integer k such

that kMc Iq,



1x

Remark 2.2.5, 1, is an sp—module. This follows. from the

fact that Id = {x+yah‘x,yezz}, where @ is as Qefined in

Theorem 2,1.8. and {1,&% }is a basis of Q(ld).

Definition 2,2.6. For any nonzero element ¥ in @(j’&), xId

is called a principal module and xI <X,x } ¥ is called

a generator.

Remark 2.2,7. It can be shown that the following hold:

(i)« BEvery principal module is an sp~module.
{ii}s  IF aId and bId are principal modules, then

(aId)(bId) = (ab)Id

Definition 2.2.8., The discriminant Z&M of the sp-module
M = <{a,b> is defined to be the nonzero rational number
A(a,b). The discriminant,.AM is well defined by Remark

2.1.15(ii), We shall denote AI by Aﬁ' We can verify that
d

d if d = 1(mod4),

Aq = l4d if d = 2,3 (modd). °° 84= 0 or 1 (moda).

Theorem 2,2.9. ( [1] ,Proposition 9.3.3,) Let Ml = <§1,bi>

and M, =,<?2,bé)be sp-modules in @(IH), Then M1M2 is the-

set of all numbers of (Q(Jd) of the form

1a2+ya1b2+za2b1+wb1b2

where x,y,z,w are rational integers,

Theorem 2.2.10, The set of all sp—modules is a commutative

semigroup under the multiplication.

Proof., Since every sp-module is a subset of qg(JE),
it follows from Remark 2.2.2. that commutative aﬁd associa-
tive laws_hold. So we need to show that the multiplication

is closed. Let M, = <al,b1> and M, = <a2,b2>be any sp-modules.
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By Theorem 2.2.9 we get

M1M2 = {xala2+ya1b2+za2b1+wb1b2‘*,y,z,we Zﬂ. coefl)

Since {al’bl} is a basis of @K/E) and a, # 0, it follows
from Remark 2,1.12(ii) that {alag,blag} is a basis of{]L}d).
From (1) we see that Mle contains a basis of q;(/E). 1t

is clear that, the sum and difference of two elements of

M_M " G that M_M, i '
1My belopg to Mlmz So we can conclude a 1My is a

Z -module, By Theorem 2.1.11. there is a nonzero rational

integer n such that na_,na ,nbl,nb belong to I1,. From (1)

1 2 2

2 s
we see that n M1M2§;Id. Thgrefore, M,M, is; an sp module.

Hence, the set of all sp-modules is a commutative semigroup.

#
Definition 2.2.11., L&t Ml and M2 be any sp-modules., We say

that Ml and M2 are similar, if there is an element & in

GXJE) such that Ml =& My0 When Ml and M, are similar,

we write M100M2.

Theorem 2.2.12. ( [1], Proposition 9.6.2.) Similarity of

sp-modules is an equivalence relation.

We shall denote the equivalence class containing M by [M].

2.3 The spg-modules.

Definition 2.3.1. Let M be any sp-module., The set of

elements a in (@Q(/d) having the property aMEM is called

the ring of coefficients ( or coefficient ring ) of M and

will be denoted by ©M

Observe that any coefficient ring is always a ring.
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Theorem 2.3.2. ([1] ,Lemma 8.6.9.) Let M be an sp-module.

Then OM, =D S

Theorem 2.3.3. ([1], Theorem 8.6.,10) Let M be any sp-module.

There is a positive rational integer £ such that (DM -
<1’, .:Ecod). The rational integer Jf is characterized as the

least positive rational integer such that ‘,{c% is in (DM.

Remark 2.3,4. The element £ in Theorem 2.3.3. will be
called the conductor of ®M' It is clear from Definition

2.2.,3+ that ®M is an sp-module.

Definition 2.3.5. Let M be any sp-module, The number

—

A
N(M) v V/——"

A

O

is called the norm of Mo

Definition 2,3.6., Let () be a ring of coefficients, and M

an sp-module. If M has (D as its ring of coefficient, then
we say that M belongs to 0 . If MC (9 and M belongs to (9 ’

then we say that M is an integral module(for ®). That is,

M is an integral module if and only if M‘Q%.

Definition 2.3.7. Let M be an integral module belonging

to @ « We say that M is a:. prime module if and only if,

whenever M = M‘iMq, with Ml and M’2 integral quule_as

belonging to @ s we have eitheer = @ or Mg = @ °
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Definition 2.3.8 Let M be an sp-module. M is called an

3
spg-module, if C& = I

In our work we need to consider only the spg-modules,
So that definitions and theorems stated in this study are
special cases of those in Eﬂ .« To obtain our result from
the general results in [i]wwe use the fact that when

c& = Id’ 1 is the conductor of Ido

Using the fact " MGEMId“ and the definition of

spg-module, We have the following theorem,

Theorem 2.3.9. Let M be any sp-module., Then

M is an spg-module if and only if MId = M.

Remark 2.3.10, It can be shown that the following hold:

(i) Every principal module is an spg-module

5 be any sp-modules such that MthM2o

It Ml is. an spg-module, then M2 is also.

0 1165 1 S Ml and M2 are spg-modules, then Mlmg is also,

(ii). Let M, and M

In the sequel, we shall need to compute the rings
of coefficients of sp-modules of the form M ='(1,$>.

The following theorem tells us how to compute themo

Theorem 2.3.11, ( [1] , Lemma 8.6.13.) Let M = {(1,%> be any

{1,a¥) , where ¥ satisfies the equation

sp-module. Then Ch
axz-bx+c = 0 with a,b,c being rational integers;ay0 and

a,b,c have no common factor>l.

% It can be shown that the concept of spg-module is the same

as that of fractional ideals. See Theorem B in Appendix I,
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Example 2.3.12. We shall show that M = €5,2+®@ > is an

spg-module in (;(1%6). Clearly, M isan sp—module in Q({-6).

W_g
5 : » ey

that ¥ satisfies the equation 5$2-4X+2 = 0. By Theo:em/f;?;xﬁf

Let M, ={1,¥), where ¥ = z+ So M = 5M,. We can cheelope.

2.3.11.

OMl = <1,5X> = <1,2+IC\?_6> = 1—6.

Therefore, M, is an spg-module. By Remark 2,3.10(ii) M

1
is an spg-module

Similary, we can show that (11,4+096) is an spg-
module in Q([-6) and <2,Cg,1), <5,5+C231> are spg-modules

in @( I‘-Sl)o #

A concept which is important in the study of
sp-modules is that of the norm of a sp-module. However, we
need to consider only the case of spg-module, For this

special case we have the following:

Remark 2.3.13. . Let M be any spg-module. Then the norm

of M is AM
N(M) = ‘-—K- I
d

Remark 2.3.14. Let a be any nonzero element of QQ(IE).

Then aId is an spg-module and
i 9 :
S > YAk G 2 L2 / 2'
R v o P e
AaId 2, dbﬁ (aaah aaah) (aa) (&ﬁ Gﬁ) o
1 142
Since Ay =| | = (@;-@)>, it follows that
md;‘,‘ G)d
‘ ! 73 P 2 5
N(al.) = a8). 10y 0y) = M{a)
d =0 a1

011327

P 17bb 2 AL
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Definition 2.3.15. Let M. be any nonempty subset of ﬂ}(fa).

M/ = {c/‘cé. M}.

M will be called the conjugate of M.

Define

Remark 2.3.16. It can be shown that conjugation has the
following properties.
(i). If S is a nonempty subset of q;(IE). Then
4 /
{s) = (8).
(ii). If A,B are nonempty subsets. of (Q(IE). Then
v /s 2
(iii). If M is an spg-module, then
’ /
M is an spg-module and N(M) = N(M).
(iv). If M, and M, are sp-modules, then

i 2

7/ g
M1A1M2 if and only if M£VM2.

Theorem 2.3.17, | BJ y Theorem 9.3.8.) Let M be an spg-

module. Then MM = N(M)I,.

Theorem 2.3.18. ([1], Corollary 9.3.12.) Let M, and M, be

1

e TP g boYs
spg~-modules, T§en N(Mlhgi N(Ml)N(M2L

Theorem 2.3.19. The set of all spg-modules is a commutative
group under the multiplication.
Proof. Letcﬂ@ be the set of all spg~modules., Since

J¢Z is a subset of the set of all sp-modules, it follows

1

from Theorem 2.2.10. and Remark 2ed:10(a3d) ¢ thatJﬂ?.is a

commutative semigroup. From Fheorem 2.3.9. we see that I
Ve

d

» / ¥ ,
is. an identity, Let M€ﬁo Then Méﬂ. Since M~ NMM ’

L

N(M

; ,
it follows from Remark 2.3.10(ii) that - )E/%?. By Theorem
AP e k

=

I : - / e 7/
2.3.17, MM = N(M)I4. So M(N%ﬁy) = I . Therefore, ia

N(M)
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an inverse of M. Hence,% is a commutative group.

#

Theorem 2.3.20. The set of all principal modules is a

normal subgroup of the group of all spg-modules.
Proof. Let @ be the set of all principal modules
and/rL be the group of all spg-modules. By Remark 2.3.10(i)

and Remark 2,2.7(ii) that,gbgm and Cpis closed.

Let M€ . Then M = aId for some nonzero element a € &(I—a).

1

R -1 - -1 :
So (aId)(a Id). = (aa )Id = Id'-'\ Therefore, a Id is an

inverse of al,. Hence, @ is a sub.'group ofﬁ % SinceM

is commutative, it follows thatg"\} is a normal subgroupe.

#

Definition 2.3.21. Letm be the set of all spg-modules
and @be the set of all principal modules. Then(%,*)
is a factor group ofm relative 1:063 ._‘/%is denoted by

qd and is called the class group of Id’ The number of

elements of qd is called the class number of Id which

denoted by }ld'

Remark 2.3.22. Let M.e/"é. It can be verified that M@:[M} ’

QZL[;d] and 1M1= [md 7T,

2.4 Integral modules and Prime modules.

In this section we review the concepts of integral
modules and prime modules for the case of spg-modules,
We provide known results Qn factorization of integral.

modules into prime modules.




18

‘Remark 2.4.1. Let M be any spg-module. Then M is an

*
integral module  if and only if Mé;Id.

Remark 2.4.2. The following observations will be useful

in the sequel.
(i). An integral module M contains a unit of Id
if and only if M = Id.
(ii). M1M2 is an integral module, if Mland Mé-are
integral moﬁules,
(iii). aId is an integral module if and only if
a belongs to Id'
Proof. (ii) and (iii) are clear. We shall show
(i)e Let M be any integral module. So M€;Id..8uppose that
M contains a upit qf Id. Then M Vcon;ains 1, Since
MI,C M, then I CM. therefore, M = I_.

The converse is obvious, : : P

Remark 2.4.3. .Let M be any integral module, M # Id. Then
M is,prime if and oply if, whenever M = M1M2, with M1 and
M being integral modules, we have. either M1\= Id or

b g

: ; £l
Remark 2.4.4, If M is a prime module, then M is also.

Theorem 2.4.5.( [1] , Theorem 9.4.2,) If the norm of any

integral module is a rational prime, then it must be a

prime module,

*¥ It can be shown that the concept of integral module is

the same as that of ideal. See Theorem A in Appendix I.
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Note that the converse of this theorem is not true,
A counter example can be found in Example 2.4.19.. Later on
we shall give a necessary condition for an integral module

to be prime (see Theorem 2.4.13.).

Definition 2.4.6. Let A,B be integral modules. Then we
say that A divides B, written A|B, if there is an integral

module C such that AC =B.

Remark 2.4.7. Let A and B be any integral module such that

A‘B. Then we can show that N(A)‘N(B).

Theorem 2.4.8. ([1] , Theorem 9.4.6.,) Let A and B be integral

modules., Then A\B if and only if BCA,

Theorem 2.4.9 ( @ﬂ , Corollary 9.4.10.) Let P,A,B be any

integral modules. If P is prime and P‘AB, then P‘A or P‘B.

Corollary 2.4.10. Let Al""’An be any integral modules

and P be a prime module such that P\Al""°An' Then P\Ai,

for some i, 1¢&i¢n.

Theorem 2.4.11. ( [1] , Theorem 9.4.4.) Let M(#I,) be an

integral module. Then M can be written in the form

M =P P

1.0.¢ -t’

where Pl""Pt are prime modules., Moreover, this repersenta-

tion is unique up to the order of P1"’Pt’

Theorem 2.4.12. ([1], Proposition 9.5.1.) Let P be any

prime module and a,b belong to Id. If ab &P, then a€EP or

b & P.

Remark 2.4.13. Let P be a prime module. It can be shown

that N(P) -="p or p2, for some rational prnime Ppo
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Theorem 2.4.14. ( [1], Theorem 9.5.2.) Let P be a prime

module. Then there is a rational prime p such that P pId.

Conversely, ;f p is a rational prime, then there are three
possibilities: :
(i) pId = P is a prime module and N{P) = p2n
(i1} pId = PQ, where P is a prime module such that
. f(and N({P) = p.
(iii). pI, = PPZ where P and v are distinct prime

5 7
modules and N(P) = N(P) = p.

Definition 2.4.15. Let p be any rational prime. Then

(i) p is inert /it pId = P, where P is a prime
2
module and N(P) = p »

, : g
(ii). p is decomposed, if pId = PP, where P and P

Y
are distinct prime modules and N(P) = N(P) = p.
(iii). p is ramified, if pIj = p?, where P is a prime

7/
module such that P = P and N(P) = po.

According to the above theorem(Theorem 2.4.140),v
we see that any rational primé p must be either inert,
decomposed or;ramified. The following theorem will be.
useful in deciding whe;her a rational prime p is inert,
decomposed or ramified. This theorem also givesus the primé

factorization of pId°

Theorem 2.4.16. ( [1], Theorem 9.5.3.) Let p be a ratio@al

prime.
(i). - Assume that p}Aa. Then pis'decomposed if and

only if the congruence xzssﬁh (mod4p) is solvable. .
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Otherwise, p is inert. In the case p is decomposed, say

pId = PP, then A /\
P = <?’ a=- j>

where a is a rational integer such that x = 2a.-Ad is a
solution of xzs Ad

(ii). Assume that pIAd. Then p is ramified, pId=P

and " Ad"'\/AT} >
2 2

(m0d'4p)o
2

if p is odd

P = <2,/-§‘1-> if p=2,d = 2(mod4)
\<2 1+/————> if p=2,d5-3(mod4);

Theorem 2.4.17. Let p be a rational prime.

{4y, . AL p\Ad, then p is ramified, i.e. we have

where P is the prime module given by
’ Ad*'/Aa
<?9 2
. Ad
<2, —4——> if p=2,d4.== 2(mod4)
Ad
L<2’ 1+ T> if p=2,d = 3(mod4)

(ii). - If p*Ad, then p is either decomposed or inert.

> if p is-odd

e
{1
"\

p is decomposed if and only if the congruence
2:—_:A
X" = 4 (mod4p)
is solvable, and in this case P in the factorization

pI -PP

is given by x-—/ >

P




where x is a solution of XZEEZXd (mod 4p).

_Theorem 2.4,17 is just a restatement: of Theorem
. 9,4,16. The following examples will illustrate how the above
theorem can be applied. In fact the results. of these

examples will be needed later on.

Example 2.4.18, We shall factor 51_6 in to a product of
prime modules in @jfzg). Singce -6 =2 (mod4), it follows
from Remark 2.2,8, that ££6=~24' Since 5*-24, hence, by
Theorem 2.4.17(ii), 5 is decomposed or inert. Observe 4
is a solution of x2§5,—24 (mod20) (see Example 11 in

7/
Appendix II) Hence, 5 is decomposed and SI_6=PP, where

P = <5, _4+/-24 é"‘24> . Thus, P = <5,2+]:-73> gl <5,3+j:E>.
Therefore §I_, = <%,2+4£§> <%,3+]:a> 1

#

Example 2.4.,19, We shall factor 31_31 in to a: product of

prime modules ip @KJ:EE). Since -31251‘(mod4), it follows
from Remark 2.2.8,, that [§3l=—31.vSince 3*-51, hence by
Theorem 2.4.17(ii). 3 is decomposed or inert. It can be
shown that x255-31 (mod12) has no solution (see Example 10
in Appendix II). Hence, 3 is inert. Therefore,

31_31 is a prime module. #

Note that, N(31 = 9. This example is a  counter-

—31)
example of prime module which has the norm is not rational

prime,

Example 2.4.20, We shall factor 21_5 in to a product of

prime modules in @(./—5). Since =5==3 (mod4), it follows
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from Remark 2.8.,8. that 4i5= -20, Since 2F20, hence by
Theorem 2.4.17(i) 2 is ramified. Therefore, 2I_5= P2, where:
P is. a prime module given by P = <?;1+J—5> . Hence,

oI ¢ = (2,14/-5)°. 2

2,5 The computation method of the product of integral modules.

In this section we provide a computation method to
determine a product of integral modules. They will be
followed by examples, This computation method willbe based

on Theorem 2.5.7. and Theorem 2.5.8.

Lemma 2.,5.1. ([1], Lemma 9.2.3.) Let M be an sp-module and
c be any element of GKIE). Then there exis.ts a positive

rational integer k such that kcg M.

Remark 2.5.2, It follows from this lemma that every

sp-module contain a positive rational integer. This can

be seen by taking c =/'1o

Theorem 2,5.3. ( [i] , Corollary 9.2.5.) Let M be an idtegral

module. Let a)0 be the least rational integer in M and let
b+cah be an element of M for which c}Olis as small as
possible. Then M = <%,b+c&h « Furthermore, we may assume

that Ogbga.

Theorem 2.5.4. Let M = <%,b+c&£> be an integral module,

where a,b,c€ Z . Then N(M) =|ac|.

Proof. Let M = <%,b+cﬁa> be an integral module,

where a,b,c€Z . Then

2
A s b S 2,y
T ac ~-®y2
M b+c) D+cly Voo {0 -9)2



A,

: ¢ B, '
Since Aﬁ = (U%—C%) , it follows that N(M) = —zg— = ‘ac‘.

Remark 2.5.5, From Theorem 2.5.3. and Theorem 2,5.4. we

see that the norm of any integral module is a positive

rational integer,

Corollary 2.5.6., ILet M be any integral module. Then

N(M) = 1 if and onlybif M= Id.
Proof, Let M be any integral module.,

First, we assume that N(M) = 1. By Theorem 2,5.3, M =

<a,b+cg£>, where a is the smallest positive rational

integer in M, ¢ is the smallest positive rational integer

such that b+c&h is in M and O$bfa, By Theorem 2,5.4.

N(M) =lacL So ‘ac\= 1. Since a and c are pqsitive rat;onal

integer, we can conclude that a=c=1 and b=0. Thus, M=Id°

o
A

d

So N(M) = = L.

Conversely, if M = 1 then AM =N
: #

q? a’

The following theorems will be useful in finding

product of any two integral modules.,

Theorem 2.5.7. Assume that d= 1 (mod4) Let Ml= <%1,b1+c1q§>

\ . ;
aqd M2= <%2,b2+026h) be any lntegralrmodulgsf  L9t

c = g.c.d.(alcg, a5y blc2+b201+clc2),
F . h(Ml)N(Mg)
c

Let x,y,z be any rational integers such that

xalc2+ya2cl+z(b1c2+b2cl+clc2 = e

Then :
MM, = <a,b+c(%>,
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d-1
h = —_—)) .
where b xalb2+ya2b1+z(b1b2+clc2( ))

Proof., From Theorem2.2.9, any elemento in MiM2 can

be written in the form

A = ra1a2+sa1(b2+c2ﬁﬁ)+ta2(bl+cfwa)+u(b1+clﬁh)(b2+c26%)
2
= ra a,+ sa1b2+ ta2bl+ u(b1b2+ 0102&% )

& (831°2+ ta,c,+ u(blc2+_clb2))0%,

1+/E-
2 (3

where r,s,t,ué Z . From Theorem 2.1.8. we have Q%;»

o d-1
so that(xh = —Z—+G%. Therefore,

d=-1
A = ra1?2+ salb2 + ta2b1 + u(b1b2+ clcg(—z—))

+ (88102,+ ta2c1_+ u(blc2 + clb2+ 0102))&%""(1)

where r, s,t,ué7Z . Since c = g.c.d.(aicg,agcl,blc2+clb2+

0102)’ then c is the smallest positive rational integer of
the»form la102+ma2cl+n(blc2+clb2fc1c2),where 1,m,n€E Z.

1P2*¢1%2(74
see that b+cQ), is in Mle.” By Remark 2.5.2. we can choose

Let b = xalb2+ya2b1+z(b bsy+C Ezlﬁ)o From (1) we can

the smallest positive rational integer k such that k6M1M2.

By Theorem 2.5.3. we have MM, = (k,b+cga> and by Theorem

2.5.4. we have N(MM,) = |ke| = kc. Thus,
N(MMy)  N(M)N(My)

k= = = 8o
Cc C

Therefore, M = (a,b+cu%> .

Theorem 2.5.8. Assume that d=2,3 (mod4).
Let M, = (a,,b +c Gy and My= (agsby+eo@y) -

be any integral modules. Let

.= g.c.d.(alcg,azcl,b102+b2cl),‘
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N(Mq ) N(Mg )

a = .
0

Let x,y,z be any rational integers such that
xa102+ya2c1+z(b1c2+b2cl) = C
Then

M1M2 = <a,b+c&%> ’

where

b = xalb2+ya2bl+z(blb2+clc2d).

The proof of Theorem 2.5.8. is similar to that of

Theorem 2.5.7. So it will be omitted.

The following will illustrate the method above.
Note tha§ from Example 2.3.12. we have seen that <?,0231>‘
<5,5+ @31> and (5,2+ @-6>’ <11,4+ (‘26> are spg-modules in
(}(l—Sl) and (}(1—6) respectively. . It is clear that they
are integral modules. Weshall demonstrate how to obtain

the product of these pairs of them.

Example 2.5.9. Let M, = <2,0§51> and M, = <§,3+C§31> ‘be

integral modules. We shall find the product M = M1M2 and
repfesent it in form _
M = <§,b+cogsl> i
' Since ~31=1 (mod4),_hence by Theqrem 2.5.7. we see: that
C = goc.d.(2,5,4) = 1.
By Theorem 2.5.4. we can see that N(Mi) = 2 and N(Mg) = 5,

Therefore :
N(M )N(Mz) = 10

p 7
A solution of 2x+5y+4z = 1 is x =-2, y =1, z = 0. So b==12.
Therefore ,M = <i0,—12+(93£> = <;0,_2+Cg3i>
' #
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g= <11,4+ (3_)6>

be integral modules., We shall find the product M = M1M2

‘ g i
Example 2.5.10. Let M, (5,2+ @) ) and b

and represent it in the form

& y
M = (a,b+c@q ) -
Since -6=2 (mod4), hence by Theorem 2.5.8. we see that

C = g.C.d.(s,ll,G) = 1».
@
By Theorem 2.5.4. we can see that N(Ml) =5 and N(Mz) = 11,

Therefore,
_ N(Mi)N(Mz)

a.=—‘~—].-—f——=550

A solution of 5x+1ly +6z =/1 is x =-2, y =1, z = 0, So
b = -22. Therefore, M/ 2 {55;-22+G) > = {55,537+ >

#
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